

CONNECTED VEHICLE

SECURITY METRICS AND

THREAT INTELLIGENCE
BED34-977-01

Guillermo A. Francia, III
Hossain Shahriar
University of West Florida

FINAL REPORT
May 2024

 ii

Disclaimer

The opinions, findings, and conclusions expressed in this publication are those of the
authors and not necessarily those of the Florida Department of Transportation.

 iii

Technical Report Documentation Page

1. Report No.

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

Connected Vehicle Security Metrics and Threat Intelligence
5. Report Date

May 2024
6. Performing Organization Code

7. Author(s)

Guillermo Francia, III, Ph.D.

Hossain Shahriar, Ph.D.

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of West Florida

11000 University Pkwy

Pensacola, FL 32514

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

BED34-977-01

12. Sponsoring Agency Name and Address

Florida Department of Transportation

605 Suwannee Street, MS 30

Tallahassee, FL 32399

13. Type of Report and Period Covered

Final Report

06/01/2024--5/31/2024
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

 The sophistication of vehicle communication systems, found externally and internally, enables the

expansion of the attack surface on connected and autonomous vehicles (CAVs). For that reason, we

embarked on this three-pronged approach that has major implications for the safety and security of

CAVs. Firstly, recognizing the need for vehicle security metrics and their continuous improvement, we

designed applicable security metrics and developed their corresponding visualization systems.

Secondly, with the emergence of machine learning (ML) systems, the opportunity to enhance and

advance the security of connected vehicle messaging systems using artificial intelligence becomes more

efficient and plausible. We explored this prospect by developing prototype ML systems utilizing data

collected from Roadside Units (RSUs) as input. Finally, with the overarching goal of promoting

vehicle safety, this project offers a seminal work on collecting, processing, and storing vehicle threat

intelligence. The principal objective of such a system is to enable immediate access to vehicle

vulnerability information to researchers, operators, manufacturers, supply chain, and the public in

general. This enabler provides proactive means to mitigate risks and thereby promotes vehicle and

personal safety.

17. Key Word

Connected Vehicles, Cyber Security, Threat
Intelligence, Security Metrics, Visualization,
Vulnerability, Risk

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

393
22. Price

Form DOT F 1700.7 (8-72)

 iv

Executive Summary

The rapid advancement of connected and autonomous vehicles (CAVs) created new challenges

for security and safety professionals. The sophistication of vehicle communication systems,

found externally and internally, provides an added complexity to the issue. In security parlance,

this is an expansion of the attack surface on vehicles. These challenges prompted the

enhancement of existing, and the development of new, safety and security standards initiated by

government, industry, and trade organizations. These initiatives clearly underscore the need to

examine the state of connected vehicle security. For that reason, we embarked on this three-

pronged approach that has major implications for the safety and security of connected vehicles.

Firstly, we recognize the need for the development of vehicle security metrics and their

continuous improvement. As a major component of continuous improvement, quantitative and

qualitative measures must be devised to be able to fully appreciate the process. Consequently,

we designed applicable security metrics and developed their corresponding visualization

systems. Secondly, with the emergence of machine learning (ML) systems, the opportunity to

enhance and advance the security of connected vehicle messaging system using artificial

intelligence becomes more efficient and plausible. We explored this prospect by developing

prototype ML systems utilizing data collected from Roadside Units (RSUs) as input. Finally,

with the overarching goal of promoting vehicle safety, this project offers a seminal work on

collecting, processing, and storing vehicle threat intelligence. The principal objective of such a

system is to enable immediate access to vehicle vulnerability information to researchers,

operators, manufacturers, supply chain, and the public in general. This enabler provides

proactive means to mitigate risks and thereby promotes vehicle and personal safety.

 v

Table of Contents

Disclaimer ... ii

Technical Report Documentation Page ... iii

Executive Summary .. iv

List of Tables ... viii

List of Figures .. viii

List of Abbreviations and Acronyms.. x

Chapter 1. Introduction ... 1

1.1 Project Objectives .. 1

1.2 Major Accomplishments ... 1

Chapter 2. Development of Vehicle Security Metrics ... 3

2.1. Common Vulnerability Scoring System (CVSS) ... 3

2.2. Common Methodology for IT Security Evaluation (CEM) ... 3

2.3. Threats on Assets ... 3

2.4. Common Weakness Scoring System ... 4

2.5. Operational Safety Assessment Metrics ... 4
2.5.1 Cybersecurity Metrics for Operational Safety ... 4

2.6. Security Vulnerability Metrics for Connected Vehicles ... 6
2.6.1 Electronic Control Unit (ECU) Coupling Risk .. 6
2.6.2 Communication Channel Risk .. 6
2.6.3 Complexity Risk.. 7
2.6.4 Input and Output Data Risk ... 7
2.6.5 History of Security Issues... 7
2.6.6 Overall Security Vulnerability Metric .. 8

2.7. Vehicle Security Best Practices Assessment Metrics .. 8
2.7.1. Vehicle Security Best Practices Assessment Metrics ... 8

Chapter 3. Design and Implementation of the Vehicle Security Metrics Visualization System (VSMVS) 11

3.1. Visualization of CVSS Vector and Metrics... 11

3.2. Visualization of Attack Potential of Threats on Vehicle Assets .. 13

3.3. Visualization of Common Weakness Scoring System ... 14

3.4. Visualization of Security Metrics for Operational Safety ... 15

3.5. Visualization of Security Vulnerability Metrics ... 16

3.6. Visualization of Vehicle Security Best Practices Assessment Metrics... 18

Chapter 4. Testing and Deployment of the VSMVS ... 20

4.1. Test Framework Description ... 20

 vi

4.2. VSMVS Unit Tests ... 20
4.2.1. TreeMap Tests .. 20
4.2.2. Common Weakness Scoring System (CWSS) Tests .. 20
4.2.3. Security Metrics Operational Safety (SMOS) Tests .. 20
4.2.4. Security Vulnerability Metrics for Connected Vehicles (SVMCV) Tests ... 20
4.2.5. Vehicle Security Best Practices Assessment Metrics (VSBPAM) Tests ... 20

Chapter 5. Data Ingestion, Cleansing, Normalization, and Data Mutation of Roadside Unit Data 21

5.1. Roadside Unit Dataset .. 21

5.2. Basic Safety Message (BSM) .. 21

5.3. Synthetic Dataset ... 22

5.4. Malicious Dataset ... 23
5.4.1. Brake System Anomaly ... 23
5.4.2. Transmission System Anomaly ... 23
5.4.3. Longitudinal Acceleration Anomaly ... 24
5.4.4. Hard Braking Anomaly .. 24
5.4.5. Speed Anomaly ... 24

Chapter 6. Design and Implementation of a Machine Learning System for Vehicle Security 25

Chapter 7. Design and Implementation of a Vehicle Threat Modeling Engine (VTME).................................... 26

Chapter 8. Design and Implementation of a Vehicle Threat Collection System (VTCS).................................... 28

8.1. The VTCS Interfaces .. 28

Chapter 9. Design and Implementation of a Vehicle Threat Database System (VTDS) 30

9.1. Entity Relationship (ER) Diagrams .. 30

Chapter 10. Design and Implementation of a Vehicle Threat Information Portal (VTIP) 32

10.1. VTIP Threat Record Interface ... 32

10.2. VTIP Threat Record Search and Edit Interface ... 32

Chapter 11. System Integration, Testing, and Deployment ... 34

11.1 The VSSI Interface .. 34

Chapter 12. Continuous Improvement Process... 36

12.1 List of Improvements and Rationale.. 36

Chapter 13. Conclusion and Future Works ... 37

References ... 38

Appendices .. 41

Appendix I. Technical Report UWF-TR-FDOT-001-01... 42

Appendix II. Technical Report UWF-TR-FDOT-002-01 ... 63

Appendix III. Technical Report UWF-TR-FDOT-002-02 ... 102

 vii

Appendix IV. Technical Report UWF-TR-FDOT-003-01 .. 140

Appendix V. BSM Dataset Attributes .. 145

Appendix VI. Technical Report UWF-TR-FDOT-003-02 .. 149

Appendix VII. Technical Report UWF-TR-FDOT-004-01 .. 180

Appendix VIII. Technical Report UWF-TR-FDOT-005-01... 199

Appendix IX. Technical Report UWF-TR-FDOT-006-01 .. 229

Appendix X. Technical Report UWF-TR-FDOT-006-02 ... 248

Appendix XI. Technical Report UWF-TR-FDOT-006-03 .. 252

Appendix XII. Technical Report UWF-TR-FDOT-007-01 .. 258

Appendix XIII. Technical Report UWF-TR-FDOT-007-02... 279

Appendix XIV. Technical Report UWF-TR-FDOT-007-03 ... 284

Appendix XV. Technical Report UWF-TR-FDOT-008-01 .. 287

Appendix XVI. Technical Report UWF-TR-FDOT-008-02 ... 309

Appendix XVII. Technical Report UWF-TR-FDOT-008-03 ... 312

Appendix XVIII. Technical Report UWF-TR-FDOT-009-01 .. 319

Appendix XIX. Technical Report UWF-TR-FDOT-009-02 ... 345

Appendix XX. Technical Report UWF-TR-FDOT-009-03 .. 349

Appendix XXI. Technical Report UWF-TR-FDOT-010-01 ... 357

Appendix XXII. Technical Report UWF-TR-FDOT-010-02 ... 371

Appendix XXIII. Data Processing Algorithm ... 383

Algorithm 1: RSU Data extraction and Cleansing .. 383

Appendix XXIV. Continuous Integration/Continuous Deployment Pipeline .. 385

Pipeline Steps ... 385

Self-Hosted Runner .. 386

GitHub Actions Runners ... 386

Setting Up the GitHub Actions Self-hosted Runner ... 386
What you will need: .. 386
Setup Procedure ... 387

Configuring the SQL Server .. 389

Running the Pipeline .. 392

 viii

Additional Notes .. 393

List of Tables
Table 1: Vehicle Security Best Practices Assessment Checklist .. 9
Table 2: BSM Dataset Attributes .. 25
Table 3: Summary of ML Model Validation and Testing Results.. 25
Table 4: BSM Coredata Characteristics .. 145

List of Figures
Figure 1: The Connected Vehicle Security System Architecture ... 2
Figure 2: The Landing Page of the VSMVS ... 11
Figure 3: The CVSS Vector Interface for the VSMVS .. 12
Figure 4: The CVSS Vector Scoring System .. 12
Figure 5: The Attack Potential of Threats on Vehicle Assets ... 13
Figure 6: The Tree Map Visualization of Vehicle Attack Potential ... 13
Figure 7: The Common Weakness Scoring System User Interface .. 14
Figure 8: The Visualization for the Common Weakness Scoring System Metrics 15
Figure 9: Data Entry Interface for Security Metrics for Operational Safety 15
Figure 10: Calculated Security Metrics for Operational Safety .. 16
Figure 11: Data Entry Interface for Security Vulnerability Metrics ... 17
Figure 12: Calculated Security Vulnerability Metrics .. 17
Figure 13: Vehicle Security Best Practices Assessment Metrics.. 18
Figure 14: Lockheed Martin’s Cyber Kill Chain .. 26
Figure 15: Query Page Viewer Prototype ... 28
Figure 16: Prototype VTCS Record Viewer Interface .. 29
Figure 17: Entity Relationship (ER) Diagram for the VTDS ... 30
Figure 18: ER Diagram for the User and Transaction Log Entities ... 30
Figure 19: VTIP Interface ... 32
Figure 20: VTIP Threat Record Search and Edit Interface... 33
Figure 21: The VSSI Landing Page Interface ... 34
Figure 22: The Workflow ... 385
Figure 23: Runner Setup ... 386
Figure 24: Creating New Self-hosted Runner ... 387
Figure 25: Windows PowerShell .. 387
Figure 26: New Self-hosted Runner ... 388
Figure 27: Log-on Configuration .. 388
Figure 28: Configuring the SQL Server.. 389
Figure 29: Configuring the SQL Server Authentication ... 390
Figure 30: Creating a New Login Account ... 390
Figure 31: Setting Authentication Properties .. 391
Figure 32: Setting Server Roles .. 392
Figure 33: Manually Running a Pipeline .. 392
Figure 34: Running a Pipeline Automatically .. 393
Figure 35: Action Secrets and Variables .. 393

 ix

 x

List of Abbreviations and Acronyms

API Application Program Interface

ATT&CK Adversarial Tactics, Techniques, and Common Knowledge

AWS Amazon Web Services

BSM Basic Set Message

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

EC2 Elastic Compute Cloud

ER Entity Relationship

GUI Graphical User Interface

IIS Internet Information Services

IoC Indicators of Compromise

ML Machine Learning

.NET A cross-platform, open-source developer platform created by

Microsoft

OSINT Open-Source Intelligence

OTX Open Threat Exchange

TTPs Tactics, Techniques and Procedures

VSMVS Vehicle Security Metrics Visualization System

VSSI Vehicle Security System Integration

VTCS Vehicle Threat Collection System

VTDS Vehicle Threat Database System

VTIP Vehicle Threat Intelligence Portal

VTME Vehicle Threat Modeling Engine

Chapter 1. Introduction
The emergence of connected and autonomous vehicles at an unprecedented pace ushered in

several government-sponsored initiatives to start planning and building a transportation

information network that utilizes intelligent sensors and sophisticated communication systems.

Peripheral sensors that are used to assist the human operator in lane changing, obstacle

avoidance, and parking are slowly being integrated in modern automotive vehicles. Although this

newly found convenience is a boon to society, both socially and economically, it presents

security challenges that are endemic to connected technologies. These challenges underscore the

need to examine the state of connected vehicle security and design an effective threat intelligence

portal.

1.1 Project Objectives
The objectives of the proposed project are as follows:

1. Design and develop a comprehensive set of security metrics for connected vehicles;

2. Implement a prototype machine learning (ML) system that will process sensor data

for intelligent security analytics; and

3. Create a Web-based threat intelligence portal for connected vehicles.

1.2 Major Accomplishments
The major accomplishments of the project were delineated by the tasks and the associated

deliverables for each task. These tasks enable the realization of all the project objectives as

stipulated in the above.

Figure 1 illustrates the relationships and interactions of the major components of the project. The

interactions between components are as follow:

• VTCS-VirusTotal. The Vehicle Threat Collection System (VTCS) queries the VirusTotal

repository for specific vehicle threat intelligence through the system Application Program

Interface (API). The threat data that were returned by the query are deposited into the

Vehicle Threat Database System (VTDS).

• VTCS-OTX. The VTCS queries the Open Threat Exchange (OTX) for specific vehicle

threat intelligence through the system API. Similarly, the data that were gathered are

deposited in the VTDS.

• VTCS-CVE. The VTCS queries the Common Vulnerability Enumeration (CVE) web

portal through the system API. Likewise, the data that were gathered are deposited in the

VTDS.

• VTIP-VTDS. The Vehicle Threat Information Portal (VTIP) is the main user interface to

the VTDS. A user may retrieve any available threat information that pertains to a specific

vehicle using the interface. The VTDS responds appropriately to the query depending on

the availability of threat information that was collected by the VTCS.

• VTIP-MISP. The VTIP provides an interface with the Malware Information Sharing

Platform (MISP) server for a sharing, storing and correlating Indicators of Compromise

of targeted attacks, threat intelligence, and vulnerability information on vehicles. The

currently installed MISP server is a proof-of-concept implementation.

 2

• VTDS-VSMVS. The interaction between the VTDS and the Vehicle Security Metrics

Visualization System (VSMVS) is not implemented due to the incompatibility of the data

objects representing threats and vulnerability.

• VTDS-VSML. The interaction between the VTDS and the Vehicle Security Machine

Learning (VSML) system is not implemented due to the incompatibility of the data

objects representing threats and the SAE J2735 message format (Basic Safety Message

(BSM)).

Each component is fully described in the task subsection in which it is closely associated with.

Figure 1: The Connected Vehicle Security System Architecture

 3

Chapter 2. Development of Vehicle Security Metrics

The first task of the project called for the research and development vehicle security metrics

based on published literature and standards. The purpose of developing security metrics is for

continuous improvement, i.e. any improvement process needs an established benchmark.

The following section is an excerpt from Technical Report UWF-TR-FDOT-001-01, which

contains the details of each derived security metric. The complete report can be found in Appendix

I.

2.1. Common Vulnerability Scoring System (CVSS)

CVSS is an open framework for communicating the characteristics and severity of software

vulnerabilities. It consists of three metric groups: Base, Temporal, and Environmental. Details on

these metrics can be found in [1]. In [2], an illustration of the application of these metrics on the

vulnerability of the Tesla Model S/X vehicles manufactured before March 2018 [3] and the

vulnerability in the infotainment component of several BMW Series vehicles (CVE-2018-9322)

[4] are illustrated.

White paper provides another use case to illustrate the applicability of this metric. A copy of the

white paper can be found in Appendix III.

2.2. Common Methodology for IT Security Evaluation (CEM)

The CEM [5] is a companion document to the Common Criteria for Information Technology

Security Evaluation (CC). It defines the minimum actions to be taken by an evaluator conducting

a CC evaluation, utilizing the criteria and evidence as stated in the CC.

We specifically examined the attack potential on an automotive vehicle based on the following

factors: elapsed time, specialist expertise, knowledge of the target, window of opportunity, and IT

hardware/software or other equipment. We provided a detailed description of each of these factors

in a white paper found in Appendix III.

2.3. Threats on Assets

We identify the following threats on vehicle assets and derive the attack potential metrics. We

apply the previously defined factors for analysis and aggregate the metrics. The threats on vehicle

assets are the following: false data from ECU, blocking of CAN bus, malicious software, denial

of telematics service, unauthorized access, command injection, masquerading, data tampering. We

shall provide a detailed description of each of these threats in a white paper found in Appendix III.

The total attack potential for each threat is simply a summation of the value assigned to each of

the attributes of a successful attack. These results can be utilized during the decision-making

process of cybersecurity asset allocation towards risk mitigation or prevention.

 4

2.4. Common Weakness Scoring System

The Common Weakness Scoring System (CWSS) [6] is a mechanism for evaluating software

weaknesses in a consistent, flexible, open manner. It is a community-based undertaking which

addresses the need for prioritizing the software vulnerability issues. The measurements are

organized into three metric groups: base finding, attack surface, and environmental. The groups,

including their subgroups, as described in [6], are fully expounded in a white paper found in

Appendix III.

2.5. Operational Safety Assessment Metrics

We next turn our attention to the impact of cybersecurity to operational safety assessment (OSA).

There exist several OSA metrics that have been proposed, adopted, and studied [7] [8]. SAE J3237

[9], Driving Assessment (DA) Metrics for Automated Driving Systems (ADS), is currently under

development. The SAE report provides definitions and a lexicon for describing operational safety

metrics for ADS vehicles. The characteristics of the listed metrics include the following: definition,

data source, subjectivity, observable variable, formulation, subjective assumptions and thresholds,

and origin. A related work by the SAE V&V Task Force is the development of a proposed

taxonomy for a recommended practice on operational safety metrics [10]. At the classification

level of the proposed taxonomy are the operational safety metrics [10]. These operational safety

metrics, which were fully covered in a white paper (see Appendix III), will become the foundation

of the OSA metrics that we have derived and augmented with the following:

• Authentication Metric. This OSA metric measures the quality of the authentication system

deployed in the vehicle. This is extremely useful in modern vehicles that rely on

communications such as those in V2V or V2I environment.

• Physical Access Metric. This OSA metric measures the strength of physical access

protection of vehicle controls. An example is the unsecured physical access to an OBD port

which could compromise the vehicle’s CAN bus.

• Communication Channel Metric. This OSA metric pertains to the quality of the

communication channel used by the vehicle.

2.5.1 Cybersecurity Metrics for Operational Safety

We investigated the impact of cybersecurity on operational safety. In doing so, we devised

cybersecurity metrics that have close affinities with OSA metrics. These cybersecurity metrics for

operational safety are described in the following:

• Safety Envelope Metric. This cybersecurity metric measures the security resiliency of a

connected vehicle to be able to maintain a safe boundary amidst a cyber intrusion incident.

An example is a vehicle’s capability in preventing malicious manipulation of the control

and sensing systems that enable driving at a safe distance from other vehicles. Values range

from 0.0 for least resilient to 1.0 for most security resilient.

 5

• Behavioral Metric. This cybersecurity metric measures the vehicle’s capability to protect

against a cyber-attack that enables the improper behavior of the subject vehicle. An

example of such attack is the manipulation of the vehicle cruise control mechanism. Values

range from 0.0 for least capable to 1.0 for most capable.

• Component Metric. This is a measure of the susceptibility of the vehicle components to

cyber-attack. For example, an Electronic Control Unit (ECU) device originating from an

unverifiable supply chain may is highly susceptible to cyber-attack. Values range from 0.0

for most susceptible resilient to 1.0 for least susceptible.

• Sensing Metric. This cybersecurity metric pertains to the integrity and accuracy of data

collected by the vehicle sensors. Roadside Units (RSUs) that are not properly secured may

produce inaccurate or tampered data. Values range from 0.0 for least reliable data to 1.0

for most reliable data.

• Perception Metric. This cybersecurity metric pertains to the security of the system that

provides for the interpretation of environment data collected by the vehicle sensors. For

example, an insecure image processing system that is highly susceptible to an attack may

provide inaccurate interpretation of traffic signs or signals. Values range from 0.0 for least

secure to 1.0 for most secure.

• Planning Metric. This cybersecurity metric measures the vulnerability of the trajectory

planning system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0

for least vulnerable.

• Control Metric. This cybersecurity metric measures the vulnerability of the vehicle’s

control system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0 for

least vulnerable.

• Authentication Metric. This cybersecurity metric measures the security posture of the

authentication system deployed in the vehicle. Values range from 0.0 for least secure to 1.0

for most secure.

• Physical Access Metric. This cybersecurity metric measures the strength of physical access

protection of vehicle controls. Values range from 0.0 for least physically secure to 1.0 for

most physically secure.

• Communication Channel Metric. This cybersecurity metric pertains to the level of

protection of the communication channel used by the vehicle. Security characteristics of

data transmission such as encryption, authentication, and attribution are pertinent concerns

in this metric. Values range from 0.0 for least secure to 1.0 for most secure.

Emulating the evaluation methodology of the OSA metrics that was introduced by Wishart et.al.

[11], we presented four evaluation factors for the formulation of the aggregation of cybersecurity

metrics. The four evaluation factors are described in the following:

• Reliability. This factor quantifies the fidelity of the sources of measurement data. For

instance, data originating from actual events carry a higher value than those from simulated

events. Values range from 0.1 for less reliable to 1.0 for most reliable.

• Relevance. This factor quantifies the relevance of the measurement to a subject vehicle.

This value may vary according to the specificity of data such as make and model of the

subject vehicle. Data for a Honda CRV is more specific than data that refers to Honda

vehicles in general. Values range from 0.1 for least relevant to 1.0 for most relevant.

 6

• Extent. This factor quantifies the scope or extensiveness of the measurement data. The

value ranges from 0.1 for least extensive to 1.0 for most extensive.

• Criticality. This factor quantifies the gravity of a specific metric. For instance, security

measurement on control will carry a heavier weight than that on safety envelope. The value

ranges from 0.1 for least critical to 1.0 for most critical.

The Aggregate Security Metric (ASM) for a specific vehicle is calculated as

ASM = Reliability × Relevance × Extent × (∑ Criticalityk × Security_Metrick

N

k=1

)

The ASM value will range from 0 to 10.

2.6. Security Vulnerability Metrics for Connected Vehicles

The purpose of security vulnerability metrics is to provide guidance to security engineers and

testers using security vulnerability metrics that measure weak or vulnerable features in the software

system of connected vehicles. These metrics are based on the seminal work of Moukahal and

Zulkernine [12]. We describe each of the following risks on connected vehicles that may

eventually contribute to the likelihood of vulnerability exploitation.

2.6.1 Electronic Control Unit (ECU) Coupling Risk

This risk is manifested by level of interconnection among ECU components. This means the higher

the coupling value the higher is the probability for vulnerabilities. Thus, for every functionality,

F, for all ECUs, N, and for all communication links between ECU j and ECU k, the ECU coupling

risk, REC, is calculated as

 REC(F) = ∑ 𝐶𝑗𝑘
𝑁
𝑗=1,𝑘=1

Cjk =1 if there is at least one information transfer between ECU j and ECU k; 0 otherwise.

 Max (REC(F)) = N

2.6.2 Communication Channel Risk

This risk is based on the communication channel types that are available for connected vehicles:

vehicle to vehicle (V2V), vehicle to infrastructure (V2I), user to vehicle (U2V), and intra-vehicle

(IV). The communication risk, for each functionality, F, is calculated according to the following

formula:

 RCC (F) =∑ 𝑤𝑗𝐶𝑗
𝑁
𝑗=1

 7

Where N is the number of communication links, wj the weight of a specific communication

channel type based on its propensity to vulnerability, and Cj is 1 if the functionality uses the

channel; 0 otherwise.

Max (RCC (F)) = Total number of all communication channels

2.6.3 Complexity Risk

This risk is associated with the number of defects in software used in automotive vehicles. The

complexity metric in software is an excellent indicator of vulnerabilities. The Halstead

Complexity measure is a standard way of deriving the complexity of software. Thus, for

calculating the complexity of the functionalities in connected vehicle, we use the formula:

 RSC (F) = SLOC + a (Nesting)

Where SLOC is the Source Line of Code, Nesting is the number of control structures, and a is

the weight, with value over one, indicating complexity of the nesting structure.

Max (RSC (F)) =SLOC + 10 (Nesting)

2.6.4 Input and Output Data Risk

This risk involves the input and output data in a connected vehicle. The metric distinguishes

between a Fixed Input (FI) from a Fluctuating Input (LI). It also distinguishes an Insensitive

Output (IO) from a Sensitive Output (SO). Weights (a, b) are added to highlight the significance

of the Fluctuating Input and the Sensitive Output. To calculate the Input and Output Data Risk,

we use the formula:

 RDIO (F) = FI + a (LI) + IO + b (SO)

 Max (RDIO (F)) = FI + 5(LI) + IO + 5(SO)

2.6.5 History of Security Issues

This risk considers the past security issues of a certain vehicle functionality. Given Y as the total

number of years since the first car attack and ay as the number of attacks that occurred in year y.

A forgetting factor, l, is introduced to provide relevancy to the attacks that occurred in more

recent years, where 0 <= l <= 1. To calculate the risk of a vehicle functionality using the history

of security issues, we use the formula:

 RHS (F) = ∑ α𝑦
𝑌
𝑦=1 λ𝑌−𝑦

For a 2-year comparison, the calculation simply boils down to

 l = 1 – (a1 / a2) the forgetting factor

RHS (F) = a1 (l)Y-1 + a2

 8

Max (RHS (F)) = a1 + a2

2.6.6 Overall Security Vulnerability Metric

The overall security vulnerability metric of a certain functionality in a connected vehicle is

calculated by first normalizing the values of each of the metrics and applying a weighting factor

(a, b, g, d, f), which indicates its significance to the overall scheme. The metrics are added to

obtain the overall value, which is in direct correlation with the vulnerability level of the

functionality. The formula is shown as follow:

𝑶𝑺𝑽 = 𝜶 [
𝑅𝐸𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐸𝐶(𝐹))
] + 𝜷 [

𝑅𝐶𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐶𝐶(𝐹))
] + 𝜸 [

𝑅𝑆𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝑆𝐶(𝐹))
]

+ 𝜹 [
𝑅𝐷𝐼𝑂(F)

𝒎𝒂𝒙 (𝑅𝐷𝐼𝑂(F))
] + 𝝋 [

𝑅𝐻𝑆(F)

𝒎𝒂𝒙 (𝑅𝐻𝑆(F))
]

2.7. Vehicle Security Best Practices Assessment Metrics

Vehicle Security Best Practices Assessment Metrics are designed based on the National Highway

Traffic Safety Administration (NHTSA) Report DOT HS812 075 [13]. The report contains a

review and analysis of cybersecurity best practices involving automotive vehicles.

The study utilizes the iterative Information Security Life Cycle divided into four phases and

processes. The four phases and processes are described in the following:

o Assessment Phase. This phase includes the development and implementation of

security policies, the evaluation of system security, and the processes of risk

assessment.

o Design Phase. This phase entails the prioritization of systems and resources

applicable to security and design and analysis of the system’s security architecture.

o Implementation Phase. This phase covers the steps taken in vulnerability

remediation and the processes in security testing and evaluation.

o Operation Phase. This phase includes the security awareness training for all

personnel, customers, and other stakeholders. It also includes continuous security

monitoring, intrusion detection and response.

The four phases were described in the white paper.

2.7.1. Vehicle Security Best Practices Assessment Metrics
We propose the following vehicle security best practice assessment metrics based on the

Information Security Life Cycle described above. The metrics are built by a self-assessment form,

shown on Table 1, which consists of a checklist of the status of each of the four phases.

 9

Table 1: Vehicle Security Best Practices Assessment Checklist

Process Checklists Status

Security Policy Are security policies established?

Are security policies properly documented and

widely disseminated within the organization?

Are security policies strictly enforced?

Are security policies periodically reviewed/updated?

Data Security & Privacy Is collected/stored data protected/encrypted?

Is transmitted data encrypted?

Is there a control mechanism for sharing data?

Does the site comply with data protection standards

and regulations (e.g., ISO/IEC 27001 certification,

GDPR)?

Risk Assessment Do you conduct a periodic risk assessment of vehicle

cybersecurity?

Is there a developed and implemented organization-

wide risk management strategy?

Is there a Supply Chain Risk Management (SCRM)

policy?

Are security controls in place and periodically

evaluated and/or enhanced?

System Protection &

Prioritization

Have you implemented security-by-design principles

during the vehicle design phase?

Have you implemented domain separation for in-

vehicle networks (i.e., limiting the communication

between the safety-critical and non-safety critical

domains)?

Does the organization triage the identified risks

according to priority for resource allocation?

Do you have a comprehensive system security test

plan?

Security Architecture Have you implemented a layered approach to vehicle

security (ECU level, in-vehicle network level, V2V

level, V2X level)?

Is there a periodic evaluation of the system’s security

architecture?

 10

Do you maintain an inventory of operational

software components used in each automotive ECU

and assembled vehicle?

Have you considered the risks and vulnerabilities

associated with vehicle sensor devices?

Remediation &

Implementation

Are there established mechanisms to update vehicle

software and firmware remotely and securely?

Are appropriate security controls implemented and

are in place?

Do you have an established remediation process?

Is the remediation plan evaluated and implemented?

Security Test & Evaluation Have you conducted a thorough code review on the

vehicle software?

Have you conducted penetration testing on

connected vehicle communication systems before

deployment?

Are security controls tested and evaluated for

compliance with security performance

specifications?

Do you conform with secure software development

best practices as outlined in NIST 8151 and

ISO/SAE 21434?

Awareness & Security

Training

Is there a periodic security awareness training

program for the entire workforce?

Is security risk and mitigation disclosure available to

the consumer and other stakeholders?

Do you evaluate the effectiveness of the security

awareness training program and introduce

improvements if needed?

Do you collect, maintain, analyze, and share

information related to cybersecurity through the

Automotive Information Sharing and Analysis

Center (Auto-ISAC)?

Intrusion Detection &

Response

Is there an Incident Response Plan (IRP) in place?

Is the IRP periodically tested, evaluated, and

updated?

Do you have a systematic process for continuous risk

and security monitoring?

Are security incidents properly documented and

reported?

The development of the vehicle security metrics was successfully completed and documented.

These security metrics were derived from published literature to provide benchmarks for security

improvement processes. A technical memorandum was submitted to and approved by the FDOT

Research Office in December 2022 and January 2023, respectively. The document is attached as

Appendix I.

 11

Chapter 3. Design and Implementation of the Vehicle Security Metrics
Visualization System (VSMVS)

The second project task entails the design and implementation of web-enabled Vehicle Security

Metrics Visualization System (VSMVS). The landing page of the VSMVS implementation is

depicted in Figure 2.

Figure 2: The Landing Page of the VSMVS

The following discussions provide an overview of the web interfaces of the VSMVS. For an in-

depth treatment, the system requirements and specification document can be located at the

project’s Github repository at URL: https://github.com/UWF-CfC-FDOT/VSMS.

3.1. Visualization of CVSS Vector and Metrics
The VSMVS provides a Graphical User Interface (GUI) for data entry of CVSS vector and

metrics information. The CVSS GUI is shown on Figure 3.

https://github.com/UWF-CfC-FDOT/VSMS

 12

The VSMVS provides a corresponding visualization for the CVSS Vector Scoring System as

shown on Figure 4.

Figure 3: The CVSS Vector Interface for the VSMVS

Figure 4: The CVSS Vector Scoring System

 13

3.2. Visualization of Attack Potential of Threats on Vehicle Assets
The VSMVS provides a GUI for the data entry of attack potential of threats on vehicle assets as

shown on Figure 5.

The VSMVS provides a corresponding visualization for the calculated attack potential of threats

on vehicle assets as shown on Figure 6.

Figure 5: The Attack Potential of Threats on Vehicle Assets

Figure 6: The Tree Map Visualization of Vehicle Attack Potential

 14

3.3. Visualization of Common Weakness Scoring System
The VSMVS provides a GUI for data entry of CWSS vector and metrics information as shown

on Figure 7.

The corresponding visualization for the Common Weakness Scoring System (CWSS) metrics is

shown in Figure 8.

Figure 7: The Common Weakness Scoring System User Interface

 15

3.4. Visualization of Security Metrics for Operational Safety
The VSMVS provides a data entry interface for the Operational Safety Assessment (OSA)

metrics and the corresponding visualization are shown in Figure 9 and Figure 10, respectively.

0

0.2

0.4

0.6

0.8
Technical Impact

Acquired Privilege

Acquired Privilege
Layer

Internal Control
Effectiveness

Finding Confidence

BASE FINDINGS

Figure 8: The Visualization for the Common Weakness Scoring

System Metrics

Figure 9: Data Entry Interface for Security Metrics for Operational Safety

 16

3.5. Visualization of Security Vulnerability Metrics
The VSMVS provides a data entry interface for the Security Vulnerability Metrics for connected

vehicles and the corresponding visualization are shown in Figure 11 and Figure 12, respectively.

Figure 10: Calculated Security Metrics for Operational Safety

 17

ECU Coupling Risk
10%

Complexity Risk
30%

History of Security
Issue Risk

15%

Communication
Channel Risk

25%

I/O Data Risk
20%

ECU Coupling Risk Complexity Risk

History of Security Issue Risk Communication Channel Risk

I/O Data Risk

Figure 11: Data Entry Interface for Security Vulnerability Metrics

Figure 12: Calculated Security Vulnerability Metrics

 18

3.6. Visualization of Vehicle Security Best Practices Assessment Metrics
VSMVS provides a data entry interface for Vehicle Security Best Practices Assessment Metrics

for Connected Vehicles information as shown in Figure 13.

Figure 13: Vehicle Security Best Practices Assessment Metrics

Yes No
Security policies established X

Security policies properly documented and widely disseminated within the organization? X

Security policies strictly enforced X

Security policies periodically reviewed/updated X

Collected/stored data protected/encrypted X

Transmitted data encrypted X

A control mechanism for sharing data X

Compliant with data protection standards and regulations (e.g., ISO/IEC 27001 certification,

GDPR)?
X

Conduct a periodic risk assessment of vehicle cybersecurity X

Developed and implemented organization-wide risk management strategy X

A Supply Chain Risk Management (SCRM) policy X

Security controls in place and periodically evaluated and/or enhanced X

Implemented security-by-design principles during the vehicle design phase X

Implemented domain separation for in-vehicle networks (i.e. limiting the communication between

the safety-critical and non-safety critical domains)
X

Process to triage the identified risks according to priority for resource allocation X

Comprehensive system security test plan X

Implemented a layered approach to vehicle security (ECU level, in-vehicle network level, V2V level,

V2X level)?
X

Periodic evaluation of the system’s security architecture X

Maintain an inventory of operational software components used in each automotive ECU and

assembled vehicle
X

Considered the risks and vulnerabilities associated with vehicle sensor devices X

Established mechanisms to update vehicle software and firmware remotely and securely X

Appropriate security controls implemented and are in place X

Established a remediation process X

Remediation plan evaluated and implemented X

Conducted a thorough code review on the vehicle software X

Conducted penetration testing on connected vehicle communication systems before deployment X

Security controls tested and evaluated for compliance with security performance specifications X

Conformance with secure software development best practices as outlined in NIST 8151 and

ISO/SAE 21434
X

Periodic security awareness training program for the entire workforce X

Security risk and mitigation disclosure available to the consumer and other stakeholders X

Evaluate the effectiveness of the security awareness training program and introduce improvements

if needed
X

Collect, maintain, analyze, and share information related to cybersecurity through the Automotive

Information Sharing and Analysis Center (Auto-ISAC)
X

An Incident Response Plan (IRP) in place X

The IRP periodically tested, evaluated, and updated X

A systematic process for continuous risk and security monitoring X

Security incidents properly documented and reported X

Implementation

Security Policy

Data Security & Privacy

Risk Assessment

System Protection and

Prioritization

Security Architecture

Awareness and

Security Training

Intrusion Detection

and Response

Security Test and

Evaluation

Operation

Remediation and

Implementation

Assessment

Design

Response
Phase Process Checklist

 19

The project task to design and implement a vehicle security visualization system was

successfully completed. The purpose of such system is to provide an immediate visual analysis

of the security posture of a vehicle. Technical memoranda consisting of the design specification

and requirements, a white paper on vehicle security research, and implementation code and

support documents, and were submitted to and approved by the FDOT Research Office in

January 2023.These documents are found in Appendix II, Appendix III, and Appendix IV,

respectively.

 20

Chapter 4. Testing and Deployment of the VSMVS

The third project task focused on the testing and deployment of the Web-enabled VSMVS.

4.1. Test Framework Description
The VSMVS project was developed using the C# language and the standard MSTest framework

for unit testing. MSTest is a native unit testing library that comes with Microsoft’s Visual Studio.

4.2. VSMVS Unit Tests

4.2.1. TreeMap Tests
The TreeMapTests.cs file contains unit test coverage of the /Pages/TreeMapModel.cshtml.cs

class. It performs validation of the score calculation method for the Tree Map page.

4.2.2. Common Weakness Scoring System (CWSS) Tests
The CWSSTests.cs file contains unit test coverage of the /Pages/CWSSModel.cshtml.cs class. It

performs validation of the scoring calculations for the CWSS page.

4.2.3. Security Metrics Operational Safety (SMOS) Tests
The SMOSTests.cs file unit test coverage of the /Pages/SMOSModel.cshtml.cs class. It performs

validation of the score calculation methods for the SMOS page.

4.2.4. Security Vulnerability Metrics for Connected Vehicles (SVMCV) Tests
The SVMCVTests.cs file unit test coverage of the /Pages/SVMCVModel.cshtml.cs class It

performs validation of the score calculation method for the SVMCV page.

4.2.5. Vehicle Security Best Practices Assessment Metrics (VSBPAM) Tests
VSBPAMTests.cs file unit test coverage of the /Pages/VSBPAMModel.cshtml.cs class. It

performs validation of the total score calculation method for the VSBPAM page.

The project task on visualization system testing was successfully completed. The purpose of the

task is to ensure that all functional system components and features are working as intended and

comply with the requirements. A technical memorandum was submitted to and approved by the

FDOT Research Office in May 2023 and June 2023, respectively. This document is attached as

Appendix IV. Also, a Vehicle Security Metrics Visualization System User Manual was included

in the submission and can be found attached as Appendix VI. The source code repository is

located at this URL: https://github.com/UWF-CfC-FDOT/VSMS.

https://github.com/UWF-CfC-FDOT/VSMS

 21

Chapter 5. Data Ingestion, Cleansing, Normalization, and Data Mutation
of Roadside Unit Data

The fourth project task utilized the dataset, in SAE J2735 message format, that was previously

collected by RSUs in Gainesville, FL. The data were preprocessed, normalized, and mutated for

the development of machine learning systems.

Data cleansing for machine learning systems can include the careful processing of missing data

values or noise. Care must be taken not to cleanse a valid outlier data value. Data cleansing also

includes the omission of some data elements that are not needed for training and testing of the

machine learning model. One example would be the Vehicle ID, which is a unique identifier and

will not contribute to a generalized model. Data conversion includes the transformation from

XML or JSON to a single CSV format. Data conversion also includes using consistent units of

measurement across all data sources, such as, time in milliseconds, speed in mph, distance in

miles, etc. Normalization includes the introduction of binary flags to indicate the presence or

absence of hard braking, the presence or absence of malicious information, or the introduction of

limits on speed and acceleration to name a few. Normalization can also take the form of a min-

max normalization on all data columns so columns with the highest or lowest numeric magnitude

do not bias the machine learning model.

To gain a better understanding of CAV datasets, we started by scrutinizing the RSU datasets that

were collected and shared by the research team in the FDOT pilot site at the University of

Florida.

5.1. Roadside Unit Dataset
The dataset, in SAE J2735 message format, was collected by RSUs in Gainesville, FL, and can

be availed through an AWS Simple Storage Service (S3) repository. The raw dataset, in

compressed XML format, was converted to a readable comma-separated value (csv) format in

preparation for data cleansing. We focused on the Basic Safety Message (BSM) component of

the RSU and provide a brief description in the following.

5.2. Basic Safety Message (BSM)
The Basic Safety Message (BSM) is used to exchange safety data and consists of two parts:

o The mandatory part, also called BSMcoreData, is typically described in Abstract Syntax

Notation One (ASN.1) [14] format, a formal notation to describe data transmitted by

telecommunication protocols. Instead of describing the BSMcoreData in ASN.1 notation,

we present each item in detail using a tabular format as shown in Appendix I. The data

characteristics presented on the table are excerpted from [15] .

o The optional part of the BSM includes the Vehicle Safety Extension consisting of event flags,

path history, path prediction, and the Radio Technical Commission for Maritime Services

(RTCM) package.

 22

5.3. Synthetic Dataset
After gaining an understanding of the BSM dataset characteristics, we investigated the viability

of generating synthetic datasets that depict a typical vehicle moving in a straight-line trajectory

without regard to traffic condition. The motivation behind this initiative is three-fold:

o to derive CAV datasets that can be used to study the application of Machine Learning

(ML) algorithms to identify and classify malicious messages;

o to be able to create additional malicious datasets that will test attack scenarios for each of

the V2V safety applications described in [16]; and

o to be able to perform a comparative study on the speed of convergence of various ML

training algorithms on disparate datasets.

The synthetic BSM coreData generation proceeds using the following assumptions and

constraints:

o Starting geolocation (Central Florida) with coordinates:

▪ latitude: 28.890658

▪ longitude: -82.097812

o Data collection time interval: 20 sec. Note that SAE J2945/1 Standard [16] requires

vehicles to transmit 10 BSMs per second.

o Travel is on a straight line towards north

o Acceleration is in units of 0.0328 ft/sec2

o Acceleration (deceleration) is randomly applied every 10 minutes. The random value will

range from -10 to 10 mph. This represents lateral acceleration (deceleration)

o Angle steering is 127 (unavailable)

o Brake system status: 0 during acceleration; 5 during deceleration (assuming front wheel

brakes). The brake system status is adjusted to reflect the acceleration or deceleration

condition

o Elevation: 61440 (unknown)

o Heading: 28800 (unavailable)

o Latitude is calculated using equations (1)-(5)

earth_radius = 6371 km (1)

 current_lat= math.radians(initial_lat) (2)

 # distance after 20 seconds of travel

 dist_meters = speed_mph * 0.44704 * 20 (3)

 # change in latitude

 delta_lat = dist_meters / earth_radius (4)

 # new latitude is calculated as

 new_lat=math.degrees(current_lat+delta_lat) (5)

o Longitude is assumed constant at -82.097812

o Msg Count: 0 (unavailable)

o Vehicle ID: 0 (unavailable)

o SecMark : Calculated elapsed time in milliseconds

o Transmission: 2 (forward gear)

o Hard Braking: 0 (no), 1 (yes). Deceleration of 8 mph in 1 second (23.09 ft/sec2 when

applying the unit measure of 0.01 meters/sec2) while traveling at a speed of > 25 mph

indicates hard braking.

 23

o Vehicle size:

▪ Length = 21 ft

▪ Width = 7 ft

o Starting speed is 25 mph

o The brake status is adjusted to reflect the acceleration or deceleration condition

o The speed is calculated using equation (6)

 V1 = V0 + a * t (6)

 where

 V1 is the current speed, miles/hr

 V0 is the initial speed, miles/hr

 a is the acceleration, miles/hr2

 t is the elapsed time, hr

o The data record is terminated with a status flag: 1 for normal and 0 for abnormal

(malicious).

5.4. Malicious Dataset
After obtaining datasets from two sources: the RSU datasets for the Gainesville pilot site and the

synthetically generated dataset, we implemented an application to inject malicious data records into

each of the datasets. This process, in essence, produces two mutated datasets. The mutation process

in described in the following.

Using the assumption for a typical acceleration of 0.577 ft/sec2 (derived from 17.6 ft/sec2 and

applying the unit measure of 0.01 meters/sec2), malicious BSMcoreData test datasets are generated

according to the following parameters. Note that for each data record, the status flag value is 1 to

indicate an abnormal (malicious) data record.

5.4.1. Brake System Anomaly
1. To simulate an accelerating vehicle while brakes are engaged:

Randomly generate a BSMcoreData record with Brake System Status = 1111

(decimal value 15; brakes applied) and Longitudinal Acceleration = 5.364 m/sec2.

2. To simulate an accelerating vehicle in reverse while the brakes are engaged:

Randomly generate a BSMcoreData record with Brake System Status = 0000

(decimal value = 0; all brakes not engaged), Longitudinal Acceleration = 5.364

m/sec2 and Transmission Status=011 (decimal value 3; reverse gear).

5.4.2. Transmission System Anomaly
1. To simulate a speeding vehicle with transmission system in neutral: randomly generate a

BSM data record with speed = 15 mph and Transmission Status = 000 (decimal value 0).

2. To simulate a speeding vehicle with transmission system in park: randomly generate a

BSM data record with speed = 25 mph and Transmission Status = 001 (decimal value 1).

3. To simulate a speeding vehicle with transmission system in reverse gear: randomly

generate a BSM data record with speed = 55 mph and Transmission Status = 011 (decimal

value 3).

 24

5.4.3. Longitudinal Acceleration Anomaly
1. To simulate an accelerating vehicle with transmission gear in neutral: randomly generate

a BSM data record with Longitudinal Acceleration = 5.364 m/sec2 and Transmission

Status=000.

2. To simulate a decelerating vehicle with the transmission gear in park: randomly generate

a BSM data record with Longitudinal Acceleration = -5.364 m/sec2 and Transmission

Status=001.

3. To simulate an accelerating vehicle with the transmission gear in reverse: randomly

generate a BSM data record with Longitudinal acceleration = 5.364 m/sec2 and

Transmission Status=011.

5.4.4. Hard Braking Anomaly
To simulate malicious hard braking with the transmission in forward gear: randomly generate

a BSM data record with Longitudinal Deceleration = -25.59 ft/sec2 (2.5 times the value of

deceleration rate considered as hard braking) and Transmission Status=010 (decimal value 2).

5.4.5. Speed Anomaly
To simulate malicious speed value with transmission in forward gear: randomly generate a

BSM data record with speed 3 times the speed value of the previous speed reading and

Transmission Status=010 (decimal value 2).

This task on data cleansing, pre-processing, normalization, and mutation was successfully

completed. These data processing steps were made to ensure that the data that is consumed by

the machine learning system is untainted and reliable to produce an effective system. A technical

memorandum containing dataset attributes, details of pre-processing, normalization, and

injection processes, and the data attributes and indicators of simulated cyber threats and attacks.

The technical memorandum was submitted to and approved by the FDOT Research Office in

November 2023 and December 2023, respectively. This document is attached as Appendix VII.

 25

Chapter 6. Design and Implementation of a Machine Learning System for
Vehicle Security

The fifth project task complemented the fourth task by utilizing the datasets derived to realize a

prototype machine learning (ML) system for vehicle security. Table 2 shows the dataset

attributes of the Basic Safety Message (BSM) dataset. Table 3 summarizes the machine learning

model validation and testing results.

Table 2: BSM Dataset Attributes

Validation

Observations

Testing

Observations

Number of

Predictors

Response Classes

2283 253 12 2

Table 3: Summary of ML Model Validation and Testing Results

This task to design and implement a prototype machine learning system was successfully

completed. The purpose of such system is to demonstrate the viability of constructing an

intelligent system that can recognize malicious vehicle data. This type of system can be very

useful in securing vehicles from malicious data introduced by attacks on vehicle communication

systems. A technical memorandum containing the design specification and requirements of the

prototype ML system, the implementation of the prototype ML system, the performance

indicators gathered during the application of the ML system on the modified RSU dataset, and

the documents containing the plans, scenarios, and cases used for testing. The technical

memorandum, attached as Appendix VIII, was submitted to and approved by the FDOT

Research Office in May 2023 and June 2023, respectively. The development team maintained a

source code repository and version control on GitHub. The GitHub project URL is

https://github.com/UWF-CfC-FDOT/VMLFramework.

Machine Learning Model Validation Accuracy, % Test Accuracy, %

Neural Network 100.0 100.0

Decision Tree 99.7 99.6

Optimizable Ensemble 99.9 99.6

K-Nearest Neighbor (KNN) 99.2 99.2

Logistic Regression 80.0 79.8

Support Vector Machine (SVM) 80.0 79.8

https://github.com/UWF-CfC-FDOT/VMLFramework

 26

Chapter 7. Design and Implementation of a Vehicle Threat Modeling
Engine (VTME)

This sixth project task builds cyber threat models based on the stages identified in the slightly

modified Lockheed Martin Cyber Kill Chain® [17], shown in Figure 14. Specific Tactics,

Techniques and Procedures (TTPs), endemic to connected vehicle systems, are initially

populated with information from MITRE’s Adversarial Tactics, Techniques, and Common

Knowledge (ATT&CK) matrix. Specific Indicators of Compromise (IoCs) associated with TTPs

are obtained from sources such as Open Threat Exchange (OTX) and VirusTotal.

For each stage of the Kill Chain, the VTME creates a Threat Model using the information

gathered from the MITRE ATT&CK Framework, the Common Vulnerability Enumeration

(CVE) and the Common Weakness Enumeration (CWE) sources. For instance, for the first stage,

Reconnaissance, the system will collect the threat information, the vulnerability, and mitigation

associated with that threat and upload it in the threat database. The other stages are

weaponization, delivery, exploitation, installation, command and control, and actions on

objectives. Note that some of those may not have any information available. Also, that

information will be labeled according to which vehicle manufacturer it applies (e.g. Tesla,

Honda, Kia, Ford, etc.).

Figure 14: Lockheed Martin’s Cyber Kill Chain

 27

The project task on the design and implementation of the vehicle threat modeling engine was

successfully completed. The purpose of the vehicle threat modeling engine is to establish a

archetypal system with which subsequent vehicle threat schemes can build on. A technical

memoranda consisting of the system requirements, Ontology of the CVE-Kill Chain Mapping,

and the Unit Test Overview. The technical memoranda were submitted to and approved by the

FDOT Research Office in December 2022 and January 2023, respectively. The documents are

attached as Appendix IX, Appendix X, and Appendix XI, respectively. The development team

maintained a source code repository and version control on GitHub. The GitHub project URL is

https://github.com/UWF-CfC-FDOT/VTMECS.

https://github.com/UWF-CfC-FDOT/VTMECS

 28

Chapter 8. Design and Implementation of a Vehicle Threat Collection
System (VTCS)

The seventh project task called for the design and implementation of a Vehicle Threat Collection

System (VTCS). It focuses on the design and development of an automated system whose

purpose is to collect threat intelligence feeds from publicly available Open-Source Intelligence

(OSINT) sites such as Open Threat Exchange (OTX) and VirusTotal, both of which offer

Application Programming Interfaces (APIs) for automated queries.

8.1. The VTCS Interfaces
The Query Interface is used to provide the VTCS with vehicle search parameters. Figure 15

depicts a prototype of the interface where the user can submit one or more vehicles for

processing. Using the Threat Source drop-down selection box, the user is provided an option to

select a specific threat intelligence source such as OTX, VirusTotal, or ALL in an attempt to

query all sources. The user can also filter the information to collect by specifying the Year,

Make, and Model of the vehicle through drop-down selection boxes. The Add button will take

the options selected by the user in the Year, Make, and Model selections and place the vehicle

into the Query Interfaces Vehicle Selection table at the bottom of the page. Once a vehicle is

added to the selection table the Year, Make, and Model drop-down selection boxes are reset to

their default option and the user can add another vehicle. When the user is satisfied with the data

source and vehicle(s) selected the Search button will initiate the VTCS to run the specified user

query using the API of the selected open threat intelligence source. Clicking the Search button

will also bring the user to the Record Viewer Interface. Figure 16 depicts the Graphical User

Interface (GUI) of the VTCS record viewer.

Figure 15: Query Page Viewer Prototype

 29

This task was successfully completed as evidenced by technical memoranda consisting of the

system requirements (Appendix XII), the test plan overview (Appendix XIII), and the

requirements traceability verification matrix (Appendix XIV). The technical memoranda were

submitted to and approved by the FDOT Research Office in June 2023 and August 2023,

respectively. The development team maintained a source code repository and version control on

GitHub. The GitHub project URL is https://github.com/UWF-CfC-FDOT/VTMECS.

Figure 16: Prototype VTCS Record Viewer Interface

https://github.com/UWF-CfC-FDOT/VTMECS

 30

Chapter 9. Design and Implementation of a Vehicle Threat Database
System (VTDS)

The eighth project task calls for the design and implementation of a Vehicle Threat Database

System (VTDS). It focuses on the design, implementation, and deployment of a VTDS whose

purpose is to function as an efficient threat data repository and processing system.

9.1. Entity Relationship (ER) Diagrams
The VTDS was designed using the Entity Relationship (ER) Diagram shown in Figure 17. The

ER diagram depicted in Figure 18 shows the relationship between the User entity with the

Transaction entity.

Figure 18: ER Diagram for the User and Transaction Log Entities

Figure 17: Entity Relationship (ER) Diagram for the VTDS

 31

The project task on vehicle threat collection system was successfully completed. The system is

intended to automatically collect threat information from disparate sources. The collection

process is facilitated by the Application Program Interfaces (APIs), which are provided and

enabled by the source provider. Technical memoranda consisting of the system design and

requirements (Appendix XV), the test plan overview (Appendix XVI), and the requirements

traceability verification matrix (Appendix XVII). The technical memoranda were submitted to

and approved by the FDOT Research Office in November 2023 and January 2024, respectively.

 32

Chapter 10. Design and Implementation of a Vehicle Threat Information
Portal (VTIP)

The ninth project task calls for the design, development, and deployment of a Vehicle Threat

Information Portal (VTIP), which facilitates the secure access to the functionalities of the

connected vehicle threat information system. This portal provides a threat sharing functionality

and connectivity to a Malware Information Sharing Platform (MISP).

10.1. VTIP Threat Record Interface
The VTIP Threat Record Interface, depicted in Figure 19, is used to display the records

generated by querying the VTDS. The upper portion of the GUI displays a threat record search

functionality where users may query the VTIP by date range, vehicle information, CVE ID,

and/or keyword. The center and lower portions of the GUI display the threat record information

to include the CVE ID, Threat record publish information, CWE information, threat record

description, CVSS information, vehicle information, and Indicators of Compromise (IOC).

10.2. VTIP Threat Record Search and Edit Interface
The VTIP Threat Record Interface, depicted in Figure 20, will provide an edit mechanism

allowing users to make changes to threat record data in the VTDS stemming from the

information derived by the data analyst. This includes the ability to add/remove/change data such

as vehicle information or IOCs.

Figure 19: VTIP Interface

 33

Figure 20: VTIP Threat Record Search and Edit Interface

The project task on the design and implementation of the vehicle threat information portal was

successfully completed. The purpose of the portal is to provide a user-friendly interface for users

to be able to query the vehicle threat database system for threat information on specific vehicles.

Technical memoranda consisting of the system design and requirements (Appendix XVIII), the

test plan overview (Appendix XIX), and the requirements traceability verification matrix

(Appendix XX). The technical memoranda were submitted to the FDOT Research Office in

January 2024 and approved in February 2024.

 34

Chapter 11. System Integration, Testing, and Deployment

The tenth task calls for the integration, testing, and deployment of all system components.

Integration was accomplished through the Vehicle Security System Integration (VSSI). The VSSI

provides different interface cards to enable access to the Vehicle Threat Intelligence Portal (VTIP),

the Vehicle Threat Collection System (VTCS), the Vehicle Security Metrics Visualization System

(VSMVS), and the Malware Information Sharing Platform (MISP). This interface provides the

integration of the various subsystems using a common entry point and collectively binds them to

function with a common purpose, i.e., supporting the security of CAVs.

11.1 The VSSI Interface

The landing page, as depicted in Figure 21, contains interface cards for each subsystem in the

system, including the VSMVS, VTCS, VTIP, and MISP. Each card contains the name of the

subsystem, an associated image, and a button to navigate to the associated subsystem.

Figure 21: The VSSI Landing Page Interface

 35

The project task on building an integrated vehicle security system was successfully. This

integrated system provides one-stop landing pages for all the sub-systems developed by the

project. A technical memorandum that consists of a collation of documents on system design and

requirements, requirements traceability verification matrix, and test plan overview is included in

this report as Appendix XXI. A user manual (see Appendix XXII) for the VSSI subsystem is also

provided as a project deliverable.

 36

Chapter 12. Continuous Improvement Process

Toward the end of the project execution, improvements were identified and acted upon. These

actions are part of the continuous improvement process that led to the enhancement of the

subsystems. What is presented herein is a list of the initial improvements that the project

personnel have accomplished up until the project closeout meeting on March 31, 2024.

12.1 List of Improvements and Rationale

1. Developed the Vehicle Threat Database System (VTDS) controllers.

The VTDS controllers are the mechanisms that determine the purpose and the means by

which threat data are processed. We need these controllers to streamline data processing

and make the database system more efficient.

2. Ported the project to a web app for API access across the entire system.

The web app was created to provide an Application Program Interface (API) for an

efficient access for all sub systems.

3. Created/Modified several database tables to support the rest of the team and the

project's needs.

The Entity-Relationships (ERs) were expanded to accommodate the requirements of the

other subsystems. These requirements were not considered in the initial design of the

database system.

4. Designed and implemented over forty (40) Unit tests for the VTDS.

Additional unit tests were designed and implemented for the VTDS for the validation of

the newly added requirements.

5. Developed API controllers in the VTIP to access the VTDS in a testable manner.

API controllers were added to the Vehicle Threat Intelligence Portal (VTIP) to allow

access to the VTDS and enable automated testing.

6. Designed and implemented over twenty-five (25) unit tests for the VTIP and MISP

integration.

Additional twenty-five (25) unit test cases were designed and implemented for the

integration of the VTIP and the Malware Information Sharing Platform (MISP).

7. Incorporated the search functionality into the MISP API.

The search functionality was included into the MISP API to facilitate a thorough

inspection of vehicle threats.

8. The Structured Threat Information eXchange (STIX) object submission was added on

the MISP search interface after completing the interface with the VTIP.

Since most threat information are encoded using the STIX format, it would be an added

advantage if the MISP is allowed to accept and process threat information in that format.

 37

Chapter 13. Conclusion and Future Works

The project threaded together three very important and emerging security aspects of connected

vehicles, namely security metrics, machine learning (ML), and threat intelligence. We designed

applicable security metrics and developed their corresponding visualization systems. We

envision these measurement and visual analytics tools to significantly advance the continuous

improvement of vehicle security. With ML systems gaining wide acceptance and becoming

almost ubiquitous, we seized the opportunity to enhance and to advance the security of

connected vehicle messaging systems using artificial intelligence. We explored this prospect by

developing prototype ML systems utilizing data collected from RSUs as input. We mutated the

data by introducing synthetic malicious information to test the viability of the ML system in

classifying benign and malicious communication traffic. The tests yielded very promising

results. The third thrust of the project produced a prototypical vehicle threat intelligence system.

This system demonstrates that security can be enhanced by enabling immediate access to vehicle

vulnerability information to researchers, operators, manufacturers, supply chain, and the public

in general. This enabler provides proactive means to mitigate risks and thereby promotes vehicle

and personal safety.

Although the project objectives were successfully achieved and the feasibility of the proof-of-

concept systems adequately demonstrated, there are opportunities for advancement that remain to

be explored. The following suggested topics for future enhancement are worthy of vigorous

pursuit:

1. Expand the Vehicle Threat Intelligence System to a fully functional and

automated system;

2. Explore the feasibility of commercializing the Vehicle Threat Intelligence

System;

3. Enhance and test the robustness of the Vehicle Security Metrics and Visualization

System;

4. Offer the Vehicle Security Metrics and Visualization System as an open-source

application and solicit contributions from application developers;

5. Investigate adversarial attacks on autonomous vehicle image and communication

systems; and

6. Continue to explore the use of Machine Learning in augmenting the security of

vehicle communication systems.

 38

References

[1] Forum of Incident Response and Security Teams (FIRST), "Common Vulnerability

Scoring System version 3.1: Specification Document," June 2019. [Online]. Available:

https://www.first.org/cvss/specification-document. [Accessed 13 February 2020].

[2] G. A. Francia, "Connected Vehicle Security," in 15th International Conference on Cyber

Warfare and Security (ICCWS 2020), Norfolk, VA, 2020.

[3] NIST, "CSV-2019-13582 Detail," 15 November 2019. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 20 February 2023].

[4] Common Vulnerabilities and Exposure, "CVE-2018-9322," 31 May 2018. [Online].

Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9322. [Accessed 13

February 2020].

[5] Common Criteria Portal, "Common Criteria for Information Technology Security

Evalaution," April 2017. [Online]. Available:

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf. [Accessed 24

February 2020].

[6] MITRE Corporation, "Common Weakness Scoring System (CWSS)," 2 April 2018.

[Online]. Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html.

[7] Automated Vehicle Safety Consortium, "Best Practice for Metrics and Methods for

Assessing Safety Performance of Automated Driving Systems (ADS)," SAE Industry

Technologies Consortium, March 2021.

[8] M. Elli, J. Wishart, S. Como, S. Dhakshinamoorthy and J. Weast, "Evaluation of

Operational Safety Assessment (OSA) Metrics for Automated Vehciles in Simulation,"

SAE, 2021.

[9] SAE, "Operational Safety Metrics for Verification and Validation (V&V) of Automated

Driving Systems (ADS) J3237," SAE International, September 2020.

[10] SAE, "Taxonomy and Definitions of ADS V&V J3208," SAE International, August 2019.

[11] J. Wishart, Y. Chen, S. Como, N. Kidambi, D. Lu and Y. Yang, Fundamentals of

Connected and Automated Vehicles, Warrendale, PA: SAE International, 2022.

[12] L. Moukahal and M. Zulkernine, "Security Vulnerability Metrics for Connected Vehicles,"

in 2019 IEEE 19th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Sofia, Bulgaria, 2019.

[13] C. McCarthy, K. Harnett and A. Carter, "A Summary of Cybersecurity Best Practices," US

Department of Transportation (USDOT), Washington, D.C., 2014.

[14] International Telecommunication Union (ITU), "Introduction to ASN.1," 2023. [Online].

Available: https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx. [Accessed 17 May

2023].

[15] SAE International, "DSRC Implementation Guide. A Guide to Users of SAE J2735

Message Sets over DSRC," SAE International, 2008.

[16] SAE International, "On-Board System Requirements for V2V Safety Communications

J2945/1_202004," 30 April 2020. [Online]. Available:

https://www.sae.org/standards/content/j2945/1_202004. [Accessed 20 May 2023].

 39

[17] Lockheeed Martin, "The Cyber Kill Chain," 2024. [Online]. Available:

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html. [Accessed

7 February 2024].

 40

 41

Appendices

APPENDICES

 42

Appendix I. Technical Report UWF-TR-FDOT-001-01

Connected Vehicle Security Metrics and Visualization
Research Methodology and Activities

Contract Number: BED34. Task Order: 977-01

Florida Department of Transportation (FDOT)

Guillermo A. Francia, III, Principal Investigator
Center for Cybersecurity

University of West Florida, USA
gfranciaiii@uwf.edu

Preface. The rapid advancement of connected and autonomous vehicles created new challenges
for security and safety professionals. The sophistication of vehicle communication systems, found
externally and internally, provides an added complexity to the issue. In security parlance, this is
an expansion of the attack surface on vehicles. These challenges prompted the enhancement of
existing and the development of new safety and security standards initiated by government,
industry, and trade organizations. These initiatives clearly underscore the need to examine the
state of connected vehicle security. For that reason, security metrics must be developed. As a
major component of continuous improvement, quantitative and qualitative measures must be
devised to be able to make a full appreciation of the process. This document presents our
research methodology and pertinent activities in delineating what is already known and currently
emerging and in adopting, enhancing, and creating security metrics for connected vehicles. An
associated white paper is currently being compiled to provide a comprehensive exposition of this
research.

I. RESEARCH METHODOLOGY

There are four research categories—theoretical, observational, experimental, and applied.

Theoretical research focuses on formal methods with interrelated concepts, definitions, and

propositions to develop model relationships and outcomes [18]. Observational research method

observes subjects and phenomena in an environment expected by the study. Experimental or

empirical research gathers or produces data in a controlled environment. Applied research focuses

on the practical application of scientific methods to an identified problem such as the need for

metrics to guide the continuous improvement of the security of connected vehicles. Our research

method is predominantly that on the applied research category.

There three main types of applied research—evaluation research, research and development,

and action research [19]. Evaluation research performs data analyses to arrive at outcomes that

can be used for informed decision-making. Research and development research is that type of

research that focuses on the development of solutions and services for some specific demand or

need. Action research steers an organization to a particular business objective(s). Our research

 43

methodology is inclined towards the research and development type. We delve deep into the

literature looking for existing security metrics that can be adopted and formulate new metrics that

are applicable to connected vehicle security.

II. LITERATURE REVIEW

The unprecedented advancement of technologies in both internal and external communication

of connected vehicles imposes unwarranted consequences on their security and safety. Fortunately,

the eagerness to deploy these technologies is tempered by government regulations. It is imperative

that sound regulatory framework be put in place to ensure the security and safety of modern

vehicles.

The ISO/SAE 21434 [20] came about when two organizations: ISO 26262 and SAE J3061

realized a common goal, i.e., automotive safety and security related standards. The ISO/SAE

21434 document titled “Road vehicles—Cybersecurity Engineering” established an effective

global standard for automotive cybersecurity [21] [22]. The document provides the necessary

vocabulary, objectives, requirements, and guidelines that are pertinent to cybersecurity

engineering. Essentially, it enables organizations to define cybersecurity policies and processes,

manage risks, and foster cybersecurity culture awareness [23].

The internal communication among electronic control units (ECUs), which are embedded

devices that controls and automates a vehicle operation and performance, goes through inherently

insecure channels, such as the Controller Area Network (CAN). For instance, a vulnerability,

described by Trend Micro [24], enables a stealthy denial-of-service attack that practically works

for every automotive vendor. This Exploitable hardware design flaws in some capacitive micro-

electromechanical system (MEMS) accelerometer sensors produced by prominent automobile

parts manufacturers were reported in another ICS-CERT alert: ICS_ALERT-17-073-01A in early

2017.

External communication systems in vehicles enable access convenience and online services

[25]. Vehicle external communication can be classified into four main categories: vehicle-device

(V2D) communication, vehicle-vehicle (V2V) communication, vehicle-infrastructure (V2I)

communication, and vehicle-pedestrian (V2P) communication [2]. These are supported by

cellular-vehicle-everything (C-V2X) [26] to enable a more efficient transportation ecosystem.

With the advent of Electric Vehicles (EVs), a new type has emerged--vehicle-grid (V2G)

communication [27].

II. CONNECTED VEHICLE SECURITY

 The literature review steered the research to first focus on connected vehicle security
specifically on threats, vulnerabilities, and attacks. We summarize in the following several
compelling reasons for our ultimate objective, i.e., the derivation of vehicle security metrics.

1. Vehicle Data, Devices and Communication

Cybersecurity policies protect data, devices, and communication channels. Connected
vehicles operate utilizing those three entities. The confidentiality, integrity, and availability of
connected vehicle data is paramount to their safe operation. These data are generated and

 44

consumed by devices in vehicles and are transmitted through various communication channel
types as described above. Existing connected vehicle data sources, as described by Otonomo in
[28]. Vehicle data provide several benefits such as acquisition cost reduction, lower operating
cost, efficient logistics, effective data utilization, and expanded services [28]. However, these
benefits introduce security tradeoffs which are discussed in subsequent sections.

2. Connected Vehicle Threats and Vulnerabilities

The Car Hacking Village, a conference track and interactive event at DEF CON, featured a

study by NDIAS—a Japan-based automotive cybersecurity assessment group. In their study, the

group tested over 40 ECUs provided by multiple manufacturers (15 in-vehicle infotainment units,

8 telematic control units, 8 gateways, advanced driver-assistance systems, smart key units, and

electric vehicle chargers). The results of the study revealed more than 300 vulnerabilities in

software and hardware components [29].

Threats and vulnerabilities in connected vehicles have been discovered in recent years and

continue to proliferate. Prominent among these are the vulnerability of Tesla’s touch screen

infotainment system [30], the vulnerability of the remote keyless system on Renault ZOE 2021

vehicles [31], the rolling-PWN replay vulnerability of keyless entry system on Honda vehicles

[32],and the vulnerability in SiriusXM [33].

3. Vehicle Security Attacks and Mitigations
The inherently insecure Controller Area Network (CAN) in most connected vehicles is the

focus of several studies [34] [35]. To alleviate those issues, research works, such as those using

techniques such as Machine Learning [36] [37], authentication code [38], and clock skew signature

[39], started to proliferate.

Other notable documented attack models and vulnerability mitigations include the works of

Petit, Feiri, and Kargl [40] which was extended by Monteuuis, et al. [41], the design,

implementation, and evaluation of a hardware security module for a modern automotive vehicle

[42], and the work of Lokman, et al. [43] on a systematic review of Intrusion Detection Systems

(IDS) for automotive CAN bus system.

3. Vehicle Attack Surfaces
The inherently insecure Controller Area Network (CAN) in most connected vehicles is the

focus of several studies [34] [35]. The lack of message authentication and the absence of data

encryption are the main enabler of malicious activities in this network protocol. To alleviate those

issues, research works, such as those using techniques such as Machine Learning [36] [37],

authentication code [38], and clock skew signature [39], started to proliferate.

Other notable documented attack models and vulnerability mitigations such as those works by

Petit, Feiri, and Kargl [40], Monteuuis, et al. [41] , Wolf and Gendrullis [42], Lokman et al. [43].

III. INDUSTRY AND GOVERNMENT INITIATIVES AND STANDARDS
There have been several initiatives towards the protection of a vehicle’s electronic control

units. Notable examples are the E-safety Vehicle Intrusion Protected Application (EVITA) Project

 45

[44], the Preparing Secure Vehicle-to-X Communication Systems (PRESERVE) Project [45], Secure
Vehicular Communication (SeVeCom) Project [46], and the Society of Automotive Engineers (SAE)
J3061 Guidebook [47]. In a very recent work by Bauer and Schartner [48], an illustration depicting
attack surfaces and the classification of attack potential according to common criteria is
presented. The presentation includes information on the difficulty and the impact of a certain
exploit to an asset. Further, the work introduced a novel solution towards a realistic assessment
of the integration of specialized countermeasures into the design of vehicular cybersecurity
concepts.

The U.S. Government Accountability Office (GAO) Report on Vehicle Cybersecurity [49]
contains, among others, the key security vulnerabilities in modern vehicles, the key practices and
technologies to mitigate vehicle cybersecurity vulnerabilities, the challenges facing stakeholders,
and the Department of Transportation’s (DOT) efforts in addressing the issues in vehicle
cybersecurity.

The Society of Automotive Engineers (SAE) Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems [47] describes a cybersecurity process framework from which an organization
can develop processes to design and build cybersecurity in vehicular systems. The process
framework covers the entire product lifecycle, including postproduction aspects with respect to
service, incident monitoring, incident response, etc.

The National Highway Traffic Safety Administration (NHTSA) Automotive Security Best
Practices for Modern Vehicles [50] presents the results and analysis of a review of best practices
and observations in the field of cybersecurity involving electronic control systems across a variety
of industry segments where the safety-of-life is concerned.

IV. VEHICLE SECURITY METRICS

There exists notable works on automotive vehicle security metrics. In [12], a set of security
metrics for the software system in a connected vehicle is proposed. The set of metrics provides a
quantitative indicator of the security vulnerability of the following risks on the system software:
ECU coupling, communication, complexity, input and output data, and past security issues. The
ECU coupling metric is based on the connectivity of the ECUs. Simply put, the risk is proportional
to the extent of the connectivity of the ECUs. This proposed metric failed to take into account the
fact that most vehicle networks are using the bus topology for interconnection. The
communication risk metric is based on the number of communication technologies that are
enabled on-board the vehicle. These are further normalized by the level of risk assigned to each
of those technologies. The issue with this metric is that the assignment of risk level is quite
arbitrary. The metric on input and output data risk takes into account the number of input data,
the fixed and fluctuating properties of the input data, and the sensitivity level of output data. The
authors argue that fluctuating input data and sensitive output data are more significant and
should be given more emphasis in the calculation of security vulnerability. This metric failed to
account the level of security testing that was applied to the vehicle’s embedded system before
deployment. Finally, the metric on security history utilizes the number of past attacks that
occurred on the vehicle. This metric appears to assume the recurrence of an attack and that the
vulnerability was never fixed. With system patches actively being carried out during vehicle
recalls, this assumption is rather weak.

 46

Use cases of Automotive Security Threats are described in [51]. The use cases include, among
others, brake disconnect, horn activation, engine halt air bag, portable device injection, key fob
cloning, cellular attack, and malware download. The threat matrix on each of these use cases
includes attributes such as exploitable vulnerability, difficulty of implementation, resources
needed, attack scenario, and outcome.

A Bayesian Network (BN) for connected and autonomous vehicle cyber-risk classification was

developed by Sheehan, et al. [52]. The BN model uses the Common Vulnerability Scoring System
(CVSS) software vulnerability risk-scoring framework for input parameters specifically on the
Global Positioning System (GPS) jamming and spoofing.

In the following section, we present a collection of connected vehicle security metrics that

we derived using a similar work on critical infrastructure and industrial controls systems security
[53] [54].

1. Common Vulnerability Scoring System (CVSS)

CVSS is an open framework for communicating the characteristics and severity of software
vulnerabilities. It consists of three metric groups: Base, Temporal, and Environmental. Details on
these metrics can be found in [1].

In [2], an illustration on the application of these metrics on the vulnerability of the Tesla

Model S/X vehicles manufactured before March, 2018 [3] and the vulnerability in the
infotainment component of BMW Series vehicles (CVE-2018-9322) [4] are illustrated.

In the accompanying white paper, we shall provide another use case to illustrate the

applicability of this metric.

2. Common Methodology for IT Security Evaluation (CEM) [5]
The CEM is a companion document to the Common Criteria for Information Technology

Security Evaluation (CC). It defines the minimum actions to be taken by an evaluator conducting
a CC evaluation utilizing the criteria and evidence as stated in the CC.

We specifically examined the attack potential on an automotive vehicle based on the

following factors: Elapsed time, Specialist expertise, Knowledge of the target, Window of
opportunity, and IT hardware/software or other equipment. We shall provide a detailed
description of each of these factors in the accompanying white paper.

3. Threats on Assets

We identify the following threats on vehicle assets and derive the attack potential metrics.
We apply the previously defined factors for analysis and aggregate the metrics. The threats on
vehicle assets are the following: False Data from ECU, Blocking of CAN Bus, Malicious Software,
Denial of Telematics Service, Unauthorized Access, Command Injection, Masquerading, Data
Tampering. We shall provide a detailed description of each of these threats in the accompanying
white paper.

 47

 The total attack potential for each threat is simply a summation of the value assigned to each
of the attribute of a successful attack. These results can be utilized during the decision-making
process of cybersecurity asset allocation towards risk mitigation or prevention.

4. Common Weakness Scoring System [6]

The Common Weakness Scoring System (CWSS) is a mechanism for evaluating software

weaknesses in a consistent, flexible, open manner. It is a community-based undertaking which

addresses the need for prioritizing the software vulnerability issues. The measurements are

organized into three metric groups: Base Finding, Attack Surface, and Environmental. The groups,

including their subgroups, as described in [6], will be fully expounded in a forthcoming white

paper.

5. Operational Safety Assessment Metrics
We next turn our attention on the impact of cybersecurity to operational safety assessment

(OSA). There exists several OSA metrics that have been proposed, adopted, and studied [7] [8].

SAE J3237 [9], a work in progress information report, is currently being developed. This report

provides definitions and lexicon for describing operational safety metrics for ADS vehicles. The

characteristics of the listed metrics include the following: definition, data source, subjectivity,

observable variable, formulation, subjective assumptions and thresholds, and origin. A related

work by the SAE V&V Task Force is the development of a proposed taxonomy for a

Recommended Practice on Operational Safety metrics [10]. At the classification level of the

proposed taxonomy are the operational safety metrics [10]. These operational safety metrics, fully

covered in the forthcoming white paper, will become the foundation of the OSA metrics that we

have derived and augmented with the following:

• Authentication Metric. This OSA metric measures the quality of the authentication system

deployed in the vehicle. This is extremely useful in modern vehicles that rely on

communications such as those in V2V or V2I environment.

• Physical Access Metric. This OSA metric measures the strength of physical access

protection of vehicle controls. An example is the unsecured physical access to an OBD port

which could compromise the vehicle’s CAN bus.

• Communication Channel Metric. This OSA metric pertains to the quality of the

communication channel used by the vehicle.

5.1 Cybersecurity Metrics for Operational Safety

We investigate the impact of cybersecurity to operational safety. In doing so, we devise

cybersecurity metrics that have close affinities with OSA metrics. These cybersecurity metrics for

operational safety are described in the following:

• Safety Envelope Metric. This cybersecurity metric measures the security resiliency of a

connected vehicle to be able to maintain a safe boundary amidst a cyber intrusion incident.

An example is a vehicle’s capability in preventing malicious manipulation of the control

and sensing systems that enable safe distance driving operation. Values range from 0.0 for

least resilient to 1.0 for most security resilient.

 48

• Behavioral Metric. This cybersecurity metric measures the vehicle’s capability to protect

against a cyber-attack that enables the improper behavior of the subject vehicle. An

example of such attack is the manipulation of the vehicle cruise control mechanism. Values

range from 0.0 for least capable to 1.0 for most capable.

• Component Metric. This is a measure of the susceptibility of the vehicle components to

cyber-attack. For example, an Electronic Control Unit (ECU) device originating from an

unverifiable supply chain may is highly susceptible to cyber-attack. Values range from 0.0

for most susceptible resilient to 1.0 for least susceptible.

• Sensing Metric. This cybersecurity metric pertains to the integrity and accuracy of data

collected by the vehicle sensors. Roadside Units (RSUs) that are not properly secured may

produce inaccurate or tampered data. Values range from 0.0 for least reliable data to 1.0

for most reliable data.

• Perception Metric. This cybersecurity metric pertains to the security of the system that

provides for the interpretation of environment data collected by the vehicle sensors. For

example, an insecure image processing system that is highly susceptible to an attack may

provide inaccurate interpretation of traffic signs or signals. Values range from 0.0 for least

secure to 1.0 for most secure.

• Planning Metric. This cybersecurity metric measures the vulnerability of the trajectory

planning system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0

for least vulnerable.

• Control Metric. This cybersecurity metric measures the vulnerability of the vehicle’s

control system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0 for

least vulnerable.

• Authentication Metric. This cybersecurity metric measures the security posture of the

authentication system deployed in the vehicle. Values range from 0.0 for least secure to 1.0

for most secure.

• Physical Access Metric. This cybersecurity metric measures the strength of physical access

protection of vehicle controls. Values range from 0.0 for least physically secure to 1.0 for

most physically secure.

• Communication Channel Metric. This cybersecurity metric pertains to the level of

protection of the communication channel used by the vehicle. Security characteristics of

data transmission such as encryption, authentication, and attribution are pertinent concerns

in this metric. Values range from 0.0 for least secure to 1.0 for most secure.

Emulating the evaluation methodology of the OSA metrics that was introduced by Wishart, et.al.

[11], we present four evaluation factors for the formulation of the aggregation of cybersecurity

metrics. The four evaluation factors are described in the following:

• Reliability. This factor quantifies the fidelity of the sources of measurement data. For

instance, data originating from actual events carry a higher value than those from simulated

events. Values range from 0.1 for less reliable to 1.0 for most reliable.

• Relevance. This factor quantifies the relevance of the measurement to a subject vehicle.

This value may vary according to the specificity of data such as make and model of the

subject vehicle. Data for a Honda CRV is more specific than data that refers to Honda

vehicles in general. Values range from 0.1 for least relevant to 1.0 for most relevant.

• Extent. This factor quantifies the scope or extensiveness of the measurement data. The

value ranges from 0.1 for least extensive to 1.0 for most extensive.

 49

• Criticality. This factor quantifies the gravity of a specific metric. For instance, security

measurement on control will carry a heavier weight than that on safety envelope. The value

ranges from 0.1 for least critical to 1.0 for most critical.

The Aggregate Security Metric (ASM) for a specific vehicle is calculated as

𝐴𝑆𝑀 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 × 𝐸𝑥𝑡𝑒𝑛𝑡 × (∑ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑘 × 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑀𝑒𝑡𝑟𝑖𝑐𝑘

𝑁

𝑘=1

)

The ASM value will range from 0 to 10.

6. Security Vulnerability Metrics for Connected Vehicles

The purpose of security vulnerability metrics is to provide guidance to security engineers

and testers using security vulnerability metrics that measure weak or vulnerable features in the

software system of connected vehicles. These metrics are based on the seminal work of Moukahal

and Zulkernine [12]. We describe each of the following risks on connected vehicles that may

eventually contribute to the likelihood of vulnerability exploitation.

6.1 ECU Coupling Risk

This risk is manifested by level of interconnection among ECU components. This means the higher

the coupling value the higher is the probability for vulnerabilities. Thus, for every functionality,

F, for all ECUs, N, and for all communication links between ECU j and ECU k, the ECU coupling

risk, REC, is calculated as

 REC(F) = ∑ 𝐶𝑗𝑘
𝑁
𝑗=1,𝑘=1

Cjk =1 if there is at least one information transfer between ECU j and ECU k; 0 otherwise.

 Max (REC(F)) = N

6.2 Communication Channel Risk

This risk is based on the communication channel types that are available for connected vehicles:

vehicle to vehicle (V2V), vehicle to infrastructure (V2I), user to vehicle (U2V), and intra-vehicle

(IV). The communication risk, for each functionality, F, is calculated according to the following

formula:

 RCC (F) =∑ 𝑤𝑗𝐶𝑗
𝑁
𝑗=1

Where N is the number of communication links, wj the weight of a specific communication

channel type based on its propensity to vulnerability, and Cj is 1 if the functionality uses the

channel; 0 otherwise.

Max (RCC (F)) = Total number of all communication channels

 50

6.3 Complexity Risk

This risk is associated with the number of defects in software used in automotive vehicles. The

complexity metric in software is an excellent indicator of vulnerabilities. The Halstead

Complexity measure is a standard way of deriving the complexity of software. Thus, for

calculating the complexity of the functionalities in connected vehicle, we use the formula:

 RSC (F) = SLOC + (Nesting)

Where SLOC is the Source Line of Code, Nesting is the number of control structures, and is

the weight, with value over one, indicating complexity of the nesting structure.

Max (RSC (F)) =SLOC + 10 (Nesting)

6.4 Input and Output Data Risk

This risk involves the input and output data in a connected vehicle. The metric distinguishes

between a Fixed Input (FI) from a Fluctuating Input (LI). It also distinguishes an Insensitive

Output (IO) from a Sensitive Output (SO). Weights () are added to highlight the significance

of the Fluctuating Input and the Sensitive Output. To calculate the Input and Output Data Risk,

we use the formula:

 RDIO (F) = FI + (LI) + IO + (SO)

 Max (RDIO (F)) = FI + (LI) + IO + (SO)

6.5 History of Security Issues

This risk considers the past security issues of a certain vehicle functionality. Given Y as the total

number of years since the first car attack and y as the number of attacks that occurred in year y.

A forgetting factor, , is introduced to provide relevancy to the attacks that occurred in more

recent years, where 0 <= <= 1. To calculate the risk of a vehicle functionality using the history

of security issues, we use the formula:

 RHS (F) = ∑ α𝑦
𝑌
𝑦=1 λ𝑌−𝑦

For a 2-year comparison, the calculation simply boils down to

 = 1 – (1 / 2) the forgetting factor

RHS (F) = 1 ()Y-1 +

Max (RHS (F)) = 1 +

6.6 Overall Security Vulnerability Metric

The overall security vulnerability metric of a certain functionality in a connected vehicle is

calculated by first normalizing the values of each of the metrics and applying a weighting factor

 51

(), which indicates its significance to the overall scheme. The metrics are added to

obtain the overall value, which is in direct correlation with the vulnerability level of the

functionality. The formula is shown as follow:

𝑶𝑺𝑽 = 𝜶 [
𝑅𝐸𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐸𝐶(𝐹))
] + 𝜷 [

𝑅𝐶𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐶𝐶(𝐹))
] + 𝜸 [

𝑅𝑆𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝑆𝐶(𝐹))
]

+ 𝜹 [
𝑅𝐷𝐼𝑂(F)

𝒎𝒂𝒙 (𝑅𝐷𝐼𝑂(F))
] + 𝝋 [

𝑅𝐻𝑆(F)

𝒎𝒂𝒙 (𝑅𝐻𝑆(F))
]

7. Vehicle Security Best Practices Assessment Metrics

Vehicle Security Best Practices Assessment Metrics are designed based on the National

Highway Traffic Safety Administration (NHTSA) Report DOT HS812 075 [13]. The report

contains a review and analysis of cybersecurity best practices involving automotive vehicles.

The study utilizes the iterative Information Security Life Cycle divided into four phases

and processes. The four phases and processes are described in the following.

Assessment Phase. This phase includes the development and implementation of security

policies, the evaluation of system security, and the processes of risk assessment.

Design Phase. This phase entails the prioritization of systems and resources applicable to

security and design and analysis of the system’s security architecture.

Implementation Phase. This phase covers the steps taken in vulnerability remediation and

the processes in security testing and evaluation.

Operation Phase. This phase includes the security awareness training for all personnel,

customers, and other stakeholders. It also includes continuous security monitoring,

intrusion detection and response.

The four phases will be fully described in the forthcoming white paper.

Vehicle Security Best Practices Assessment Metrics

We propose the following vehicle security best practice assessment metrics based on the

Information Security Life Cycle described above. The metrics are built by a self-assessment form,

shown on Table 3, which consists of a checklist of the status of each of the four phases.

 Table 3. Vehicle Security Best Practices Assessment Checklist
Process Checklists Status

Security Policy Are security policies established?
Are security policies properly documented and widely
disseminated within the organization?
Are security policies strictly enforced?
Are security policies periodically reviewed/updated?

Data Security & Privacy Is collected/stored data protected/encrypted?
Is transmitted data encrypted?
Is there a control mechanism for sharing data?

 52

Does the site comply with data protection standards and
regulations (e.g., ISO/IEC 27001 certification, GDPR)?

Risk Assessment Do you conduct a periodic risk assessment of vehicle
cybersecurity?
Is there a developed and implemented organization-
wide risk management strategy?
Is there a Supply Chain Risk Management (SCRM) policy?
Are security controls in place and periodically evaluated
and/or enhanced?

System Protection &
Prioritization

Have you implemented security-by-design principles
during the vehicle design phase?
Have you implemented domain separation for in-vehicle
networks (i.e. limiting the communication between the
safety-critical and non-safety critical domains)?
Does the organization triage the identified risks
according to priority for resource allocation?
Do you have a comprehensive system security test plan?

Security Architecture Have you implemented a layered approach to vehicle
security (ECU level, in-vehicle network level, V2V level,
V2X level)?
Is there a periodic evaluation of the system’s security
architecture?
Do you maintain an inventory of operational software
components used in each automotive ECU and
assembled vehicle?
Have you considered the risks and vulnerabilities
associated with vehicle sensor devices?

Remediation &
Implementation

Are there established mechanisms to update vehicle
software and firmware remotely and securely?
Are appropriate security controls implemented and are
in place?
Do you have an established remediation process?
Is the remediation plan evaluated and implemented?

Security Test & Evaluation Have you conducted a thorough code review on the
vehicle software?
Have you conducted penetration testing on connected
vehicle communication systems before deployment?
Are security controls tested and evaluated for
compliance with security performance specifications?
Do you conform with secure software development best
practices as outlined in NIST 8151 and ISO/SAE 21434?

Awareness & Security Training Is there a periodic security awareness training program
for the entire workforce?
Is security risk and mitigation disclosure available to the
consumer and other stakeholders?

 53

Do you evaluate the effectiveness of the security
awareness training program and introduce
improvements if needed?
Do you collect, maintain, analyze, and share information
related to cybersecurity through the Automotive
Information Sharing and Analysis Center (Auto-ISAC)?

Intrusion Detection &
Response

Is there an Incident Response Plan (IRP) in place?
Is the IRP periodically tested, evaluated, and updated?
Do you have a systematic process for continuous risk and
security monitoring?
Are security incidents properly documented and
reported?

V. CONNECTED VEHICLE SECURITY METRICS VISUALIZATION
Visualization takes advantage of cognitive perception in effectively presenting information

to users. It offers a powerful means of recognizing trends and patterns that are not easily
recognized using non-visual methods. In essence, the cognitive reasoning process is augmented
by perception to bring about a more rapid analytical reasoning process [55]. There exist numerous
works on information security visualization, e.g. [56], [57].

As an extension to this research, we ventured on vehicle security metrics visualization. We
designed and are in the process of implementing a visualization system for each of the security
metrics that are described in the preceding sections. A detailed description of each of the
visualization component is found in another manuscript: the Vehicle Security Metrics
Visualization System Specification, Design, and Implementation Document. The visualization
system design prototypes will be discussed and shown in the forthcoming white paper.

VI. ACKNOWLEDGEMENT

This research is partially funded by a grant from the Florida Department of Transportation

(FDOT). It is intended to support FDOT’s mission to provide a safe transportation system to ensure

the mobility of people and goods. To illustrate its direct support to this mission, the impact of

cybersecurity on operational safety is presented. Henceforth, cybersecurity metrics for operational

safety are derived and developed (see Section IV.5).

The research presents a holistic treatment of the security of connected vehicles. It covers

both the intranet (internal connectivity) and internet (external connectivity) systems of connected

vehicles. The derived security metrics both implicitly and explicitly support the operational safety

of connected vehicles—the primary concern of FDOT. We describe various risks found on

connected vehicles that may eventually contribute to the likelihood of vulnerability exploitation.

A successful attack on communication channels (V2V or V2X), ECU couplings, Input and Output

Data, Supply Chain, or other security vulnerabilities could easily be leveraged to attack the entire

connected vehicle ecosystem.

As a stretch objective, we conclude the report with vehicle security best practice assessment

metrics. These security metrics provide a significant impact on the safety of connected vehicles.

 54

Auto-ISAC, in their Best Practices Guides, recognized the proactive collaboration of various

organizations and the automotive industry in protecting consumer safety through a robust vehicle

cybersecurity [58].

This report is intended for security practitioners, designers, manufacturers, technology

providers, service providers, infrastructure owner-operators, and transportation agencies and

regulators.

VII. ADDITIONAL RESOURCES

IEEE 1609.2.1-2020. IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—
Certificate Management Interfaces for End Entities. URL:
https://standards.ieee.org/ieee/1609.2.1/10172/. Last Access: December 1, 2022.

National Electrical Manufacturers Association (NEMA). Cyber and Physical Security for

Intelligent Transportation Systems (ITS). NEMA TS 8-2018. URL:

https://www.nema.org/Standards/view/Cyber-and-Physical-Security-for-Intelligent-

Transportation-Systems-ITS. Last Access: December 4, 2022.

Society of Automotive Engineers (SAE), (2020). Service Specific Permissions and Security

Guidelines for Connected Vehicle Applications. J2945/5_202002. URL:

https://www.sae.org/standards/content/j2945/5_202002/. Last Access: December 1, 2022.

US Department of Transportation (USDOT), (2020). Module CSE202: Introduction to

Cybersecurity for Transportation Agencies. URL:

https://www.pcb.its.dot.gov/StandardsTraining/mod64/ppt/m64ppt.pdf. Last Access: December 1,

2022.

US Department of Transportation (USDOT), (2022). ARC-IT 9.1. The National ITS Reference

Arcitecture: Security. URL: https://www.arc-it.net/html/security/security.html.

Xiong, W., Legrand, E., Aberg, O., & Lagerstrom, R., Cyber Security Threat Modeling Based on the
MITRE Enterprise ATT&CK Matrix. Software and Systems Modeling (2022) 21:157-177.

VII. REFERENCES

[1] Forum of Incident Response and Security Teams (FIRST), "Common Vulnerability Scoring

System version 3.1: Specification Document," June 2019. [Online]. Available:

https://www.first.org/cvss/specification-document. [Accessed 13 February 2020].

[2] G. A. Francia, "Connected Vehicle Security," in 15th International Conference on Cyber

Warfare and Security (ICCWS 2020), Norfolk, VA, 2020.

[3] NIST, "CSV-2019-13582 Detail," 15 November 2019. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 20 February 2023].

https://standards.ieee.org/ieee/1609.2.1/10172/
https://www.nema.org/Standards/view/Cyber-and-Physical-Security-for-Intelligent-Transportation-Systems-ITS
https://www.nema.org/Standards/view/Cyber-and-Physical-Security-for-Intelligent-Transportation-Systems-ITS
https://www.sae.org/standards/content/j2945/5_202002/
https://www.pcb.its.dot.gov/StandardsTraining/mod64/ppt/m64ppt.pdf

 55

[4] Common Vulnerabilities and Exposure, "CVE-2018-9322," 31 May 2018. [Online].

Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9322. [Accessed 13

February 2020].

[5] Common Criteria Portal, "Common Criteria for Information Technology Security

Evalaution," April 2017. [Online]. Available:

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf. [Accessed 24

February 2020].

[6] MITRE Corporation, "Common Weakness Scoring System (CWSS)," 2 April 2018.

[Online]. Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html.

[7] Automated Vehicle Safety Consortium, "Best Practice for Metrics and Methods for

Assessing Safety Performance of Automated Driving Systems (ADS)," SAE Industry

Technologies Consortium, March 2021.

[8] M. Elli, J. Wishart, S. Como, S. Dhakshinamoorthy and J. Weast, "Evaluation of

Operational Safety Assessment (OSA) Metrics for Automated Vehciles in Simulation,"

SAE, 2021.

[9] SAE, "Operational Safety Metrics for Verification and Validation (V&V) of Automated

Driving Systems (ADS) J3237," SAE International, September 2020.

[1

0]

SAE, "Taxonomy and Definitions of ADS V&V J3208," SAE International, August 2019.

[1

1]

J. Wishart, Y. Chen, S. Como, N. Kidambi, D. Lu and Y. Yang, Fundamentals of Connected

and Automated Vehicles, Warrendale, PA: SAE International, 2022.

[1

2]

L. Moukahal and M. Zulkernine, "Security Vulnerability Metrics for Connected Vehicles,"

in 2019 IEEE 19th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Sofia, Bulgaria, 2019.

[1

3]

C. McCarthy, K. Harnett and A. Carter, "A Summary of Cybersecurity Best Practices," US

Department of Transportation (USDOT), Washington, D.C., 2014.

[1

4]

International Telecommunication Union (ITU), "Introduction to ASN.1," 2023. [Online].

Available: https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx. [Accessed 17 May

2023].

[1

5]

SAE International, "DSRC Implementation Guide. A Guide to Users of SAE J2735 Message

Sets over DSRC," SAE International, 2008.

[1

6]

SAE International, "On-Board System Requirements for V2V Safety Communications

J2945/1_202004," 30 April 2020. [Online]. Available:

https://www.sae.org/standards/content/j2945/1_202004. [Accessed 20 May 2023].

[1

7]

Lockheeed Martin, "The Cyber Kill Chain," 2024. [Online]. Available:

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html. [Accessed

7 February 2024].

[1

8]

T. W. Edgar and D. O. Manz, "Chapter 7 - Theoretical Research," in Research Methods for

Cyber Security, Syngress, 2017, pp. 177-192.

[1

9]

Formplus, "What is Applied Research? +[Types, Examples & Methods]," 22 July 2022.

[Online]. Available: https://www.formpl.us/blog/applied-research.

 56

[2

0]

International Organization for Standardization (ISO), "ISO/SAE 21434:2021 Road vehicles

— Cybersecurity engineering," August 2021. [Online]. Available:

https://www.iso.org/standard/70918.html.

[2

1]

Upstream Security Ltd., "ISO/SAE 21434: Setting the Standard for Automotive

Cybersecurity," 2020. [Online]. Available:

https://info.upstream.auto/hubfs/White_papers/Upstream_Security_Setting_the_Standard_fo

r_Automotive_Cybersecurity_WP.pdf?_hsmi=87208721&_hsenc=p2ANqtz-

8ke_6RWU7hkISDBzRoHFeUhfbaRRQ7E9-

Z2bvc4YMlP3JNvc42_oh1ZxJ5jtWQOUlTehUaSmp7MfNDcwzbzUWoZjrGHw.

[Accessed 5 November 2020].

[2

2]

C. Schmittner, G. Griessnig and Z. Ma, "Status of the Development of ISO/SAE 21434," in

Proc of the 25th European Conference, EuroSPI 2018, Bilbao, Spain, 2018.

[2

3]

ISO/SAE, "ISO/SAE 21434:2021(en) Road vehciles--Cybersecurity engineering," 2021.

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en.

[2

4]

Trend Micro, "A Vulnerability in Modern Automotive Standards and How We Exploited It,"

July 2017. [Online]. Available: https://documents.trendmicro.com/assets/A-Vulnerability-

In-Modern-Automotive-Standards-and How-We-Exploited-It.pdf. [Accessed November

2018].

[2

5]

A. Karahasanovic, "Automotive Cyber Security," Chalmers University of Technology

University of Gothenburg, Gotehnburg, Sweden, 2016.

[2

6]

Qualcomm, Inc., "C-V2X: A new era of smart transporation in the United States," 17

February 2023. [Online]. Available: https://www.qualcomm.com/content/dam/qcomm-

martech/dm-assets/documents/C-V2X_Whitepaper.pdf.

[2

7]

IEEE, "Vehicle to Grid (V2G) Technology," 18 February 2023. [Online]. Available:

https://innovationatwork.ieee.org/vehicle-to-grid-v2g-technology/.

[2

8]

Otonomo, "The Promise of Connected Vehicle Data," 16 February 2023. [Online].

Available: https://info.otonomo.io/hubfs/PDF/OOOO-Smart-Cities-Survey-Promise-of-

data.pdf.

[2

9]

J. Tyrrell, "Trends in ECU vulnerabilities highlighted at DEF CON 2020," 20 August 2020.

[Online]. Available: https://www.securecav.com/trends-in-ecu-vulnerabilities-highlighted-

at-def-con-2020/. [Accessed February 2023].

[3

0]

D. Pauli, "Hackers Hijack Tesla Model S from Afar, While the Cars are Moving," 16

September 2016. [Online]. Available:

https://www.theregister.co.uk/2016/09/20/tesla_model_s_hijacked_remotely/. [Accessed

October 2019].

[3

1]

NIST-NVD, "National Vulnerability Database," 10 January 2023. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2022-38766.

[3

2]

B. Toulas, "Hackers can unlock Honda cars remotely in Rolling-PWN attacks," 13 July

2022. [Online]. Available: https://www.bleepingcomputer.com/news/security/hackers-can-

unlock-honda-cars-remotely-in-rolling-pwn-attacks/. [Accessed February 2023].

[3

3]

Upstream Security, Inc., "Security researchers manage to control multiple vehicles from

various OEMs by exploiting an API based vulnerability in telematics service provider,"

 57

November 2022. [Online]. Available: https://upstream.auto/research/automotive-

cybersecurity/?id=12360.

[3

4]

L. Pan, X. Zheng, H. X. Chen, T. Luan, H. Bootwala and L. Batten, "Cyber security attacks

to modern vehicular systems," J. Inf. Secur. Appl., vol. 36, pp. 90-100, October 2017.

[3

5]

S. Woo, H. J. Jo and D. H. Lee, "A practical wireless attack on the connected car and

security protocol for in-vehicle CAN," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp.

993-1006, April 2015.

[3

6]

M. J. Kang and J. W. Kang, "Intrusion detection system using deep neural network for in-

vehicle network security," PLoS ONE, vol. 11, no. 6, 2016.

[3

7]

O. Avatefipour, A. S. Al-Sumaiti, A. M. El-Sherbeeny, E. M. Awwad, A. Elmeligy, M. A.

Mohamed and H. Malik, "An Intelligent Secured Framework for Cyberattack Detection in

Electric Vehicles' CAN Bus Using Machine Learning," IEEE Access, vol. 7, 2019.

[3

8]

Q. Wang and S. Sawhney, "VeCure: APractical Security Framework to Protect the CAN

Bus of Vehicles," in International Conference on the Internet of Things (IOT), Cambridge,

MA, 2014.

[3

9]

K.-T. Cho and K. G. Shin, "Fingerprinting Electronic Control Units for Vehicle Intrusion

Detection," in Proceedings of the 25th USENIX Security Symposium (USENIX Security 16),

2016.

[4

0]

J. Petit, M. Feiri and F. Kargl, "Revisiting attacker model for smart vehicles," in 2014 IEEE

6th International Symposium on Wireless Vehicular Communications, WiVec 2014

Proceedings, 2014.

[4

1]

J.-P. Monteuuis, J. Petit, J. Zhang, H. Labiod, S. Mafrica and A. Servel, "Attacker Model for

Connected and AUtomated Vehicles," in ACM Computer Science in Cars Symposium

(CSCS'18), Berlin, Germany, 2018.

[4

2]

M. Wolf and T. Gendrullis, "Design, Implementation, and Evaluation of a Vehicular

Hardware Security Module," in 14th International Conference on Information Security and

Cryptology, Seoul, South Korea, 2011.

[4

3]

S. Lokman, T. Othman and M. Abu-Bakar, "Intrusion Detection System for Automotive

Controller Area Network (CAN) Bus System: a Review," EURASIP Journal on Wireless

Communications and Networking, vol. 184, 2019.

[4

4]

EVITA Project, "EVITA E-Safety Vehicle Intrusion Protected Applications," 01 December

2011. [Online]. Available: https://www.evita-project.org/. [Accessed 13 November 2018].

[4

5]

PRESERVE, "About the Project," June 2015. [Online]. Available: https://preserve-

project.eu/about. [Accessed 12 October 2019].

[4

6]

SeVeCom, "Security on the Road," 2008. [Online]. Available: https://www.sevecom.eu/.

[Accessed 13 October 2019].

[4

7]

Society of Automotive Engineers (SAE), "Cybersecurity Guidebook for Cyber-Physical

Vehicle Systems J3061," 12 January 2012. [Online]. Available:

https://www.sae.org/standards/content/j3061/. [Accessed 13 Ocotober 2019].

[4

8]

S. Bauer and P. Schartner, "Reducing Risk Potential by Evaluating Specialized

Countermeasures for Electronic Control Units," in 17th escar Europe conference 2019,

Stuttgart, Germany, 2019.

 58

[4

9]

Government Accountability Office (GAO), United States, "Vehicle Cybersecurity: DOT and

Industry Have Efforts Under Way, but DOT Needs to Define Its Role in Responding to a

Real-world Attack. GAO Report 16-350.," 2016. [Online]. Available:

https://www.gao.gov/assets/680/676064.pdf. [Accessed 14 November 2018].

[5

0]

C. McCarty, K. Harnett and A. Carter, "A Summary of Cybersecurity Best Practices,"

National Highway Traffic Safety Administration, Washington, DC, 2014.

[5

1]

C. McCarthy, K. Harnett and A. Carter, "Characterization of Potential Security Threats in

Modern Automobiles: A Composite Modeling Approach.," October 2014. [Online].

Available: https://rosap.ntl.bts.gov/view/dot/12119. [Accessed 25 February 2020].

[5

2]

B. Sheehan, F. Murphy, M. Mullins and C. Ryan, "Connected and autonomous vehicles: A

cyber-risk classification framework," Transportation Research Part A, vol. 124, pp. 523-

536, 2019.

[5

3]

G. A. Francia and X. P. Francia, "Critical Infrastructure Protection and Security

Benchmarks," in Encyclopedia of Information Science and Technology, 3rd Edition,

Hershey, PA, IGI Global, 2015, pp. 4267-4278.

[5

4]

G. Francia, "Baseline Operational Security Metrics for Industrial Control Systems," in

International Conference on Security and Management, Las Vegas, NV, 2016.

[5

5]

G. A. Francia and S. Jarupathirun, "Security Metrics-Review and Research Directions," in

Proceedings of the 2009 International Conference on Security and Management, Las Vegas,

NV, 2009.

[5

6]

G. Conti, M. Ahamad and J. Stasko, "Attacking Information Visualization System Usability

Overloading and Deceiving the Human," in SOUPS 2005, Pittsburgh, PA, 2005.

[5

7]

H. Hochheiser and B. Schneiderman, "Using Interactive Visualizations of WWW Log Data

to Characterize Access Patterns and Inform Site Design," Journal of the American Society

for Information Science and Technology, vol. 52, no. 4, pp. 331-343, 2001.

[5

8]

Auto-ISAC, Inc., "Best Practices," 16 February 2023. [Online]. Available:

https://automotiveisac.com/best-practices/.

[5

9]

Upstream Security, Inc., "Recent spike in car thefts prompts South Korean OEMs to offer

security kits in the US," September 2022. [Online]. Available:

https://upstream.auto/research/automotive-cybersecurity/?id=12080.

[6

0]

G. A. Francia, III, "Vehicle Network Security Metrics," in Advances in Cybersecurity

Management, Cham, Switzerland, Springer Nature, 2021, pp. 55-73.

[6

1]

Fortinet, "What Is An Attack Surface?," 2023. [Online]. Available:

https://www.fortinet.com/resources/cyberglossary/attack-surface. [Accessed February 2023].

[6

2]

C. Maple, M. Bradbury, A. T. Le and K. Ghirardello, "A Connected and Autonomous

Vehicle Reference Architecture for Attack Surface Analysis," Appl. Sci., vol. 9, no. 23,

2019.

[6

3]

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham and S. Savage, "Experimental Security Analysis of a

Modern Automobile," in 2010 IEEE Symposium on Security and Privacy,

Berkeley/Oakland, CA, 2010.

[6

4]

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, N. Shacham, S. Savage, K. Koscher, A.

Czeskis, F. Roesner and T. Kohno, "Comprehensive experimental analyses of automotive

 59

attack surfaces," in 20th USENIXConference on Security (SEC'11), San Francisco, CA,

2011.

[6

5]

US Department of Transportation, "Cybersecurity Best Oractices for the Safety of Modern

Vehicles," 9 September 2022. [Online]. Available:

https://www.govinfo.gov/content/pkg/FR-2022-09-09/pdf/2022-19507.pdf. [Accessed 18

February 2023].

[6

6]

Society of Automotive Engineers (SAE) International, "Hardware Protected Security for

Ground Vehicles," 10 February 2020. [Online]. Available:

https://www.sae.org/standards/content/j3101_202002/. [Accessed 12 November 2020].

[6

7]

British Standard Institution, "IATF 16949:2016 Automotive Quality Management," 2020.

[Online]. Available: https://www.bsigroup.com/en-US/iatf-16949-automotive/introduction-

to-iatf-16949/. [Accessed 12 November 2020].

[6

8]

American National Standards Institute (ANSI), "ISO/IEC/IEEE 29119-1:2013," 2020.

[Online]. Available:

https://webstore.ansi.org/Standards/ISO/ISOIECIEEE291192013?gclid=CjwKCAiA17P9B

RB2EiwAMvwNyKt4mT9KW0hN-

taVxEzZBa7nN5sfZQzDV6HdWGRQddq5dVFT6Pv8LxoCQrEQAvD_BwE. [Accessed 12

November 2020].

[6

9]

S. Saydjari, "Is Risk a Good Security Metric?," in Proceedings of the 2nd ACM Workshop

on Quality of Protection, 2006.

[7

0]

S. Schechter, "Toward Econometric Models of Security Risk from Remote Attack," IEEE

Security and Privacy, pp. 40-44, January-February 2005.

[7

1]

P. Manadhata and J. Wing, "An Attack Surface Metric--CMU-CS-05-155," Carnegie Mellon

University, Pittsburgh, PA, 2005.

[7

2]

T. W. Moore, C. W. Probst, K. Rannenberg and M. van Eeten, "Assessing ICT Security

Risks in Socio-Technical Systems," 13-18 November 2016. [Online]. Available:

https://drops.dagstuhl.de/opus/volltexte/2017/7039/pdf/dagrep_v006_i011_p063_s16461.pd

f.

[7

3]

D. Gollman, C. Herley, V. Koenig, W. Pieters and M. A. Sasse, "Socio-Technical Security

Metrics," Dagstuhl Reports, vol. 4, no. 12, pp. 1-28, 3 March 2015.

[7

4]

MITRE Corporation, "CVE-2022-37305," 01 August 2022. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-37305. [Accessed February

2023].

[7

5]

G. A. Francia, III, D. Snider and B. Cyphers, "Basic Safety Message (BSM) Test Data

Generation for Vehicle Security Machine Learning Systems," in Proc. of the 2023

International Conference on Security and Management (SAM'23), Las Vegas, NV, 2023.

[7

6]

R. W. van der Heijden, T. Lukaseder and F. Kargl, "VeReMi: A Dataset for Comparable

Evaluation of Misbehavior Detection in VANETs," in Security and Privacy in

Communication Networks, New Yor, NY, Springer, 2018, pp. 318-337.

[7

7]

H. Song, J. Woo and H. K. Kim, "Car-Hacking Dataset," 2020. [Online]. Available:

https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset. [Accessed 20 May 2023].

 60

[7

8]

U.S. Department of Transporation (DOT), "Connected Vehicle Pilot (CVP) Open Data,"

[Online]. Available: https://data.transportation.gov/stories/s/Connected-Vehicle-Pilot-

Sandbox/hr8h-ufhq#cv-pilot-data-sandbox. [Accessed 20 May 2023].

[7

9]

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan and T. Darrell,

"BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning," in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[8

0]

Society of Automotive Engineers (SAE), "J2735 Surface Vehicle Standard V2X

Communications Message Set Dictionary," 2023. [Online]. Available:

https://www.sae.org/standards/content/j2735_202309. [Accessed 15 October 2023].

[8

1]

SAE International, "On-Board System Requirements for V2V Safety Communications

J2945/1_202004," 30 April 2020. [Online]. Available:

https://www.sae.org/standards/content/j2945/1_202004/. [Accessed 20 May 2023].

[8

2]

G. Francia III, "Technical Report UWF-TR-FDOT-002-01," University of West Florida

Center for Cybersecurity, Pensacola, FL , 2023.

[8

3]

G. Francia III, "Technical Report UWF-TR-FDOT-002-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[8

4]

G. Francia III, "Technical Report UWF-TR-FDOT-001-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

5]

G. Francia III, "Technical Report UWF-TR-FDOT-003-01," University of West Florida,

Pensacola, FL, 2023.

[8

6]

G. Francia III, "Technical Report UWF-TR-FDOT-005-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[8

7]

G. Francia III, "Technical Report UWF-TR-FDOT-006-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

8]

G. Francia III, "Technical Report UWF-TR-FDOT-006-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

9]

G. Francia III, "Technical Report UWF-TR-FDOT-006-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[9

0]

G. Francia III, "Technical Report UWF-TR-FDOT-007-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

1]

G. Francia III, "Technical Report UWF-TR-FDOT-007-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

2]

G. Francia III, "Technical Report UWF-TR-FDOT-007-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

3]

G. Francia III, "Technical Report UWF-TR-FDOT-008-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

4]

G. Francia III, "Technical Report UWF-TR-FDOT-008-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

5]

G. Francia III, "Technical Report UWF-TR-FDOT-008-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

 61

[9

6]

G. Francia III, "Technical Report UWF-TR-FDOT-009-01," University of West Florida,

Center for Cybersecurity, Pensacola, FL, 2024.

[9

7]

G. Francia III, "Technical Report UWF-TR-FDOT-009-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[9

8]

G. Francia III, "Technical Report UWF-TR-FDOT-009-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[9

9]

J. Patterson and D. King, "Vehicle Security Metrics Visualization System," 2023. [Online].

Available: https://github.com/UWF-CfC-FDOT/VSMVS. [Accessed December 2023].

[1

00

]

G. Francia III, "Technical Report UWF-TR-FDOT-003-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[1

01

]

G. Francia III, "Technical Report UWF-TR-FDOT-003-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[1

02

]

G. Francia III, "Technical Report UWF-TR-FDOT-010-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[1

03

]

G. A. Francia III, "Technical Report UWF-TR-FDOT-010-03 Continuous Improvement

Report--TR," University of West Florida, Pensacola, FL, 2024.

[1

04

]

S. Payne, "A Guide to Security Metrics," SANS Institute, 19 June 2006. [Online]. Available:

http://www.sans.org/readingroom/papers/5/55.pdf.

[1

05

]

K. Kark, P. Stamp, J. Penn, S. Bernhardt and A. Dill, "Defining An Effective Security

Metrics Program," 16 May 2007. [Online]. Available:

https://www.forrester.com/report/Defining+An+Effective+Security+Metrics+Program/-/E-

RES42354#. [Accessed February 2020].

[1

06

]

SAE International, "CAN Specification 2.0: Protocol and Implementations," 01 August

1998. [Online]. Available: https://www.sae.org/publications/technical-

papers/content/921603/. [Accessed 13 October 2019].

[1

07

]

Gemalto, "Securing Vehicle to Everything," 2018. [Online]. Available:

https://www.gemalto.com/brochures-site/download-site/Documents/auto-V2X.pdf.

[Accessed 13 April 2020].

[1

08

]

C. McCarthy, K. Harnett and A. Carter, "Characterization of potential security threats in

modern automobiles: A composite modeling approach," Washington, D.C., September,

2014.

[1

09

]

National Institute of Standards and Technology, "CVE-2019-13582 Detail," 15 November

2019. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 13

February 2020].

[1

10

]

MITRE Corporation, "CWE-787: Out-of-bounds Write," 20 August 2020. [Online].

Available: http://cwe.mitre.org/data/definitions/787.html.

 62

 63

Appendix II. Technical Report UWF-TR-FDOT-002-01

Software Requirements
Specification

for

Vehicle Security Metrics
Visualization System (VSMVS)

Version 0.9 approved

Prepared by Guillermo Francia, III

Contributors: Alessandro Amato

The University of West Florida
Florida Department of Transportation

August 20th, 2022

November 4, 2022 (Revision 1)

November 11, 2022 (Revision 2)

 64

November 28, 2022 (Revision 3)

December 3, 2022 (Revision 4)

December 7, 2022 (Revision 5)

December 21, 2022 (Revision 6)

January 3, 2023 (Revision 7)

January 5, 2023 (Revision 8)

August 2, 2023 (Revision 9)

 65

Table of Contents

1. Introduction .. 67

1.1 Purpose ... 67

1.2 Document Conventions ... 67

1.3 Scope ... 67

1.4 References ... 68

1.5 Document Revisions Table .. 68

2. Overview of Product ... 68

2.1 Vehicle Security Metrics Visualization System (VSMVS) ... 68

2.2 Hosting .. 69

2.3 Software Architecture and Use Cases ... 70

2.4 User Classes and Characteristics ... 71

2.5 Operating Environment ... 71

2.6 Design and Implementation Constraints .. 71

2.7 Assumptions and Dependencies ... 72

3. Interface Requirements .. 72

4. Functional Requirements ... 80

4.1 FR-1: Data Entry and Storage .. 80
4.1.1 Description and Priority ... 80
4.1.2 Related User Classes .. 81
4.1.3 Functional Requirements ... 81

4.2 FR-2: Security Metrics Calculators ... 82
4.2.1 Description and Priority ... 82
4.2.2 Related User Classes .. 82
4.2.3 Functional Requirements ... 82

4.3 FR-3: Security Metrics Visualizations ... 89
4.3.1 Description and Priority ... 89
4.3.2 Related User Classes .. 89
4.3.3 Functional Requirements ... 89

5. Test Requirements .. 90

5.1 T-1: Unit Tests ... 90

5.2 T-2: Integration Tests .. 90

5.3 T-3: Test Report ... 90

6. Non-Functional Requirements .. 90

6.1 NF-1: Portability .. 90

6.2 NF-2: Usability ... 91

 66

6.3 NF-3: Speed ... 91

7. Quality Attributes ... 91

8. Source Code Repository and Version Control Requirement ... 91

8.1 SC-1: Source Code Repository and Control.. 91

Appendix A: Requirements Table .. 91

Appendix B: Requirements Traceability Matrix .. 98

Appendix C: Glossary .. 101

Introduction
Purpose
This undertaking entails the design and implementation of a prototype web-enabled Vehicle

Security Metrics Visualization System (VSMVS).

Visualization takes advantage of cognitive perception in effectively presenting information to users.

It offers a powerful means of recognizing trends and patterns that are not easily recognized using

non-visual methods.

In essence, the cognitive reasoning process is augmented by perception to bring about a more rapid

analytical reasoning process. The system will provide a visual depiction of security metrics that

were developed in another undertaking by employing the benefits of visual perception. The

implementation of this system will utilize the tools and facilities that are available through

subscriptions provided by Amazon Web Services (AWS).

Document Conventions
This document is based on the IEEE 830 Standards and the Florida Department of Transportation

Requirements Standards. Specific conventions used in this document are listed below:

• Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

• Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the id of the requirement in a hierarchical fashion.

Scope
This document contains a complete description of the design of the Vehicle Security Metrics

Visualization System (VSMVS).

The basic architecture is a web server from a client server paradigm.

The webpages will be created using the ASP.Net framework with Blazor.

 68

References
The following references were used in the creation of this document:

• IEEE 830 Standards on Software Requirement Specifications

• UWF Scope of Service Document for the Connected Vehicle Security Metrics and Threat

Intelligence Project

[IEEE] The applicable IEEE standards are published in “IEEE Standards Collection,”

2001 edition.

[Bruade] The principal source of textbook material is “Software Engineering: An Object-

Oriented Perspective” by Eric J. Bruade (Wiley 2001).

Document Revisions Table

Revisor Revision Date Reason

Guillermo Francia, III November 2, 2022 Added the CWSS function

Guillermo Francia, III November 11, 2022 Revised the Threats on Assets requirements

Guillermo Francia, III November 28, 2022 Added the Operational Security Assessment

Metrics requirements

Guillermo Francia, III December 3, 2022 Added the Security Vulnerability of Connected

Vehicles Metrics requirements

Guillermo Francia, III December 7, 2022 Added the Security Best Practices Assessment

Metrics requirements

Guillermo Francia, III December 21, 2022 Updated the Functional Requirements

Guillermo Francia, III January 3, 2023 Updated the Requirements Traceability Matrix

Guillermo Francia, III January 5, 2023 Revised the TOC and the set of figures

Guillermo Francia, III August 2, 2023 Added the revisions suggested by the FDOT

Research office

Overview of Product

Vehicle Security Metrics Visualization System (VSMVS)

 69

This Vehicle Security Metrics Visualization System (VSMVS) provides a visual depiction of

the security metrics that are defined for the automotive vehicle.

Hosting
The system will be hosted inside an AWS EC2 instance reachable at https://183.73.161.243. This IP

address will be changed with a more user-friendly name once the domain name is decided.

Figure 1. Vehicle Security and Threat Modeling System Architecture

https://183.73.161.243/

 70

Software Architecture and Use Cases

Figure 2. Vehicle Security Metrics Visualization System Architecture

 71

User Classes and Characteristics

User Class Characteristics

Admin User This user is responsible for the overall administration of the system

Regular User This user provides the data for generating the various vehicle

security metrics and visualization

Database Administrator This user administers the threat and metrics database system

Operating Environment
The VSMVS operating environment is defined by the following:

OE-1: The VSMVS shall run within an Amazon Elastic Compute Cloud (EC2) Web Service

utilizing a Windows Server environment.

OE-2: The VSMVS shall run as a .NET application on an Internet Information Services (IIS) on a

Windows Server within the AWS EC2 instance.

OE-3: The AWS EC2 instance shall be configured with type t2.xlarge having 4 vCPU and 16 GB of

memory.

OE-4: The VSMVS shall interact with a Vehicle Threat Database System (VTDBS) backend. The

VTDBS will be designed and implemented as a major deliverable of the project.

OE-5: The VTDBS shall be configured using MS SQL Server 2018.

Design and Implementation Constraints
DIC-1: The VSMVS shall be developed using Microsoft Visual Studio 2022 or Visual Studio Code

and

DIC-2: The VSMVS shall be developed using the C# programming language and

DIC-3: The VSMVS shall be developed using .NET Core

DIC-4: The VSMVS will be constrained by the limitations of the data source APIs

DIC-5: The VSMVS will be designed and implemented as a working prototype capable of future

expansion

DIC-6: The initial iterations of the VSMVS will be limited to the open frameworks CVE and CWE

data sources

DIC-7: All visualizations shall be based on the derived vehicle security metrics that are fully defined

in an accompanying white paper.

 72

Assumptions and Dependencies
Assumptions and dependencies for the VSMVS implementation include the following:

ASS-1: The VSMVS assumes the availability of information for some vehicle security metric

attributes.

ASS-2: The VSMVS assumes the availability of domain experts to provide reliable information for

some vehicle security metric attributes.

DEP-1: The VSMVS shall be dependent on the accuracy and currency of the CVE and CWE

information.

Interface Requirements
The VSMVS will require input from the user. In addition, the results of calculated and derived

metrics must be displayed. These interface requirements are described in the following.

INT-1: The VSMVS will periodically collect information from threats using the Common

Vulnerability Enumeration (CVE) Application Program Interfaces (APIs) from the National

Vulnerability Database (NVD). The CVE information shall be used to derive a Common

Vulnerability Scoring System (CVSS) vector which, in turn, provides a corresponding vehicle

security metrics.

 73

INT-2: The VSMVS shall provide a Graphical User Interface (GUI) for data entry of CVSS vector

and metrics information. The CVSS GUI shall resemble the following:

INT-3: The VSMVS shall provide a corresponding visualization for the CVSS vector and metrics

resembling the following:

 74

INT-4: The VSMVS shall provide a Graphical User Interface (GUI) for the data entry of attack

potential of threats on vehicle assets. The GUI shall resemble the following:

INT-5: A corresponding visualization for the calculated attack potential of threats on vehicle asset

shall resemble the following:

 75

INT-6: The VSMVS shall provide a GUI for data entry of CWSS vector and metrics information.

