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Executive Summary 
Every year, the Florida Department of Transportation (FDOT) is responsible for billions in 
taxpayer dollars appropriated for the construction and maintenance of roads and bridges 
throughout the state. Accurate cost estimation for specific pay items used within a construction 
or maintenance project is a cornerstone of effective planning and overall fiscal responsibility. 
Estimates for construction pay items aim to ensure the responsible use of public funds by helping 
guide and inform initial budget allocations and subsequent vendor bid evaluations. Accuracy of 
estimates directly impacts FDOT’s ability to efficiently and effectively plan and execute projects. 
Inaccurate estimates can lead to budget shortfalls, project delays, or inflated costs, ultimately 
impacting Florida’s infrastructure and taxpayers. 

Notwithstanding its importance, accuracy in estimates faces numerous challenges in what is a 
very dynamic construction industry environment. Supply chain disruptions, regional economic 
variations, or innovations in products and services are just some of the market volatilities that 
can significantly disrupt trends and impact construction costs. Regardless of the direction, the 
consequences of inaccurate estimates can ripple through the entire project lifecycle. 
Overestimation can lead to inefficient allocations in resources and fewer completed projects, 
while underestimation may result in project delays, scope reductions, or the need for 
supplemental funding. The considerable diversity in pay items, along with Florida’s own diverse 
geography and varying economic conditions, only serve to magnify the challenges. 

FDOT’s current estimation process relies on traditional averaging and outlier detection methods 
applied to bid unit prices for individual project pay items, which are then aggregated to inform 
overall project cost estimates. These methods are well supported in statistics, transparent, and 
conceptually easy to understand. The greatest strength of the existing estimation process, 
however, is its use of the most up-to-date information possible, utilizing historical bid data on 
previous bids all the way up to the day an estimate is made. Despite these real strengths, the 
simplicity of traditional averaging approaches comes at the real expense of not factoring more 
information and struggling to capture intricate relationships between various factors affecting 
construction costs. Considerations of more sophisticated approaches represent an effort to 
improve estimates by incorporating more information, or context, to more effectively adapt to 
market changes and capture complex pricing patterns. 

This research paper represents a culmination of the 'Updates to Estimates Pricing Algorithms and 
Market Areas' project and assesses FDOT's current pay item estimation methodologies and their 
predictive effectiveness in depth. The objective of the overall project was to perform the 
necessary research and analysis to assess the FDOT's current methodologies, processes, and 
algorithms for determining prices for roadway and bridge construction pay items and to make 
recommendations that would redefine the FDOT's existing algorithms and methodologies to 
improve the accuracy of project cost. While the project’s individual research tasks focused on 
standard research approaches like redefining existing market areas and evaluating existing and 
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potential parameter filters, the investigations revealed limitations in conventional approaches, 
which led to the exploration of alternative machine learning techniques.  

For this report, historical bid data from 2014 through 2024 were used to simulate 'walk forward' 
estimation scenarios where bids from earlier letting dates are used to estimate bid unit prices for 
subsequent letting dates. Rather than rely solely on the traditional approaches of predefined 
statistical rules and explicit instructions and calculation steps, the research within this report 
explores machine learning approaches—specifically gradient boosting tree methods—that can 
learn from examples to automatically discover and adapt to patterns within historical bid data, 
while assessing whether these methods enhance accuracy without compromising transparency 
and practicality. The goal is not merely to improve numerical accuracy but to develop more 
robust and adaptable estimation tools that can better serve the mission of constructing and 
maintaining roads and bridges in an efficient and cost-effective manner. 

Finally, the research does not stop at theoretical evaluation but extends into the practical realm of 
implementation. A fully functional prototype was developed to bridge FDOT’s historical bid data 
with modern cloud-based prediction services, transforming analytical insights into an operational 
tool. This prototype serves as a proof of concept, demonstrating how machine learning-powered 
estimation can be integrated into FDOT’s existing workflows while maintaining transparency 
and usability. Through features such as batch prediction, interactive single-item analysis with 
interpretability, historical data visualization, and automated model performance monitoring, the 
prototype offers a comprehensive framework for improving cost estimation processes. By 
developing and testing this system in an applied setting, the research ensures that its findings are 
not just academic but also actionable—paving the way for data-driven decision-making tools that 
can enhance accuracy, adaptability, and confidence in the estimation process. This end-to-end 
approach underscores the study’s commitment to bridging research and practice, laying the 
groundwork for more sophisticated, scalable, and user-centric solutions in transportation 
infrastructure planning. Ultimately, this research provides FDOT with a roadmap for leveraging 
data-driven methodologies to improve cost estimation, enhance fiscal responsibility, and 
optimize resource allocation for Florida’s infrastructure projects. 
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Introduction 
Accurate cost estimation plays a critical role in the planning and execution of transportation 
infrastructure projects. The Florida Department of Transportation (FDOT) is responsible for 
managing billions of dollars in taxpayer-funded construction and maintenance projects each year. 
Ensuring that these funds are allocated efficiently requires reliable pay item cost estimates, 
which depend on accurate bid unit price predictions that reflect current market conditions. 

Accurate bid unit price estimates serve multiple essential functions in cost estimation and 
infrastructure development: 

• Budget Allocation: Estimates guide the distribution of financial resources across 
projects, ensuring that funding is used effectively to maintain and expand the 
transportation network. 

• Feasibility Assessment: Accurate projections determine whether projects can be 
completed within available funding and help mitigate the risk of budget shortfalls. 

• Bid Evaluation: Predicted bid unit prices provide a benchmark for assessing contractor 
bids, helping FDOT identify reasonable, competitive pricing and detect potential 
overpricing or underbidding risks. 

The complexity of road and bridge construction complicates cost estimation. A single project 
involves multiple vendors, each submitting bids for different components, from materials and 
labor to specialized equipment. Interdependencies between project phases require precise 
planning, and external factors—such as fluctuating material costs, labor rates, and regional 
economic conditions—introduce additional uncertainty. 

FDOT’s current estimation methodology relies on historical bid data to derive unit price 
estimates for construction pay items. These initial estimates inform the engineer’s estimate, 
which acts as a benchmark for evaluating contractor bids during procurement. While the 
traditional approach provides a straightforward and transparent method for cost estimation, its 
reliance on fixed assumptions and static averaging methods limits its ability to capture complex 
pricing patterns and market fluctuations. 

This research addressed these limitations by evaluating FDOT’s existing estimation framework 
and exploring potential enhancements through data-driven methodologies. By analyzing 
historical bid data from 2014 to 2024, this study assessed the predictive performance of 
traditional averaging methods and examined the viability of machine learning techniques in 
improving estimate accuracy. 

The following section provides an overview of the historical bid data that serve as the foundation 
for both the current estimation algorithm and the proposed alternative approaches. 
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Historical Bid Data 
FDOT collects historical bid and project attributes data on an ongoing basis, updating the dataset 
daily—a key strength of its current estimation process. As will be further delineated in this 
report, this continuous data refresh provides a strong foundation for maintaining up-to-date and 
market-responsive cost estimates. This historical bid dataset is structured in a tabular format, 
with each row representing an individual bid submission and each column capturing a specific 
characteristic or attribute of the bid. The dataset encompasses a comprehensive range of 
information, including contract and project identifiers, letting dates, geographic locations, bid 
quantities, and contract and work categories, and specific project pay items and bid unit prices. 

Each bid (observation) in the dataset includes not only the unit price information essential for 
estimation purposes, but also contextual details about the project's location, timing, scope, and 
classification. This extensive collection of features offers the potential to analyze a multitude of 
patterns and relationships within the bidding landscape, providing a valuable resource for both 
the current estimation processes and any potential alternative approaches. 

Table 1 on the following page outlines all of the individual features (variables) in the historical 
bid dataset: 
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Table 1: Historical Bid Dataset Variables 

Understanding the structure and content of the historical bid data provides essential context for 
how this primary source of information is leveraged by current estimation methods, and how it 
can potentially be leveraged by any alternative approaches. 
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Current Methods for Estimates 
Any algorithm is just a set of step-by-step instructions for taking in inputs (e.g., bid 
characteristics) to produce outputs (e.g., bid price estimates). The carefully structured averaging 
method that comprises FDOT’s current algorithm processes historical bid data through numerous 
steps to produce a bid unit price estimate, or prediction. These steps can be summarized in three 
main components: the selection or filtering of historical bids, the determination of an averaging 
method, and the application of that method. 

Component 1 – Selection or Filtering of Historical Bids (4 steps): 
With historical bids comprising the dataset’s observations (or rows), the first component employs 
a four-step filtering process to identify relevant historical bids. 

Step 1: Select all previous bids statewide for the same specific project pay item being estimated. 
 

 
Figure 1: Current Algorithm 1st Step of Component 1 (filter by pay item) 

 
As the first input, project pay item ID determines which historical bids will be considered for 
potential averaging. Only historical bids with the same pay item ID as the bid being estimated 
are selected in this initial step, while all other historical bids with different pay item IDs are 
filtered out. For instance, when estimating the cost for performance turf sodding (Item 0570 1 2), 
the algorithm first pulls all historical bids for this exact item, ensuring comparison of genuinely 
similar material and/or work. 
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Step 2: Next, remove all remaining bids with a letting date not within the past 36 months of the 
current date. 
 
As the second input, letting date is used to apply temporal relevance filtering by removing bids older than 
36 months from the current date. This second step retains only bids with letting dates within three years of 
the estimation date, balancing competing needs between estimates reflecting reasonably current market 
conditions and maintaining a sufficient sample size for averaging. 
 

 
Figure 2: Current Algorithm 2nd Step of Component 1 (filter by letting dates within 36 months of current date) 

 
Step 3: Calculate the median bid unit price for the remaining bids. 

 
Figure 3: Current Algorithm 3rd Step of Component 1 (calculate median bid unit price) 
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Step 4: Calculate each remaining individual bid’s absolute price deviation from this same median, 
and then the median absolute price deviation from the median bid unit price. Remove all remaining 
outlier bids with an absolute price deviation greater than the median absolute price deviation. 

 

 
Figure 4: Current Algorithm 4th Step of Component 1 (calculate absolute price deviation) 

 
Bid unit prices are the inputs used in the third and fourth steps to calculate two statistical measures: first, 
the median bid unit price, and then the median absolute price deviation from that median. These 
combined calculations—known in statistics as the median absolute deviation method—are used to 
determine, identify, and remove outlier bids in the final filtering of remaining historical bid data, ensuring 
that averages used in final estimates will not be skewed by unusually large or small prices from previous 
bids. 

Component 2 – Determination of an Averaging Method (1 step): 
Following the first component’s initial process of selecting and filtering historical bids by pay item ID, 36-
month window, and outlier prices, the second component then decides whether to average all remaining bid 
unit prices with equal weight (i.e., a straight average) or to apply a weighted average that factors in 
proximity each to bid location, bid quantity, and time from bid letting date. 

