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Executive Summary

Shared micromobility services (i.e., shared bikes and e-scooters) are flourishing worldwide as
sustainable, easily accessible, and affordable transportation options for short trips. They serve as
a flexible mode of transportation to get around, particularly over the first mile and last mile.
However, this newfound flexibility also presents complicated urban issues, for instance, safety
concerns, imbalanced uses, and modal shifts. To effectively tackle these challenges, it is crucial
to establish a comprehensive modeling framework for micromobility analytics, facilitating the
understanding of usage patterns, crash patterns, and relationships between micromobility and
public transit, as well as recommendations for facility planning.

In line with the development of an integrated modeling framework for micromobility analytics,
this research project conducted a holistic literature review to understand the status (such as data,
methods, findings, and gaps) of modeling micromobility analytics. Next, we conducted data
collection (i.e., aggregated and individual trip data, survey data, crash event data) and analysis of
micromobility usage and related crash events to reveal the patterns of micromobility usage and
crashes in Florida. Then we investigated the relationships between these patterns and different
influential factors, including census-level sociodemographic and built environment attributes,
points of interest, and street characteristics. Additionally, we used GIS-based spatial analysis to
the survey data, trip data, and transit route data to characterize the relationships between shared
micromobility and public transit systems in terms of both transit accessibility and ridership
impacts. These findings offer crucial insights into micromobility facility planning to encourage
micromobility usage, alleviate traffic crashes, and promote modal integration with other modes
of transportation, particularly public transit. The main findings are summarized as follows:

1. Patterns of micromobility usage

Using the quarterly and street-level aggregated data, individual trip data, and survey data, we
applied descriptive statistics, spatial mapping, and cluster analysis to reveal the patterns of
micromobility usage. We found:

a) Travel behaviors: The main factors influencing micromobility usage are travel times,

costs, safety concerns, and weather. Micromobility options are valuable for covering
distances and accessing areas less convenient by car or public transit.

b) Trip characteristics: Most micromobility trips are under 20 min and less than 2 miles,
providing flexible mobility for short distances. They mainly serve recreational activities

and commuting, followed by errands, fitness, shopping, and reaching transit stops.
c) Users’ characteristics: Males, White and Asian individuals, young adults aged 18-34 with
a least part-time work, and full-time students are more likely to use micromobility

options compared to other groups.



d)

Temporal patterns: Micromobility programs typically follow temporal cycles: bike and
scooter trips peak in the first year before declining as some vendors exit the market. Trips
show notable monthly, weekly, and hourly variations. In Gainesville, trips peak from 12
pm to 6 pm on weekdays from September to November, primarily due to intensive

university activities during this period. Big events like football games can significantly
increase weekend trips. In Jacksonville, most trips occur between 7 pm and 11 pm on
weekends, mainly used for non-commuting purposes like engaging in leisure activities.
Spatial distributions: Micromobility rides are highly concentrated in just a few census

tract block groups. In Gainesville, most scooter trips start and end on streets in and
around the university campus, showing high spatial concentration. Most high-traffic
streets have planned dedicated bike lanes for e-bikes and scooters, but there are still a few
streets lacking well-connected bike lanes despite high trips. In Jacksonville, most scooter
trips occur in the downtown area, where dedicated bike lanes are scarce. As a result,
riders are forced to share roadways with drivers or sidewalks with pedestrians,
discouraging usage and increasing crash risks.

2. Impacts of crucial influencing factors on usage patterns

Building on the patterns of micromobility usage, we applied an explainable machine learning
model — XGBoost (eXtreme Gradient Boosting) plus SHAP (Shapely Additive exPlanation)
values, to investigate the underlying causes of these patterns. We found:

a)

b)

Sociodemographic and built environment attributes: Census tracts with higher population

density, bike lane availability, and transit route coverage tend to have greater scooter
usage. This is because large population, well-connected bike lanes, and high transit
connectivity are more likely to encourage more frequent scooter use.

Points of interest (POIs): Trip origins are typically near locations with more
transportation, recreational, and social POIs in the surroundings. In contrast, trip

destinations are often close to areas with more transportation, education, commercial, and
recreational POIs in the surroundings. For instance, in Gainesville, scooter trips typically
start at locations near schools, restaurants, parking areas, and cafes, and end at locations
near restaurants, parking areas, cafes, libraries, and bicycle parking. This suggests that
scooter trips are primarily used for commuting, dining, and recreational purposes. In
Jacksonville, on the other hand, scooter trips often start and end at locations near bars,
fast food outlets, restaurants, and cafes, implying shared scooter usage is mainly driven
by recreational and dining activities.

Street characteristics: Trip origins and destinations are usually found on urban streets

with a higher density of roadways, sidewalks, buildings, vegetation, or open spaces in the
surroundings (or Street View images). Moreover, urban streets with more sidewalks in the
surroundings (or Street View images) often have more micromobility rides, and
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meanwhile, this also partly implies an absence of dedicated bike lanes in Florida, as
riders have to share sidewalks with pedestrians.

3. Relationships between micromobility and public transit

We applied descriptive statistics and GIS-based spatial analysis to the survey data, trip data, and
transit route data to characterize the relationship between shared micromobility and public transit
systems, in terms of both transit accessibility and ridership impacts. We found:
a) Transit accessibility enhancements: Shared scooters in Jacksonville and Gainesville
extend the reachable distance of public transit by 1-3 miles, providing faster and easier

access to public transit systems compared with directly walking to transit stops. Thus,
introducing shared scooters as a feeder mode to connect with public transit effectively
expands transit service areas and enhances accessibility. However, transit accessibility
increments are unequal across time and space, highly relying on distinct spatiotemporal
usage patterns.

b) Transit ridership impacts: Although shared scooters in Florida can boost transit ridership,

the positive impact is not very significant. This is because many respondents prefer to
walk to the nearest transit stop directly within four street blocks or do not use public
transit at all. Based on the survey data, about 28.6% reported they had used
micromobility as a feeder mode to public transit, with varying usage frequencies: 7.9%
daily, 8.6% 2-3 times per week, 3.6% once a week, and 8.6% 2-3 times per month. The
most common trip purpose of a shared scooter-transit ride is commuting to work or
school, followed by recreational activities and exercise. Additionally, the shared scooter-
transit ride exists primarily when scooter trips to the nearest transit stop are under 20 min
and less than 2 miles. Notably, when trip durations to reach the nearest transit stop are
within 10-20 min and trip distances are within 0.25-0.5 and 1-2 miles, there is an
increased proportion of using micromobility to connect with public transit, compared
with other trip duration and distance ranges.

4. Patterns of micromobility-related crashes

Using the micromobility-related crash event data from 1/1/2021 to 2/1/2024, we conducted
descriptive statistics, spatiotemporal aggregation, contributing factor analysis, and location
analysis to derive the crash patterns and their underlying causes in Florida. We found:

a) Spatiotemporal patterns: Crashes follow similar temporal patterns to usage, with higher

usage increasing crash likelihood. For statewide distributions, most crash events happen
in Tampa, Miami, Orlando, and Gainesville, where there are high levels of bike and
scooter activities as well.
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b) Crash characteristics: The most common type of crash in Florida is the angle collision

between a bicycle or scooter and pedestrian or a single vehicle, often resulting in possible
injury or non-incapacitating injury for non-motorists.
c) Contributing factor analysis: Neither most non-motorists nor drivers engage in improper

actions, aside from non-motorists typically not using helmets. Light, road surface, and
weather conditions are generally good, suggesting these crashes are potentially caused by
specific location or street characteristics (as shown in location analysis).

d) Location analysis: Locations near traffic facilities including roundabouts, stop-controlled

intersections, parking lots, intersections without markings, and unpaved shoulders, and a
lack of dedicated bike lanes are often associated with higher crash percentages (the ratio
of crash counts to micromobility rides during the same period). These street facilities,
along with intersections (high crash counts but relatively low crash percentage), should
be paid special attention to reduce crashes involving non-motorists.

5. Policy recommendations

Building upon micromobility usage and crash patterns and their underlying causes, as well as the
relationship between micromobility and public transit, this research project provides the
following recommendations for micromobility facility planning, including location choices,
device choices, and infrastructure planning to encourage micromobility usage, reduce traffic
crashes, and promote modal integration with public transit in Florida, specifically:

a) Location and device choices: More micromobility devices should be placed at locations

near transportation, education, recreational, and commercial POIs. Specifically,
deploying devices within a 0.2-mile spatial buffer of schools, restaurants, parking, cafes,
bars, and fast-food outlets can boost more micromobility trips. In addition, placing
devices on urban streets with a higher density of sidewalks, open spaces, or poles
(supporting traffic lights and streetlights) in the surroundings (or street view images) can
encourage micromobility usage. Further, the deployment of electric and dockless
micromobility devices can also encourage micromobility usage, in contrast to non-
electric and docked ones.

b) Micromobility rebalancing: Decision makers can formulate vehicle rebalancing strategies

for micromobility devices, for instance, to redistribute bikes or scooters from trip-
attracting POI locations with device overconcentration to high-demand trip-generating
POI locations to balance device supply with demand.

c) Infrastructure planning: Strategies include prioritizing secure access parking (e.g., lockers
and valet services), avoiding or paying additional safety attention to roundabouts and
stop-controlled intersections, and building signalized intersections with clear markings if

both budgets and urban spaces permit. Additionally, designing and planning more
dedicated bike lanes on streets, particularly for those with high usage, is crucial to
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improve bike lane connectivity and reduce crash events.
d) Modal integration with public transit: Strategies encompass placing more micromobility

devices near transit stops (e.g., less than 2 miles) and planning dedicated bike lanes for
safe routes to transit stops. Besides, improvements to public transit systems include
increasing transit frequency, extending operation hours, and expanding service areas.
Transit hubs can also provide more free parking racks and secure access options such as
lockers, cages, and valet services to enhance modal integration between micromobility
and public transit.

Limitations: All findings presented in this report are primarily based on usage data from
micromobility vendors — VeoRide and Bird — and survey data we collected in three Florida cities
— Gainesville, Orlando, and Jacksonville. This report does not include data from other vendors
and privately owned micromobility devices. Thus, the results of this report have some limitations
and potential biases. Future research should include data from more sources, including privately
owned devices.
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1. Introduction

Micromobility has become increasingly popular in cities across Florida and the nation, offering a
convenient, flexible, and accessible alternative for short-distance travel, particularly for first- and
last-mile transportation. According to the Society of Automotive Engineers International’s
Taxonomy and Classification of Powered Micromobility Vehicles, the Federal Highway
Administration (FHA) broadly defines micromobility as any small, low-speed, human- or
electric-powered transportation devices, such as (electric) bicycles, (electric) scooters, and other
lightweight wheeled vehicles.! This project specifically focuses on bicycles and scooters. As of
August 2020, over 260 shared micromobility systems have been operated in the United States,
such as docked and dockless bike-sharing and scooter-sharing programs. These systems aim to
provide an innovative, affordable, and convenient mobility option. Furthermore, the rise of
micromobility is seen as a promising way to reduce reliance on private vehicles for short trips
and to promote public transit usage. Additionally, the adoption of micromobility devices is a
crucial step toward fulfilling sustainable transportation goals.

Meanwhile, micromobility systems face several challenges, including safety concerns, supply
and demand mismatches, and random placements of dockless bikes and scooters. These issues
largely stem from improper facility planning and spatiotemporal mismatch, where devices are
either oversupplied or undersupplied in specific locations at certain times, leading to inefficient
usage and safety risks. In addition, current micromobility planning, such as routing and parking,
often relies on educated guesses rather than data-driven insights. There is also uncertainty about
whether micromobility complements or competes with public transit. To address these issues, it
is essential to understand the general patterns of micromobility usage and crashes, along with
their interactions with public transit, using data and models related to micromobility programs.
Thus, developing an integrated framework for micromobility analytics is necessary to answer
these critical questions and guide more effective planning and management.

However, most areas of Florida and even the nation currently lack a framework and established
practices for micromobility analytics, especially regarding usage patterns and their relationship
with public transit. This gap largely exists because micromobility is a relatively new concept,
and historically, there has been a lack of relevant data. Fortunately, the recent availability of
usage data from various cities presents an opportunity to better understand micromobility travel
behavior, model the supply and demand of these services, and explore their relationship with
public transit. For example, by the end of 2021, Florida had fifteen cities with micromobility
services. At least two of these cities, Jacksonville and Gainesville, have direct contracts with

! https://highways.dot.gov/public-roads/spring-2021/02



micromobility vendors that require the vendors to provide ridership and crash data. With this
data now available, it is possible to develop an integrated framework of micromobility analytics
to analyze usage patterns and crash events and identify underlying causes. The insights gained
can inform better micromobility facility planning, including device and location choices and
infrastructure improvements, and vehicle rebalancing strategies to improve system efficiency,
reduce crashes, and enhance integration with public transit in Florida.

We are undertaking this project to develop an integrated framework for micromobility analytics
with the following goals: (1) to gain a deeper understanding of micromobility usage patterns,
including spatiotemporal distributions, trip origins and destinations, trip purposes, travel times,
travel distances, and route choices; (2) to investigate the relationship between micromobility and
public transit in Florida, focusing on accessibility and ridership; (3) to analyze the patterns of
micromobility-related crash events, such as their spatial and temporal distributions and the street
characteristics where crashes frequently occur; and (4) to provide recommendations for future
micromobility facility planning. To achieve these goals, Task 1 involves reviewing and
summarizing the processes, methods, challenges, and data related to micromobility analytics.
Building on this review, Task 2 focuses on collecting and analyzing micromobility usage and
crash data in Florida cities. Task 3 aims to identify patterns and underlying causes, ultimately
providing recommendations for improving micromobility facility planning. Specifically, this
project addresses the following four sub-questions:
(1) In the literature, what are the patterns of micromobility usage and crashes, and how do
they relate to public transit, based on existing research, methods, findings, and gaps?
(2) What framework can be developed for micromobility analytics, including research
methods, objectives, data collection, analysis, and modeling?
(3) What are the typical service areas, usage patterns, and crash trends of micromobility
systems in Florida, and what are their underlying causes?
(4) Based on these patterns, what recommendations can be made for micromobility facility
planning to encourage usage, reduce crashes, and improve integration with public transit
in Florida?