The CWSS data entry GUI shall resemble the following:

INT-7: The VSMVS shall provide a corresponding visualization for the CWSS vector and metrics

resembling the following:

0

0.2

0.4

0.6

0.8
Technical Impact

Acquired Privilege

Acquired Privilege
Layer

Internal Control
Effectiveness

Finding Confidence

BASE FINDINGS

 76

INT-8: The VSMVS shall provide a GUI for data entry for Operational Safety Assessment (OSA)

metrics information. The OSA metrics data entry GUI shall resemble the following:

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Base Subscore Attack Surface Subscore Environment Subscore

Weakness Group

 77

INT-9: The VSMVS shall provide a corresponding visualization for the OSA metrics resembling the

following:

INT-10: The VSMVS shall provide a GUI for data entry for Security Vulnerability Metrics for

Connected Vehicles information. The metrics data entry GUI shall resemble the following:

 78

INT-11: The VSMVS shall provide a corresponding visualization for the Security Vulnerability

Metrics for Connected Vehicles resembling the following:

INT-12: The VSMVS shall provide a GUI for data entry for Vehicle Security Best Practices

Assessment Metrics for Connected Vehicles information. The metrics data entry GUI shall resemble

the following:

ECU Coupling Risk
10%

Complexity Risk
30%

History of Security
Issue Risk

15%

Communication
Channel Risk

25%

I/O Data Risk
20%

ECU Coupling Risk Complexity Risk

History of Security Issue Risk Communication Channel Risk

I/O Data Risk

 79

Yes No
Security policies established X

Security policies properly documented and widely disseminated within the organization? X

Security policies strictly enforced X

Security policies periodically reviewed/updated X

Collected/stored data protected/encrypted X

Transmitted data encrypted X

A control mechanism for sharing data X

Compliant with data protection standards and regulations (e.g., ISO/IEC 27001 certification,

GDPR)?
X

Conduct a periodic risk assessment of vehicle cybersecurity X

Developed and implemented organization-wide risk management strategy X

A Supply Chain Risk Management (SCRM) policy X

Security controls in place and periodically evaluated and/or enhanced X

Implemented security-by-design principles during the vehicle design phase X

Implemented domain separation for in-vehicle networks (i.e. limiting the communication between

the safety-critical and non-safety critical domains)
X

Process to triage the identified risks according to priority for resource allocation X

Comprehensive system security test plan X

Implemented a layered approach to vehicle security (ECU level, in-vehicle network level, V2V level,

V2X level)?
X

Periodic evaluation of the system’s security architecture X

Maintain an inventory of operational software components used in each automotive ECU and

assembled vehicle
X

Considered the risks and vulnerabilities associated with vehicle sensor devices X

Established mechanisms to update vehicle software and firmware remotely and securely X

Appropriate security controls implemented and are in place X

Established a remediation process X

Remediation plan evaluated and implemented X

Conducted a thorough code review on the vehicle software X

Conducted penetration testing on connected vehicle communication systems before deployment X

Security controls tested and evaluated for compliance with security performance specifications X

Conformance with secure software development best practices as outlined in NIST 8151 and

ISO/SAE 21434
X

Periodic security awareness training program for the entire workforce X

Security risk and mitigation disclosure available to the consumer and other stakeholders X

Evaluate the effectiveness of the security awareness training program and introduce improvements

if needed
X

Collect, maintain, analyze, and share information related to cybersecurity through the Automotive

Information Sharing and Analysis Center (Auto-ISAC)
X

An Incident Response Plan (IRP) in place X

The IRP periodically tested, evaluated, and updated X

A systematic process for continuous risk and security monitoring X

Security incidents properly documented and reported X

Implementation

Security Policy

Data Security & Privacy

Risk Assessment

System Protection and

Prioritization

Security Architecture

Awareness and

Security Training

Intrusion Detection

and Response

Security Test and

Evaluation

Operation

Remediation and

Implementation

Assessment

Design

Response
Phase Process Checklist

 80

INT-13: The VSMVS shall provide a corresponding visualization for the Security Vulnerability

Metrics for Connected Vehicles resembling the following:

INT-14: The VSMVS will log any interactions with external APIs in a format containing the time,

message type, sent request, response code, and response.

INT-15: The VSMVS will log any interactions with the threat database in a format containing the

time, query type, query contents, and response.

INT-16: The VSMVS will log errors or exceptions in a format containing the time of the event and

a stack trace.

Functional Requirements
The major features that the VSMVS will need to deliver are the data entry interfaces, the metrics

calculators, and the visualization of the generated metrics. VSMVS is a proof of concept and, as

such, limitations in its implementation will be identified.

4.1 FR-1: Data Entry and Storage

Description and Priority

The VSMVS shall facilitate user input of metrics information. In addition, it should provide

the storage of information in a central database.

0

5

10

15

20

25

30

Vehicle Security Best Practices Assessment Metrics

 81

Data entry functions shall be provided for the following metrics.

Priority: Must Have

Related User Classes
All Users

Functional Requirements

FR-1.1 Common Vulnerability Scoring System (CVSS) Metrics

CVSS is an open framework for communicating the characteristics and severity of software

vulnerabilities. It consists of three metric groups: Base, Temporal, and Environmental. The Base

group characterizes the static intrinsic qualities of vulnerability; the Temporal group represents

the vulnerability as it evolves over time; and the Environmental group depicts the characteristics

of the vulnerability that are endemic to the user’s environment. The third group of metrics lends

itself perfectly with that of an automotive vehicle system. Data input and storage shall be

implemented for the CVSS metrics.

FR-1.2 Attack Potential on Vehicle Assets Metrics

The attack potential for each vehicle asset is calculated based on the input provided by the

user for each of the following factors: elapsed time, specialist expertise, knowledge of the target,

window of opportunity, and IT hardware and/or software availability. Data input and storage

shall be implemented for the attack potential on vehicle assets.

FR-1.3 Common Weakness Scoring System (CWSS) Metrics

The Common Weakness Scoring System (CWSS) is a mechanism for evaluating software

weaknesses in a consistent, flexible, open manner. It is a community-based undertaking which

addresses the need for prioritizing the software vulnerability issues. The measurements are

organized into three metric groups: Base Finding, Attack Surface, and Environmental. Data input

and storage shall be implemented for the CWSS metric groups.

FR-1.4 Operational Safety Assessment (OSA) Cybersecurity Metrics

The Operational Safety Assessment (OSA) Cybersecurity Metrics are defined and

implemented based on the OSA metrics that are augmented by authentication metric, physical

access metric, and communication channel metric. The OSA metrics that are proposed by SAE

 82

include the following: safety envelope metric, behavioral metric, component metric, sensing

metric, perception metric, planning metric, and control metric. Data input and storage shall be

implemented for the OSA Cybersecurity Metrics.

FR-1.5 Security Vulnerability Metrics for Connected Vehicles

Security vulnerability metrics for connected vehicles measure weak or vulnerable features

in the software system of connected vehicles. These security vulnerabilities are associated with

the following risks found in connected vehicles: ECU Coupling risk, Communication Channel risk,

Complexity risk, Input and Output Data risk, and History of Security Issues risk. Data input and

storage shall be implemented for the security vulnerability metrics.

FR-1.6 Vehicle Security Best Practices Assessment Metrics

The Vehicle Security Best Practices Assessment Metrics are designed based on the National

Highway Traffic Safety Administration (NHTSA) Report DOT HS812 075. These metrics are

based on the four phases of the Information Security Life Cycle: Assessment Phase, Design

Phase, Implementation Phase, and Operation Phase. Data input and storage shall be implemented

for the vehicle security best practices assessment metrics.

4.2 FR-2: Security Metrics Calculators
4.2.1 Description and Priority

The VSMVS shall provide calculators that will process user input data to derive the security

metrics value. Calculations shall use the given formula for each defined security metric and

will be performed by backend processes. The results will be displayed as part of the

visualization of the associated metric.

Priority: Must Have

4.2.2 Related User Classes

All Users

4.2.3 Functional Requirements

 83

FR-2.1 Common Vulnerability Scoring System (CVSS) Calculator

This CVSS Base Score is calculated based on a table of metric values and the following

formula found in CVSS v3.1 Specification Document (see

https://www.first.org/cvss/specification-document). The formula for the Temporal and

Environmental metrics are found in the same document.

FR-2.2 Attack Potential on Vehicle Assets Metrics Calculator

The attack potential for each vehicle asset is calculated based on the input provided by the

user for each asset. The calculator will use the following formula.

TA𝑘 =   ∑ 𝐹𝑛

5

𝑛=1

Where TAk is the kth threat and Fn is the nth factor.

Priority: Must Have

FR-2.3 Common Weakness Scoring System (CWSS) Metrics Calculator

The CWSS scoring system is depicted in Figure 4.1.

https://www.first.org/cvss/specification-document

 84

Figure 4.1 The CWSS Scoring System (Source: https://cwe.mitre.org/cwss/cwss_v1.0.1.html)

A summary of the CWSS factors categorized by metric group is shown in Table 4.1.

Table 4.1 The CWSS Scoring Factors by Metric Group (Source:

https://cwe.mitre.org/cwss/cwss_v1.0.1.html)

Group Name Summary

Base Finding Technical Impact

(TI)

The potential result that can be produced by the

weakness, assuming that the weakness can be
successfully reached and exploited.

Base Finding Acquired Privilege

(AP)

The type of privileges that are obtained by an attacker

who can successfully exploit the weakness.

Base Finding Acquired Privilege

Layer (AL)

The operational layer to which the attacker gains

privileges by successfully exploiting the weakness.

Base Finding Internal Control

Effectiveness (IC)

the ability of the control to render the weakness unable

to be exploited by an attacker.

Base Finding Finding
Confidence (FC)

the confidence that the reported issue is a weakness that
can be utilized by an attacker

Attack

Surface

Required Privilege

(RP)

The type of privileges that an attacker must already have

in order to reach the code/functionality that contains the
weakness.

Attack
Surface

Required Privilege
Layer (RL)

The operational layer to which the attacker must have
privileges in order to attempt to attack the weakness.

Attack

Surface

Access Vector

(AV)

The channel through which an attacker must

communicate to reach the code or functionality that
contains the weakness.

Attack
Surface

Authentication
Strength (AS)

The strength of the authentication routine that protects
the code/functionality that contains the weakness.

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

 85

Group Name Summary

Attack

Surface

Level of

Interaction (IN)

the actions that are required by the human victim(s) to

enable a successful attack to take place.

Attack

Surface

Deployment Scope

(SC)

Whether the weakness is present in all deployable

instances of the software, or if it is limited to a subset of

platforms and/or configurations.

Environmental Business Impact

(BI)

The potential impact to the business or mission if the

weakness can be successfully exploited.

Environmental Likelihood of
Discovery (DI)

The likelihood that an attacker can discover the
weakness

Environmental Likelihood of
Exploit (EX)

the likelihood that, if the weakness is discovered, an
attacker with the required

privileges/authentication/access would be able to

successfully exploit it.

Environmental External Control

Effectiveness (EC)

the capability of controls or mitigations outside of the

software that may render the weakness more difficult for
an attacker to reach and/or trigger.

Environmental Prevalence (P) How frequently this type of weakness appears in

software.

The CWSS Score, with value between 0 and 100, is calculated using the following formula:
 Base_Finding_Subscore * Attack_Surface_Subscore *

Environment_Subscore

where the Base_Finding_Subscore, with value between 0 and 100, is calculated using the following

formula:

Base = [(10 * TechnicalImpact + 5*(AcquiredPrivilege +

AcquiredPrivilegeLayer) + 5*FindingConfidence) * f(TechnicalImpact) *

InternalControlEffectiveness] * 4.0

f(TechnicalImpact) = 0 if TechnicalImpact = 0; otherwise f(TechnicalImpact)

= 1.

the Attack_Surface_Subscore , with value between 0 and 1, is calculated using the formula:

[20*(RequiredPrivilege + RequiredPrivilegeLayer + AccessVector) +

20*DeploymentScope + 15*LevelOfInteraction + 5*AuthenticationStrength] / 100.0

the Environment_Subscore , with value between 0 and 1, is calculated using the formula:

[(10*BusinessImpact + 3*LikelihoodOfDiscovery + 4*LikelihoodOfExploit +

3*Prevalence) * f(BusinessImpact) * ExternalControlEffectiveness] / 20.0

f(BusinessImpact) = 0 if BusinessImpact == 0; otherwise f(BusinessImpact) = 1

 86

FR-2.4 Operational Safety Assessment (OSA) Security Metrics Calculator

The OSA Aggregate Security Metric (ACM) is calculated based on the input data provided

by the user and applying the following formula:

𝐴𝑆𝑀 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 × 𝐸𝑥𝑡𝑒𝑛𝑡 × (∑ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑘 × 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑀𝑒𝑡𝑟𝑖𝑐𝑘

𝑁

𝑘=1

)

Where

• Reliability. Factor for quantifying the fidelity of the sources of measurement data. For

instance, data originating from actual events carry a higher value than those from

simulated events. Values range from 0.1 for less reliable to 1.0 for most reliable.

• Relevance. Factor for quantifying the relevance of the measurement to a subject

vehicle. This value may vary according to the specificity of data such as make and

model of the subject vehicle. Data for a Honda CRV is more specific than data that

refers to Honda vehicles in general. Values range from 0.1 for least relevant to 1.0 for

most relevant.

• Extent. Factor for quantifying the scope or extensiveness of the measurement data.

The value ranges from 0.1 for least extensive to 1.0 for most extensive.

• Criticality. Factor for quantifying the gravity of a specific metric. For instance,

security measurement on control will carry a heavier weight than that on safety

envelope. The value ranges from 0.1 for least critical to 1.0 for most critical.

• N is the number cybersecurity metrics for operational safety.

FR-2.5 Security Vulnerability Metrics for Connected Vehicles Calculator

Security vulnerability metrics measure weak or vulnerable features in the software system of

connected vehicles. Each of these metrics is calculated using the risks on connected vehicles

that may eventually contribute to the likelihood of exploiting a vulnerability.

 87

ECU Coupling Risk

This risk is manifested by level of interconnection among ECU components. This means the

higher the coupling value the higher is the probability for vulnerabilities. Thus, for every

functionality, F, for all ECUs, N, and for all communication links between ECU j and ECU k,

the ECU coupling risk, REC, is calculated as

 REC(F) = ∑ 𝐶𝑗𝑘
𝑁
𝑗=1,𝑘=1

Cjk =1 if there is at least one information transfer between ECU j and ECU k; 0 otherwise.

 Max (REC(F)) = N

Communication Channel Risk

This risk is based on the communication channel types that are available for connected

vehicles: vehicle to vehicle (V2V), vehicle to infrastructure (V2I), user to vehicle (U2V), and

intra-vehicle (IV). The communication risk, for each functionality, F, is calculated according

to the following formula:

 RCC (F) =∑ 𝑤𝑗𝐶𝑗
𝑁
𝑗=1

Where N is the number of communication links, wj the weight of a specific communication

channel type based on its propensity to vulnerability, and Cj is 1 if the functionality uses the

channel; 0 otherwise.

Max (RCC (F)) = Total number of all communication channels

Complexity Risk

This risk is associated with the number of defects in software used in automotive vehicles.

The complexity metric in software is an excellent indicator of vulnerabilities. The Halstead

Complexity measure is a standard way of deriving the complexity of software. Thus, for

calculating the complexity of the functionalities in connected vehicle, we use the formula:

 88

 RSC (F) = SLOC + a (Nesting)

Where SLOC is the Source Line of Code, Nesting is the number of control structures, and a

is the weight, with value over one, indicating complexity of the nesting structure.

Max (RSC (F)) =SLOC + 10 (Nesting)

Input and Output Data Risk

This risk involves the input and output data in a connected vehicle. The metric distinguishes

between a Fixed Input (FI) from a Fluctuating Input (LI). It also distinguishes an Insensitive

Output (IO) from a Sensitive Output (SO). Weights (a, b) are added to highlight the

significance of the Fluctuating Input and the Sensitive Output. To calculate the Input and

Output Data Risk, we use the formula:

 RDIO (F) = FI + a (LI) + IO + b (SO)

 Max (RDIO (F)) = FI + 5(LI) + IO + 5(SO)

History of Security Issues

This risk considers the past security issues of a certain vehicle functionality. Given Y as the

total number of years since the first car attack and ay as the number of attacks that occurred in

year y. A forgetting factor, l, is introduced to provide relevancy to the attacks that occurred in

more recent years, where 0 <= l <= 1. To calculate the risk of a vehicle functionality using the

history of security issues, we use the formula:

 RHS (F) = ∑ α𝑦
𝑌
𝑦=1 λ𝑌−𝑦

For a 2-year comparison, the calculation simply boils down to

 l = 1 – (a1 / a2) the forgetting factor

RHS (F) = a1 (l)Y-1 + a2

 89

Max (RHS (F)) = a1 + a2

Overall Security Vulnerability Metric

The overall security vulnerability metric of a certain functionality in a connected vehicle is

calculated by first normalizing the values of each of the metrics and applying a weighting

factor (a, b, g, d, f), which indicates its significance to the overall scheme. The metrics are

added to obtain the overall value, which is in direct correlation with the vulnerability level of

the functionality. The formula is shown as follow:

𝑶𝑺𝑽 = 𝜶 [
𝑅𝐸𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐸𝐶(𝐹))
] + 𝜷 [

𝑅𝐶𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐶𝐶(𝐹))
] + 𝜸 [

𝑅𝑆𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝑆𝐶(𝐹))
]

+ 𝜹 [
𝑅𝐷𝐼𝑂(F)

𝒎𝒂𝒙 (𝑅𝐷𝐼𝑂(F))
] + 𝝋 [

𝑅𝐻𝑆(F)

𝒎𝒂𝒙 (𝑅𝐻𝑆(F))
]

4.3 FR-3: Security Metrics Visualizations
4.3.1 Description and Priority

The VSMVS shall provide a visualization depicting each of the derived or calculated metrics.

Priority: Must Have

4.3.2 Related User Classes

All Users

4.3.3 Functional Requirements

FR-3.1 Common Vulnerability Scoring System (CVSS) Metrics Visualization

The VSMVS shall provide a CVSS metrics visualization as described in interface

requirement INT-3.

FR-3.2 Attack Potential on Vehicle Assets Metrics

The VSMVS shall provide an Attack Potential on Vehicle Assets metrics visualization as

described in interface requirement INT-5.

 90

FR-3.3 Common Weakness Scoring System (CWSS) Metrics Visualization

The VSMVS shall provide a CWSS metrics visualization as described in interface

requirement INT-7.

FR-3.4 Operational Safety Assessment (OSA) Cybersecurity Metrics Visualization

The VSMVS shall provide an Operational Safety Assessment (OSA) Cybersecurity metrics

visualization as described in interface requirement INT-9.

FR-3.5 Security Vulnerability Metrics for Connected Vehicles Visualization

The VSMVS shall provide a Security Vulnerability metrics visualization as described in

interface requirement INT-11.

FR-3.6 Vehicle Security Best Practices Assessment Metrics Visualization

The VSMVS shall provide a Vehicle Security Best Practices Assessment metrics

visualization as described in interface requirement INT-13.

Test Requirements
The VSMVS requires testing and validation of the main application functionalities.

T-1: Unit Tests

Unit system testing shall be conducted for all functional system components. Unit tests shall be

integrated and documented in the source code. The GitHub repository is found at this URL:

https://github.com/UWF-CfC-FDOT/VSMVS.

T-2: Integration Tests

System integration testing is not within the scope of the VSMVS system.

T-3: Test Report

An associated documentation of all system testing activities shall be provided. The Unit Test

Overview document will be submitted as a separate deliverable.

Non-Functional Requirements
Non-functional requirements for the VSMVS are system attributes that are desired but not required.

The following are the non-functional requirements for the VSMVS:

NF-1: Portability

 91

The development team will attempt to make the web enabled VSMVS system portable across

multiple computing form factors.

NF-2: Usability

The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

NF-3: Speed

The development team will attempt to enhance the VSMVS system responsiveness to user

interactions and database transactions.

Quality Attributes

The VSMVS is a proof of concept and not meant for a production release. As such, traditional

quality attributes such as availability, security, robustness, etc. are not as relevant.

Source Code Repository and Version Control Requirement
The development team shall facilitate a source code repository and version control for the project.

SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub. The

GitHub project URL is https://github.com/UWF-CfC-FDOT/VSMVS

Appendix A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement

Description

Priority

S1 Scope System Scope Defines the scope of the

system

Must have

FR-1.1 Functional CVSS Metrics The VSMVS shall

facilitate data input for

the CVSS metrics

Must have

FR-1.2 Functional Attack

Potential on

Vehicle Assets

Metrics

Data input and storage

shall be implemented for

the attack potential on

vehicle assets

Must have

https://github.com/UWF-CfC-FDOT/VSMVS

 92

FR-1.3 Functional Common

Weakness

Scoring System

(CWSS)

Metrics

Data input and storage

shall be implemented for

the CWSS metric groups.

Must have

FR-1.4 Functional Operational

Safety

Assessment

(OSA)

Cybersecurity

Metrics

Data input and storage

shall be implemented for

the OSA Cybersecurity

metrics.

Must have

FR-1.5 Functional Security

Vulnerability

Metrics for

Connected

Vehicles

Data input and storage

shall be implemented for

the security vulnerability

metrics.

Must have

FR-1.6 Functional Vehicle

Security Best

Practices

Assessment

Metrics

Data input and storage

shall be implemented for

the security best practices

assessment metrics.

Must have

FR-2.1 Functional CVSS Metrics

Calculator

The VSMVS shall

provide a metrics

calculator using the

established formulae for

the CVSS metrics

Must have

FR-2.2 Functional Attack

Potential on

Vehicle Assets

Metrics

Calculator

The VSMVS shall

provide a metrics

calculator using the

established formulae for

the attack potential on

vehicle assets metrics

Must have

 93

FR-2.3 Functional Common

Weakness

Scoring System

(CWSS)

Metrics

Calculator

The VSMVS shall

provide a metrics

calculator using the

established formulae for

the CWSS metrics

Must have

FR-2.4 Functional Operational

Safety

Assessment

(OSA) Security

Metrics

Calculator

The VSMVS shall

provide a metrics

calculator using the

established formulae for

the OSA security metrics

Must have

FR-2.5 Functional Security

Vulnerability

Metrics for

Connected

Vehicles

Calculator

The VSMVS shall

provide a metrics

calculator using the

established formulae for

the security vulnerability

metrics for connected

vehicles

Must have

FR-3.1 Functional CVSS Metrics

Visualization

The VSMVS shall

provide a CVSS metrics

visualization as described

in interface requirement

INT-3

Must have

FR-3.2 Functional Attack

Potential on

Vehicle Assets

Metrics

Visualization

The VSMVS shall

provide an Attack

Potential on Vehicle

Assets metrics

visualization as described

in interface requirement

INT-5

Must have

FR-3.3 Functional Common

Weakness

Scoring System

(CWSS)

Metrics

Visualization

The VSMVS shall

provide a CWSS metrics

visualization as described

in interface requirement

INT-7

Must have

 94

FR-3.4 Functional Operational

Safety

Assessment

(OSA)

Cybersecurity

Metrics

Visualization

The VSMVS shall

provide an Operational

Safety Assessment (OSA)

Cybersecurity metrics

visualization as described

in interface requirement

INT-9

Must have

FR-3.5 Functional Security

Vulnerability

Metrics for

Connected

Vehicles

Visualization

The VSMVS shall

provide a Security

Vulnerability metrics

visualization as described

in interface requirement

INT-11

Must have

FR-3.6 Functional Vehicle

Security Best

Practices

Assessment

Metrics

Visualization

The VSMVS shall

provide a Vehicle

Security Best Practices

Assessment metrics

visualization as described

in interface requirement

INT-13

Must have

INT -1 Interface CVE Data

Collection

Interface

The VSMVS shall

provide a Graphical User

Interface to be able to

periodically collect

information from threats

using the NVD and CVE

API

Must have

INT-2 Interface
CVSS Vector

Data Entry

Interface

The VSMVS shall

provide a Graphical User

Interface (GUI) for data

entry of CVSS vector and

metrics information

Must have

INT-3 Interface CVSS Visual

Interface

The VSMVS shall

provide a corresponding

visualization for the

CVSS vector and metrics

Must have

 95

INT-4 Interface Attack

Potential Data

Entry Interface

The VSMVS shall

provide a GUI for the

data entry of attack

potential of threats on

vehicle assets

Must have

INT-5 Interface Attack

Potential Visual

Interface

The VSMVS shall

provide a GUI for the

visualization of attack

potential of threats on

vehicle assets

Must have

INT-6 Interface CWSS Vector

Data Entry

Interface

The VSMVS shall

provide a GUI for data

entry of CWSS vector and

metrics information

Must have

INT-7 Interface CWSS Visual

Interface

The VSMVS shall

provide a GUI for the

visualization of CWSS

vector and metrics

information

Must have

INT-8 Interface Operational

Safety

Assessment

Data Entry

Interface

The VSMVS shall

provide a GUI for data

entry of OSA metrics

information

Must have

INT-9 Interface Operational

Safety

Assessment

Visual Interface

The VSMVS shall

provide a GUI for

visualization of OSA

metrics information

Must have

INT-10 Interface Security

Vulnerability

Data Entry

Interface

The VSMVS shall

provide a GUI for data

entry for Security

Vulnerability Metrics for

Connected Vehicles

information

Must have

 96

INT-11 Interface Security

Vulnerability

Visual Interface

The VSMVS shall

provide a GUI for the

visualization of Security

Vulnerability Metrics for

Connected Vehicles

Must have

INT-12 Interface Vehicle

Security Best

Practices

Assessment

Data Entry

Interface

The VSMVS shall

provide a GUI for data

entry for Vehicle Security

Best Practices

Assessment Metrics for

Connected Vehicles

information

Must have

INT-13 Interface Vehicle

Security Best

Practices

Assessment

Visual Interface

The VSMVS shall

provide a GUI for the

visualization of Vehicle

Security Best Practices

Assessment Metrics for

Connected Vehicles

information

Must have

INT-14 Interface API Interaction

Logger

The VSMVS shall log

any interactions with

external APIs in a format

containing the time,

message type, sent

request, response code,

and response

Must have

INT-15 Interface DBMS

Transaction

Logger

The VSMVS shall log all

threat database

transactions in a format

containing the time, query

type, query contents, and

response

Must have

INT-16 Interface Error/Exception

Logger

The VSMVS shall log

errors or exceptions in a

format containing the

time of the event and a

stack trace

Must have

 97

T-1 Test Unit Test Unit system testing shall

be conducted for all

functional system

components

Must have

T-2 Test Integration Test System integration testing

is not within the scope of

the VTME system

Out of

scope

T-3 Test Test Report An associated

documentation of all

system test activities shall

be provided

Must have

NF-1 Non-functional Portability The development team

will attempt to make the

web enabled VTME

system portable across

multiple computing form

factors

Could

have

NF-2 Non-functional Usability The development team

will attempt to satisfy

system usability features

such as navigation,

performance quality, and

intuitiveness of interfaces

Could

have

NF-3 Non-functional Speed The development team

will attempt to enhance

the VTME system

responsiveness to user

interactions and database

transactions

Should

have

SC-1 Source Code Source Code

Control

The development team

shall maintain a source

code repository and

version control on GitHub

Should

have

 98

Appendix B: Requirements Traceability Matrix

Requirement

ID

Requirement Description Test Case Status

S1 Defines the scope of the system N/A N/A

T-1 Unit system testing shall be conducted

for all functional system components

Multiple Test Cases Not

Started

T-2 System integration testing is not

within the scope of the VTME system

N/A N/A

T-3 An associated documentation of all

system test activities shall be provided

N/A Not Started

NF-1 The development team will attempt to

make the web enabled VTME system

portable across multiple computing

form factors

N/A N/A

NF-2 The development team will attempt to

satisfy system usability features such

as navigation, performance quality,

and intuitiveness of interfaces

N/A N/A

NF-3 The development team will attempt to

enhance the VTME system

responsiveness to user interactions

and database transactions.

N/A N/A

SC-1 The development team shall maintain

a source code repository and version

control on GitHub

N/A N/A

FR-1.1 The VSMVS shall facilitate data input

for the CVSS metrics

Not Started Not

Started

FR-1.2 Data input and storage shall be

implemented for the attack potential

on vehicle assets

Not Started Not

Started

 99

FR-1.3 Data input and storage shall be

implemented for the CWSS metric

groups.

Not Started Not

Started

FR-1.4 Data input and storage shall be

implemented for the OSA

Cybersecurity metrics.

Not Started Not

Started

FR-1.5 Data input and storage shall be

implemented for the security

vulnerability metrics.

Not Started Not

Started

FR-1.6 Data input and storage shall be

implemented for the security best

practices assessment metrics.

Not Started Not

Started

FR-2.1 The VSMVS shall provide a metrics

calculator using the established

formulae for the CVSS metrics

Not Started Not

Started

FR-2.2 The VSMVS shall provide a metrics

calculator using the established

formulae for the attack potential on

vehicle assets metrics

Not Started Not

Started

FR-2.3 The VSMVS shall provide a metrics

calculator using the established

formulae for the CWSS metrics

Not Started Not

Started

FR-2.4 The VSMVS shall provide a metrics

calculator using the established

formulae for the OSA cybersecurity

metrics

Not Started Not

Started

FR-2.5 The VSMVS shall provide a metrics

calculator using the established

formulae for the security vulnerability

metrics for connected vehicles

Not Started Not

Started

FR-3.1 The VSMVS shall provide a CVSS

metrics visualization as described in

interface requirement INT-3

Not Started Not

Started

 100

FR-3.2 The VSMVS shall provide an Attack

Potential on Vehicle Assets metrics

visualization as described in interface

requirement INT-5

Not Started Not

Started

FR-3.3 The VSMVS shall provide a CWSS

metrics visualization as described in

interface requirement INT-7

Not Started Not

Started

FR-3.4 The VSMVS shall provide an

Operational Safety Assessment (OSA)

Cybersecurity metrics visualization as

described in interface requirement

INT-9

Not Started Not

Started

FR-3.5 The VSMVS shall provide a Security

Vulnerability metrics visualization as

described in interface requirement

INT-11

Not Started Not

Started

FR-3.6 The VSMVS shall provide a Vehicle

Security Best Practices Assessment

metrics visualization as described in

interface requirement INT-13

Not Started Not

Started

 101

Appendix C: Glossary
Term Description

API Application Program Interface

ATT&CK Adversarial Tactics, Techniques, and

Common Knowledge

ATT&CK Framework A knowledge base of adversary tactics and

techniques based on real-world observations.

AWS Amazon Web Services

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

Cyber Kill Chain A model developed by Lockheed Martin®

used for the identification and prevention of

cyber intrusions.

EC2 Elastic Compute Cloud

GUI Graphical User Interface

IIS Internet Information Services

IoC Indicators of Compromise

.NET A cross-platform, open-source developer

platform created by Microsoft

OSINT Open-Source Intelligence

OTX Open Threat Exchange

Tactics, Techniques and Procedures (TTPs) Activities and methods used by an adversary

to carry out a cyber attack

VSMVS Vehicle Security Metrics Visualization

System

VTCS Vehicle Threat Collection System

VTDBS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

 102

Appendix III. Technical Report UWF-TR-FDOT-002-02

Connected Vehicle Security Metrics and Visualization
A White Paper

Technical Report UWF-TR-FDOT-002-02

Contract Number: BED34. Task Order: 977-01

Florida Department of Transportation (FDOT)

Guillermo A. Francia, III, Principal Investigator
Center for Cybersecurity

University of West Florida, USA
gfranciaiii@uwf.edu

Abstract. The rapid advancement of connected and autonomous vehicles created new challenges
for security and safety professionals. The sophistication of vehicle communication systems, found
externally and internally, provides an added complexity to the issue. In security parlance, this is
an expansion of the attack surface on vehicles. These challenges prompted the enhancement of
existing and the development of new safety and security standards initiated by government,
industry, and trade organizations. These initiatives clearly underscore the need to examine the
state of connected vehicle security. For that reason, security metrics must be developed. As a
major component of continuous improvement, quantitative and qualitative measures must be
devised to be able to make a full appreciation of the process. This white paper describes updates
on previous works by the PI on connected vehicle security metrics, offers new metrics, illustrates
the applicability of the metrics through sample calculations, and proposes visualization systems
to enhance their utilization.

Keywords. Common Vulnerability Scoring System (CVSS), Common Weakness Scoring System
(CWSS), Operational Safety, Security Attacks, Security Metrics, Threats, Vulnerabilities, Connected
Vehicle, Security Visualization

I. INTRODUCTION
The unprecedented advancement of technologies in both internal and external communication

of connected vehicles imposes unwarranted consequences on their security and safety. Fortunately,

the eagerness to deploy these technologies is tempered by government regulations. It is imperative

that sound regulatory framework be put in place to ensure the security and safety of modern

vehicles.

The ISO/SAE 21434 [20] came about when two organizations: ISO 26262 and SAE J3061

realized a common goal, i.e., automotive safety and security related standards. The ISO/SAE

21434 document titled “Road vehicles—Cybersecurity Engineering” established an effective

global standard for automotive cybersecurity [21] [22]. The document provides the necessary

vocabulary, objectives, requirements, and guidelines that are pertinent to cybersecurity

engineering. Essentially, it enables organizations to define cybersecurity policies and processes,

manage risks, and foster cybersecurity culture awareness [23].

 103

The internal communication among electronic control units (ECUs), which are embedded

devices that controls and automates a vehicle operation and performance, goes through inherently

insecure channels, such as the Controller Area Network (CAN). For instance, a vulnerability,

described by Trend Micro [24], enables a stealthy denial-of-service attack that practically works

for every automotive vendor. This Exploitable hardware design flaws in some capacitive micro-

electromechanical system (MEMS) accelerometer sensors produced by prominent automobile

parts manufacturers were reported in another ICS-CERT alert: ICS_ALERT-17-073-01A in early

2017.

External communication systems in vehicles enable access convenience and online services

[25]. Vehicle external communication can be classified into four main categories: vehicle-device

(V2D) communication, vehicle-vehicle (V2V) communication, vehicle-infrastructure (V2I)

communication, and vehicle-pedestrian (V2P) communication [2]. These are supported by

cellular-vehicle-everything (C-V2X) [26] to enable a more efficient transportation ecosystem.

With the advent of Electric Vehicles (EVs), a new type has emerged--vehicle-grid (V2G)

communication [27].

II. CONNECTED VEHICLE SECURITY

1. Vehicle Data, Devices and Communication

Cybersecurity policies protect data, devices, and communication channels. Connected
vehicles operate utilizing those three entities. The confidentiality, integrity, and availability of
connected vehicle data is paramount to their safe operation. These data are generated and
consumed by devices in vehicles and are transmitted through various communication channel
types as described above. Existing connected vehicle data sources, as described by Otonomo
[28], include the following:

• Traffic sensors. Data collected by these devices include vehicle speed, direction, location,

and weight.

• Cameras. These can be CCTV systems or in-vehicle surveillance systems.

• Mobile phones. The data collected by these devices include geolocations and other

mobility data while walking, riding a bike, on a public transport system, etc.

• Human Surveillance. Data collected through surveys.

• Lidar/Radar/Sonar. These devices, mounted on vehicles, collect and/or generate data that

can be used for autonomous or semi-autonomous operations.

Vehicle data provide several benefits such as acquisition cost reduction, lower operating cost,

efficient logistics, effective data utilization, and expanded services [28]. However, these benefits

introduce security tradeoffs which are discussed in subsequent sections.

2. Connected Vehicle Threats and Vulnerabilities

The Car Hacking Village, a conference track and interactive event at DEF CON, featured a

study by NDIAS—a Japan-based automotive cybersecurity assessment group. In their study, the

group tested over 40 ECUs provided by multiple manufacturers (15 in-vehicle infotainment units,

 104

8 telematic control units, 8 gateways, advanced driver-assistance systems, smart key units, and

electric vehicle chargers). The results of the study revealed more than 300 vulnerabilities in

software and hardware components [29].

Threats and vulnerabilities in connected vehicles have been discovered in recent years and

continue to proliferate. Prominent among these are the following:

• The vulnerability of Tesla’s touch screen infotainment system was exploited and used

as a gateway to manipulate the driver’s seat motor, the windshield wipers, the turn

indicators, and the sunroof from a distance while the car was in motion [30].

• The remote keyless system on Renault ZOE 2021 vehicles sends 433.92 MHz RF

signals from the same Rolling Codes set for each door-open request, which allows for

a replay attack [31].

• The lack of keyless ignition hardware made Hyundai and Kia vehicles (2016-2021

models) target of car thieves. Hyundai came up with a $170 security kit to deal with

the issue [59].

• The rolling-PWN replay vulnerability of keyless entry system on Honda vehicles [32].

• Security researchers found a vulnerability in SiriusXM, a 3rd party services-provider

that powers telematics and infotainment systems for connected vehicles, by sending

API requests with the VIN on a unique ID field [33].

In McCarthy, et al. [51], use cases of Automotive Security Threats are described. The use cases
include, among others, brake disconnect, horn activation, engine halt air bag, portable device
injection, key fob cloning, cellular attack, and malware download. In addition, vehicle threat
matrix development and matrix population using use cases are demonstrated by the authors. In
[60], a threat matrix on a Denial-of-Service threat on CAN protocol use case is shown. The threat
matrix includes categories of severity, sophistication level, and likelihood. Further, the likelihood
is assessed by an expert as either high, medium, or low. In this whitepaper, we apply this concept
by building a threat matrix on a vehicle remote keyless entry system use case that was
documented in CVE-2022-38766 [31]. The populated threat matrix is depicted on Table 1.

Table 1. A Populated Threat Matrix on a Remote Keyless Entry System

Matrix Category Category Description Category Options

ID Number ID for the attack 0002

Attacked Safety and

Non-safety Zone Groups

Components and systems that

are targeted or used as support

Remote key fob

Attacked Zone Safety Safety related functions Yes

Component/System Component or system under

attack

RF-signal activated door

Exploitable

Vulnerability

RF Signal reuse 433.92 MHz RF signals

Attack Vector Replay of rolling code set RF receiver/transmitter

Access Method Remote wireless Replay of RF rolling code set

Attack Type Type of attack Replay attack

 105

Resources Required Resources needed to carry out

the attack

RF Signal capture and generator

Severity Degree of severity Medium

Trip Phase Vehicle movement status Parked

Loss of Privacy Privacy compromised No

Sophistication Level Complexity of potential attack Medium-need to know how to use

RF signal capture and generator

device

Difficulty of

Implementation

How difficult is it to

implement

Medium

Likelihood Likelihood of a potential

attack to be carried out

Medium

3. Vehicle Security Attacks and Mitigations
The inherently insecure Controller Area Network (CAN) in most connected vehicles is the

focus of several studies [34] [35]. The lack of message authentication and the absence of data

encryption are the main enabler of malicious activities in this network protocol. To alleviate those

issues, research works, such as those using techniques such as Machine Learning [36] [37],

authentication code [38], and clock skew signature [39], started to proliferate.

Other notable documented attack models and vulnerability mitigations include the following:

• Petit, Feiri, and Kargl [40] described an abstract model of attack surfaces on the

vehicular communication domain. The attack model considers the sensor data in

various stages: acquisition, processing, storing, and transmission. This seminal work

has been extended by Monteuuis, et al. [41] with the notion of a secured automotive

perception consisting of two main components: Objects and Data Stages.

• In [42], the design, implementation, and evaluation of a hardware security module for

a modern automotive vehicle is presented.

• Lokman et al. conducted a systematic review of Intrusion Detection Systems (IDS) for

automotive CAN bus system based on detection approaches, deployment strategies,

attacking techniques and technical challenges [43]

4. Vehicle Attack Surfaces
An attack surface is the number of possible points or attack vectors where a malicious user

can initiate an unauthorized access to the system to manipulate the system or extract data [61].

The objective is to minimize this surface to reduce the risk of a successful cyberattack.

In Bauer and Schartner [48], a table depicting attack surfaces and the classification of attack

potential according to common criteria is presented. The table includes information on the

difficulty and the impact of a certain exploit to an asset.

Maple, et al. [62] propose a reference architecture using a hybrid Functional-Communication

viewpoint for attack surface analysis of Connected Autonomous Vehicles (CAVs), including the

Device Edge and Cloud systems CAVs.

 106

Various attack surfaces on vehicles ranging from the OBD port to the infotainment system

were examined by Koscher, et al. [63].

Checkoway, et al. demonstrated the feasibility of external attacks on modern automobiles

through a systematic analysis of external attack vectors [64]. Their study is focused on three main

areas: threat model characterization, vulnerability analysis, and threat assessment. On threat model

characterization, the feasibility of multiple I/O channels, on indirect physical access channels,

short-range wireless access, and long-range wireless access, to deliver malicious payload is

demonstrated. On vulnerability analysis, the study revealed the existence of exploitable

vulnerabilities without requiring physical access. Finally, on threat assessment, the study puts forth

the arguments on the utility of these attacks [64].

As the number of connected vehicles worldwide continue to grow at an almost exponential
rate, the attack surfaces on connected vehicles cannot be ignored. Vehicle security attack surfaces
include the following [2]:

• Telematics servers. These servers act as remote command and controls, which not only
collect data but also send remote commands such as locking and unlocking doors,
switching engines on and off, etc.

• Onboard Diagnostic (OBD) Ports. These ports can be remotely reached with OBD devices
that are configured for Wi-Fi or cellular communications.

• Mobile Device Apps. Mobile device applications are increasingly used to communicate

with connected vehicles via centralized application servers. When these servers get

compromised, so goes all vehicles that are dependent on them.

• Wi-Fi devices. Several car manufacturers equip vehicles with built-in Wi-Fi access points

for immediate connection on the Internet. These devices, when left unsecured, can easily

become entry points for an attack.

• Telematics Control Units. These devices are usually found on OBD ports as wireless

dongles. Their main purposes are for data collection for insurance, fleet management,

location tracking, and performance monitoring.

III. INDUSTRY AND GOVERNMENT INITIATIVES AND STANDARDS

In [2], several initiatives geared toward the protection of a vehicle’s electronic control units
have been reported. Notable examples are the E-safety Vehicle Intrusion Protected Application
(EVITA) Project [44], the Preparing Secure Vehicle-to-X Communication Systems (PRESERVE)
Project [45], Secure Vehicular Communication (SeVeCom) Project [46], and the Society of
Automotive Engineers (SAE) J3061 Guidebook [47].

The National Highway Traffic Safety Administration (NHTSA) document titled “Automotive

Security Best Practices for Modern Vehicles” [50] presents the results and analysis of a review of
best practices and observations in the field of cybersecurity involving electronic control systems

 107

across a variety of industry segments where the safety-of-life is concerned. The document was
updated in September 2022 [65]. It builds upon emerging voluntary industry standards such as
the ISO/SAE 21434, “Road Vehicles—Cybersecurity Engineering” [23] and other best practice
documents such as that produces by the Automotive Information Sharing and Analysis Center
(Auto-ISAC) [58].

We close this section by enumerating the following additional standards. This list could be

used as a guidance or a starting point for further exploration of applicable instruments in the
design and implementation of tools and processes in connected vehicle security.

• SAE J3101 [66]. This standard describes the requirements for hardware protected
security for ground vehicle applications. Use cases include, among others, creation of
key fob, re-flashing of the ECU firmware, reading and exporting of PII out of the ECU,
service activities on the ECU, etc.

• International Automotive Task Force (IATF) 16949:2016 [67] provides guidelines on
common processes and procedures for the automotive industry. Certification to this
standard is required throughout the automotive supply chain.

• ISO/IEC/IEEE 29119-1:2013 Software and Systems Engineering—Software Testing-
Part 1: Concepts and Definitions [68]. This set of standards defines an internationally-
agreed set of standards for software testing. This is an indispensable tool for the
design and development of system and application software for the automotive
vehicle.

IV. VEHICLE SECURITY METRICS

Continuous improvement is a practice that seeks to enhance operations. Security is a process

and not a goal and should adapt into continuous improvement progression. The manner to
measure this progression is through security metrics. To this end, we propose vehicle security
metrics that are practical and relevant.

A good metric should measure the relevant data that satisfy the needs of decision makers and
should be quantitatively measurable, accurate, validated on a solid base, inexpensive to execute,
able to be verified independently, repeatable, and scalable to a larger scale [69]. By adapting
security risk regression that is successful in predicting attacks from simple security threats,
Schechter [70] concludes that security strength is a key indicator of security risks for more
complex security threats in information systems. In congruence, Manadhata and Wing propose
the attackability of a system as an indicator of security strength [71]. Their security metric is based
on the notion of attack surface by comparing attackability of systems along three abstract
dimensions: method, data, and channel. The attackability of a system is a cost-benefit ratio
between efforts of gaining access and potential impacts of security failure among the three
dimensions [54].

Human factor, the weakest link in security, adds additional complication in safety and security

procedures alike. Therefore, in order to properly measure security at the level of socio-technical

 108

system in which technical design decisions are influenced by human factors, it is imperative that
social behavior needs to be taken into consideration [72] [73].

There exists notable works on automotive vehicle security metrics. In [12], a set of security

metrics for the software system in a connected vehicle is proposed. The set of metrics provides a
quantitative indicator of the security vulnerability of the following risks on the system software:
ECU coupling, communication, complexity, input and output data, and past security issues. For a
detailed discussion on this set of metrics, the reader is referred to [2].

A Bayesian Network (BN) for connected and autonomous vehicle cyber-risk classification was

developed by Sheehan, et al. [52]. The BN model uses the Common Vulnerability Scoring System
(CVSS) software vulnerability risk-scoring framework for input parameters specifically on the
Global Positioning System (GPS) jamming and spoofing.

In the following section, we present a collection of vehicle security metrics similar to those

in an earlier work on critical infrastructure and industrial controls systems security [53] [54].

1. Common Vulnerability Scoring System (CVSS)

CVSS is an open framework for communicating the characteristics and severity of software
vulnerabilities. It consists of three metric groups: Base, Temporal, and Environmental. Details on
these metrics can be found in [1].

In [2], an illustration on the application of these metrics on the vulnerability of the Tesla

Model S/X vehicles manufactured before March, 2018 [3] and the vulnerability in the
infotainment component of BMW Series vehicles (CVE-2018-9322) [4] are illustrated.

In this white paper, we apply the metrics using a very recent use case on a popular models

of Honda vehicles. This Remote Keyless Entry (RKE) vulnerability is documented in [74]. The
vulnerability allows attackers to perform unlock operations and force a resynchronization after
capturing five consecutive and valid RKE signals. It has the following CVSS v3.1 Base vector:

AV:A/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:H

This translates to Adjacent for the Attack Vector (AV), High for Attack Complexity (AC), None
for Privileges Required (PR), Required for User Interaction (UI), Unchanged for Scope, None for
Confidentiality (C), High for Integrity (I), and High for Availability. The CVSS score for this Base
vector is 6.4, which is categorized as Medium. This CVSS Base Score is calculated based on a table
of metric values and the formulae found in CVSS v3.1 Specification Document [1]:

2. Common Methodology for IT Security Evaluation (CEM) [5]

 109

The CEM is a companion document to the Common Criteria for Information Technology
Security Evaluation (CC). It defines the minimum actions to be taken by an evaluator conducting
a CC evaluation utilizing the criteria and evidence as stated in the CC.

In this white paper, we specifically examine the attack potential on an automotive vehicle. The

following factors need to be considered when performing an analysis of an attack potential:

• Elapsed Time. Time taken by an attacker to identify a potential vulnerability, to develop an
attack method, and to sustain effort required to execute the attack. Value ranges from 1
day to more than 6 months.

• Specialist expertise. Describes the level of sophistication of the attacker. Levels include
laymen, proficient personnel, expert, and multiple experts.

• Knowledge of the target. Refers to the familiarity of the attacker on the target. Levels
include public knowledge availability, restricted information, sensitive information, and
critical information.

• Window of opportunity. This refers to the duration of time in which the vulnerability is
exploitable. Window of opportunity includes unlimited, easy, moderate, difficult, and
none.

• IT hardware/software or other equipment. This refers to the availability and the level of
complexity of equipment/software needed to identify or exploit a vulnerability. Classes of
equipment/software include standard, specialized, highly specialized, and multi-
specialized.

Levels in each factor are assigned corresponding numeric values and illustrated in the

Common Criteria Portal [5]. Bauer & Schartner demonstrate sample calculations of attack
potential [48] on generic threat assets in an automotive vehicle. The table is augmented by our
own analysis of threats that are prevalent on connected automotive vehicles. Those last 5 rows
represent denial of telematics service, unauthorized access, command injection, identity
masquerading and unauthorized data tampering. An excerpt of those calculations is shown on
the first 3 rows of Table 2.

An unauthorized access may originate locally, such as a cloning of key fob, or remotely through

an internetwork communication channel. Time factor could be between one day to one week (1);
expertise factor requires at least at the proficient level; knowledge of the vehicle assets will be,
most likely, at the restricted level; the window of opportunity is unlimited; and the attack may
not need specialized equipment.

The time to accomplish identity masquerading in connected vehicles may take a bit longer

compared to unauthorized access; expertise factor requires at least at the proficient level;
knowledge of the vehicle assets will be, most likely, at the sensitive level; the window of
opportunity is very limited; and the attack may need some specialized equipment.

Data tampering can be accomplished by the widespread Man-In-The-Middle (MITM) attack

tools. The time to accomplish such attack can take place very quickly; expertise factor requires at
least at the semi-proficient level; knowledge of the vehicle assets will be most likely at the

 110

familiarity level; the window of opportunity is somehow large; and the attack may not need
specialized equipment.

2.1 Threats on Assets
 We identify the following threats on vehicle assets and derive the attack potential metrics.
We apply the previously defined factors for analysis and aggregate the metrics. A sample attack
potential metrics derivation is shown on Table 2. The threats on vehicle assets are described in
the following.

1. False Data from ECU. This type of attack occurs when a vehicle device or Electronic

Control Unit (ECU), connected to the CAN bus, sends false information to other ECUs to

induce them to behave abnormally.

2. Blocking of CAN Bus. The CAN protocol has an inherent vulnerability that can easily be

exploited. The Arbitration ID field determines who has preference in using the bus. The

node that has lowest Arbitration ID field value gets preference over the other nodes. An

attack can be realized by the continuous transmission of CAN messages having very low

Arbitration ID field values, which essentially blocks the CAN bus to other traffic with

higher Arbitration ID.

3. Malicious Software. This is a common attack that is enabled by malicious software

originating from the supply chain, the vehicle system patches, the telematics channel, or

the On-Board Device (OBD) port.

4. Denial of Telematics Service. This is a special case of the denial-of-service attack in

which the telematics communication channel is overwhelmed by excessive unwanted

traffic to prevent the legitimate transfer of information to materialize.

5. Unauthorized Access. An unauthorized access may originate locally, such as from a

cloned key fob, or remotely through an internetwork communication channel such as

WiFi or 5G broadband.

6. Command Injection. In this type of attack, malicious commands are injected into the

vehicle intranet to induce an abnormal behavior.

7. Masquerading. This attack potential is realized by impersonating an authorized system or

user to take control of the vehicle.

8. Data Tampering. This attack potential can be realized by the widespread Man-In-The-

Middle (MITM) attack tools. The time to accomplish such attack can take place very

quickly.

 111

Table 2. Attack Potential Calculation

 THREAT on ASSETS
TIM

E

E

X

P

E

R

T

I

S

E

K

N

O

W

L

E

D

G

E

O

P

P

O

R

T

U

N

I

T

Y

E

Q

U

I

P

M

E

N

T

TOTAL

False Data from ECU 10 6 3 1 4 24

Blocking of CAN Bus 8 3 3 1 4 19

Malicious Software 7 5 3 1 4 20

Denial of Telematics Service 1 3 4 2 2 12

Unauthorized Access 8 5 3 1 2 19

Command Injection 2 5 4 1 2 14

Masquerading 4 3 5 5 5 22

Data Tampering 1 2 4 1 2 10

In Table 2, the total attack potential for each threat is simply a summation of the value assigned
to each of the attribute of a successful attack. These results can be utilized during the decision-
making process of cybersecurity asset allocation towards risk mitigation or prevention.

3. Common Weakness Scoring System [6]

The Common Weakness Scoring System (CWSS) is a mechanism for evaluating software

weaknesses in a consistent, flexible, open manner. It is a community-based undertaking which

addresses the need for prioritizing the software vulnerability issues. The measurements are

organized into three metric groups: Base Finding, Attack Surface, and Environmental. The groups,

including their subgroups, as described in [6] are as follow:

• Base Finding. This group represents the inherent risk of the weakness, confidence in the

accuracy of the finding, and strength of controls.

o Technical Impact (TI). The potential result of the weakness.

o Acquired Privilege (AP). The type of privilege acquired after successfully

exploiting the weakness.

o Acquired Privilege Layer (AL). The operational layer acquired after successfully

exploiting the weakness.

o Internal Control Effectiveness (IC). The ability of the control to prevent the

exploitation of the weakness.

 112

o Finding Confidence (FC). The confidence that reported issue is an exploitable

weakness.

• Attack Surface. This group represents the barrier in the weakness’ exploitation.

o Required Privilege (RP). The type of privilege needed to be able to reach the

code/functionality to exploit the weakness.

o Required Privilege Layer (RL). The operational layer with which the attacker must

have the privilege to reach to exploit the weakness.

o Access Vector (AV). The channel through which the attacker must communicate to

reach the code/functionality that contains the weakness.

o Authentication Strength (AS). The strength of authentication protecting the

weakness.

o Level of Interaction (IN). The interactions needed to exploit the attack.

o Deployment Scope (SC). The extent of the weakness on all the software/hardware

deployment.

• Environmental. This represents the attributes of the weakness that are specific to a

particular environment or operational context.

o Business Impact (BI). The potential impact to the organization by the successful

exploitation of the weakness.

o Likelihood of Discovery (DI). The likelihood that the attacker can discover the

weakness.

o Likelihood of Exploit (EX). The likelihood that weakness, if discovered, can be

exploited.

o External Control Effectiveness (EC). The capability of external control to prevent

the exploitation of the weakness.

o Prevalence (P). The frequency of occurrence of the weakness in the software

3.1 Group Scoring
3.1.1 Base Finding Subscore

The Base Finding Subscore is calculated as follows:

Base = [(10 * TechnicalImpact + 5*(AcquiredPrivilege +

AcquiredPrivilegeLayer) + 5*FindingConfidence) * f(TechnicalImpact) *

InternalControlEffectiveness] * 4.0

f(TechnicalImpact) = 0 if TechnicalImpact = 0; otherwise

f(TechnicalImpact) = 1.

The maximum potential Base Finding Subscore is 100.

3.1.2 Attack Surface Subscore

The Attack Surface Subscore is calculated as:

 113

AttackSurface = [20*(RequiredPrivilege + RequiredPrivilegeLayer +

AccessVector) + 20*DeploymentScope + 15*LevelOfInteraction +

5*AuthenticationStrength] / 100.0

The formula indicates that the required privileges and access makes up 60% of the Attack Surface

subscore; while the deployment scope and the interaction receive weights of 20% and 15%

respectively, authentication receives a minor focus of just 5%.

The Attack Surface subscore ranges between 0 and 100, which is divided by 100.

3.1.3 Environmental Subscore

The Environmental Subscore is calculated as:

Environmental = [(10*BusinessImpact + 3*LikelihoodOfDiscovery +

4*LikelihoodOfExploit + 3*Prevalence) * f(BusinessImpact) *

ExternalControlEffectiveness] / 20.0

f(BusinessImpact) = 0 if BusinessImpact == 0; otherwise

f(BusinessImpact) = 1

BusinessImpact accounts for 50% of the environmental score. ExternalControlEffectiveness is

always non-zero (to account for the risk that it can be inadvertently removed if the environment

changes). It can have major impact on the final score. The combination of LikelihoodOfDiscovery

and LikelihoodOfExploit accounts for 35% of the score, and Prevalence at 15%.

3.1.4 CWSS Score

The Common Weakness Scoring System is calculated by combining the three subscores.

Thus,

CWSS = Base * AttackSurface * Environmental

4. Operational Safety Assessment Metrics

The purpose of this section is to provide an insight on the impact of cybersecurity to operational

safety assessment (OSA). There exists several OSA metrics that have been proposed, adopted, and

studied [7] [8]. SAE J3237 [9], a work in progress information report, is currently being developed.

This report provides definitions and lexicon for describing operational safety metrics for ADS

vehicles. The characteristics of the listed metrics include the following: definition, data source,

subjectivity, observable variable, formulation, subjective assumptions and thresholds, and origin.

A related work by the SAE V&V Task Force is the development of a proposed taxonomy for a

Recommended Practice on Operational Safety metrics [10]. At the classification level of the

proposed taxonomy are the following operational safety metrics [10]:

 114

• Safety Envelope Metric. This is an OSA measure of the connected vehicle’s maintenance

of safe boundary. An example is the vehicle’s capability of maintaining the safe distance

driving rule.

• Behavioral Metric. This OSA measure indicates the improper behavior of the subject

vehicle. Examples include speeding and sudden or hard braking.

• Component Metric. This is an OSA measure of the performance of the vehicle components

under normal operating condition. For example, an Electronic Control Unit (ECU)

operating according to its specification.

• Sensing Metric. This is an OSA measure of the accuracy of data collected by the CAV

sensors. An example is the data collected by Roadside Units (RSUs). For non-autonomous

vehicles, it is the measure of the quality of data transmitted or collected by vehicles

participating in a vehicle-to-infrastructure (V2I) environment.

• Perception Metric. This OSA measure pertains to the quality of interpretation of

environment data collected by the CAV sensors. An example would be the automated

recognition of traffic signs and signals.

• Planning Metric. This OSA metric measures the ability of the CAV to devise a suitable

trajectory through the CAV environment. An example is the quality of the CAV’s planned

trajectory in collision avoidance. For non-autonomous vehicles, it is the measure of the

quality of maintaining control of the vehicle in the presence of an unexpected obstacle.

• Control Metric. This OSA metric measures the ability of the CAV to execute the planned

route. An example is the ability of the CAV to stay on the predetermined route. For non-

autonomous vehicles, it is the measure of the quality of maintaining control of the vehicle

navigation.

We augment these OSA metrics with the following:

• Authentication Metric. This OSA metric measures the quality of the authentication system

deployed in the vehicle. This is extremely useful in modern vehicles that rely on

communications such as those in V2V or V2I environment.

• Physical Access Metric. This OSA metric measures the strength of physical access

protection of vehicle controls. An example is the unsecured physical access to an OBD port

which could compromise the vehicle’s CAN bus.

• Communication Channel Metric. This OSA metric pertains to the quality of the

communication channel used by the vehicle.

4.1 Cybersecurity Metrics for Operational Safety

We investigate the impact of cybersecurity to operational safety. In doing so, we devise

cybersecurity metrics that have close affinities with OSA metrics. These cybersecurity metrics for

operational safety are described in the following:

• Safety Envelope Metric. This cybersecurity metric measures the security resiliency of a

connected vehicle to be able to maintain a safe boundary amidst a cyber intrusion incident.

An example is a vehicle’s capability in preventing malicious manipulation of the control

and sensing systems that enable safe distance driving operation. Values range from 0.0 for

least resilient to 1.0 for most security resilient.

• Behavioral Metric. This cybersecurity metric measures the vehicle’s capability to protect

against a cyber-attack that enables the improper behavior of the subject vehicle. An

 115

example of such attack is the manipulation of the vehicle cruise control mechanism. Values

range from 0.0 for least capable to 1.0 for most capable.

• Component Metric. This is a measure of the susceptibility of the vehicle components to

cyber-attack. For example, an Electronic Control Unit (ECU) device originating from an

unverifiable supply chain may is highly susceptible to cyber-attack. Values range from 0.0

for most susceptible resilient to 1.0 for least susceptible.

• Sensing Metric. This cybersecurity metric pertains to the integrity and accuracy of data

collected by the vehicle sensors. Roadside Units (RSUs) that are not properly secured may

produce inaccurate or tampered data. Values range from 0.0 for least reliable data to 1.0

for most reliable data.

• Perception Metric. This cybersecurity metric pertains to the security of the system that

provides for the interpretation of environment data collected by the vehicle sensors. For

example, an insecure image processing system that is highly susceptible to an attack may

provide inaccurate interpretation of traffic signs or signals. Values range from 0.0 for least

secure to 1.0 for most secure.

• Planning Metric. This cybersecurity metric measures the vulnerability of the trajectory

planning system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0

for least vulnerable.

• Control Metric. This cybersecurity metric measures the vulnerability of the vehicle’s

control system to malicious intrusion. Values range from 0.0 for most vulnerable to 1.0 for

least vulnerable.

• Authentication Metric. This cybersecurity metric measures the security posture of the

authentication system deployed in the vehicle. Values range from 0.0 for least secure to 1.0

for most secure.

• Physical Access Metric. This cybersecurity metric measures the strength of physical access

protection of vehicle controls. Values range from 0.0 for least physically secure to 1.0 for

most physically secure.

• Communication Channel Metric. This cybersecurity metric pertains to the level of

protection of the communication channel used by the vehicle. Security characteristics of

data transmission such as encryption, authentication, and attribution are pertinent concerns

in this metric. Values range from 0.0 for least secure to 1.0 for most secure.

Emulating the evaluation methodology of the OSA metrics that was introduced by Wishart, et.al.

[11], we present four evaluation factors for the formulation of the aggregation of cybersecurity

metrics. The four evaluation factors are described in the following:

• Reliability. This factor quantifies the fidelity of the sources of measurement data. For

instance, data originating from actual events carry a higher value than those from simulated

events. Values range from 0.1 for less reliable to 1.0 for most reliable.

• Relevance. This factor quantifies the relevance of the measurement to a subject vehicle.