The second component consists of a single step to determine, based on the number of remaining bids, 
whether to use a straight average or a weighted average. The bifurcation at six or fewer bids marks an 
attempt to balance between statistical robustness and data availability. The straight average has statistical 
merit as it represents the best unbiased estimate when limited information is available. With fewer bids, 
simpler methods like the straight average help avoid overfitting to limited data. With more bids, 
conversely, weighted or adjusted averages can leverage more information from features (like bid 
characteristics relating to location, quantity, and time) so that the average calculations incorporate more 
context to potentially improve estimate accuracy across different bids. 

Step 1: Check to see if the number of filtered bids totals 6 or fewer to determine whether to 
calculate a straight average or a weighted average adjusted for location, bid quantity, and time 
from letting date. 
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Figure 5: Current Algorithm Component 2  (determination of averaging methodology) 

Component 3 – Applied Averaging (1 step for straight average, 6 steps for weighted 
average): 
The third component executes the averaging method determined from the second component 
based on the number of remaining historical bids. If a straight average (6 or fewer bids) is not 
used, then a weighted average (more than 6 bids) is calculated based on three adjusted averages 
that each factor in geographic location, bid quantity, and time from letting date. 

Step 1: Add the remaining historical bids’ geographic counties to the data and assign the following 
weights relative to the county for the estimated bid: same county, 5.0; same market area different 
county, 3.0; different market area, 1.0. 

 
Figure 6: Current Algorithm Step 1 of Component 3  (determination of location weights) 

 
Step 2: Calculate a geographic county-adjusted bid unit price average for the remaining bids. 

A location-adjusted average is calculated in the same manner as a straight average, but with one 
difference: static weights are assigned to historical bids in the averaging according to geographic 
proximity to the bid being estimated. Historical bids from the same county are assigned a weight 
of 5.0 (five times as much weight), and historical bids from a different county but the same 
market area are assigned a weight of 3.0 (three times as much weight). All other historical bids 
are assigned a weight of 1.0 (no additional weight). With additional weight given to previous 
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bids closer in geography, the location-adjusted average seeks to capture any local or regional 
market conditions influencing pay item pricing. 

 
Figure 7: Current Algorithm Step 2 of Component 3 (calculate the location-adjusted average) 

 
Step 3: Calculate a quantity-adjusted bid unit price average for the remaining historical bids with 
weighting based on their respective bid quantities’ proximity to the proposal’s bid quantity. 
 
A quantity-adjusted average is calculated with relative weighting (as opposed to static weighting) 
based on absolute similarity between the remaining historical bids’ quantities and the proposed 
bid’s quantity. From the quantity for the bid for which an estimate is being made, each remaining 
historical bid’s weighting in the averaging is calculated according to three steps: 
 

1. First, calculate an initial quantity weight for each remaining historical bid based on its 
negative absolute difference from the proposal’s bid quantity. 
 

2. Next, normalize to an adjusted quantity weight for each bid based on the minimum initial 
weight’s (among all remaining bids) difference from each initial weight, then add 1. The 
starting point for the adjusted weight is the bid quantity that is furthest away from the 
proposal’s bid quantity (minimum initial weight as noted above), which is assigned a value 
of “1”.  All other adjusted weights are valued based on their initial weight’s difference from 
the minimum initial weight. 
 

3. Finally, apply the adjusted quantity weights to calculate a quantity-adjusted average of bid 
unit prices, similar to how location weights were used in the calculation of the location-
adjusted average. 

With more weight given to previous bids closer in quantity, the quantity-adjusted average seeks 
to capture economies of scale and other quantity-driven pricing dynamics, operating under the 
assumption that these effects vary in a linear fashion. 
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Figure 8: Current Algorithm Step 3 of Component 3 (calculate the quantity-adjusted unit price average) 
 

Step 4: Calculate a time-adjusted bid unit price average for the remaining bids weighted based on 
their respective letting dates’ proximity to the current date. 
 
A time-adjusted average is calculated in a functionally equivalent way to the quantity-adjusted 
average, with relative weighting applied based on absolute length of time, in days, between the 
historical bids’ letting dates and the current date on which an estimate is made. Each remaining 
historical bid’s weighting in the averaging is calculated according to three steps: 
 

1. First, calculate an initial time weight for each bid based on its negative absolute difference, 
in days, from the current date. 
 

2. Next, normalize to an adjusted time weight for each bid based on the minimum initial 
weight’s difference from each initial weight, then add 1. The starting point for the adjusted 
weight is the bid letting date that is furthest away from the current date (minimum initial 
weight as noted above), which is assigned a value of “1”.  All other adjusted weights are 
valued based on their initial weight’s difference from the minimum initial weight. 

3. Finally, apply the adjusted time weights to calculate a time-adjusted average of bid unit 
prices, similar to how location weights were used in the calculation of the location-adjusted 
average. 

With greater weight assigned to more recent bids, the time-adjusted average assumes that pricing 
information loses relevance over time, again in a linear fashion. The weighting, it should be 
noted, remains truly relative. The “current date” used in the calculation does not materially 
impact the resulting time-adjusted average. Whether the current date as shown in the example 
above is “January 1, 2021”, “December 31, 2022”, or “November 20, 2020”, the time-adjusted 
average will still be calculated as $102.50. This means that the “current date” used in the current 
pricing algorithm really affects which bids are selected (those within 36 months), but nothing 
else beyond this filtering of historical bids. 
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Figure 9: Current Algorithm Step 4 of Component 3 (calculate the time-adjusted unit price average) 

 
Step 5: Calculate the average of the three adjusted averages: location-adjusted average, quantity-
adjusted average, time-adjusted average. 
 
The final step of the current algorithm involves simple averaging of either: a) all remaining 
historical bids’ unit prices (if six or fewer historical bids), or b) the location-adjusted, quantity-
adjusted, and time-adjusted averages (if more than six historical bids). The latter averaging method 
effectively produces a weighted average where proximity to location, quantity, and time are each 
weighted 331/3 percent in the overall averaging. In other words, the example used above could also 
be calculated as: 

($102.50 * 331/3 %) + ($99.50 * 331/3 %) + ($102.50 * 331/3 %) = $101.50 

Not only are location, quantity, and time assumed to be the sole significant factors influencing 
bid unit prices, but by design they are also treated as equally important in the current algorithm, 
with each receiving an identical weight of 33⅓ percent. 

 
Figure 10: Current Algorithm Step 5 of Component 3 (calculate the average of the three averages) 

 
This functionally equivalent, alternative design to calculating the weighted average reveals how 
greater or lesser weight may be given to each of the specific adjusted averages. For example, to 
give more weight to the time-adjusted average while taking equally from the other two adjusted 
averages, the revised method for calculating the average would be:  

($102.50 * 25 %) + ($99.50 * 25 %) + ($102.50 * 50 %) = $101.75  
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Evaluating the Predictive Performance of Current Methods 
The Goal: Predictive Accuracy 
 
When evaluating estimation methods, it's crucial to understand that the primary goal is predictive 
accuracy—how well estimates predict new, unseen bid unit prices—rather than simply how well 
a method retroactively fits or explains variation in historical data. As noted in Data Mining for 
Business Analytics, there is a key difference between the goals of traditional regression analysis 
and predictive modeling:1 
 

"First, let us emphasize that predictive accuracy is not the same as goodness-of-fit. Classical 
statistical measures of performance are aimed at finding a model that fits well to the data on 
which the model was trained. In data mining, we are interested in models that have high 
predictive accuracy when applied to new records. Measures such as R2 and standard error of 
estimate are common metrics in classical regression modeling, and residual analysis is used 
to gauge goodness-of-fit in that situation. However, these measures do not tell us much about 
the ability of the model to predict new records." 

 
In short, the objective of any predictive model is generalizability—ensuring it can accurately 
estimate future values—rather than memorization of past data. In the specific context of 
transportation construction cost estimation, the goal is to accurately predict future bid prices 
rather than explain historical variations in such prices. 

Analyzing Existing Averaging Methods 
Depending on the number of non-omitted bids, the current algorithm calculates either a straight 
average (six or fewer bids) or a weighted average (greater than six bids). Because the weighted 
average is actually an average of three other averages, however, the current algorithm 
fundamentally utilizes four different average calculations: a straight average, a location-adjusted 
average, a quantity-adjusted average, and a time-adjusted average. Thus, it is possible to compare 
the predictive performance of each of these subcomponent averages against one another as if 
they were stand-alone calculations. 

Realistic Simulation Through Walk-Forward Validation 

A critical aspect of the evaluation is ensuring that the algorithm’s predictive performance 
simulates real-world conditions as closely as possible. To achieve this, a 'walk-forward' 
validation approach is used, mimicking the actual estimation process. For any given bid: 

1. Only historical data available prior to that bid's letting date are used 

2. The same 36-month lookback window used in practice is applied 

 
1 Shmueli, Galit, Peter C. Bruce, Peter Gedeck, and Nitin R. Patel. "Chapter 5: Evaluating Predictive Performance." 
In Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python, pp. 126-127. Hoboken, 
NJ: John Wiley & Sons, Inc., 2020 
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3. Predictions are calculated using each individual averaging method 

4. Each of these predictions are compared against the actual bid unit price 

This approach maintains the temporal integrity of the data, avoiding the "look-ahead bias" or 
“target leakage” that would occur if future information were used in the calculations. It ensures 
the performance metrics reflect how the algorithm would actually perform when deployed at the 
time of a bid’s respective letting date. 

Averages were calculated for every bid in the historical dataset with a letting date on or after 
January 1, 2017 (to allow a full 36 months of data), including the straight average as well as the 
adjusted averages for location, quantity, and time. While the number of filtered bids (as determined 
by the median absolute deviation method) influences the final estimate in the current algorithm, 
each of these subcomponent averages was computed independently of the filtering process. This 
ensured that every bid had a corresponding set of averages, with no missing values. All calculations 
were performed using a 36-month lookback period, consistent with existing estimation practices. 
In effect, four new columns were added to the historical bid data table: 

- STRAIGHT_AVG_36 
- LOCATION_ADJ_AVG_36 
- QUANTITY_ADJ_AVG_36 
- TIME_ADJ_AVG_36 

Evaluating Predictive Performance through Calculation of Prediction Error 

While statistics offers a wide variety of sophisticated measures for evaluating predictive 
performance, at its foundation lies a simple comparison between what was predicted and what 
actually occurred. For each bid and each averaging method, the prediction error is calculated as: 

Error = Actual bid unit price - Estimated bid unit price 

This straightforward calculation measures the difference between reality and prediction. To 
evaluate overall accuracy regardless of whether estimates are high or low, the absolute error is 
calculated: 

Absolute Error = |Actual bid unit price - Estimated bid unit price| 

For example, if the actual bid unit price for a particular pay item is $150, and the algorithm 
estimated $125, the error would be: 

Error = $150 - $125 = $25 

This positive error indicates an underestimation. Conversely, if the algorithm estimated $175 for 
the same bid, the error would be: 

Error = $150 - $175 = -$25 
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This negative error represents an overestimation. In both cases, the absolute error would be $25, 
reflecting the magnitude of inaccuracy irrespective of direction. Therefore, the average, or mean, 
absolute error across the two cases would be $25 rather than $0. 