2. Literature Review

Micromobility services are rapidly expanding worldwide as a sustainable, accessible, and
affordable mode of transportation for short distances, particularly for first-mile and last-mile
travel [1]. These services offer a flexible alternative for nearby commuters and residents,
extending the reach of existing public transit networks and potentially reducing reliance on
private vehicles [2]. If well integrated, micromobility can greatly help encourage public transit
usage and decrease traffic congestion, air pollution, and greenhouse gas emissions associated
with private car use [3]. However, the flexibility of micromobility services can lead to great
imbalances in supply and demand across different times and locations [4]. To address these
challenges, it is fundamentally important to review and summarize existing research on
micromobility usage patterns and their relationships with other modes of transportation, with a
particular focus on public transit. In the following subsections, we aim to present a
comprehensive overview of micromobility usage patterns, the relationship between
micromobility and other modes of transportation, and potential data sources and reports for
micromobility analytics nationwide.

2.1 Patterns of Micromobility Usage

In this section, we provided a comprehensive overview of micromobility usage patterns across
various cities and countries, focusing on users’ sociodemographic characteristics, trip durations
and distances, origins and destinations, purposes, and their relationships with different factors
such as weather conditions and land use types and intensities. Additionally, we summarized the
methodologies used to uncover these usage patterns. Finally, we highlighted the similarities and
differences in micromobility usage across cities and identified key gaps in the existing research
and practices.

2.1.1 Spatiotemporal Distributions

As highlighted in the literature [5, 6], micromobility services exhibit significant spatiotemporal
distributions across seasons, days of the week, hours of the day, and geographical locations:
(1) Seasonal variations. Studies have shown clear seasonal patterns in micromobility usage.

For instance, Beairsto et al. (2021) observed that in Glasgow, the number of trips peaked
during the summer months and dropped in winter [7]. Similarly, Gebhart and Noland
(2014) found month-to-month variations in bike usage in Washington D.C. [8], and
Bergstrom and Magnusson (2003) reported a 47% decline in bike usage from summer to
winter in Sweden [9].

(2) Daily variations. Bike usage also varies by day of the week. Li and Zheng (2020) noted




that in New York City, bike stations near tourist areas were more active on weekends and

holidays compared to weekdays [10]. Gebhart and Noland (2014) and Corcoran et al.

(2014) similarly found that bike usage increased on weekends and public holidays [8, 11].
(3) Hourly variations. The temporal distribution of bike usage often shows distinct peaks

during specific hours of the day. For example, Wang et al. (2021) observed that bike-
sharing ridership in Montreal peaked during the weekday morning (6 am-10 am) and
evening (3 pm-7 pm) rush hours, with different spatial distributions during these periods
[5]. In New York City, Li and Zheng (2020) found that bike rentals around residential
areas were significantly higher during morning rush hours [10]. Other studies, such as
those by [12-14], also reported notable hourly variations in bike or scooter usage,
especially during rush hours.

(4) Spatial variations. The geographic distribution of micromobility usage also suggests

significant spatial variations. For instance, Choi et al. (2022) found that bike rentals in
Seoul, South Korea, displayed station-specific temporal patterns that varied smoothly
over time, with similar patterns observed at geographically close stations [6]. In Glasgow,
Beairsto et al. (2021) noted that stations with the most trips were located near the
downtown area, while peripheral stations only had fewer trips [7]. Oerlemans (2021)
reported a similar changing pattern in another city, with the highest bike reservations
occurring in the city center and the lowest on the outskirts [15]. In Brisbane, Corcoran et
al. (2014) observed that bike trips were concentrated in the city center during the day,
with higher demand in the suburbs during morning and afternoon hours [11].
Additionally, Bai and Jiao (2020) found that in Austin, TX, and Minneapolis, MN, the
densest e-scooter usage typically occurred in downtown areas and university campuses,
primarily during afternoons, evenings, and weekends [16].

2.1.2 Trip Characteristics

Related studies have commonly described the trip characteristics of micromobility usage across
three main aspects: trip durations and distances, trip origins and destinations, and trip purposes.
(1) Trip durations and distances. Micromobility devices, including e-scooters and shared

bikes, are primarily used for short-distance travel, particularly for the first and last mile of
a journey. For example, in Austin, TX, and Minneapolis, MN, the average scooter trip
duration and distance were 12 minutes and 0.9 miles, and 19 minutes and 1.3 miles,
respectively [16]. In general, micromobility trips tend to be less than 30 minutes and
cover less than 2 miles [17], aligning with the design purpose of these services to
facilitate short trips [1]. Lin et al. (2020) also found that 76.7% of trips started and ended
within the same subregion, indicating strong local connectivity and the short-distance
nature of micromobility trips [14].

(2) Trip origins and destinations. Despite the flexibility of micromobility devices [18],
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docked stations are often concentrated in the city centers, lucrative locations, and areas
with limited public transit [19], complementing public transit networks. These stations
are typically located near transit stops, shopping malls, manufacturing plants, recreation
facilities, and other major trip-generating locations, serving as common trip origins and
destinations. Also, environmental characteristics and nearby land uses and points of
interest can exert a great influence on micromobility demand. For example, proximity to
parks in New York City significantly increases bike demand on weekends [12], and metro
stations are common trip origins and destinations due to their significant impacts on
overall micromobility demand [8]. Additionally, the proximity of transit hubs/stops,
transportation hubs, museums, restaurants, recreational areas, commercial areas, parks,
sports centers, and universities is linked to increased micromobility usage [20-24].

(3) Trip purposes. Most micromobility trips are for commuting, particularly on weekdays.
This is evidenced by significant differences in bike usage between workdays and non-
workdays, with shared bikes being mainly used during peak hours for commuting [25]. In
New York and Hangzhou City, bike-sharing systems also played a vital role in morning
commutes [26]. In Washington, DC, bike-sharing services were primarily used for
commuting, while scooter-sharing was less associated with this purpose [17]. Proximity
to residential areas and green spaces was also found to be positively associated with
increased micromobility usage, suggesting that these devices were commonly used for
leisure activities as well [27, 28].

2.1.3 Users’ Sociodemographic Characteristics

Previous studies have shown that some sociodemographic factors such as age, gender, income,
and education are strongly associated with micromobility usage [29-35]. Specifically, younger
individuals, males, people with higher incomes, and those with higher education levels are more
likely to use dockless scooter-sharing services. Additionally, these services are positively
correlated with zonal demographics like population density, employment rates, and the
proportions of young and highly educated populations [16, 22, 36-38].

For instance, Rixey (2013) used regression analysis to examine the effects of various
sociodemographic factors on bike-sharing usage in three U.S. cities, finding that median
household income, education level, and population and employment density were positively
associated with bike usage [39]. Similar conclusions were drawn by [20, 27, 35, 40], which
emphasized that younger people were more likely to use shared bikes, consistent with other
studies [21, 41, 42]. Additionally, Roy et al. (2019) found that the proportion of white
populations significantly influenced bike usage in Maricopa County, Arizona [27].



It is important to note that the impact of sociodemographic factors on bike usage is not always
consistent. Nonmotorized activities could vary widely over time and space, even under similar
traffic and environmental conditions within a region [43]. As a result, a sociodemographic
variable might strongly influence bike usage in one location but show weak or opposite effects
elsewhere [44]. This variability is particularly notable in central regions, such as areas around
university campuses and downtowns, where the diverse sociodemographic and built environment
characteristics can lead to different impacts of age, income, and education on bike activity across
different locations [45]. For instance, household income has been found to have positive [40, 46]
or negative influences [43, 47, 48] on bike activity, depending on the context of time and space.

2.1.4 Impact of Built Environment Characteristics

Related research has shown that built environment factors significantly influence the choice of
nonmotorized travel modes and travel behavior, specifically regarding density, diversity, design,
and accessibility [49, 50]. In general, people living in areas with higher density, greater
accessibility, and more diverse land use are more likely to use non-motorized travel modes [24,
51-55].

(1) Density. Studies have found a strong correlation between bike-sharing usage and factors,
including residential density, commercial density, and the number of intersections in
Singapore [51]. Lin et al. (2020) similarly identified strong relationships between bike
trips and density-related built environment variables, including residential, office, and
entertainment land uses, with weaker associations for leisure and education factors [14].
Higher transit stop density also correlated with increased scooter-sharing trips [16, 37].
These findings were also consistent with other studies on the relationship between
micromobility usage and the density facet of built environments [8, 25, 52, 56, 57].

(2) Diversity. Evidence suggests that mixed land use generates more bike trips than single
land use [54] and that greater land use diversity and a higher proportion of commercial
land use are positively associated with scooter-sharing use [16, 37, 58]. Additionally, Lin
et al. (2020) found that bike usage hotspots in Beijing were located in core areas
characterized by diverse land use within the Fourth Ring Road [14]. Noland et al. (2016)
used a Bayesian regression approach to quantify the relationship between station-level
bike-sharing usage and land use types [52]. Munira and Sener (2020) concluded that
balanced and mixed land use, combined with connected nonmotorized facilities, can
encourage bike activity across various demographic groups [45].

(3) Accessibility. Accessibility plays a crucial role in promoting nonmotorized travel. For
example, Bao et al. (2018) classified bike stations based on the distribution of points of
interest (POI) and identified the station-specific influences of built environment factors
such as bike infrastructure and station capacity [55]. Fishman et al. (2015) highlighted the

importance of bike lanes in encouraging bike use and protecting riders [40]. Sun et al.
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(2018) observed that infrastructure elements like streetlights, station connectivity, and
density were positively correlated with bike-sharing usage [25]. Beairsto et al. (2022)
identified the proximity to transit stops and nearby bike lanes as significant factors
affecting station-level bike usage [7]. Additionally, Wang and Lindsey (2019) noted that
improving bike-sharing accessibility could increase ridership, though the impact varied
across different built environments, particularly in areas with higher bike-sharing services
[59].

(4) Design. The design of the built environment, like the quality of the riding environment
and street safety, significantly affects nonmotorized travel [33, 34, 58]. Previous studies
have shown that built environment factors can have varying impacts on bike-sharing
usage [46, 60], depending on the local community and population, even within the same
region but across different types of neighborhoods (urban, suburban, rural) [61]. Areas
with better riding environments, including more and better bike infrastructure, often have
higher densities of bike and scooter trips [36, 58]. Additionally, Munira and Sener (2020)
found that the presence of sidewalks alongside less comfortable roads (i.e., high traffic
volumes, high speeds, and little or no bike accommodations) can positively determine
bike activity [45].

2.1.5 Impact of Weather Conditions

Numerous studies have indicated that weather conditions, such as temperature, precipitation, and
wind speed, significantly impact the usage of shared scooters [62-64]. Similarly, extensive
research has also examined how weather variables — including temperature, rainfall, snowfall,
wind speed, air pollution, and humidity — affect bike-sharing usage [8, 57, 65-67]. Younes et al.
(2020 found that weather conditions were less of a deterrent for shared scooter users compared
with bike users in Washington, D.C. [64]. However, temperature and precipitation were generally
the most critical factors influencing shared micromobility usage, often with complex and non-
linear relationships, while extreme weather typically reduced both bike usage and trip duration
[64].

Specifically, rainy and cold weather significantly decreased the use of shared dockless scooters
[63]. For bike sharing, Eren and Uz (2020) noted that precipitation, extreme heat, strong winds,
and high humidity negatively impacted usage, while dry, hot conditions could increase bike
ridership [21]. Cao and He (2018) found that variables like maximum temperature, wind speed,
gust speed, visibility, humidity, and dew point had a significant influence on bike usage [68].
Choi et al. (2022) observed that bike rentals in Seoul, South Korea, were affected by both
weather and air quality [6]. Dadashova and Griffin (2020) identified temperature, wind, and

precipitation as key factors in explaining bicycle count variability in Texas [69]. Baumanis et al.
7



(2023) further revealed that local precipitation led to a decrease in bike ridership, while higher
temperatures increased it [70]. Additionally, Jia et al. (2019) found that weather conditions, such
as rain, sun, and cloud cover, along with temperature and wind, solely partially explained
variations in bike ridership across different stations [71].

2.1.6 Summary of Methodologies

To identify patterns in micromobility usage and the factors that influence it, researchers have
developed different spatial and temporal models. These models typically fall into three groups:
non-parametric statistical models, parametric statistical models [72], and machine learning
techniques [73], as shown in Table 2-1.

Table 2-1 A summary of methodologies related to the patterns of micromobility usage

Category Method Mode type Topic Sources
Non- E-scooter
) Descriptive statistics ) Usage pattern [8, 17, 36, 67]
parametric and bike
statistical E-scooter, User preference and [30, 31, 33, 34, 38,
Preference survey ) ) ]
models bicycle influential factor 40, 41, 65, 74-77]
Mixed Logit model, E-scooter [32, 33, 35, 40,
o ] ] User preference
logistic regression and bike 74-76, 78, 79]
OLS regression, Usage pattern, user [7, 8,11, 16, 25,
Parametric . ) E-scooter _ .
o Poisson regression, . preference, influential 43,47, 55, 57, 65,
statistical and bike .
GAM factor, demand prediction 67,77, 80]
models )
) ) E-scooter Influential factor and [5, 12, 36,44, 45,
Spatial autoregression ) o
and bike demand prediction 55, 81]
Eigen decomposition Bicycle Usage pattern [51]
Graph-based analysis Bike Usage pattern [82, 83]

Usage pattern and
LASSO regression Bicycle . s p' [4, 68, 70]
influential factor

Classification (random Feature importance and
. n ( Bicycle portane [14, 81, 83]
Machine forest, decision tree) demand prediction
learning Cluster analysis Bike Influential factor [13, 49, 71, 84]
techniques Hybrid cluster-
Y ) Bike Usage pattern [22]
regression
Multi-layer neural Usage pattern and demand
Y Bike ge paferna [6, 85-89]
network prediction




Non-Parametric Statistical Models

This method encompasses simple descriptive statistics and user preference surveys to examine
general patterns of micromobility usage and their influencing factors. Descriptive statistics are
often used to aggregate micromobility usage data by time and space to analyze spatiotemporal
variations. For example, McKenzie (2019) applied this method to compare scooter-sharing and
bike-sharing usage patterns in Washington, DC, highlighting their similarities and differences
[17]. User preference surveys, on the other hand, are typically conducted online or on-site to
collect data on users’ attitudes toward micromobility. Researchers then used descriptive statistics
[31, 34] or parametric regression models [30, 40] to identify crucial factors influencing
micromobility use. For instance, Sanders et al. (2020) found that e-scooters were considered a
more convenient mode of transportation in hot weather compared to walking in Tempe, Arizona,
using preference surveys and descriptive statistics [34]. Similarly, Fishman et al. (2015) used
logistic regression on survey data to show that attitudes toward helmet laws, previous cycling
experience, and convenience were significant factors in bike-sharing membership in Australia
[40].