This value may vary according to the specificity of data such as make and model of the

subject vehicle. Data for a Honda CRV is more specific than data that refers to Honda

vehicles in general. Values range from 0.1 for least relevant to 1.0 for most relevant.

• Extent. This factor quantifies the scope or extensiveness of the measurement data. The

value ranges from 0.1 for least extensive to 1.0 for most extensive.

 116

• Criticality. This factor quantifies the gravity of a specific metric. For instance, security

measurement on control will carry a heavier weight than that on safety envelope. The value

ranges from 0.1 for least critical to 1.0 for most critical.

The Aggregate Security Metric (ASM) for a specific vehicle is calculated as

𝐴𝑆𝑀 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 × 𝐸𝑥𝑡𝑒𝑛𝑡 × (∑ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑘 × 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑀𝑒𝑡𝑟𝑖𝑐𝑘

𝑁

𝑘=1

)

The ASM value will range from 0 to 10.

5. Security Vulnerability Metrics for Connected Vehicles

The purpose of this section is to provide guidance to security engineers and testers using

security vulnerability metrics that measure weak or vulnerable features in the software system of

connected vehicles. These metrics are based on the seminal work of Moukahal and Zulkernine

[12]. We describe each of the following risks on connected vehicles that may eventually contribute

to the likelihood of exploiting a vulnerability.

5.1 ECU Coupling Risk

This risk is manifested by level of interconnection among ECU components. This means the higher

the coupling value the higher is the probability for vulnerabilities. Thus, for every functionality,

F, for all ECUs, N, and for all communication links between ECU j and ECU k, the ECU coupling

risk, REC, is calculated as

 REC(F) = ∑ 𝐶𝑗𝑘
𝑁
𝑗=1,𝑘=1

Cjk =1 if there is at least one information transfer between ECU j and ECU k; 0 otherwise.

 Max (REC(F)) = N

5.2 Communication Channel Risk

This risk is based on the communication channel types that are available for connected vehicles:

vehicle to vehicle (V2V), vehicle to infrastructure (V2I), user to vehicle (U2V), and intra-vehicle

(IV). The communication risk, for each functionality, F, is calculated according to the following

formula:

 RCC (F) =∑ 𝑤𝑗𝐶𝑗
𝑁
𝑗=1

Where N is the number of communication links, wj the weight of a specific communication

channel type based on its propensity to vulnerability, and Cj is 1 if the functionality uses the

channel; 0 otherwise.

Max (RCC (F)) = Total number of all communication channels

 117

5.3 Complexity Risk

This risk is associated with the number of defects in software used in automotive vehicles. The

complexity metric in software is an excellent indicator of vulnerabilities. The Halstead

Complexity measure is a standard way of deriving the complexity of software. Thus, for

calculating the complexity of the functionalities in connected vehicle, we use the formula:

 RSC (F) = SLOC + (Nesting)

Where SLOC is the Source Line of Code, Nesting is the number of control structures, and is

the weight, with value over one, indicating complexity of the nesting structure.

Max (RSC (F)) =SLOC + 10 (Nesting)

5.4 Input and Output Data Risk

This risk involves the input and output data in a connected vehicle. The metric distinguishes

between a Fixed Input (FI) from a Fluctuating Input (LI). It also distinguishes an Insensitive

Output (IO) from a Sensitive Output (SO). Weights () are added to highlight the significance

of the Fluctuating Input and the Sensitive Output. To calculate the Input and Output Data Risk,

we use the formula:

 RDIO (F) = FI + (LI) + IO + (SO)

 Max (RDIO (F)) = FI + (LI) + IO + (SO)

5.5 History of Security Issues

This risk considers the past security issues of a certain vehicle functionality. Given Y as the total

number of years since the first car attack and y as the number of attacks that occurred in year y.

A forgetting factor, , is introduced to provide relevancy to the attacks that occurred in more

recent years, where 0 <= <= 1. To calculate the risk of a vehicle functionality using the history

of security issues, we use the formula:

 RHS (F) = ∑ α𝑦
𝑌
𝑦=1 λ𝑌−𝑦

For a 2-year comparison, the calculation simply boils down to

 = 1 – (1 / 2) the forgetting factor

RHS (F) = 1 ()Y-1 +

Max (RHS (F)) = 1 +

5.6 Overall Security Vulnerability Metric

The overall security vulnerability metric of a certain functionality in a connected vehicle is

calculated by first normalizing the values of each of the metrics and applying a weighting factor

 118

(), which indicates its significance to the overall scheme. The metrics are added to

obtain the overall value, which is in direct correlation with the vulnerability level of the

functionality. The formula is shown as follow:

𝑶𝑺𝑽 = 𝜶 [
𝑅𝐸𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐸𝐶(𝐹))
] + 𝜷 [

𝑅𝐶𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝐶𝐶(𝐹))
] + 𝜸 [

𝑅𝑆𝐶(𝐹)

𝒎𝒂𝒙(𝑅𝑆𝐶(𝐹))
]

+ 𝜹 [
𝑅𝐷𝐼𝑂(F)

𝒎𝒂𝒙 (𝑅𝐷𝐼𝑂(F))
] + 𝝋 [

𝑅𝐻𝑆(F)

𝒎𝒂𝒙 (𝑅𝐻𝑆(F))
]

6. Vehicle Security Best Practices Assessment Metrics

The Vehicle Security Best Practices Assessment Metrics are designed based on the

National Highway Traffic Safety Administration (NHTSA) Report DOT HS812 075 [13]. The

report contains a review and analysis of cybersecurity best practices involving automotive

vehicles.

The study utilizes the iterative Information Security Life Cycle divide into four phases and

processes as shown in Figure 1.

Figure 1. Information Security Life Cycle

The four phases and processes are described in the following.

Assessment Phase. This phase includes the development and implementation of security

policies, the evaluation of system security, and the processes of risk assessment.

Assessment

Security Policy

Data Security &
Privacy

Risk Assessment

Design

System Prioritization

Security
Architecture

Implementation

Remediation

Security Test &
Evaluation

Operation

Awareness &
Training

Intrusion Detection
& Response

 119

• Establishing Security Policy. A robust security policy must be developed, implemented,

and strictly enforced. It also needs to be periodically reviewed and revised as needed.

• Data Security and Privacy. Data security must be examined and evaluated towards

meeting standards, regulations, best practices, and organizational needs.

• Risk Assessment. Iterative risk assessment processes must be regularly conducted to

assess and mitigate existing and emerging vulnerabilities.

Design Phase. This phase entails the prioritization of systems and resources applicable to

security and design and analysis of the system’s security architecture.

• System Protection and Prioritization. In this process, the prioritization of resources is

made to ensure that the identified risks are effectively and efficiently addressed.

• Security Architecture. The systems’ security architecture must be examined to complete

the assessment phase and to initiate risk mitigation.

Implementation Phase. This phase covers the steps taken in vulnerability remediation and the

processes in security testing and evaluation.

• Remediation and Implementation. In this process, vulnerability remediation must be

implemented with robust security controls.

• Security Test and Evaluation. It is imperative that a robust conformance testing must be

conducted to validate the security controls that are implemented. Further, a certification

plan must also be developed in this stage.

Operation Phase. This phase includes the security awareness training for all personnel,

customers, and other stakeholders. It also includes continuous security monitoring, intrusion

detection and response.

• Awareness and Security Training. A periodic security awareness training must be

conducted for all personnel and other stakeholders.

• Intrusion Detection and Response. In addition to continuous security monitoring,

intrusion detection and response to identify successful exploitation of vulnerabilities and

to effectively respond to such attack.

The Automotive Information Sharing and Analysis Center (Auto-ISAC) is another organization

that is proactively working on Best Practices Guides to protect consumer safety through vehicle

cybersecurity [58].

Vehicle Security Best Practices Assessment Metrics

We propose the following vehicle security best practice assessment metrics based on the

Information Security Life Cycle described above. The metrics are built by a self-assessment form,

shown on Table 3, which consists of a checklist of the status of each of the four phases. This form

is converted into an interactive and tabular user interface as shown on Table 4.

 Table 3. Vehicle Security Best Practices Assessment Checklist
Process Checklists Status

Security Policy Are security policies established?
Are security policies properly documented and widely
disseminated within the organization?

 120

Are security policies strictly enforced?
Are security policies periodically reviewed/updated?

Data Security & Privacy Is collected/stored data protected/encrypted?
Is transmitted data encrypted?
Is there a control mechanism for sharing data?
Does the site comply with data protection standards and
regulations (e.g., ISO/IEC 27001 certification, GDPR)?

Risk Assessment Do you conduct a periodic risk assessment of vehicle
cybersecurity?
Is there a developed and implemented organization-
wide risk management strategy?
Is there a Supply Chain Risk Management (SCRM) policy?
Are security controls in place and periodically evaluated
and/or enhanced?

System Protection &
Prioritization

Have you implemented security-by-design principles
during the vehicle design phase?
Have you implemented domain separation for in-vehicle
networks (i.e. limiting the communication between the
safety-critical and non-safety critical domains)?
Does the organization triage the identified risks
according to priority for resource allocation?
Do you have a comprehensive system security test plan?

Security Architecture Have you implemented a layered approach to vehicle
security (ECU level, in-vehicle network level, V2V level,
V2X level)?
Is there a periodic evaluation of the system’s security
architecture?
Do you maintain an inventory of operational software
components used in each automotive ECU and
assembled vehicle?
Have you considered the risks and vulnerabilities
associated with vehicle sensor devices?

Remediation &
Implementation

Are there established mechanisms to update vehicle
software and firmware remotely and securely?
Are appropriate security controls implemented and are
in place?
Do you have an established remediation process?
Is the remediation plan evaluated and implemented?

Security Test & Evaluation Have you conducted a thorough code review on the
vehicle software?
Have you conducted penetration testing on connected
vehicle communication systems before deployment?
Are security controls tested and evaluated for
compliance with security performance specifications?
Do you conform with secure software development best
practices as outlined in NIST 8151 and ISO/SAE 21434?

 121

Awareness & Security Training Is there a periodic security awareness training program
for the entire workforce?
Is security risk and mitigation disclosure available to the
consumer and other stakeholders?
Do you evaluate the effectiveness of the security
awareness training program and introduce
improvements if needed?
Do you collect, maintain, analyze, and share information
related to cybersecurity through the Automotive
Information Sharing and Analysis Center (Auto-ISAC)?

Intrusion Detection &
Response

Is there an Incident Response Plan (IRP) in place?
Is the IRP periodically tested, evaluated, and updated?
Do you have a systematic process for continuous risk and
security monitoring?
Are security incidents properly documented and
reported?

Table 4. Vehicle Security Best Practices Assessment User Interface

 122

V. CONNECTED VEHICLE SECURITY METRICS VISUALIZATION

Visualization takes advantage of cognitive perception in effectively presenting information
to users. It offers a powerful means of recognizing trends and patterns that are not easily
recognized using non-visual methods. In essence, the cognitive reasoning process is augmented
by perception to bring about a more rapid analytical reasoning process [55]. There exist numerous
works on information security visualization, e.g. [56], [57].

As an extension to this research, we ventured on vehicle security metrics visualization. We
designed and are in the process of implementing a visualization system for each of the security

Yes No
Security policies established X

Security policies properly documented and widely disseminated within the organization? X

Security policies strictly enforced X

Security policies periodically reviewed/updated X

Collected/stored data protected/encrypted X

Transmitted data encrypted X

A control mechanism for sharing data X

Compliant with data protection standards and regulations (e.g., ISO/IEC 27001 certification,

GDPR)?
X

Conduct a periodic risk assessment of vehicle cybersecurity X

Developed and implemented organization-wide risk management strategy X

A Supply Chain Risk Management (SCRM) policy X

Security controls in place and periodically evaluated and/or enhanced X

Implemented security-by-design principles during the vehicle design phase X

Implemented domain separation for in-vehicle networks (i.e. limiting the communication between

the safety-critical and non-safety critical domains)
X

Process to triage the identified risks according to priority for resource allocation X

Comprehensive system security test plan X

Implemented a layered approach to vehicle security (ECU level, in-vehicle network level, V2V level,

V2X level)?
X

Periodic evaluation of the system’s security architecture X

Maintain an inventory of operational software components used in each automotive ECU and

assembled vehicle
X

Considered the risks and vulnerabilities associated with vehicle sensor devices X

Established mechanisms to update vehicle software and firmware remotely and securely X

Appropriate security controls implemented and are in place X

Established a remediation process X

Remediation plan evaluated and implemented X

Conducted a thorough code review on the vehicle software X

Conducted penetration testing on connected vehicle communication systems before deployment X

Security controls tested and evaluated for compliance with security performance specifications X

Conformance with secure software development best practices as outlined in NIST 8151 and

ISO/SAE 21434
X

Periodic security awareness training program for the entire workforce X

Security risk and mitigation disclosure available to the consumer and other stakeholders X

Evaluate the effectiveness of the security awareness training program and introduce improvements

if needed
X

Collect, maintain, analyze, and share information related to cybersecurity through the Automotive

Information Sharing and Analysis Center (Auto-ISAC)
X

An Incident Response Plan (IRP) in place X

The IRP periodically tested, evaluated, and updated X

A systematic process for continuous risk and security monitoring X

Security incidents properly documented and reported X

Implementation

Security Policy

Data Security & Privacy

Risk Assessment

System Protection and

Prioritization

Security Architecture

Awareness and

Security Training

Intrusion Detection

and Response

Security Test and

Evaluation

Operation

Remediation and

Implementation

Assessment

Design

Response
Phase Process Checklist

 123

metrics that are described in the preceding sections. A detailed description of each of the
visualization component is found in another manuscript, the Vehicle Security Metrics
Visualization System Specification, Design, and Implementation Document. The visualization
system prototypes are shown in the following sections.

1. Common Vulnerability Scoring System (CVSS)
The user interface, shown in Figure 2, provides data input controls to facilitate the assembly of the

CVSS vector. After the CVSS vector has been created, the user clicks on the CVSS vector itself.

The user is then taken to the CVSS calculator at the National Institute of Standards and Technology

(NIST) website for the calculation and visualization. A sample visualization for the CVSS result

is shown in Figure 3.

Figure 2. The Data Input for the CVSS Vector

 124

Figure 3. The CVSS Calculator Result and Visualization

2. Common Methodology for IT Security Evaluation (CEM)
The attack potential of threats on vehicle assets is derived from the CEM. The interactive data

input interface is shown in Figure 4. A sample visualization for the attack potential metrics is

shown in Figure 5.

Figure 4. The Data Input Interface for the Attack Potential Threats on Vehicle Assets

 125

Figure 5. Attack Potential Threats on Vehicle Assets

3. Common Weakness Scoring System (CWSS)
Figure 6 depicts the CWSS user input interface. Calculations for the final CWSS score is done

on a backend system. The visualization output of the CWSS components is depicted in Figure 7.

Figure 6. The CWSS Data Input Interface

 126

Figure 7. The CWSS Visualization

0

0.2

0.4

0.6

0.8
Technical Impact

Acquired Privilege

Acquired Privilege
Layer

Internal Control
Effectiveness

Finding Confidence

BASE FINDINGS

0
0.2
0.4
0.6
0.8

1
Required Privilege

Required Privilege
Layer

Access Vector

Authentication
Strength

Level of Interaction

Deployment Scope

ATTACK SURFACE

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Base Subscore Attack Surface Subscore Environment Subscore

Weakness Group

 127

4. Operational Safety Assessment Metrics
The User Interface for the Security Metrics for the Operational Safety Assessment is depicted on

Figure 8. The corresponding visualization for the input data is shown in Figure 9.

Figure 8. User Interface for the Security Metrics for Operational Safety

 128

Figure 9. Visualization for the Security Metrics for Operational Safety Assessment

5. Security Vulnerability Metrics for Connected Vehicles
The Interactive Input interface for Security Vulnerability Metrics for Connected Vehicles is

depicted on Figure 10. The corresponding visualization for the input data is shown in Figure 11.

Figure 10. The User Interface for the Visualization of Security Vulnerability Metrics

 129

Figure 11. Visualization for the Security Metrics for Operational Safety Assessment

6. Vehicle Security Best Practices Assessment Metrics
The User Input interface for the Vehicle Security Best Practices Assessment Metrics for

Connected Vehicles is depicted on Figure 12. The corresponding visualization for the input data

is shown in Figure 13.

10

30

15

25

20

ECU Coupling Risk Complexity Risk History of Security
Issue Risk

Communication
Channel Risk

I/O Data Risk

Security Vulnerability of Connected
Vehicles

ECU Coupling Risk
10%

Complexity Risk
30%

History of Security
Issue Risk

15%

Communication
Channel Risk

25%

I/O Data Risk
20%

ECU Coupling Risk Complexity Risk

History of Security Issue Risk Communication Channel Risk

I/O Data Risk

 130

Figure 12. The User Interface for the Vehicle Security Best Practices Assessment Metrics

Yes No
Security policies established X

Security policies properly documented and widely disseminated within the organization? X

Security policies strictly enforced X

Security policies periodically reviewed/updated X

Collected/stored data protected/encrypted X

Transmitted data encrypted X

A control mechanism for sharing data X

Compliant with data protection standards and regulations (e.g., ISO/IEC 27001 certification,

GDPR)?
X

Conduct a periodic risk assessment of vehicle cybersecurity X

Developed and implemented organization-wide risk management strategy X

A Supply Chain Risk Management (SCRM) policy X

Security controls in place and periodically evaluated and/or enhanced X

Implemented security-by-design principles during the vehicle design phase X

Implemented domain separation for in-vehicle networks (i.e. limiting the communication between

the safety-critical and non-safety critical domains)
X

Process to triage the identified risks according to priority for resource allocation X

Comprehensive system security test plan X

Implemented a layered approach to vehicle security (ECU level, in-vehicle network level, V2V level,

V2X level)?
X

Periodic evaluation of the system’s security architecture X

Maintain an inventory of operational software components used in each automotive ECU and

assembled vehicle
X

Considered the risks and vulnerabilities associated with vehicle sensor devices X

Established mechanisms to update vehicle software and firmware remotely and securely X

Appropriate security controls implemented and are in place X

Established a remediation process X

Remediation plan evaluated and implemented X

Conducted a thorough code review on the vehicle software X

Conducted penetration testing on connected vehicle communication systems before deployment X

Security controls tested and evaluated for compliance with security performance specifications X

Conformance with secure software development best practices as outlined in NIST 8151 and

ISO/SAE 21434
X

Periodic security awareness training program for the entire workforce X

Security risk and mitigation disclosure available to the consumer and other stakeholders X

Evaluate the effectiveness of the security awareness training program and introduce improvements

if needed
X

Collect, maintain, analyze, and share information related to cybersecurity through the Automotive

Information Sharing and Analysis Center (Auto-ISAC)
X

An Incident Response Plan (IRP) in place X

The IRP periodically tested, evaluated, and updated X

A systematic process for continuous risk and security monitoring X

Security incidents properly documented and reported X

Implementation

Security Policy

Data Security & Privacy

Risk Assessment

System Protection and

Prioritization

Security Architecture

Awareness and

Security Training

Intrusion Detection

and Response

Security Test and

Evaluation

Operation

Remediation and

Implementation

Assessment

Design

Response
Phase Process Checklist

 131

Figure 13. The Visualization for the Vehicle Security Best Practices Assessment Metrics

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
The rapid advancement of connected vehicle technology enabled the proliferation of newly

found vulnerabilities in automotive vehicle systems. These vulnerabilities underscore the

importance of paying close attention to the state of automotive vehicle security. Likewise, it is

imperative that the security processes and tools be unceasingly improved and monitored. As a

major component of continuous improvement, quantitative and qualitative measures must be

devised to be able to make a full appreciation.

This white paper presents a comprehensive review of connected vehicle security threats, risks, and

vulnerabilities. To accentuate the significance of continuous improvement process to connected

vehicle security, we adapted and expanded widely recognized security metrics and derived novel

security metrics to cover security best practices and emerging threats and vulnerabilities such as

those found in sensors and communication links. Sample metric calculations and visualizations are

illustrated to emphasize the significance of the security metrics.

With the preceding discussions in mind, we offer the following future research directions:

o development of Key Performance Indicators (KPI) for vehicle security metrics;

o elaboration of the visualization system for vehicle security metrics via the addition of

analytics;

o extension of the defined metrics through the inclusion of quantifiable attack surfaces and

threat likelihood;

o development of a unified automotive vehicle security metrics framework that incorporates

both the CVSS framework and the Common Criteria for Information Security Evaluation;

and

o the utilization of Machine Learning techniques to predict the status of automotive vehicle

security based on known vulnerability attributes.

0

5

10

15

20

25

30

Vehicle Security Best Practices Assessment Metrics

 132

VII. ACKNOWLEDGEMENT

This research paper is partially funded by a grant from the Florida Department of

Transportation (FDOT). It is intended to support FDOT’s mission to provide a safe transportation

system to ensure the mobility of people and goods. To illustrate its direct support to this mission,

the impact of cybersecurity on operational safety is presented. Henceforth, cybersecurity metrics

for operational safety are derived and developed (see Section IV.4.1).

The research presents a holistic treatment of the security of connected vehicles. It covers

both the intranet (internal connectivity) and internet (external connectivity) systems of connected

vehicles. The derived security metrics both implicitly and explicitly support the operational safety

of connected vehicles—the primary concern of FDOT. We describe various risks found on

connected vehicles that may eventually contribute to the likelihood of vulnerability exploitation.

A successful attack on communication channels (V2V or V2X), ECU couplings, Input and Output

Data, Supply Chain, or other security vulnerabilities could easily be leveraged to attack the entire

connected vehicle ecosystem.

As a stretch objective, we conclude the research paper with vehicle security best practice

assessment metrics. These security metrics provide a significant impact on the safety of connected

vehicles. Auto-ISAC, in their Best Practices Guides, recognized the proactive collaboration of

various organizations and the automotive industry in protecting consumer safety through a robust

vehicle cybersecurity [58].

This white paper/report is intended for security practitioners, designers, manufacturers,

technology providers, service providers, infrastructure owner-operators, and transportation

agencies and regulators.

VIII. REFERENCES

[1] Forum of Incident Response and Security Teams (FIRST), "Common Vulnerability Scoring

System version 3.1: Specification Document," June 2019. [Online]. Available:

https://www.first.org/cvss/specification-document. [Accessed 13 February 2020].

[2] G. A. Francia, "Connected Vehicle Security," in 15th International Conference on Cyber

Warfare and Security (ICCWS 2020), Norfolk, VA, 2020.

[3] NIST, "CSV-2019-13582 Detail," 15 November 2019. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 20 February 2023].

[4] Common Vulnerabilities and Exposure, "CVE-2018-9322," 31 May 2018. [Online].

Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9322. [Accessed 13

February 2020].

[5] Common Criteria Portal, "Common Criteria for Information Technology Security

Evalaution," April 2017. [Online]. Available:

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf. [Accessed 24

February 2020].

 133

[6] MITRE Corporation, "Common Weakness Scoring System (CWSS)," 2 April 2018.

[Online]. Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html.

[7] Automated Vehicle Safety Consortium, "Best Practice for Metrics and Methods for

Assessing Safety Performance of Automated Driving Systems (ADS)," SAE Industry

Technologies Consortium, March 2021.

[8] M. Elli, J. Wishart, S. Como, S. Dhakshinamoorthy and J. Weast, "Evaluation of

Operational Safety Assessment (OSA) Metrics for Automated Vehciles in Simulation,"

SAE, 2021.

[9] SAE, "Operational Safety Metrics for Verification and Validation (V&V) of Automated

Driving Systems (ADS) J3237," SAE International, September 2020.

[1

0]

SAE, "Taxonomy and Definitions of ADS V&V J3208," SAE International, August 2019.

[1

1]

J. Wishart, Y. Chen, S. Como, N. Kidambi, D. Lu and Y. Yang, Fundamentals of Connected

and Automated Vehicles, Warrendale, PA: SAE International, 2022.

[1

2]

L. Moukahal and M. Zulkernine, "Security Vulnerability Metrics for Connected Vehicles,"

in 2019 IEEE 19th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Sofia, Bulgaria, 2019.

[1

3]

C. McCarthy, K. Harnett and A. Carter, "A Summary of Cybersecurity Best Practices," US

Department of Transportation (USDOT), Washington, D.C., 2014.

[1

4]

International Telecommunication Union (ITU), "Introduction to ASN.1," 2023. [Online].

Available: https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx. [Accessed 17 May

2023].

[1

5]

SAE International, "DSRC Implementation Guide. A Guide to Users of SAE J2735 Message

Sets over DSRC," SAE International, 2008.

[1

6]

SAE International, "On-Board System Requirements for V2V Safety Communications

J2945/1_202004," 30 April 2020. [Online]. Available:

https://www.sae.org/standards/content/j2945/1_202004. [Accessed 20 May 2023].

[1

7]

Lockheeed Martin, "The Cyber Kill Chain," 2024. [Online]. Available:

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html. [Accessed

7 February 2024].

[1

8]

T. W. Edgar and D. O. Manz, "Chapter 7 - Theoretical Research," in Research Methods for

Cyber Security, Syngress, 2017, pp. 177-192.

[1

9]

Formplus, "What is Applied Research? +[Types, Examples & Methods]," 22 July 2022.

[Online]. Available: https://www.formpl.us/blog/applied-research.

[2

0]

International Organization for Standardization (ISO), "ISO/SAE 21434:2021 Road vehicles

— Cybersecurity engineering," August 2021. [Online]. Available:

https://www.iso.org/standard/70918.html.

[2

1]

Upstream Security Ltd., "ISO/SAE 21434: Setting the Standard for Automotive

Cybersecurity," 2020. [Online]. Available:

https://info.upstream.auto/hubfs/White_papers/Upstream_Security_Setting_the_Standard_fo

r_Automotive_Cybersecurity_WP.pdf?_hsmi=87208721&_hsenc=p2ANqtz-

8ke_6RWU7hkISDBzRoHFeUhfbaRRQ7E9-

 134

Z2bvc4YMlP3JNvc42_oh1ZxJ5jtWQOUlTehUaSmp7MfNDcwzbzUWoZjrGHw.

[Accessed 5 November 2020].

[2

2]

C. Schmittner, G. Griessnig and Z. Ma, "Status of the Development of ISO/SAE 21434," in

Proc of the 25th European Conference, EuroSPI 2018, Bilbao, Spain, 2018.

[2

3]

ISO/SAE, "ISO/SAE 21434:2021(en) Road vehciles--Cybersecurity engineering," 2021.

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-sae:21434:ed-1:v1:en.

[2

4]

Trend Micro, "A Vulnerability in Modern Automotive Standards and How We Exploited It,"

July 2017. [Online]. Available: https://documents.trendmicro.com/assets/A-Vulnerability-

In-Modern-Automotive-Standards-and How-We-Exploited-It.pdf. [Accessed November

2018].

[2

5]

A. Karahasanovic, "Automotive Cyber Security," Chalmers University of Technology

University of Gothenburg, Gotehnburg, Sweden, 2016.

[2

6]

Qualcomm, Inc., "C-V2X: A new era of smart transporation in the United States," 17

February 2023. [Online]. Available: https://www.qualcomm.com/content/dam/qcomm-

martech/dm-assets/documents/C-V2X_Whitepaper.pdf.

[2

7]

IEEE, "Vehicle to Grid (V2G) Technology," 18 February 2023. [Online]. Available:

https://innovationatwork.ieee.org/vehicle-to-grid-v2g-technology/.

[2

8]

Otonomo, "The Promise of Connected Vehicle Data," 16 February 2023. [Online].

Available: https://info.otonomo.io/hubfs/PDF/OOOO-Smart-Cities-Survey-Promise-of-

data.pdf.

[2

9]

J. Tyrrell, "Trends in ECU vulnerabilities highlighted at DEF CON 2020," 20 August 2020.

[Online]. Available: https://www.securecav.com/trends-in-ecu-vulnerabilities-highlighted-

at-def-con-2020/. [Accessed February 2023].

[3

0]

D. Pauli, "Hackers Hijack Tesla Model S from Afar, While the Cars are Moving," 16

September 2016. [Online]. Available:

https://www.theregister.co.uk/2016/09/20/tesla_model_s_hijacked_remotely/. [Accessed

October 2019].

[3

1]

NIST-NVD, "National Vulnerability Database," 10 January 2023. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2022-38766.

[3

2]

B. Toulas, "Hackers can unlock Honda cars remotely in Rolling-PWN attacks," 13 July

2022. [Online]. Available: https://www.bleepingcomputer.com/news/security/hackers-can-

unlock-honda-cars-remotely-in-rolling-pwn-attacks/. [Accessed February 2023].

[3

3]

Upstream Security, Inc., "Security researchers manage to control multiple vehicles from

various OEMs by exploiting an API based vulnerability in telematics service provider,"

November 2022. [Online]. Available: https://upstream.auto/research/automotive-

cybersecurity/?id=12360.

[3

4]

L. Pan, X. Zheng, H. X. Chen, T. Luan, H. Bootwala and L. Batten, "Cyber security attacks

to modern vehicular systems," J. Inf. Secur. Appl., vol. 36, pp. 90-100, October 2017.

[3

5]

S. Woo, H. J. Jo and D. H. Lee, "A practical wireless attack on the connected car and

security protocol for in-vehicle CAN," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp.

993-1006, April 2015.

[3

6]

M. J. Kang and J. W. Kang, "Intrusion detection system using deep neural network for in-

vehicle network security," PLoS ONE, vol. 11, no. 6, 2016.

 135

[3

7]

O. Avatefipour, A. S. Al-Sumaiti, A. M. El-Sherbeeny, E. M. Awwad, A. Elmeligy, M. A.

Mohamed and H. Malik, "An Intelligent Secured Framework for Cyberattack Detection in

Electric Vehicles' CAN Bus Using Machine Learning," IEEE Access, vol. 7, 2019.

[3

8]

Q. Wang and S. Sawhney, "VeCure: APractical Security Framework to Protect the CAN

Bus of Vehicles," in International Conference on the Internet of Things (IOT), Cambridge,

MA, 2014.

[3

9]

K.-T. Cho and K. G. Shin, "Fingerprinting Electronic Control Units for Vehicle Intrusion

Detection," in Proceedings of the 25th USENIX Security Symposium (USENIX Security 16),

2016.

[4

0]

J. Petit, M. Feiri and F. Kargl, "Revisiting attacker model for smart vehicles," in 2014 IEEE

6th International Symposium on Wireless Vehicular Communications, WiVec 2014

Proceedings, 2014.

[4

1]

J.-P. Monteuuis, J. Petit, J. Zhang, H. Labiod, S. Mafrica and A. Servel, "Attacker Model for

Connected and AUtomated Vehicles," in ACM Computer Science in Cars Symposium

(CSCS'18), Berlin, Germany, 2018.

[4

2]

M. Wolf and T. Gendrullis, "Design, Implementation, and Evaluation of a Vehicular

Hardware Security Module," in 14th International Conference on Information Security and

Cryptology, Seoul, South Korea, 2011.

[4

3]

S. Lokman, T. Othman and M. Abu-Bakar, "Intrusion Detection System for Automotive

Controller Area Network (CAN) Bus System: a Review," EURASIP Journal on Wireless

Communications and Networking, vol. 184, 2019.

[4

4]

EVITA Project, "EVITA E-Safety Vehicle Intrusion Protected Applications," 01 December

2011. [Online]. Available: https://www.evita-project.org/. [Accessed 13 November 2018].

[4

5]

PRESERVE, "About the Project," June 2015. [Online]. Available: https://preserve-

project.eu/about. [Accessed 12 October 2019].

[4

6]

SeVeCom, "Security on the Road," 2008. [Online]. Available: https://www.sevecom.eu/.

[Accessed 13 October 2019].

[4

7]

Society of Automotive Engineers (SAE), "Cybersecurity Guidebook for Cyber-Physical

Vehicle Systems J3061," 12 January 2012. [Online]. Available:

https://www.sae.org/standards/content/j3061/. [Accessed 13 Ocotober 2019].

[4

8]

S. Bauer and P. Schartner, "Reducing Risk Potential by Evaluating Specialized

Countermeasures for Electronic Control Units," in 17th escar Europe conference 2019,

Stuttgart, Germany, 2019.

[4

9]

Government Accountability Office (GAO), United States, "Vehicle Cybersecurity: DOT and

Industry Have Efforts Under Way, but DOT Needs to Define Its Role in Responding to a

Real-world Attack. GAO Report 16-350.," 2016. [Online]. Available:

https://www.gao.gov/assets/680/676064.pdf. [Accessed 14 November 2018].

[5

0]

C. McCarty, K. Harnett and A. Carter, "A Summary of Cybersecurity Best Practices,"

National Highway Traffic Safety Administration, Washington, DC, 2014.

[5

1]

C. McCarthy, K. Harnett and A. Carter, "Characterization of Potential Security Threats in

Modern Automobiles: A Composite Modeling Approach.," October 2014. [Online].

Available: https://rosap.ntl.bts.gov/view/dot/12119. [Accessed 25 February 2020].

 136

[5

2]

B. Sheehan, F. Murphy, M. Mullins and C. Ryan, "Connected and autonomous vehicles: A

cyber-risk classification framework," Transportation Research Part A, vol. 124, pp. 523-

536, 2019.

[5

3]

G. A. Francia and X. P. Francia, "Critical Infrastructure Protection and Security

Benchmarks," in Encyclopedia of Information Science and Technology, 3rd Edition,

Hershey, PA, IGI Global, 2015, pp. 4267-4278.

[5

4]

G. Francia, "Baseline Operational Security Metrics for Industrial Control Systems," in

International Conference on Security and Management, Las Vegas, NV, 2016.

[5

5]

G. A. Francia and S. Jarupathirun, "Security Metrics-Review and Research Directions," in

Proceedings of the 2009 International Conference on Security and Management, Las Vegas,

NV, 2009.

[5

6]

G. Conti, M. Ahamad and J. Stasko, "Attacking Information Visualization System Usability

Overloading and Deceiving the Human," in SOUPS 2005, Pittsburgh, PA, 2005.

[5

7]

H. Hochheiser and B. Schneiderman, "Using Interactive Visualizations of WWW Log Data

to Characterize Access Patterns and Inform Site Design," Journal of the American Society

for Information Science and Technology, vol. 52, no. 4, pp. 331-343, 2001.

[5

8]

Auto-ISAC, Inc., "Best Practices," 16 February 2023. [Online]. Available:

https://automotiveisac.com/best-practices/.

[5

9]

Upstream Security, Inc., "Recent spike in car thefts prompts South Korean OEMs to offer

security kits in the US," September 2022. [Online]. Available:

https://upstream.auto/research/automotive-cybersecurity/?id=12080.

[6

0]

G. A. Francia, III, "Vehicle Network Security Metrics," in Advances in Cybersecurity

Management, Cham, Switzerland, Springer Nature, 2021, pp. 55-73.

[6

1]

Fortinet, "What Is An Attack Surface?," 2023. [Online]. Available:

https://www.fortinet.com/resources/cyberglossary/attack-surface. [Accessed February 2023].

[6

2]

C. Maple, M. Bradbury, A. T. Le and K. Ghirardello, "A Connected and Autonomous

Vehicle Reference Architecture for Attack Surface Analysis," Appl. Sci., vol. 9, no. 23,

2019.

[6

3]

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham and S. Savage, "Experimental Security Analysis of a

Modern Automobile," in 2010 IEEE Symposium on Security and Privacy,

Berkeley/Oakland, CA, 2010.

[6

4]

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, N. Shacham, S. Savage, K. Koscher, A.

Czeskis, F. Roesner and T. Kohno, "Comprehensive experimental analyses of automotive

attack surfaces," in 20th USENIXConference on Security (SEC'11), San Francisco, CA,

2011.

[6

5]

US Department of Transportation, "Cybersecurity Best Oractices for the Safety of Modern

Vehicles," 9 September 2022. [Online]. Available:

https://www.govinfo.gov/content/pkg/FR-2022-09-09/pdf/2022-19507.pdf. [Accessed 18

February 2023].

[6

6]

Society of Automotive Engineers (SAE) International, "Hardware Protected Security for

Ground Vehicles," 10 February 2020. [Online]. Available:

https://www.sae.org/standards/content/j3101_202002/. [Accessed 12 November 2020].

 137

[6

7]

British Standard Institution, "IATF 16949:2016 Automotive Quality Management," 2020.

[Online]. Available: https://www.bsigroup.com/en-US/iatf-16949-automotive/introduction-

to-iatf-16949/. [Accessed 12 November 2020].

[6

8]

American National Standards Institute (ANSI), "ISO/IEC/IEEE 29119-1:2013," 2020.

[Online]. Available:

https://webstore.ansi.org/Standards/ISO/ISOIECIEEE291192013?gclid=CjwKCAiA17P9B

RB2EiwAMvwNyKt4mT9KW0hN-

taVxEzZBa7nN5sfZQzDV6HdWGRQddq5dVFT6Pv8LxoCQrEQAvD_BwE. [Accessed 12

November 2020].

[6

9]

S. Saydjari, "Is Risk a Good Security Metric?," in Proceedings of the 2nd ACM Workshop

on Quality of Protection, 2006.

[7

0]

S. Schechter, "Toward Econometric Models of Security Risk from Remote Attack," IEEE

Security and Privacy, pp. 40-44, January-February 2005.

[7

1]

P. Manadhata and J. Wing, "An Attack Surface Metric--CMU-CS-05-155," Carnegie Mellon

University, Pittsburgh, PA, 2005.

[7

2]

T. W. Moore, C. W. Probst, K. Rannenberg and M. van Eeten, "Assessing ICT Security

Risks in Socio-Technical Systems," 13-18 November 2016. [Online]. Available:

https://drops.dagstuhl.de/opus/volltexte/2017/7039/pdf/dagrep_v006_i011_p063_s16461.pd

f.

[7

3]

D. Gollman, C. Herley, V. Koenig, W. Pieters and M. A. Sasse, "Socio-Technical Security

Metrics," Dagstuhl Reports, vol. 4, no. 12, pp. 1-28, 3 March 2015.

[7

4]

MITRE Corporation, "CVE-2022-37305," 01 August 2022. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-37305. [Accessed February

2023].

[7

5]

G. A. Francia, III, D. Snider and B. Cyphers, "Basic Safety Message (BSM) Test Data

Generation for Vehicle Security Machine Learning Systems," in Proc. of the 2023

International Conference on Security and Management (SAM'23), Las Vegas, NV, 2023.

[7

6]

R. W. van der Heijden, T. Lukaseder and F. Kargl, "VeReMi: A Dataset for Comparable

Evaluation of Misbehavior Detection in VANETs," in Security and Privacy in

Communication Networks, New Yor, NY, Springer, 2018, pp. 318-337.

[7

7]

H. Song, J. Woo and H. K. Kim, "Car-Hacking Dataset," 2020. [Online]. Available:

https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset. [Accessed 20 May 2023].

[7

8]

U.S. Department of Transporation (DOT), "Connected Vehicle Pilot (CVP) Open Data,"

[Online]. Available: https://data.transportation.gov/stories/s/Connected-Vehicle-Pilot-

Sandbox/hr8h-ufhq#cv-pilot-data-sandbox. [Accessed 20 May 2023].

[7

9]

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan and T. Darrell,

"BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning," in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[8

0]

Society of Automotive Engineers (SAE), "J2735 Surface Vehicle Standard V2X

Communications Message Set Dictionary," 2023. [Online]. Available:

https://www.sae.org/standards/content/j2735_202309. [Accessed 15 October 2023].

 138

[8

1]

SAE International, "On-Board System Requirements for V2V Safety Communications

J2945/1_202004," 30 April 2020. [Online]. Available:

https://www.sae.org/standards/content/j2945/1_202004/. [Accessed 20 May 2023].

[8

2]

G. Francia III, "Technical Report UWF-TR-FDOT-002-01," University of West Florida

Center for Cybersecurity, Pensacola, FL , 2023.

[8

3]

G. Francia III, "Technical Report UWF-TR-FDOT-002-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[8

4]

G. Francia III, "Technical Report UWF-TR-FDOT-001-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

5]

G. Francia III, "Technical Report UWF-TR-FDOT-003-01," University of West Florida,

Pensacola, FL, 2023.

[8

6]

G. Francia III, "Technical Report UWF-TR-FDOT-005-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[8

7]

G. Francia III, "Technical Report UWF-TR-FDOT-006-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

8]

G. Francia III, "Technical Report UWF-TR-FDOT-006-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[8

9]

G. Francia III, "Technical Report UWF-TR-FDOT-006-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2022.

[9

0]

G. Francia III, "Technical Report UWF-TR-FDOT-007-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

1]

G. Francia III, "Technical Report UWF-TR-FDOT-007-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

2]

G. Francia III, "Technical Report UWF-TR-FDOT-007-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

3]

G. Francia III, "Technical Report UWF-TR-FDOT-008-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

4]

G. Francia III, "Technical Report UWF-TR-FDOT-008-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

5]

G. Francia III, "Technical Report UWF-TR-FDOT-008-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[9

6]

G. Francia III, "Technical Report UWF-TR-FDOT-009-01," University of West Florida,

Center for Cybersecurity, Pensacola, FL, 2024.

[9

7]

G. Francia III, "Technical Report UWF-TR-FDOT-009-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[9

8]

G. Francia III, "Technical Report UWF-TR-FDOT-009-03," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[9

9]

J. Patterson and D. King, "Vehicle Security Metrics Visualization System," 2023. [Online].

Available: https://github.com/UWF-CfC-FDOT/VSMVS. [Accessed December 2023].

[1

00

]

G. Francia III, "Technical Report UWF-TR-FDOT-003-02," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

 139

[1

01

]

G. Francia III, "Technical Report UWF-TR-FDOT-003-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2023.

[1

02

]

G. Francia III, "Technical Report UWF-TR-FDOT-010-01," University of West Florida

Center for Cybersecurity, Pensacola, FL, 2024.

[1

03

]

G. A. Francia III, "Technical Report UWF-TR-FDOT-010-03 Continuous Improvement

Report--TR," University of West Florida, Pensacola, FL, 2024.

[1

04

]

S. Payne, "A Guide to Security Metrics," SANS Institute, 19 June 2006. [Online]. Available:

http://www.sans.org/readingroom/papers/5/55.pdf.

[1

05

]

K. Kark, P. Stamp, J. Penn, S. Bernhardt and A. Dill, "Defining An Effective Security

Metrics Program," 16 May 2007. [Online]. Available:

https://www.forrester.com/report/Defining+An+Effective+Security+Metrics+Program/-/E-

RES42354#. [Accessed February 2020].

[1

06

]

SAE International, "CAN Specification 2.0: Protocol and Implementations," 01 August

1998. [Online]. Available: https://www.sae.org/publications/technical-

papers/content/921603/. [Accessed 13 October 2019].

[1

07

]

Gemalto, "Securing Vehicle to Everything," 2018. [Online]. Available:

https://www.gemalto.com/brochures-site/download-site/Documents/auto-V2X.pdf.

[Accessed 13 April 2020].

[1

08

]

C. McCarthy, K. Harnett and A. Carter, "Characterization of potential security threats in

modern automobiles: A composite modeling approach," Washington, D.C., September,

2014.

[1

09

]

National Institute of Standards and Technology, "CVE-2019-13582 Detail," 15 November

2019. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 13

February 2020].

[1

10

]

MITRE Corporation, "CWE-787: Out-of-bounds Write," 20 August 2020. [Online].

Available: http://cwe.mitre.org/data/definitions/787.html.

 140

Appendix IV. Technical Report UWF-TR-FDOT-003-01

Unit Test Overview

for

Vehicle Security Metrics
Visualization System (VSMVS)

Technical Report UWF-TR-FDOT-003-01

Version 0.1 unapproved

Version 1.0 approved

Prepared by Davis King, Joshua Patterson

Approved by Dr. Guillermo A. Francia, III

The University of West Florida

Florida Department of Transportation

February 23, 2023

 141

Table of Contents

1. Introduction 1

1.1 Purpose 1

1.2 Document Revisions Table 1

2. VSMVS Test Framework 1

2.1 Framework Description 1

3. VSMVS Unit Tests 1

3.1 TreeMapTests 1

3.1.1 calculateTotals_valid 1

3.2 CWSSTests 2

3.2.1 calculateBaseSubScore_valid 2

3.2.2 calculateAttackSubScore_valid 2

3.2.3 calculateEnvironmentalSubScore_valid 2

3.2.4 calculateTotalScore_valid 2

3.3 SMOSTests 2

3.3.1 calculateSumOfMetrics_valid 2

3.3.2 calculateASM_valid 3

3.4 SVMCVTests 3

3.4.1 calculateTotal_valid 3

3.4.2 calculateECUScore_valid 3

3.4.3 calculateCommunicationScore_valid 3

3.4.4 calculateComplexityRisk_valid 3

3.4.5 calculateIODataRisk_valid 4

3.4.6 calculateHistoryRisk_valid 4

3.5 VSBPAMTests 4

3.5.1 public void calculateTotalScores_valid 4

Introduction

Purpose
This document describes the unit test framework of the Vehicle Security Metrics Visualization

System (VSMVS) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project. This document provides an overview of unit test framework and tests for

both the VSMVS and the user interface.

Document Revisions Table
Revisor Revision Date Reason

King, Davis February 23, 2023 Initial draft

Patterson, Joshua February 23, 2023 Initial draft

 142

VSMVS Test Framework

Framework Description
The VSMVS project is being developed in the language C# and the choice was made to use the

standard MsTest framework for unit testing the page functions. MsTest is a native unit testing

library that comes with Microsoft’s Visual Studio.

VSMVS Unit Tests
TreeMapTests

The TreeMapTests.cs file contains unit test coverage of the /Pages/TreeMapModel.cshtml.cs

class. Performs validation of the score calculation method for the Tree Map page.

calculateTotals_valid

Validates that the OnGetCalculateTotals method successfully calculates and returns the correct

number.

Status: Passed

CWSSTests

The CWSSTests.cs file contains unit test coverage of the /Pages/CWSSModel.cshtml.cs class.

Performs validation of the scoring calculations for the CWSS page.

calculateBaseSubScore_valid

Validates that the base subscore method successfully calculates the correct number and returns

the result.

Status: Passed

calculateAttackSubScore_valid

Validates that the attack subscore method successfully calculates the correct number and returns

the result.

Status: Passed

calculateEnvironmentalSubScore_valid

Validates that the environmental subscore method successfully calculates the correct number and

returns the result.

Status: Passed

calculateTotalScore_valid

Validates that the total score method successfully calculates the correct number and returns the

result.

Status: Passed

SMOSTests

The SMOSTests.cs file unit test coverage of the /Pages/SVMCVModel.cshtml.cs class. Performs

validation of the score calculation methods for the SVMCV page.

calculateSumOfMetrics_valid

 143

Verifies that the SumOfMetrics method successfully calculates and returns the resulting number.

Status: Passed

calculateASM_valid

Verifies that the calculateASM method successfully calculates and returns the resulting number.

Status: Passed

SVMCVTests
The SVMCVTests.cs file unit test coverage of the /Pages/SMOSModel.cshtml.cs class. Performs

validation of the score calculation method for the SMOS page.

calculateTotal_valid

Verifies that the OnGetCalculateTotalRisk method successfully calculates and returns the

resulting number.

Status: Passed

calculateECUScore_valid

Verifies that the OnGetCalculateECURisk method successfully calculates and returns the

resulting number.

Status: Passed

calculateCommunicationScore_valid

Verifies that the OnGetCalculateCommunicationRisk method successfully calculates and returns

the resulting number.

Status: Passed

calculateComplexityRisk_valid

Verifies that the OnGetCalculateComplexityRisk method successfully calculates and returns the

resulting number.

Status: Passed

calculateIODataRisk_valid

Verifies that the OnGetCalculateIODataRisk method successfully calculates and returns the

resulting number.

Status: Passed

calculateHistoryRisk_valid

 144

Verifies that the OnGetCalculateHistoryRisk method successfully calculates and returns the

resulting number.

Status: Passed

VSBPAMTests
VSBPAMTests.cs file unit test coverage of the /Pages/VSBPAMModel.cshtml.cs class. Performs

validation of the total score calculation method for the VSVPAM page.

public void calculateTotalScores_valid

Verifies that the total scores method successfully calculates and returns the resulting number.

Status: Passed

 145

Appendix V. BSM Dataset Attributes

Table 4: BSM Coredata Characteristics

Data Item Data Type Description

Acceleration System Defined (in
units of 0.01 m/sec2

acceleration_set_4_way :

 long accel: integer, (acceleration along the X-

axis or the direction of travel; negative value

indicates braking action)

 lat accel: integer, (acceleration along the Y-

axis or the direction of travel; negative value

indicates left turning action, positive indicates

right turning)

 vert accel: one-byte signed integer, (-127

represents unavailable data)

 yaw: integer (vehicle rotation about the vertical

axis and expressed in 0.01 degrees/second)
Angle:
Steering
Wheel Angle
(units of 1.5
degree)

Signed Integer

(range:

-189 to +189)

0x01 = 00 = +1.5 degree

0x81 = -126 = -189 degree and beyond

0x7E = +126 = +189 degree and beyond

0x7F = +127 to be used for unavailable

Brake

System

Status: 2-

octet

information

about the

current brake

system of the

vehicle

System Defined brakeAppliedStatus; (4 bits total--one bit for each

wheel, value 1 means active; Thus, 0000 means

all Off, 0001 left front active, 0010 left rear

active, 0100 right front active, 1000 right rear

active)

brakesUnavailableStatus: (5th bit; 1 means true)

sparebit: 6th bit unused; set to 0

traction: (7th and 8th bits) (Traction Control

Status)

 00-unavailable)

 01-off

 10-on but not engaged

 11-engaged,

abs: (9th and 10th bits) (Anti-lock Brake Status)

00-unavailable; 01-off; 10-on but not engaged;

11-engaged.

Stability Control Status, Brake Boost Applied,

and Auxiliary/Emergency Brake Status omitted

for brevity.

 146

Elevation
(unit is 10
cm)

Integer Elevations from 0 to 61439 (0x0000 to 0xEFFF)

meters

Elevations from -409.5 to -0.1 (0xF001 to 0xFFF)

meters

Unknown value is encoded as 0xF000
Heading:
Represents
0.0125
degrees from
the North

2 octets of unsigned
integer. Range 0 to
28800

Value of 28800 indicates unavailable.

Latitude: 32-
bit value
represents
1/10
microdegrees
with
reference to
the
horizontal
datum

Integer (range --
900000000 to

900000001

Provides a range of plus-minus 180 degrees

900000001 indicates unavailable

Longitude:
32-bit value
represents
1/10
microdegrees
with
reference to
the vertical
datum

Integer (range

-1800000000 to

1800000001

Provides a range of plus-minus 180 degrees

1800000001 indicates unavailable

Msg Count Non-negative Integer Message Count

Vehicle ID Non-negative Integer Vehicle Identifier

SecMark Non-negative Integer Units of milliseconds

Speed (in
units of 0.02
m/sec.
Range: 0 to
8191

Non-negative Integer
(13 bits of the 2-byte
Transmission+Speed)

Use 8191 to indicate unavailability.

Transmission System Defined

Occupies bits 14 to 16
of the 2-byte
Transmission+Speed

000-Neutral

001-Park

010-Forward gear

011-Reverse gear

100, 101, and 110 are unused

111 unavailable

 147

Vehicle Size
(in cm)

System Defined

3 octets

Width : Non-negative Integer (10 unsigned bit

with values [0,1023] (0 when unavailable)

Length : Non-negative Integer (14 unsigned bit

with values [0,16383] (0 when

unavailable)

 148

 149

Appendix VI. Technical Report UWF-TR-FDOT-003-02

Vehicle Security Metrics Visualization System (VSMVS)
User Manual

Technical Report UWF-TR-FDOT-003-02

Version 0.3
04/08/2023

 150

Table of Contents

User Manual ... 149

1. Introduction 5
1.1 Overview 5

2. Getting Started 6
2.1 Set-up Considerations 15
2.2 System Organization & Navigation 15
2.3 Exiting the System 16

3. Using the System 17
3.1 Common Vulnerability Scoring System (CVSS) Calculator 17

3.1.1 Base Score Metrics 17
3.1.2 Temporal Score Metrics 17
3.1.3 Environmental Score Metrics 17
3.1.4 Visualize 17

3.2 Attack Potential of Threats on Vehicle Assets (Tree Map) 18
3.2.1 Threats on Assets 18
3.2.2 Factors for Analysis 19
3.2.3 Calculating Score 19
3.2.4 Visualize 19
3.2.5 Reset 20

3.3 Common Weakness Scoring System (CWSS) Calculator 20
3.3.1 Base Finding Score Metrics 21
3.3.2 Attack Surface Score Metrics 21
3.3.3 Environmental Score Metrics 21
3.3.4 Calculating Scores 21
3.3.5 Visualize 21

3.4 Security Vulnerability Metrics for Connected Vehicles (SVMCV) 21
3.4.1 ECU Coupling Risk 21
3.4.2 Complexity Risk 22
3.4.3 Communication Channel Risk 22
3.4.4 History of Security Issue Risk 22
3.4.5 I/O Data Risk 22
3.4.6 Calculating Scores 22
3.4.7 Visualize 24
3.4.8 Reset 24

3.5 Security Metrics for Operational Safety (SMOS) 24
3.5.1 Security Metrics 25
3.5.2 Calculating Score 25
3.5.3 Visualize 26
3.5.4 Reset 26

3.6 Vehicle Security Best Practice Assessment Metrics (VSBPAM) 27
3.6.1 Security Metrics 27
3.6.2 Calculating Score 28

4. Troubleshooting & Support 29
4.1 Error Messages 29

 151

Table of Figures

Figure 1 - Home Page 2

Figure 2 - Common Vulnerability Scoring System Page 4

Figure 3 - Common Vulnerability Scoring System Page (Continued) 5

Figure 4 - Attack Potential of Threats on Vehicle Assets (TreeMap) Page 6

Figure 5 - Common Weakness Scoring System Page 7

Figure 6 - Common Weakness Scoring System Page (Continued) 8

Figure 7 - Security Vulnerability Metrics for Connected Vehicles Page 9

Figure 8 - Security Vulnerability Metrics for Connected Vehicles Page (Continued) 9

Figure 9 - Security Metrics for Operational Safety 10

Figure 10 - Vehicle Security Best Practices Assessment Metrics Page 11

Figure 11 - Common Vulnerability Scoring System Page 14

Figure 12 - Attack Potential of Threats on Vehicle Assets (TreeMap) Page 16

Figure 13 - ECU Coupling Risk Section 18

Figure 14 - Complexity Risk Section 18

Figure 15 - Communications Channel risk Section 19

Figure 16 - History of Security Issue Risk Section 19

Figure 17 - I/O Data Risk Section 20

Figure 18 - Calculate Total Risk Button 20

Figure 19 - Visualize Results Button 20

Figure 20 - Reset Inputs Button 20

Figure 21 - Safety Metrics for Operation Safety 22

Figure 22 - Calculate Total Risk Button 22

Figure 23 - Visualize Results Button 22

Figure 24 - Reset Inputs Button 23

 152

Figure 25 - Vehicle Security Best Practice Assessment Metrics Page 24

Introduction
This User Manual (UM) provides the information necessary for the Florida Dept of Transportation

(FDOT) to effectively use the Vehicle Security Metrics Visualization System (VSMVS). This

document provides comprehensive instructions and guidelines for using the website, which

includes web pages that pertain to various security metrics such as Common Vulnerability Scoring

System (CVSS), Common Weakness Scoring System (CWSS), Attack Potential on Vehicle

Assets, Security Vulnerability Metrics for Connected Vehicles (SVMCV), Security Metrics for

Operational Safety (SMOS), and Vehicle Security Best Practices Assessment Metrics (VSBPAM).

The Vehicle Security Metrics Visualization System website is identified by its name and is

designed to provide users with a visual representation of the security metrics related to vehicle

assets. The website has been developed by a team of software engineers with a focus on improving

the security posture of vehicle assets. This User Manual has been developed to provide the intended

audience, which includes users, administrators, and system analysts, with the necessary

information to use the website effectively.

Overview
The Vehicle Security Metrics Visualization System (VSMVS) is a web application that allows

users to interact with different UI to generate scores, graphs, or both. Depending on the page users

are on, the web application will have a slightly different UI. Each UI is catered towards a specific

functionality. The purpose of the VSMVS is to help users recognize trends and patterns that are

not easily recognized using non-visual methods. The system will provide a visual depiction of

security metrics that were developed in another undertaking by employing the benefits of visual

perception.

Getting Started
The user will begin their experience on the homepage of the website. This page allows users to

traverse through the web app comfortably and gives a brief overview of each application that the

website offers. The home page consists of an introductory description of the website as well as six

cards which contain descriptions and links to each of the main application pages on the website.

Once a user clicks on the button within a container, they will be brought to that page where they

can input data and visualize the various threats across various security metrics.

 153

Figure 1 - Home Page

The first card takes the user to the CVSS Calculator page. This page implements all the

functionality of a Common Vulnerability Scoring System calculator, which allows the user to

generate a vector for the purpose of scoring vulnerability levels in various categories. Each metric

has multiple buttons the user can choose to represent it. As the user selects an option for a metric

the results card at the top of the page will update in real time with a CVSS vector representing the

current choices selected by the user in each section.

 154

Figure 2 - Common Vulnerability Scoring System Page

 155

Figure 3 - Common Vulnerability Scoring System Page (Continued)

The second card takes the user to the page called Attack Potential of Threats on Vehicle Assets, or

the TreeMap page. This page will help users visualize the severity of different threats on vehicle

assets. The page presents the user with a list of threats on vehicle assets, and a series of dropdown

menus. The user can select values for each analysis factor on each threat. Clicking “Visualize” will

cause the page to generate a TreeMap chart, displaying boxes for each threat selected, with distinct

colors assigned based on the severity of the scores provided by the user.

 156

Figure 4 - Attack Potential of Threats on Vehicle Assets (TreeMap) Page

The third card takes the user to the page called Common Weakness Scoring System Calculator.

This page implements the functionality of a Common Weakness Scoring System calculator, which

generates a total score value, a vector representing that score, and the scores for each subcategory.

The page also displays charts representing the data selected by the user in each category.

 157

Figure 5 - Common Weakness Scoring System Page

 158

Figure 6 - Common Weakness Scoring System Page (Continued)

The fourth card takes the user to the page called Security Vulnerability Metrics for Connected

Vehicles (SVMCV). This page provides a comprehensive analysis of the security vulnerabilities

associated with connected vehicles.

 159

Figure 7 - Security Vulnerability Metrics for Connected Vehicles Page

Figure 8 - Security Vulnerability Metrics for Connected Vehicles Page (Continued)

The fifth card takes the user to the page called Security Metrics for Operational Safety (SMOS).

This page in the vehicle security metrics visualization system is designed to help users assess the

operational safety risks of their vehicles. This page contains thirteen different metrics, with the

first ten requiring users to enter two values for each metric: "Value" and "Criticality." The page

also includes three buttons: "Calculate Total Risk," "Visualize Risk," and "Reset All Input."

 160

Figure 9 - Security Metrics for Operational Safety

The sixth card takes the user to the page called Vehicle Security Best Practices Assessment Metrics

(VSBPAM). The VSBPAM page is designed to help the user assess the security of a vehicle using

a series of questions organized into four phases: Assessment, Design, Implementation, and

Operation. Each phase contains several processes, and each process includes a series of yes-or-no

questions. The responses to these questions are tallied up in real-time to provide the user with a

visual representation of the security level of the vehicle.

Figure 10 - Vehicle Security Best Practices Assessment Metrics Page

Set-up Considerations
The Vehicle Security Metrics Visualizations System Website is a web-based application that can

be accessed through a standard desktop computer, or a mobile device connected to the internet.

 161

The system has been developed using modern web technologies and can be accessed through

popular web browsers such as Google Chrome, Mozilla Firefox, and Microsoft Edge.

The input device for the system is a standard keyboard and mouse for desktop computers, or touch

input for mobile devices. The output device is a computer screen or mobile device display. The

system does not require any additional hardware or specialized equipment.

To set up the system, the user needs to ensure that they have a reliable internet connection and a

modern web browser installed on their device. The system does not require any installation or

configuration on the user's device.

The only set up consideration is ensuring that the device being used to access the system is up to

date with the latest security patches and updates. Additionally, users should be aware of their own

organizational security policies and practices and ensure they are adhering to them when using the

system.

System Organization and Navigation
The Vehicle Security Metrics Visualization System website is organized into several web pages,

each of which pertains to a different security metric. The following features are available:

● CVSS (Common Vulnerability Scoring System)

● CWSS (Common Weakness Scoring System)

● Attack Potential on Vehicle Assets

● SVMCV (Security Vulnerability Metrics for Connected Vehicles)

● SMOS (Security Metrics for Operational Safety)

● VSBPAM (Vehicle Security Best Practices and Attack Mitigation)

Each metric can be found on its own page that is listed in a navigation bar located at the top of

each page. Additionally, the main menu on the home page features cards/containers with links to

each of the metric pages.

There is no specific order in which users must navigate the website. However, we recommend that

users start with the home page, which provides an overview of the system and access to all

available metrics. From there, users can navigate to the specific metric pages to view the relevant

data.

 162

Each metric page is organized in a similar fashion, with a brief description of the metric and a

visualization of the data. Users can interact with visualizations to filter and explore the data in

more detail.

We encourage users to explore the different metrics and experiment with visualizations tools to

gain a deeper understanding of vehicle security.

Exiting the System
When you are finished using the Vehicle Security Metrics Visualizations System Website, you

should take the following actions to properly exit the system:

1. Close the browser: close the browser window or tab to ensure that no one else can access

the website through your computer.

Using the System

The following sub-sections provide detailed, step-by-step instructions on how to use the various

functions or features of the VSMVS.