Performance Evaluation 1: Mean Absolute Error (direct scale-dependent measure of error) 

By averaging these absolute errors across many bids, the Mean Absolute Error (MAE) provides a 
measure of typical prediction accuracy in dollars per unit, making it directly interpretable for 
estimation purposes. 

Figure 11 shows the MAE for each averaging method across all awarded bids, by calendar year, 
from 2017 through 2024. 

 
Figure 11: MAE by Averaging Method for All Awarded Bids 

The key takeaway from this analysis is that, in aggregate, the four averaging methods show no 
meaningful differences in predictive performance. The MAE values for all methods are 
remarkably similar within each year, with differences consistently less than 1%. This suggests 
that the additional complexities introduced by the adjusted averages (location, quantity, and time) 
provide no meaningful improvement in predictive accuracy over a simple straight average. These 
findings raise important questions about whether the current algorithm's approach of combining 
three adjusted averages justifies the additional mathematical and computational complexity, 
given the negligible improvements in predictive accuracy observed. 

While yearly MAE values do vary, further analysis is needed before drawing conclusions about 
temporal trends, as these variations may reflect differences in the mix of project pay items bid 
during each year, rather than changes in the algorithms’ predictive performances. MAE alone 
does not account for the varying scales of different pay items. A $25 error on a $50 item 
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represents a 50% miss, while the same $25 error on a $500 item is just 5% off. Yet, both 
contribute equally to the MAE. This makes it difficult to compare performance across different 
types of items or to determine whether the observed errors represent good or poor performance 
relative to the inherent predictability of each item type. To address this limitation, the next 
section examined Mean Absolute Scaled Error (MASE), which normalizes prediction errors 
relative to a baseline method. 

Performance Evaluation 2: Mean Absolute Scaled Error (scale-independent measure of error) 

To address the limitations of the scale-dependent MAE measure in comparing errors across 
different pay items with varying price scales, Mean Absolute Scaled Error (MASE) provides a 
scale-independent measure of prediction accuracy. MASE normalizes errors against a naïve 
forecast baseline, which in this case is simply using the previous awarded bid's unit price as the 
prediction for the next awarded bid’s unit price. This makes MASE values below 1.0 indicate 
better-than-baseline performance and values above 1.0 indicate worse performance. 

The MASE values for each averaging method across all awarded bids, by calendar year, from 
2017 through 2024, are rounded to two decimal places in figure 12 below: 

 
Figure 12: Calculation of the Mean Absolute Scaled Error  for All Awarded Bids 
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Figure 13: MASE by Averaging Method for All Awarded Bids 

 
The MASE analysis reinforces the above findings from the MAE evaluation while providing 
additional context. First, the MASE values confirm that, in the aggregate, there are no 
meaningful differences in predictive performance between the four averaging methods. The 
values are identical to two decimal places across all methods within each year, further supporting 
the conclusion that the adjusted averages provide no measurable improvement in accuracy over 
the straight average. These scale-independent results further the case that the additional 
complexity of adjusted averages may not be justified from a predictive accuracy standpoint, as 
they offer no improvement over simpler straight average approaches when evaluated on a 
relative scale. 

Additionally, all four averaging methods consistently outperform the naïve approach of simply 
using the previous awarded bid's unit price, with MASE values ranging from 0.42 to 0.56 across 
all years. This indicates that even the simplest approach (straight average) delivers meaningful 
improvements over simply using the last observed price. 

Finally, the relative stability of MASE values across years (ranging from 0.42 to 0.56) suggests 
that the averaging methods maintain somewhat consistent relative performance despite varying 
market conditions, although 2021, compared to other years, shows slightly higher errors relative 
to the naïve forecast. 

Performance Evaluation 3: Total Absolute Cost Error (business objective measure of error) 

While MAE and MASE provide valuable insights into prediction accuracy, they treat all errors as 
equally important regardless of their overall financial impact. In actual practice, errors in cost 
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estimation for transportation projects do not all have equal consequences. A critical limitation of 
the traditional error metrics used above is that these fail to account for the varying impacts of 
estimation errors based on bid quantities. 

This introduces what is often referred to in statistics as a "Type 3" error: focusing on the wrong 
measure of accuracy or, more candidly, finding the right answer to the wrong question. In project 
cost estimation, what ultimately matters is not how accurately individual unit prices are predicted 
per se, but how these errors affect the total estimated project cost. An error's true impact, in this 
sense, depends on the quantity of the item being purchased. Consider two scenarios: 

1. A $50 error on an item with quantity 1 results in a $50 under/over allocation 

2. A $10 error on an item with quantity 100 results in a $1,000 under/over allocation 

Traditional metrics like MAE and MASE would measure the first error five times worse than the 
second, yet the actual financial impact is twenty times greater in the second case. This limitation 
can be addressed through evaluation of averaging methods based on a quantity-weighted error 
type metric, or more simply, their impact on total costs. For each bid a total absolute cost error is 
calculated as: 

Total Absolute Cost Error = |Actual unit price - Estimated unit price| × Quantity 

This measure directly reflects the consequences of estimation errors on project budgets and 
resource allocation. Figure 14 on the following page shows the Total Absolute Cost Error for 
each averaging method by year: 
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Figure 14: Absolute Cost Error by Averaging Method for All Awarded Bids 

 
When evaluated through this lens of practical financial impact, several important insights 
emerge: 

1. The magnitude of total absolute cost errors is substantial, underscoring the significant 
financial stakes of estimation accuracy. 

2. While the total absolute cost errors do show slightly more variation across the different 
averaging methods, these differences still remain relatively modest compared to the 
overall magnitude of the errors. For instance, in 2020, methods differed by up to $64 
million, representing about 4% of the total error. Similarly, in 2024, the variation between 
methods was approximately $25 million, less than 1% of the total error. 

3. These minor differences do not consistently favor any particular method across years. No 
single averaging method consistently outperforms the others across all years, suggesting 
that the relatively small differences in effectiveness are not consistent across changing 
market conditions or project mixes. 

This analysis reveals that, when assessed in terms of total project cost impact rather than unit 
price accuracy alone, the averaging methods continue to show similar performance with only 
minor variations. The substantial magnitude of total absolute error costs across all methods 
suggests that while the current approaches are comparable to each other, there lies 
significant room for improvement through alternative estimation approaches that can 
better minimize high-impact errors. 
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Strengths and Weaknesses of Current Methods 
In statistical estimation, the average provides the best unbiased estimate of an expected value when 
no additional information is available. In the context of bid unit price predictions, the straight 
average emerges as the best naïve estimate, consistently outperforming the alternative approach of 
using only the most recently awarded bid unit price. These findings position the straight average 
as a natural benchmark for evaluating more advanced models. Any model introducing additional 
complexity should demonstrate clear, measurable improvements in predictive accuracy to justify 
the use of that additional complexity. While the straight average serves as an effective baseline, it 
remains a naive estimate—it does not account for external factors beyond the bid unit price itself. 
In real-world transportation construction, project attributes and bid characteristics likely influence 
pricing. FDOT’s historical bid database contains valuable contextual details that could support 
more refined estimates, presenting an opportunity to enhance accuracy beyond simple averaging. 

FDOT’s current algorithm attempts to build on these principles of statistical estimation, employing 
various averaging methods to predict project pay item prices. FDOT’s algorithm extends beyond 
basic averaging by incorporating adjustments for location, quantity, and time. While these 
refinements leverage historical data, they remain constrained through fixed assumptions: 

1. Feature Relevance – The algorithm assumes location, quantity, and time are the most (or 
only) relevant factors for adjustment. 

2. Fixed Weighting – It employs predetermined weighting schemes, such as a 5.0 weight for 
geographic proximity or a linear adjustment for quantity and time differences. 

3. Equal Importance of Adjustments – All three factors are treated as equally significant, 
regardless of the specific pay item or market conditions. 

These rigid assumptions may not consistently hold across different market dynamics. Furthermore, 
they fail to capture non-linear relationships between factors influencing bid unit prices. In addition 
to establishing the straight average as the best naïve estimate, the analysis also shows this simple 
measure performs comparably to the more complex adjusted averages. This indicates that the 
additional computational steps do not meaningfully enhance estimation accuracy beyond what a 
straightforward average achieves. 

Key Strength: Up-to-Date Data Integration 

The algorithm’s greatest strength lies in its real-time data integration. Because the system updates 
daily with new bid data, estimates continuously reflect the latest market conditions. This capability 
is particularly valuable in the construction industry, where prices can fluctuate rapidly. When a 
vendor submits a new bid, the information is immediately incorporated into future estimates, 
ensuring that the system remains responsive to changing market trends. 
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Crucially, the accuracy of any predictive model—whether a simple average or a more sophisticated 
approach—depends more on the quality and relevance of the data than on the complexity of the 
approach itself. A well-designed model trained on poor-quality or incomplete data will struggle to 
outperform even basic statistical methods applied to high-quality, well-curated information. High-
quality data is the foundation of accurate estimates. The algorithm’s ability to integrate the latest 
bid data in real-time provides a key advantage, ensuring that even a simple model benefits from 
the most up-to-date market information. 

In addition to consistently using up-to-date historical bid data, the algorithm benefits from 
simplicity and interpretability. The averaging methods are straightforward, making the estimation 
process transparent and accessible to stakeholders with varying levels of technical expertise. This 
clarity fosters trust and ease of use, which are critical for practical implementation. 
 
Finally, the algorithm utilizes a robust method for outlier detection with the median absolute 
deviation method, which has been recognized for its strengths compared to more commonly used 
outlier detection methods involving the mean and standard deviation.2 
 
Real Limitation: Not Effectively Learning from Available Information 

While the straight average aligns with foundational statistical principles, progress in accuracy stalls 
when the current algorithm attempts to adjust the average by incorporating additional information 
on location, quantity, and time. The most significant limitation of the current algorithm is its rigid, 
static assumptions about how different factors influence bid prices. It assigns fixed weights—such 
as 5.0 for same-county bids or 3.0 for same-market-area bids—without validating whether these 
values accurately reflect real-world pricing behavior. This inflexibility prevents the algorithm from 
adapting to evolving market conditions. Similarly, the quantity and time adjustments assume 
uniform, linear relationships across all pay items, project types, and economic contexts, 
overlooking the variability that likely exists. 

A second major weakness is the underutilization of available data, in particular additional bid 
characteristics. FDOT’s historical bid database contains extensive contextual information, such as 
contract types, work categories, and detailed project specifications. However, the current algorithm 
does not incorporate these potentially valuable predictive factors. For instance, distinguishing 
between emergency work and routine maintenance could significantly improve price estimates, 
yet this differentiation is not currently considered. 

 

 

 
2 Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, Laurent Licata, “Detecting outliers: Do not use 
standard deviation around the mean, use absolute deviation around the median”, Journal of Experimental Social 
Psychology, Volume 49, Issue 4, 2013, Pages 764-766, ISSN 0022-1031, Available online at: 
<https://doi.org/10.1016/j.jesp.2013.03.013>. 
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These limitations are particularly problematic for complex or atypical projects, where simple 
averaging fails to capture nuanced pricing influences. Without the ability to learn from historical 
patterns or integrate additional project characteristics, the algorithm struggles to adapt to unique 
pricing scenarios. 