Parametric Statistical Models

This method primarily involves regression-based techniques, such as the Logit model [76],
logistic regression [33], ordinary least squares regression [7], Poisson regression [11],
generalized additive model [25], spatial regression models [45], eigen decomposition [51] and
graph-based analysis [82]. Regression models are widely used to identify crucial factors affecting
micromobility usage, with ridership data as the dependent variable and potential influencing
factors as independent variables. In contrast, eigen-decomposition and graph-based methods are
commonly used to uncover usage patterns. For instance, Beairsto et al. (2022) applied linear
regression to determine significant factors affecting station-level bike usage, identifying job
density, slope, car ownership, income deprivation, and proximity to transit stations as the most
important variables [7]. Xu et al. (2019) used eigen decomposition to reveal the temporal
dynamics of shared bike usage and found strong correlations with built environment factors such
as residential and commercial density, and the number of road intersections [51]. Yang et al.
(2019) used a graph-based approach to analyze dockless bike-sharing patterns, offering insights
into urban flow dynamics in Nanchang, China [82].

Machine Learning Techniques

This method encompasses regression [4], classification [81], and clustering [ 13] models, and
multi-layer neural networks [6] and deep learning models [86, 89]. Regression and classification
models are typically used to identify key factors influencing micromobility usage, while
clustering models help reveal and compare station-level usage patterns. Neural networks and
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deep learning models are mainly employed for accurate spatiotemporal predictions of
micromobility usage. For instance, Guidon et al. (2020) employed a random forest to identify
employment, proximity to the main train station, the number of bars and restaurants, and
population as the most influential factors on bike demand in Zurich and Berne [81]. Kim (2018)
applied clustering analysis to group bicycle stations based on their similar characteristics and
examined the effects of weather and calendar events on bike trip patterns in South Korea [13].
Xu et al. (2021) developed a context-aware spatiotemporal multi-graph convolutional network to
achieve real-time forecasting of dockless scooter-sharing demand by incorporating spatial
adjacency, functional similarity, demographic similarity, and transportation similarity [89]. While
machine learning and deep learning methods often achieve higher accuracy than traditional
statistical models, they require more data and computational power and tend to have lower
interpretability and explainability [83].

2.2 Relationship between Micromobility and Public Transit

The literature has indicated that the relationship between micromobility and public transit can be
complementary [90] or substitutionary [91]. In other words, micromobility services may either
increase or decrease transit accessibility and ridership. However, this dynamic is not always
straightforward. For instance, some studies [1, 92] reveal that integrating micromobility with
public transit can enhance accessibility, complement rapid transit, and encourage a shift away
from private car use. On the other hand, Schwinger et al. (2022) found that micromobility
devices were often used in areas where public transit was not a viable option, but they also
competed with transit in regions with high transit availability. Since almost no studies have been
found to indicate a lack of relationship between micromobility and public transit, our goal is to
present a comprehensive overview of their relationships and explore the conditions under which
micromobility complements public transit and when it competes with it.

2.2.1 Review of Micromobility to Complement Public Transit

Previous studies [1, 19, 29, 92] have shown that integrating micromobility with public transit
systems can enhance transit accessibility and connectivity, complement public transportation,
and promote modal shifts away from private car use. While Reck et al. (2021) found that modal
shifts varied based on travel distance and time of day [93], shared bikes and e-scooters have
consistently been shown to positively impact public transit usage [90, 94] and reduce private car
trips [95]. Furthermore, evidence suggests that these micromobility options can also replace
walking for first- and last-mile travel [31, 34, 94], making bike- and scooter-sharing effective
strategies for reducing urban congestion and improving mobility [93].
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Transit Accessibility Improvement

Cycling, being faster than walking, can extend access to public transit by up to 3 miles [96-98].
Integrating bike-sharing systems with public transit is an efficient way to expand service areas
and improve transit accessibility [99]. Since access by cycling is heavily dependent on bike
network connectivity [100], it is crucial to provide a connected, safe, and comfortable riding
environment for cyclists to enhance the effectiveness of bike-sharing in promoting transit
accessibility [77, 78, 101, 102]. High traffic stress, characterized by heavy traffic volumes, high
speeds, and safety concerns, can hinder the contribution of bike-sharing systems to transit
accessibility [103]. Improving the first- and last-mile bike connectivity to public transit can
increase accessible destinations and opportunities, thereby upgrading transit accessibility and
service levels[104]. Similarly, e-scooters also play a significant role in enhancing public transit
accessibility. For instance, Liu and Miller (2022) found that dockless scooters in Columbus,
Ohio, increased transit accessibility for multimodal public transit trips, particularly in the first
mile, with the greatest impact observed in the city center due to the dense distribution of scooters
and bus stops [105]. However, the contribution of e-scooters to transit accessibility was uneven
across different areas, with a small number of e-scooters responsible for most of the accessibility
gains [105].

Transit Ridership Increase

In addition to improving transit accessibility, numerous studies have explored the relationship
between bike-sharing systems and public transit, in terms of ridership changes. Bike-sharing
systems are often crucial in solving the first- and last-mile problem by connecting shared bikes
with bus and rail transit [56, 84, 106-108]. For instance, Fan et al. (2019) that over 80% of public
transit users in Beijing, China, used walking and shared bikes as feeder modes [79]. Jin et al.
(2018) and Lin et al. (2020) identified positive correlations between subway and bus ridership
and dockless bike-sharing ridership in Beijing, indicating the complementary role of bike-sharing
systems in public transit [84, 108]. In Shanghai, China, dockless bike-sharing was found to be
the second most popular mode for connecting to the metro, often replacing walking and bus trips
[109]. In Washington DC, Yan et al. (2021) found that about 10% of e-scooter trips were used to
connect with the metro [110]. Additionally, the Transportation Research Board’s (TRB) Transit
Cooperative Research Program (TCRP) Report 188 on “Shared Mobility and the Transformation
of Public Transit” examined how public transit interacted with bike-sharing systems, finding that
increased shared bike usage positively correlated with more frequent transit use via a
complementary relationship with public transit [111]. These studies suggest a strong synergy
between bike-sharing systems and public transit [106, 112, 113].
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First-Mile and Last-Mile Connectivity to Transit Stops

Access to public transit is often determined by the willingness to walk or cycle to nearby stops
[114]. Since micromobility services are an effective solution for the first- and last-mile problem
[76, 115] — the distance between home or work and public transit that is too far to walk [116-118]
— bike- and scooter-sharing schemes provide access to mass transit options including trains,
metros, and buses, enabling users to start or finish longer transit trips [119]. Studies have also
found a strong correlation between the density of transit stops and e-scooter usage [16, 37, 120].
For example, Lime, a major dockless scooter provider, reported that 50% of riders used scooters
to reach public transit in June 2019 [105]. Yang et al. (2019) observed that a new metro line in
their study area increased nearby dockless bike-sharing ridership by 28%, with a greater impact
on areas closer to the new metro stops [82]. Similarly, Saberi et al. (2018) also identified an
increase in bike usage during metro strikes [117]. Other studies have explored how bike and
metro trips were combined [121, 122], how this combination varied across socioeconomic
groups [123], and how pricing strategies could be developed to leverage the interdependencies
between bike-sharing and metro systems [80, 112].

2.2.2 Review of Micromobility to Compete with Public Transit

Although many studies have found a positive correlation between bike-sharing trips and public
transit usage, some researchers have questioned this conclusion [124]. For instance, Tavassoli
and Tamannaei (2020) observed that shared bikes can either increase or decrease public transit
ridership, depending largely on how effectively they were integrated into the transit system [2].
When designed and planned as a feeder mode, shared bikes can promote public transit usage
rather than compete with it. However, in practice, not all bike-sharing systems are well-
integrated with public transit. Schwinger et al. (2022) found that micromobility services might
compete with public transit in areas where transit options were already concentrated [125]. A
meta-analysis of 38 studies on e-bike usage [91] revealed that e-bikes most frequently substituted
for public transit (33%), followed by conventional bicycles (27%), automobiles (24%), and
walking (10%). This indicated that micromobility devices like e-bikes were more likely to
compete with public transit systems.

This shift from public transit to micromobility is particularly common for short travel distances
[126]. For instance, individuals living near bike stations might prefer to ride shared bikes for
short trips rather than take metro or bus lines, especially in areas with limited public transit
coverage [84]. This modal shift was primarily because shared bikes provided a faster and more
convenient option for door-to-door trips over short distances than public transit [108]. Luo et al.
(2021) also found that e-scooter services could compete with bus services, reducing bus ridership

in Indianapolis [127]. Shaheen et al. (2013) noted that shared bikes can compete not only with
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public transit but also with private cars and taxis [128]. Additionally, Gebhart and Noland (2014)
found that on weekends and public holidays, there was a decrease in bike trips to metro stops and

an increase in trips away from them [8].

2.2.3 Summary of Methodologies

To investigate the relationship between micromobility and public transit, scholars have mainly
relied on four main methodologies: survey analysis [74], scenario modeling [129], spatial data
analysis [125], and parametric statistical analysis [91]. Table 2-2 provides a comprehensive

summary of the methodologies used to determine whether shared micromobility trips function as

access or egress for public transit [1].

Table 2-2 A summary of methods to reveal the relationships between micromobility and transit

. Relationship with
Category Method Mode Location ) ) Sources
public transit
Survey, Logit model  E-scooter Singapore Model shift [29]
E-scooter ) ) Accessibility
Survey ‘ California Bay Area ) [3]
and bike increment
Los Angeles,
< _ Atlanta, Accessibility [96]
urvey icycle ) ) :
Minneapolis-St. increment
Survey
. Paul
analysis A bilit
Survey + Regression  Bicycle Seoul ceessIbHitty [97]
increment
Survey Sharing  Washington DC, Modal shift [108]
bike Minneapolis
Survey Sharing Montreal, Toronto, Ridership increase or [128]
bike Washington D.C. decrease
Modeling 3 Bicycle San Diego Accessibility [99]
scenarios increment
Modeling 4 E-scooter Metro Manila, Accessibility [19]
scenarios and bike Philippines increment
Scenario Network planning E-scooter Palermo Accessibility [130]
. and bike increment
modeling o
Scenario planning Bicycle Bangalore, India Accessibility [50]
increment
Modeling 1 scenario Bicycle London Modal shift [117]
Intermodal planning Bicycle Santiago, Chile Ridership increment [129]
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Table 2-2 Continued

Relationship with

Category Method Mode Location ) ) Sources
public transit
Spatial match Bike Seoul Ridership increment [73]
Accessibility E-scooter Columbus, Ohio Accessibility [105]
measure increment
Netherlands, [2, 98,
Share of bike-and- Bike Germany, UK, Ridership increment 113,
ride Isfahan 122]
Spatial data Spatial match E-scooter Warsaw Ridership increment [92]
analysis Spatial match E-scooter Aachen Compete (downtown), [125]
and e-bike complement (other)
N .
Catchment area E-scooter Washington DC Competing and [110]
GIS complementary effects
Accessibility Bicycle Hamilton County, Accessibility [104]
measure Ohio increment
N o . . .
Catchment area Bicycle Cincinnati Expansion of transit [100]
GIS metropolitan area service coverage
Parametric 38 cities across
statistical i China, Europe,
_ Mixed Logit model ~ 1eCtric P Modal shift [91]
analysis bicycle North America,
Australia
Difference-in- Sharing Manhattan and A fall in bus ridership [106]
difference bike Brooklyn
Panel Model Bike Beijing Ridership increment [131]
Portland, Austin,
Log-log regression ~ E-scooter ~ Chicago, and New Modal shift [119]
York City
Difference-in- E-scooter Indianapolis, Compete (downtown), [127]
difference Indiana complement (other)
OLS regression Bike Washington, D.C. Ridership increment [112]
The hurdle model E-scooter Washington D.C. Complement [37]
OLS regression Bike Poznan, Poland Positive effects for [90]
short and medium trips
Logistic model Bike Beijing Ridership increment [123]
Survey Analysis

This method involves designing questionnaires to gather respondents’ practices or preferences
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regarding the interaction between micromobility services and public transit systems. For
instance, Shaheen et al. (2013) conducted an online survey with 10,661 respondents across
Montreal, Toronto, the Twin Cities, and Washington D.C. The survey revealed that 50%, 44%,
and 48% of respondents in Montreal, Toronto, and Washington D.C., respectively, reported a
reduction in rail use due to the availability of shared bikes, while 27% to 40% used bikes to
complement public transit [128]. In contrast, 15% of respondents in the Twin Cities reported
increased rail use, with only 3% noting a decrease [128]. Additionally, survey analysis is often
paired with regression analysis to investigate the relationship between micromobility and public
transit. For instance, Cao et al. (2021) conducted a preference survey of e-scooter users in
Singapore and used mixed logit models to examine factors influencing the choice between e-
scooters and public transit [29].

Scenario Modeling

This approach systematically optimizes the integration of micromobility services and public
transit systems under different theoretical scenarios. As revealed in the literature, scenario
modeling encompasses scenario set-up and analysis [19, 117] and scenario planning [130]. For
instance, Hasselwander et al. (2022) developed four scenarios involving different levels of
integration between public transit, paratransit, and micromobility. They found that combining
paratransit with public transit could nearly triple transit accessibility from 23.9% to 65.0%, and
adding e-scooters and bicycles as feeder modes could increase this even further to 97.9 % and
99.9 %, respectively [19]. Saberi et al. (2018) analyzed the impact of public transit disruption on
shared bike usage and found that it increased trip duration and number by 88% and 85%,
respectively [117]. Sagaris et al. (2017) proposed a participatory planning approach to enhance
the integration of bikes with public transit to improve low-cost alternatives for individual and
feeder trips [129].