Common Vulnerability Scoring System (CVSS) Calculator
The CVSS calculator implements the formula defined in the CVSS version 3.1 standard,

generating scores based on the metric values you enter. Clicking the information icon for the metric

group names, and metric names displays a summary of the information in the standard.

Base Score Metrics

The Base metric group represents the intrinsic characteristics of a vulnerability that are constant

over time and across user environments. There are two sub-groups within the base metric group.

The Exploitability sub-score, and the Impact sub-score. The Exploitability sub-score equation is

derived from the Base Exploitability metrics, while the Impact sub-score equation is derived from

the Base Impact metrics. The exploitability metrics contain Attack Vector, Attack Complexity,

Privileges Required, User Interaction, and Scope, while the Impact metrics contain the

Confidentiality Impact, Integrity Impact, and Availability Impact.

Temporal Score Metrics

The next group is the Temporal Score Metrics. Temporal metrics measure the current state of

exploit techniques or code availability, the existence of any patches or workarounds, or the

 163

confidence in the description of a vulnerability. The temporal metrics group contains three

measured metrics: Exploit Code Maturity, Remediation Level, and Report Confidence.

Environmental Score Metrics

The final group of metrics is the Environmental Score Metrics. These metrics enable the analyst

to customize the CVSS score depending on the importance of the affected IT asset to a user’s

organization, measured in terms of complementary/alternative security controls in place,

Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base

metrics and are assigned values based on the component placement within organizational

infrastructure. These metrics include the modified exploitability metrics, modified impact metrics,

and the impact sub score modifiers.

Visualize

To generate a Common Vulnerability Scoring System vector, a user would select the choices that

best apply for the vulnerability that they would like to score. Pressing the submit button will take

the user to the NIST online CVSS calculator with the generated vector applied to the calculator.

This will automatically generate graphs and score values which the user can view based on their

choices for each metric. (NIST Online CVSS Calculator: https://nvd.nist.gov/vuln-

metrics/cvss/v3-calculator)

 164

Figure 11 - Common Vulnerability Scoring System Page

Attack Potential of Threats on Vehicle Assets (Tree Map)

The Attack Potential of Threats on Vehicle Assets allows users to visualize various threats on

vehicles. The scores for each threat are affected by several factors. Clicking the information icon

for the threat names and factor names displays a summary of the information about each.

Threats on Assets

The following information describes each threat for which a score is generated in this page:

1. False Data from ECU: This type of attack occurs when a vehicle device or Electronic Control

Unit (ECU), connected to the CAN bus, sends false information to other ECUs to induce them to

behave abnormally.

2. Blocking of CAN Bus: The CAN protocol has an inherent vulnerability that can easily be

exploited. The Arbitration ID field determines who has preference in using the bus. The node that

has lowest Arbitration ID field value gets preference over the other nodes. An attack can be

realized by the continuous transmission of CAN messages having very low Arbitration ID field

values, which essentially blocks the CAN bus to other traffic with higher Arbitration ID.

 165

3. Malicious Software: This is a common attack that is enabled by malicious software originating

from the supply chain, the vehicle system patches, the telematics channel, or the On-Board Device

(OBD) port.

4. Denial of Telematics Service: This is a special case of the denial-of-service attack in which the

telematics communication channel is overwhelmed by excessive unwanted traffic to prevent the

legitimate transfer of information to materialize.

5. Unauthorized Access: An unauthorized access may originate locally, such as from a cloned

key fob, or remotely through an internetwork communication channel such as WiFi or 5G

broadband.

6. Command Injection: In this type of attack, malicious commands are injected into the vehicle

intranet to induce an abnormal behavior.

7. Masquerading: This attack potential is realized by impersonating an authorized system or user

to take control of the vehicle.

8. Data Tampering: This attack potential can be realized by the widespread Man-In-The-Middle

(MITM) attack tools. The time to accomplish such an attack can take place very quickly.

Factors for Analysis

The following information describes the affecting factors for each threat about which a score is

generated in this page:

1. Elapsed Time: Time taken by an attacker to identify a potential vulnerability, to develop an

attack method, and to sustain effort required to execute the attack.

2. Specialist expertise: Describes the level of sophistication of the attacker.

3. Knowledge of the target: Refers to the familiarity of the attacker on the target.

4. Window of opportunity: This refers to the duration of time in which the vulnerability is

exploitable.

5. IT hardware/software or other equipment: This refers to the availability and the level of

complexity of equipment/software needed to identify or exploit a vulnerability.

Calculating Score

To calculate a score for each threat the user must simply select an option for the factors which

affect that threat. The total will update as the user selects the factors for each threat and be

displayed on the page.

 166

Visualize

To visualize the results in a graph, the user must first generate the scores for the threats by selecting

the options for the factors affecting each threat. Once the scores have been generated the user

should press the button labeled “Visualize” to generate a Tree Map chart which arranges each

threat into boxes whose size and color are determined by the calculated score for that threat.

Reset

To reset the scores for each threat the user must simply press the reset button. This will clear all

user selected choices and reset the scores as well as the graph.

Figure 12 - Attack Potential of Threats on Vehicle Assets (TreeMap) Page

Common Weakness Scoring System (CWSS) Calculator

CWSS can be used in cases where there is little information at first, but the quality of information

can improve over time. It is anticipated that in many use-cases, the CWSS score for an individual

 167

weakness finding may change frequently, as more information is discovered. Different entities

may determine separate factors at different points in time. The CWSS contains three categories of

metrics: Base Finding Metrics, Attack Surface Metrics, and Environment Metrics. A CWSS 1.0

score can range between 0 and 100. The Base Finding Subscore supports values between 0 and

100. Both the Attack Surface Subscore and Environment Subscore support values between 0 and

1.

Base Finding Score Metrics

The Base Finding metric group consists of the following factors: Technical Impact (TI), Acquired

Privilege (AP), Acquired Privilege Layer (AL), Internal Control Effectiveness (IC), and Finding

Confidence (FC). The combination of values from Technical Impact, Acquired Privilege, and

Acquired Privilege Layer gives the user some expressive power. For example, the user can

characterize "High" Technical Impact with "Administrator" privilege at the "Application" layer.

Attack Surface Score Metrics

The Attack Surface metric group consists of the following factors: Required Privilege (RP),

Required Privilege Layer (RL), Access Vector (AV), Authentication Strength (AS), Level of

Interaction (IN), and Deployment Scope (SC).

Environmental Score Metrics

The Environmental metric group consists of the following factors: Business Impact (BI),

Likelihood of Discovery (DI), Likelihood of Exploit (EX), External Control Effectiveness (EC),

and Prevalence (P).

Calculating Scores

To calculate scores for each group the user must select a value for each metric within the groups.

Once the user has selected an option from each metric the “Visualize” button can be clicked to

calculate the scores for each metric. This will display the calculated score at the top of the page in

the “Results” window, as well as generate a vector representing the choices for each metric.

Visualize

Once the user has selected an option from each metric the “Visualize” button can be clicked to

calculate the scores for each metric. This will also populate the four graphs at the bottom of the

page with the updated subscores. A radar chart is generated for each subscore and displays the

 168

individual scores for the metrics within them. A bar chart is generated which compares the three

metrics to each other.

Security Vulnerability Metrics for Connected Vehicles (SVMCV)

The purpose of this feature is to provide guidance to security engineers and testers using security

vulnerability metrics that measure weak or vulnerable features in the software system of connected

vehicles.

ECU Coupling Risk

The first metric on the SVMCV page is ECU Coupling Risk. This metric represents the potential

risk of an attack that exploits vulnerabilities in the Electronic Control Units (ECUs) in a connected

vehicle.

Complexity Risk

The next metric on the SVMCV page is Complexity Risk. This metric represents the potential risk

of an attack that exploits the complexity of the software and hardware in a connected vehicle.

Communication Channel Risk

The third metric on the SVMCV page is Communications Channel Risk. This metric represents

the potential risk of an attack that exploits vulnerabilities in the communication channels used by

the vehicle.

History of Security Issue Risk

The fourth metric on the SVMCV page is the History of Security Issue Risk. This metric represents

the potential risk of an attack that exploits known security issues in the vehicle.

I/O Data Risk

The fifth metric on the SVMCV page is I/O Data Risk. This metric represents the potential risk of

an attack that exploits vulnerabilities in the Input/Output (I/O) data used by the vehicle.

Calculating Scores

To calculate the ECU Coupling Risk, enter the number of Active ECU Links along with the total

ECU links and weight.

 169

Figure 13 - ECU Coupling Risk Section

To calculate the Complexity Risk, enter the number of lines of code in the vehicle's software, then

enter the number of nestings and the weight of the nestings. Lastly enter the weight of the risk.

Figure 14 - Complexity Risk Section

To calculate the Communications Channel Risk, enter the number of communication channels in

the vehicle.

Figure 15 - Communications Channel risk Section

To calculate the History of Security Issue Risk metric, you will need to enter values for the

following three sub-metrics:

 170

1. Number of years since first attack: This sub-metric represents the number of years since

the first attack on the vehicle. Enter the number of years since the first attack in the input

field provided.

2. Number of First Attack: This sub-metric represents the number of attacks that have been

attempted on the vehicle in the past. Enter the number of attacks in the input field provided.

3. Number of Second Attack: This sub-metric represents the number of successful attacks that

have been carried out on the vehicle in the past. Enter the number of successful attacks in

the input field provided.

Once you have entered values for all three the Forgetting Factor will update accordingly.

Figure 16 - History of Security Issue Risk Section

To calculate the I/O Data Risk, enter the number of I/O data sources in the vehicle.

Figure 17 - I/O Data Risk Section

Once you have entered values for each of the 5 metrics, you can click the Calculate Total Risk

button to see the overall risk score for the vehicle.

 171

Figure 18 - Calculate Total Risk Button

Visualize

If you would like to see a visual representation of the risk score, click the Visualize Risk button.

This will display a bar chart and a pie chart that provide an overview of each risk with their

calculated score.

Figure 19 - Visualize Results Button

Reset

The Reset button will reset all user inputs to their default values.

Figure 20 - Reset Inputs Button

Security Metrics for Operational Safety (SMOS)

The purpose of this feature is to provide an insight on the impact of cybersecurity to operational

safety assessment (OSA).

Security Metrics

Within this page are the following operational safety metrics:

1. Safety Envelope Metric: This is an OSA measure of the connected vehicle’s maintenance of

safe boundary. An example is the vehicle’s capability of maintaining the safe distance driving rule.

2. Behavioral Metric: This OSA measure indicates the improper behavior of the subject vehicle.

Examples include speeding and sudden or hard braking.

 172

3. Component Metric: This is an OSA measure of the performance of the vehicle components

under normal operating condition. For example, an Electronic Control Unit (ECU) operating

according to its specification.

4. Sensing Metric: This is an OSA measure of the accuracy of data collected by the CAV sensors.

An example is the data collected by Roadside Units (RSUs). For non-autonomous vehicles, it is

the measure of the quality of data transmitted or collected by vehicles participating in a vehicle-

to-infrastructure (V2I) environment.

5. Perception Metric: This OSA measure pertains to the quality of interpretation of environment

data collected by the CAV sensors. An example would be the automated recognition of traffic

signs and signals.

6. Planning Metric: This OSA metric measures the ability of the CAV to devise a suitable

trajectory through the CAV environment. An example is the quality of the CAV’s planned

trajectory in collision avoidance. For non-autonomous vehicles, it is the measure of the quality of

maintaining control of the vehicle in the presence of an unexpected obstacle.

7. Control Metric: This OSA metric measures the ability of the CAV to execute the planned route.

An example is the ability of the CAV to stay on the predetermined route. For non-autonomous

vehicles, it is the measure of the quality of maintaining control of the vehicle navigation.

8. Authentication Metric: This OSA metric measures the quality of the authentication system

deployed in the vehicle. This is extremely useful in modern vehicles that rely on communications

such as those in V2V or V2I environment.

9. Physical Access Metric: This OSA metric measures the strength of physical access protection

of vehicle controls. An example is the unsecured physical access to an OBD port which could

compromise the vehicle’s CAN bus.

10. Communication Channel Metric: This OSA metric pertains to the quality of the

communication channel used by the vehicle.

Calculating Score

The user will see thirteen different metrics listed on the page, with the first ten requiring them to

enter two values for each metric: "Value" and "Criticality." The user should enter their desired

values in the appropriate input fields.

 173

Figure 21 - Safety Metrics for Operation Safety

After inputting values for each metric, the user can click the "Calculate Total Risk" button to

calculate the total risk score. The system will use the values to generate a total risk score for the

vehicle's operational safety. The user can view the total risk score on the page.

Figure 22 - Calculate Total Risk Button

Visualize

If the user wants to see a visual representation of the calculated risk score, they can click the

"Visualize Risk" button. The system will display two charts showing the user's calculated scores

for the security metrics.

Figure 23 - Visualize Results Button

Reset

If the user needs to start over or make changes to their input, they can click the "Reset All Input"

button. The system will clear all values from the input fields, allowing the user to start over.

 174

Figure 24 - Reset Inputs Button

Vehicle Security Best Practice Assessment Metrics (VSBPAM)

Security Metrics

The four phases and processes are described in the following:

Assessment Phase:

The assessment phase is designed to help you establish a baseline for your vehicle's security level.

This phase includes three processes:

1. Security Policy: This process assesses whether the organization has a security policy in

place and whether it is reviewed and updated regularly.

2. Data Security & Privacy: This process assesses whether the organization has policies and

procedures in place to protect sensitive data, and whether they are compliant with

relevant privacy regulations.

3. Risk Assessment: This process assesses whether the organization has conducted a risk

assessment to identify potential security threats and vulnerabilities, and whether

appropriate controls have been implemented to mitigate those risks.

Design Phase:

The design phase is designed to help you establish a secure design for your vehicle. This phase

includes two processes:

1. System Protection and Prioritization: This process assesses whether the organization has

implemented appropriate security controls to protect the system from unauthorized

access, and whether the organization has prioritized those controls based on risk.

 175

2. Security Architecture: This process assesses whether the organization has designed a

secure system architecture that meets the organization's security requirements and

protects against known threats.

Implementation Phase:

The implementation phase is designed to help you implement the security measures identified in

the design phase. This phase includes two processes:

1. Remediation and Implementation: This process assesses whether the organization has

implemented appropriate remediation measures to address identified security

vulnerabilities, and whether those measures have been effectively implemented.

2. Security Test and Evaluation: This process assesses whether the organization has

conducted appropriate security testing to ensure that the system is secure and meets the

organization's security requirements.

Operation Phase:

This phase focuses on maintaining and monitoring the vehicle security environment. This phase

includes two processes:

1. Awareness and Security Training: This process assesses whether the organization has

implemented appropriate security awareness and training programs for employees, and

whether those programs are regularly updated and evaluated.

2. Intrusion Detection and Response: This process assesses whether the organization has

implemented appropriate intrusion detection.

Calculating Score

To use the VSBPAM page, start by reading the list of questions that are displayed on each section.

Each phase of the assessment is represented by a group of questions that are grouped together, and

there are four questions for each process. Simply answer each question with either a "yes" or "no"

by clicking on the corresponding radio button next to the question. As you progress through the

questions, the system will automatically update the visual graph to show your progress in real time.

 176

Figure 25 - Vehicle Security Best Practice Assessment Metrics Page

Troubleshooting & Support

Error Messages

404 - Page not Found:

The page you are searching for does not exist on the website or could not be found. Try to check

the spelling of the page in the URL or access the page from the links provided on the home page

of the website.

500 - Internal Server Error:

This indicates that there is an error with the website’s server. Try reloading the page, clearing

your browser cache, deleting browser cookies, or coming back later.

Appendix A: Record of Changes

Table 2 - Record of Changes

Version Number Date Author/Owner Description of Change

0.1 11/01/2022 VSMVS

Development

Team

Initial Draft

0.2 3/10/2023 VSMVS

Development

Team

Initial Release

0.3 4/08/2023 VSMVS

Development

Team

Latest Release

 178

Appendix B: Referenced Documents

Table 4 - Referenced Documents

Document Name Document Location and/or URL Issuance Date

Auto-ISAC, Inc.

Best Practices.

https://automotiveisac.com/best-practices/ 2023, February 16

 Common

Weakness

Scoring System

(CWSS)

https://cwe.mitre.org/cwss/cwss_v1.0.1.html 2014, September 5

Common Criteria

for Information

Technology

Security

Evaluation.

https://www.commoncriteriaportal.org/files/ccf

iles/CCPART1V3.1R5.pdf

2017, April

Common

Vulnerability

Scoring System

version 3.1:

Specification

Document.

https://www.first.org/cvss/specification-

document

2019, June

Best Practice for

Metrics and

Methods for

Assessing Safety

Performance of

Automated

Driving Systems

(ADS).

SAE Industry

Technologies Consortium.

2021, March

 179

Document Name Document Location and/or URL Issuance Date

Evaluation of

Operational

Safety

Assessment

(OSA) Metrics

for Automated

Vehicles in

Simulation.

SAE International. 2021, April 06

 180

Appendix VII. Technical Report UWF-TR-FDOT-004-01

Connected Vehicle Dataset

Attributes, Collection,
Processing, Generation and

Mutation

Technical Report UWF-TR-FDOT-004-01

Version 4.0 approved

Prepared by Guillermo Francia, III

The University of West Florida

Florida Department of Transportation

June 1, 2023 (Initial)

June 8, 2023 (Revision 1)

July 15, 2023 (Revision 2)

September 2, 2023 (Revision 3)

November 14, 2023 (Revision 4)

 181

Table of Contents

Introduction .. 182

Purpose .. 182

Related CAV Datasets ... 182

1.0 Vehicular Reference Misbehavior Dataset (VeReMi) ... 182

2.0 Car Hacking Dataset ... 182

3.0 Connected Vehicle Pilot (CVP) Open Data .. 183

4.0 BDD100K .. 183

Working Datasets ... 183

1.0 Roadside Unit (RSU) Dataset ... 183
1.1 Basic Safety Message (BSM) .. 183
1.2 Common Safety Request (CSR) .. 184
1.3 MAP Message ... 184
1.4 Personal Safety Message (PSM) ... 184
1.5 Signal Phase and Timing (SPaT).. 184
1.6 Signal Request Message (SRM) .. 185
1.7 Traveler Information Message (TIM) ... 185

2.0. Synthetic Dataset .. 185

3.0. Malicious Dataset ... 187
3.1 Brake System Anomaly ... 187
3.2 Transmission System Anomaly ... 188
3.3 Longitudinal Acceleration Anomaly ... 188
3.4 Hard Braking Anomaly .. 189
3.5 Speed Anomaly ... 189

References ... 189

Appendix I .. 145

Table 1. BSM Coredata Characteristics ... 191

Appendix II ... 383

Algorithm 1: RSU Data extraction and Cleansing ... 383

Appendix III ... 196

Algorithm 2: Synthetic data generation .. 196

Algorithm 3: Malicious data generation and injection ... 197

 182

Introduction

The advancements in vehicle connectivity are quickly outpacing the developments in safety and

security. The Connected and Automated Vehicles (CAV) infrastructure ushers an attack surface that

is continuously evolving and expanding. Society can not tolerate another critical infrastructure

wherein security is regarded as an afterthought. Security safeguards need to be designed,

implemented, and evaluated to prevent or mitigate incidents that may jeopardized the safety of people

and assets. To this end, the application of artificial intelligence using machine learning systems is

proposed to investigate their feasibility in identifying malicious datasets that are purposely injected

into the CAV infrastructure.

Purpose

This document contains the details of the datasets that will be used by the Machine Learning system

for the purpose of distinguishing normal information from abnormal information and for classifying

various classes of anomalous data.

Related CAV Datasets

The following concise literature review of CAV datasets provides a guidance on test data generation

that can be used to study the feasibility of applying artificial intelligence in securing CAVs. These

datasets are similarly cited in [75].

1.0 Vehicular Reference Misbehavior Dataset (VeReMi)

The VeReMi dataset [76] is a publicly extensible dataset for detecting misbehavior on Vehicular Ad-

hoc Networks (VANETs). Its purpose is to facilitate the reproducibility and the evaluation of

detection mechanisms using a reference dataset. Further, it provides a repository of newly discovered

attack datasets.

2.0 Car Hacking Dataset

The car hacking datasets [77] include Denial of Service attack, fuzzy attack, spoofing the drive gear,

and spoofing the RPM gauge. Datasets were constructed by logging Controller Area Network (CAN)

 183

traffic via the On-Board Diagnostic (OBD)-II port from a real vehicle. For each dataset, 300 message

intrusions were injected.

3.0 Connected Vehicle Pilot (CVP) Open Data

The CVP Open Data is a product of the U.S. Department of Transportation Intelligent Transportation

Systems Joint Program Office (ITS JPO’s) Connected Vehicle Pilot Deployment Program. Data were

collected at each pilot site: the Wyoming DOT, the Tampa-Hillsborough Expressway Authority

(THEA), and the New York City DOT. The purpose of the data collection is to facilitate independent

evaluations of the use of connected vehicle technology on real roadways [78].

4.0 BDD100K

The BDD100K dataset is an open driving video dataset with 100K videos and 10 tasks to evaluate

image recognition algorithms for autonomous driving [79]. The Berkeley Deep Drive (BDD)

consortium is the curator of the dataset. It is a comprehensive dataset that contains, among others,

Global Positioning System (GPS) information, weather conditions, road object information, road

lanes, etc.

Working Datasets

To gain a better understanding of CAV datasets, we start by scrutinizing the datasets that were

collected and shared by the research team in the FDOT pilot site at the University of Florida.

1.0 Roadside Unit (RSU) Dataset

The dataset, in SAE J2735 message format, were collected by Roadside Units (RSUs) in Gainesville,

FL and can be availed through an AWS Simple Storage Service (S3) repository. The raw dataset, in

compressed XML format, were converted to a readable comma separated value (csv) format in

preparation for data cleansing. The data component types are described in the following.

1.1 Basic Safety Message (BSM)

The Basic Safety Message (BSM) is used to exchange safety data and consists of two parts:

o The mandatory part, also called BSMcoreData, is typically described in Abstract Syntax

Notation One (ASN.1) [14] format, a formal notation to describe data transmitted by

 184

telecommunication protocols. Instead of describing the BSMcoreData in ASN.1 notation,

we present each item in detail using a tabular format as shown in Appendix I. The data

characteristics presented on the table are excerpted from [15] .

o The optional part of the BSM includes the Vehicle Safety Extension consisting of event

flags, path history, path prediction, and the Radio Technical Commission for Maritime

Services (RTCM) package.

1.2 Common Safety Request (CSR)

The Common Safety Request (CSR) message is a unicast request sent by a vehicle requesting

additional information from other vehicles required for the active safety applications. Vehicles

responding to the request may add CSR data elements in their appropriate place in the BSM when

broadcasting back to the requesting vehicle. Data elements may include heading, speed, and spatial

position [80].

1.3 MAP Message

The Map Data (MAP) message contains geographic road information. Typically, the message is

sent from the infrastructure to the vehicle. A message instance could be one that describes the

geometric layout of one or more complex intersections, road segments, or high-speed curve

outlines; each of which can have their own data structures within a single message [80].

1.4 Personal Safety Message (PSM)

The Personal Safety Message (PSM) is used to broadcast safety data on vulnerable road users

(VRU) such as pedestrians, cyclists, or road workers. Data elements in this message include

position, speed and heading of the VRU similar to data transmitted by vehicles., along with the

VRU’s path history and predicted path. Furthermore, crosswalk data will be transmitted when

applicable [80].

1.5 Signal Phase and Timing (SPaT)

 185

The Signal Phase and Timing (SPAT) message originates from the infrastructure and provides the

current status of one or more signalized intersections. SPAT and MAP data can be used together to

provide vehicle safety systems with the state of the signal phase, when the signal phase is expected

to change, and geometry of an intersection including ingress and egress lanes where applicable [80].

1.6 Signal Request Message (SRM)

The Signal Request Message (SRM) is a message sent by V2X-equipped entities to the Roadside

Units (RSUs) in a signalized intersection for priority signaling or preemption of signal request.

Similar to the above-mentioned SPAT and MAP, the returned data defines a path through the

intersection including ingress and egress lanes. Optional components of the SRM are the time of

arrival and the expected duration of the service. Also, data for one-to-many intersections are

supported. The SRM contains a RequestorDescription data frame that allows the requestor to

identify itself in various ways and includes current speed, heading, and location [80].

1.7 Traveler Information Message (TIM)

The Traveler Information Message (TIM) provides advisory and roadside information to V2X

devices originating from the infrastructure. The TIM is used to send information such as advisory

and road sign messages to equipped devices. The International Traveler Information Systems (ITIS)

encoding system is implemented to send standard message phrases, but the TIM allows for local

place names. Due to dynamic conditions found on roadways, TIMs are activated at specified times

and duration with a resolution of one minute. The geographic area in which TIMs are broadcast can

be defined as a radius around a specific location or defined using the roadway geometry [80].

2.0. Synthetic Dataset

After gaining an understanding of the BSM dataset characteristics, we investigated the viability of

generating synthetic datasets that depict a typical vehicle moving in a straight-line trajectory

without regard to traffic condition. The motivation behind this initiative is three-fold:

o to derive CAV datasets that can be used to study the application of Machine Learning (ML)

algorithms to identify and classify malicious messages;

o to be able to create additional malicious datasets that will test attack scenarios for each of the

V2V safety applications described in [81]; and

 186

o to be able to perform a comparative study on the speed of convergence of various ML training

algorithms on disparate datasets.

The synthetic BSM coreData generation proceeds using the following assumptions and constraints:

• Starting geolocation (Central Florida) with coordinates:

o latitude: 28.890658

o longitude: -82.097812

• Data collection time interval: 20 sec. Note that SAE J2945/1 Standard [81] requires vehicles

to transmit 10 BSMs per second.

• Travel is on a straight line towards north

• Acceleration is in units of 0.0328 ft/sec2

• Acceleration (deceleration) is randomly applied every 10 minutes. The random value will range

from -10 to 10 mph. This represents lateral acceleration (deceleration)

• Angle steering is 127 (unavailable)

• Brake system status: 0 during acceleration; 5 during deceleration (assuming front wheel

brakes). The brake system status is adjusted to reflect the acceleration or deceleration condition

• Elevation: 61440 (unknown)

• Heading: 28800 (unavailable)

• Latitude is calculated using equations (1)-(5)

earth_radius = 6371 km (1)

 current_lat= math.radians(initial_lat) (2)

 # distance after 20 seconds of travel

 dist_meters = speed_mph * 0.44704 * 20 (3)

 # change in latitude

 delta_lat = dist_meters / earth_radius (4)

 # new latitude is calculated as

 new_lat=math.degrees(current_lat+delta_lat) (5)

• Longitude is assumed constant at -82.097812

• Msg Count: 0 (unavailable)

• Vehicle ID: 0 (unavailable)

• SecMark : Calculated elapsed time in milliseconds

 187

• Transmission: 2 (forward gear)

• Hard Braking: 0 (no), 1 (yes). Deceleration of 8 mph in 1 second (23.09 ft/sec2 when applying

the unit measure of 0.01 meters/sec2) while traveling at a speed of > 25 mph indicates hard

braking.

• Vehicle size:

o Length = 21 ft

o Width = 7 ft

• Starting speed is 25 mph

• The brake status is adjusted to reflect the acceleration or deceleration condition

• The speed is calculated using equation (6)

 V1 = V0 + a * t (6)

 where

 V1 is the current speed, miles/hr

 V0 is the initial speed, miles/hr

 a is the acceleration, miles/hr2

 t is the elapsed time, hr

• The data record is terminated with a status flag: 1 for normal and 0 for abnormal (malicious).

3.0. Malicious Dataset

After obtaining datasets from two sources: the RSU datasets for the Gainesville pilot site and the

synthetically generated dataset, we implemented an application to inject malicious data records into

each of the datasets. This process, in essence, produces two mutated datasets. The mutation process in

described in the following.

Using the assumption for a typical acceleration of 0.577 ft/sec2 (derived from 17.6 ft/sec2 and applying

the unit measure of 0.01 meters/sec2), malicious BSMcoreData test datasets are generated according

to the following parameters. Note that for each data record, the status flag value is 1 to indicate an

abnormal (malicious) data record.

3.1 Brake System Anomaly

 188

3. To simulate an accelerating vehicle while brakes are engaged:

Randomly generate a BSMcoreData record with Brake System Status = 1111 (decimal

value 15; brakes applied) and Longitudinal Acceleration = 5.364 m/sec2.

4. To simulate an accelerating vehicle in reverse while the brakes are engaged:

Randomly generate a BSMcoreData record with Brake System Status = 0000 (decimal

value = 0; all brakes not engaged), Longitudinal Acceleration = 5.364 m/sec2 and

Transmission Status=011 (decimal value 3; reverse gear).

3.2 Transmission System Anomaly

4. To simulate a speeding vehicle with transmission system in neutral: randomly generate a BSM

data record with speed = 15 mph and Transmission Status = 000 (decimal value 0).

5. To simulate a speeding vehicle with transmission system in park: randomly generate a BSM

data record with speed = 25 mph and Transmission Status = 001 (decimal value 1).

6. To simulate a speeding vehicle with transmission system in reverse gear: randomly generate

a BSM data record with speed = 55 mph and Transmission Status = 011 (decimal value 3).

3.3 Longitudinal Acceleration Anomaly

1. To simulate an accelerating vehicle with transmission gear in neutral: randomly generate a

BSM data record with Longitudinal Acceleration = 5.364 m/sec2 and Transmission

Status=000.

2. To simulate a decelerating vehicle with the transmission gear in park: randomly generate a

BSM data record with Longitudinal Acceleration = -5.364 m/sec2 and Transmission

Status=001.

 189

3. To simulate an accelerating vehicle with the transmission gear in reverse: randomly generate

a BSM data record with Longitudinal acceleration = 5.364 m/sec2 and Transmission

Status=011.

3.4 Hard Braking Anomaly

To simulate malicious hard braking with the transmission in forward gear: randomly generate

a BSM data record with Longitudinal Deceleration = -25.59 ft/sec2 (2.5 times the value of

deceleration rate considered as hard braking) and Transmission Status=010 (decimal value 2)

3.5 Speed Anomaly

To simulate malicious speed value with transmission in forward gear: randomly generate a

BSM data record with speed 3 times the speed value of the previous speed reading and

Transmission Status=010 (decimal value 2)

References

[1] Forum of Incident Response and Security Teams (FIRST), "Common Vulnerability Scoring

System version 3.1: Specification Document," June 2019. [Online]. Available:

https://www.first.org/cvss/specification-document. [Accessed 13 February 2020].

[2] G. A. Francia, "Connected Vehicle Security," in 15th International Conference on Cyber

Warfare and Security (ICCWS 2020), Norfolk, VA, 2020.

[3] NIST, "CSV-2019-13582 Detail," 15 November 2019. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2019-13582. [Accessed 20 February 2023].

[4] Common Vulnerabilities and Exposure, "CVE-2018-9322," 31 May 2018. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9322. [Accessed 13 February

2020].

[5] Common Criteria Portal, "Common Criteria for Information Technology Security Evalaution,"

April 2017. [Online]. Available:

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf. [Accessed 24

February 2020].

[6] MITRE Corporation, "Common Weakness Scoring System (CWSS)," 2 April 2018. [Online].

Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html.

[7] Automated Vehicle Safety Consortium, "Best Practice for Metrics and Methods for Assessing

Safety Performance of Automated Driving Systems (ADS)," SAE Industry Technologies

Consortium, March 2021.

[8] M. Elli, J. Wishart, S. Como, S. Dhakshinamoorthy and J. Weast, "Evaluation of Operational

Safety Assessment (OSA) Metrics for Automated Vehciles in Simulation," SAE, 2021.

 190

[9] SAE, "Operational Safety Metrics for Verification and Validation (V&V) of Automated

Driving Systems (ADS) J3237," SAE International, September 2020.

 191

Appendix I

Table 1. BSM Coredata Characteristics

Data Item Data Type Description

Acceleration System Defined (in
units of 0.01 m/sec2

acceleration_set_4_way :

 long accel: integer, (acceleration along the X-

axis or the direction of travel; negative value

indicates braking action)

 lat accel: integer, (acceleration along the Y-

axis or the direction of travel; negative value

indicates left turning action, positive indicates

right turning)

 vert accel: one-byte signed integer, (-127

represents unavailable data)

 yaw: integer (vehicle rotation about the vertical

axis and expressed in 0.01 degrees/second)
Angle:
Steering
Wheel Angle
(units of 1.5
degree)

Signed Integer

(range:

-189 to +189)

0x01 = 00 = +1.5 degree

0x81 = -126 = -189 degree and beyond

0x7E = +126 = +189 degree and beyond

0x7F = +127 to be used for unavailable

Brake

System

Status: 2-

octet

information

about the

current brake

system of the

vehicle

System Defined brakeAppliedStatus; (4 bits total--one bit for each

wheel, value 1 means active; Thus, 0000 means

all Off, 0001 left front active, 0010 left rear

active, 0100 right front active, 1000 right rear

active)

brakesUnavailableStatus: (5th bit; 1 means true)

sparebit: 6th bit unused; set to 0

traction: (7th and 8th bits) (Traction Control

Status)

 00-unavailable)

 01-off

 10-on but not engaged

 11-engaged,

abs: (9th and 10th bits) (Anti-lock Brake Status)

00-unavailable; 01-off; 10-on but not engaged;

11-engaged.

Stability Control Status, Brake Boost Applied,

and Auxiliary/Emergency Brake Status omitted

for brevity.

 192

Elevation
(unit is 10
cm)

Integer Elevations from 0 to 61439 (0x0000 to 0xEFFF)

meters

Elevations from -409.5 to -0.1 (0xF001 to 0xFFF)

meters

Unknown value is encoded as 0xF000
Heading:
Represents
0.0125
degrees from
the North

2 octets of unsigned
integer. Range 0 to
28800

Value of 28800 indicates unavailable.

Latitude: 32-
bit value
represents
1/10
microdegrees
with
reference to
the
horizontal
datum

Integer (range --
900000000 to

900000001

Provides a range of plus-minus 180 degrees

900000001 indicates unavailable

Longitude:
32-bit value
represents
1/10
microdegrees
with
reference to
the vertical
datum

Integer (range

-1800000000 to

1800000001

Provides a range of plus-minus 180 degrees

1800000001 indicates unavailable

Msg Count Non-negative Integer Message Count

Vehicle ID Non-negative Integer Vehicle Identifier

SecMark Non-negative Integer Units of milliseconds

Speed (in
units of 0.02
m/sec.
Range: 0 to
8191

Non-negative Integer
(13 bits of the 2-byte
Transmission+Speed)

Use 8191 to indicate unavailability.

Transmission System Defined

Occupies bits 14 to 16
of the 2-byte
Transmission+Speed

000-Neutral

001-Park

010-Forward gear

011-Reverse gear

100, 101, and 110 are unused

111 unavailable

 193

Vehicle Size
(in cm)

System Defined

3 octets

Width : Non-negative Integer (10 unsigned bit

with values [0,1023] (0 when unavailable)

Length : Non-negative Integer (14 unsigned bit

with values [0,16383] (0 when

unavailable)

 194

Appendix II

Algorithm 1: RSU Data extraction and Cleansing

Function to Load BSM Data (load_BSMs):

 # Open the compressed XML file containing the BSM data

 with gzip.open(FPATH, 'rt') as fz:

 # Read and parse each line into an XML tree

 trees = [et.fromstring(l) for l in fz]

 # Print the tag of the first XML element

 print(trees[0].tag)

 # Filter out specific BSM messages

BSMs_raw = [tree for tree in trees if tree.tag ==

"MessageFrame"

 if tree.findall('messageId')[0].text == '20']

 # Define the desired BSM data attributes

 PAYLOAD_INFO_KEYS = ['id', 'secMark', 'lat', 'long',

'speed','heading', 'angle']

 # Make a list to store the BSM dictionaries

 BSMs_dicts_list = []

 # Extract the data from each BSM message

 for tree in BSMs_raw:

 message_dict = {}

 for k in PAYLOAD_INFO_KEYS:

 # Find the text for each key from the XML tree

 message_dict[k] = [ch.text for ch in \

tree.findall(f'.//value//BasicSafetyMessage//core

Data//{k}')][0]

Process and update timestamp and other fields in #

message_dict

 message_dict['timestamp'] =

processSecMark(int(message_dict['secMark']),

datetime.datetime.now(datetime.timezone.utc).strftime("%

Y-%m-%d_%H:%M:%S"))

 message_dict['lat'] = int(message_dict['lat'])/10 ** 7

 message_dict['long'] = int(message_dict['long'])/10 ** 7

 message_dict['speed_mph'] =

processSpeedMPH(int(message_dict['speed']))

 # ... (Other hardcoded values)

 195

 # Append the cleaned dictionary to the list

 BSMs_dicts_list.append({k: v for k, v in

message_dict.items()

 if k not in ['id', 'speed', 'lat_long']})

 # Return the list of processed BSM dictionaries

 return BSMs_dicts_list

Load the BSMs from the specified file path

BSMs_dicts_list = load_BSMs(FPATH)

 196

Appendix III

Algorithm 2: Synthetic data generation
Constants

earth_radius = 6371e3 # Earth radius in meters

Initial position coordinates

initial_latitude = 28.890658

initial_longitude = -82.097812

Initial time and end time

start_time = datetime.strptime('08:00 AM', '%I:%M %p')

end_time = start_time + timedelta(hours=10) # 10 hours drive

Initial speed and acceleration

speed_mph = 25

acceleration = 0

Generate BSM dataset

bsm_dataset = []

while start_time < end_time:

 # Calculate new latitude based on the distance traveled

 # Convert mph to m/s and multiply by 20 seconds

 distance_meters = speed_mph * 0.44704 * 20

 delta_latitude = distance_meters / earth_radius

 new_latitude = initial_latitude +

math.degrees(delta_latitude)

 # Update position coordinates

 initial_latitude = new_latitude

 # Change speed and acceleration randomly every 10 minutes

 if start_time.minute % 10 == 0 and start_time.second == 0:

 # Randomly choose to accelerate or decelerate by a value

 # between 1 and 10 mph

 acceleration = random.uniform(-10, 10)

 speed_mph += acceleration

 # Ensure speed is within 0 and 90 mph range

 speed_mph = max(0, min(speed_mph, 90))

 # Determine braking status based on acceleration

 brake_system_status = 5 if acceleration < 0

 else 0

 hard_braking = 1 if acceleration < 0 and speed_mph > 25

 else 0

 197

 # Create BSM record with the current data

 bsm_record = { # Python code dictionary structure

 'Timestamp': start_time.strftime('%Y-%m-%d %H:%M:%S'),

 'Latitude': initial_latitude,

 'Longitude': initial_longitude,

 # Other fields

 }

 # Append the record to the dataset

 bsm_dataset.append(bsm_record)

 # Increment time by 20 seconds

 start_time += timedelta(seconds=20)

The synthetic data is now created and able to be put in CSV

Algorithm 3: Malicious data generation and injection

AnomaliesDict = [

 {'Brake Status': 15, 'Acceleration': 536.4}, #Anomaly A.1

 {'Brake Status': 0, 'Acceleration': 536.4, 'transmission

status': 3}, #Anomaly A.2

 {'speed_mph': 15, 'transmission’: 0}, #Anomaly B.1

 {'speed_mph': 25, 'transmission’: 1}, #Anomaly B.2

 {'speed_mph': 55, 'transmission’: 3}, #Anomaly B.3

 {'Acceleration': 536.4, 'transmission’: 0}, #Anomaly C.1

 {'Acceleration': -536.4, 'transmission’: 1}, #Anomaly C.2

 {'Acceleration': 536.4, 'transmission’: 3}, #Anomaly C.3

 {'Acceleration': -780, 'transmission’: 2}, # Anomaly D.1

]

Iterate through all BSM records:

Select every 2nd, 5th or 10th record:

anomalySelected = Randomly select from AnomaliesDict[]

for each parameter in anomalySelected:

if parameter == Brake Status:

 message_dict[Brake Status] =

anomalySelected[Brake Status]

 if parameter == Acceleration:

 message_dict[accelSet long] =

anomalySelected[Acceleration]

 if parameter == transmission:

 198

 message_dict[transmission] =

anomalySelected[transmission]

 if parameter == speed_mph:

message_dict[speed_mph] =

anomalySelected[speed_mph]

 set normalFlag value based on anomalySelected

 199

Appendix VIII. Technical Report UWF-TR-FDOT-005-01

Software Requirements
Specification

for

Vehicle Security Machine Learning
(VSML) System

Technical Report UWF-TR-FDOT-005-01

Version 0.7 approved

Prepared by Guillermo Francia, III

The University of West Florida

Florida Department of Transportation Contract: BED34 977-01

April 1, 2023 (Initial)

April 8, 2023 (Revision 1)

April 17, 2023 (Revision 2)

April 27, 2023 (Revision 3)

May 9, 2023 (Revision 4)

June 6, 2023 (Revision 5)

 200

Table of Contents

1. Introduction .. 202

1.1 Purpose .. 202

1.2 Document Conventions ... 203

1.3 Related Documents ... 203

1.4 Document Revisions Table... 203

1.5 Business Processes... 204

2.0 Overview of the Product .. 205

2.1 Vehicle Security Machine Learning (VSML) System .. 205

2.2 Vehicle Security Machine Learning System Workflow .. 205
2.2.1 Data Ingestion ... 205
2.2.2 Data Cleansing ... 206
2.2.3 Data Mutation ... 206
2.2.4 Data Validation and Visualization.. 207
2.2.5 Training Data Selection.. 207
2.2.6 Model Training .. 207
2.2.7 Model Tuning... 207
2.2.8 Deployment ... 207
2.2.9 Monitoring ... 208

2.3 Hosting .. 208

2.3 User Classes and Characteristics ... 208

2.4 Operating Environment ... 208

2.5 Design and Implementation Constraints ... 209

2.6 Assumptions and Dependencies .. 209

3.0 Interface Requirements ... 209

IR-1: Jupyter Notebook .. 209

IR-2: Data Visualization ... 210

IR-3: Performance Metrics... 210

IR-4: Data Input ... 210

4.0 Functional Requirements .. 210

FR-1: Login ... 210

FR-2: Data Repository.. 210
FR-2.1. Data Entry ... 210
FR-2.2. Data Cleansing and Transformation ... 211
FR-2.3. Malicious Data Injection ... 211

FR-3: Machine Learning Models .. 211
FR-3.1: Model Training and Validation ... 211
FR-3.2: Model Testing... 211

 201

FR-4: System Deployment ... 211

5.0 Non-Functional Requirements .. 212

NF-1: Portability .. 212

NF-2: Usability ... 212

NF-3: Speed ... 212

6.0 Quality Attributes .. 212

7.0 Source Code Repository and Version Control Requirement ... 212

SC-1: Source Code Repository and Control .. 212

8.0 Requirements Table ... 213

9.0 Performance Indicators ... 214

9.1 Definitions ... 214

9.2 Recall ... 214

9.3 Precision .. 215

9.4 Accuracy .. 215

9.5 F-Measure.. 215

10.0 REFERENCES .. 215

Appendix I .. 217

Appendix II ... 218

Appendix III ... 221

Appendix IV.. 222

Appendix V ... 223

Appendix VI.. 224

Appendix VII .. 227

 202

1. Introduction

The innovations in the interconnectivity of vehicles enable both expediency and insecurity. Surely,

the convenience of gathering real-time information on traffic and weather conditions, the vehicle

maintenance status, and the prevailing condition of the transport system at a macro level for

infrastructure planning purposes is a boon to society. However, this newly found conveniences

present unintended consequences. Specifically, the advancements on automation and connectivity are

outpacing the developments in security and safety. Starting at the lowest level, numerous

vulnerabilities have been identified in the internal communication network of vehicles. These

insecurities become even more pronounced with the advancement of external communication systems

such as those found in connected vehicles.

Most of the existing research on machine learning for vehicle security has focused on detecting

anomalies and cyberattacks in the Controller Area Network (CAN) bus, which serves as a protocol

for in-vehicle network communication in electric vehicles, using various machine learning methods.

In this research and application development effort, we focus on applying Machine Learning to

connected vehicle data.

This undertaking entails the design, implementation, and testing of a prototype Machine Learning

system for vehicle security and performance monitoring. It utilizes the Amazon Web Services (AWS)

SageMaker Studio for Machine Learning (ML) development and deployment. Data ingestion,

cleansing, normalization, and data mutation (malicious data injection) of the Connected Vehicle

Roadside Unit (RSU) will also be enabled. The dataset, in SAE J2735 message format, were collected

by Roadside Units (RSUs) in Gainesville, FL. The data will be preprocessed and normalized for

Machine Learning. In addition, synthetic anomalous data will be randomly injected to simulate cyber

threats and attacks.

This is a prototype system to demonstrate the capability of a Machine Learning system in enhancing

Vehicle Security.

1.1 Purpose

 203

This document describes the software requirements for Version 1.0 of the Vehicle Security Machine

Learning (VSML) System. The VSML is a subcomponent of the Connected Vehicle Security Metrics

and Threat Intelligence Project. This document provides an overview of the users and context of the

VSML and covers all of its functional, non-functional, and data requirements.

1.2 Document Conventions

This document is based on the IEEE 830 Standards and the Florida Department of Transportation

Requirements Standards. Specific conventions used in this document are listed below:

• Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

• Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the ID of the requirement in a hierarchical fashion.

1.3 Related Documents

The following reference documents were used in the creation of this document:

• IEEE 830 Standards on Software Requirement Specifications

• UWF Scope of Service Document for the Connected Vehicle Security Metrics and Threat

Intelligence Project

1.4 Document Revisions Table

Revisor Revision Date Reason

Guillermo Francia, III April 1, 2023 Added the Machine Learning

(ML) System workflow

Elizabeth Uebele April 3, 2023 Added

Guillermo Francia, III April 8, 2023 Added details to the ML

System workflow.

Added the section on

Performance Indicators

Elizabeth Uebele April 12, 2023 Added Functional

Requirements

Added Portability as

Nonfunctional Requirement

 204

Guillermo Francia, III April 12, 2023 Nonfunctional Requirements

Hosting, Constraints

Assumptions and

Dependencies

Quality Attributes

Source Code Repository

Elizabeth Uebele April 17, 2023 Inserted Appendix X

Added Table of Contents

Guillermo Francia, III April 17, 2023 Added User Classes and

Characteristics

Added the Operating

Environment information

Guillermo Francia, III May 3, 2023 Added Interface Requirements

Added Appendices

Added preliminary ML runs

on Matlab™

Elizabeth Uebele May 9, 2023 Updated Requirements Table

Proofread and Edited

Guillermo Francia, III June 6, 2023 Added Appendix VII :

SecMark conversion to

Timestamp

1.5 Business Processes

N/A

 205

2.0 Overview of the Product

2.1 Vehicle Security Machine Learning (VSML) System

The VSML system will utilize the Amazon Web Services (AWS) SageMaker Studio for ML

development and deployment. The Machine Learning System workflow is depicted below.

2.2 Vehicle Security Machine Learning System Workflow

Figure 1. Vehicle Security Machine Learning System Workflow

2.2.1 Data Ingestion

The dataset, in SAE J2735 message format, were collected by Roadside Units (RSUs) in

Gainesville, FL and can be availed through an AWS Simple Storage Service (S3) repository. The

raw dataset in compressed XML format will be converted to a readable comma separated value

(csv) format in preparation for data cleansing.

The details of the data preparation algorithm are shown on Appendix III.

Data Ingestion Data Cleansing
Data

Validation/Visualization

Training Data Selection Model Training Model Tuning

Deployment Monitoing

 206

The dataset, in SAE J2735 message format, include the following: BasicSafetyMessage (BSM),

PersonalSafetyMessage (PSM), SignalPhaseAndTiming (SPAT), SignalRequestMessage (SRM),

SignalStatusMessage (SSM), and TravelerInformationMessage (TIM).

Other possible data sources are Sample MAP and SPaT datasets from the California Connected

Vehicle Testbed which can be found in the URL:

https://www.caconnectedvehicletestbed.org/datasample. Additional datasets can be found in

Appendix V.

2.2.2 Data Cleansing

After data ingestion, the result is trimmed and cleansed. Data attributes that are of interest are the

following:

i. Latitude

ii. Longitude

iii. Heading

iv. Angle

v. Timestamp1

vi. Vehicle_ID

vii. Speed_mph

viii. Transmission Status

ix. Longitudinal Acceleration

x. Elevation

xi. Vehicle Length

xii. Vehicle Width

xiii. Brake System Status

2.2.3 Data Mutation

The preprocessed data will be augmented with malicious data that will affect the normal operation

of a vehicle. These synthetic anomalous data will be randomly injected to simulate cyber threats and

attacks on the RSU data.

Also, in this stage, the data is analyzed, statistics are collected, missing values are checked,

quantiles are calculated, and data correlations are identified. These tasks will be initiated with the

1 The BSM CoreData SecMark is converted into TimeStamp in YYYY-MM-DD HH:MM:SS.sss format.
See Appendix VII for the conversion algorithm implemented as a Python code snippet.

about:blank

 207

SageMaker Studio and a hosted Jupyter notebook environment. Data analysis will be done using an

open-source Python data analysis and manipulation tool, Panda (https://pandas.pydata.org).

2.2.4 Data Validation and Visualization

In order to be able to build a quality model, quality data must be provided as input. Unit tests on

datasets must be run to ensure data quality expectations. This data validation process will be

accomplished using AWS Deequ (https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-

with-deequ/0) and AWS Glue Data Quality (https://aws.amazon.com/glue/features/data-quality/).

Data visualization could provide additional insight into the datasets. Dashboard-style data

visualization will be implemented using AWS QuickSight (https://aws.amazon.com/quicksight/).

2.2.5 Training Data Selection

The training data selection will be accomplished using SageMaker Autopilot

(https://aws.amazon.com/sagemaker/autopilot/?nc2=type_a&sagemaker-data-wrangler-whats-

new.sort-by=item.additionalFields.postDateTime&sagemaker-data-wrangler-whats-new.sort-

order=desc). The S3 data repository will be provided to the SageMaker Autopilot for model training

and validation. The SageMaker Autopilot generates code to transparently execute a set of model

pipelines running on different algorithms.

2.2.6 Model Training

Model training with SageMaker Autopilot entails selecting an algorithm to train with training

feature set and verifying that model code and algorithm are suitable in classifying the dataset as

normal or malicious.

2.2.7 Model Tuning

The ML model tuning involves hyper-parameter tuning and evaluation of model performance

against the validation feature set. This is an iterative process of incrementing the dataset or hyper-

parameter tweaking until the desired results are achieved on the test feature set.

2.2.8 Deployment

The VSML model will be deployed via SageMaker Endpoints. The model will provide an online

and real-time prediction of the type of input data: normal or malicious.

https://pandas.pydata.org/
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

 208

2.2.9 Monitoring

The deployed VSML system will be continuously monitored for performance degradation after its

deployment and uninterrupted utilization.

This VSML workflow is partially implemented using Machine Learning Systems on Matlab™ to

illustrate the viability of a more extensive study. The results of the Matlab™ implementations are

shown on Appendix VI.

2.3 Hosting

The system will be hosted inside an AWS SageMaker and Jupyter instance reachable at

https://XX.XX.XX.XX. This IP address will be changed with a more user-friendly name once the

domain name is decided.

2.3 User Classes and Characteristics

User Class Characteristics

Data Engineer This user is responsible for data collection,

analysis, assessment, and ingestion for the

Machine Learning (ML) System

Data Scientist This user is responsible for exploring data,

designing ML algorithms, building ML models,

wrangling data trends for the ML system, and

validating the ML system.

Ordinary User This user will be able to input a BSM data

instance and to receive a prediction on

whether it is normal or malicious

ML Engineer This user is responsible for deploying,

monitoring, and fine-tuning the VSML System.

2.4 Operating Environment

The VSML operating environment is defined by the following:

OE-1: The VSML shall run within an Amazon Web Services (AWS) SageMaker.

OE-2: The VSML shall utilize AWS Simple Storage Service (S3) for its data repository.

about:blank

 209

OE-3: The VSML shall utilize the Jupyter Notebook development environment for interactive

development.

OE-4: The VTME shall utilize the Python language as a primary development language.

OE-5: The VSML shall utilize the SageMaker Autopilot for Machine Learning training, testing,

validation, and deployment.

2.5 Design and Implementation Constraints

DIC-1: The VSML shall be developed using AWS Sagemaker’s Autopilot and Jupyter Notebook

DIC-2: The VSML shall be developed using the Python programming language.

DIC-3: The VSML will be constrained by the limitations of the RSU data source.

DIC-4: The VSML will be designed and implemented as a working prototype capable of future

expansion.

DIC-5: The initial iterations of the VSML will be limited to the capability of the AWS SageMaker

Autopilot application.

2.6 Assumptions and Dependencies

Assumptions and dependencies for the VSML implementation include the following:

ASS-1: The VSML assumes the availability of the RSU datasets in an AWS S3 bucket repository.

ASS-2: The VSML assumes the availability of Machine Learning (ML) algorithm implementations

in SageMaker.

ASS-3: The VSML assumes the ability of sharing the Jupyter notebooks created by SageMaker .

3.0 Interface Requirements

The VSML System will require interfacing with the user. These interface requirements are

described in the following.

IR-1: Jupyter Notebook

Description and Priority

The user interface for VSML will be provided with Jupyter notebooks that are derived from

Sagemaker Autopilot. The notebooks provide an interactive computational environment for

developing Python based Machine Learning applications.

Priority: Must Have

 210

IR-2: Data Visualization

Description and Priority

The VSML System will provide a dataset visualization capability to enable visual analytics.

 Priority: Must Have

IR-3: Performance Metrics

Description and Priority

The VSML System will provide an interface for displaying the system performance metrics

defined in section 9. These include, but are not limited to, Confusion Matrices, Receiver Operating

Characteristics (ROC), and a summary table of results.

 Priority: Must Have

IR-4: Data Input

Description and Priority

The VSML System will provide an interface for data input to the AWS S3 bucket.

 Priority: Must Have

4.0 Functional Requirements
FR-1: Login

Description and Priority

 The VSML System will provide the user the ability to log in to the system given the proper

credentials.

 Priority: Must Have

FR-2: Data Repository

Description and Priority

 The VSML System will provide a repository of datasets on an AWS S3 bucket.

 Priority: Must Have

 FR-2.1. Data Entry

 The VSML System will allow for the entry of vehicle-related data taken from various

sources. The specific data and formatting can be found under section 2.2.1.

 211

 FR-2.2. Data Cleansing and Transformation

 The VSML System will provide for the cleansing of data out of non-essential attributes. The

attributes of interest are listed under section 2.2.2. The VSML will also enable data transformation,

i.e., the conversion of data to the required format. The data can then be analyzed and used by the

system.

 FR-2.3. Malicious Data Injection

 The VSML System will allow for the injection of malicious data for training, validation and

testing purposes. The data mutation specifications are shown in Appendix IV.

FR-3: Machine Learning Models

 The VSML System will use machine learning to distinguish between normal data and

malicious data. The VSML will utilize various machine learning models to determine the best

fitting model for the vehicle dataset.

 Priority: Must Have

 FR-3.1: Model Training and Validation

 The VSML System will use the cleansed and transformed normal data and augmented with

malicious data, the aggregated dataset, to train and validate the machine learning system to

distinguish normal data from malicious data. This will be done through Sagemaker Autopilot, as

described in sections 2.2.4-2.2.6. The performance metrics defined in Section 9.0 will be used to

validate the trained Machine Learning models.

FR-3.2: Model Testing

 The VSML System will test the validated Machine Learning models utilizing the

performance metrics defined in Section 9.0. Ten percent (10%) of the aggregated dataset will be

used for this purpose.

FR-4: System Deployment

 The VSML System will be deployed for real-time utilization on vehicle BSM CoreData.

Priority: Must Have

 212

5.0 Non-Functional Requirements
Non-functional requirements for the VSML are system attributes that are desired but not required.

The following are the non-functional requirements for the VSML:

NF-1: Portability

The VSML system will be usable across multiple devices, with user being able login from any

device with the proper credentials. Additionally, it will be usable with multiple datasets. SageMaker

Autopilot runs on Python code that works well with multiple datasets; it only requires minor

tweaking to change between datasets.

NF-2: Usability

The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

NF-3: Speed

The development team will attempt to enhance the VSML system responsiveness to user

interactions.

6.0 Quality Attributes
The VSML is a proof of concept and not meant for a production release. As such, traditional

quality attributes such as availability, security, robustness, etc. are not as relevant.

7.0 Source Code Repository and Version Control Requirement
The development team shall facilitate a source code repository and version control for the project.

SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub. The

GitHub project URL is https://github.com/UWF-CfC-FDOT/VSML

about:blank

 213

8.0 Requirements Table
Requirement

ID
Type Name Description Priority

B1 Business
Rule

No business
constraint

There is no business rule
associated with this system

Out of
Scope

D1 Design Design and
Implementation

The project team shall provide the
system design document

Must
Have

DA1 Data Data
Specification

The project team shall provide the
ML data specification

Must
Have

E1.1 Feature Visual Display The system shall provide a
visualization of requested metrics

Must
Have

E1.2 Feature Code
Repository

The project team shall maintain a
Git repository for all source code

Must
Have

F1 Functional Login The system shall provide an access
and authentication mechanism

Must
Have

F2.1 Functional Data Entry The system shall provide a
mechanism for entering vehicle-
related data.

Must
Have

F2.2 Functional Data cleansing The system shall provide a
mechanism for data cleansing

Must
Have

F2.3 Functional Data mutation The project team shall provide a
mechanism for creating and
injecting mutated data

Must
Have

F3.1 Functional Model Training The system will train the machine
learning model to distinguish data.

Must
Have

F3.2 Functional Model Testing The system shall test the machine
learning model with defined
performance metrics.

Must
Have

F4 Functional Data ingestion The project team shall provide a
mechanism for data ingestion

Must
Have

I1 Interface User-System
interaction

The system shall provide an
interface between the user and the
ML system

Must
Have

I2 Interface User-ML output
Interaction

The system shall provide an
interface between the user and the
ML output

Must
Have

IR1 Interface Jupyter
Notebook

The project team shall provide
Jupyter Notebooks from
Sagemaker Autopilot

Must
Have

IR2 Interface Data
Visualization

The system shall provide visual
data analytics

Must
Have

IR3 Interface Performance
Metrics

The system shall provide an
interface for performance metrics.

Must
Have

 214

IR4 Interface Data Input The system shall provide an
interface for inputting data.

Must
Have

NR1 Non-
functional

Portability The project team will attempt to
make the system usable across
multiple devices and datasets.

Could
Have

NR2 Non-
functional

Usability and
Performance

The project team will attempt to
perform system usability and
performance assessment

Could
Have

NR3 Non-
functional

Speed The project team will attempt to
make the system quickly
responsive.

Could
Have

P1 Policy and
Regulations

Policy The system is not constrained by
any State of Federal policy or
regulation

Out of
Scope

R1 Report Process
Document

The PI shall document the process
and submit a report on system
development

Must
Have

S1 Scope System Scope Defines the scope of the system Must
Have

T1 Test Test Cases The PI shall provide a
documentation of all conducted
ML system testing activities

Must
Have

TR1 Training User Training The system is a prototype and can
be demonstrated in an online
meeting

Out of
scope

9.0 Performance Indicators
9.1 Definitions

The following terms are used to describe the ML performance indicators.

True Positives (TP). These are cases which the system correctly predicted that it belongs to the

class.

False Positives (FP). These are cases which the system predicted that it belongs to the class but,

in fact, it does not. These are also known as Type I errors.

True Negatives (TN). These are cases which the system correctly predicted that it does not

belong to the class.

False Negatives (FN). These are cases which the system predicted that it does not belong to the

class but, in fact, it does. These are also known as Type II errors.

9.2 Recall

 215

The proportion of actual positives that are correctly classified. It is formally defined as

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN

9.3 Precision

The proportion of positive predictions as truly positive. It is formally defined as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP

Note that with high recall and low precision, there are few data samples that are classified

as false negative while, at the same time, there are more data samples classified as false

positive. With low recall and high precision, there are more data samples that classified

as false negative and, at the same time, there are less data samples that are classified as

false positive.

9.4 Accuracy

The proportion of positive and negative predictions that are correctly classified. It is a

measure of the ratio of the correctly classified data to the entire data population. It is

formally defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN

9.5 F-Measure

The harmonic mean of precision and recall. It is formally defined as

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ Recall ∗ Precision

Recall + Precision

The F-measure is a representative of the Recall and Precision measures and uses the

harmonic mean instead of the arithmetic mean. This implies that the F-measure is biased

to the lower value of either the Precision or Recall.

10.0 REFERENCES

Wyoming Department of Transportation. (2019, Updated daily). Wyoming CV Pilot Basic

Safety Message One Day Sample. [Dataset]. Provided by ITS DataHub through

Data.transportation.gov. Accessed 2022-07-01 from http://doi.org/10.21949/1504479"

SAE J2735 Surface Vehicle Standard V2X Communications Message Set Dictionary. July, 2020.

Website: https://my.sae.org/servlets/collectionstore/downloadMyItem.do

F. Maggi, "A Vulnerability in Modern Automotive Standards and How We Exploited It," Trend

Micro, 2017.

 216

C. M. Bishop, Patern Recognition and Machine Learning, Springer, 2007.

G. A. Francia, "Connected Vehicle Security," in 15th International Conference on Cyber Warfare

and Security (ICCWS 2020), Norfolk, VA, 2020.

S. Kumar, SinghK., S. Kumar, O. Kaiwartya, Y. Cao and H. Zhao, "Delimitated Anti Jammer

Scheme for Internet of Vehicle: Machine Learning Based Security Approach," IEEE Access, vol.