While not an inherent limitation of the algorithm, the lack of systematic performance monitoring 
(as demonstrated in the previous section) represents a missed opportunity for continuous 
improvement. Without regular assessment of estimation accuracy across different project types 
and market conditions, it is difficult to identify weaknesses, refine assumptions, or optimize the 
model where necessary. Ultimately, the success of an estimation approach is measured by its 
predictive performance rather than its simplicity or interpretability. A model’s transparency and 
ease of understanding are valuable, but they do not inherently make it more deserving of 
confidence, what matters is whether it demonstrated more accurate and reliable estimates. Trust 
should be placed in outcomes, not just in well-understood processes. A more data-driven approach, 
supported by rigorous performance tracking, would ensure that improvements are guided by 
empirical results rather than assumptions alone. 

Beyond these methodological limitations, the current averaging methods are all inherently 
disconnected from the overarching business objective of minimizing total cost error. Because they 
treat each bid unit price with equal weighting, they cannot prioritize cost-critical items or account 
for how estimation errors compound at the project level. While this is a natural constraint of 
traditional statistical methods, it presents a gap between estimation and real-world decision-
making—one that newer, more advanced machine learning techniques can help bridge. By 
leveraging approaches such as sample weighting based on bid quantity and bidder rank, machine 
learning offers the potential to align estimation more closely with total cost impact, ensuring that 
high-value items receive proportionate attention in predictive modeling 

Overcoming Existing Limitations: Machine Learning 

FDOT’s algorithm offers a strong foundation, benefiting from frequent data updates and a 
transparent methodology. However, its reliance on fixed assumptions and underutilization of 
available data presents clear opportunities for improvement. More flexible, data-driven approaches 
could improve estimation accuracy while preserving the system’s strengths in real-time updates 
and simplicity. 

A key insight across forecasting and machine learning is that data quality often outweighs model 
sophistication. Even the most advanced algorithms cannot compensate for poor or incomplete data, 
just as a simple model applied to high-quality data can often outperform more complex approaches. 
FDOT’s current system benefits from frequent updates, ensuring access to the most recent market 
trends. However, unlocking the full potential of predictive modeling requires not just real-time 
data but a broader, more sophisticated use of available historical bid information. 
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To move beyond static assumptions, a more adaptive approach is needed—one that learns from 
historical patterns and captures complex, non-linear relationships between bid prices and project 
characteristics. Machine learning (ML) techniques offer a powerful solution, enabling models to: 

• Automatically adjust to evolving market conditions rather than relying on fixed 
weighting schemes. 

• Identify and leverage the most relevant predictive factors rather than limiting 
adjustments to location, quantity, and time. 

• Capture non-linear relationships between variables, improving price accuracy for 
complex or atypical projects. 

• Continuously improving through systematic performance monitoring, allowing 
refinements based on real-world estimation accuracy. 

Unlike traditional averaging methods, machine learning models can harness the full depth of 
FDOT’s bid database, refining estimates based on real-world pricing patterns rather than rigid, 
predefined weighting assumptions. 

The next section explores how and why machine learning techniques can complement and enhance 
FDOT’s existing framework. By integrating these advanced methods, FDOT can transition toward 
a more intelligent, adaptive pricing model—one that dynamically learns from data and better 
reflects the complexities of transportation construction markets. 
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Machine Learning Fixes to Current Limitations 
The limitations of FDOT’s current estimation approach highlight a fundamental challenge: some 
relationships are too complex to be captured through hand-written rules or fixed assumptions. 
Historically, technological constraints forced statistical modeling to rely on human-defined 
formulas, rules, and weighting schemes. Recent advances in technology now allow for machine 
learning (ML) approaches which operate differently, learning patterns and relationships directly 
from examples rather than relying on predefined instructions. 

This distinction is crucial. In machine learning, the model is not written explicitly by hand; rather, 
it learns directly from the data. Instead of relying on manually assigned weights for factors like 
location, quantity, or time, ML algorithms analyze vast amounts of data to uncover the true, often 
complex, relationships between bid characteristics and bid prices. 

The Need for Machine Learning in FDOT’s Price Estimation 

Machine learning excels in situations where the task is too complex for a human to specify all the 
rules explicitly. Estimating bid unit prices falls into this category. The factors that influence 
pricing—market conditions, project characteristics, contractor competition, material costs—
interact in ways that are practically impossible to express through fixed formulas. Rather than 
relying on a model based on rigid assumptions, ML enables the system to “discover” patterns in 
the data on its own. 
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Figure 15: Practical Differences Between Traditional Software and Machine Learning 

 
A useful analogy is spam detection in email filtering. In early spam filters, rule-based systems were 
used to identify unwanted messages, flagging emails that contained certain words like "free" or 
"win." However, spammers quickly adapted, finding ways to bypass static rules with slight 
modifications to their messages, rendering traditional filters ineffective. Modern spam filters use 
machine learning, which does not rely on a fixed set of rules but instead learns patterns from 
thousands of examples. By identifying subtle trends in language, formatting, and sender behavior, 
machine learning models can continuously improve, adapting as new spam techniques emerge. 

Similarly, bid price estimation involves many subtle, interdependent factors that cannot be fully 
anticipated and captured through pre-written formulas. The key advantage of machine learning in 
this context is automated adaptability. Unlike traditional methods that rely on static weights and 
assumptions, ML-based models automatically and continuously refine themselves as they process 
new data. This means that as market conditions shift or new pricing trends emerge, the model 
discovers, learns, and adjusts accordingly—without requiring manual recalibration. 

The next sections explore how machine learning can be applied to bid unit price and project cost 
estimation, detailing specific techniques that improve predictive accuracy while leveraging 
FDOT’s existing strengths in real-time data integration. 
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Machine Learning Alternatives to the Current Algorithm 
Selecting the Right Machine Learning Algorithm: The Case for Gradient Boosted Decision 
Trees (GBDT) 

For structured, tabular data, Gradient Boosted Decision Trees (GBDT) are the undisputed state-of-
the-art solution. In machine learning competitions, real-world forecasting tasks, and industry 
applications, GBDTs consistently outperform other methods, including deep learning, when 
working with structured datasets with numerical and categorical features, like FDOT’s historical 
bid dataset. 

The overwhelming success of GBDTs is evident in Kaggle competitions, where winning solutions 
for tabular data problems almost always involve these models through the use of one or a 
combination of open-source software libraries XGBoost, LightGBM, and CatBoost—all 
implementations of gradient boosting. Academic research further reinforces GBDTs’ superiority, 
consistently demonstrating their predictive accuracy across diverse applications, from financial 
modeling to supply chain forecasting. This advantage was particularly evident in the M5 
forecasting competition, a large-scale challenge focused on retail demand forecasting using 
hierarchical time-series data. As noted in a study analyzing the competition results:3 

“The prevalence of approaches based on gradient boosted trees among the top contestants 
in the M5 competition is potentially the most eye-catching result. Tree-based methods 
outshone other solutions, in particular deep learning-based solutions” (Januschowski et 
al., 2022). 

This reinforces the suitability of GBDTs for structured numerical and categorical data, making 
them a strong choice for FDOT’s bid estimation framework. GBDT models are particularly well-
suited for bid price estimation, where relationships between project characteristics and pricing are 
too intricate for linear models and too structured for deep learning to be effective. Their ability to 
handle missing data, non-linear interactions, and heterogeneous feature types all make these the 
ideal choice for this task. 

The next section outlines the process for training, testing, and monitoring these GBDT-based 
models to ensure their effectiveness and consistent reliability. 

 

 

 
3 Januschowski, Tim, Yuyang Wang, Kari Torkkola, Timo Erkkilä, Hilaf Hasson, and Jan Gasthaus. "Forecasting 
with Trees." International Journal of Forecasting 38, no. 4 (2022): 1473–1481. 
https://doi.org/10.1016/j.ijforecast.2021.10.004. 

https://doi.org/10.1016/j.ijforecast.2021.10.004
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Training, Testing, and Monitoring Machine Learning 
Algorithms 
The Same Goal: Predictive Accuracy 

The goal of bid price estimation is to achieve high predictive accuracy in unit price forecasting to 
ensure minimal cost estimation errors at the project level. A successful model must not only 
provide accurate estimates for individual bid items but also contribute to overall cost reliability 
when scaled to full project budgets. 
 
Machine learning models are evaluated based on their ability to generalize, that is, how well they 
predict new, unseen bid unit prices rather than just fitting past data. Similar to the analysis of 
averaging methods conducted earlier, evaluation of machine learning alternatives must focus on 
predictive accuracy over goodness-of-fit, ensuring that the model performs well on future bids 
rather than overfitting to historical trends. 
 
Realistic Simulating through Walk Forward Validation 

In many machine learning applications, cross-validation is the standard technique for assessing 
model performance and stability. It involves partitioning the dataset into multiple training and 
testing sets to evaluate how well the model generalizes across different data splits. Cross-validation 
serves three key purposes: 
 

• Detect overfitting – Ensures the model learns generalizable patterns rather than 
memorizing noise in training data. 
 

• Ensures stability – Confirms whether the model performs consistently across different 
data subsets. 

 
• Model Comparison – Provides a standardized way to evaluate different machine learning 

approaches or tuning configuration. 
 
However, in time-dependent datasets like FDOT’s historical bid data, standard cross-validation is 
not appropriate because it would allow training data to include future information. This introduces 
“look-ahead bias” or “target leakage”, where the model is inadvertently trained on data that would 
not be available at the time of a real-world prediction. 
 
For time-dependent predictions, which must be made in a chronological sequence (e.g., bid price 
forecasting), walk-forward validation is the gold standard for evaluation. Unlike traditional cross-
validation, which randomly splits data, walk-forward validation ensures that each prediction is 
made using only past information, replicating real-world forecasting conditions. 
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How Walk-Forward Validation Works: 
 

1. Train the model using only historical bids available before a specific letting date. 
2. Generate predictions for that letting’s bid items. 
3. Compare predictions against actual bid prices and record errors. 
4. Expand the training dataset to include these new bids, then repeat for the next letting date. 

 
This approach ensures that model evaluation remains chronologically fair, preventing data leakage 
and providing a true measure of forecasting accuracy. 
 
Fixed vs Expanding Window Walk Forward Validation 
 
Two primary strategies exist for implementing walk-forward validation in time-series forecasting: 
 

• Fixed Window: Maintains a constant training period by discarding older observations as 
new ones are added. For example, a 36-month fixed window starting with 2020–2022 data 
would shift to 2021–2023 for the next evaluation, always keeping a three-year lookback 
period. 
 

• Expanding Window: Retains all historical data, continuously growing the training dataset 
as new observations become available. An expanding window starting with 2020–2022 
would expand to include 2020–2023, then 2020–2024, and so on. 
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Figure 16: Walk Forward Validation Illustrated 

 
The choice between these methods depends on the trade-off between model adaptability and 
stability. A fixed window ensures that the model only learns from recent trends, while an expanding 
window leverages a larger data history to improve long-term generalization. 
 