Spatial Data Analysis

This method uses spatial data in combination with GIS spatial analysis [110], spatial matching
algorithms [92], accessibility measures [104] to determine if micromobility trips occur within
transit catchment areas [1]. Specifically, Yan et al. (2021) analyzed e-scooters and transit usage
in Washington D.C., revealing that e-scooters both competed with and complemented public
transit in different locations [110]. Nawaro (2021) applied spatial matching methods to trip-level
data from Warsaw and found that e-scooters complemented rapid public transit and could help
solve the last-mile problem [92]. Zuo et al. (2020) introduced an “accessibility measure” to
compare pedestrian and bicycle access to public transit in Hamilton County, Ohio, finding that
cycling could triple transit access distance and increase job accessibility by 43.7% [104].
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Parametric Statistical Models

This approach uses various regression models, such as mixed Logit [91, 123], ordinary least
square regression [90, 112], and difference-in-difference model [106, 127], to examine the
relationship between micromobility and public transit, either positive or negative. For instance,
Zhao and Li (2017) used a logistic model to study the connection between bicycles and metro
systems, finding travel distance as the key factor influencing bicycle use for transit connections
[123]. Ma et al. (2019) found a positive correlation between bike ridership and transit usage, with
a 10% increase in annual shared bike ridership contributing to a 2.8% rise in daily metro
ridership [112]. Campbell and Brakewood (2017) used a difference-in-difference model to assess
the impact of New York City’s bike-sharing program on bus ridership and found that every 1,000
docked stations along a bus route correlated with a 2.42% drop in daily bus trips, suggesting that
some riders were substituting shared bikes for bus trips [106].

2.3. Data Sources and Reports for Micromobility Analytics

In this subsection, we identified publicly available data sources, along with survey and non-
survey reports, that were relevant to micromobility analytics. These resources were used to
examine patterns of micromobility usage and its relationship with other transportation modes.
We began by exploring publicly accessible data to gain an understanding of the types of data and
reports available on micromobility usage. Table 2-3 provides a summary of these data sources
and reports across the United States.

Table 2-3 A summary of data and survey & non-survey reports related to micromobility usage

Category Mode Program Location Year Sources
. . i 5
Scooter Chicago Pilot Chicago 2019-2020
Program 2023 Bird®, Lime*, Spin®
. Bicycle Transit . . 6
Trip data Bike Philadelphia 2015-2023
Systems
Bike Citi Bike New York City 2013-2023 7
Bike Capital Bikeshare Washington D.C. 2010-2023 8

https://www.chicago.gov/city/en/depts/cdot/supp info/escooter-share-pilot-project.html

https://mds.bird.co/gbfs/chicago/gbfs.json

https://data.lime.bike/api/partners/v1/gbfs/chicago/gbfs.json

https://gbfs.spin.pm/api/gbfs/v1/chicago territory/gbfs

https://www.rideindego.com/about/data/

https://citibikenyc.com/system-data

https://capitalbikeshare.com/system-data
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Table 2-3 Continued

Category Mode Program Location Year Sources
Trip data Bird®, Capital
) ) Bikeshare'”,
Bike, Scooter N/A Washington D.C. 2023
Lime'!, Lyft'?,
Helbiz'3, Spin'4
Bike, Scooter N/A United States 2015-2020 15
Survey Bike Citywide Mobility o0 vork city  2017-2020 16
reports Survey
Scooter N/A Tempe 2018 [34]
Scooter Chicago Pilot Chicago 2019-2020 17.18
Program

Montreal, Toronto,

Bike N/A Washington D.C. 2010-2012 [75, 108, 128]
Twin Cities

Bike N/A Los Angeles, Atlanta, 2011 [96]
Minneapolis-St. Paul
Bike N/A Seattle, Baltimore 2002-2005 [38]
Bike Citi Bike New York 1980-2021 19,20
Non-
survey Scooter Chicago Pilot Chicago 2018 2z
Program
reports
Micromobility N/A United States 2018-2019 22.23.24

° https://gbfs.bird.co/de

10 https://gbfs.capitalbikeshare.com/gbfs/gbfs.json

https://data.lime.bike/api/partners/v1/gbfs/washington_dc/free_bike status.json

https://s3.amazonaws.com/lyft-lastmile-production-iad/lbs/dca/free_bike_status.json

https://api.helbiz.com/admin/reporting/washington/gbfs/gbfs.json

https://web.spin.pm/api/gbfs/v1/washington dc/free_bike_status

https://data.bts.gov/stories/s/Bikeshare-and-e-scooters-in-the-U-S-/fwes-jprij/

https://www.nyc.gov/html/dot/html/about/citywide-mobility-survey.shtml

https://www.chicago.gov/content/dam/city/depts/cdot/Misc/EScooters/2021/2020%20Chicago%20E-scooter%20Evaluation%?20-%20Final.pdf

https://www.chicago.gov/content/dam/city/depts/cdot/Misc/EScooters/E-Scooter Pilot Evaluation_2.17.20.pdf

https://www.nyc.gov/html/dot/html/bicyclists/cyclinginthecity.shtml

20 hitps://citibikenye.com/system-data/operating-reports

2l https: depaul s-and-inst i stitute-fc li devel research-and-publications/D E-ScooterScenariosMicroMobilityStudy FINAL 20181212.pdf
22 hitps://nacto.org/wp-content/uploads/2019/04/NACTO_Shared-Micromobility-in-2018_Web.pdf

23 https://nacto.org/shared-micromobility-2019/

24

https://nacto.org/wp-content/uploads/2020/08/2020bikesharesnapshot.pdf
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2.3.1 Overview of Data Types and Sources

As shown in Table 2-3, we identified publicly available trip-level data for four U.S. cities: New
York City, Washington DC, Chicago, and Philadelphia. These data include details such as trip_id,
trip_duration, start time, end time, start station, start lat, start lon, end station, end lat, and
end lon. Such detailed trip-level data is invaluable for analyzing and estimating micromobility
usage patterns across different cities, including spatiotemporal distribution, trip origins and
destinations, trip durations and distances, and trip purposes.

2.3.2 Overview of Survey Reports

As shown in Table 2-3, two program-level survey reports from New York and Chicago capture
users’ attitudes and feedback on micromobility programs. These surveys focus on aspects such as
trip purpose, modal shifts, and user demographics, complementing the insights that trip-level
data alone cannot provide. For example, in Chicago’s 2020 Pilot Program, e-scooter riders were
predominantly male, white, aged 25-34, and held a bachelor’s degree. About one-third of riders
reported using e-scooters “sometimes” or “often” for social visits, recreational activities, or
household errands. If e-scooters were unavailable, the alternate modes of choice would be
walking or biking (53.2%), driving or ride-hailing (29.5%), transit (11.6%), or canceling the trip
(4.5%). Additionally, several other survey reports have been conducted to analyze user
preferences and suggestions regarding micromobility programs, as detailed in Tables 2-1, 2-2,
and 2-3.

2.3.3 Overview of Non-Survey Reports

Unlike survey reports, non-survey reports focus on broader trends & patterns in micromobility
usage. These reports cover aspects such as changes in the types and numbers of micromobility
systems, spatial distribution of devices, service and parking areas, shifts in usage, typical trip
patterns (including average distance and modal shifts), general user characteristics, and pricing.
For instance, the National Association of City Transportation Officials (NACTO)* reported that
in 2019, people took 136 million trips on shared bikes and e-scooters, marking a 60% increase
from 2018. The report also noted that bike and e-scooter trips often replaced private car trips,
with the average trip lasting 11-12 minutes and covering 1-1.5 miles.

% https://nacto.org/shared-micromobility-2019/
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2.4. Summary and Research Gap

In summary, we provided a comprehensive overview of micromobility usage patterns and their
relationship with public transit across various cities, detailing methodologies and key findings.
Additionally, we identified publicly available data sources, as well as survey and non-survey
reports, which were potentially helpful to develop micromobility analytics. Before identifying
the main gaps and developing a modeling framework, we summarized the key findings below:

Micromobility usage patterns: Micromobility usage exhibits notable seasonal, temporal, and
geographical variations, with higher usage in summer, on weekdays, and during rush hours. Most
trips originate and terminate near transit stops, shopping centers, manufacturing plants, and
recreational areas, indicating that micromobility is primarily used for commuting and
recreational purposes. Demographically, younger, male, higher-income, and more educated
individuals in downtown areas are more likely to use micromobility services. Studies have also
shown that factors, including population density, employment rate, and bike network density
positively correlate with micromobility usage. Methodologically, researchers have employed
non-parametric and parametric statistical models, as well as machine learning and deep learning
approaches, to analyze these patterns. However, there is a big gap in collecting related data and
developing a comprehensive framework for micromobility analytics, particularly for Florida.

Relationship between micromobility and public transit: Different methodologies, including
survey analysis, scenario modeling, spatial data analysis, and regression models, have been
applied to explore the relationship between micromobility and public transit. Findings suggest
that micromobility can enhance public transit accessibility and connectivity but may also
compete with or complement it in terms of ridership. Travel distance has been identified as a
critical factor influencing mode choice between transit stops and home or workplace. However,
the nature of the relationship — whether complementary or substitutive — remains unclear,
particularly in Florida, where there has been limited investigation.

Data availability and research gaps: We have identified trip-level data sources from cities like
Washington DC, New York, Chicago, and Philadelphia, along with several related survey and
non-survey reports. These resources provide valuable insights for developing micromobility
analytics. However, there is a significant lack of data collection and model development specific
to Florida. If trip-level and survey data from Florida become available, the modeling framework
is expected to effectively reveal micromobility usage & crash patterns and elucidate the
relationship between micromobility and public transit, for instance, identifying conditions under
which they complement or compete, and the impact of various factors on these dynamics.
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3. Modeling Framework of Micromobility Analytics
3.1 Research Objectives

To address the research gaps identified in Section 2.4 and fulfill the project’s objectives, this
project aims to develop a modeling framework for micromobility analytics. The framework will
be used to understand micromobility usage patterns and crash events, uncover their underlying
causes, and explore the relationship between micromobility and other transportation modes,
particularly public transit. The findings are expected to offer valuable insights for micromobility
facility planning, including device and location choices and infrastructure improvements, to
increase micromobility usage, reduce crash incidents, and enhance modal integration with public
transit in Florida.

To achieve this goal, the project will focus on the following four sub-objectives:

(1) Identify service areas and usage patterns: To analyze and understand the typical service
areas and usage patterns of micromobility systems in Florida, along with their underlying
causes.

(2) Examine relationships with other modes: To investigate how micromobility usage
interacts with other transportation modes, with a particular emphasis on public transit, as
well as potential influential factors.

(3) Analyze crash events: To characterize the general patterns of micromobility-related crash
events in Florida and identify key underlying causes.

(4) Provide planning recommendations: To provide recommendations for micromobility
facility planning aimed at encouraging usage, reducing crash events, and promoting
integration with public transit in Florida, based on the above patterns and relationships.

3.2 Development of Modeling Framework

In this section, we proposed a modeling framework for micromobility analytics, consisting of
three key modules: data collection and acquisition, data aggregation and analysis, and pattern
recognition and analysis. As shown in Figure 3-1, this framework outlined the main methods and
objectives for these tasks, providing evidence-based guidance for the FDOT Central Office,
Districts, and local transit agencies to encourage micromobility usage, reduce crashes, promote
modal integration with public transit, and enhance community mobility.
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Figure 3-1 Overview of the proposed modeling framework for micromobility analytics

3.2.1 Module 1: Data Collection and Acquisition

As mentioned earlier, collecting trip-level data is essential for analyzing micromobility usage
patterns, including spatiotemporal distribution, trip origins and destinations, and trip durations.
In parallel, we designed online preference surveys to gather user feedback on micromobility
usage, which allowed us to capture user demographics, trip purposes, and potential modal shifts.
These survey data effectively complemented the trip-level data, providing a more comprehensive
understanding of micromobility usage patterns. Additionally, we gathered related public transit
information, including available routes and ridership data, to explore the relationship between
micromobility and public transit. Crash event data related to micromobility was also collected to
analyze crash patterns in Florida. To further explain micromobility usage, crash patterns, and
their relationship with public transit, we collected data on weather conditions, zonal built
environment and socioeconomic factors, points of interest, and street view images. Gainesville
and Jacksonville, two typical Florida cities, were selected as case studies for data collection.

3.2.2 Module 2: Data Aggregation and Analysis

Based on the data collected in Module 1, we employed data aggregation, visualization, survey
analysis, and spatial data analysis to characterize micromobility usage patterns, crash patterns,
and the relationship between micromobility and public transit. We first aggregated trip-level data
and crash data across time and space to identify their spatiotemporal patterns, average trip
durations and distances, and hotspots for trip origins and destinations. Survey analysis was then
used to determine trip purposes, user demographics, and mode choices. In addition to the above
survey analysis, we applied spatial data analysis, including spatial matching algorithms, to the
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combined micromobility usage and public transit network data. This helped us assess whether
micromobility services competed with or complemented public transit based on the spatial
comparison between their catchment areas and how this relationship varied with travel distance.

3.2.3 Module 3: Pattern Recognition and Underlying Causes

Based on the data collected in Module 1 and the analysis conducted in Module 2, we expanded
our efforts to further investigate micromobility usage patterns and crash patterns. This involved
additional data collection and analysis to uncover patterns and underlying causes, ultimately
leading to recommendations for micromobility facility planning. We specifically examined the
relationship between micromobility usage, crashes, and nearby infrastructure characteristics,
including the spatiotemporal availability of micromobility devices, the spatial distribution of
docked stations, street features (e.g., points of interest, street view images), and the riding
environment. Methodologically, we used parametric statistical analysis and machine learning
models, such as decision trees, to assess how various factors affected usage and crash patterns.
Finally, we offered evidence-based recommendations for transportation infrastructure planning,
including aspects such as device and location selection, infrastructure improvements, bike lane
design and planning, service and geofenced areas, the placement of docked stations, and the
optimal number of micromobility devices in different temporal and spatial contexts.
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4. Data Collection and Acquisition

In this project, we collected the aggregated data of micromobility usage in four Florida cities -
Tallahassee, Jacksonville, Orlando, and Gainesville, the individual trip-level data of scooters in
Jacksonville and Gainesville, public transit network data in Jacksonville and Gainesville, the
micromobility-related crash data in Florida, and the survey data in Jacksonville, Orlando, and
Gainesville, as well as the data on potential influencing factors. As shown in Table 4-1, two cities
— Jacksonville and Gainesville, FL — have complete datasets, this research project typically
selected Jacksonville and Gainesville as case studies to demonstrate the modeling framework for
micromobility analytics. Overall, the six types of data were complementary to help reveal the
micromobility usage patterns, crash patterns, and their underlying causes, as well as their
relationship with public transit, and understand the status of micromobility systems in Florida.