7, pp. 113311-113323, 2019.

G. De La Torre, P. Rad and K. R. Choo, "Driverless Vehicle Security: Challenges and Future

Research Opportunities," Future Generation Computer Systems, 2017.

M. L. Han, B. I. Kwak and H. K. Kim, "Anomaly intrusion detection method for vehicular

networks based on survival analysis," Vehicular Communications, vol. 14, pp. 52-63, 2018.

 217

Appendix I

Connected Vehicle (CV) Data2
A publicly available CV data can be found in the ITS DataHub. It includes Basic Safety Messages

(BSM), Traveler Information Messages (TIM) and Signal Phase and Timing (SPaT) messages

which can be transmitted via dedicated short-range communications (DSRC). A brief description

of each is provided in US DoT website and recapped in the following:

Basic Safety Messages (BSM)
Basic Safety Messages (BSM) are packets of data that contain information about vehicle position,

heading, speed, and other information relating to a vehicle’s state and predicted path. These data

are received by other vehicles via Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) or

Vehicle-to-Roadside (V2R) communications through Roadside Units (RSUs) to help determine

immediate threats and alert drivers as necessary. This study on the application of machine learning

for connected vehicle security will focus on this type of messages.

Traveler Information Messages (TIM)
The Traveler Information Messages (TIM) provide location-based travel advisory information to

provide drivers with situational awareness related to traffic information, traffic incidents, major

events, evacuations and more. These messages utilize Vehicle-to-Infrastructure (V2I) or Vehicle-

to-Roadside(V2R) communications to send messages between vehicles and roadside units (RSUs).

Signal Phase and Timing (SPaT)
The Signal Phase and Timing (SPaT) messages provide information about the current state of all

lanes and signal phases at an intersection and other pieces of information. SPaT messages are

exchanged between traffic controllers at intersections and vehicles via V2I communications

utilizing RSUs to support driver/vehicle decision-making.

2 Source: https://data.transportation.gov/stories/s/Connected-Vehicle-Pilot-Sandbox/hr8h-
ufhq#about-the-data

about:blank#cv-pilot-data-sandbox
about:blank#cv-pilot-data-sandbox

 218

Appendix II

BSM CoreData
The BSM CoreData that are utilized in this Machine Learning project are adapted from the

DSRC Implementation Guide for Users of SAE J2735 message sets over DSRC3. These core data

consist of the following:

Acceleration:

 Data Type: System Defined (in units of 0.01 m/sec2)

acceleration_set_4_way :

 long accel: integer, (acceleration along the X-axis or the direction of travel;

negative value indicates braking action)

 lat accel: integer, (acceleration along the Y-axis or the direction of travel;

negative value indicates left turning action, positive indicates right-

turning)

 vert accel: one-byte signed integer, (-127 represents unavailable data)

 yaw: integer (vehicle rotation about the vertical axis and expressed in 0.01

degrees/second)

Angle: Steering Wheel Angle (units of 1.5 degree)

 Data Type: signed Integer (range: -189 to +189)

 0x01 = 00 = +1.5 degree

 0x81 = -126 = -189 degree and beyond

 0x7E = +126 = +189 degree and beyond

 0x7F = +127 to be used for unavailable

Brake System Status: 2-octet information about the current brake system of the vehicle

 Data Type: System Defined

 brakeAppliedStatus; (4 bits total--one bit for each wheel, value 1 means active; Thus,

0000 means all Off, 0001 left front active, 0010 left rear active, 0100 right front

active, 1000 right rear active)

 brakesUnavailableStatus: (5th bit; 1 means true)

 sparebit: 6th bit unused; set to 0

 traction: (7th and 8th bits) (Traction Control Status)

 00-unavailable)

 01-off

 10-on but not engaged

 11-engaged,

 abs: (9th and 10th bits) (Anti-lock Brake Status)

3 SAE International DSRC Implementation Guide. A guide to users of SAE J2735 message Sets
over DSRC. 2008.

 219

 00-unavailable

 01-off

 10-on but not engaged

 11-engaged

 scs: (11th and 12th bit) (Stability Control Status)

 00-unavailable)

 01-off

 10-on or active

 11-unused,

 brakeBoost: (13th and 14th bits) (Brake Boost Applied)

 00-unavailable

 01-off

 10-on but not engaged

 11-engaged

 auxBrakes: (15th and 16th bit) (Auxiliary/Emergency Brake Status)

 00-unavailable

 01-off

 10-on or engaged

 11-unused

Elevation (unit is 10 cm)

 Data Type: Integer

 Elevations from 0 to 6143.9 (0x0000 to 0xEFFF) meters

 Elevations from -409.5 to -0.1 (0xF001 to 0xFFF) meters

 Unknown value is encoded as 0xF000

Heading (Orientation of the front of the vehicle). Represents 0.0125 degrees from the North.

 Data Type: 2 Octets of unsigned integer. Range 0..28800

 Value of 28800 indicates unavailable.

Latitude (32 bit value representing 1/10th integer microdegrees with reference to the horizontal

datum)

 Data Type: Integer (range -900000000 to 900000001).

Provides a range of plus-minus 180 degrees

 900000001 indicates unavailable.

Longitude (32 bit value representing 1/10th integer microdegrees with reference to the horizontal

datum)

 220

 Data Type: Integer (range -1800000000 to 1800000001) Provides a range of plus-minus

180 degrees

 1800000001 indicates unavailable.

Msg Count

 Data Type: Non-negative Integer

Msg ID

 Data Type: Non-negative Integer

SecMark

 Data Type: Non-negative Integer

Speed (Vehicle Speed in units of 0.02 m/s with a range 0…8191 using bits 1 to 13)

 Data Type: Non-negative Integer (13 bits of the 2-byte Transmission+Speed)

 Use the value 8191 to indicate unavailability.

Transmission (Current state of transmission; occupies bits 14 to 16 of the 2-byte

Transmission+Speed)

 Data Type: System Defined

 000 Neutral

001 Park

010 Forward gear

011 Reverse gear

100, 101, and 110 are unused

111 unavailable

Vehicle ID

 Data Type: Non-negative Integer

Vehicle Size (in centimeters)

 Data Type: (3 octets)

 Width : Non-negative Integer (10 unsigned bit with values 0..1023) (0 when

unavailable)

 Length : Non-negative Integer (14 unsigned bit with values 0..16383) (0 when

unavailable)

Note: Integer types are 2 octets.

 221

Appendix III

Data Preparation Algorithm

1. Unzip five compressed Gainesville BSM data files.

2. For each uncompressed Gainesville BSM data file

 a. Extract the available BSM CoreData

 b. Cleanse the BSM CoreData by removing duplicate information such as id, speed,

 lat_long

 c. Convert the BSM CoreData SecMark into Timestamp using the Python code snippet

found in Appendix VII. Augment the dataset with additional CoreData attributes to resemble the

following:

i. Latitude (G)

ii. Longitude (G)

iii. Heading (G)

iv. Angle (G)

v. TimeStamp (G)

vi. Veh_ID (G)

vii. Speed_mph (G)

viii. Transmission Status (default=010 (decimal value 2) for forward gear)

ix. Longitudinal Acceleration (S) (default = 0.577)

x. Elevation (S) (default=1005 ft)

xi. Vehicle Length (S) (default=21 ft; Ford F-150)

xii. Vehicle Width (S) default=7 ft; Ford F-150)

xiii. Brake System Status (S) (default= decimal value 0)

xiv. Normal Flag (value==0)

3. Combine the five datasets. Name this file Normal_BSM.csv.

4. Create the malicious dataset (use Normal Flag value==1). Name this file Malicious_BSM.csv.

See the Malicious BSM Data Generation Techniques below.

5. Randomly select records from the Malicious_BSM.csv file and inject them into the

Normal_BSM.csv file, Save this file as Combined+Normal_Malicious_BSM.csv.

a. Randomly generate an integer, N, between 1 to 20. Use this value as the incremental

value from the current position.

b. The record on that position will be edited with the malicious BSM CoreData values

found in the current Malicious_BSM.csv record.

c. Repeat steps (a) and (b) until the end of the Normal_BSM.csv file is reached.

Keys: G-Gainesville data S-Synthetic data

 222

Appendix IV

Malicious BSM Data Generation Techniques

1. Speed Anomaly Class

 a. Perform an analysis on the Normal dataset to calculate: min, max, average, and

outliers

 b. Randomly generate malicious BSM data by

1. Using speed data outliers

2. Using speed values that are increments of 5%, 10%, or 15% of the maximum or

decrements of 5%, 10%, or 15% of the minimum

3. Using maximum speed value with Brake Status “On”

 for all 4 wheels, i.e. BrakeStatus==15 or 1111

2. Transmission Anomaly Class

a. Randomly generate a BSM data record with speed==15 mph and Transmission

Status==000 (moving with transmission in neutral position)

b. Randomly generate a BSM data record with speed==25 mph and Transmission

Status==001 (1) (moving with transmission in park)

c. Randomly generate a BSM data record with speed==55 mph and Transmission

Status==011 (3) (speeding with reverse gear)

3. Longitudinal Acceleration Anomaly Class

 Using the typical acceleration of 17.6 ft/sec2 x 1 m/3.28 ft x [units of 0.01 m/sec2]

=0.577 ft/sec2

a. Randomly generate a BSM data record with lateral acceleration ==0.577 ft/sec2 and

Transmission Status==000 (neutral)

b. Randomly generate a BSM data record with lateral acceleration ==0.577 ft/sec2 and

Transmission Status==001 (park)

c. Randomly generate a BSM data record with lateral acceleration ==0.577 ft/sec2 and

Transmission Status==011 (3) (reverse gear)

4. Brake System Anomaly

a. Randomly generate a BSM data record with brake system status == 1111 (decimal

value =15 ; brakes applied) and lateral acceleration ==5.577 ft/sec2 (Vehicle is

speeding while brakes are engaged)

b. Randomly generate a BSM data record with brake system status == 0000

(decimal value =16; all brakes not engaged), lateral acceleration ==5.577 ft/sec2

and Transmission Status==011 (3) (reverse gear) (Vehicle is speeding in reverse

with all brakes not engaged)

 223

Appendix V

Other Data Sources

Connected Vehicle Datasets

• Tampa CV Testbed: https://catalog.data.gov/nl/dataset?tags=roadside-equipment-rse

• California CV Testbed: https://www.caconnectedvehicletestbed.org/datasample

• US DOT ITS Connected Vehicle Pilot Sandbox (NY, Tampa, and Wyoing Datasets):

http://usdot-its-cvpilot-publicdata.s3.amazonaws.com/index.html

• Wyoming CV Pilot Basic Safety Message One Day Sample

https://www.opendatanetwork.com/dataset/data.transportation.gov/9k4m-a3jc.

Connected Vehicle Data Description

https://data.transportation.gov/stories/s/Connected-Vehicle-Pilot-Sandbox/hr8h-ufhq

Tampa-Hilssborough Expressway Authority (THEA) Pilot data. Use the API to extract the data.

It has 3 sets of data: BSM, TIM and SPaT.

Here is the BSM data and API description: https://data.transportation.gov/Automobiles/Tampa-

CV-Pilot-Basic-Safety-Message-BSM-Sample/nm7w-nvbm

Here is for the TIM data:https://data.transportation.gov/Automobiles/Tampa-CV-Pilot-Traveler-

Information-Message-TIM-Sa/in46-gmir

And the SPaT data: https://data.transportation.gov/Automobiles/Tampa-CV-Pilot-Signal-

Phasing-and-Timing-SPaT-Samp/xn7c-yu2n

about:blank
about:blank
about:blank
https://www.opendatanetwork.com/dataset/data.transportation.gov/9k4m-a3jc
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

 224

Appendix VI

Preliminary Results of Applied Machine Learning on Vehicle BSM CoreData

Anomaly using Matlab™

Machine Learning Models
The Machine Learning (ML) Prototype utilizes six Supervise Learning models to be able to

compare as to which model fits the classification problem best. The models are briefly described

in the following.

1. Neural Network

The fully connected, feedforward neural network is used for supervised machine learning to

classify the dataset into malicious or normal BSM CoreData. It has 2 fully connected layers

with size 12 on the first layer and size 10 on the second layer. It uses the non-linear Rectified

Linear Unit (ReLU) activation function.

2. Decision Tree

We used decision tree or classification tree in supervised learning to predict the responses to

the given dataset. The model essentially creates a tree model in which the decisions start at

the root node and descend to the leaf node that contains the predicted response, 0 for normal

BSM data and 1 for malicious BSM data.

3. Optimizable Ensemble

A classification ensemble is a predictive model composed of a weighted combination of

multiple classification models. The optimizable ensemble model utilizes the Bayesian

optimization for supervised learning. The model is predicated on the idea that the combination

of multiple classification models increases predictive performance.

4. K-Nearest Neighbor (KNN)

The KNN or k-nearest neighbor algorithm is a supervised learning classifier which uses

proximity to make classifications or predictions predetermined responses. The model

parameters used in our KNN ML system are 10 for number of neighbors and Euclidean for

distance metric calculation.

5. Logistic Regression

Logistic regression models the probability of the response as a function of the predictor

values. Our logical regression model uses regularization to reduce the complexity of the

prediction function by imposing a penalty on the coefficients of features to overcome

overfitting.

6. Support Vector Machine (SVM)

 225

The SVM algorithm for supervised learning finds a hyperplane to best separate data points

of one class from those of another. The best hyperplane is that with the largest margin, i.e.,

the maximum width of the hyperplane that has no interior points.

The Basic Safety Message Dataset
Basic Safety Messages (BSM) are packets of data that contain information about vehicle position,

heading, speed, and other information relating to a vehicle’s state and predicted path. These data

are received by other vehicles via Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) or

Vehicle-to-Roadside (V2R) communications through Roadside Units (RSUs) to help determine

immediate threats and alert drivers as necessary. This study on the application of machine learning

for connected vehicle security will focus on this type of messages.

The dataset features include the following:

b. Latitude

c. Longitude

d. Heading

e. Angle

f. TimeStamp4

g. Veh_ID

h. Speed_mph

i. Transmission Status

j. Longitudinal Acceleration

k. Elevation

l. Vehicle Length

m. Vehicle Width

n. Brake System Status

o. Normal Flag (value==0 for normal; 1 for malicious)

Malicious Data Generation

The malicious BSM data generation consists of the following steps:

1. Create the Transmission Anomaly Class.

 A. Randomly generate an anomalous BSM data record using one of the following:

a. Set speed==15 mph and Transmission Status==000 (moving with transmission

in neutral position)

b. Set speed==25 mph and Transmission Status==001 (1) (moving with

transmission in

park)

c. Set speed==55 mph and Transmission Status==011 (3) (speeding with reverse

gear)

B. Save the generated BSM data record in a file titled Malicious_BSM.csv.

C. Repeat steps A and B until 500 malicious BSM data records are created.

D. Save and close the Malicious_BSM.csv file.

4 Refer to Appendix VII for the conversion of BSM CoreData to Timestamp.

 226

Malicious BSM Data Injection

Malicious BSM data injection consists of the following steps:

A. Select a record from the Malicious_BSM.csv file and inject them into the

Normal_BSM.csv file, Save this file as Combined+Normal_Malicious_BSM.csv.

B. Randomly generate an integer, N, between 1 to 20. Use this value as the incremental

value from the current position on the Normal_BSM.csv .

C. The record on that position will be edited with the malicious BSM data values found

in the current Malicious_BSM.csv record.

D. Repeat steps (A), (B) and (C) until either the end of the Normal_BSM.csv file or the

Malicious_BSM.csv file is reached.

E. Save the Normal_BSM.csv file as Combined_Normal_Malicious.csv.

The Combined_Normal_Malicious.csv file will be used for the Machine Learning Classification

system.

Machine Learning System for BSM CoreData

The dataset attributes and the summary of the ML prototype runs on Matlab™ are shown in the

following tables.

Table 1. Dataset Attributes

Validation

Observations

Testing

Observations

Number of

Predictors

Response Classes

2283 253 12 2

Table 2. Summary of ML Validation and Testing

Machine Learning Model Validation Accuracy, % Test Accuracy, %

Neural Network 100.0 100.0

Decision Tree 99.7 99.6

Optimizable Ensemble 99.9 99.6

K-Nearest Neighbor (KNN) 99.2 99.2

Logistic Regression 80.0 79.8

Support Vector Machine (SVM) 80.0 79.8

 227

Figure 1. Validation Confusion Matrix of the Fine Tree Model

Figure 2. Test Confusion Matrix of the Fine Tree Model

Appendix VII

 228

BSM CoreData SecMark data conversion to Timestamp

The following Python code snippet was shared by the Gainesville team. Its purpose is to convert

a BSM CoreData SecMark data into Timestamp in YY-MM-DD HH:MM:SS.sss format.

def processSecMark(secMark, time_now):
 def getSecMarkTime(seconds):

 def getUTCminute():
 import datetime
 date_time_str = time_now
 utcnow=datetime.datetime.strptime(date_time_str,'%Y-%m-%d_%H:%M:%S')

 utcstr=utcnow.strftime("%Y-%m-%d %H:%M:00")

 utcmin=datetime.datetime.strptime(utcstr, "%Y-%m-%d %H:%M:00")
 return utcmin

 utcminute = getUTCminute()
 delta = datetime.timedelta(milliseconds=seconds)

 utctime = utcminute + delta

 def convertUTCtoLocal(utc):
 from_zone = tz.tzutc()
 to_zone = tz.tzlocal()
 utc = utc.replace(tzinfo=from_zone)
 localtime = utc.astimezone(to_zone)

 return localtime

 localtime = convertUTCtoLocal(utctime)
 return localtime

 ms = secMark

 if (ms == None):
 #basetime = datetime.datetime.now()
 raise Exception("Invalid timestamp")
 else:
 basetime = getSecMarkTime(ms)

 return basetime

 229

Appendix IX. Technical Report UWF-TR-FDOT-006-01

Software Requirements
Specification

for

Vehicle Threat Modeling
Engine (VTME)

Technical Report UWF-TR-FDOT-006-01

Version 0.8 approved

Prepared by Guillermo Francia, III

The University of West Florida

Florida Department of Transportation

September 1, 2022

November 4, 2022 (Revision 1)

November 11, 2022 (Revision 2)

November 28, 2022 (Revision 3)

December 3, 2022 (Revision 4)

December 7, 2022 (Revision 5)

Table of Contents

1. Introduction .. 232

1.1 Purpose ... 232

1.2 Document Conventions ... 203

1.3 References ... 203

1.4 Document Revisions Table .. 203

2. Overview of Product ... 205

2.1 VTME ... 205

2.2 User Classes and Characteristics ... 234

2.3 Operating Environment ... 234

2.4 Design and Implementation Constraints .. 235

2.5 Assumptions and Dependencies ... 235

3. Interface Requirements .. 236

3.1 The CVE Data Viewer Interface ... 236

4. Functional Requirements ... 237

4.1 FR-1: Obtaining Threat Information ... 237

4.2 FR-2: Mapping Threat Data To Kill Chain.. 238

5. Test Requirements .. 90

5.1 T-1: Unit Tests ... 90

5.2 T-2: Integration Tests .. 90

5.3 T-3: Test Report ... 90

6. Non-Functional Requirements .. 90

6.1 NF-1: Portability .. 90

6.2 NF-2: Usability ... 91

6.3 NF-3: Speed ... 91

7. Quality Attributes ... 239

8. Source Code Repository and Version Control Requirement ... 91

8.1 SC-1: Source Code Repository and Control.. 91

Appendix A: Requirements Table .. 240

Appendix B: Requirements Traceability Matrix .. 243

 231

Appendix C: Glossary .. 245

Appendix D: Lockheed Martin’s Cyber Kill Chain.. 246

Appendix E: OSInt--Cyber Kill Chain Mapping .. 247

 232

Introduction

Purpose

This document describes the software requirements for Version 1.0 of the Vehicle Threat Modeling

Engine (VTME) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project. This document provides an overview of the users and context of the VTME and

covers all functional, non-functional, and data requirements of the VTME.

Document Conventions

This document is based on the IEEE 830 Standards and the Florida Department of Transportation

Requirements Standards. Specific conventions used in this document are listed below:

• Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

• Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the ID of the requirement in a hierarchical fashion.

References

The following references were used in the creation of this document:

• IEEE 830 Standards on Software Requirement Specifications

• UWF Scope of Service Document for the Connected Vehicle Security Metrics and Threat

Intelligence Project

Document Revisions Table

Revisor Revision Date Reason

Guillermo Francia, III November 4, 2022 Updated the mapping of threat

data with Kill Chain stages

Guillermo Francia, III November 11, 2022 Updated the Dictionary and

Glossary of Terms sections

Guillermo Francia, III November 28, 2022 Updated the Requirements

Table

Guillermo Francia, III December 3, 2022 Added the Test Requirements

Guillermo Francia, III December 7, 2022 Added the GitHub information

 233

Overview of Product

VTME

The VTME will use a variety of Open-Source Intelligence (OSINT) data sources for collating realistic

vehicle threat intelligence to support threat models. Each cyber threat model will be built based on

the stages identified in the Lockheed Martin’s Cyber Kill Chain (see Appendix D). Specific Tactics,

Techniques and Procedures (TTPs), endemic to connected vehicle systems, will be initially populated

from MITRE’s Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix.

For each stage of the Kill Chain, the VTME creates a Threat Model using the information gathered

from the MITRE ATT&CK Framework, the Common Vulnerability Enumeration (CVE) and the

Common Weakness Enumeration (CWE) sources. For instance, for the first stage, Reconnaissance,

the system will collect the threat information, the vulnerability, and mitigation associated with that

threat and upload it in the threat database. The other stages are weaponization, delivery, exploitation,

installation, command and control, and actions on objectives. Note that some of those may not have

any information available. Also, that information will be labeled according to which vehicle

manufacturer it applies (e.g. Tesla, Honda, Kia, Ford, etc.).

A snapshot of the Project System Architecture is depicted in Figure 2.1.

 234

Figure 2.1 The Project System Architecture

User Classes and Characteristics

User Class Characteristics

Ordinary User This user will be able to query the Vehicle

Threat Database System (VTDBS)

Threat Model Builder This user will utilize the VTME to build threat

models based on the Cyber Kill Chain stages.

Threat Collector This user will utilize the Vehicle Threat

Collection System (VTCS) to retrieve additional

information for the models.

Database Administrator The user responsible for administering and

maintaining the VTDBS

Operating Environment

The VTME operating environment is defined by the following:

 235

OE-1: The VTME shall run within an Amazon Elastic Compute Cloud (EC2) Web Service utilizing

a Windows Server environment.

OE-2: The VTME shall run as a .NET application on an Internet Information Services (IIS) on a

Windows Server within the AWS EC2 instance.

OE-3: The AWS EC2 instance shall be configured with type t2.xlarge having 4 vCPU and 16 GB of

memory.

OE-4: The VTME shall interact with a Vehicle Threat Database System (VTDBS) backend. The

VTDBS will be designed and implemented as a major deliverable of the project.

OE-5: The VTDBS shall be configured using MS SQL Server 2018.

Design and Implementation Constraints

The VTME design and implementation are constrained by the following:

DIC-1: The VTME shall be developed using Microsoft Visual Studio 2022 or Visual Studio Code

DIC-2: The VTME shall be developed using the C# programming language

DIC-3: The VTME shall be developed using .NET Core

DIC-4: The VTME will be constrained by the limitations of the data source APIs

DIC-5: The VTME will be designed and implemented as a working prototype capable of future

expansion

DIC-6: The initial iterations of the VTME will be limited to CVE and CWE data sources

DIC-7: Subsequent iterations of the VTME will include other OSINT such the Open Threat Exchange

(OTX), VirusTotal, etc.

Assumptions and Dependencies

Assumptions and dependencies for the VTME implementation include the following:

ASS-1: The VTME assumes the availability of information conduits tapped by APIs from the CVE,

CWE, MITRE ATT&CK Framework and OSINT sources.

DEP-1: The VTME shall be dependent on information coming from the MITRE ATT&CK

Framework and OSINT sources.

DEP-2: The VTME shall reference a pre-built mapping table of the MITRE ATT&CK Framework

to the Cyber Kill Chain.

 236

Interface Requirements

The VTME will require minimal input from the user, however, will need to provide the following

information for debugging and tracing purposes:

INT-1: The CVE Data Viewer. The VTME shall provide a Graphical User Interface to be able to

periodically collect information from threats using the MITRE ATT&CK and OSINT APIs. This

user interface is fully described below.

INT-2: The VTME shall log any interactions with external APIs in a format containing the time,

message type, sent request, response code, and response.

INT-3: The VTME shall log all threat database transactions in a format containing the time, query

type, query contents, and response.

INT-4: The VTME shall log errors or exceptions in a format containing the time of the event and a

stack trace.

The CVE Data Viewer Interface

The CVE Data Viewer User Interface will be used to collect and display data from vehicle

manufacturers. Figure 3.1 depicts a prototype of the interface.

Figure 3.1 CVE Data Viewer Interface

 237

Functional Requirements

There are two major features that the VTME will need to deliver. VTME is a proof of concept and

as such, limitations in its implementation will be identified.

FR-1: Obtaining Threat Information

4.1.1 Description and Priority

The VTME needs to collect information from both the MITRE ATT&CK Framework

and OSInt sources. There is not currently a mapping of the OSInt sources to the

ATT&CK Framework. For the purpose of this proof of concept, a subset of OSInt will

be manually mapped on to the Framework and used as the basis for the purposes of

this project.

MITRE has developed a mapping for mapping OSInt sources to the framework, but

this work is early. Furthermore, while a more advanced approach such as language

modeling or machine learning may be applicable, it is outside the scope of the VTME.

 Priority: Must Have

4.1.2 Related User Classes

 All Users

4.1.3 Functional Requirements

FR-1.1: The VTME shall facilitate access to the MITRE ATT&CK Framework and

OSInt APIs to gather threat data

FR-1.2: A CVE Data Viewer shall provide for the querying and displaying of the

CVE and CWE repository. The CVE Data Viewer will have the following

features:

o Preloaded list of vehicle manufacturers

o A search capability for CVEs for the selected manufacturer

o A display capability of each CVE record found for the selected

manufacturer including the CVE ID, CVE Timestamp, CWE ID,

Vulnerability Status, the Reference URL for the CVE, and the CVE

description.

 238

o The capability to navigate through all the CVE records.

The user interface prototype is depicted in Figure 3.1.

FR-1.3: The VTME shall provide an internal predefined table associating the

MITRE® ATT&CK Framework threat data to the Cyber Kill Chain.

FR-2: Mapping Threat Data To Kill Chain

4.2.1 Description and Priority

 The VTME will utilize an ontology to map an OSInt and Tactic within the MITRE®

ATT&CK framework to stages in the Cyber Kill Chain.

Priority: Must Have

4.2.2 Related User Classes

All Users

4.2.3 Functional Requirements

FR-2.1: The VTME shall map an attack from an OSInt to stages in the Cyber Kill

Chain by using an ontology map

FR-2.2: The VTME shall provide a database for the Attack-Kill Chain mapping

Test Requirements
The VTME requires testing and validation of the main application functionalities.

T-1: Unit Tests

Unit system testing shall be conducted for all functional system components. Unit tests shall be

integrated and documented in the source code. The GitHub repository is found at this URL:

https://github.com/UWF-CfC-FDOT/VTMECS.

T-2: Integration Tests

System integration testing is not within the scope of the VTME system.

T-3: Test Report

 239

An associated documentation of all system testing activities shall be provided. See the attached Unit

Test Overview document.

Non-Functional Requirements

Non-functional requirements for the VTME are system attributes that are desired but not required.

The following are the non-functional requirements for the VTME:

NF-1: Portability

The development team will attempt to make the web enabled VTME system portable across

multiple computing form factors.

NF-2: Usability

The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

NF-3: Speed

The development team will attempt to enhance the VTME system responsiveness to user

interactions and database transactions.

Quality Attributes

The VTME is a proof of concept and not meant for a production release. As such, traditional quality

attributes such as availability, security, robustness, etc. are not as relevant.

Source Code Repository and Version Control Requirement

The development team shall facilitate a source code repository and version control for the project.

SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub. The

GitHub project URL is https://github.com/UWF-CfC-FDOT/VTMECS.

https://github.com/UWF-CfC-FDOT/VTMECS

 240

A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement

Description

Priority

S1 Scope System Scope Defines the scope of

the system

Must have

F1.1 Functional Gather MITRE

ATT&CK threat

data

The VTME shall

facilitate access to the

MITRE ATT&CK

Framework and

OSInt APIs to gather

threat data

Must have

F1.2 Functional CVE Data

Viewer

A CVE Data Viewer

shall facilitate the

querying and

displaying of the

CVE and CWE data

Must have

F1.3 Functional Threat-Kill

Chain Table

The VTME will

provide an internal

predefined table

associating the

MITRE® ATT&CK

Framework threat

data to the Cyber Kill

Chain

Must have

F2.1 Functional Threat-Kill

Chain Mapping

The VTME will map

an attack from an

OSInt to stages in the

Cyber Kill Chain by

using an ontology

map

Must have

 241

F2.2 Functional Threat DBMS The VTME shall

provide a database

management system

for the MITRE

ATT&CK--Kill

Chain mapping

Must have

INT -1 Interface CVE Data

Viewer GUI

The VTME shall

provide a Graphical

User Interface to be

able to periodically

collect information

from threats using

the MITRE

ATT&CK and

OSINT APIs.

Must have

INT-2 Interface API Interaction

Logger

The VTME shall log

any interactions with

external APIs in a

format containing the

time, message type,

sent request,

response code, and

response

Must have

INT-3 Interface DBMS

Transaction

logger

The VTME shall log

all threat database

transactions in a

format containing the

time, query type,

query contents, and

response

Must have

INT-4 Interface Error/Exception

Logger

The VTME shall log

errors or exceptions

in a format

containing the time

of the event and a

stack trace

Must have

 242

T-1 Test Unit Test Unit system testing shall be

conducted for all functional

system components

Must have

T-2 Test Integration Test System integration testing is

not within the scope of the

VTME system

Out of

scope

T-3 Test Test Report An associated documentation

of all system test activities

shall be provided

Must have

NF-1 Non-

functional

Portability The development team will

attempt to make the web

enabled VTME system

portable across multiple

computing form factors

Could have

NF-2 Non-

functional

Usability The development team will

attempt to satisfy system

usability features such as

navigation, performance

quality, and intuitiveness of

interfaces

Could have

NF-3 Non-

functional

Speed The development team will

attempt to enhance the

VTME system

responsiveness to user

interactions and database

transactions

Should have

SC-1 Source

Code

Source Code

Control

The development team shall

maintain a source code

repository and version control

on GitHub

Should have

 243

Appendix B: Requirements Traceability Matrix

Requirement

ID

Requirement Description Test Case Status

S1 Defines the scope of the system N/A N/A

F1.1 The VTME shall facilitate access

to the MITRE ATT&CK

Framework and OSInt APIs to

gather threat data

CVEToAttackTest Passed

F1.2 A CVE Data Viewer shall facilitate

the querying and displaying of the

CVE and CWE data

CVEToAttackTest Passed

F1.3 The VTME will provide an internal

predefined table associating the

MITRE® ATT&CK Framework

threat data to the Cyber Kill Chain

N/A Completed

F2.1 The VTME will map an attack

from an OSInt to stages in the

Cyber Kill Chain by using an

ontology map

CVEToAttackTest Passed

F2.2 The VTME shall provide a

database management system for

the MITRE ATT&CK--Kill Chain

mapping

N/A Completed

INT -1 The VTME shall provide a

Graphical User Interface to be able

to periodically collect information

from threats using the MITRE

ATT&CK and OSINT APIs.

CVEViewerTest Passed

INT-2 The VTME shall log any

interactions with external APIs in a

format containing the time,

message type, sent request,

response code, and response

API_LogTest Passed

 244

INT-3 The VTME shall log all threat

database transactions in a format

containing the time, query type,

query contents, and response

DB_Transaction_L

ogTest

Passed

INT-4 The VTME shall log errors or

exceptions in a format containing

the time of the event and a stack

trace

Error_LogTest Passed

T-1 Unit system testing shall be

conducted for all functional system

components

Multiple Test Cases Passed

T-2 System integration testing is not

within the scope of the VTME

system

N/A N/A

T-3 An associated documentation of all

system test activities shall be

provided

N/A Completed

NF-1 The development team will attempt

to make the web enabled VTME

system portable across multiple

computing form factors

N/A N/A

NF-2 The development team will attempt

to satisfy system usability features

such as navigation, performance

quality, and intuitiveness of

interfaces

N/A N/A

NF-3 The development team will attempt

to enhance the VTME system

responsiveness to user interactions

and database transactions.

N/A N/A

SC-1 The development team shall

maintain a source code repository

and version control on GitHub

N/A N/A

 245

Appendix C: Glossary
Term Description

API Appplication Program Interface

ATT&CK Adversarial Tactics, Techniques, and

Common Knowledge

ATT&CK Framework A knowledge base of adversary tactics

and techniques based on real-world

observations.

AWS Amazon Web Services

CVE Common Vulnerabilities and

Exposures

CWE Common Weakness Enumeration

Cyber Kill Chain A model developed by Lockheed

Martin® used for the identification and

prevention of cyber intrusions.

EC2 Elastic Compute Cloud

GUI Graphical User Interface

IIS Internet Information Services

IoC Indicators of Compromise

.NET A cross-platform, open-source

developer platform created by

Microsoft

OSINT Open-Source Intelligence

OTX Open Threat Exchange

Tactics, Techniques and Procedures (TTPs) Activities and methods used by an

adversary to carry out a cyber attack

VTCS Vehicle Threat Collection System

VTDBS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

 246

Appendix D: Lockheed Martin’s Cyber Kill Chain

Figure D.1 Lockheed Martin’s Cyber Kill Chain (Source: https://www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-chain.html)

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

 247

Appendix E: OSInt--Cyber Kill Chain Mapping

Based on our proposed system architecture, the Vehicle Threat Modeling Engine (VTME)

utilizes the MITRE ATT&CK framework to characterize the impact of a vulnerability as

described in the CVEs. ATT&CK tactics and techniques provide an ingenuous way to

describe the attack vectors and empower defenders and threat hunters to better strategize and

model threats by incorporating vulnerabilities in the threat model themselves. In the process,

defenders get better equipped in implementing controls if they can have CVEs with ATT&CK

tactic and technique references.

As a first step in our methodology, we map ATT&CK tactics and techniques with existing

CVEs for connected vehicles. We start with a manual process for this ontology mapping. Our

next step is to look up existing vulnerabilities that have been defined in the literature and have

associated CVE reference numbers. For each of these vulnerabilities, we researched the attack

vector and map it to the relevant stage in the ATT&CK tactics. We delved deeper into the

techniques associated with the tactic and mapped the relevant techniques with the CVE. For

example, CVE-2022-23126 uses techniques associated with exploiting default credentials

(sub-technique T1078.001) for obtaining valid accounts (technique T1078) and using it for

further exploitation. As an added step, we mapped the vulnerability with the Cyber Kill Chain

stages. The mapping is depicted in the attached document, Ontology_CVE-

Kill_Chain_Mapping.pdf.

 248

Appendix X. Technical Report UWF-TR-FDOT-006-02

Threat

Vehicle
Type
and
Model

ATT&CK
Tactic

ATT&CK
Technique

 Reconnaissance Weaponization

CVE-2022-
23126

TeslaMate before
1.25.1

Tesla

Initial
Access

Valid Accounts

(T1078) ->

Default

Accounts

(T1078.001)

Internet connectivity

of Tesla vehicle

CVE-2020-
29440

Tesla Model X

Tesla
Model X

Credential
Access

Impact

Steal Application

Access Token

(T1528)

Firmware

Corruption

(T1495)

Key fob

signal sniffing

Cloning of key
fob

CVE-2022-
37305

Honda Remote
Keyless Entry
(RKE)

Honda
models
through
2018

Credential
Access

Inhibit

Response

Function

Input Capture
(T1056)

Block Command

Message (T0803)

Remote keyless

entry (RKE)

signal sniffing

Cloning of RKE
key

CVE-2022-27254

CVE-2021-46145

Honda Remote

Keyless Entry

Replay Attack

Honda Civic
2018

Credential
Access

Input Capture
(T1056)

Remote keyless

system signal

sniffing

Cloning of remote
key

CVE-2022-
37418

Kia, Nissan, Hyundai

Remote Keyless

Entry (RKE)

Kia, Nissan

Hyundai

models

through 2017

Credential
Access

Inhibit

Response

Function

Input Capture
(T1056)

Block Command

Message (T0803)

Remote Keyless

Entry (RKE)

signal sniffing

Cloning of RKE
key

CVE-2020-
8539
Kia Motors Head

Unit with Software

version:

SOP.003.30.18.0

703,

SOP.005.7.1810

19, and

SOP.007.1.191209

may allow an

Kia

Defense
Evasion

Indirect Command

Execution (T1202)

Identify Kia head

units with

software

versions:

SOP.003.30.18.070

3,

SOP.005.7.181019,

and

Remote control of

head unit

 249

attacker to inject

unauthorized

commands

CVE-2018-
9322

The Head Unit

HU_NBT (aka

Infotainment)

component on

BMW i Series,

BMW X Series,

BMW 3 Series,

BMW 5 Series, and

BMW 7 Series

vehicles produced

in 2012 through

2018 allows local

attacks involving

the USB or OBD-

II interface. An

attacker can

bypass the code-

signing protection

mechanism for

firmware updates,

and consequently
obtain a root shell.

BMW i Series,
BMW X
Series, BMW
3 Series,
BMW 5
Series, and
BMW 7
Series
vehicles
produced in
2012
through 2018

Defense
Evasion

Credential

Access
 Impact

Indirect Command

Execution (T1202)

Firmware Corruption
(T1495)

Obtain root shell
access

CVE-2017-
9647

A Stack-Based

Buffer Overflow

issue was

discovered on

BMW, Ford,

Infiniti, and Nissan.

An attacker with a
physical
connection to the
TCU may exploit a
buffer overflow
condition that exists

 Defense
Evasion

 Indirect
Command
Execution
(T1202)

 Identify vehicles
with the
Continental AG
Infineon S-Gold 2
(PMB 8876)
chipset

 Remote command
execution of
arbitrary code on
the telematics
control module
(TCU)

 250

in the processing of
AT commands.
This may allow
arbitrary code
execution on the
baseband radio
processor of the
TCU.

Kill Chain Phase

Delivery Exploitation Installation Command &
Control

Actions on
Objectives

Intrusion into

Grafana login

system via

Internet

Exploitation of

Docker

configuration

Keyless entry and

remote control of

vehicle

Partial control of
Tesla vehicle

Exploitation using

spoofed key fob

Complete

control of Tesla

vehicle

Exploitation using

cloned RKE key

 Adversary retains
control

indefinitely

unlocking the

vehicle after

sniffing ad cloning

5 consecutive RF

signals

Complete

control of Honda

vehicle

Exploitation using

replay attack

Adversary gains

control of unlocking

the vehicle

Complete control of

the Honda vehicle

Exploitation using

cloned RKE key

Adversary ratains the

ability to unlock

indefinitely

Complete control

of the Kia, Nissan,

and Hyundai

vehicles

Physical access

to head unit

Exploitation

using micomd

executable

deamon

Adversary

can install

malware on

the head unit

as a third-party

application

Inject unauthorized

commands into the

head unit

Partial

control of the

Kia vehicle

 251

Physical access

to head unit

Exploitation

using USB or

OBD-II

interface

Adversary can

bypass code-

signing

protection

mechanism for

firmware

updates, and

obtain a root

shell

Unrestricted root

shell access to the

head unit

Partial control of

the BMW

vehicle

 Physical access

to the vehicle

Exploitation

using Stack-

Based Buffer

Overflow

 Physical

connection to

the telematics

control module

(TCU)

 Adversary can

execute arbitrary

code remotely

 Partial control

of vehicle

 252

Appendix XI. Technical Report UWF-TR-FDOT-006-03

Unit Test Overview for Vehicle

Threat Modeling Engine
(VTME)

Technical Report UWF-TR-FDOT-006-03

Version 0.1 unapproved

Version 1.0 approved

Prepared by Doug Woodall

Revised by Dr. Guillermo Francia III

The University of West Florida

Florida Department of Transportation

December 1, 2022

Revisions: December 4, 2022

 253

Table of Contents

1. Introduction ... 254
1.1 Purpose ... 254

2. VTME Test Framework .. 254
2.1 Framework Description .. 254

3. VTME Unit Tests .. 254
3.1 CveToAttackTest ... 254
3.2 CweTest .. 255
3.3 DateTimeHelperTest ... 255

4. User Interface Test Framework ... 256

5. User Interface Unit Tests ... 256
5.1 CVEViewerTest.. 256
5.2 ManufacturerNotSelectedWhenSubmitted ... 257

6. Logging Tests ... 257
6.1 API_LogTest .. 257
6.2 DB_Transaction_LogTest .. 257
6.3 Error_LogTest ... 257

 254

1. Introduction

3. Purpose

This document describes the unit test framework of the Vehicle Threat Modeling Engine
(VTME) as a subcomponent of the Connected Vehicle Security Metrics and Threat Intelligence
Project. This document provides an overview of unit test framework and tests for the both
VTME and the user interface.

4. Document Revisions Table

Revisor Revision Date Reason

Woodall, Douglas December 1, 2022 Initial draft

Guillermo Francia, III December 4, 2022 Miscellaneous revisions

2. VTME Test Framework

2.1 Framework Description

The VTME project is developed in C# language and the choice was made to use the standard
MsTest framework for unit testing the engine. MsTest is a native unit testing library that comes
with Visual Studio from Microsoft.

3. VTME Unit Tests

3.1 CveToAttackTest

The CveToAttackTest.cs file contains unit test coverage of the /Library/CveToAttack.cs
class. Performs validation of the mapping process from CWE to ATTACK information
stored in /Data/CveAttackMap. Validates properties of the CveToAttack object.

3.1.1 CheckValidMap_NotNull

Validates that the CveToAttack object is successfully created from the CveAttackMap JSON

file.

Status: Passed

3.1.2 CheckValidMap_VehicleTypeAndModel_NotNullOrEmpty

 255

Validates that the VehicleTypeAndModel property exists as a real value in every CVE
mapping entry in the CveAttackMap JSON file. Must be present.

Status: Passed

3.1.3 CheckValidMap_Tactics_GreaterThanZero

Validates that at minimum at least one tactic entry must be present in each CVE mapping
entry in the CveAttackMap JSON file. Must be present.

Status: Passed

3.1.4 CheckValidMap_Techniques_GreaterThanZero

Validates that at minimum at least one technique entry must be present in each tactic per each
CVE mapping entry in the CveAttackMap JSON file. Must be present.

Status: Passed

3.1.5 CheckValidMap_KillChainPhases_AtLeastOneValid

Validates that at least one kill chain phase has been populated with information in every
CVE mapping entry in the CveAttackMap JSON file. Must be present.

Status: Passed

3.2 CweTest

The CweTest.cs file contains unit test coverage of the /Library/Cwe.cs class. This class contains
the object that represents a CWE for a given record and includes as parameters the CWE ID
and URL for mitre.

3.2.1 ValidCwe_ValidateId

Validates that a provided CWE key at initialization will be properly stored as a property
that is publicly accessible.

Status: Passed

3.2.2 ValidCwe_ValidateUrl

Validates that a provided CWE key at initialization will be properly converted into a URL of
the convention https://cwe.mitre.org/data/definitions/{key}.html and stored as a property
that is publicly accessible.

Status: Passed

3.3 DateTimeHelperTest

 256

The DateTimeHelperTest.cs file contains unit test coverage of the
/Library/DateTimeHelper.cs class. This class contains the helper methods for validating that
the provided start and stop query times for the CVE search are valid according to the NVD
API requirements.

3.3.1 CheckDateFormatValid

Verifies that provided times conform to ISO-8061 datetime format.

Status: Passed

3.3.2 CheckDateFormat_HalfInvalid

Verifies that validity checks fail if only one of the time inputs (start or stop) are properly ISO-
8061 formatted.

Status: Passed

3.3.3 CheckDateFormat_RangeTooLarge

Verifies that validity checks fail if the calculated date range is greater than 120 days (an NVD
API requirements).

Status: Passed

3.3.4 CheckDateFormat_EndBeforeStart

Verifies that validity checks fail if the provided end date is prior in time to the provided start

date.

Status: Passed

3.3.5 CheckDateFormat_EmptyString

Verifies that validity checks fail is there is no provided start or stop date.

Status: Passed

4. User Interface Test Framework

The VTIP test interface project is developed in C# language and BUnit framework was chosen
for unit testing the interface.

5. User Interface Unit Tests

5.1 CVEViewerTest

Verifies the page has rendered correctly.

 257

Status: Passed

5.2 ManufacturerNotSelectedWhenSubmitted

Verifies that one of the listed manufacturers has to be selected when submit the form.

Status: Passed

6. Logging Tests
6.1 API_LogTest

Verifies the API transactions are logged

Status: Passed

6.2 DB_Transaction_LogTest

Verifies the DB transactions are logged

Status: Passed

6.3 Error_LogTest

Verifies the web error events are logged

Status: Passed

 258

Appendix XII. Technical Report UWF-TR-FDOT-007-01

Software Requirements

Specification

for

Vehicle Threat Collection System

(VTCS)

Technical Report UWF-TR-FDOT-007-01

Version 0.4 approved

Prepared by Daniel Miller

Approved by Dr. Guillermo Francia, III

The University of West Florida

Florida Department of Transportation

April 3, 2023 (Initial)

June 1, 2023 (Revision 0.1)

June 9, 2023 (Revision 0.2)

July 3, 2023 (Revision 0.3)

July 18, 2023 (Revision 0.4

259

Table of Contents

1. Introduction 261

1.1 Purpose 261

1.2 Document Conventions 261

1.3 References 261

1.4 Document Revisions Table 261

2. Overview of Product 263

2.1 VTCS 263

2.2 User Classes and Characteristics 264

2.3 Operating Environment 265

2.4 Design and Implementation Constraints 265

2.5 Assumptions and Dependencies 266

3. Interface Requirements 266

3.1 The VTCS Query Interface 266

3.2 The VTCS Record Viewer Interface 267

4. Functional Requirements 268

4.1 FR-1: Obtain Threat Information 268

4.2 FR-2: Store Threat Information 270

5. Test Requirements 271

5.1 T-1: Unit Tests 271

5.2 T-2: Integration Tests 271

5.3 T-3: Test Report 271

6. Non-Functional Requirements 271

6.1 NF-1: Portability 271

6.2 NF-2: Usability 271

6.3 NF-3: Speed 271

7. Quality Attributes 271

8. Source Code Repository and Version Control Requirement 271

8.1 SC-1: Source Code Repository and Control 272

9. Appendix A: Requirements Table 273

10. Appendix B: Requirements Traceability Matrix 276

260

11. Appendix C: Glossary 278

261

Introduction

Purpose

This document describes the software requirements for Version 1.0 of the Vehicle Threat Collection

System (VTCS) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project. This document provides an overview of the users and context of the VTCS and

covers all functional, non-functional, interface, and data requirements of the VTCS.

Document Conventions
This document is based on the IEEE 830-1998 Standards and the Florida Department of

Transportation Requirements Standards. Specific conventions used in this document are listed

below:

● Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

● Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the ID of the requirement in a hierarchical fashion.

References
The following references were used in the creation of this document:

● IEEE 830-1998 Standards on Software Requirement Specifications

● UWF Scope of Service Document for the Connected Vehicle Security Metrics and Threat

Intelligence Project

Document Revisions Table
Revisor Revision Date Reason

Guillermo Francia, III July 18, 2023 Revised Section 8.1 for

consistency with Appendix A.

Guillermo Francia, III July 3, 2023 Revised section 2.4 to reflect

the specific elements

developed by DIC-1 and DIC-

2.

Revised section 2.5 to refer to

CVE and CWE instead off

262

OTX and VirusTotal as the

data sources for the initial

iteration.

Revised SC-1 as a “should

have.”

Revised Appendix B to

include applicable test cases

for each functional

requirement.

Daniel Miller June 9, 2023 Added detailed descriptions to

UI function controls sections

3.1 and 3.2

Daniel Miller June 8, 2023 proof-read/minor edits to

document before submission

Daniel Miller June 7, 2023 Updated the Requirements

Tables

Daniel Miller June 7, 2023 Updated Section 3.1 and added

3.2 to more accurately reflect

VTCS GUI requirements to

include screenshots of the

GUI.

Daniel Miller May 25, 2023 Updated Section 4 to more

accurately reflect VTCS

requirements

Daniel Miller May 20, 2023 Updated Section 2 to more

accurately reflect VTCS

requirements

Daniel Miller May 14, 2023 Updated Section 4 to more

accurately reflect VTCS

requirements

263

Daniel Miller April 28, 2023 Updated Sections 4-Appendix

of VTCS SRS document by

removing nonrelated

information and inserting draft

explanations of what is

required for each respective

section.

Daniel Miller April 14, 2023 Updated Sections 1-3 of

VTCS SRS document by

removing nonrelated

information and inserting draft

explanations of what is

required for each respective

section.

Guillermo Francia, III November 4, 2022 Updated the mapping of threat

data with Kill Chain stages

Guillermo Francia, III November 11, 2022 Updated the Dictionary and

Glossary of Terms sections

Guillermo Francia, III November 28, 2022 Updated the Requirements

Table

Guillermo Francia, III December 3, 2022 Added the Test Requirements

Guillermo Francia, III December 7, 2022 Added the GitHub information

Overview of Product

VTCS

The VTCS is an automated system that collects threat intelligence feeds from various sources and

stores that data to the Vehicle Threat Database System (VTDBS) for ingestion and processing by

other subcomponents of the Project System. Threat Intelligence data will come from publicly

available Open-Source Intelligence (OSINT) sites such as Open Threat Exchange (OTX) and

VirusTotal. Configurable, automated queries to these sources will generate tailored threat intelligence

264

feeds and provide any associated Common Vulnerabilities and Exposures (CVEs), Common

Weaknesses Enumerations (CWEs) and any other relevant Indicators of Compromise (IoCs).

A user will provide one or more vehicle’s year, make, and/or model as search parameters for the

VTCS. The system will then generate individual records containing IOCs associated with cyber-

attacks and/or known system vulnerabilities correlated to specific makes, models, and versions of

vulnerable devices in connected vehicles.

Figure 2.1 The Project System Architecture

User Classes and Characteristics
User Class Characteristics

Ordinary User This user will be able to query the VTDBS

265

Threat Model Builder This user will utilize the VTME to build threat

models based on the Cyber Kill Chain stages.

Threat Collector This user will utilize the VTCS to retrieve

additional information for the models.

Database Administrator The user responsible for administering and

maintaining the VTDBS

Operating Environment
The VTCS operating environment is defined by the following:

OE-1: The VTCS shall run within an Amazon Elastic Compute Cloud (EC2) Web Service utilizing

a Windows Server environment.

OE-2: The VTCS shall run as a .NET application on an Internet Information Services (IIS) on a

Windows Server within the AWS EC2 instance.

OE-3: The AWS EC2 instance shall be configured with type t2.xlarge having 4 vCPU and 16 GB of

memory.

OE-4: The VTCS shall interact with the VTDBS backend. The VTDBS will be designed and

implemented as a major deliverable of the project.

OE-5: The VTDBS shall be configured using MS SQL Server 2018.

Design and Implementation Constraints
The VTCS design and implementation are constrained by the following:

DIC-1: The Web GUI of the VTCS shall be developed using Microsoft Visual Studio 2022 or Visual

Studio Code.

DIC-2: The backend functional implementations of the VTCS shall be developed using the C#

programming language.

DIC-3: The VTCS will be constrained by the limitations of the data source APIs.

DIC-4: The VTCS will be designed and implemented as a working prototype capable of future

expansion.

DIC-5: The initial iterations of the VTCS will be limited to CVE and CWE data sources.

DIC-6: Subsequent iterations of the VTCS will include other OSINT such as Open Threat Exchange

(OTX), VirusTotal, etc.

266

Assumptions and Dependencies

Assumptions and dependencies for the VTCS implementation include the following:

ASS-1: The VTCS assumes the availability of information conduits tapped by APIs from the OTX

and VirusTotal OSINT sources.

DEP-1: The VTCS shall be dependent on information coming from the CVE and CWE data sources.

Subsequent iterations shall be dependent on OTX and VirusTotal OSINT sources.

DEP-2: The VTCS shall reference the VTME’s pre-built mapping table of the MITRE ATT&CK

Framework to the Cyber Kill Chain to configure how data is parsed to the VTDBS.

Interface Requirements

The VTCS will require vehicle search parameters as input from the user in order to generate records

for the VTDBS. Additionally, the system will require input from the user as verification before a

record is saved to the VTDBS.

INT-1: The VTCS shall provide a Graphical User Interface for users to submit vehicle search

parameters. This user interface is fully described in section 3.1.

INT-2: The VTCS shall provide a Graphical User Interface for users to manage query results and

update the VTDBS. This user interface is fully described in section 3.2.

INT-3: The VTCS shall log any interactions with external APIs in a format containing the time,

message type, sent request, response code, and response.

INT-4: The VTCS shall log all threat database transactions in a format containing the time, query

type, query contents, and response.

INT-5: The VTCS shall log errors or exceptions in a format containing the time of the event and a

stack trace.

The VTCS Query Interface

The Query Interface will be used to provide the VTCS with vehicle search parameters. Figure 3.1

depicts a prototype of the interface where the user can submit one or more vehicles for processing.

Using the Threat Source drop-down selection box, the user is provided an option to select a specific

267

threat intelligence source such as OTX, VirusTotal, or ALL in an attempt to query all sources. The

user can also filter the information to collect by specifying the Year, Make, and Model of the vehicle

through drop-down selection boxes. The Add button will take the options selected by the user in the

Year, Make, and Model selections and place the vehicle into the Query Interfaces Vehicle Selection

table at the bottom of the page. Once a vehicle is added to the selection table the Year, Make, and

Model drop-down selection boxes are reset to their default option and the user can add another vehicle.

When the user is satisfied with the data source and vehicle(s) selected the Search button will initiate

the VTCS to run the specified user query using the API of the selected open threat intelligence source.

Clicking the Search button will also bring the user to the Record Viewer Interface (Fig. 3.2).

Figure 3.1 CVE Data Viewer Interface Prototype

The VTCS Record Viewer Interface
The Record Viewer Interface will be used to display and manage the records generated by the VTCS

search parameters. Figure 3.2 depicts a prototype of the interface where the user can review the details

of individual records, save records to the VTDBS, and navigate to other records generated by the

query. When first populated, the Record Viewer will focus on the first record of the search results.

268

The Record Viewer Interface is broken into two main sections; a vehicle threat record details on the

top-half and a set of vehicle threat records on the bottom-half.

The top-half of the interface contains individual record details which display the title of the record, a

detailed summary of the record, a table of meta-data information concerning the record, and the Save

Selected Record and Save All Records buttons. Metadata information for the table include date

reported, date last updated, list of associated CVE’s, list of Associated CWE’s, list of data-sources

retrieved from, list of IoC’s, and the record’s CVSS score and severity level. The Save Selected

Record and Save All Records buttons, when selected, will submit appropriate SQL queries to the

VTDBS to update the database with the respective record(s). The Save Selected Record button will

have the VTCS submit the selected record to the VTDBS and the Save All Records will submit all

records to the VTDBS. Once the records are saved to the VTDBS a success dialog will appear for the

user. In the event the VTCS is unsuccessful in saving records to the VTDBS an error dialog will

appear with a transaction ID for further research by database administrators. This transaction ID will

be the date-time-group of the errored SQL query submitted by the VTCS to the VTDBS,

The bottom-half of the Record Viewer is a table that allows users to navigate to all other records

generated by the query. The Generated Records table displays the record title, data source hits, CVE

hits, CWE hits, number of IoCs and the record’s CVSS score and severity level. The table will list

records ten at a time and the Record Title will be a selectable option for the user in order to focus on

a new record on the top-half of the interface.The user will be able to navigate through the lists of

records ten items at a time using the Prev and Next buttons.

Functional Requirements
Functional requirements for the VTCS are fundamental actions that the system must execute in

order to be considered operational. The VTCS is a proof of concept and as such, limitations in its

implementation will be identified.

FR-1: Obtain Threat Information

4.1.1 Description and Priority

269

The VTCS is required to take user input to collect and aggregate threat intelligence

information from both the OTX and VirusTotal OSINT sources as records to be saved

to the VTDBS.

 Priority: Must Have

4.1.2 Related User Classes

 Threat Collector, Database Administrator

Figure 3.2 VTCS Record Viewer Interface Prototype

4.1.3 Functional Requirements

FR-1.1: The VTCS shall facilitate access to the OSINT APIs to gather threat data.

270

FR-1.2: The VTCS user interface shall provide for the querying and displaying of

the CVE and CWE repository. The VTCS Record Viewer will have the

following features:

o Preloaded list of vehicle manufacturers

o A search capability for CVEs for the selected manufacturer

o A display capability of each CVE record found for the selected

manufacturer including the CVE ID, CVE Timestamp, CWE ID,

Vulnerability Status, the Reference URL for the CVE, and the CVE

description.

o The capability to navigate through all the CVE records.

The user interface prototype for data retrieval from the open-source repository is depicted in

Figure 3.1.

FR-2: Store Threat Information

4.2.1 Description and Priority

The VTCS is required to process the information collected from both the OTX and

VirusTotal OSINT sources and store them in the VTDBS.

 Priority: Must Have

4.2.2 Related User Classes

 Threat Collector, Database Administrator

4.2.3. Functional Requirements

FR-2.1: The VTCS shall facilitate the interfacing by the website with the VTDBS.

FR-2.2: The VTCS shall facilitate data record review and selection before

committing it for storage.

The user interface prototype that will interface with the VTDBS is depicted in Figure 3.2 .

271

Test Requirements

The VTCS requires testing and validation of the main application functionalities.

T-1: Unit Tests

Unit system testing shall be conducted for all functional system components. Unit tests shall be

integrated and documented in the source code. The GitHub repository is found at this URL:

https://github.com/UWF-CfC-FDOT/VTMECS.

T-2: Integration Tests

System integration testing is not within the scope of the VTCS system.

T-3: Test Report

Documentation of all system testing activities shall be provided. See the attached Unit Test

Overview document.

Non-Functional Requirements
Non-functional requirements for the VTCS are system attributes that are desired but not required.

The following are the non-functional requirements for the VTCS:

NF-1: Portability

The development team will attempt to make the web enabled VTCS system portable across multiple

computing form factors.

NF-2: Usability

The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

NF-3: Speed

The development team will attempt to enhance the VTCS system responsiveness to user interactions

and database transactions.

Quality Attributes
The VTCS is a proof of concept and not meant for a production release. As such, traditional quality

attributes such as availability, security, robustness, etc. are not as relevant.

Source Code Repository and Version Control Requirement
The development team shall facilitate a source code repository and version control for the project.

272

SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub.

The GitHub project URL is https://github.com/UWF-CfC-FDOT/VTMECS.

https://github.com/UWF-CfC-FDOT/VTMECS

273

Appendix A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement Description Priority

S1 Scope VTCS System

Scope

The VTCS is required to

take user input to collect

and aggregate threat

intelligence information

from both the OTX and

VirusTotal OSINT sources

as records to be saved to

the VTDBS.

Must have

FR-1 Functional Obtain OSINT

threat data

The VTCS shall facilitate

the collection of threat data

from open-source

repository through to the

OSINT APIs.

Must have

FR-2 Functional Store Threat

Information

The VTCS shall facilitate

the storage of collected

threat information into the

VTDBS.

Must have

INT -1 Interface VTCS Query

Interface

The VTCS shall provide a

Graphical User Interface

for users to submit vehicle

search parameters to

generate records for

review.

Must have

INT-2 Interface VTCS Record

Viewer

The VTCS shall provide a

Graphical User Interface

for users to manage query

results and update the

VTDBS

Must have

274

INT-3 Interface API Interaction

Logger

The VTCS shall log any

interactions with external

APIs in a format

containing the time,

message type, sent request,

response code, and

response

Must have

INT-4 Interface DBMS

Transaction

logger

The VTCS shall log all

threat database transactions

in a format containing the

time, query type, query

contents, and response

Must have

INT-5 Interface Error/Exception

Logger

The VTCS shall log errors

or exceptions in a format

containing the time of the

event and a stack trace

Must have

T-1 Test Unit Test Unit system testing shall

be conducted for all

functional system

components

Must have

T-2 Test Integration Test System integration testing

is not within the scope of

the VTCS system

Out of

scope

T-3 Test Test Report An associated

documentation of all

system test activities shall

be provided

Must have

NF-1 Non-functional Portability The development team will

attempt to make the web

enabled VTCS system

portable across multiple

computing form factors

Could have

275

NF-2 Non-functional Usability The development team will

attempt to satisfy system

usability features such as

navigation, performance

quality, and intuitiveness

of interfaces

Could have

NF-3 Non-functional Speed The development team will

attempt to enhance the

VTCS system

responsiveness to user

interactions and database

transactions

Should

have

SC-1 Source Code Source Code

Control

The development team

shall maintain a source

code repository and

version control on GitHub

Should

have

276

Appendix B: Requirements Traceability Matrix

Requirement

ID

Requirement Description Test Case5 Status

S1 Defines the scope of the system N/A N/A

FR-1 The VTCS shall facilitate access to

the OSINT APIs to gather threat

data.

Not Started

Test cases: 3.1-3.2

Not Started

FR-2 The VTCS shall facilitate the

storage and retrieval of collected

threat information into the VTDBS.