This analysis employs an expanding window approach, which aligns with the larger idea behind 
machine learning by allowing the model to continuously learn from all available historical data 
rather than restricting itself to a fixed lookback period. In contrast, the current averaging-based 
estimation methods rely, in yet another assumption, on a static 36-month fixed window, meaning 
any data older than three years is discarded, regardless of its potential predictive value. This rigid 
cutoff exemplifies the static assumptions embedded in the existing methodology, preventing 
adjustments based on newly emerging trends. An expanding window approach, by contrast, 
embraces adaptability, ensuring that the model’s understanding of bid price patterns evolves over 
time rather than being constrained by an arbitrary time horizon. 
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Evaluating Predictive Performance through Calculation of Prediction Error 

Similar to the evaluation of existing averaging methods earlier, at the heart of measuring 
prediction error lies a simple comparison of what was predicted versus what actually occurred. 
For each bid and GBDT method, the prediction error is calculated as: 

Error = Actual bid unit price - Estimated bid unit price 
 
To capture the total amount of error across predictions in such a way that overestimates are not 
offset by underestimates (or vice versa), the absolute error is calculated: 
 

Absolute Error = |Actual bid unit price - Estimated bid unit price| 

Using the absolute error measure, both a $125 and $175 prediction of a bid unit price that came 
to $150 would result in the same error of $25. Across both predictions, the total error would 
amount to $50, and a Mean Absolute Error of $25. Mean Absolute Error (MAE) provides a 
direct, interpretable measure of model accuracy, reflecting the typical deviation in predicted bid 
unit prices regardless of the direction of individual errors. 
 
Although individual bid unit prices are the prediction target, the ultimate business goal is to 
minimize the total discrepancies between estimated and actual costs across entire projects. To 
avoid the “Type 3” error in statistics (finding the right answer to the wrong question) and train a 
model with the business objective in mind, the financial impact of these price prediction errors is 
calculated as ‘Total Absolute Cost Error’. This measure accounts for bid quantity to determine 
how pricing deviations affect overall project cost estimation accuracy. 
 

Total Absolute Cost Error = |Actual unit price - Estimated unit price| × Quantity 

A Type 3 error in statistics occurs when a model optimizes for the wrong objective—maximizing 
an abstract accuracy metric rather than aligning with actual business priorities. Total Absolute 
Cost Error mitigates this by focusing evaluation on budget-relevant outcomes, ensuring that 
model improvements directly translate into more reliable cost planning and project funding 
decisions. 

Selecting Input Variables (Features) for Bid Unit Price Prediction 

The selection of input variables (features) plays a key role in determining model accuracy, 
robustness, and adaptability. A key advantage of machine learning is its ability to efficiently 
incorporate multiple bid characteristics without relying on manually coded rules. Traditional 
estimation methods require human-defined formulas and explicit instructions to process location, 
quantity, and time adjustments. Machine learning eliminates this constraint by learning directly 
from historical data, making it far more efficient at integrating additional predictive features that 
influence bid pricing. 
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Unlike the current averaging-based approach, which only considers location, quantity, and time 
adjustments, machine learning facilitates the use of a broader and data-driven set of potentially 
predictive features. For the GBDT modeling, eight key features have been selected based on their 
influence on pricing patterns and their availability within historical bid data: 

• PRIMARY_COUNTY_DESC – Identifies the geographic location of the project, 
enabling the model to capture regional economic differences and contractor availability. 

• WORK_MIX_CD – Categorizes the type of work being performed, helping differentiate 
price expectations between project types. 

• CONTRACT_TYPE_CD – Denotes the procurement method and contractual details, 
which may impact bidder behavior and pricing strategies. 

• CONTRACT_WORK_TYPE_CD – Provides additional granularity on the nature of 
the work, refining cost expectations for specialized projects. 

• CONTRACT_CLASS_CD – Identifies how the contract is handled administratively, 
distinguishing between centrally and district-managed projects. 

• BIDDER_RANK – Captures competitive dynamics by ranking bidders based on total 
bid amount, allowing the model to learn from past bid competition structures. 

• ITEM_BID_QUANTITY – Quantifies the volume of work for a given bid item, 
ensuring that pricing adjustments account for economies of scale. 

• LETTING_DATE – Represents the official date when bids are opened or scheduled to 
be opened. While this serves as a key reference for tracking bid submissions, using it as a 
single date value limits a machine learning model’s ability to recognize various time-
based pricing patterns. To address this, additional time-based features are extracted as 
input features to help capture seasonal trends, yearly cycles, and long-term pricing 
behaviors: 

o LETTING_YEAR – Allows the model to track annual long-term trends in bid 
pricing over multiple years. 

o LETTING_QUARTER – Captures broad, quarterly market cycles, such as 
seasonal price fluctuations or economic shifts within each year. 

o LETTING_MONTH – Accounts for month-to-month variations, regardless of 
the year, helping detect factors like weather-related construction costs or fiscal 
year impacts. 

o LETTING_DAY_OF_YEAR – Represents the bid opening date as a number 
between 1 and 365, helping the model detect recurring annual patterns in bid 
pricing, independent of the year. 
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o YEAR_DAY_COMBINED – A unique identifier combining the year and day-of-
year, allowing the model to track bid price patterns over time more precisely 

By transforming LETTING_DATE into multiple time-based features, the model gains a 
richer understanding of how bid prices fluctuate across different time scales. This is 
especially valuable in construction projects, where seasonality, fiscal cycles, and long-
term market trends can all influence pricing decisions. 

By incorporating these features, the machine learning model leverages a far more comprehensive 
set of bid characteristics than the current estimation approach. While traditional methods relied 
primarily on location, quantity, and time adjustments, this approach expands the predictive scope 
to include contract details, project classifications, and competitive bidding factors. The broader 
set of predictive features enables a more informed and responsive estimation process, ensuring 
that price forecasts reflect a wider range of variables influencing bid outcomes. 

Furthermore, this feature selection process aligns the model with business objectives, particularly 
by incorporating BIDDER_RANK and ITEM_BID_QUANTITY, which help minimize total cost 
error at the project level rather than focusing solely on unit price accuracy. 

Aligning Model Training with Business Objectives through Sample Weighting 

In both traditional machine learning training and conventional estimating methods, all data 
points are treated equally by default. In bid unit price estimation, however, some bids have a 
greater overall financial impact than others due to differences in quantity and bidder ranking. 
Errors on high-cost items or awarded bids (Rank 1) can disproportionately affect total project 
costs, making a standard, unweighted model suboptimal. 

In machine learning, sample weighting is a technique used to assign different levels of 
importance to individual training examples. Rather than treating all target observations equally, 
weighting ensures that certain observations—such as those with greater financial impact—have a 
larger influence on model learning. This is particularly useful in cost estimation, where some bid 
records carry significantly more weight in determining total project expenses than others. 

Applying sample weighting ensures that bid records with the greatest financial impact contribute 
more to model training, improving overall cost accuracy. The weighting formula is as follows: 

ITEM_BID_QUANTITY ÷ BIDDER_RANK   

The model prioritizes two key factors: 

• ITEM_BID_QUANTITY (Numerator): Bids with larger item quantities receive 
proportionally greater weight, ensuring the model prioritizes learning from more cost-
impactful items. 
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• BIDDER_RANK (Denominator): Winning bids (Rank 1) receive the highest weight, 
while non-winning bids (Ranks 2, 3, etc.) contribute proportionally less but are still 
considered in training. 

This approach reflects a deliberate balancing act between prioritizing estimation accuracy and 
ensuring the model learns from a broad set of bids. High-weighted bids—those with large 
quantities and a Rank 1 designation—carry the most influence, ensuring the model prioritizes 
learning to predict bids with the greatest financial impact. However, the model also continues to 
learn a great deal from high-quantity losing bids (Ranks 2, 3, etc.), as these still provide valuable 
pricing signals that improve overall estimation accuracy. At the same time, the weighting 
mechanism limits any emphasis the model places on low-quantity bids that have minimal effect 
on total project costs. 

By incorporating this sample weighting, the model does not just optimize for unit price accuracy 
but instead aligns predictions with real-world cost estimation objectives—reducing total absolute 
cost error across projects. 
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Evaluating the Predictive Performance of GBDT Methods 
The effectiveness of any bid price estimation model is measured by its ability to produce 
accurate and reliable cost estimates across diverse pay items and market conditions. While 
traditional averaging-based approaches have provided a baseline for estimation, they rely on 
fixed assumptions and static weighting, limiting their adaptability to evolving market trends. 
Machine learning models, particularly Gradient Boosted Decision Trees (GBDT), offer a more 
dynamic and data-driven alternative, with the potential to significantly improve bid unit price 
accuracy and overall cost estimation. 

To rigorously assess the performance of GBDT models, walk-forward validation was conducted 
across five key pay items spanning different construction categories, including earthwork, 
asphalt, and landscaping. This evaluation method ensures that each prediction is made using only 
historical data available at the time of estimation, mirroring real-world forecasting conditions. 

The following subsections present a detailed breakdown of model performance, comparing the 
GBDT approach to the current 36-month straight average method. The analysis focuses on Mean 
Absolute Error (MAE) to measure bid unit price accuracy and Total Absolute Cost Error to 
assess financial impact at the project level. Across all tested pay items, the results demonstrate a 
substantial reduction in both types of errors, confirming the robustness and effectiveness of the 
GBDT model. 

Detailed Demonstration: Pay Item 0548 12 (RET WALL SYSTEM, PERM, EX BARRIER) 

Before presenting the summary results across different pay items, it is useful to first provide a 
detailed demonstration of how walk-forward validation is conducted on an individual item. Pay 
item 0548 12 (Retaining Wall System, Permanent, Existing Barrier) is presented as an example 
because, with 23 test windows, it provides a clear and manageable illustration of the 
methodology while still capturing the key aspects of the evaluation process. 

This pay item involves permanent retaining wall systems and existing barriers, making it a 
structurally significant component in roadway and infrastructure projects. The complexity of its 
pricing can be influenced by material costs, project location, and contractor competition, making 
it a strong candidate for demonstrating the advantages of machine learning in bid price 
estimation. 

Comparing Current Averaging Methods 

Before assessing the performance of machine learning-based estimation, it is important to first 
examine the accuracy of traditional averaging methods. While the 36-month straight average 
serves as the standard baseline for cost estimation, variations exist that attempt to adjust bid unit 
prices based on location, quantity, and time factors. 
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The column charts below compare these different averaging methods across Pay Item 0548 12, 
illustrating their Mean Absolute Error (MAE) in bid unit price estimation and Total Absolute 
Cost Error over the full evaluation period (2021–2024). 

These results in figures 17 and 18 show that none of the adjusted averaging methods 
significantly outperform the straight average approach. While the Quantity Adjusted Average 
shows a marginally lower MAE and Total Absolute Cost Error, the differences are not substantial 
enough to justify increased complexity. 