Table 4-1 An overview of micromobility data sources and types in Florida

City Data type Data source

Tallahassee, Spatiotemporally aggregated data:

Orlando, 1) Type: E-bike and scooter Ride Report Platform:
Jacksonville, 2) Time: Quarterly data https://public.ridereport.com/gainesville
Gainesville 3) Space: Street-level mapped data
Jacksonville, Individual trip-level scooter data Data request to VeoRide vendors
Gainesville

Orlando,

Florida micromobility usage survey

Jacksonville, data Survey design, distribution, and collection
Gainesville
Jacksonville, Public transit route and network Florida Geographic Data Library:
Gainesville data https://fgdl.org/ords/r/prod/fgdl-current/catalog
Florida Florida crash event data related to Single Four Analytics Platform:
micromobility devices https://signal4analytics.com/
Spatial influencing factors: Florida Geographic Data Library:
1) Sociodemographics https://www.fgdl.org/metadataexplorer/explorer.jsp
Florida 2) Built environment attributes Florida's Geospatial Open Data:
3) Points of interest (POIs) https://geodata.floridagio.gov/
4) Street view images (SVIs) OpenStreetMap: https:// www.openstreetmap.org/

4.1 Data Type 1: Spatiotemporally Aggregated Data of Micromobility Usage

Spatiotemporally aggregated data of micromobility usage includes the quarterly aggregation of
ridership, trip duration, and trip distance, and the street-level aggregation of e-bike and scooter
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ridership. These data are publicly available only in four Florida cities, including Tallahassee?®,
Jacksonville?’, Orlando®®, and Gainesville?’, which offers valuable insights into the quarterly and
street-level patterns of micromobility usage in Florida. Taking Gainesville as an example, Figure
4-1 presents the format of the spatiotemporally aggregated datasets in Gainesville from 2021-Q2
to 2024-Q1.

()

Time Period  Median Trip Distance (miles) Median Trip Duration (minutes) Average Trip Distance (miles) Average Trip Duration (minutes) Average Trips per Day Total Distance (miles) Total MDS Trips

all il 6.9 1.53 12.3 418 659498 430600
2021-Q2 1.65 15.3 3.39 35.2 517 42034 12400
2021-Q3 1.15 8.4 1.83 16.2 664 112025 61100
2021-Q4 1.04 7 1.51 12 579 80725 53300
2022-Q1 0.95 6.5 14 11.2 428 53751 38500
2022-Q2 0.98 6.8 1.52 12.1 337 46534 30700
2022-Q3 0.9 6.9 1.25 10.7 341 39056 31400
2022-Q4 0.97 74 1.37 10.9 383 48303 35200
2023-Q1 0.95 6.4 1.37 10.3 360 44452 32400
2023-Q2 1 7 1.54 11.9 280 39307 25500
2023-Q3 0.93 6.7 1.35 10.2 401 49924 36900
2023-Q4 0.98 6.1 1.42 9.5 a7 61618 43300
2024-Q1 0.96 5.6 14 9.3 329 41768 29900
Segment Name Percentage of Matched Trips Count of Matched Trips Segment GeometryID
6.6 25,400 7fbB5267¢c1f23c8ed2e98edbIddd3971
Stadium Road 6.6 25,600 85f2cf16642b3ad13cd2d53a2c163791
Stadium Road 6.6 25,800 cd0b4d198c2505429004ata2d23878f7
Stadium Road 6.5 25,200 dbad48cebd0ce45185d383ca399c4385
Stadium Road 6.4 24,700 dfabbbbb9a20ed054837e8467f300c43
Stadium Road 6.3 24,600 0Zee7abf86beci6ZeaBBeci7ad07e3d6
Stadium Road 6 23,300 70b96b2552b9697ef488a2ed6163daf7
Museum Road 6 23,500 5fbdb5fecc3ab2e2d6d6aadd3ddbf5e6
Stadium Road 5.9 23,000 a5e0fd5279473468481e11e082f378d0
|Stadium Road 5.8 22,600 6e78035b0529¢5d8d6f4f35362450046

Figure 4-1 lllustration of the format of spatiotemporally aggregated data of micromobility usage
in Gainesville, FL: (a) quarterly aggregation and (b) street-level aggregation

4.2 Data Type 2: Individual Trip Data of Micromobility Usage

As the individual trip-level data of micromobility usage is not publicly available in Florida, we
made a data request to micromobility vendors and finally acquired the data of scooter usage from
Feb. 24" to Jul. 1%, 2023, in Jacksonville and from Jun. 6™, 2021, to Jan. 5*, 2024, in
Gainesville. Overall, the dataset in Jacksonville covers 26,900 shared trips while the dataset in
Gainesville contains 170,029 shared trips, and the data format of each trip is shown in Figure 4-

26 https://www.talgov.com/place/pln-scoot

27 https://dia.coj.net/ About-Downtown/COJ-Dockless-Mobility-Program

28 https://app.populus.ai/orlando/public/routes

2 https://public.ridereport.com/gainesville?x=-82.3329535&v=29.6491108&z=11.62&vehicle=e-bike
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2. These individual trip-level data are crucial to deriving more refined patterns of micromobility
usage, in terms of the spatiotemporal distributions of ridership, trip origin and destination, trip
duration and distance, etc.

Rides RideID Rides Ride Startet Rides Ride Started At LocalTime  Rides Ride Ended AtLocalTime  Rides Vehicle Type Rides LngPickup Rides LatPickup RidesLngDropoff Rides LatDropoff

21686462 1/5/2024 1/5/20241:13 1/5/20241:18 astro -82.324096 29.649767 -82.327118 29.651444
21686896 1/5/2024 1/5/20246:31 1/5/20246:49 astro -82.301832 29.659056 -82.345637 29.648678
21687825 1/5/2024 1/5/202411:29 1/5/2024 11:43 astro -82.335717 29.644037 -82.302681 29.857269
21687468 1/5/2024 1/5/2024 9:48 1/5/20249:53 astro -82.330616 29.850389 -82.341176 29.849047
21687476 1/5/2024 1/5/2024 9:50 1/5/2024 9:56 astro -82.301771 29.65907267 -82.2996685 29.66337033
21686434 1/5/2024 1/5/20241:01 1/5/20241:24 astro -82.325085 29.643962 -82.325082 29.643985
21687281 1/5/2024 1/5/2024 8:51 1/5/2024 8:53 astro -82.342847 29.634922 -82.343299 29.638738
21687619 1/5/2024 1/5/202410:36 1/5/2024 10:40 astro -82.350646 29.643001 -82.346709 29.643909
21687006 1/5/2024 1/5/20247:30 1/5/20247:34 astro -82.374597 29.617573 -82.380544 29.620739

Figure 4-2 Overview of individual trip-level data types

4.3 Data Type 3: Florida Micromobility Usage Survey Data

In addition to the above data types 1 and 2, we designed online preference surveys to gather
users’ and non-users’ opinions and experiences regarding micromobility usage in Florida. As
presented in the Appendix, the questionnaire contains three modules: micromobility preference
questions, modal integration with public transit, and sociodemographics, aiming to reveal the
patterns of micromobility usage that those trip-level data cannot do. Specifically, the survey data
can identify users’ characteristics, travel behaviors, trip purposes and frequencies, modal
integration with public transit, and ideas for possible strategies to improve micromobility usage.

In this project, we used two main methods to distribute and collect surveys: 1) We visited some
typical crowded places in Jacksonville, Orlando, and Gainesville, FL to ask people if they were
willing to participate in a survey about their micromobility experiences and opinions; 2) We
reached out to some micromobility vendors to request their help in distributing online surveys to
their user networks, such as registered members or app users. By the end of May 2024, we had
collected 235 fully completed surveys, primarily from these three Florida cities (shown in Figure
4-3), with 190 respondents being micromobility users and 45 non-users.
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Figure 4-3 Distribution of online preference surveys in Florida

4.4 Data Type 4: Public Transit Route and Network Data

This dataset, provided by the Florida Geographic Data Library (FGDL), includes all public
transit routes in Florida. To examine the relationship between micromobility and public transit,
we need to delineate the catchment areas for both micromobility usage and transit accessibility,
projecting them onto the same spatial scale. This allows us to evaluate whether micromobility
services fall within the catchment areas of transit routes and networks. Since individual trip-level
data is only available for two Florida cities — Jacksonville and Gainesville — we extract the
relevant transit route and network data for these cities and perform spatial overlap analysis with
the trip-level data to determine the relationship between their catchment areas. The results are
expected to offer crucial insights into how micromobility affects public transit accessibility and
connectivity in Florida.
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4.5 Data Type 5: Micromobility-Related Crash Event Data

Signal Four Analytics®°, developed by the GeoPlan Center at the University of Florida, offers
statewide traffic crash data sourced from the Florida Department of Highway Safety and Motor
Vehicles (FHSMV) and the Florida Court Clerks Comptrollers (FCCC). The dataset includes
information on crash events, drivers, non-motorists, passengers, vehicles, and violations. In this
project, we focused on statewide crash event data involving non-motorists to analyze
micromobility-related crash patterns. Each crash event is detailed with six groups of attributes:
general information (report number, time, latitude, and longitude of crash), crash characteristics
(type of crash, type of impact, and injury severity), road characteristics (road conditions and
infrastructure), environmental circumstances (road surface, weather, and lighting), and info of
non-motorists’ and drivers’ (demographics and driving behaviors). More detailed information on
each attribute can be found in the Data Directory®' provided by Signal Four Analytics.

Table 4-2 Information on each crash event in Florida
Attribute group Attribute name

General information 'REPORT NUMBER', 'CRASH YEAR', 'CRASH DATE AND TIME','COUNTY CODE',
‘CITY_CODE', 'COUNTY_NAME', 'CITY_NAME','S4_LATITUDE', 'S4_LONGITUDE',

Crash characteristics "S4_CRASH_TYPE', 'TYPE_OF_IMPACT', 'S4 CRASH TYPE SIMPLIFIED', 'S4 CRASH_SEVERITY',
'S4 CRASH SEVERITY DETAIL', 'S4 CITATION COUNT', 'S4 CITATION AMOUNT',
'54_PROPERTY_DAMAGE_AMOUNT', 'S4 VEHICLE_DAMAGE_COUNT', 'S4 VEHICLE_DAMAGE_AMOUNT',
'S4 TOTAL DAMAGE AMOUNT', 'S4 TRANSPORT BY EMS COUNT', 'S4 PROPERTY DAMAGE COUNT',
'S4 _TRANSPORT BY LAW ENFORCEMENT COUNT', 'S4 TRANSPORT BY OTHER COUNT',
'FIRST_MARMFUL_EVENT', 'TOTAL_NUMBER_OF VEHICLES', 'S4 _TRAILER_COUNT',
'54_MOTORCYCLE_COUNT', 'S4_MOPED_COUNT', 'S4_NON_MOTORIST_COUNT',
'54_BICYCLIST_COUNT', 'S4_PEDESTRIAN_COUNT', 'S4_DRIVER_COUNT',

'54 AGING DRIVER COUNT', 'S4 TEEMAGER DRIVER COUNT', 'SCHOOL BUS RELATED CODE',
'TOTAL_NUMBER_OF PERSONS', 'S4 NONE_INJURY COUNT', 'S4 INJURY COUNT',

'S4 POSSTBLE TNJURY COUNT', 'S4 NON TNCAPACITATING INJURY COUNT',
'54_INCAPACITATING_INJURY_COUNT', 'S4 _FATALITY_COUNT', 'SA_FATALITY_ WITHIN_3@_DAYS_COUNT',
'S4 _NON_TRAFFIC FATALITY COUNT', 'S4 PASSENGER COUNT', 'S4 UNRESTRAINED COUNT',
'S4 UNRESTRATMED INJURY COUNT', 'S4 UNRESTRAINED INCAPACITATING TWJURY COUNT',
'S4 _UNRESTRATNED FATALITY COUNT', 'S4 MOTORCYCLIST COUNT',

'S4_MOTORCYCLIST INCAPACITATING INJURY COUNT', 'S4 MOTORCYCLIST FATALITY COUNT',
'S4_IS_PEDESTRIAN_INVOLVED', 'S4 _PEDESTRIAN_INCAPACITATING_INJURY_COUNT',

'S4 PEDESTRIAM FATALITY COUNT', 'S4 IS BICYCLIST INVOLVED',
'54_BICYCLIST_INCAPACITATING_INJURY COUNT', 'SA_BICYCLIST_FATALITY_COUNT®,

Road characteristics 'RURAL OR URBAN', 'OM STREET ROAD HIGHWAY', 'STREET ADDRESS NUMBER',
'FEET_FROM_TINTERSECTION', ‘DIRECTION_FROM INTERSECTION', 'TYPE OF INTERSECTION',
'FROM INTERSECTION OF', 'ROAD SYSTEM IDENTIFER', 'TYPE OF SHOULDER',
"ROAD_CIRCUMSTANCES 1', 'LOCATION', 'INTERCHANGE FLAG', 'JUNCTION FLAG',
‘54 IS _INTERSECTION RELATED',

Environmental 'LIGHT CONDITION', 'S4 DAY OR NIGHT', 'WEATHER CONDITION',
circumstances "ROAD_SURFACE_CONDITION', 'ENVIRONMENT CIRCUMSTANCES 1,
. 9
Non-motorists ‘D1 DR_AGE3', 'D1_DR FRST DR_ACTN CD', 'D1 DR_SUSP ALC_USE CD','DL DR _SUSP_DRUG USE CD',
behavi 'D2_DR_AGE3', 'D2_DR _FRST DR_ACTN CD', 'D2_DR_SUSP_ALC_USE CD','D2 DR _SUSP_DRUG_USE_CD'
chaviors 's4 IS CMV INVOLVED', 'S4 IS DISTRACTED', 'S4 IS DRUG RELATED',

'S4 TS HIT AND RUN', 'SA TS LANE DEPARTURE RELATED', 'S4 TS SPEEDING RELATED',

30 https://signal4analytics.com/assets/files/S4 Data_Dictionary.pdf

31 https://signal4analytics.com/assets/files/S4 Data_Dictionary.pdf
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Table 4-2 Continued
Attribute group Attribute name