Not Started

Test cases: 6.1-6.2

Not Started

INT -1 The VTCS shall provide a

Graphical User Interface for users

to submit vehicle search parameters

to generate records for review.

Not Started

Test cases: 5.1.1-5.1.4

Not Started

INT-2 The VTCS shall provide a

Graphical User Interface for users

to manage query results and update

the VTDBS

Not Started

Test cases: 5.1.5-5.1.6

Not Started

INT-3 The VTCS shall log any

interactions with external APIs in a

format containing the time,

message type, sent request,

response code, and response

Not Started

Test case: 3.2.4

Not Started

INT-4 The VTCS shall log all threat

database transactions in a format

containing the time, query type,

query contents, and response

Not Started

Test case: 6.3

Not Started

5 Test cases are fully defined in a document titled “VTCS TestPlan Overview.docx”

277

INT-5 The VTCS shall log errors or

exceptions in a format containing

the time of the event and a stack

trace

Not Started

Test cases: 6.3

 Not Started

T-1 Unit system testing shall be

conducted for all functional system

components

Multiple Test Cases

Test cases: 3-6

Not Started

T-2 System integration testing is not

within the scope of the VTCS.

N/A N/A

T-3 An associated documentation of all

system test activities shall be

provided

N/A Not Started

NF-1 The development team will attempt

to make the web enabled VTCS

portable across multiple computing

form factors

N/A N/A

NF-2 The development team will attempt

to satisfy system usability features

such as navigation, performance

quality, and intuitiveness of

interfaces

N/A N/A

NF-3 The development team will attempt

to enhance the VTCS system

responsiveness to user interactions

and database transactions.

N/A N/A

SC-1 The development team shall

maintain a source code repository

and version control on GitHub

N/A N/A

278

Appendix C: Glossary

Term Description

API Application Program Interface

ATT&CK Adversarial Tactics, Techniques, and

Common Knowledge

ATT&CK Framework A knowledge base of adversary tactics and

techniques based on real-world

observations.

AWS Amazon Web Services

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

Cyber Kill Chain A model developed by Lockheed Martin®

used for the identification and prevention of

cyber intrusions.

EC2 Elastic Compute Cloud

GUI Graphical User Interface

IIS Internet Information Services

IoC Indicators of Compromise

.NET A cross-platform, open-source developer

platform created by Microsoft

OSINT Open-Source Intelligence

OTX Open Threat Exchange

VTCS Vehicle Threat Collection System

VTDBS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

 279

Appendix XIII. Technical Report UWF-TR-FDOT-007-02

Unit Test Plan Overview

for

Vehicle Threat Collection
System (VTCS)

Technical Report UWF-TR-FDOT-007-02

Version 0.3 approved

Prepared by Dr. Guillermo Francia, III

The University of West Florida

Florida Department of Transportation

June 3, 2023
July 3, 2023

July 18, 2023

 280

Table of Contents

1. Introduction .. 281

1.1 Purpose ... 281

1.2 Document Revisions Table .. 281

2. VTCS Test Framework .. 281

2.1 Framework Description ... 281

3. VTCS Unit Tests ... 281

3.1 APICallTest .. 281
3.1.1 CheckDomainAPI_NotNull ... 281
3.1.2 CheckIPAddressAPI_NotNull .. 281
3.1.3 CheckUrlAPI_NotNull ... 281

3.2 CveTest .. 282
3.2.1 ValidCve_ValidateId ... 282
3.2.2 CheckFetchKeywordCveWithDateAPI_Not Null .. 282
3.2.3 CheckAPICall_Not Null ... 282
3.2.4 CheckLogTransactions_Record .. 282

4. User Interface Test Framework .. 282

4.1 Framework Description ... 282

5. User Interface Unit Tests ... 282

5.1 UI_Checks .. 282
5.1.1 QueryPageRendersCorrectly .. 282
5.1.2 MakeNotSuppliedWhenSubmitted .. 282
5.1.3 ThreatSourceNotSelected .. 282
5.1.4 ResultsPageRendersCorrectly .. 282
5.1.5 CheckSaveSelectedRecord ... 283
5.1.6 CheckSaveAllRecords ... 283

5.2 UI_NavigationCheck .. 283
5.2.1 CheckPrevNavigation ... 283
5.2.2 CheckNextNavigation .. 283

5.3 Check_UI_logs ... 283

6. Vehicle Threat Database System Unit Tests .. 283

6.1 VerifyInformationStorage ... 283

6.2 VerifyInformationRetrieval ... 283

6.3 VerifyVTDBS_TransactionLogs .. 283

 281

1. Introduction

1.1 Purpose

This document describes the unit test framework of the Vehicle Threat Collection System

(VTCS) as a subcomponent of the Connected Vehicle Security Metrics and Threat Intelligence

Project. This document provides an overview of unit test framework and tests for both the VTCS

and the user interface.

1.2 Document Revisions Table

Revisor Revision Date Reason

Guillermo Francia, III December 1, 2022 Initial draft

Guillermo Francia, III June 1, 2023 Added test cases

Guillermo Francia, III July 3, 2023 Added UI interaction and

database transaction tests

Guillermo Francia, III July 18, 2023 Noted a separate

supplementary file, the RTVM

document, to accompany this

document.

2. VTCS Test Framework

2.1 Framework Description

The VTCS project is developed in C# language and the choice was made to use the standard

MsTest framework for unit testing the engine. MsTest is a native unit testing library that comes

with Visual Studio from Microsoft.

A Requirements Traceability Verification Matrix (RTVM) is provided in a separate document.

 3. VTCS Unit Tests

3.1 APICallTest

The APICall module will contain unit test coverage of the /External_API/VirusTotal/ classes. It

will perform a validation of the API call processes to the VirusTotal repository.

3.1.1 CheckDomainAPI_NotNull

Validates that a domainModel object is successfully returned by the DomainAPI class APICall

function.

 3.1.2 CheckIPAddressAPI_NotNull

Validates that an ipAddressModel object is successfully returned by the DomainAPI class

APICall function.

3.1.3 CheckUrlAPI_NotNull

 282

Validates that a urlModel object is successfully returned by the DomainAPI class APICall

function.

3.2 CveTest

The CveTest module will contain unit test coverage of the

/External_API/Cve/KeywordSearchAPI class. This class contains the object that represents a

CVE for a given record.

3.2.1 ValidCve_ValidateId

Validates that a provided CVE key at initialization will be properly stored as a property that is

publicly accessible.

3.2.2 CheckFetchKeywordCveWithDateAPI_Not Null

Validates that a CveQuery object is successfully returned by the FetchKeywordCveWithDateAPI

function.

3.2.3 CheckAPICall_Not Null

Validates that a queryModel object is successfully returned by the APICall function.

3.2.4 CheckLogTransactions_Record

Validates that the APICall transaction is properly logged .

4. User Interface Test Framework

4.1 Framework Description

The User Interface Test Framework is developed in C# language and BUnit framework was

chosen for unit testing the interface.

5. User Interface Unit Tests

5.1 UI_Checks

5.1.1 QueryPageRendersCorrectly

Verifies that the Query Web page renders correctly.

5.1.2 MakeNotSuppliedWhenSubmitted

Verifies that the Make is supplied when form is submitted. Note that Year and Model are

optional.

5.1.3 ThreatSourceNotSelected

Verifies that the Threat source is selected when form is submitted.

5.1.4 ResultsPageRendersCorrectly

Verifies that the Results Web page renders correctly.

 283

5.1.5 CheckSaveSelectedRecord

Verifies that the Save Selected Record function successfully adds the record into the VTDBS.

5.1.6 CheckSaveAllRecords

Verifies that the Save All Records function successfully adds all the current records into the

VTDBS.

5.2 UI_NavigationCheck

5.2.1 CheckPrevNavigation

Verifies that the Prev navigation function moves correctly to the previous record among the set

of VTCS generated records. A wrap-around feature must also be correctly implemented.

5.2.2 CheckNextNavigation

Verifies that the Next navigation function moves correctly to the next record among the set of

VTCS generated records. A wrap-around feature must also be correctly implemented.

5.3 Check_UI_logs

Verifies that User Interface transactions are logged.

6. Vehicle Threat Database System Unit Tests

6.1 VerifyInformationStorage

Verifies that the threat information is properly stored in the VTDBS.

6.2 VerifyInformationRetrieval

Verifies that the threat information is properly retrieved from the VTDBS.

6.3 VerifyVTDBS_TransactionLogs

Verifies that all VTDBS transactions are logged.

 284

Appendix XIV. Technical Report UWF-TR-FDOT-007-03

REQUIREMENTS TRACEABILITY VERIFICATION MATRIX
Project Name: Vehicle Threat Collection System (VTCS)
Project Description: The Vehicle Threat Collection System (VTCS) project is a subcomponent of the

Connected Vehicle Security Metrics and Threat Intelligence Project.

Project Manager Name: Dr. Guillermo Francia, III
Agency/Firm: UWF-FDOT
User
Need ID

User Need
Summary

Requirement
ID

Detailed
Requirement
Summary

Document
Section

DR Source
Document

Verification
Test Case ID

Compliance
(Y/N/Partial/
NA)

Notes/Comme
nts/Date

Reviewer
Initials

GAF001 Specifies the
scope of the
system

S1 Define the scope of
the system

2.1 VTCS Requirements NA NA Non Testable DH

GAF001 Obtain OSINT

threat data

FR-1 The VTCS shall

facilitate the
collection of threat
data from open-
source repository
through to the
OSINT APIs.

4.1 VTCS Requirements Test cases: 3.1-

3.2

Partially Not started DH

GAF001 Store Threat
Information

FR-2 The VTCS shall
facilitate the
storage of
collected threat
information into
the VTDBS.

4.2 VTCS Requirements Test cases: 6.1-
6.2

Partially Not started DH

GAF001 VTCS Query
Interface

INT-1 The VTCS shall
provide a Graphical
User Interface for
users to submit
vehicle search
parameters to
generate records
for review.

3.1 VTCS Requirements Test cases: 5.1.1-
5.1.4

Partially Not started DH

GAF001 VTCS Record
Viewer

INT-2 The VTCS shall
provide a Graphical
User Interface for
users to manage
query results and
update the VTDBS

3.2 VTCS Requirements Test cases: 5.1.5-
5.1.6

Partially Not started DH

 285

GAF001 API Integration
Logger

INT-3 The VTCS shall
provide a Graphical
User Interface for
users to manage
query results and
update the VTDBS

3.0 VTCS Requirements Test case: 3.2.4 Partially Not started DH

REQUIREMENTS TRACEABILITY VERIFICATION MATRIX
Project Name: Vehicle Threat Collection System (VTCS)
Project Description: The Vehicle Threat Collection System (VTCS) project is a subcomponent of the Connected

Vehicle Security Metrics and Threat Intelligence Project.

Project Manager Name: Dr. Guillermo Francia, III
Agency/Firm: UWF-FDOT
User Need ID User Need

Summary
Requirement
ID

Detailed
Requirement
Summary

Document
Section

DR Source
Document

Verification
Test Case ID

Compliance
(Y/N/Partial/NA
)

Notes/Comme
nts/Date

Reviewer
Initials

GAF001 DBMS
Transaction
Logger

INT-4 TheVTCSshallloga
llthreatdatabaset
ransactionsinafor
matcontainingth
etime,querytype,
querycontents,an
d response.

3.0 VTCS
Requirements

Test case: 6.3 Partially Not started DH

GAF001 Error/Exception
Logger

INT-5 TheVTCSshallloge
rrorsorexception

sinaformatcontai
ningthetimeofthe
event and a stack
trace.

3.0 VTCS
Requirements

Test case: 6.3 Partially Not started DH

GAF001 Unit Test T-1 Unit system
testing shall be
conducted for all
functional system
components

5.1 VTCS
Requirements

Test cases: 3-6 Partially Not started DH

GAF001 Integration Test T-2 System
integration
testing is not
within the scope
of the VTCS
system

5.2 VTCS
Requirements

NA Partially Non Testable DH

GAF001 Test Report T-3 Anassociateddoc
umentationofalls
ystemtestactiviti
esshallbeprovide
d

5.3 VTCS
Requirements

NA Partially Not started DH

 286

GAF001 Portability NF-1 Thedevelopment
teamwillattemptt
omaketheweben
abledVTCSsystem
portableacrossm
ultiplecomputing
form factors

6.1 VTCS
Requirements

NA Partially Non Testable DH

REQUIREMENTS TRACEABILITY VERIFICATION MATRIX
Project Name: Vehicle Threat Collection System (VTCS)
Project Description: The Vehicle Threat Collection System (VTCS) project is a subcomponent of the Connected

Vehicle Security Metrics and Threat Intelligence Project.

Project Manager Name: Dr. Guillermo Francia, III
Agency/Firm: UWF-FDOT
User Need ID User Need

Summary
Requirement
ID

Detailed
Requirement
Summary

Document
Section

DR Source
Document

Verification
Test Case ID

Compliance
(Y/N/Partial/NA
)

Notes/Comme
nts/Date

Reviewer
Initials

GAF001 Usability NF-2 The development
team will
attempt to satisfy
system usability
features such as
navigation,
performance
quality, and

intuitiveness of
interfaces

6.2 VTCS
Requirements

NA Partially Non Testable DH

GAF001 Speed NF-3 The development
team will
attempt to
enhance the
VTCS system
responsiveness
to user
interactions and
database
transactions

6.3 VTCS
Requirements

NA Partially Non Testable DH

GAF001 Source Code
Control

SC-1 The development
team shall
maintain a
source code
repository and
version control
on GitHub

8.1 VTCS
Requirements

NA Partially Non Testable DH

 287

Appendix XV. Technical Report UWF-TR-FDOT-008-01

Software Requirements

Specification

for

Vehicle Threat Database System

(VTDS)

Technical Report UWF-TR-FDOT-008-01

Version 3.0 Approved

Prepared by David Huson

Approved by Dr. Guillermo Francia, III

The University of West Florida

Florida Department of Transportation

July 21, 2023 (Initial)

288

Table of Contents

1. Introduction 1

1.1 Purpose 1

1.2 Document Conventions 1

1.3 References 1

1.4 Document Revisions Table 1

2. Overview of Product 2

2.1 VTDS 2

2.2 User Classes and Characteristics 3

2.3 Operating Environment 3

2.4 Design and Implementation Constraints 3

2.5 Assumptions and Dependencies 5

3. Interface Requirements 5

3.1 INT-1: VTDS Application Programming Interface (API) 5

4. Functional Requirements 6

4.1 FR-1: Data Ingestion 6

4.1.1 Description and Priority 6

4.1.2 Related User Classes 6

4.2 FR-2: Data Retrieval 6

4.2.1 Description and Priority 6

4.2.2 Related User Classes 6

4.2.3 Functional Requirements 7

4.3 FR-3: Data Integrity 7

4.3.1 Description and Priority 7

4.3.2 Related User Classes 7

4.3.3 Functional Requirements 7

4.4 FR-4: User Authentication 8

4.4.1 Description and Priority 8

4.4.2 Related User Classes 8

4.4.3 Functional Requirements 8

4.5 FR-5: Transaction Logs 9

4.5.1 Description and Priority 9

4.5.2 Related User Classes 9

4.5.3 Functional Requirements 9

4.6 FR-6: Backup and Recovery 9

4.6.1 Description and Priority 9

4.6.2 Related User Classes 10

4.6.3 Functional Requirements 10

289

5. Test Requirements 10

5.1 T-1: Data Integrity Tests 10

5.2 T-2: Security Tests 11

5.3 T-3: Performance Tests 11

5.4 T-4: Recovery Tests 11

5.5 T-5: Transaction Log Tests 11

6. Non-Functional Requirements 11

6.1 NF-1: Performance 12

7. Quality Attributes 12

8. Source Code Repository and Version Control Requirement 12

8.1 SC-1: Source Code Repository and Control 12

9. Appendix A: Requirements Table 13

10. Appendix B: Requirements Traceability Matrix 17

11. Appendix C: Glossary 20

290

1. Introduction

1.1 Purpose

This document describes the software requirements for Version 1.0 of the Vehicle Threat Database

System (VTDS) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project. This document provides an overview of the users and context of the VTDS and

covers all functional, non-functional, interface, and data requirements of the VTDS.

1.2 Document Conventions

This document is based on the IEEE 830-1998 Standards and the Florida Department of

Transportation Requirements Standards. Specific conventions used in this document are listed below:

● Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should have

feature.

● Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the ID of the requirement in a hierarchical fashion.

1.3 References

The following references were used in the creation of this document:

● IEEE 830-1998 Standards on Software Requirement Specifications

● UWF Scope of Service Document for the Connected Vehicle Security Metrics and Threat

Intelligence Project

● VTDS_Documentation_20230503

1.4 Document Revisions Table

Revisor Revision Date Reason

David Huson 07/24/2023 Initial Draft

David Huson 08/25/2023 Add SQL injection

vulnerability test requirement

David Huson 08/30/2023 Add Id constraints and new

David Huson 09/17/2023 Update Source Control URL

David Huson 09/22/2023 Add API interface

Requirement

Dr. Guillermo Francia, III 09/29/2023 Added functional requirements

291

David Huson 10/4/2023 Added detail to new functional

requirements and interface

requirements

David Huson 11/13/2023 Synchronize with Test Plan

Document

Dr. Guillermo Francia, III 1/10/2024 Fixed inconsistencies with the

Requirements Traceability

Matrix

2. Overview of Product

2.1 VTDS

The VTDS is a database server which is designed to support the Vehicle Threat Modeling Engine

(VTME), Vehicle Threat Collection System (VTCS), Vehicle Security Metrics Visualization, Vehicle

Machine Learning System , and Threat Intelligence Portal. It will do so by facilitating Create Read

Update Delete (CRUD) operations to the various subcomponents of the Project System formerly

mentioned.

2.2 User Classes and Characteristics
User Class Characteristics

VTCS User This user will be able to query the VTDS via the

VTCS Query Interface

Figure 1.1 - Detailed Project System Architecture Diagram

292

Threat Intelligence Portal User This user will be able to query vehicle threat

information gathered by the VTME

Threat Model Builder This user will utilize the VTDS to store individual

threat information to include data from the

following sources MITRE ATT&CK and

CVE/CWE.

Threat Collector This user will utilize the VTDS to store information

that is retrieved from the following data sources

Open Threat Exchange, VirusTotal, and MISP

OSINT Feed.

Threat Model Visualization User This user will be able to store and query CVE data

on the VTDS

Threat Model Visualization Admin This user will be able to send data to the VTDS for

storage

VSMLS Engineer This user will be able to submit data to the BSM

data to be ingested and stored by the VTDS

Database Administrator The user responsible for administering and

maintaining the VTDS

2.3 Operating Environment

The VTCS operating environment is defined by the following:

OE-1: The VTDS shall run within an Amazon Elastic Compute Cloud (EC2) Web Service utilizing

a Windows Server 2019 Operating System.

OE-2: The AWS EC2 instance shall be configured with type m5.xlarge having 4 vCPU and 16 GB

of memory.

OE-3 The VTDS shall be configured using MS SQL Server 2019.

2.4 Design and Implementation Constraints

The VTDS design and implementation are constrained by the following:

DIC-1: The VTDS shall be developed, tested, and maintained using the SQL Server Management

Studio and/or AWS.

DIC-2: The VTDS test suite shall be developed using Microsoft Visual Studio 2022

DIC-3: The VTDS test suite shall be developed using the C# programming language.

DIC-4: The VTDS design shall be constrained by the Entity Relationship (ER) diagram depicted in

Figure 1.2 below

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16

293

DIC-5: The VTDS will place the following check constraints on primary key fields:

1. The Threats table CveId field will follow the standard format documented here.

a. Example: CVE-0000-0000

2. The Threats table CweId field will adhere to the following format: CWE prefix + arbitrary

digits (up to 10)

a. Example: CWE-0

3. The Tactics table Id field will adhere to the following format: TA prefix + arbitrary digits

(up to 10)

a. Example: TA-0

4. The Techniques Id field will adhere to the following format: TECH prefix + arbitrary digits

(up to 10)

a. Example: TECH-0

5. The SubTechniques Id field will adhere to the following format SUBT prefix + arbitrary

digits (up to 10)

a. Example: SUBT-0

DIC-6: The VTDS Shall normalize all data before ingesting said data into the Vehicle Threat

Database.

Figure 1.2 - Entity Relationship Diagram with Primary Key, Foreign Key, and Not Null

Constraints

https://cve.mitre.org/cve/identifiers/syntaxchange.html

294

DIC-7: The VTDS shall require a table to store user information when creating new users.

DIC-8: The VTDS shall require a table to store API transactions made by users.

2.5 Assumptions and Dependencies

Assumptions and dependencies for the VTDS implementation include the following:

DEP-1: The VTDS shall be dependent on data coming from the VTME, VTCS, VSMVS, and

VSMLS.

3. Interface Requirements
INT1 - The VTDS shall provide an API to be used by the MISP, VTIP, and other components of the

system to send and retrieve data from the Vehicle Threat Database via a web API endpoint.

INT-2: The query interface, offered by the VTCS, shall be provided to users for submitting vehicle

search parameters. This Graphical User Interface is fully described in section 3.1 of the VTCS

Requirements document. It is implemented as part of the VTCS.

INT-3: The VTDS shall provide an API route to facilitate the creation of new users in the system

when accessed through the User Registration Interface provided by the VTCS.

INT-4: The VTDS shall provide an API route for user session management via the User Login

Interface provided by the VTCS

INT-5: The VTDS shall provide a GUI for Database Administrators to use to backup or recover the

VTDS via the appropriate VTDS API routes

INT-6: The VTDS shall provide a GUI to facilitate the review of database transaction logs.

3.1 INT-1: VTDS Application Programming Interface (API)

The VTDS will provide an API endpoint which can be used by all components of the System to

interact with and retrieve data from the database. The requests made to these API routes must be

Fig 1.3 – ER diagram for User Authentication Table and Transaction Log Table

295

sent in the request body in JSON format and must adhere to the database schema outlined in the

VTDS ER diagram in section 2.4 of this document. This API will be provided via an endpoint

which is available as a subdirectory of the VTCS base URL hosted on IIS. The API requires

requests be made as JSON objects in the request body with the appropriate method (i.e. POST,

GET, PUT, DELETE). These endpoints will only be accessible from an authenticated and

authorized client. Examples of the JSON objects for each table will be provided on the GitHub

repository in the technical documentation.

4. Functional Requirements
Functional requirements for the VTDS are fundamental actions that the system must execute or

facilitate to be considered operational.

4.1 FR-1: Data Ingestion

4.1.1 Description and Priority

The VTDS is required to receive data from several data sources (VTME, VTCS,

VSMVS, VTIP, and VMLS), and save the data to the database in the appropriate

tables.

Priority: Must Have

4.1.2 Related User Classes

Threat Collector, Thread Model Builder, VSMLS Engineer, VTMVS Admin, VTCS

User, Database Administrator

4.2 FR-2: Data Retrieval

4.2.1 Description and Priority

The VTDS is required to return the appropriate information queried by the VSMVS,

VTIP, and VSMLS.

Priority: Must Have

4.2.2 Related User Classes

VTIP User, VSMVS User, VSMLS Engineer, Database Administrator.

4.2.3 Functional Requirements

FR-2.3.1: API Routes

The VTDS API must provide the appropriate routes to retrieve data from the

corresponding tables in the Vehicle Threat Database.

4.3 FR-3: Data Integrity

4.3.1 Description and Priority

296

The VTDS is required to store data in a manner which maintains the integrity of the

data. Data Integrity will be defined using three metrics outlined below.

 Priority: Must Have

4.3.2 Related User Classes

 Database Administrator

4.3.3 Functional Requirements

4.3.3.1 FR-3.1: Data Consistency

The VTDS must ensure that all data entered into the system conforms to the

defined data type and format.

4.3.3.2 FR-3.2: Data Completeness

The VTDS must ensure that all expected fields are present and filled with the

required information in the database

4.3.3.3 FR-4.3: Data Accuracy

The VTDS must ensure that the data entered in the database is consistent with

the source data

4.4 FR-4: User Authentication

4.4.1 Description and Priority

The VTDS will only allow requests which originate from an authenticated source and

will validate users sessions on a per request basis.

Priority: Should Have

4.4.2 Related User Classes

Database Administrator, Threat Intelligence Portal User, VTCS user, Threat Collector

4.4.3 Functional Requirements

4.4.3.1 FR-4.1: Login API Route

- The VTDS API shall provide an API route to facilitate user authentication

- The route must take in user credentials and validate them with those stored in

the Vehicle Threat Database.

4.4.3.2 FR-4.2: Registration API Route

- The API must provide a means of creating a new user record in the database

(INT-4)

4.4.3.3 FR-4.3: Logout API Route

- The API must provide a route for logging a user out of their session

4.4.3.4 FR-4.5: Identity Table

297

- The VTDS will require a new table to store user credentials (username,

password hash, and role”

4.5 FR-5: Transaction Logs

4.5.1 Description and Priority

The VTDS shall keep a record of all transactions (requests) made to the API. And

allow related user classes to view these logs via an additional interface.

Priority: Should Have

4.5.2 Related User Classes

 Database Administrator

4.5.3 Functional Requirements

4.5.3.1 FR-5.1: VTDS Transaction Log Table

- The VTDS shall record all transactions made via the API in a separate Logs

table.

- The Logs table shall record all relevant information such as:

- transaction type (POST, GET, etc.)

- transaction timestamp

- affected tables

- initiating user

- status code (success or failure)

- if transaction fails, it will also record any error messages.

4.5.3.2 FR-5.2: VTDS Transaction Log Authentication

- The VTDS shall prohibit any user other than those with administrative

authentication role from accessing either the endpoint or the interface (see

INT-7)

4.6 FR-6: Backup and Recovery

4.6.1 Description and Priority

The VTDS shall provide a means of initiating a full database backup or recovery

from a backup via a request to either the /backup or /recovery route made by a user

with elevated privileges (i.e. administrator role).

 Priority: Should Have

4.6.2 Related User Classes

 Database Administrator

4.6.3 Functional Requirements

298

4.6.3.1 FR-6.1: VTDS Backup API Route

- The VTDS shall implement an API route for initiating a full database backup

4.6.3.2 FR-6.2: VTDS Recovery API Route

- The VTDS shall implement an API for initiating a database restoration from

a previous backup

4.6.3.3 FR-6.4: VTDS Backup and Recovery Route Authorization

- The VTDS shall prohibit all users other than those with the administrative

authorization role to access the backup/recovery routes or the interface (see

INT-6.)

5. Test Requirements

The VTDS requires testing and validation of the database functionalities and requirements. All test

cases will be integrated and documented in the source code, which can be found on the VTMECS

GitHub Repository.

5.1 T-1: Data Integrity Tests

Data integrity testing aims to ensure the accuracy and completeness of the data stored in the

database. These tests include the three following subtests:

1. Data consistency test

2. Data completeness test

3. Data accuracy test

5.2 T-2: Security Tests

This test aims to ensure the security of the database. The test includes the following sub-tests:

1. User authentication test

2. User authorization test

3. SQL injection vulnerability test

4. User registration tests

5.3 T-3: Performance Tests

 This test aims to evaluate the performance of the database. The test includes the following sub-test:

1. Query execution time test

5.4 T-4: Recovery Tests

This test aims to ensure that the database can be recovered in the event of a failure. The test

includes the following sub-tests:

1. Backup and recovery test

5.5 T-5: Transaction Log Tests

https://github.com/UWF-CfC-FDOT/VTDBS

299

This test aims to ensure that the VTDS properly logs all transactions made via the VTDS API

1. Successful Transaction Tests

2. Unsuccessful Transaction Tests

6. Non-Functional Requirements
Non-functional requirements for the VTCS are system attributes that are desired but not required.

The following are the non-functional requirements for the VTCS:

6.1 NF-1: Performance

The development team will attempt to enhance the VTDS system responsiveness to query

operations by reducing the query execution time.

7. Quality Attributes
The VTDS is a proof of concept and not meant for a production release. As such, traditional quality

attributes such as availability, security, robustness, etc. are not as relevant.

8. Source Code Repository and Version Control Requirement

The development team shall facilitate a source code repository and version control for the project.

300

8.1 SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub.

https://github.com/UWF-CfC-FDOT/VTDBS

301

9. Appendix A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement Description Priority

S1 Scope VTDS System

Scope

The VTDS is required to

facilitate CRUD operations

from the VTCS, VMLS,

VSMS, VTME, and VTIP.

Must have

FR-1 Functional Data Ingestion The VTDS is required to

receive data from several

data sources (VTME,

VTCS, VSMV, VTIP, and

VMLS), and save the data

to the database

Must Have

FR-2 Functional Data Retrieval
The VTDS is required to

return the appropriate

information queried by the

VSMVS, VTIP, and

VSMLSS.

Must Have

FR-3 Functional Data Integrity The VTDS is required to

store data in a manner

which maintains the

integrity of the data. Data

Integrity will be defined

using three metrics

outlined below.

Must Have

FR-4 Functional User

Authentication

The VTDS will only allow

requests which originate

from an authenticated

source. This requires an

additional database table of

users with their email and

password hash to be used

by the VTCS login page as

well as a table of sessions

which relate a user to a

session token which is to

be sent with requests to the

VTDS routes as a means of

Should

Have

302

authenticating the user on a

per request basis.

FR-5 Functional Transaction

Logs

The VTDS shall keep a

record of all transactions

(requests) made to the API.

And allow related user

classes to view these logs

via an additional interface.

Should

Have

FR-6 Functional Backup and

recovery

The VTDS shall provide a

means of initiating a full

database backup or

recovery from a backup via

a request to either the

/backup or /recovery route

made by an user with

elevated privileges (i.e.

administrator).

Should

Have

T-1 Test Data Integrity

Tests

Data integrity testing aims

to ensure the accuracy and

completeness of the data

stored in the database.

These tests include the

three following subtests:

Must Have

T-2 Test Security Tests This test aims to ensure the

security of the database.

Should

have

T-3 Test Performance

Tests

This test aims to evaluate

the performance of the

database.

Could

Have

T-4 Test Recovery Tests This test aims to ensure

that the database can be

recovered in the event of a

failure.

Must Have

T-5 Test Transaction

Log Tests

This test case aims to

ensure that the VTDS

properly logs all

transactions made via the

VTDS API

Should

Have

303

NF-1 Non-functional Performance The development team will

attempt to enhance the

VTDS system

responsiveness to query

operations by reducing the

time each query takes to

complete.

Could

Have

INT-1
Interface

VTDS

Application

Programming

Interface (API)

The VTDS shall provide

an API to be used by the

MISP, VTIP, and other

components of the system

to send and retrieve data

from the Vehicle Threat

Database.

Must Have

INT-2
Interface

VTCS Query

Interface

The VTDS shall provide

an API route to facilitate

the creation of new records

in the Vehicle Threats

Database via the VTCS

Record Viewer Interface

(Described in detail in

Section 3.2 of the VTCS

Requirements Document).

Must Have

INT-3
Interface

VTDS

Registration

Interface

The VTDS shall provide

an API route to facilitate

the creation of new users in

the system when accessed

through the User

Registration Interface

provided by the VTCS.

Should

Have

INT-4
Interface

VTDS User

Login Interface

The VTDS shall provide

an API route for user

session management via

the User Login Interface

provided by the VTCS

Should

have

INT-5
Interface

VTDS Backup

and Recovery

Interface

The VTDS shall provide a

GUI for Database

Administrators to use to

backup or recover the

VTDS via the appropriate

VTDS API routes

Should

have

INT-6
Interface VTDS

Transaction Log

Interface

The VTDS shall provide a

GUI to facilitate the review

of database transaction

logs.

Should

have

304

SC-1 Source Code Source Code

Control

The development team

shall maintain a source

code repository and

version control on GitHub

Should

have

305

10. Appendix B: Requirements Traceability Matrix

Requirement

ID

Requirement Description Test Case6 Status

S1 Specifies the scope of the system N/A N/A

FR-1 The VTDS is required to receive

data from several data sources

(VTME, VTCS, VSMV, VTIP, and

VMLS), and save the data to the

database

Complete

Test Cases: 3.1-

3.3

Complete

FR-2
The VTDS is required to return the

appropriate information queried by

the VSMVS, VTIP, and VSMLSS.

Complete

Test Cases: 3.2-

3.3

Complete

FR-3 The VTDS is required to store data

in a manner which maintains the

integrity of the data. Data Integrity

will be defined using three metrics

outlined below.

Complete

Test Cases: 3.1-

3.3

Complete

FR-4
The VTDS will only allow requests

which originate from an

authenticated source.

Partially

Test Cases: 4.1-

4.4

The login and

registration routes are

completed. Must

complete the token

validation system for

creating new admin

users for this to be

fully complete.

FR-5
The VTDS shall keep a record of

all transactions (requests) made to

the API. And allow related user

classes to view these logs via an

additional interface.

Partially

Test Case: 7

The methods for

logging transactions to

the VTDS are

complete. Waiting for

the user interface to

complete.

6 Test cases are fully defined in a document titled “VTDS_TestPlan Overview.docx”

306

FR-6
The VTDS shall provide a means

of initiating a full database backup

or recovery from a backup via a

request to either the /backup or

/recovery route made by a user

with elevated privileges (i.e.

administrator).

Partially

Test Case: 6.1

The methods for

completing a VTDS

Backup and Recovery

are complete. This

requirement is waiting

on an Interface for it to

be considered fully

completed.

T-1 Data integrity testing aims to

ensure the accuracy and

completeness of the data stored in

the database.

Complete

Test Cases: 3.1-

3.3

Complete

T-2 This test aims to ensure the security

of the database.

Complete

Test Cases: 4.1 -

4.4

Complete

T-3 This test aims to evaluate the

performance of the database.

Partial

Test Cases: 5.1

The tests are partially

completed. To be

completed by the

development team for

the production version

of the system.

T-4 This test aims to ensure that the

database can be recovered in the

event of a failure.

Complete

Test Case: 6.1

Complete

T-5
This test case aims to ensure that

the VTDS properly logs all

transactions made via the VTDS

API

Not Started

Test Case: 7

To be completed after

the User Interfaces are

ready.

NF-1 The development team will attempt

to enhance the VTDS system

responsiveness to query operations

by reducing the time each query

takes to complete.

Partial

Test Case: 5.1

The tests are partially

completed. To be

completed by the

development team for

the production version

of the system.

INT-1
The VTDS shall provide an API to

be used by the MISP, VTIP, and

other components of the system to

Complete Complete

307

send and retrieve data from the

Vehicle Threat Database.

Test Cases: 3.1-

3.3

INT-2
The query interface, offered by the

VTCS, shall be provided to users

for submitting vehicle search

parameters. This Graphical User

Interface is fully described in

section 3.1 of the VTCS

Requirements document. It is

implemented as part of the VTCS.

Complete Complete

INT-3
The VTDS shall provide an API

route to facilitate the creation of

new users in the system when

accessed through the User

Registration Interface provided by

the VTCS.

Partial

Test Case: 4.3

The test is partially

complete, waiting on

the token validation

system for full

completion.

INT-4
The VTDS shall provide an API

route for user session management

via the User Login Interface

provided by the VTCS and the

User Session Authentication

Middleware.

Partial

Test Cases: 4.1-

4.2.1

Working on a method

of redirecting back to

the original endpoint

requested after

successful login or

registration.

INT-5
The VTDS shall provide a GUI for

Database Administrators to use to

backup or recover the VTDS via

the appropriate VTDS API routes

Not Started

Test Case: 6.1

To be completed by

the developers of the

production version.

INT-6
The VTDS shall provide a GUI to

facilitate the review of database

transaction logs.

Partial

Test Case: 7

The methods which

this interface relies on

are complete. Need to

complete the

remaining User

Interfaces for full

completion.

SC-1 The development team shall

maintain a source code repository

and version control on GitHub

Complete Considered complete

with the source code

made available on

Github

308

11. Appendix C: Glossary

Term Description

API Application Programming Interface

ATT&CK Adversarial Tactics, Techniques, and Common

Knowledge

ATT&CK Framework A knowledge base of adversary tactics and

techniques based on real-world observations.

AWS Amazon Web Services

CRUD Create Read Update Delete

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

EC2 Elastic Compute Cloud

JSON JavaScript Object Notation

OSINT Open-Source Intelligence

OTX Open Threat Exchange

SQL Structured Query Language

VSMLS Vehicle Security Machine Learning

VSMVS Vehicle Security Model Visualization System

VTCS Vehicle Threat Collection System

VTDS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

309

Appendix XVI. Technical Report UWF-TR-FDOT-008-02

 REQUIREMENTS TRACEABILITY VERIFICATION MATRIX
Project Name: Vehicle Threat Collection System (VTDS)
Project Description: The Vehicle Threat
Project Manager Name: Dr. Guillermo Francia, III
Agency/Firm: UWF-FDOT
User Need
ID

User Need
Summary

Require
ment ID

Detailed
Requirement
Summary

Document
Section

DR Source
Document

Verification
Test Case
ID

Compliance
(Y/N/Partial/
NA)

Notes/Comments
/Date

Reviewer
Initials

GAF001 VTDS System
Scope

S1 Specifies the
scope of the
system

2.1 VTDS
Requirements

NA Yes Specified in the
Requirements
document

DH

GAF001 Data
Ingestion

FR-1 The VTDS is
required to
receive data
from several
data sources
(VTME, VTCS,
VSMV, VTIP,
and VMLS), and
save the data to
the database

4.1 VTDS
Requirements

Test Cases:
3.1-3.3

Yes Completed
08/29/2023

DH

GAF001 Data
Retrieval

FR-2 The VTDS is
required to
return the
appropriate
information
queried by the
VSMVS, VTIP,
and VSMLSS.

4.2 VTDS
Requirements

Test Cases:
3.2-3.3

Yes Completed
08/29/2023

DH

GAF001 Data Integrity FR-3 The VTDS is
required to
store data in a
manner which
maintains the

4.3 VTDS
Requirements

Test Cases:
3.1-3.3

Yes Completed
08/28/23

DH

310

integrity of the
data.

GAF001 User
Authenticatio
n

FR-4 The VTDS will
only allow
requests which
originate from
an
authenticated
source.

4.4 VTDS
Requirements

Test Case:
4.1-4.4

Partially The login and
registration
routes are
completed.
Must complete
the token
validation
system for
creating new
admin users for
this to be fully
complete.

DH

GAF001 Transaciton
Logs

FR-5 The VTDS shall
keep a record
of all
transactions
(requests)
made to the
api. And allow
related user
classes to view
these logs via
an additional
interface.

4.5 VTDS
Requirements

Test Case:
7

Partially The methods
for logging
transactions to
the VTDS are
complete.
Waiting for the
user interface
to complete.

DH

GAF001 Backup and
Recovery

FR-6 The VTDS shall
provide a
means of
initiating a full
database
backup or
recovery from a
backup via a
request to
either the
/backup or
/recovery route

4.6 VTDS
Requirements

Test Case:
6.1

Partially The methods
for completing
a VTDS Backup
and Recovery
are complete.
This
requirement is
waiting on an
Interface for it
to be
considered fully
completed.

DH

311

made by an
user with
elevated
privileges (i.e.
administrator).

GAF001 Data Integrity
Tests

T-1 Data integrity
testing aims to
ensure the
accuracy and
completeness
of the data
stored in the
database.

5.1 VTDS
Requirements

Test Cases:
3.1-3.3

Yes Completed
08/28/23

DH

GAF001 Security Tests T-2 This test aims
to ensure the
security of the
database.

5.2 VTDS
Requirements

Test Cases:
4.1 - 4.4

Yes Completed
08/22/23

DH

GAF001 Performance
Tests

T-3 This test aims
to evaluate the
performance of
the database.

5.3 VTDS
Requirements

Test Cases:
5.1

Partially The tests are
partially
completed. To
be completed
by the
development
team for the

DH

 312

Appendix XVII. Technical Report UWF-TR-FDOT-008-03

Unit Test Plan Overview

for

Vehicle Threat Database
System (VTDS)

Technical Report UWF-TR-FDOT-008-03

Version 0.1 Approved

Prepared by David Huson

The University of West Florida

Florida Department of Transportation

 313

Table of Contents

1. Introduction 1

1.1 Purpose 1

1.2 Document Revisions Table 1

2. VTDS Test Framework 1

2.1 Framework Description 1

3. Data Integrity Tests 1

3.1 Data Consistency test 2

3.1.1 TestStringFieldInputValidation 2

3.1.2 TestDateTimeFieldInputValidation 2

3.2 Data Completeness Test 2

3.2.1 VerifyAllRequiredFieldsPresent 2

3.2.2 VerifyReturnAllNotNullFields 2

3.3 Data Accuracy Test 2

3.3.1 VerifyNewRecordMatchSource 2

4. Data Security Tests 2

4.1 User Authentication Test 2

4.1.1 VerifyUserHasAccess_Valid 2

4.1.2 VerifyUserHasAccess_Invalid 3

4.2 User Authorization Test 3

4.2.1 Access Tests 3

4.2.2 Access Permissions Modification Test 3

4.3 User Registration Tests 3

4.3.1 VerifyUserRegistration_WithToken 3

4.3.2 VerifyUserRegistraion_NoToken 3

4.4 SQL Injection Vulnerability Test 4

5. Performance Test 4

5.1 Query Execution Time Test 4

5.1.1 CheckQueryExecutionTime 4

6. Recovery Test 4

6.1 Backup and Restore Test 4

6.1.1 VerifyDataBackupProcedure 4

6.1.2 VerifyRestoreDataFromBackup 4

7. Transaction Log Test 5

7.1 Successful Transaction Tests 5

7.1.1 VerifyTransactionLog_Valid_POST 5

7.1.2 VerifyTransactionLog_Valid_GET 5

7.1.3 VerifyTransactionLog_Valid_PUT 5

7.1.4 VerifyTransactionLog_Valid_DELETE 5

7.2 Unsuccessful Transaction Tests 5

 314

7.2.1 VerifyTransactionLog_Invalid_POST 5

7.2.2 VerifyTransactionLog_Invalid_GET 5

7.2.3 VerifyTransactionLog_Invalid_PUT 5

7.2.4 VerifyTransactionLog_Invalid_DELETE 5

1. Introduction

1.1 Purpose

This document describes the unit test framework of the Vehicle Threat Collection System

(VTCS) as a subcomponent of the Connected Vehicle Security Metrics and Threat Intelligence

Project. This document provides an overview of the unit test framework and tests for both the

VTCS and the user interface.

1.2 Document Revisions Table

Revisor Revision Date Reason

David Huson Jul 24, 2023 Initial draft

David Huson Aug 25, 2023 Add SQL Injection

Vulnerability test case

David Huson Oct 9, 2023 Add Transaction Log and User

Registration Tests

Elizabeth Uebele Oct 12, 2023 Suggest document edits

David Huson Oct 12, 2023 Accept proofreading edits

David Huson Nov 7, 2023 Minor edits based on proof

reading

David Huson Nov 13, 2023 Sync with the rest of the

deliverables

2. VTDS Test Framework

2.1 Framework Description

The VTDS project is developed in C# language and the choice was made to use the standard

MsTest framework for the unit testing engine. MSTest is a native unit testing library that comes

with Visual Studio from Microsoft. The SQL injection vulnerability tests will be carried out

using an open source tool – SQLmap – which is designed to automate SQL injection attacks.

3. Data Integrity Tests

The Data Integrity Tests aim to ensure the consistency, accuracy, and completeness of the data

stored in the database.

3.1 Data Consistency test

This test scenario involves checking if all the data entered in the database conforms to the

defined data type and format.

3.1.1 TestStringFieldInputValidation

Verify that fields accepting string values (nvarchar) only accept strings as their input.

mailto:dph14@students.uwf.edu
mailto:dph14@students.uwf.edu
mailto:dph14@students.uwf.edu
mailto:geu1@students.uwf.edu
mailto:dph14@students.uwf.edu
mailto:dph14@students.uwf.edu
mailto:dph14@students.uwf.edu

 315

3.1.2 TestDateTimeFieldInputValidation

Verify that fields accepting dates (datetime2) only accept dates and times.

3.2 Data Completeness Test

This test scenario involves checking if all the expected fields are present and filled with the

required information in the database. These tests will be repeated for all tables in the database.

3.2.1 VerifyAllRequiredFieldsPresent

Verify that required fields are present and filled with information.

3.2.2 VerifyReturnAllNotNullFields

Verify that optional fields are absent if not filled with information.

3.3 Data Accuracy Test

This test scenario involves comparing the data entered in the database with the source data and

verifying its accuracy. These tests will be repeated for all tables in the database.

3.3.1 VerifyNewRecordMatchSource

Compare data entered in the database with the source data to ensure the accuracy of the data.

4. Data Security Tests

4.1 User Authentication Test

This test scenario involves verifying that the database requires user authentication and that only

authorized users can access the database.

4.1.1 VerifyUserHasAccess_Valid

Verify that a user can access the database when providing the correct username and

password.

4.1.2 VerifyUserHasAccess_Invalid

Verify that the system prohibits access to the database if the user fails to provide valid

credentials.

4.2 User Authorization Test

This test scenario involves verifying that the database grants the appropriate level of access to

the authenticated users.

4.2.1 Access Tests

Verify that only authorized users have access to the database API endpoints.

4.2.1.1 TestUnauthorizedUserAccess

Attempt to access the SQL database and the API with a user account that is not authorized

to access it.

 316

4.2.1.2 TestAuthorizedUserAccess

Attempt to access the SQL database and the API with a user account that is authorized to

access it.

4.2.2 Access Permissions Modification Test

Verify that access permissions can be modified based on user roles and responsibilities.

4.2.2.1 TestAuthorizedUserCanCreateRole_Valid

Create an Application Role on the server with the authorized user.

4.2.2.2TestAuthorizedUserCanCreateRole_Invalid

Attempt to create an Application Role on the server with the unauthorized user.

4.3 User Registration Tests

This test aims to ensure that a new user can create an account to gain basic access to the API

4.3.1 VerifyUserRegistration_WithToken

Verify a new user with a valid registration token can create an account with elevated

privileges

4.3.2 VerifyUserRegistration_NoToken

Verify a new user can create an account with basic privileges

4.4 SQL Injection Vulnerability Test

This test scenario aims to ensure the VTMECS database controller is not susceptible to SQL

injection attacks.

4.4.1 SQLmap injection test

This test will use the SQL map tool to automatically test the VTDS API for SQL

injection vulnerabilities.

5. Performance Test
This test aims to evaluate the performance of the database.

5.1 Query Execution Time Test

This test scenario involves measuring the time to execute a series of complex SQL queries and

ensuring that it meets the expected performance benchmarks.

5.1.1 CheckQueryExecutionTime

Run a complex query and measure the time taken to return the results.

6. Recovery Test

This test aims to ensure that the database can be recovered in the event of a failure.

 317

6.1 Backup and Restore Test

This test scenario involves verifying that the database can be backed up and restored in the event

of a failure.

6.1.1 VerifyDataBackupProcedure

Backup the database and verify that the backup file is created and saved in the appropriate

location.

6.1.2 VerifyRestoreDataFromBackup

Restore the database from the backup file and verify that the data is restored correctly.

7. Transaction Log Test

This test case aims to ensure that the VTDS properly logs all transactions made via the VTDS

API

7.1 Successful Transaction Tests

This test scenario aims to ensure all relevant information is logged for a successful transaction

7.1.1 VerifyTransactionLog_Valid_POST

Verify that the VTDS properly logs all relevant information about a successful POST

transaction

7.1.2 VerifyTransactionLog_Valid_GET

Verify that the VTDS properly logs all relevant information about a successful GET

transaction

7.1.3 VerifyTransactionLog_Valid_PUT

Verify that the VTDS properly logs all relevant information about a successful PUT

transaction

7.1.4 VerifyTransactionLog_Valid_DELETE

Verify that the VTDS properly logs all relevant information about a successful DELETE

transaction

7.2 Unsuccessful Transaction Tests

This test scenario aims to ensure all relevant information is logged for an unsuccessful

transaction

7.3 VerifyTransactionLog_Invalid_POST

Verify that the VTDS properly logs all relevant information about an unsuccessful POST

transaction

7.3.1 VerifyTransactionLog_Invalid_GET

Verify that the VTDS properly logs all relevant information about an unsuccessful GET

transaction

7.3.2 VerifyTransactionLog_Invalid_PUT

 318

Verify that the VTDS properly logs all relevant information about an unsuccessful PUT

transaction

7.3.3 VerifyTransactionLog_Invalid_DELETE

Verify that the VTDS properly logs all relevant information about a failed DELETE

transaction

 319

Appendix XVIII. Technical Report UWF-TR-FDOT-009-01

Software Requirements

Specification

for

Vehicle Threat Intelligence Portal

(VTIP)

Technical Report UWF-TR-FDOT-009-01

Contract Number: BED34 Task Order: 977-01

Version 2.0

Prepared by:

David Huson, Daniel Miller, and Elizabeth Uebele

The University of West Florida

Florida Department of Transportation

January 30, 2024

 320

Table of Contents

1. Introduction .. 322

1.1 Purpose 322

1.2 Document Conventions 322

1.3 References 322

1.4 Document Revisions Table 322

2. Overview of Product .. 324

2.1 Vehicle Threat Information Portal 324

2.2 User Classes and Characteristics 325

2.3 Operating Environment 325

2.4 Design and Implementation Constraints 326

2.5 Assumptions and Dependencies 326

3 Interface Requirements .. 326

3.1 The VTIP Threat Record Interface 327

4.Functional Requirements ... 330

4.1 FR-1: Query Collected Threats From VTDS 330
4.1.1 Description and Priority 330
4.1.2 Related User Classes 330
4.1.3 Functional Requirements 330

4.2 FR-2: Display Collected Threats From VTDS 330
4.2.1 Description and Priority 330
4.2.2 Related User Classes 330
4.2.3 Functional Requirements 330

4.3 FR-3: Update Threat Record Information in VTDS 331
4.3.1 Description and Priority 331
4.3.2 Related User Classes 331
4.3.3 Functional Requirements 331

4.4 FR-4: MISP Server Access 332
4.4.1 Description and Priority 332
4.4.2 Related User Classes 332
4.4.3 Functional Requirements 332

4.5 FR-5: Export Threat Record 332
4.5.1 Description and Priority 332
4.5.2 Related User Classes 332
4.5.3 Functional Requirements 332

4.6 FR-6: Explore Threat Records 333
4.6.1 Description and Priority 333
4.6.2 Related User Classes 333
4.6.3 Functional Requirements 333

 321

5.Test Requirements .. 333

5.1 T-1: Data Accuracy Tests 333

5.2 T-2: Data Security Tests 333

5.3 T-3: Performance Tests 334

5.4 T-4: Data Export Tests 334

6.Non-Functional Requirements ... 334

6.1 NF-1: Portability 334

6.2 NF-2: Usability 334

6.3 NF-3: Speed 334

6.4 NF-4: Role-based Record Modification 334

7.Quality Attributes ... 335

8.Source Code Repository and Version Control Requirement .. 335

9.Appendix A: Requirements Table ... 336

10.Appendix B: Requirements Traceability Matrix ... 340

11.Appendix C: Glossary ... 344

322

1 Introduction

1.1 Purpose

This document describes the software requirements for Version 1.0 of the Vehicle Threat

Intelligence Portal (VTIP) as a subcomponent of the Connected Vehicle Security Metrics and

Threat Intelligence Project (Project System). This document provides an overview of the users

and context of the VTIP and covers all functional, non-functional, and data requirements of the

VTIP.

1.2 Document Conventions

This document is based on the IEEE 830 Standards and the Florida Department of Transportation

Requirements Standards. Specific conventions used in this document are listed below:

● Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

● Testing statuses are indicated for each feature as well as in the Requirements Table. A

green highlighting indicates the test has passed, a yellow highlight represents a test has

not been implemented yet, and a red highlighting represents the test has failed.

● Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the id of the requirement in a hierarchical fashion.

1.3 References

The following references were used in the creation of this document:

● IEEE 830 Standards on Software Requirement Specifications

● UWF Scope of Service Document for the Connected Vehicle Security Metrics and

Threat Intelligence Project

1.4 Document Revisions Table

Revisor Revision Date Reason

Elizabeth Uebele January 30, 2024 Proofread and edited

Daniel Miller January 30, 2024 Added Prototype UI graphics

to section 3

David Hudson January 29, 2024 Updated test table information

Elizabeth Uebele January 12, 2024 Proofread and edited

323

Daniel Miller January 12, 2024 Reviewed entire document for

formatting corrections as part

of Final draft turn-in

Daniel Miller January 3, 2024 Section 3: reworded and

finalized all subsections except

GUI figures

David Huson December 29, 2023 Section 9: add all testing fields

Section 10: add all testing

fields

David Huson December 29, 2023 Section 5: updated and

finalized all sub sections

Daniel Miller December 23, 2023 Section 9: updated all fields

Section 10: updated all fields

Daniel Miller December 15, 2023 Section 4: reworded and

finalized all subsections

Daniel Miller December 8, 2023 Section 4: updated areas

marked incomplete.

Appendix A: updated areas

marked incomplete.

Appendix B: updated areas

marked incomplete.

Daniel Miller November 24, 2023 Appendix B: added appendix

B and all sections completed

with at least baseline info.

Highlighted sections indicate

incomplete.

Daniel Miller October 27, 2023 Appendix A: added appendix

A and all sections completed

with at least baseline info.

Highlighted sections indicate

incomplete.

Daniel Miller October 13, 2023 Section 4: updated with all

approved FRs and all sections

completed with at least

baseline info. Highlighted

sections indicate incomplete.

Daniel Miller September 24, 2023 Section 4: Updated additional

Functional Requirements. still

needs lots of work. waiting on

approval of initial FR/NFRs

Daniel Miller September 22, 2023 Section 2.3: Updated/Added

additional Operational

Environment elements.

324

Elizabeth Uebele September 21, 2023 Wrote basic outline of the

document

2 Overview of Product

2.1 Vehicle Threat Information Portal

The VTIP functions as a subcomponent within the Project System, serving as the front-end

Graphical User Interface (GUI) for secure user access to essential features of the Project system.

It enables users to query and modify threat records stored in the Vehicle Threat Database System

(VTDS). Additionally, the VTIP acts as the primary interface for users to access the Malware

Information Sharing Platform (MISP) Server subcomponent of the Project System for threat

intelligence information sharing.

Key functionalities of the VTIP include the ability to query stored threat records based on date

range, vehicle information, CVE ID, and/or keyword. The system presents threat records to users

in a comprehensible format, displaying all available threat record information, such as CVE ID,

publish/modification date, CWE information, and threat description. The VTIP also provides role-

based record modifications, enabling the correction or addition of data to a threat record based-on

user derived information. This ensures the accuracy and completeness of threat intelligence

information within the VTDS.

325

Figure 2.1 FDOT Project System Architecture

2.2 User Classes and Characteristics
User Class Characteristics

Threat Analyst This user will utilize the VTIP to search for CVEs

to use for analysis.

Threat Model Builder This user will utilize the VTME to build threat

models based on the Cyber Kill Chain stages.

Threat Collector This user will utilize the VTCS to retrieve

additional information for the models.

Database Administrator Administers the Threat DB

2.3 Operating Environment

The VTIP operating environment is defined by the following:

326

OE-1: The VTIP shall run within an Amazon Elastic Compute Cloud (EC2) Web Service

utilizing a Windows Server environment.

OE-2: The VTIP shall run as a .NET application on an Internet Information Services (IIS) on a

Windows Server within the AWS EC2 instance.

OE-3: The VTIP AWS EC2 instance shall be configured with type t2.xlarge having 4 vCPU and

16 GB of memory.

OE-4: The VTIP shall interact with the VTDS backend. The VTDS will be designed and

implemented as a major deliverable of the project.

OE-5: The VTIP shall interact with the MISP backend. The MISP will be designed and

implemented as a major deliverable of the project.

2.4 Design and Implementation Constraints

DIC-1: The VTIP will be developed using Microsoft Visual Studio 2022.

DIC-2: The VTIP will be developed using the C# programming language.

DIC-3: The VTIP will be developed using .NET Core.

DIC-4: The VTIP will be constrained by the information available from the VTDS.

DIC-5: The VTIP will be designed and implemented as a working prototype capable of future

expansion.

2.5 Assumptions and Dependencies

ASS-1: The VTIP assumes availability of information from the VTDBS.

ASS-2: The VTIP assumes availability of information from the MISP Server.

DEP-1: The VTIP will be dependent on information from the VTDS.

DEP-2: The VTIP will be dependent on information from the MISP Server.

3 Interface Requirements
INT-1: The VTIP will provide a Graphical User Interface for querying threat records in the

VTDS.

INT-2: The VTIP will provide a Graphical User Interface for displaying queried threat records.

INT-3: The VTIP will provide a Graphical User Interface for modifying queried threat records.

327

INT-4: The VTIP will provide a Graphical User Interface for importing and exporting threat

record information to and from the MISP server.

INT-5: The VTIP will provide a Graphical User Interface for exporting threat records into PDF

format.

INT-6: The VTIP will provide a Graphical User Interface for providing users with hyperlinked

threat record source information.

3.1 The VTIP Threat Record Interface

The VTIP Threat Record Interface will be used to display the records generated by querying the

VTDS. The upper portion of the GUI will display a threat record search functionality where users

may query the VTIP by date range, vehicle information, CVE ID, and/or keyword. The center and

lower portions of the GUI will display the threat record information to include CVE ID, Threat

record publish information, CWE information, threat record description, CVSS information,

vehicle information, and Indicators of Compromise (IOC).

Figure 3.1 VTIP Interface Prototype

328

Figure 3.2 VTIP Interface Prototype: Search Threat Record

The VTIP Threat Record Interface will provide an edit data mechanism allowing users to make

changes to threat record data in the VTDS based on analyst derived information. This includes

the ability to add/remove/edit data such as vehicle information or IOCs.

Figure 3.3 VTIP Interface Prototype: Modify Threat Record

The VTIP Threat Record Interface will provide MISP server access to users through an “Access

MISP” button allowing them to move to the MISP server interface regarding the displayed threat

record.

329

Figure 3.4 VTIP Interface Prototype: MISP Server Access

The VTIP Threat Record Interface will provide a mechanism to allow users to export one or

more selected threat records into a downloadable PDF format.

Figure 3.5 VTIP Interface Prototype: Generate Threat Record Report

The VTIP Threat Record Interface will provide users with a “dig-deeper” mechanism that will

display a pop-up window containing the hyperlinked addresses of a threat record's source

information. The user will be able to select a threat records source from the pop-up window which

will open the hyperlink address in a different web browser tab.

Figure 3.6 VTIP Interface Prototype: Dig Deeper

330

4. Functional Requirements
Functional requirements for the VTIP are fundamental actions that the system must execute to be

considered operational. The VTIP is a proof of concept and as such, limitations in its

implementation will be identified.

4.1 FR-1: Query Collected Threats From VTDS

 4.1.1 Description and Priority

The VTIP will allow a user to query stored threat records based on date range,

vehicle information, CVE ID, and/or keyword.

 Priority: Must Have

 4.1.2 Related User Classes

 Threat Analyst

4.1.3 Functional Requirements

FR-1.1: The VTIP will query threat records from the VTDS.

FR-1.2: The VTIP will query the VTDS using the following attributes:

o Threat activity date range

o Vehicle Information (year, make, model)

o CVE record ID

o Keyword search within the description of the threat record

The user interface prototype is depicted in Figure 3.1.

4.2 FR-2: Display Collected Threats From VTDS

 4.1.1 Description and Priority

The VTIP will display threat records to users in a comprehensible format,

displaying all available threat record information such as CVE ID,

publish/modification date, CWE information, and threat description.

Priority: Must Have

 4.1.2 Related User Classes

 Threat Analyst

 4.1.3 Functional Requirements

331

FR-2.1: The VTIP will display queried Threat records contained in the VTDS.

FR-2.2: The VTIP Threat Record Viewer must display the following threat

attributes:

o CVE ID

o Threat record publish and/or most recent modification date

o CWE information related to the threat record

o Threat description

o CVSS information

o Vehicle information

o IOCs

The user interface prototype is depicted in Figure 3.1.

4.3. FR-3: Update Threat Record Information in VTDS

4.3.1 Description and Priority

The VTIP will allow users to make modifications to threat records in the VTDS

based on analyst derived information. This includes the ability to add/remove/edit

data such as vehicle information, CWE information, or IOCs.

 Priority: Must Have

 4.3.2 Related User Classes

 Threat Analyst

 4.3.3 Functional Requirements

FR-3.1: The VTIP will allow a user to make updates to existing threat records

based on analyst derived information.

FR-3.2: The VTIP will allow the following attributes to be edited:

o Vehicle information (year, make, model)

o CWE information

o IOCs

The user interface prototype is depicted in Figure 3.2.

332

4.4 FR-4: MISP Server Access

 4.4.1 Description and Priority

The VTIP will serve as the main access point for analysts to import and export

threat record information from the VTDS to the MISP server information sharing

platform.

 Priority: Must Have

 4.4.2 Related User Classes

 Threat Analyst

 4.4.3 Functional Requirements

FR-4.1: The VTIP will allow users to update threat records based on MISP

server data.

FR-4.2: The VTIP will allow users to upload threat records to the MISP server.

The user interface prototype is depicted in Figure 3.3.

4.5 FR-5: Export Threat Record

 4.5.1 Description and Priority

The VTIP will provide users with the ability to export selected threat records into

comprehensible PDF documents.

 Priority: Must Have

 4.5.2 Related User Classes

 Threat Analyst

 4.5.3 Functional Requirements

FR-5.1: The VTIP will provide export records functionality to allow users to

download records in PDF format.

FR-5.2: The VTIP will format exported threat records in easy-to-understand,

human readable format.

The user interface prototype is depicted in Figure 3.4.