 
Figure 17: Mean Absolute Error (MAE) illustrated for Pay Item 0548 12 Using Traditional Averaging Techniques of the 

Current Algorithm 
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Figure 18: Total Absolute Cost Error (TACE) illustrated for Pay Item 0548 12 Using Traditional Averaging Techniques of the 

Current Algorithm 
 
Comparing GBDT Model to the Straight Average Benchmark 

Because these adjustments fail to provide meaningful improvement, the 36-month straight 
average remains the benchmark for comparison against the GBDT model. The following 
subsections will evaluate how the GBDT model improves upon these traditional approaches, 
particularly in terms of bid unit price accuracy and total project cost estimation. With this 
baseline established, the next step is to evaluate how the GBDT model improves estimation 
accuracy through walk-forward validation. 

For this pay item, walk-forward validation was conducted as across test dates ranging from May 
2021 to September 2024, evaluating a total of 23 awarded bids. At each test window, the model 
was trained only on historical bids available at the time and then used to predict unit price and 
total cost for the next letting. The predictions from the GBDT model were then compared to 
actual bid results and benchmarked against the traditional 36-month straight average approach. 

The table below provides a step-by-step breakdown of how the GBDT model and the 36-month 
straight average method performed across 23 test windows. Each row represents a single test 
window, showing the actual bid unit price and total cost, as well as model predictions, errors, and 
total cost impact. 
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In addition to performance metrics, the table also includes key training details, such as: 

• Training Bids – The number of bid records available in the training dataset at each test 
window. 

• Training Start & End Dates – The historical timeframe of bid data used to train the 
model before making each prediction. 

This setup follows an expanding window approach, where the training dataset grows from 437 
bids in the first test window to 560 bids in the last. By retaining all past data while incorporating 
new bids, the model continuously refines its predictions, ensuring that estimates reflect both 
historical pricing behaviors and recent trends. 
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Table 2: Walk-Forward Validation Test for Pay Item 0548 12 – GBDT vs 36 Month Straight Average 
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Summary of GBDT Model Performance for Pay Item 0548 12 

While the step-by-step breakdown provides a granular view of individual test windows, 
summarizing the results across the full evaluation period allows for an efficient comparison of 
overall model performance. The following figures highlight key improvements in bid unit price 
accuracy and total cost estimation achieved by the GBDT model. These summary figures 
condense the GBDT model’s performance over the entire test period, showcasing improvements 
in both bid unit price accuracy and total cost estimation. Aggregating results allows for a quick 
assessment of the model’s impact relative to the 36-month straight average method, eliminating 
the need to examine each test window individually. 

Figure 20 provides an overview of the GBDT model's predictive performance, including: 

• Mean Absolute Error (MAE) Comparison – A horizontal bar chart showing how much 
GBDT reduced unit price error. 

• Total Absolute Cost Error Comparison – A vertical column chart comparing the 
financial impact of errors between the two methods. 

• Analysis Period Overview – First test date, last test date, and total number of test dates. 

• Bids Analyzed – Total awarded bids, number of bids used in the initial training window, 
and the number used in the final training window. 

• GBDT Model Improvements – Percentage reduction in MAE, Total Absolute Cost 
Error, and percentage growth in the training dataset. 
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Figure 19: GBDT predictive results illustrated for Project Pay Item 0548 12 

 
Additionally, Figure 21 presents a year-by-year breakdown of Total Absolute Cost Error for the 
GBDT model vs. the 36-month straight average across 2021–2024: 

 

 

$7.11

$14.94

GBDT Model

36 Month
Straight Average

Mean Absolute Error (MAE): Per Bid Comparison

$16,540,762

$28,595,784

GBDT Model36 Month
Straight Average

Total Absolute Cost Error: Cumulative Error

Project Pay Item 0548 12 (RET WALL SYSTEM, PERM, EX BARRIER )
Walk Forward Validation Results 2021-2024

Analysis Period
First Test:  May 27, 2021
Last Test:  Sep 25, 2024
Total Test Dates:  23

Bids Analyzed
Total Awarded Bids: 25
Initial Training:  437 Bids
Final Training:  560 Bids

GBDT Model Improvements
MAE Reduction:  52.4%
Cost Error Reduction: 42.2%
Training Set Growth:  28.1%
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Figure 20: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0548 12 

 
Performance Evaluation Result 1: Project Pay Item 0120 6 (EMBANKMENT) 

Overview and Testing Framework 

To assess the predictive performance of the GBDT model on Pay Item 0120 6 (Embankment), 
walk-forward validation was conducted across 222 test dates from January 2021 to November 
2024, evaluating a total of 493 awarded bids. Throughout this evaluation period, the training 
dataset expanded significantly, growing from 4,604 bids at the start to 6,423 bids by the final test 
window, strengthening the model’s predictive capabilities over time. 

Embankment work is a critical component of roadway and infrastructure projects, involving the 
placement and compaction of large volumes of soil or other materials to establish stable 
foundations. The pricing of this pay item can be influenced by factors such as material 
availability, haul distances, and project location, as well as contractor competition. These 
complexities make embankment an ideal candidate for demonstrating the advantages of machine 
learning in bid price estimation, as traditional averaging methods struggle to capture the full 
range of variables affecting cost. 
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Figure 21: GBDT predictive results illustrated for Project Pay Item 0120 6 

 
Improvement in Unit Price Accuracy 

The GBDT model demonstrated substantial improvements in bid unit price accuracy when 
compared to the current 36-month straight average method. The model achieved a Mean 
Absolute Error (MAE) of $51.28, a 23% reduction from the $66.75 MAE of the traditional 
approach. This improvement reflects the model’s ability to generate more precise bid unit price 
estimates, reducing estimation errors at the unit level. 

Impact on Total Cost Estimation 

Beyond unit price accuracy, the GBDT model significantly improved total cost estimation. The 
model produced a Total Absolute Cost Error of $42.7 million, compared to $273.4 million for the 
36-month straight average, representing an 84% reduction in total cost error. This demonstrates 
the model’s effectiveness in minimizing large-scale financial discrepancies across awarded bids. 
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Project Pay Item 0120  6 (Embankment)
Walk Forward Validation Results 2021 -2024

Analysis Period
First Test:  Jan 27, 2021
Last Test:  Nov 5, 2024
Total Test Dates:  222

Bids Analyzed
Total Awarded Bids: 493
Initial Training:  4,604 Bids
Final Training:  6,423 Bids

GBDT Model Improvements
MAE Reduction:  23.2%
Cost Error Reduction: 84.4%
Training Set Growth:  39.5%
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Figure 22: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0120 6 

 
Yearly Breakdown of Model Performance 

The GBDT model consistently outperformed the traditional approach across all years, with 
particularly notable improvements during high-volume years: 

• 2022: Reduced total cost error by $96.0 million (from $109.8 million to $13.7 million). 

• 2024: Achieved an even greater reduction of $99.4 million (from $120.3 million to $20.9 
million). 

• 2023: Even in a lower-volume year, the model still improved accuracy, reducing total 
cost error by $3.5 million (from $5.9 million to $2.5 million). 

This consistent outperformance across different market conditions further reinforces the 
robustness and adaptability of the GBDT model, confirming its effectiveness in bid price 
estimation and project cost planning. 

Performance Evaluation Result 2: Project Pay Item 0120 1 (REGULAR EXCAVATION) 

Overview and Testing Framework 

To assess the predictive performance of the GBDT model on Pay Item 0120 1 (Regular 
Excavation), walk-forward validation was conducted across 235 test dates spanning January 
2021 to November 2024, evaluating a total of 542 awarded bids. Throughout this period, the 
training dataset expanded significantly, growing from 5,126 bids at the start to 7,034 bids by the 
final test window, further strengthening the model’s predictive capabilities over time. 
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Regular excavation is a fundamental component of roadway and infrastructure projects, 
involving the removal and relocation of soil, rock, or other materials to prepare the site for 
construction. The cost of excavation is influenced by multiple factors, including soil conditions, 
haul distances, required equipment, and environmental regulations. Given the variability in 
material properties and site-specific constraints, excavation costs can be difficult to estimate 
using traditional averaging methods. This makes regular excavation an ideal candidate for 
machine learning-based bid price estimation because the GBDT model can incorporate multiple 
factors that affect pricing, rather than relying on a static 36-month average. 

 
Figure 23: GBDT predictive results illustrated for Project Pay Item 0120 1 

 
Improvement in Unit Price Accuracy 

The GBDT model demonstrated substantial improvements in bid unit price accuracy when 
compared to the current 36-month straight average method. The model achieved a mean absolute 
error (MAE) of $51.91, a 26% reduction from the $70.34 MAE of the traditional approach. This 
improvement reflects the model’s ability to generate more precise bid unit price estimates, 
reducing estimation errors at the unit level. 

Impact on Total Cost Estimation 

Beyond unit price accuracy, the GBDT model significantly improved total cost estimation. The 
model produced a total absolute cost error of $31.5 million, compared to $171.2 million for the 
36-month straight average, representing an 82% reduction in total cost error. This demonstrates 
the model’s effectiveness in minimizing large-scale financial discrepancies across awarded bids. 
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Project Pay Item 0120  1 (Regular Excavation)
Walk Forward Validation Results 2021 -2024

Analysis Period
First Test:  Jan 28, 2021
Last Test:  Nov 5, 2024
Total Test Dates:  235

Bids Analyzed
Total Awarded Bids: 542
Initial Training:  5,126 Bids
Final Training:  7,034 Bids

GBDT Model Improvements
MAE Reduction:  26.2%
Cost Error Reduction: 81.6%
Training Set Growth:  37.2%
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Figure 24: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0120 1 

 
Yearly Breakdown of Model Performance 

The GBDT model consistently outperformed the traditional approach across all years, with 
particularly notable improvements during high-volume years: 

• 2022: Reduced total cost error by $67.1 million (from $80.6 million to $13.6 million). 

• 2024: Achieved a reduction of $55.5 million (from $67.3 million to $11.8 million). 

• 2023: Even in a lower-volume year, the model still improved accuracy, reducing total 
cost error by $2.4 million (from $5.8 million to $3.4 million). 

This consistent outperformance across different market conditions further reinforces the 
robustness and adaptability of the GBDT model, confirming its effectiveness in bid price 
estimation and project cost planning. 

Performance Evaluation Result 3: Project Pay Item 0160 4 (TYPE B STABILIZATION) 

Overview and Testing Framework 

To assess the predictive performance of the GBDT model on Pay Item 0160 4 (Type B 
Stabilization), walk-forward validation was conducted across 208 test dates spanning January 
2021 to November 2024, evaluating a total of 461 awarded bids. Throughout this period, the 
training dataset expanded significantly, growing from 4,730 bids at the start to 6,320 bids by the 
final test window, further strengthening the model’s predictive capabilities over time. 
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Type B Stabilization is a critical roadway construction process, involving the mixing of soil, 
aggregate, and stabilizing agents to improve subgrade strength and durability. The cost of 
stabilization is influenced by multiple factors, including material availability, site conditions, 
climate variations, and required stabilization depth. Given these highly variable conditions, 
traditional estimation methods struggle to capture the full range of cost drivers. This makes Type 
B Stabilization an ideal candidate for machine learning-based bid price estimation, as the GBDT 
model can incorporate multiple factors affecting pricing rather than relying on a static 36-month 
average. 