., ;
Driver’s behaviors 'LOCATION AT TIME OF CRASH CODE', 'ACTION PRIOR TO CRASH CODE',
"NON_MOTORIST DESCRIPTION CODE', 'CITY', 'STATE', 'ZIP CODE', 'SEX',
'SUSPECTED ALCOHOL USE CODE®, 'ALCOHOL TESTED CODE®,
' ALCOHOL_TEST_TYPE_CODE', 'ALCOHOL_TEST RESULT',
'BLOOD_ALCOMOL_CONTENT', 'SUSPECTED DRUG_USE_CODE', 'DRUG_TESTED CODE',
'DRUG_TEST_TYPE_CODE', 'DRUG_TEST RESULT', 'INJURY SEVERITY',
"EMS_TRANSPORT_TYPE', 'NON_MOTORIST ACTIONS CIRCUMSTANCES 1',
"NON_MOTORIST ACTIONS CIRCUMSTANCES 2', 'SAFETY EQUIPMENT CODE 1',
"SAFETY EQUIPMENT CODE 2', 'S4 AGE AT TIME OF CRASH',
"s4 IS ALCOMOL RELATED', 'S4 IS DRUG RELATED', 'S4 IS AGING', 'S4 IS TEENAGER'

4.6 Data Type 6: Data of Different Influential Factors

Finally, we collected data on different spatial influencing factors, such as sociodemographics,
built environment attributes, points of interest (POls), and street characteristics, to help explain
the patterns of micromobility usage and crashes in Florida. These factors were chosen based on
previous studies suggesting the significant impacts of sociodemographics [20, 21], ambient built
environment [51, 55], POI [132, 133], and street characteristics [134] on micromobility usage
and crashes. Using data from the Florida Geographic Data Library*? and other sources*?, we
selected sociodemographic variables like population density, the ratio of males, the ratio of
whites, median age, average household size, and housing unit density. Built environment
attributes included land use diversity, bike lane density, transit route density, and road network
density. We also considered POIs, comprising 84 types of amenities (i.e., school, bar, parking,
restaurant), and street characteristics derived from street view images (SVIs). More detailed
information on each influencing factor is presented in Section 6.1. We then examined the
relationship between these factors and micromobility usage and crash patterns to identify key
underlying causes, providing insights into facility planning to improve micromobility systems in
Florida.

32 https://www.fgdl.org/metadataexplorer/explorer.jsp

33 https://geodata.floridagio.gov/
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5. Patterns of Micromobility Usage in Florida

In this section, we applied descriptive statistics, survey analysis, geospatial data analysis, and
cluster analysis on the quarterly and street-level aggregated data, individual trip-level data, and
survey data to reveal micromobility usage patterns in Tallahassee, Orlando, Jacksonville, and
Gainesville, FL. Additionally, we examined travel behaviors, trip characteristics, users’
sociodemographics, and spatiotemporal variations.

5.1 Travel Behaviors of Micromobility Usage

Using the survey data, we explored the patterns of people’s travel behaviors in terms of modal
choices between micromobility and other modes of transportation and motives and barriers for
using micromobility as a travel choice.

5.1.1 Modal Choices

Figure 5-1 illustrates the probability distributions of trip frequency across different modes of
transportation. Driving and public transit are the two most widely used modes, with over 50% of
survey respondents using them at least 2-3 times per week. For micromobility options such as
bikes and scooters, nearly 50% of survey respondents have used them at some point, though with
varying trip frequencies: about 12%-20% ride a bike or scooter daily, 7%-12% 2-3 times per
week, 8% once a week, and 15%-20% 2-3 times per month. Overall, people would prefer driving
or using public transit regularly, while micromobility options like bikes and scooters serve as
important complementary modes for covering distances and accessing areas less reachable or
less convenient by driving and public transit.
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Figure 5-1 Probability distribution of trip frequency using different modes of transportation

5.1.2 Barriers to Ride Micromobility (For Non-Users)

Since some survey respondents had never ridden a bike or scooter, we asked them why they did
not use micromobility and ranked the possible barriers in Figure 5-2. The top three barriers
identified were “too expensive to rent and ride” (18 out of 45 non-users), “fear of frequent bike
or scooter theft” (18 out of non-users), and “fear of conflicts with automobiles” (14 out of 45
non-users). Thus, travel costs and safety concerns are the two primary factors impeding non-
users from riding bikes or scooters.
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Why People Do Not Use Micromobility

Too expensive to rent and ride
Fear of frequent bike/scooter theft 4
Fear of conflicts with automobiles
Weather {1

oo far to get to most destinations 4

Lack of bike lanes or safe routes

Categories

Lack of safe bicycle/scooter storage at destinations 1

Geographic barriers {i_e_, hills, slopes, bridges) 4

| don't know how to ride 4

Lack of adequate parking space at destinations |

Others (No separate trail, Not available, No idea of service areas) 1

Lack of informaticn on safe trip 1

T
0o 25 50 ia 0.0 125
Counts

Figure 5-2 Barrier rankings of why people do not ride micromobility

5.1.3 Motives to Ride Micromobility (For Users)

For micromobility users, we inquired about their reasons for using bikes or scooters to identify
their motivations. Figure 5-3 illustrates and ranks these motives. The top four reasons were “fun”
(82 out of 190 users), “faster travel time” (73 out of 190 users), “cost-effectiveness” (58 out of
190 users), and “exercise and fitness” (57 out of 190 users). Therefore, decision-makers and
urban planners can encourage more micromobility usage by reducing travel times through the
strategic placement of shared bikes or scooters near common trip origins and destinations and by

lowering travel costs.

Why People Use Micromobility

Fum

Faster Travel Time

Cost-effectiveness

Exercise and Finess

Categories

Reduce my Environment Footprint

Mental Health and Wellness

Others (ie., Parking, Already owned, To leam)

Figure 5-3 Motives of users to ride micromobility
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5.1.4 Factors Restricting Users to Ride Micromobility (For Users)

Since not all users ride micromobility daily, we asked them why to identify the main restricting
factors. Figure 5-4 illustrates and ranks these factors. The top four were “weather” (41 out of 190
users), “lack of bike lanes or safe routes” (30 out of 190 users), “too expensive to rent and ride”
(28 out of 190 users), and “fear of conflicts with automobiles™ (28 out of 190 users). Therefore,
in addition to lowering travel costs, urban planners could encourage more micromobility usage
by improving traffic safety through the design and planning of dedicated bike lanes to reduce
potential collisions between micromobility users and automobiles.

Why People Do Not Use Micromobility

Weather 41
Lack of bike lanes or safe routes 30
oo expensive to rent and ride 28
Fear of conflicts with automobiles i}
Fear of frequent bike/scocter theft VE]

o far to get to most destinations 22

Categories

Lack of safe bicycle/scooter storage at destinations 13
Lack of adequate parking space at destinations 17
Geographic barriers (i.e., hills, slopes, bridges} 14
Others {No separate trail, Not available, No idea of service areas) 8
| don’t know how to ride 7

Lack of informaticn on safe trip 5

0 5 10 15 0 5 0 S a0
Counts

Figure 5-4 Rankings of factors restricting users to ride micromobility

5.2 Trip Characteristics of Micromobility Usage
5.2.1 Trip Duration and Distances

Table 4-1 shows that individual trip-level data is only available for Jacksonville and Gainesville,
so the distributions of trip duration and distance for these cities are presented in Figures. 5-5 and
5-6.

Jacksonville

Based on 26,900 individual trip data from 524 shared scooters in Jacksonville, Figure 5-5
presents the probability distributions of trip durations, actual trip distances, geometric distances,
and the difference between the two distances. Most trips lasted for under 20-30 minutes and
covered less than 2 to 3 miles. Notably, the geometric distances were mainly under 1 mile,
significantly shorter than the actual trip distances, as evidenced in Figure 5-5(d) suggesting that
the difference between the two trip distances mostly ranged from 0 to 5 miles. This exactly
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aligned with the intended purpose of scooter-sharing systems, which were designed to address
first-mile and last-mile mobility gaps.
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Figure 5-5 Probability distribution of scooter trip durations and distances in Jacksonville, FL

Gainesville

Based on 170,029 scooter trips in Gainesville, Figure 5-6 displays the probability distributions of
trip durations and distances. Due to the lack of trajectory data, only geometric distances were
calculated, based on the coordinates of trip origins and destinations, even though geometric
distances were shorter than actual distances. Notably, the trip durations and distances, mostly
under 20 minutes and 2 miles, aligned with the intended purpose of scooter-sharing programs in
Gainesville. This suggested that shared dockless scooters mainly served as flexible options for
short trips, even though some trips lasted over an hour or exceeded 5 miles. It was worth noting
that geometric trip distances in Gainesville were generally larger than in Jacksonville, suggesting
a broader service area in Gainesville.
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Figure 5-6 Probability distribution of scooter trip durations and distances in Gainesville, FL

Similarity
In Jacksonville and Gainesville, FL, both trip duration and distance distributions approximately
followed a negative exponential pattern, where the probability density of shared scooter trips first

rapidly increased and then gradually declined as trip duration and distance increased.

5.2.2 Trip Purpose and Frequency

Aside from trip duration and distance distributions, we examined other trip characteristics such
as trip purposes and frequencies of micromobility rides, with their probability distributions
illustrated in Figure 5-7. We categorized potential trip activities into seven types: commuting to
work/school, getting to transit stops, running quick errands, shopping, recreation, health and
fitness, and others. We found significant disparities in the frequencies of micromobility rides for
various activities. Generally, micromobility was not the main mode of choice, as evidenced by
over 50%-80% of respondents never using micromobility for shopping, getting to transit stops,
or attending events. Meanwhile, about 40% of respondents have never used micromobility for
commuting, health and fitness, or running quick errands. This indicated that about half of the
respondents did not consider micromobility as a reliable and regular mobility option.

In contrast, the most common purpose for riding a bike or scooter was for recreational activities.
Following this, about 30% of the respondents, likely full-time students or workers, have used
micromobility daily to commute to work or school. However, people typically rode a bike or
scooter at a lower frequency for these trip activities: 2-3 times per week for running quick
errands and health and fitness, once a week for shopping, and 2-3 times a month for recreation.

Based on the survey data, we ranked the best possible trip activities for micromobility rides in
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the following order: recreation, commuting to work/school, running quick errands, health and
fitness, shopping, getting to transit stops, and others (i.e., attending events).

Others (i.e., Attending Events) ;

Health and fitness JEEEEEEE——

Recreation JEEEE——
Tip Freguency

ER Everyday

N 7.3 times per week

Shopping - Once per week

2-3 times per month

Never

Tip Purpose

Running quick errands - —

Getting to transit stops -

Commiuting to work/school —

0.0 02 04 06 08 10
Probability

Figure 5-7 Distribution of trip purposes and frequencies using micromobility in Florida

5.3 Users’ Sociodemographic Characteristics

Since individual trip-level data does not contain user information, we designed and distributed
online surveys to specifically collect and analyze users’ sociodemographics. First, we selected
responses from micromobility users out of all the survey responses. Then, we analyzed these
selected responses to reveal the characteristics of micromobility users, aiming to provide a
holistic understanding of who was more likely to use micromobility in Florida. Using the survey
data, we show the distributions of users’ sociodemographics in Figure 5-8. The survey data
covered all sociodemographic groups, providing a typical representative snapshot of
sociodemographic characteristics in Florida. We found that micromobility users in three Florida
cities including Jacksonville, Orlando, and Gainesville had the following characteristics:
(1) Gender: Males (54.3%) were more likely to use micromobility than females (33.7%).
(2) Age range: Young people in the age ranges of 18-24 (39.6%) and 25-34 (28.6%) were
more likely to use micromobility than people in the age ranges of 35-44 (19.8%), 45-54
(9.9%), and over 55 (2.1%).
(3) Ethical group: Both White people (41.6%) and Asians (23.6%) were more likely to use
micromobility than Hispanic or Latinx (13.5%), followed by others (Italian and Non-
gringo, 9.1%) and Black or African American (6.7%), etc.

(4) Level of education: There was no significant disparity in micromobility usage among
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individuals with different levels of education. In other words, there was no evidence to
suggest that people with higher education levels were more likely to use micromobility
than those with lower levels of education, and vice versa.

(5) Employment status: People who were full-time students (31.8%) and worked full-time
(30.7%) and part-time (17.0%) were more likely to use micromobility than other groups
such as not employed (8.0%) and self-employed (3.6%), etc.

(6) Household income: Low- (less than $20k, 31.8%) and high-income (over $100k, 20.5%)
groups were more likely to use micromobility than intermediate-income groups such as
$20-35k (13.6%), $35-50k (12.5%), $50-75k (12.5%), and $75-100k (9.1%).
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Figure 5-8 Distribution of micromobility users’sociodemographics using survey data: (a)
gender, (b) age range, (c) ethical group, (d) level of education, (e) employment status, and (f)
household income
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5.4 Temporal Patterns of Micromobility Usage
5.4.1 Quarterly and Monthly Variations

Using temporally aggregated micromobility usage data from four Florida cities, we illustrated
their yearly, quarterly, and monthly variations in Figure 5-9. Depending on the data format in the
four Florida cities, our analysis included: year-by-year variations of the monthly bike and scooter
trips after being averaged over streets in Tallahassee (Figure 5-9(a)), month-by-month variations
of scooter trips in Jacksonville (Figure 5-9(b)), year-by-year variations of the monthly bike and
scooter trips after being averaged over streets in Orlando (Figure 5-9(c)), quarterly variations of
daily bike and scooter trips in Gainesville (Figure 5-9(d)), and monthly variations of scooter trips
from VeoRide in Gainesville (Figure 5-9(e)).
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Figure 5-9 Yearly, quarterly, and monthly variations of micromobility usage in the four Florida
cities: (a) Tallahassee, (b) Jacksonville, (c) Orlando, and (d) Gainesville

Tallahassee

As shown in Figure 5-9(a), bike-sharing programs operated only during 2020-2021, while
scooter-sharing programs have become more prevalent in terms of operational periods and the
number of shared trips. This was partly due to scooters’ higher speed and accessibility compared

to bikes. Shared bike trips showed a year-by-year decline, whereas shared scooter trips increased
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from 2019 to 2021 before declining after 2021.