333

4.6 FR-6: Explore Threat Records

 4.6.1 Description and Priority

The VTIP will provide users with all source information associated with a threat

record. This provides threat analysts with hyperlink addresses to sources reporting

the threat information within the record.

 Priority: Must Have

 4.6.2 Related User Classes

 Threat Analyst

 4.6.3 Functional Requirements

FR-6.1: The VTIP will provide users with hyperlink addresses to the source

information provided for the threat record.

FR-6.2: The VTIP will open a new web browser tab to the hyperlinked address

when the analyst utilizes this functionality.

The user interface prototype is depicted in Figure 3.5.

5 Test Requirements
The VTIP requires testing and validation of the main application functionalities.

5.1 T-1: Data Accuracy Tests

This test case aims to ensure that the data retrieved from all sources is accurate and maintains

accuracy after modifications by threat analysts. It includes the following test scenarios:

● VTDS Data Retrieval Tests

● MISP Data Retrieval Tests

● VTDS Data Modification Tests

● MISP Data Modification Tests

5.2 T-2: Data Security Tests

This test case aims to verify the security of the VTIP against SQL injection attacks. It includes

the following test scenario:

● SQL Injection Vulnerability Tests

334

5.3 T-3: Performance Tests

This test case aims to test the performance of the VTIP. It includes the following test scenarios:

● TestServerResponseTimes_VTDS

○ Tests the server response times for the required VTDS API requests

● TestServerResponseTimes_MISP

○ Tests the server response times for the required MISP API requests

5.4 T-4: Data Export Tests

This test case will test the data exporting feature of the VTIP. It includes the following subtest:

Test Data Export to PDF

6 Non-Functional Requirements
Non-functional requirements for the VTIP are system attributes that are desired but not required.

The following are the non-functional requirements for the VTIP:

6.1 NF-1: Portability

The development team will attempt to make the web enabled VTIP system portable across

multiple computing form factors.

6.2 NF-2: Usability

The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

6.3 NF-3: Speed

The development team will attempt to enhance the VTIP system responsiveness to user

interactions and database transactions.

6.4 NF-4: Role-based Record Modification

The VTIP will implement a role-based record modification schema that will only allow

authorized users to make modifications to a threat record stored in the VTDS as outlined in FR-

3.

335

7 Quality Attributes

The VTIP is a proof of concept and not meant for a production release. As such, traditional

quality attributes such as availability, security, robustness, etc. are not as relevant.

1. Source Code Repository and Version Control Requirement

The development team shall facilitate a source code repository and version control for the

project.

8 SC-1: Source Code Repository and Control

The development team shall maintain a source code repository and version control on GitHub.

The GitHub project URL is https://github.com/UWF-CfC-FDOT/VTIP.

https://github.com/UWF-CfC-FDOT/VTIP

336

9 Appendix A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement Description Priority

S1 Scope VTIP System

Scope

The VTIP is required to

allow a user to query,

display, and modify threat

records from the VTDS

and allow for the

query/display of threat

record MSIP server data.

Must have

FR-1 Functional Query

Collected

Threats From

VTDS

The VTIP is required to

allow a user to query threat

records from the VTDS.

Must have

FR-2 Functional Display

Collected

Threats From

VTDS

The VTIP is required to

display threat record

information queried from

the VTDS.

Must have

FR-3 Functional Update Threat

Record

Information in

VTDS

The VTIP is required to

allow a user to modify

threat record information.

Must have

FR-4 Functional MISP Server

Access

The VTIP is required to

import and export threat

record information from

the VTDS to the MISP

Server

Must have

FR-5 Functional Export Threat

Record

The VTIP is required to

export selected threat

records into PDF format.

Must have

FR-6 Functional Explore Threat

Records

The VTIP is required to

allow a user to research a

threat record further by

providing all available

threat record data sources.

Must have

337

INT-1 Interface Query

Collected

Threats From

VTDS

The VTIP is required to

provide a Graphical User

Interface for querying

threat records in the

VTDS.

Must have

INT-2 Interface Display

Collected

Threats From

VTDS

The VTIP is required to

provide a Graphical User

Interface for displaying

queried threat records.

Must have

INT-3 Interface Update Threat

Record

Information in

VTDS

The VTIP is required to

provide a Graphical User

Interface for modifying

queried threat records.

Must have

INT-4 Interface MISP Server

Access

The VTIP is required to

provide a Graphical User

Interface for importing and

exporting threat record

information to and from

the MISP server.

Must have

INT-5 Interface Export Threat

Record

The VTIP is required to

provide a Graphical User

Interface for exporting

threat records into PDF

format.

Must have

INT-6 Interface Explore Threat

Records

The VTIP is required to

provide a Graphical User

Interface for providing

users with hyperlinked

threat record source

information.

Must have

338

T-1 Test Data Accuracy

Tests

This test case aims to

ensure that the data

retrieved from all sources

is accurate and maintains

accuracy after

modifications by threat

analysts.

Must have

T-2 Test Data Security

Tests

This test case aims to

verify the security of the

VTIP against SQL

injection attacks.

Must have

T-3 Test Performance

Test

This test scenario involves

testing the response times

for different MISP API

calls of varying

complexity.

Must have

T-4 Test Data Export

Tests

This test case will test the

data exporting feature of

the VTIP

Must have

NF-1 Non-functional Portability The development team will

attempt to make the web

enabled VTIP portable

across multiple computing

form factors

Could have

NF-2 Non-functional Usability The development team will

attempt to satisfy system

usability features such as

navigation, performance

quality, and intuitiveness

of interfaces

Could have

339

NF-3 Non-functional Speed The development team will

attempt to enhance the

VTIP system

responsiveness to user

interactions and database

transactions.

Could have

NF-4 Non-functional Role-based

Record

Modification

The VTIP will implement

a role-based record

modification schema

allowing authorized users

to make threat record

modifications as outlined

in FR-3.

Could have

SC-1 Source Code Source Code

Control

The development team

shall maintain a source

code repository and

version control on GitHub

Should

have

340

10 Appendix B: Requirements Traceability Matrix

Requirement

ID

Requirement Description Test Case Status

S1 The VTIP is required to allow a

user to query, display, and modify

threat records from the VTDS and

allow for the query/display of

threat record MSIP server data.

N/A N/A

FR-1 The VTIP is required to allow a

user to query threat records from

the VTDS.

Test Case: 3.1, 7 Not Started

FR-2 The VTIP is required to display

threat record information queried

from the VTDS.

Test Case: 3.1, 7 Not Started

FR-3 The VTIP is required to allow a

user to modify threat record

information.

Test Case: 3.3, 7 Not Started

FR-4 The VTIP is required to import and

export threat record information

from the VTDS to the MISP Server

Test Case: 3.2, 7 Not Started

FR-5 The VTIP is required to export

selected threat records into PDF

format.

Test Case: 6 Not Started

341

FR-6 The VTIP is required to allow a

user to research a threat record

further by providing all available

threat record data sources.

Test Case: 3.1, 7 Not Started

INT-1 The VTIP is required to provide a

Graphical User Interface for

querying threat records in the

VTDS.

Test Case: 3.1, 7 N/A

INT-2 The VTIP is required to provide a

Graphical User Interface for

displaying queried threat records.

Test Case: 3.1, 7 N/A

INT-3 The VTIP is required to provide a

Graphical User Interface for

modifying queried threat records.

Test Case: 3.3, 7 N/A

INT-4 The VTIP is required to provide a

Graphical User Interface for

importing and exporting threat

record information to and from the

MISP server.

Test Case 3.2, 7 N/A

INT-5 The VTIP is required to provide a

Graphical User Interface for

exporting threat records into PDF

format.

Test Case: 6 N/A

342

INT-6 The VTIP is required to provide a

Graphical User Interface for

providing users with hyperlinked

threat record source information.

Test Case: 3.1, 7 Not Started

T-1 This test case aims to ensure that

the data retrieved from all sources

is accurate and maintains accuracy

after modifications by threat

analysts.

Test Case: 3 Not Started

T-2 This test case aims to verify the

security of the VTIP against SQL

injection attacks.

Test Case: 4 Not Started

T-3 This test scenario involves testing

the response times for different

MISP API calls of varying

complexity.

Test Case: 5 Not Started

T-4 This test case will test the data

exporting feature of the VTIP

Test Case: 6 Not Started

NF-1 The development team will attempt

to make the web enabled VTIP

portable across multiple computing

form factors

N/A N/A

343

NF-2 The development team will attempt

to satisfy system usability features

such as navigation, performance

quality, and intuitiveness of

interfaces

N/A N/A

NF-3 The development team will attempt

to enhance the VTIP system

responsiveness to user interactions

and database transactions.

N/A N/A

NF-4 The development team will attempt

to implement role-based

modification of existing threat

records in the VTDS

N/A N/A

SC-1 The development team shall

maintain a source code repository

and version control on GitHub

Github Access No

344

11 Appendix C: Glossary
Term Description

API Application Program Interface

ATT&CK Adversarial Tactics, Techniques, and Common

Knowledge

ATT&CK Framework A knowledge base of adversary tactics and

techniques based on real-world observations.

AWS Amazon Web Services

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

Cyber Kill Chain A model developed by Lockheed Martin® used

for the identification and prevention of cyber

intrusions.

EC2 Elastic Compute Cloud

GUI Graphical User Interface

IIS Internet Information Services

IoC Indicators of Compromise

MISP Malware Information Sharing Platform

.NET A cross-platform, open-source developer

platform created by Microsoft

OSINT Open-Source Intelligence

OTX Open Threat Exchange

VTCS Vehicle Threat Collection System

VTDBS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

345

Appendix XIX. Technical Report UWF-TR-FDOT-009-02
Vehicle Threat

Information Portal

(VTIP)-

Requirements

Traceability

Matrix

Contract Number:

BED34 Task

Order: 977-01

The Vehicle Threat
Information Portal (VTIP)
is a subcomponent of the
Connected Vehicle
Security Metrics and
Threat Intelligence
Project.

Dr. Guillermo Francia, III

UWF-FDOT

User Need Summary
Requirem

ent ID
Detailed Requirement

Summary
Document

Section
DR Source
Document

Verification
Test Case

ID

Complianc
e

(Y/N/Partial
/NA)

Notes/Comments/Date

VTIP System Scope S1

The VTIP is required to allow
a user to query, display, and
modify threat records from
the VTDS and allow for the
query/display of threat
record MSIP server data.

2.1
VTIP

Requirem
ents

NA NA Non Testable

Query Collected Threats
From VTDS

FR-1
The VTIP is required to allow
a user to query threat
records from the VTDS.

4.1
VTIP

Requirem
ents

Test Case:
3.1, 7

No
These test cases will be

completed after the
implementation

Display Collected Threats
From VTDS

FR-2

The VTIP is required to
display threat record
information queried from
the VTDS.

4.2
VTIP

Requirem
ents

Test Case:
3.1, 7

No
These test cases will be

completed after the
implementation

346

Update Threat Record
Information in VTDS

FR-3
The VTIP is required to allow
a user to modify threat
record information.

4.3
VTIP

Requirem
ents

Test Case:
3.3, 7

No
These test cases will be

completed after the
implementation

Display MISP Server Data
from Threat Record

FR-4
The VTIP is required to
display MISP server data
from threat records.

4.4
VTIP

Requirem
ents

Test Case:
3.2, 7

No
These test cases will be

completed after the
implementation

Export Threat Record FR-5
The VTIP is required to
export selected threat
records into PDF format.

4.5
VTIP

Requirem
ents

Test Case:
6

No
These test cases will be

completed after the
implementation

Explore Threat Records FR-6

The VTIP is required to allow
a user to research a threat
record further by providing
all available threat record
data sources.

4.6
VTIP

Requirem
ents

Test Case:
3.1, 7

No
These test cases will be

completed after the
implementation

Data Accuracy Tests T-1

This test case aims to ensure
that the data retrieved from
all sources is accurate and
maintains accuracy after
modifications by threat
analysts.

5.1
VTIP

Requirem
ents

Test Case:
3

No
These test cases will be

completed after the
implementation

Data Security Tests T-2

This test case aims to verify
the security of the VTIP
against SQL injection
attacks.

5.2
VTIP

Requirem
ents

Test Case:
4

No
These test cases will be

completed after the
implementation

Performance Test T-3

This test scenario involves
testing the response times
for different MISP API calls
of varying complexity.

5.3
VTIP

Requirem
ents

Test Case:
5

No
These test cases will be

completed after the
implementation

Data Export Tests T-4
This test case will test the
data exporting feature of
the VTIP

5.4
VTIP

Requirem
ents

Test Case:
6

No
These test cases will be

completed after the
implementation

347

Portability NF-1

The development team will
attempt to make the web
enabled VTIP portable
across multiple computing
form factors

6.1
VTIP

Requirem
ents

N/A NA

No tests will be written
for this at this time. This
is beyond the scope of

this project and will
require additional

support from the VTDS
to implement and test.

Usability NF-2

The development team will
attempt to satisfy system
usability features such as
navigation, performance
quality, and intuitiveness of
interfaces

6.2
VTIP

Requirem
ents

N/A NA

No tests will be written
for this at this time. This
is beyond the scope of

this project and will
require additional

support from the VTDS
to implement and test.

Speed NF-3

The development team will
attempt to enhance the VTIP
system responsiveness to
user interactions and
database transactions.

6.3
VTIP

Requirem
ents

N/A NA

No tests will be written
for this at this time. This
is beyond the scope of

this project and will
require additional

support from the VTDS
to implement and test.

Role-based Record
Modification

NF-4

The development team will
attempt to implement role-
based modification of
existing threat records in the
VTDS

6.4
VTIP

Requirem
ents

NA NA

No tests will be written
for this at this time.
This is beyond the
scope of this project
and will require
additional support
from the VTDS to
implement and test

Query Collected Threats
From VTDS

INT-1

The VTIP is required to
provide a Graphical User
Interface for querying threat
records in the VTDS.

3.1
VTIP

Requirem
ents

Test Case:
3.1, 7

No

Display Collected Threats
From VTDS

INT-2
The VTIP is required to
provide a Graphical User

3.1
VTIP

Requirem
ents

Test Case:
3.1, 7

No

348

Interface for displaying
queried threat records.

Update Threat Record
Information in VTDS

INT-3

The VTIP is required to
provide a Graphical User
Interface for modifying
queried threat records.

3.1
VTIP

Requirem
ents

Test Case:
3.3, 7

No

MISP Server Access INT-4

The VTIP is required to
provide a Graphical User
Interface for importing and
exporting threat record
information to and from the
MISP server.

3.1
VTIP

Requirem
ents

Test Case
3.2, 7

No

Export Threat Record INT-5

The VTIP is required to
provide a Graphical User
Interface for exporting
threat records into PDF
format.

3.1
VTIP

Requirem
ents

Test Case:
6

No

Explore Threat Records INT-6

The VTIP is required to
provide a Graphical User
Interface for providing users
with hyperlinked threat
record source information.

3.1
VTIP

Requirem
ents

Test Case:
3.1, 7

No

Non-Testable

Source Code Control SC-1

The development team shall
maintain a source code
repository and version
control on GitHub

8
VTIP

Requirem
ents

Github
Access

No
To be completed when
the source code is made
available on Github

349

Appendix XX. Technical Report UWF-TR-FDOT-009-03

Unit Test Plan Overview

for

Vehicle Threat Intelligence Portal

(VTIP)

Technical Report UWF-TR-FDOT-009-03

Contract Number: BED34 Task Order: 977-01

Version 2.0 Approved

Prepared by David Huson

The University of West Florida

Florida Department of Transportation

January 18, 2024

 350

Table of Contents

1. Introduction 352

1.1 Purpose 352

1.2 Document Revisions Table 352

2. VTIP Test Framework 352

2.1 Framework Description 352

3. Data Accuracy Tests 352

3.1 VTIP Data Retrieval Tests 352
3.1.1 VerifyThreatDataExists_Valid 352
3.1.2 VerifyThreatDataExists_Invalid 352

3.2 MISP Data Retrieval Tests 352
3.2.1 VerifyAllRequiredFieldsPresent 352
3.2.2 VerifyThreatDataExists_Valid 353
3.2.3 VerifyThreatDataExists_Invalid 353

3.3 VTIP Data Modification Tests 353
3.3.1 VerifyDataChangeOccurred 353

3.4 MISP Data Modification Tests 353
3.4.1 VerifyDataChangeOccurred 353

4. Data Security Tests 353

4.1 SQL Injection Vulnerability Test 353

5. Performance Tests 353

5.1 TestServerResponceTimes_VTDS 353
5.1.1 GET_SingleThreat 353
5.1.2 GET_MultiThreat 354
5.1.3 POST_Threat 354
5.1.4 PUT_Threat 354
5.2 TestServerResponceTimes_MISP 354
5.2.1 GET_SingleThreat 354
5.2.2 GET_MultiThreat 354
5.2.3 POST_Threat 354
5.2.4 PUT_Threat 354

6. Data Export Tests 354

6.1 TestDataExportToPDF 354

7. UI tests 354

7.1 Submit Button Tests 354
7.1.1 Submit search of existing data 354
7.1.2 Submit search of non-existent data 354

7.2 Back Button Tests 355
7.2.1 BackPressedWhileOnFirstRecord 355
7.2.2 BackPressedWhileNotOnFirstRecord 355

 351

7.3 Next Button Tests 355
7.3.1 NextPressedWhileOnLastRecord 355
7.3.2 NextPressedWhileNotOnLastRecord 355

7.4 Reset Button Tests 355
7.4.1 ResetPressed_NoModifications 355
7.4.2 ResetPressed_ModificationsMade 355

7.5 Data Field Modification Tests 355
7.5.1 DateTime validation test - VALID case 355
7.5.2 datetiDateTimeme validation test - INVALID case 355
7.5.3 CWE_ID validation test - VALID case 355
7.5.4 CWE_ID validation test - INVALID case 355

 352

1 Introduction

1.1 Purpose

This document describes the unit test framework of the Vehicle Threat Information Portal

(VTIP) as a subcomponent of the Connected Vehicle Security Metrics and Threat Intelligence

Project. This document provides an overview of the unit test framework and tests for both the

VTIP and the Vehicle Threat Database System (VTDS).

1.2 Document Revisions Table

Revisor Revision Date Reason

Chase Lamkin Jan 18, 2024 Describe UI tests

David Huson Jan 15, 2024 Add UI tests

David Huson Dec 28, 2023 Initial draft

2 VTIP Test Framework

2.1 Framework Description

The VTIP project is developed in C# language and the choice was made to use the standard MsTest

framework for the unit testing engine. MSTest is a native unit testing library that comes with Visual

Studio from Microsoft. The SQL injection vulnerability tests will be carried out using an open-

source tool – SQLmap – which is designed to automate SQL injection attacks. Any tests which

require a database connection should instead use a mock database so we can control the data and

ensure accuracy without relying on a database connection.

3 Data Accuracy Tests
This test scenario aims to ensure that the data retrieved from all sources is accurate and

maintains accuracy after modifications by threat analysts.

3.1 VTIP Data Retrieval Tests

 This test case will test the VTIP’s ability to retrieve data from the VTDS.

This test will verify the data retrieved from the VTDS contains at a minimum all not-null

fields.

3.1.1 VerifyThreatDataExists_Valid

 This test verifies that a request for an existing threat record returns the appropriate data.

3.1.2 VerifyThreatDataExists_Invalid

This test verifies that a request for a non-existent threat record returns the appropriate

response.

3.2 MISP Data Retrieval Tests

This test scenario will test the VTIP’s ability to retrieve data from the Malware Information

Sharing Platform (MISP).

3.2.1 VerifyAllRequiredFieldsPresent

mailto:cml82@students.uwf.edu
mailto:dph14@students.uwf.edu
mailto:dph14@students.uwf.edu

 353

This test will verify the data retrieved from the MISP server contains at a minimum all

not-null fields.

3.2.2 VerifyThreatDataExists_Valid

 This test verifies that a request for an existing threat record returns the appropriate data.

3.2.3 VerifyThreatDataExists_Invalid

This test verifies that a request for a non-existent threat record returns the appropriate

response.

3.3 VTIP Data Modification Tests

This test scenario verifies that the data stored in the VTDS can be modified.

3.3.1 VerifyDataChangeOccurred

This test verifies that the data stored in the VTDS can be modified and modifications will

be reflected in subsequent queries.

3.4 MISP Data Modification Tests

This test scenario verifies that the data stored on the MISP Server can be modified.

3.4.1 VerifyDataChangeOccurred

This test verifies that the data stored on the MISP Server can be modified and

modifications will be reflected in subsequent queries.

4 Data Security Tests
This test case aims to verify the security of the VTIP against unauthorized access and SQL

injection attacks.

4.1 SQL Injection Vulnerability Test

This test scenario aims to ensure the VTIP is not susceptible to SQL injection attacks.

4.1.1 SQLmap injection test

This test will use the SQL map tool to automatically test the VTIP for SQL injection

vulnerabilities.

5 Performance Tests
This test case aims to test the performance of the VTIP.

5.1 TestServerResponceTimes_VTDS

This test scenario involves testing the response times for different VTDS API calls of

varying complexity.

5.1.1 GET_SingleThreat

This test will check the response time for getting a single threat record by ID from the

VTDS.

 354

5.1.2 GET_MultiThreat

This test will check the response time for getting multiple threat records from the VTDS.

5.1.3 POST_Threat

This test will check the response time for creating a single threat record in the VTDS.

5.1.4 PUT_Threat

This test will check the response time for updating a single threat record in the VTDS.

5.2 TestServerResponceTimes_MISP

This test scenario involves testing the response times for different MISP API calls of varying

complexity.

5.2.1 GET_SingleThreat

This test will check the response time for getting a single record by CVE_ID from the

MISP Server.

5.2.2 GET_MultiThreat

This test will check the response time for getting multiple threat records from the MISP

Server.

5.2.3 POST_Threat

This test will check the response time for creating a single record in the MISP Server.

5.2.4 PUT_Threat

This test will check the response time for updating a single record in the MISP Server.

6 Data Export Tests
This test case will test the data exporting feature of the VTIP.

6.1 TestDataExportToPDF

This test will test to ensure that the export feature of the VTIP produces a PDF file with

the desired data.

7 UI tests
7.1 Submit Button Tests

 This test will test the responsiveness of the submit button and ensure that the form is

properly submitted to the server.

7.1.1 Submit search of existing data

This test will test the retrieval of data from the API and ensure (client-side) filtering is

functioning as intended.

7.1.2 Submit search of non-existent data

This test will test the retrieval of non-existent data from the API and ensure the (client-

side) application handles no retrievals properly.

 355

7.2 Back Button Tests

7.2.1 BackPressedWhileOnFirstRecord

This test will test that pressing the back button from the first record will properly route

the user to the page of all searched records.

7.2.2 BackPressedWhileNotOnFirstRecord

This test will test that pressing the back button from nth record will properly route the

user to the page of the previous record (via backUrl).

7.3 Next Button Tests

7.3.1 NextPressedWhileOnLastRecord

This test will test that pressing the next button from the last record will route the user

back to the list of all records.

7.3.2 NextPressedWhileNotOnLastRecord

This test will test that pressing the next button from the nth record will properly route the

user to the nth + 1 record.

7.4 Reset Button Tests

 These tests will test the reset functionality of record forms.

7.4.1 ResetPressed_NoModifications

 This test will test that pressing the reset button with no modification made will keep the

original data.

7.4.2 ResetPressed_ModificationsMade

This test will test that pressing the reset button with modifications made will reset the

data back to its original form.

7.5 Data Field Modification Tests

 These tests will test the (client-side) form validation of submitted data.

7.5.1 DateTime validation test - VALID case

 This test will test that the datetime fields will pass if they are the proper format for a

datetime object.

7.5.2 datetiDateTimeme validation test - INVALID case

 This test will test that the datetime fields will throw a (client-side) error message if they

do not match the proper datetime object format.

7.5.3 CWE_ID validation test - VALID case

 This test will test that the CWE_ID field will pass if it matches the proper format (UUID)

7.5.4 CWE_ID validation test - INVALID case

 356

 This test will test that the CWE_ID field will throw a (client-side) error message if it does

not match the proper format (CWE ID).

 357

Appendix XXI. Technical Report UWF-TR-FDOT-010-01

Software Requirements

Specification, Traceability

Matrix, and Test Plans

for

Vehicle Security System

Integration

Technical Report UWF-TR-FDOT-010-01

Contract Number: BED34 Task Order: 977-01

Version 0.7 approved

Prepared by Elizabeth Uebele

The University of West Florida

Florida Department of Transportation

February 19, 2024

 358

Table of Contents

1. Introduction .. 360

1.1 Purpose .. 360

1.2 Document Conventions ... 360

1.3 References ... 360

1.4 Document Revisions Table ... 360

2. Overview of Product .. 360

2.1 VSSI .. 360

2.2 User Classes and Characteristics ... 360

2.3 Operating Environment ... 361

2.4 Design and Implementation Constraints ... 361

2.5 Assumptions and Dependencies .. 361

3. Interface Requirements ... 361

3.1 The Landing Page .. 361

4. Functional Requirements .. 362

4.1 FR-1: Navigating to Subsystems .. 362
4.1.1 Description and Priority ... 362
4.1.2 Related User Classes .. 362
4.1.3 Functional Requirements... 362

5. Test Requirements ... 363

5.1 T-1: Manual Tests .. 363

5.2 T-2: Integration Tests .. 363

5.3 T-3: Test Report ... 363

6. Non-Functional Requirements .. 363

6.1 NF-1: Portability ... 363

6.2 NF-2: Usability ... 363

6.3 NF-3: Speed .. 363

7. Quality Attributes .. 363

8. VSSI Requirements Traceability Matrix ... 363

9. The Unit Test Plan Overview .. 365

9.1 VSSI Test Framework .. 365
9.1.1 Framework Description ... 365
9.1.2 Running the Tests .. 365
9.1.2.1 Prerequisites .. 365
9.1.2.2 Test Execution .. 365

 359

9.2 Webpage Navigation Test .. 366
9.2.1 VSSI-VTCS Navigation Test ... 366
TestVTCSNavigation .. 366
9.2.2 VSSI-VTIP Navigation Test.. 366
TestVTIPNavigation... 366
9.2.3 VSSI-MISP Navigation Test .. 366
TestMISPNavigation ... 366
9.2.4 VSSI-VSMVS Navigation Test ... 366
TestVSMVSNavigation .. 366
9.2.5 VSSI Navigation Interface Test .. 366
TestVSSINavigation ... 366

Appendix A: Requirements Table .. 367

Appendix B: Requirements Traceability Matrix .. 369

Appendix C: Glossary .. 370

 360

1. Introduction
1.1 Purpose
This document describes the software requirements for Version 1.0 of the Vehicle Security System

Integration (VSSI) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project. This document provides an overview of the users and context of the VSSI and

covers all functional, non-functional, and interface requirements.

1.2 Document Conventions
This document is based on the IEEE 830-1998 Standards and the Florida Department of

Transportation Requirements Standards. Specific conventions used in this document are listed

below:

● Priorities are indicated for each feature as well as in the Requirements Table. A green

highlighting indicates must have features, while a yellow highlight represents a should

have feature.

● Requirements follow the form of <TAG>-#.#.# where a tag indicates a category of

requirements. And the # represents the ID of the requirement in a hierarchical fashion.

1.3 References
The following references were used in the creation of this document:

● IEEE 830-1998 Standards on Software Requirement Specifications

● UWF Scope of Service Document for the Connected Vehicle Security Metrics and

Threat Intelligence Project

1.4 Document Revisions Table
Revisor Revision Date Reason

Elizabeth Uebele February 19, 2024 Created initial draft of document

Dr. Guillermo Francia, III March 1, 2024 Editorial and formatting changes

Dr. Guillermo Francia, III April 1, 2024 Editorials in response to review

comments

2. Overview of Product
2.1 VSSI System Description and Relevance
The VSSI is a subsystem that allows the user to navigate to different parts of the greater system.

The VSSI provides different interface cards for the Vehicle Threat Intelligence Portal (VTIP), the

Vehicle Threat Collection System (VTCS), the Vehicle Security Metrics Visualization System

(VSMVS), and the Malware Information Sharing Platform (MISP). This interface provides the

integration of the various subsystems using a common entry point and collectively binds them to

function with a common purpose, i.e. supporting the security of CAVs.

2.2 User Classes and Characteristics
User Class Characteristics

 361

Ordinary

User

This user will be able to navigate the

VSSI

2.3 Operating Environment
The VSSI operating environment is defined by the following:

OE-1: The VSSI will run as an HTML page.

OE-2: The VSSI will run as a part of the VTDS AWS EC2 instance.

OE-3: The VSSI will interact with the VTIP, VTCS, VSMVS, and MISP server.

2.4 Design and Implementation Constraints
The VSSI design and implementation are constrained by the following:

DIC-1: The VSSI will be developed using the Hypertext Markup Language (HTML).

2.5 Assumptions and Dependencies
Assumptions and dependencies for the VSSI implementation include the following:

ASS-1: The VSSI assumes the AWS instances for VTIP, VTCS, VSMVS, and MISP are running

when trying to navigate to them.

DEP-1: The VSSI is dependent on links to the VTIP, VTCS, VSMVS, and MISP working

properly.

3. Interface Requirements
The VSSI will enable the user to select which page they wish to navigate to.

INT-1: The VSSI will provide a Graphical User Interface for the user to navigate to different

pages of the system.

3.1 The Landing Page
The landing page, as depicted in Figure 3.1, will contain interface cards for each subsystem in

the system, including the VTIP, VTCS, VSMVS, and MISP. Each card will contain the name of

the subsystem, an associated image, and a button to navigate to the associated subsystem.

 362

Figure 3.1 Landing Page Interface Prototype

4. Functional Requirements
Functional requirements for the VSSI are fundamental actions that the system must execute to be

considered operational. The VSSI is a proof of concept and as such, limitations in its

implementation will be identified.

4.1 FR-1: Navigating to Subsystems
4.1.1 Description and Priority

The VSSI is required to allow the user to navigate to the VTIP, VTCS, VSMVS,

and MISP.

 Priority: Must Have

4.1.2 Related User Classes

 All Users

4.1.3 Functional Requirements

FR-1.1: The VSSI will be able to navigate to the VTIP subsystem.

 363

FR-1.2: The VSSI will be able to navigate to the VTCS subsystem.

FR-1.3: The VSSI will be able to navigate to the VSMVS subsystem.

FR-1.4: The VSSI will be able to navigate to the MISP subsystem.

5. Test Requirements
The VSSI requires testing and validation of the main application functionalities.

5.1 T-1: Manual Tests
Manual testing will be performed to ensure the VSSI navigates to the appropriate pages.

5.2 T-2: Integration Tests
System integration testing is not within the scope of the VSSI system.

5.3 T-3: Test Report
Documentation of all system testing activities shall be provided. See the attached Test Overview

document.

6. Non-Functional Requirements
Non-functional requirements for the VSSI are system attributes that are desired but not required.

The following are the non-functional requirements for the VSSI:

6.1 NF-1: Portability
The development team will attempt to make the web enabled VSSI system portable across

multiple computing form factors.

6.2 NF-2: Usability
The development team will attempt to satisfy system usability features such as navigation,

performance quality, and intuitiveness of interfaces.

6.3 NF-3: Speed
The development team will attempt to enhance the VSSI speed in navigating to the different

pages in the system.

7. Quality Attributes
The VSSI is a proof of concept and not meant for a production release. As such, traditional

quality attributes such as availability, security, robustness, etc. are not as relevant.

8. VSSI Requirements Traceability Matrix
The VSSI Traceability Matrix provides a summary of all system requirements that are mapped to

their corresponding Test Case IDs and testing statuses. The Traceability Matrix is depicted on

the table below.

 364

REQUIREMENTS TRACEABILITY VERIFICATION MATRIX

Project Name:
Vehicle Security
System
Integration (VSSI)

Project Description:
The Vehicle
Security System
Integration (VSSI)

Project Manager Name:
Dr. Guillermo
Francia, III

Agency/Firm: UWF-FDOT

User Need ID User Need Summary
Requirement

ID

Detailed
Requirement

Summary

Requirements
Document

Section

DR Source
Document

GAF001 VSSI System Scope S1
Specifies the
scope of the
system

2.1
VSSI

Requirements

GAF001
VSSI-VTIP
Navigation

FR-1.1

The VSSI
must
navigate to
the VTIP
subsystem

4.1
VSSI

Requirements

GAF001
VSSI-VTCS
Navigation

FR-1

The VSSI
must
navigate to
the VTCS
subsystem

4.1
VSSI

Requirements

GAF001
VSSI-VSMVS
Navigation

FR-1

The VSSI
must
navigate to
the VSMVS
subsystem

4.1
VSSI

Requirements

GAF001
VSSI-MISP
Navigation

FR-1

The VSSI
must
navigate to
the MISP
subsystem

4.1
VSSI

Requirements

GAF001
VSSI Navigation
Interface

INT-1

The VSSI
shall provide
a Graphical
User
Interface for
subsystem
navigation

3
VSSI

Requirements

 365

REQUIREMENTS TRACEABILITY VERIFICATION MATRIX

User Need ID
User Need
Summary

Verification
Test Case

ID

Compliance
(Y/N/Partial/NA)

Notes/Comments/Date
Reviewer

Initials
FDOT
Initials

GAF001
VSSI
System
Scope

NA NA Non Testable EU

GAF001
VSSI-VTIP
Navigation

Test
Cases:
3.1.1

Yes Completed 02/20/24 EU

GAF001
VSSI-VTCS
Navigation

Test
Cases:
3.2.1

Yes Completed 02/20/24 EU

GAF001
VSSI-
VSMVS
Navigation

Test
Cases:
3.3.1

Yes Completed 02/20/24 EU

GAF001
VSSI-MISP
Navigation

Test
Cases:
3.4.1

Yes Completed 02/20/24 EU

GAF001
VSSI
Navigation
Interface

Test
Cases:
3.5.1

Yes Completed 02/20/24 EU

9. The Unit Test Plan Overview
This section describes the unit test framework of the Vehicle Security System Integrated Landing

Page (VSSI) as a subcomponent of the Connected Vehicle Security Metrics and Threat

Intelligence Project.

 VSSI Test Framework
9.1.1 Framework Description
The VSSI was developed using HTML. Because no convenient automated test framework was

found to test a single HTML document, all tests were run manually.

9.1.2 Running the Tests
You may use whichever browser you prefer to run the VSSI and follow along with the manual

tests.

 9.1.2.1 Prerequisites
The test suite requires the following before running any of the tests: The AWS instances

for VTIP, VTCS, VSMVS, and MISP are currently in operation.

9.1.2.2 Test Execution
Because the tests are manual, to execute the tests, follow along with the descriptions of each

test, executing each action that is described.

 366

9.2 Webpage Navigation Test
The Webpage Navigation Tests aim to ensure that each interface card provides the proper

navigation to the associated webpage.

9.2.1 VSSI-VTCS Navigation Test

This test scenario involves checking if the VTCS card navigates to the VTCS properly.

TestVTCSNavigation

Verify that the VTCS interface card navigates to the VTCS. Find the VTCS card, find the

button labeled “Go,” and click on that button. On success, it will lead to the VTCS page.

9.2.2 VSSI-VTIP Navigation Test

This test scenario involves checking if the VTIP card navigates to the VTIP properly.

TestVTIPNavigation

Verify that the VTIP card navigates the VTIP. Find the VTIP card, find the button

labeled “Go,” and click on said button. On a success, it will lead to the VTIP page.

 9.2.3 VSSI-MISP Navigation Test

This test scenario involves checking if the MISP card navigates to the MISP properly.

TestMISPNavigation

Verify that the MISP card navigates the MISP. Find the MISP card, find the button

labeled “Go,” and click on said button. On a success, it will lead to the MISP page.

9.2.4 VSSI-VSMVS Navigation Test

This test scenario involves checking if the VSMVS card navigates to the VSMVS

properly.

TestVSMVSNavigation

Verify that the VSMVS card navigates the VSMVS. Find the VSMVS card, find the

button labeled “Go,” and click on said button. On a success, it will lead to the VSMVS

page.

9.2.5 VSSI Navigation Interface Test

This test scenario involves checking if the VSMVS card navigates to the VSMVS

properly.

TestVSSINavigation

Verify that the VSSI landing page is displayed when the proper URL is invoked.

 367

Appendix A: Requirements Table

Requirement

ID

Requirement

Type

Requirement

Name

Requirement Description Priority

S1 Scope VSSI System

Scope

The VSSI is required to

provide the user a way to

navigate to different pages

in the system

Must

have

FR1.1 Functional Navigate to

VTIP

The VSSI will facilitate

navigation to the VTIP.

Must

have

FR1.2 Functional Navigate to

VTCS

The VSSI will facilitate

navigation to the VTCS.

Must

have

FR1.3 Functional Navigate to

VSMVS

The VSSI will facilitate

navigation to the VSMVS.

Must

have

FR1.4 Functional Navigate to

MISP

The VSSI will facilitate

navigation to the MISP

server.

Must

have

INT -1 Interface VSSI

Navigation

Interface

The VSSI shall provide a

Graphical User Interface for

users to navigate to the

different pages in the

system.

Must

have

T-1 Test Manual Test Manual testing system

testing shall be conducted

for all functional system

components

Must

have

T-2 Test Integration

Test

System integration testing is

not within the scope of the

VTCS system

Out of

scope

T-3 Test Test Report An associated

documentation of all system

Must

have

 368

test activities shall be

provided

NF-1 Non-functional Portability The development team will

attempt to make the web

enabled VSSI system

portable across multiple

computing form factors

Could

have

NF-2 Non-functional Usability The development team will

attempt to satisfy system

usability features such as

navigation, performance

quality, and intuitiveness of

interfaces

Could

have

NF-3 Non-functional Speed The development team will

attempt to enhance the VSSI

system ability to navigate to

different pages quickly

Should

have

 369

Appendix B: Requirements Traceability Matrix
Requirement

ID

Requirement Description Test Case Status

S1 Defines the scope of the system N/A N/A

FR1.1 The VSSI shall facilitate navigation

to the VTIP page.

TestVTIPNavigation Passed

FR1.2 The VSSI shall facilitate navigation

to the VTMECS page.

TestVTCSNavigation Passed

FR1.3 The VSSI shall facilitate navigation

to the VSMVS page.

TestVSMVSNavigation Passed

FR1.4 The VSSI shall facilitate navigation

to the MISP page.

TestMISPNavigation Passed

INT -1 The VSSI will provide an interface

to navigate to different pages in the

system.

N/A N/A

T-1 Manual system testing shall be

conducted for all functional system

components

Multiple Test Cases Passed

T-2 System integration testing is not

within the scope of the VTCS.

N/A N/A

T-3 An associated documentation of all

system test activities shall be

provided

N/A Completed

NF-1 The development team will attempt

to make the web enabled VSSI

portable across multiple computing

form factors

N/A N/A

NF-2 The development team will attempt

to satisfy system usability features

such as navigation, performance

N/A N/A

 370

quality, and intuitiveness of

interfaces

NF-3
The development team will attempt

to enhance the VSSI speed in

navigating to the different pages in

the system.

N/A N/A

Appendix C: Glossary
Term Description

AWS Amazon Web Services

EC2 Elastic Compute Cloud

HTML Hypertext Markup Language

MISP Malware Information Sharing Platform

VTCS Vehicle Threat Collection System

VTDBS Vehicle Threat Database System

VTME Vehicle Threat Modeling Engine

VSMVS Vehicle Security Metrics Visualization System

 371

Appendix XXII. Technical Report UWF-TR-FDOT-010-02

Vehicle Security System Integration
(VSSI)

User Manual

Technical Report UWF-TR-FDOT-010-02

Contract Number: BED34 Task Order: 977-01

Version 0.1

04/01/2024

 372

Table of Contents

Introduction .. 373

Starting the System .. 374

VSSI Interface .. 375

VTIP Interface .. 376

VTIP-MISP Interface .. 378

VSMVS Interface ... 382

Table of Figures
Figure 1. The VSSI Landing Webpage ... 375
Figure 2. VTIP Landing Webpage .. 376
Figure 3. A Sample VTIP Output ... 377
Figure 4. VTIP-MISP Interface for STIX Upload .. 378
Figure 5. VTIP-MISP Search Output.. 379
Figure 6.Formatted MISP Event View ... 380
Figure 7. Raw JSON MISP View ... 381
Figure 8. The VSMVS Landing Webpage .. 382

 373

Introduction
This document was created to provide user’s guide to the Vehicle Security System Integration

(VSSI) system. The VSSI is a subsystem that allows the user to navigate to different parts of the

greater system. The VSSI illustrates interface cards to enable access to the following subsystems:

the Vehicle Threat Intelligence Portal (VTIP), the Vehicle Threat Collection System (VTCS), the

Vehicle Security Metrics Visualization System (VSMVS), and the Malware Information Sharing

Platform (MISP). This interface provides the integration of the various subsystems using a

common entry point and collectively binds them to function with a common purpose, i.e.

supporting the security of CAVs. The descriptions of the Vehicle Threat Collection System

(VTCS) and the Vehicle Security Metrics Visualization System (VSMVS) are included in related

documents.

The VTIP functions as a subsystem of the Vehicle Threat System (VTS), serving as the front-end

Graphical User Interface (GUI) for secure user access to essential features of the VTS. It enables

users to query and modify threat records stored in the Vehicle Threat Database System (VTDS).

Additionally, the VTIP acts as the primary interface for users to access the Malware Information

Sharing Platform (MISP) Server subcomponent of the Project System for threat intelligence

information sharing.

The VTCS is an automated system that collects threat intelligence feeds from various sources

and stores that data to the Vehicle Threat Database System (VTDS) for ingestion and processing

by other subcomponents of the Project System. Threat Intelligence data will come from publicly

available Open-Source Intelligence (OSINT) sites such as Open Threat Exchange (OTX) and

VirusTotal. Configurable, automated queries to these sources will generate tailored threat

intelligence feeds and provide any associated Common Vulnerabilities and Exposures (CVEs),

Common Weaknesses Enumerations (CWEs) and any other relevant Indicators of Compromise

(IoCs).

The Malware Information Sharing Platform (MISP) is a threat sharing platform which can both

upload and download threats. It utilizes its own database and Application Program Interface

 374

(API) to interact with the web and store threat information. For our purposes MISP is used to

associate global threats vehicle-related threat stored in the VTDS.

The Vehicle Security Metrics Visualization System (VSMVS) is a web application that allows

users to interact with different UI to generate scores, graphs, or both. Depending on the page users

are on, the web application will have a slightly different User Interface (UI). Each UI is catered

towards a specific functionality. The purpose of the VSMVS is to help users recognize trends and

patterns that are not easily recognized using non-visual methods. The system will provide a visual

depiction of security metrics that were developed in another undertaking by employing the benefits

of visual perception.

Starting the System
To start the system, you must run the VTDS Amazon Web Services (AWS) Elastic Compute Cloud

(EC2) instance. Log in to the AWS Management Console. Navigate to the EC2 instances. Right

click the VTDS instance and click “Start Instance.” The start of the VTDS EC2 instance enables

the VSSI. The landing page of the VSSI is displayed when the web page address or the Uniform

Resource Locator (URL) address is entered on a web browser. It should be noted that preliminary

activities must be completed to ensure that the VSSI runs smoothly. These activities include

running the MISP Server and the VTCS, VTIP, and VSMVS EC2 instances.

 375

VSSI Interface
The VSSI interface allows the user to navigate to different parts of the system. Each landing

webpage of a subsystem has an associated card in the VSSI. Each card contains the name of the

webpage, an image, and a button to navigate to the webpage. Clicking the “Go” button adjacent

to a card image will take the user to the corresponding subsystem. Figure 1 illustrates the VSSI

landing webpage.

Figure 22. The VSSI Landing Webpage

 376

VTIP Interface
The VTIP interface allows the user to query for CVEs based on CVE ID, keyword, or the vehicle’s

make, year, and model. It also allows for searching for CVEs within a specified date range. The

VTIP Landing Webpage is shown in Figure 2. Upon entering the VTIP, the query fields and

information will be blank.

Figure 23. VTIP Landing Webpage

To query for a CVE, select the method by which you are querying (ID, keyword, vehicle). Enter

the value for which you are querying, select the date range if applicable, and click the submit

button. The VTIP will show results for the first CVE found, displaying other CVEs that match the

query along the bottom of the page. It will display the ID, the last date modified, the associated

Common Weakness Enumeration (CWE), the vulnerability status, the Common Vulnerability

Scoring System (CVSS) information, and the description. Additionally, it will show all the

vehicles associated with the CVE in the case of multiple vehicles being affected. A sample output

is depicted on the interface shown in Figure 3.

 377

Figure 24. A Sample VTIP Output

 378

VTIP-MISP Interface
The VTIP-MISP Interface allows users to interact directly with the MISP through the VTIP for

both uploading and downloading MISP events. In the option for searching MISP Events, users can

add the options controller, eventinfo, value, limit, org, uuid, date_to, and date_from. For uploading

MISP events, it utilizes the Structured Threat Information eXpression (STIX) 2.0 format, which

must be copied and pasted into the textbox provided by the “Upload STIX data” button as shown

in Figure 4.

Uploading events will notify the user if an error occurs. When uploading information to MISP it

will convert the STIX 2.0 object to a MISP event and store it as well as send that object back to

the user. This will allow the user to click on the new MISP Event and view it as if it was searched

for. The conversion is not lossless but keeps vital information and allows for ease of access due to

the high utilization of STIX format in cybersecurity.

Figure 25. VTIP-MISP Interface for STIX Upload

 379

When searching for events, users will mostly utilize the value, eventinfo, org, and uuid options.

Value allows for users to search for MISP events based on whether they contain an attribute with

a specific value. Eventinfo allows users to search for events based on a specific value in their

description. Org allows users to search for all MISP events from a certain organization. Uuid

allows users to search for MISP events based on the uuid of the event. The controller, limit,

date_to, and date_from are all filtering options. The controller allows the user to specify whether

they want to view events or attributes while limit allows users to specify the limit on the number

of returned objects. By default, controller uses an event. A sample search interaction is shown in

Figure 5.

Figure 26. VTIP-MISP Search Output

 380

Once a user has selected a MISP event, whether it be through search or through uploading a STIX

object the details page is displayed. This details page offers a formatted view option and a raw

JSON view option. The formatted view will display the event info in a card at the top, with

important information included in each row. Subsequent attributes for the event will be included

in the cards below (one card for each attribute) with important information for each attribute

included in each card. A sample MISP Event View output is shown in Figure 6. This view is the

suggested view, however, selecting the raw JSON view button at the top of the page will take the

user to a page with the raw JSON as shown in Figure 7. This JSON is formatted properly for easy

readability and is useful for finding information that might be deemed irrelevant by the formatted

view.

Figure 27.Formatted MISP Event View

 381

Figure 28. Raw JSON MISP View

 382

VSMVS Interface
The VSMVS landing page consists of an introductory description of the website as well as six

cards containing descriptions and links to each of the main application pages on the website. The

landing webpage is depicted in Figure 8. Once a user clicks on the button within a container, they

will be brought to that page where they can input data and visualize the various threats across

various security metrics.

Figure 29. The VSMVS Landing Webpage

 383

Appendix XXIII. Data Processing Algorithm

Algorithm 1: RSU Data extraction and Cleansing

Function to Load BSM Data (load_BSMs):

 # Open the compressed XML file containing the BSM data

 with gzip.open(FPATH, 'rt') as fz:

 # Read and parse each line into an XML tree

 trees = [et.fromstring(l) for l in fz]

 # Print the tag of the first XML element

 print(trees[0].tag)

 # Filter out specific BSM messages

BSMs_raw = [tree for tree in trees if tree.tag ==

"MessageFrame"

 if tree.findall('messageId')[0].text == '20']

 # Define the desired BSM data attributes

 PAYLOAD_INFO_KEYS = ['id', 'secMark', 'lat', 'long',

'speed','heading', 'angle']

 # Make a list to store the BSM dictionaries

 BSMs_dicts_list = []

 # Extract the data from each BSM message

 for tree in BSMs_raw:

 message_dict = {}

 for k in PAYLOAD_INFO_KEYS:

 # Find the text for each key from the XML tree

 message_dict[k] = [ch.text for ch in \

tree.findall(f'.//value//BasicSafetyMessage//core

Data//{k}')][0]

Process and update timestamp and other fields in #

message_dict

 message_dict['timestamp'] =

processSecMark(int(message_dict['secMark']),

datetime.datetime.now(datetime.timezone.utc).strftime(

"%Y-%m-%d_%H:%M:%S"))

 message_dict['lat'] = int(message_dict['lat'])/10 ** 7

 message_dict['long'] = int(message_dict['long'])/10 ** 7

 message_dict['speed_mph'] =

processSpeedMPH(int(message_dict['speed']))

 384

 # ... (Other hardcoded values)

 # Append the cleaned dictionary to the list

 BSMs_dicts_list.append({k: v for k, v in

message_dict.items()

 if k not in ['id', 'speed', 'lat_long']})

 # Return the list of processed BSM dictionaries

 return BSMs_dicts_list

Load the BSMs from the specified file path

BSMs_dicts_list = load_BSMs(FPATH)

 385

Appendix XXIV. Continuous Integration/Continuous Deployment Pipeline

For the FDOT project, the UWF project team utilizes GitHub actions to deploy code to AWS

automatically. This appendix covers the overall architecture of the Continuous

Integration/Continuous Deployment (CI/CD) pipelines and how to set up and configure the

pipelines.

Currently, we have CI/CD pipelines configured for the following GitHub repositories:

• VTMECS (https://github.com/UWF-CfC-FDOT/VTMECS)

• VSMS (https://github.com/UWF-CfC-FDOT/VSMS)

The third GitHub repository

https://github.com/UWF-CfC-FDOT/VMLFramework

does not require a CI/CD pipeline nor an AWS EC2 instance.

Pipeline Steps
Note: This workflow is illustrated in Figure 22.

1. Code is committed to the repository hosted by GitHub. This triggers the GitHub Actions

workflow.

2. Checkout: The repository is checked out to the self-hosted runner to prepare for building.

3. Build: The application is built, and the compiled artifacts are generated.

4. Test: Automated tests by xUnit.net are run on the compiled artifacts to ensure that the

application is functional.

5. Publish: The compiled artifacts are published to the EC2 instance.

6. Deploy: The published artifacts are deployed to an IIS site configured in the Windows

Server EC2 instance.

Figure 30: The Workflow

https://github.com/UWF-CfC-FDOT/VTMECS
https://github.com/UWF-CfC-FDOT/VSMS
https://github.com/UWF-CfC-FDOT/VMLFramework

 386

Self-Hosted Runner
The self-hosted runners can be configured within GitHub by navigating to a repository and

visiting the Settings page for that repository. Once there, expand the Actions option, and click

Runners.

On the Runners page, you will find the self-hosted runners associated with the repository you are

viewing. If no self-hosted runners (as shown in Figure 23) are configured for this repository, this

is the page where you can set them up.

Figure 31: Runner Setup

GitHub Actions Runners

The self-hosted runners are currently installed on the following EC2 instances:

GitHub Project EC2 Instance Runner Directory URL

VTMECS VTDS (i-0a1b63cdf91bb0294) C:\actions-runner
http://ec2-3-209-218-
208.compute-
1.amazonaws.com/VTMECS

VSMS VSMS (i-
05b8e38db7a5812be) C:\vsms-runner

http://ec2-184-73-161-
243.compute-
1.amazonaws.com/

Setting Up the GitHub Actions Self-hosted Runner

This section will walk through the steps to configure the GitHub Actions self-hosted runners for

our repositories.

What you will need:

• Access to the GitHub organization UWF-CfC-FDOT.

/Users/guillermofrancia/Desktop/Work/Grants/FDOT/Reports/FinalReport/UWF-CfC-FDOT

 387

• Access to the target EC2 instance running Windows Server.

Setup Procedure

1. Navigate to the repository where you would like to set up a self-hosted runner.

2. Once there, navigate to the Settings page > Actions > Runners.

3. Click the New self-hosted runner button as shown in Figure 24.

4. Once you click the New self-hosted runner button will take you to a page where you can

configure the runner's image and architecture. For all the self-hosted runners, we've used

Windows x64.

5. Login to the EC2 instance where we will be installing the self-hosted runner.

6. Once you are logged into the Windows Server, open PowerShell and change directory

(cd) into the root directory of the C drive. See Figure 25. * If reinstalling a self-hosted

runner, delete the existing actions-runner folder and start over.

Figure 32: Creating New Self-hosted Runner

Figure 33: Windows PowerShell

 388

7. Next, follow the instructions provided in GitHub for installing the self-hosted runner.

8. After you complete the PowerShell steps your self-hosted runner should appear in

GitHub. See Figure 26.

Figure 34: New Self-hosted Runner

9. The last step is configuring the GitHub Actions Runner service in the EC2 Windows

instance.

a. Open the Services program by clicking the Windows icon and searching for

"Services."

b. Find the GitHub Actions Runner service in the list and right-click the service and

click Properties.

c. Navigate to the Log On tab and change the log on setting to Local System

account. See Figure 27.

Figure 35: Log-on Configuration

 389

Configuring the SQL Server

If the application that you plan to deploy using GitHub Actions requires a SQL Server database,

then you will need to follow the steps below to configure the SQL Server credentials. See Figure

28.

1. Remote into the EC2 instance and open SQL Server Management Studio (SMSS).

2. Right-click the SQL Server and go to Properties.

Figure 36: Configuring the SQL Server

3. Navigate to Security and set Server Authentication to SQL Server and Windows

Authentication. See Figure 29.

4. Next, we will create and configure a new SQL Server user. Expand the Security folder

and right-click Logins and click New Login. See Figures 30 and 31.

 390

Figure 37: Configuring the SQL Server Authentication

Figure 38: Creating a New Login Account

 391

5. Next, fill out the fields and the Server Roles tab. See Figure 32.

Figure 39: Setting Authentication Properties

 392

Figure 40: Setting Server Roles

Running the Pipeline

Currently, the CI/CD pipelines are set up so that they must be manually triggered to deploy code

to AWS. The reason the pipelines are set up this way is that the EC2 instances are not always

online when the pipeline is run, which will result in an error.

The pipeline can be run manually using the steps as shown in Figure 33.

Figure 41: Manually Running a Pipeline

 393

If you want to enable the pipeline to start automatically when there is a push or pull request

created for the main branch, edit the pipeline file found at: .github > workflows > pipeline.yml

and remove the extra space after “main.” See Figure 34.

Figure 42: Running a Pipeline Automatically

Additional Notes

• Self-hosted runners are automatically removed from GitHub if they have not connected to

GitHub Actions for more than 14 days.[Source] If a runner is automatically removed from

GitHub, remove the old actions-runner directory on the EC2 instance and rerun the above

steps.

• SQL user passwords should be stored using Actions secrets and variables. You can then

use these secrets in your pipeline.yml file using the following format: ${{

secrets.VTMECS_DB_USER_PASSWORD }};. See Figure 35.

Figure 43: Action Secrets and Variables

https://docs.github.com/en/actions/hosting-your-own-runners/removing-self-hosted-runners

	Disclaimer
	Technical Report Documentation Page
	Executive Summary
	List of Tables
	List of Figures
	List of Abbreviations and Acronyms
	Chapter 1. Introduction
	1.1 Project Objectives
	1.2 Major Accomplishments

	Chapter 2. Development of Vehicle Security Metrics
	2.1. Common Vulnerability Scoring System (CVSS)
	2.2. Common Methodology for IT Security Evaluation (CEM)
	2.3. Threats on Assets
	2.4. Common Weakness Scoring System
	2.5. Operational Safety Assessment Metrics
	2.5.1 Cybersecurity Metrics for Operational Safety

	2.6. Security Vulnerability Metrics for Connected Vehicles
	2.6.1 Electronic Control Unit (ECU) Coupling Risk
	2.6.2 Communication Channel Risk
	2.6.3 Complexity Risk
	2.6.4 Input and Output Data Risk
	2.6.5 History of Security Issues
	2.6.6 Overall Security Vulnerability Metric

	2.7. Vehicle Security Best Practices Assessment Metrics
	2.7.1. Vehicle Security Best Practices Assessment Metrics

	Chapter 3. Design and Implementation of the Vehicle Security Metrics Visualization System (VSMVS)
	3.1. Visualization of CVSS Vector and Metrics
	3.2. Visualization of Attack Potential of Threats on Vehicle Assets
	3.3. Visualization of Common Weakness Scoring System
	3.4. Visualization of Security Metrics for Operational Safety
	3.5. Visualization of Security Vulnerability Metrics
	3.6. Visualization of Vehicle Security Best Practices Assessment Metrics

	Chapter 4. Testing and Deployment of the VSMVS
	4.1. Test Framework Description
	4.2. VSMVS Unit Tests
	4.2.1. TreeMap Tests
	4.2.2. Common Weakness Scoring System (CWSS) Tests
	4.2.3. Security Metrics Operational Safety (SMOS) Tests
	4.2.4. Security Vulnerability Metrics for Connected Vehicles (SVMCV) Tests
	4.2.5. Vehicle Security Best Practices Assessment Metrics (VSBPAM) Tests

	Chapter 5. Data Ingestion, Cleansing, Normalization, and Data Mutation of Roadside Unit Data
	5.1. Roadside Unit Dataset
	5.2. Basic Safety Message (BSM)
	5.3. Synthetic Dataset
	5.4. Malicious Dataset
	5.4.1. Brake System Anomaly
	5.4.2. Transmission System Anomaly
	5.4.3. Longitudinal Acceleration Anomaly
	5.4.4. Hard Braking Anomaly
	5.4.5. Speed Anomaly

	Chapter 6. Design and Implementation of a Machine Learning System for Vehicle Security
	Chapter 7. Design and Implementation of a Vehicle Threat Modeling Engine (VTME)
	Chapter 8. Design and Implementation of a Vehicle Threat Collection System (VTCS)
	8.1. The VTCS Interfaces

	Chapter 9. Design and Implementation of a Vehicle Threat Database System (VTDS)
	9.1. Entity Relationship (ER) Diagrams

	Chapter 10. Design and Implementation of a Vehicle Threat Information Portal (VTIP)
	10.1. VTIP Threat Record Interface
	10.2. VTIP Threat Record Search and Edit Interface

	Chapter 11. System Integration, Testing, and Deployment
	11.1 The VSSI Interface

	Chapter 12. Continuous Improvement Process
	12.1 List of Improvements and Rationale

	Chapter 13. Conclusion and Future Works
	References
	Appendices
	Appendix I. Technical Report UWF-TR-FDOT-001-01
	Appendix II. Technical Report UWF-TR-FDOT-002-01
	FR-1.1 Common Vulnerability Scoring System (CVSS) Metrics
	FR-1.2 Attack Potential on Vehicle Assets Metrics
	FR-1.3 Common Weakness Scoring System (CWSS) Metrics
	FR-1.4 Operational Safety Assessment (OSA) Cybersecurity Metrics
	FR-1.5 Security Vulnerability Metrics for Connected Vehicles
	FR-1.6 Vehicle Security Best Practices Assessment Metrics
	FR-2.1 Common Vulnerability Scoring System (CVSS) Calculator
	FR-2.2 Attack Potential on Vehicle Assets Metrics Calculator
	FR-2.3 Common Weakness Scoring System (CWSS) Metrics Calculator
	FR-2.4 Operational Safety Assessment (OSA) Security Metrics Calculator
	FR-2.5 Security Vulnerability Metrics for Connected Vehicles Calculator
	FR-3.1 Common Vulnerability Scoring System (CVSS) Metrics Visualization
	FR-3.2 Attack Potential on Vehicle Assets Metrics
	FR-3.3 Common Weakness Scoring System (CWSS) Metrics Visualization
	FR-3.4 Operational Safety Assessment (OSA) Cybersecurity Metrics Visualization
	FR-3.5 Security Vulnerability Metrics for Connected Vehicles Visualization
	FR-3.6 Vehicle Security Best Practices Assessment Metrics Visualization

	Appendix III. Technical Report UWF-TR-FDOT-002-02
	Appendix IV. Technical Report UWF-TR-FDOT-003-01
	Appendix V. BSM Dataset Attributes
	Appendix VI. Technical Report UWF-TR-FDOT-003-02
	Appendix VII. Technical Report UWF-TR-FDOT-004-01
	Appendix VIII. Technical Report UWF-TR-FDOT-005-01
	Appendix IX. Technical Report UWF-TR-FDOT-006-01
	Appendix X. Technical Report UWF-TR-FDOT-006-02
	Appendix XI. Technical Report UWF-TR-FDOT-006-03
	Appendix XII. Technical Report UWF-TR-FDOT-007-01
	Appendix XIII. Technical Report UWF-TR-FDOT-007-02
	Appendix XIV. Technical Report UWF-TR-FDOT-007-03
	Appendix XV. Technical Report UWF-TR-FDOT-008-01
	Appendix XVI. Technical Report UWF-TR-FDOT-008-02
	Appendix XVII. Technical Report UWF-TR-FDOT-008-03
	Appendix XVIII. Technical Report UWF-TR-FDOT-009-01
	Appendix XIX. Technical Report UWF-TR-FDOT-009-02
	Appendix XX. Technical Report UWF-TR-FDOT-009-03
	Appendix XXI. Technical Report UWF-TR-FDOT-010-01
	Appendix XXII. Technical Report UWF-TR-FDOT-010-02
	Appendix XXIII. Data Processing Algorithm
	Algorithm 1: RSU Data extraction and Cleansing

	Appendix XXIV. Continuous Integration/Continuous Deployment Pipeline
	Pipeline Steps
	Self-Hosted Runner
	GitHub Actions Runners
	Setting Up the GitHub Actions Self-hosted Runner
	What you will need:
	Setup Procedure

	Configuring the SQL Server
	Running the Pipeline
	Additional Notes