 
Figure 25: GBDT predictive results illustrated for Project Pay Item 0160 4 

Improvement in Unit Price Accuracy 

The GBDT model demonstrated substantial improvements in bid unit price accuracy when 
compared to the current 36-month straight average method. The model achieved a Mean 
Absolute Error (MAE) of $21.72, a 27% reduction from the $29.65 MAE of the traditional 
approach. This improvement reflects the model’s ability to generate more precise bid unit price 
estimates, reducing estimation errors at the unit level. 

Impact on Total Cost Estimation 

Beyond unit price accuracy, the GBDT model significantly improved total cost estimation. The 
model produced a Total Absolute Cost Error of $32.0 million, compared to $89.4 million for the 
36-month straight average, representing a 64% reduction in total cost error. This demonstrates 
the model’s effectiveness in minimizing large-scale financial discrepancies across awarded bids.  
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Walk Forward Validation Results 2021 -2024

Analysis Period
First Test:  Jan 28, 2021
Last Test:  Nov 5, 2024
Total Test Dates:  208

Bids Analyzed
Total Awarded Bids: 461
Initial Training:  4,730 Bids
Final Training:  6,320 Bids

GBDT Model Improvements
MAE Reduction:  26.7%
Cost Error Reduction: 64.2%
Training Set Growth:  33.6%
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Figure 26: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0160 4 

 
Yearly Breakdown of Model Performance 

The GBDT model consistently outperformed the traditional approach across all years, with 
particularly notable improvements during high-volume years: 

• 2024: Reduced total cost error by $37.8 million (from $51.7 million to $13.9 million). 

• 2022: Achieved a reduction of $12.1 million (from $23.7 million to $11.6 million). 

• 2023: Even in a lower-volume year, the model still improved accuracy, reducing total 
cost error by $2.3 million (from $5.2 million to $2.9 million). 

This consistent outperformance across different market conditions further reinforces the 
robustness and adaptability of the GBDT model, confirming its effectiveness in bid price 
estimation and project cost planning. 

Performance Evaluation Result 4: Project Pay Item 0337 7 83 (ASPH CONC FC, 
TRAFFIC C, FC-12.5, PG 76-22) 

Overview and Testing Framework 

To assess the predictive performance of the GBDT model on Pay Item 0337 7 83 (Asphalt 
Concrete FC-12.5, PG 76-22), walk-forward validation was conducted across 209 test dates 
spanning January 2021 to November 2024, evaluating a total of 449 awarded bids. Throughout 
this period, the training dataset expanded significantly, growing from 1,758 bids at the start to 
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3,261 bids by the final test window, further strengthening the model’s predictive capabilities over 
time. 

Asphalt Concrete FC-12.5, PG 76-22, is a high-performance asphalt mix commonly used in 
surface course applications for roadways and highways. Its pricing can be influenced by multiple 
factors, including fluctuations in petroleum-based material costs, regional supplier availability, 
weather conditions affecting laying operations, and contractor competition. Given the volatility 
of asphalt pricing and the regional variations in material costs, traditional estimation methods 
often struggle to accurately capture pricing trends. This makes Asphalt Concrete FC-12.5 an 
ideal candidate for machine learning-based bid price estimation because the GBDT model can 
dynamically adjust to pricing fluctuations and regional economic conditions rather than relying 
on a static 36-month average. 

 
Figure 27: GBDT predictive results illustrated for Project Pay Item 0337 7 83 

 
Improvement in Unit Price Accuracy 

The GBDT model demonstrated substantial improvements in bid unit price accuracy when 
compared to the current 36-month straight average method. The model achieved a mean absolute 
error (MAE) of $61.49, a 42% reduction from the $106.56 MAE of the traditional approach. This 
improvement reflects the model’s ability to generate more precise bid unit price estimates, 
reducing estimation errors at the unit level. 

Impact on Total Cost Estimation 

Beyond unit price accuracy, the GBDT model significantly improved total cost estimation. The 
model produced a total absolute cost error of $34.6 million, compared to $62.8 million for the 
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Walk Forward Validation Results 2021-2024

Analysis Period
First Test:  Jan 8, 2021
Last Test:  Nov 13, 2024
Total Test Dates:  209

Bids Analyzed
Total Awarded Bids: 449
Initial Training:  1,758 Bids
Final Training:  3,261 Bids

GBDT Model Improvements
MAE Reduction:  42.3%
Cost Error Reduction: 44.9%
Training Set Growth:  85.5%
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36-month straight average, representing a 45% reduction in total cost error. This demonstrates 
the model’s effectiveness in minimizing large-scale financial discrepancies across awarded bids. 

 
Figure 28: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0337 7 83 

Yearly Breakdown of Model Performance 

The GBDT model consistently outperformed the traditional approach across all years, with 
particularly notable improvements in high-error years: 

• 2024: The highest-error year, where the model reduced total cost error by $14.9 million 
(from $29.4 million to $14.5 million). 

• 2022: Achieved a reduction of $5.4 million (from $11.8 million to $6.4 million). 

• 2023: Even in a lower-volume year, the model still improved accuracy, reducing total 
cost error by $3.5 million (from $10.2 million to $6.7 million). 

This consistent outperformance, even with a smaller training dataset compared to earthwork 
items, underscores the robustness and adaptability of the GBDT model across different material 
categories, confirming its effectiveness in bid price estimation and project cost planning. 

Performance Evaluation Result 5: Project Pay Item 0570 1 2 (PERFORMANCE TURF, 
SOD) 

Overview and Testing Framework 

To assess the predictive performance of the GBDT model on Pay Item 0570 1 2 (Performance 
Turf, Sod), walk-forward validation was conducted across 265 test dates spanning January 2021 
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to November 2024, evaluating a total of 747 awarded bids. This pay item had the largest training 
dataset among all items analyzed, starting with 7,358 bids and expanding to 9,958 bids by the 
final test window, providing an exceptionally robust foundation for model training and 
validation. 

Performance Turf, Sod is widely used in roadway and landscaping projects, particularly for 
erosion control, roadside stabilization, and aesthetic improvements. The cost of sod installation is 
influenced by multiple factors, including seasonal demand, transportation logistics, soil 
preparation requirements, and supplier competition. Given these dynamic cost drivers, traditional 
estimation methods struggle to capture short-term fluctuations and broader market trends. This 
makes Performance Turf, Sod an ideal candidate for machine learning-based bid price 
estimation, as the GBDT model can leverage a large, evolving dataset to improve cost accuracy 
beyond the limitations of a static 36-month average. 

 
Figure 29: GBDT predictive results illustrated for Project Pay Item 0570 1 2 

 
Improvement in Unit Price Accuracy 

The GBDT model demonstrated substantial improvements in bid unit price accuracy when 
compared to the current 36-month straight average method. The model achieved a Mean 
Absolute Error (MAE) of $6.94, a 25% reduction from the $9.30 MAE of the traditional 
approach. This improvement reflects the model’s ability to generate more precise bid unit price 
estimates, reducing estimation errors at the unit level. 
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Analysis Period
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Impact on Total Cost Estimation 

Beyond unit price accuracy, the GBDT model significantly improved total cost estimation. The 
model produced a Total Absolute Cost Error of $16.3 million, compared to $40.5 million for the 
36-month straight average, representing a 60% reduction in total cost error. This demonstrates 
the model’s effectiveness in minimizing large-scale financial discrepancies across awarded bids. 

 
Figure 30: Total Absolute Cost Error – GBDT vs 36-month Straight Average illustrated for Project Pay Item 0570 1 2 

 
Yearly Breakdown of Model Performance 

The GBDT model consistently outperformed the traditional approach across all years, with 
particularly notable improvements in high-volume years: 

• 2022: Reduced total cost error by $16.2 million (from $21.9 million to $5.7 million). 

• 2024: Achieved a reduction of $4.4 million (from $11.4 million to $7.0 million). 

• 2023: Even in a lower-volume year, the model still improved accuracy, reducing total 
cost error by $0.9 million (from $2.6 million to $1.7 million). 

This consistent outperformance, combined with the largest training dataset among analyzed 
items, further validates the robustness and adaptability of the GBDT model, confirming its 
effectiveness in bid price estimation and project cost planning. 
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Summary of GBDT Model Performance Across Key Pay Items 

Walk-forward validation results across five diverse pay items confirm that the GBDT approach 
consistently outperforms the 36-month straight average method, delivering substantial 
improvements in estimation accuracy. The analyzed items span major construction categories 
including earthwork (Embankment, Regular Excavation, Type B Stabilization), asphalt (FC-12.5, 
PG 76-22), and landscaping (Performance Turf, Sod), providing a comprehensive view of the 
model's capabilities. 

Key findings include: 

1. Total Cost Impact: Across all five pay items, the GBDT model reduced total absolute cost 
estimation error by approximately $480.4 million over four years. This dramatic 
improvement underscores the real-world financial benefits of enhanced estimation 
accuracy. 
 

2. Substantial Cost Impact Reductions: When considering total cost impact, the GBDT 
model demonstrated dramatic improvements, with reductions in Total Absolute Cost Error 
ranging from 45% to 84%. The largest improvements were seen in earthwork items (84% 
for Embankment, 82% for Regular Excavation), where high volumes make accuracy 
particularly critical. 
 

3. Consistent Unit Price Improvements: The GBDT model reduced Mean Absolute Error 
(MAE) across all items, with improvements ranging from 23% to 42%. The most dramatic 
improvement was seen in asphalt prediction (42% reduction), while even the smallest 
improvement (23% for Embankment) represented a significant enhancement in accuracy. 

 
4. Robust Performance Across Market Conditions: Annual analysis reveals consistent 

outperformance across different years and market conditions. The model showed particular 
strength in high-volume years, where accuracy improvements translated into the largest 
absolute cost savings. 

 
5. Effective With Varying Training Data: The model performed well across items with 

different training dataset sizes, from relatively smaller datasets (1,758 initial bids for 
asphalt) to very robust datasets (7,358 initial bids for sod). This suggests the approach is 
adaptable to different data availability scenarios while maintaining effectiveness. 

 
These results demonstrate that the GBDT approach represents a major advancement in bid price 
estimation, delivering substantial accuracy improvements across a range of pay items and market 
conditions. 
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From Analysis to Implementation: Operationalizing the 
GBDT Approach 
Too often, research in bid estimation and machine learning for infrastructure projects stalls at the 
academic stage, focusing on model validation without advancing toward real-world 
implementation. However, production testing must be treated as an integral part of research 
itself—ensuring that theoretical improvements translate into practical, scalable solutions. This 
section lays out a roadmap for operationalizing machine learning-based bid estimation, 
demonstrating how the transition from research to prototype closes the gap between innovation 
and real-world decision-making. 