Jacksonville

Figure 5-9(b) shows that shared scooter trips in Jacksonville generally decreased from Apr. 2021
to Aug. 2022, except for a surge between Feb. and Apr. 2022. This decline was partly due to the
gradual withdrawal of micromobility vendors like Blue Duck, Helbiz, and Link. The peak in
March 2022 was driven by a surge in Bird scooter trips, with each Bird user averaging about 4.9
rides per month.

Orlando

Figure 5-9(c) reveals that shared scooter trips in Orlando were nearly triple those of shared bike
trips, which was similar to the pattern in Tallahassee. Scooters were more popular, likely due to
their higher speed. The introduction of scooter-sharing programs in 2020-2021 significantly
reduced shared bike trips compared to pre-2020 levels. After 2021, scooter trips gradually
declined while bike trips increased, but overall, scooter trips remained higher.

Gainesville

As illustrated in Figure 5-9(d), daily scooter trips far outnumbered e-bike trips, mainly due to the
greater availability of scooters and a higher user preference for them. Both bike-sharing and
scooter-sharing programs followed similar temporal patterns: trips peaked in the first year and
then gradually declined as some vendors exited the market likely due to financial pressures.
Specifically, scooter trips rapidly increased from Q2 to Q3 in 2021, followed by a steady decline
until Q2 in 2023. The introduction of bike-sharing programs and the gradual rise in shared bike
trips from Q2, 2022 to Q2, 2023 possibly contributed to the decline in scooter trips as the two
modes competed for first- and last-mile mobility. Additionally, Q3 and Q4 generally saw higher
numbers of e-bike and scooter trips than Q1 and Q2. Specifically, as shown in Figure 5-9,
September, October, and November had more scooter trips compared to February, March, April,
and other months, primarily due to increased university and student activities during the spring
and fall semesters in Gainesville.

5.4.2 Weekly and Hourly Variations

As shown in Table 4-1, individual scooter trip-level data are only available for Jacksonville and
Gainesville, so we only presented the weekly and hourly distributions of scooter trips for these
cities in Figures. 5-10 and 5-11.
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Jacksonville

Figure 5-10 shows significant temporal variations in scooter usage in Jacksonville, both by day
of the week and hour of the day. As depicted in Figure 5-10(a), scooter trips were notably higher
on weekends than on weekdays, suggesting that scooters in Jacksonville were more often used
for non-commuting activities, including recreation, leisure, and sports, rather than commuting.
Monday had the fewest trips, followed by Tuesday, Wednesday, Thursday, Friday, and then the
weekends, based on both mean and median values. Figure 5-10(b) further supported the non-
commuting nature of scooter usage, with most trips occurring between 7 pm and 11 pm. Since
scooters were not available from 12 am to 4 am, no trips were recorded during this time.
Interestingly, the number of trips generally increased from 5 am to 11 pm, with no peaks during
the typical morning and evening rush hours, reinforcing the idea that scooters were primarily
used for non-commuting purposes. The peak usage occurred between 9 pm and 10 pm, meaning
that the most intensive scooter activity happened at night likely for leisure activities, especially
during this hour.
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Figure 5-10 Temporal patterns of scooter trips in Jacksonville, FL: (a) weekly variations and (b)
hourly variations

Gainesville

Using individual scooter trip data, we aggregated and showed the weekly and hourly variations
of scooter usage in Gainesville in Figure 5-11(a)-(b). On average, daily scooter trips were higher
on weekdays than on weekends. However, the maximum daily scooter trips on weekends
surpassed those on weekends. This was mainly attributed to the more frequent daily activities of
commuters and students during weekdays in Gainesville, while big events, such as football game
days, could attract significantly more trips on weekends. In terms of hourly variations, we found
that hourly trip numbers during the daytime were much higher than those during the nighttime.
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Hourly trip numbers gradually increased from 6 am to 12 pm, maintained a peak from 12 pm to 6
pm, and then declined from 6 pm to 5 am the following day. This pattern reflected typical scooter
usage around the university campus, with most trips occurring at noon and in the afternoon,
coinciding with the times of highest student activities in a day.
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Figure 5-11 Temporal patterns of scooter trips in Gainesville, FL: (a) weekly variations and (b)
hourly variations

5.5 Spatial Distributions of Micromobility Usage
5.5.1 Spatial Distribution of Bike and Scooter Trips by Street Types in Tallahassee

Figure 5-12 illustrates the spatial distributions of shared bike and scooter trips across various
street types in Tallahassee. The city has 13 types of urban streets, including secondary, tertiary,
residential, primary, cycleway, footway, service, primary link, secondary link, tertiary link, living
street, technical, and unclassified streets. In general, shared scooter trips were spread across more
streets and street types than bike trips, indicating that scooters had a larger service area.
Additionally, the number of scooter trips was significantly higher than bike trips. At the street
level, both bike and scooter trips were primarily concentrated on urban cycleways, footways, and
tertiary roads. However, scooter trips were also notably present on secondary, residential, and
unclassified roads, suggesting a broader service area for scooters and a tendency for some trips to
start or end in residential areas. Notably, the highest concentration of bike trips was found on
Capital Cascades Trail (a cycleway), while the most scooter trips occurred on West Gaines Street
(a tertiary road). On average, cycleways had the highest number of bike and scooter trips among
all street types.
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Figure 5-12 Spatial distributions of (a) bike and (b) scooter trips by street type in Tallahassee

5.5.2 Spatial Distribution of Bike and Scooter Trips by Street Types in Orlando

Figure 5-13 depicts the spatial distributions of shared bike and scooter trips across various street
types in Orlando. The city has 16 types of urban streets, including path, secondary, tertiary,
residential, primary, cycleway, footway, pedestrian, service, primary link, secondary link, tertiary
link, motorway link, technical 1, technical 3, and unclassified streets. Generally, shared scooters
and bikes were used on similar streets and street types, but scooter trips were far more frequent
than bike trips. At the street level, both bike and scooter trips were mainly concentrated on
pedestrian paths, primary roads, footways, unclassified roads, and cycleways, followed by
tertiary, residential, secondary, and service roads. Unlike in Tallahassee, shared bike and scooter
trips in Orlando were also commonly found on primary roads, primarily because city planners
allocated ample space for riding on these streets. Overall, shared bikes and scooters showed
similar spatial distribution patterns across different street types, as both modes would compete in
the first- and last-mile mobility market. Notably, the highest number of bike trips was on North
Orange Avenue (a primary road), while the most scooter trips occurred on Central Boulevard (a
tertiary road). On average, primary roads and pedestrian areas carried more bike and scooter trips
than other street types.
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Figure 5-13 Spatial distributions of (a) bike and (b) scooter trips by street type in Orlando

5.5.3 Spatial Distribution of Scooter Trips in Jacksonville, FL

Spatial Distribution of Scooter Trips and Aggregation at Census Tracts

Using scooter trip data, we illustrated the spatial distributions of trip origins and destinations in
Figure 5-14(a)-(b) and (d)-(e), providing an overview of the spatial patterns of scooter trips in
Jacksonville. We then aggregated these trips into census tract block groups based on geographic
adjacency between trip origins, destinations, and census tract boundaries. The census-level
distributions of these trip origins and destinations are shown in Figure 5-14(c) and (f). Overall,
most scooter trip origins and destinations were concentrated in Jacksonville’s Downtown area
and its adjacent neighborhoods, particularly near the St Johns River, indicating a high spatial
concentration of scooter trips.

Figure 5-14(c) and (f) illustrate that shared scooter trips covered 21 census tract block groups in
Jacksonville. Block group 1 in census tract 017200, located downtown, had the highest number
of trips, with 15,209 origins (O) and 14,700 destinations (D). This was followed by block group
2 in census tract 000800 (3,978 origins and 3,857 destinations), block group 2 in census tract
017102 (3,711 origins and 4,014 destinations), block group 2 in census tract 017400 (2,047
origins and 2,010 destinations), block group 1 in census tract 000800 (1,387 origins and 1,518
destinations), and block group 2 in census tract 017200 (403 origins and 548 destinations), and
others. These six census tract block groups alone contributed at least 500 shared scooter trips
each and accounted for over 99% of the total shared scooter trips in Jacksonville.
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Figure 5-14 Spatial distributions of shared scooter trips in Jacksonville, FL: (a) trip origins, (b)

census aggregation of trip origins, (c) trip destinations, and (d) census aggregation of trip
destinations
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Additionally, these six census tract block groups exhibited diverse demographic characteristics,
with median ages ranging from 35.2 to 51 years, average household sizes from 1.37 to 2.43,
white population percentages from 12% to 73%, male population percentages from 48% to 50%,
population densities from 0.75 to 4.19 people per acre, and housing unit densities from 0.37 to
3.79 units per acre. Therefore, the six census tract block groups do not reflect typical patterns for
these census-level attributes. Given their proximity to downtown and the St. Johns River, it is
reasonable to infer that geographic locations and built environment features are important factors
in generating and attracting shared scooter trips in Jacksonville.

Spatial Overlapping Between Scooter Rides and Bike L.anes

Using scooter trip data and bike lanes, Figure 5-15(a) and (b) illustrate the spatial overlap
between bike lanes (marked as black lines) and scooter trip origins (marked as red dots) and
destinations (marked as blue dots) in Jacksonville. The bike lane network covers Riverplace
Blvd, Museum Cir, Acosta Expy, Riverside Ave, College St, Broad St, and N Jefferson St.
However, these bike lanes carried significantly fewer scooter trips compared to the downtown
area, which has fewer dedicated bike lanes. This suggests that the main streets with high
concentrations of scooter trips in Jacksonville lack sufficient dedicated bike lanes. Consequently,
scooter riders have to share roadways with motor vehicles or sidewalks with pedestrians, leading
to a poor riding environment and a higher risk of crashes involving non-motorists in the
downtown area. Thus, the downtown area is a prime candidate for the design, planning, and
construction of dedicated bike lanes in Jacksonville.
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Figure 5-15 Spatial overlapping patterns between bike lanes and (a) trip origins and (b)
destinations in Jacksonville, FL

Spatial Clusters of Scooter Trips

Because shared scooters in Jacksonville are dockless, riders can park them anywhere within
service areas, making it difficult to identify station-level spatial patterns or common trip origins
and destinations. To address this, we applied K-mean clustering analysis to 26,900 scooter trips,

46



grouping them into clusters based on geographic proximity. The optimal number of clusters for
both trip origins and destinations were determined using the silhouette score*, which measures
how closely each trip origin or destination matches its own cluster (cohesion) versus other
clusters (separation). A high silhouette value indicates effective matching, where trip origins and
destinations are well-matched to their clusters. Based on this criterion, we grouped 26,900
scooter trips into 83 clusters for trip origins and 122 clusters for trip destinations, as presented in
Figure 5-16. Areas with high concentrations of scooter trips showed more densely distributed
clusters, particularly in and around Downtown and adjacent neighborhoods. To identify common
trip origins and destinations and their typical spatial characteristics, we calculated cluster-level
attributes related to Points of Interest (POIs) and Street View Images (SVIs) for both trip origins
and destinations using the methods detailed in Section 6.1. The goal was to explore how different
cluster-level attributes impacted trip origins and destinations and to identify common
characteristics of typical trip patterns.

D-clusters
O-clusters

()
. Origit

Figure 5-16 Distributions of (a) scooter trip origins, (b) scooter trip destinations, and (c)
clusters of both trip origins and destinations in Jacksonville, FL

34 https://en.wikipedia.org/wiki/Silhouette (clustering)
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5.5.4 Spatial Distribution of Scooter Trips in Gainesville, FL

Spatial Distribution of Scooter Trips and Aggregation at Census Tracts

Using individual scooter trip data, we presented the distributions of trip origins and destinations
in Figure 5-17(a) and (c) to provide an overall view of the spatial patterns of shared scooter trips
in Gainesville. We then aggregated these trips into census tract block groups according to the
geographic adjacency between each trip origin and destination and different census tract block
groups and illustrated the census-level spatial distributions of trip origins and destinations in
Figure 5-17(b) and (d). In general, most scooter trip origins and destinations were concentrated
in the university campus and its adjacent neighborhoods, indicating a high spatial concentration
of scooter trips.
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Figure 5-17 Spatial distributions of shared scooter trips in Gainesville, FL. (a) trip origins, (b)
census aggregation of trip origins, (c) trip destinations, and (d) census aggregation of trip
destinations
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Figures 5-17(b) and (d) show that scooter trips cover 100 census tract block groups in
Gainesville. Block group 1 in census tract 000902 had the highest number of shared scooter trips
during the study period, with 36,682 trip origins (O) and 37,531 trip destinations (D). This was
followed by block group 1 in census tract 000901 (O: 16,364 and D: 14,297), block group 1 in
census tract 000500 (O: 12,955 and D: 13,361), block group 5 in census tract 001000 (O: 10,545
and D: 8,993), and others. These four census tract block groups collectively contributed to about
45% of the total scooter trips in Gainesville. Additionally, these four census tract block groups
are characterized by a young median age range of 20-30 years, a small average household size of
1.5-2, and a high percentage of whites (60%-80%), probably as white student-oriented block
groups, but they do not have typical characteristics in terms of population density, housing unit
density, and percentage of males. Because these census tract block groups are close to the
university campus, it is reasonable to infer that geographic locations and built environment
attributes may play an important role in generating and attracting scooter trips in Gainesville.

Street-Level Mapping of Micromobility Rides and Overlapping with Bike Lanes

Using the street-level aggregated data of e-bike and scooter trips, Figure 5-18 illustrates the
spatial distributions of e-bike and scooter trips on various streets in Gainesville, and their overlap
with bike lane networks (marked as black lines). Although scooter trips were much higher in
number than e-bike trips, both exhibited similar service areas and spatial patterns, with most trips
concentrated on streets within and near the university campus. Specifically, e-bike trips were
mainly concentrated on Gale Lemerand Drive, Museum Road, Newell Drive, and Northwest 3
Avenue, with over 1,700 trips during the study period. Scooter trips were mainly distributed on
Stadium Road, Museum Road, Southwest 13" Street, and Newell Drive, with over 20,000 trips
during the same period.