The quantitative analysis of five key pay items demonstrates the potential of machine learning-
based bid estimation, with the GBDT approach reducing total cost estimation error by 
approximately $480.4 million over the four-year validation period compared to current methods. 
Following established research-to-production practices, the next logical phase is prototype 
development to validate these results in a realistic operational context. Before proceeding with a 
full production implementation, a prototype system has been developed that bridges FDOT’s 
historical bid data with modern cloud-based prediction services. 

Prototype System Architecture 

 
Figure 31: System Development and Deployment Model 
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To ensure the research translates into practical improvements, this prototype was developed to 
test the feasibility of integrating machine learning-based bid estimation into FDOT’s existing 
workflows. Rather than a theoretical demonstration, this prototype is designed to evaluate both 
prediction accuracy and system usability in an operational setting, identifying potential 
challenges before full-scale deployment. 

The prototype architecture is designed to integrate machine learning-based bid estimation into 
FDOT’s existing workflows, ensuring scalability, security, and usability. The system consists of 
three key components: model development and training, cloud-based deployment and 
predictions, and user interaction. 

Model Development & Training 

The foundation of the prototype begins with secure data handling and model training. Historical 
bid data is transferred to an offline environment, where it undergoes data cleaning, feature 
extraction, and preprocessing before being used for training. Given the scale of the dataset, 
model training is conducted on GPU-accelerated infrastructure, enabling efficient processing of 
large-scale data while optimizing predictive accuracy. 

To ensure the model remains aligned with evolving market trends, the system supports 
incremental retraining as new bid data becomes available. This allows the model to continuously 
refine its predictions, improving long-term reliability. By structuring model training this way, the 
prototype maintains both processing efficiency and data security, ensuring that historical data is 
leveraged effectively without compromising system performance. 

Cloud-Based Deployment & Predictions 

Once trained, the model is deployed in a secure cloud environment, allowing for real-time bid 
price predictions. The cloud-based approach ensures scalability, enabling high-demand 
estimation requests to be processed efficiently. Predictions are accessed through an API-driven 
architecture, which facilitates seamless integration with FDOT’s existing estimation tools and 
third-party applications. 

This design eliminates the need for on-premises computing resources, allowing estimators and 
decision-makers to retrieve predictions on-demand without requiring specialized infrastructure. 
By hosting the model in the cloud, the system remains adaptable, fast, and accessible, ensuring 
that machine learning-based bid estimation can be easily incorporated into real-world decision-
making. 

User Interaction & Interpretability 

To maximize usability, the prototype features a secure web-based platform, providing an intuitive 
interface for interacting with the model. Users can submit both batch and single-item prediction 
requests, enabling flexibility for large-scale planning efforts as well as detailed bid analyses. 
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Beyond providing raw predictions, the system prioritizes interpretability through SHAP 
(SHapley Additive exPlanations) visualizations, which illustrate how various input factors 
influence bid estimates. These SHAP insights allow transparency into how models arrive at their 
individual predictions, enabling estimators to validate model outputs against their domain 
expertise. This human-in-the-loop safety net helps foster confidence in the system’s overall 
processes. 

Bridging Research and Implementation 

By structuring the prototype around efficient model training, cloud-based deployment, and 
interactive user engagement, the system provides a scalable, adaptable, and transparent bid 
estimation framework. This approach ensures that machine learning-based bid estimation is not 
only accurate but also practical for real-world decision making. 

Following best practices for transitioning research into production systems, this prototype 
implementation begins with a strategic subset of high-impact pay items spanning earthwork, 
asphalt, and landscaping. This focused approach enables rapid iteration based on user feedback 
before committing to full-scale deployment. As confidence in the system grows through 
continued validation and process refinement, the methodology can be systematically extended to 
additional pay items while maintaining the high level of accuracy demonstrated in the initial 
analysis. 

The prototype serves as a critical stepping stone toward full production implementation, allowing 
FDOT to evaluate performance, identify integration challenges, and refine the system based on 
real-world use cases. 

Four Core Services 

The prototype implementation focuses on four essential services, designed to enhance FDOT’s 
existing estimation workflows by providing more accurate bid price predictions, deeper 
analytical insights, and continuous model quality monitoring. These services are intended to 
empower FDOT with the necessary tools to enable the most informed, data-driven decisions 
while maintaining full control over the estimation. 
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Figure 32: Essential Services of Prototype Implementation 

 
Rather than offering just predictions, this system provides a comprehensive suite of tools that 
enable users to understand, analyze, and validate cost estimates. The historical data dashboard, 
SHAP interpretability features, and performance monitoring reports work in concert to build trust 
in model outputs, diagnose anomalies, and refine estimation strategies. These services ensure that 
FDOT estimators and planners can leverage the strengths of machine learning while maintaining 
the flexibility to apply their own expertise 

Key Application Services 

The implementation provides four essential services: 

1. Batch Prediction Service: A streamlined interface for handling multiple project 
predictions simultaneously. Users can securely upload files containing project 
specifications, and the service processes them through the trained models to provide bulk 
cost estimates. The interface provides real-time progress tracking and returns results in 
both interactive table and downloadable CSV formats. This is particularly valuable for 
large-scale planning efforts where multiple scenarios need evaluation. 
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Figure 33: Illustration of Batch Predictions Services Dashboard 

 
2. Interactive Single Prediction with Interpretability: For detailed, case-by-case bid 

estimation, the Interactive Single Prediction Service provides a deep dive into individual 
estimates. Users can enter comprehensive project details such as pay item, letting date, 
bid quantity, location, and contract characteristics to generate a prediction. 
 

 
Figure 34: Illustration of Individual Prediction Services Dashboard 
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What sets this tool apart is its interpretability features. The system not only generates a predicted 
price but also provides SHAP visualizations that show how different factors contributed to the 
estimate. This transparency helps users: 1) Understand the logic behind the model’s predictions, 
ensuring confidence in the estimates; 2) Diagnose unusual estimates and identify potential data 
issues; and 3) Leverage model insights for improving traditional estimation practices. 
 

 
Figure 35: Illustration of SHAP Waterfall Chart 

 
3. Historical Data Visualization Dashboard: An interactive analytics platform that enables 

exploration and filtering of historical bids and patterns. The dashboard combines multiple 
visualization types including scatter plots, trend lines, and price distributions to provide 
comprehensive views of bidding behavior. Users can filter and analyze data through 
multiple dimensions including item ID, county, date range, and bid quantities, with 
interactive charts providing detailed tooltips showing bid-specific information such as 
contract types and work mixes. The system provides real-time statistical summaries 
including average bid prices, total bid counts, and price variances, while zoom and pan 
capabilities enable detailed examination of specific time periods. This tool provides critical 
context for current and future bid estimates, ensuring that estimates are informed by both 
historical trends and current market conditions. 
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Figure 36: Illustration of Historical Bid Analysis Dashboard 

 
4. Model Performance Monitoring: A critical transparency and quality assurance system that 

provides detailed performance metrics through automated daily walk-forward validation 
reports. For each pay item, the system generates comprehensive PDF reports documenting 
the model's prediction accuracy across different time periods. These reports detail each 
validation window's characteristics including letting dates, training and testing sample 
sizes, and itemized prediction accuracy for winning bids. Users can search by pay item to 
access detailed metrics including mean absolute error and total absolute cost error. This 
systematic performance tracking enables users to understand model reliability for their 
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specific estimation needs and helps maintain trust in the system through continuous 
validation. 

 

 
Figure 37: Illustration of Quality Monitoring Report Dashboard 

 
Future Integration and Scalability 

As these four core services demonstrate, the prototype implementation provides both the 
analytical capabilities and transparency needed to enhance FDOT's bid estimation processes. The 
services are designed to work both independently and in concert, creating a system that augments 
rather than replaces human expertise. Users can combine the historical data visualization with 
quality monitoring reports to understand prediction confidence in specific market contexts, while 
the SHAP visualizations from individual predictions help experts validate the model's reasoning 
against their domain knowledge. This transparency enables estimators to exercise informed 
judgment - knowing when to rely on the model's predictions and when market conditions or 
project specifics might require additional consideration. 
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Furthermore, the combination of quality monitoring and historical visualization creates a 
powerful analytical feedback loop - patterns discovered in the historical dashboard can suggest 
new features or modeling approaches, while the monitoring reports can quantify how such 
improvements affect prediction accuracy across different market conditions. This continuous 
interaction between human insight and machine learning helps maintain a robust safety net for 
estimation decisions. 

The modular design of these services - from batch processing to interactive analysis to automated 
quality monitoring - creates a foundation that can be systematically expanded to additional pay 
items. Moreover, the architecture's emphasis on security, usability, and continuous validation 
establishes a framework for transitioning from prototype to production implementation. 
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Conclusion and Future Direction 
The findings of this research highlight significant opportunities to enhance the Florida 
Department of Transportation’s (FDOT) bid estimation process through the integration of 
machine learning methodologies. While the current estimation approach is transparent and 
benefits from real-time data updates, its reliance on fixed assumptions limits its ability to adapt 
to market fluctuations and capture complex pricing relationships. 

The alternative use of gradient boosted decision trees (GBDTs)—a proven machine learning 
technique for structured, or tabular, data—demonstrated substantial improvements in cost 
estimation accuracy. Across multiple pay items, the GBDT model consistently reduced mean 
absolute error (MAE) by 23%-42% and lowered total absolute cost error by 45%-84%, leading to 
an estimated $480.4 million in improved cost allocation over four years. 

Immediate Next Steps: Prioritizing Prototype Testing 

Before pursuing full-scale deployment, the immediate next step is rigorous prototype testing 
to validate the model’s performance in an operational environment. Testing will focus on: 

• Usability and Integration – Ensuring the machine learning-based estimation system 
aligns with FDOT’s existing workflows. 

• Model Reliability – Monitoring real-world predictions and refining performance where 
necessary. 

• Estimator Feedback – Incorporating insights from FDOT stakeholders to improve 
interpretability and trust in the system. 

This testing phase is essential to bridging the gap between research and implementation, ensuring 
that improvements translate into practical decision-making tools. 

Longer-Term Enhancements: Feature Engineering and External Data Integration 

Once prototype testing confirms operational viability, the next phase will focus on expanding the 
model’s capabilities through: 

1. Feature Engineering – In addition to the various features extracted from letting date in 
this report, refine other input variables to further improve prediction accuracy. These may 
include looking at combined project attributes or factoring the total number of bidders for 
recent bids. 

2. External Data Integration – Re-examining previously explored external features 
including price indices, regional economic trends, and labor metrics. Initial testing of 
such sources showed mixed results, but with improved hyperparameter optimization 
expertise and a stable GBDT foundation in place, these external data warrant renewed 
investigation to potentially enhance model responsiveness. 
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By following this phased approach—prioritizing prototype validation first, followed by strategic 
enhancements—FDOT can systematically transition to a more adaptive, data-driven cost 
estimation process. These improvements will strengthen fiscal responsibility, optimize resource 
allocation, and enhance long-term infrastructure planning. 
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