In terms of spatial overlap with bike lanes, most main streets with high concentration levels of e-
bike and scooter trips have designed and planned dedicated bike lanes. However, Northwest 3™
Avenue and Southwest 13 Street do not have any dedicated bike lanes. As a result, e-bike and
scooter riders have to share roadways with motor vehicles or sidewalks with pedestrians, which
creates a poor riding environment and increases the likelihood of crashes involving non-
motorists. Additionally, most local roads near Southwest 13" Street (marked within the red
dashed box) lack dedicated bike lanes despite having higher e-bike and scooter trip volumes.
These areas are prime candidates for the design, planning, and construction of dedicated bike
lanes in Gainesville.
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Figure 5-18 Street-level aggregation and mapping of (a) e-bike and (b) scooter trips in
Gainesville, FL

Spatial Clusters of Scooter Trips

Since shared scooters in Gainesville are dockless, there are no fixed docked stations, allowing
riders to park scooters anywhere within their service areas. However, this flexibility makes it
difficult to derive and understand station-level spatial patterns of scooter trips and to identify
common trip origins and destinations, as well as their typical characteristics. Using the same

method defined above, we used a K-mean clustering analysis to 170,029 scooter trips to group

them into 599 clusters for trip origins and 809 clusters for trip destinations, as presented in
Figure 5-19. Areas with high concentrations of scooter trips exhibit more densely distributed
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clusters, particularly in and around the university campus. To find common trip origins and
destinations and their typical spatial characteristics, we calculated cluster-level attributes related
to Points of Interest (POIs) and Street View Images (SVIs) for both trip origins and destinations
using the methods detailed in Section 6.1. The aim was to explore how various cluster-level
attributes impacted trip origins and destinations and identify typical characteristics of these trip
patterns.
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W/ [ S 5 \.ﬂ gﬁmstjnaﬁuns »  Owclusters

Figure 5-19 Distributions of (a) scooter trip origins, (b) scooter trip destinations, and (c)
clusters of both trip origins and destinations in Gainesville, FL
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6. Relationship between Usage Patterns and Influential Factors

Building upon the patterns of scooter usage in Jacksonville and Gainesville, we first identified
and calculated potential spatial influencing factors including census-level sociodemographics
and built environment attributes and cluster-level points of interest (POIs) and SVI attributes. We
then used descriptive statistics, basic survey analysis, and an explainable machine learning model
to the survey data, individual scooter trip data, and data on influencing factors. This approach
allowed us to uncover the relationship between usage patterns and different factors and to
identify the typical features of trip origins and destinations in the two Florida cities.

6.1 Type of Spatial Influencing Factors
6.1.1 Sociodemographic and Built Environment Attributes

Sociodemographic data, including population density, housing unit density, average household
size, median age, the ratio of whites, and the ratio of males, were collected at the census tract
level. Then we selected and calculated four key indicators — bike lane density, land use diversity
[14], transit route density, and road network density — to separately represent the density,
diversity, and accessibility facets of the built environment around each cluster: 1) Bike lane
density, transit route density, and road network density at the census tract level were separately
calculated as the ratios of the total lengths of bike lanes, transit routes, and road networks to the
area of that census tract. 2) Land use diversity at the census tract level was quantified by the
Shannon index (H), adding up the product of the proportion p; ofland use type i in that census
tract and its natural logarithm form [135]: H = — ), p;Inp;. To associate these census variables
with clusters of trip origins and destinations, we identified the census tract for each cluster
according to their geographic information. Clusters within the same census tract shared identical
sociodemographic and built environment profiles.

6.1.2 Points of Interest (POls)

Using the criteria in New York City*®, we extracted 8,566 records of 84 types of POIs from
OpenStreetMap in Duval County including Jacksonville, and 3,890 records of 79 types of POls
from OpenStreetMap in Gainesville, respectively. As presented in Table 6-1, these POIs were
classified into 12 categories: residential, education, cultural, recreational, social, transportation,
commercial, government, religion, health, public safety, and others. For each cluster of trip
origins and destinations, we tallied the number of POIs in each category within a 250-m (about
820 feet) radius, a buffer size widely used in urban micromobility studies to reflect the maximum

35 https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj
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walkable distance acceptable to riders from docked stations to their destinations [12, 136].
Beyond solely counting POIs [134], we measured the average distance from each cluster to each
category of POIs within the buffer, which provided another metric to assess the impact of
proximity to POIs on scooter ridership [137].

Table 6-1 Categorization of different points of interest in Florida

Category Points of Interest (POIs)
Residential POI graveyard, shelter, refuge, townhall
Education POI school, kindergarten, conference center, research institute, university, college, dancing
school, music school, tutor, prep school, language school
Cultural POI hospital (historic), bell, arts center, library, planetarium, theatre, theatre (historic),

Recreational POI

Social POI

Transportation POI

Commercial POI

Government POI
Religion POI
Health POI
Public safety POI
Other POI

archive, gallery, public bookcase

bar, Biergarten, alcohol, karaoke box, music venue, fountain, bench, social club,
cinema, studio, pub, dojo, nightclub, strip club

community center, animal shelter, give box, chair, lounger, trailer park, smoking area,
telephone, library drop-off, social center, recycling, nursing home, social facility,
childcare, drinking water, toilets, wastebasket

parking entrance, vehicle inspection, parking space, ranger station, boat rental,
motorcycle parking, charging station, bicycle repair station, ferry terminal, bicycle
rental, car rental, bicycle parking, parking, post box, car sharing, fuel, taxi, bus station
bank, cloakroom, restaurant, spa, parcel locker, internet cafe, BBQ, fast food, cafe,
car wash, loading dock, marketplace, animal boarding, events venue, dry cleaner, nail
salon, check cashing, catering, ice cream, money transfer, money transfer - notary
public, vending machine, atm, coworking space, food court, office

post office, courthouse, government

place of worship, crypt, place of meditation

hospital, doctors, clinic, pharmacy, veterinary, dentist, first aid, personal trainer

fire station, police, border control

POIs not within the above POI lists

6.1.3 Street View Images (SVIs)

Street view images (SVIs) have become a staple in urban studies [134, 138, 139] due to their
capability to accurately depict urban street characteristics at any specific geographic location or
point of interest. Leveraging this capability, we collected SVIs around each cluster of trip origins
and destinations using the Google Street View API. For each cluster, we captured four SVIs at 0,
90, 180, and 270 degrees to create a holistic panorama of the surroundings. To analyze these

panoramas, we used the pspnet101 _cityscapes model, a variant of the PSPNet architecture
53



featuring a scene analysis network constructed with a pyramid pooling module and 101 layers
[140]. This model, trained with the Cityscapes dataset, enables dense pixel annotations (about
97% coverage) across 19 categories, including road, sky, vegetation, building, pole (supporting
traffic lights and streetlights), traffic facilities, etc.

In this project, we applied this model to detect the presence of these categories at the pixel level
in each panorama and then calculated the average pixel percentage of each category to describe
street characteristics for each cluster. As shown in Figure 6-1, when we input the street view
image of one cluster into the model, the model can identify different object categories within the
street view image and output the pixel-level percentage of each object, for instance, road
(17.18%), sidewalk (5.82%), building (23.65%), wall (0.61%), fence (0.07%), pole (0.4%),
traffic light (0.1%), traffic sign (0.07%), vegetation (33.79%), terrain (1.45%), sky (4.93%),
person (0.1%), rider (0%), car (11.92%), truck (0%), bus (0%), train (0%), bike (0.01%), and
motorcycle (0%).

Figure 6-1 A showing of model input and output images of the pspnetl01_cityscapes model

6.1.4 Descriptive Statistics

Jacksonville

Finally, we aggregated each cluster’s daily scooter ridership with the above influential factors
into the same spatial scale: 83 clusters for trip origins and 122 clusters for trip destinations in
Jacksonville. Tables 6-2 and 6-3 provide detailed information on the data types and descriptive
statistics of all dependent and independent variables within the two aggregated datasets,
separately for clusters of trip origins and destinations in Jacksonville. Descriptive statistics of

daily ridership data for clusters of both trip origins and destinations revealed a much lower
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median value and a higher standard deviation than the mean value, indicating high spatial

concentration levels of scooter trips in Jacksonville. Most scooter trips were highly concentrated

in just a few clusters, while most clusters experienced lower daily scooter trip volumes.

Table 6-2 Descriptive statistics of daily scooter ridership and its influential factors across 85

clusters of trip origins in Jacksonville, FL

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Daily ridership 2.576 3.734 0.008 1.096 24.448 Rides per day
Demographics
Population density 5.99 8.89 0.75 3.33 29.73 Continuous (people/acre)
Housing unit density 2.46 1.32 0.37 2.72 4.87 Continuous (HU/acre)
Median age 41.55 4.15 35.20 41.60 51.00 Continuous
Ratio of whites 0.47 0.20 0.12 0.46 0.73 Continuous
Ratio of males 0.53 0.08 0.48 0.50 0.75 Continuous
Average household size 1.54 0.32 1.33 1.39 243 Continuous
Built environment attributes
Bike lane density 0.009 0.018 0.000 0.003 0.061 Continuous (mile/acre)
Land use diversity 1.61 0.13 1.45 1.64 1.79 Continuous
Local road network density 0.089 0.066 0.015 0.096 0.241 Continuous (mile/acre)
Transit route density 4.42 3.39 0.40 4.51 10.57 Continuous (mile/acre)

Number of points of interest (POls) in a 250-m (820-feet) buffer

No. residential POIs 0.30 0.62 0 0
No. education POlIs 0.27 0.47 0 0
No. cultural POIs 0.72 1.14 0 0
No. recreational POIs 2.05 3.18 0 1 19
No. social POIs 048 153 0 0 9 The number of different
No. transportation POIs 14.45 6.64 2 15 39 categories of POIs within a
No. commercial POIs 4.40 5.72 0 3 25 250-m (820-feet) buffer area
No. government POIs 028  0.69 0 0 3 of each cluster
No. religion POIs 0.47 0.92 0 0 4
No. health POIs 0.24 0.92 0 0 7
No. public safety POIs 0.23 0.53 0 0 2
No. other POIs 0.16 0.37 0 0 1
Distance from different POlIs
Distance to school 0.37 0.25 0.02 0.30 1.13
Distance to bar 026 019 001 020 078  Distancefrom cach clusterto
Distance to fast food 037 032 004 025 166 itssurrounding POIs (mile)

55



Table 6-2 Continued

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Distance from different POIs
Distance to restaurant 0.19 0.12 0.06 0.14 0.55
Distance to bank 0.29 0.28 0.03 0.17 1.52
Distance to parking 0.09 0.01 0.04 0.09 0.13
Distance to café 0.46 0.38 0.03 0.36 1.66
Distance to fountain 0.33 0.20 0.04 0.29 0.79
Distance to pub 0.42 0.26 0.04 0.36 1.07
Distance to theatre 0.32 0.21 0.04 0.29 0.87 Distance from each cluster to
Distance to library 0.63 0.42 0.01 0.56 1.77 its surrounding POIs (mile)
Distance to shelter 0.52 0.33 0.06 0.42 1.79
Distance to clinic 0.88 0.37 0.07 0.92 1.56
Distance to bus station 0.82 0.34 0.04 0.84 1.36
Distance to bicycle parking 0.58 0.37 0.06 0.52 1.78
Distance to hospital 0.82 0.34 0.05 0.84 1.88
Distance to bicycle repair station 1.23 0.42 0.47 1.13 2.33
Distance to ferry terminal 0.59 0.28 0.12 0.56 1.34
Street characteristics derived from street view images (SVIs)
Percentage of road 0.31 0.06 0.17 0.31 0.42
Percentage of sidewalk 0.04 0.04 0.00 0.03 0.13
Percentage of building 0.26 0.13 0.02 0.27 0.58
Percentage of wall 0.01 0.02 0.00 0.00 0.09
Percentage of fence 0.01 0.02 0.00 0.01 0.19
Percentage of pole 0.01 0.00 0.00 0.01 0.02
Percentage of traffic light 0.00 0.00 0.00 0.00 0.00 Pixel-level percentage of 19
Percentage of traffic sign 0.00 0.01 0.00 0.00 0.07  objects in the panorama view
Percentage of vegetation 0.15 0.10 0.00 0.13 0.54 of each cluster
Percentage of terrain 0.03 0.04 0.00 0.02 0.23
Percentage of sky 0.13 0.08 0.03 0.10 0.38
Percentage of person 0.01 0.01 0.00 0.01 0.04
Percentage of rider 0.00 0.00 0.00 0.00 0.00
Percentage of car 0.02 0.02 0.00 0.01 0.12
Percentage of truck 0.00 0.02 0.00 0.00 0.13
Percentage of bus 0.00 0.00 0.00 0.00 0.00
Percentage of train 0 0 0 0 0
Percentage of motorcycle 0.00 0.00 0.00 0.00 0.04
Percentage of bicycle 0.00 0.00 0.00 0.00 0.03
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Table 6-3 Descriptive statistics of daily scooter ridership and its influential factors across 122

clusters of trip destinations in Jacksonville, FL

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Daily ridership 1.753 3.029  0.008 0.468  23.584 Rides per day
Demographics
Population density 5.58 8.43 0.75 3.33 29.73 Continuous (people/acre)
Housing unit density 2.39 1.27 0.37 2.72 4.87 Continuous (HU/acre)
Median age 41.41 3.86 35.20 41.60 51.00 Continuous
Ratio of whites 0.47 0.19 0.12 0.46 0.73 Continuous
Ratio of males 0.52 0.08 0.48 0.50 0.75 Continuous
Average household size 1.53 0.31 1.33 1.39 2.43 Continuous
Built environment attributes
Bike lane density 0.008 0.017 0.000 0.003 0.061 Continuous (mile/acre)
Land use diversity 1.61 0.14 1.45 1.64 1.79 Continuous
Local road network density 0.087 0.063 0.015 0.096 0.241 Continuous (mile/acre)
Transit route density 4.37 3.32 0.40 4.51 10.57 Continuous (mile/acre)
Number of points of interest (POls) in a 250-m (820-feet) buffer
No. residential POIs 0.30 0.64 0
No. education POIs 0.27 0.46 0
No. cultural POIs 0.70 1.08 0 0 4
No. recreational POIs 1.95 3.18 0 0.5 19
No. social POIs 048 142 0 0 9 The number of different
No. transportation POIs 13.44 6.80 1 14 37 categories of POls within a
No. commercial POIs 430 581 0 2 26 250-m (820-feet) buffer area
No. government POIs 0.25 0.65 0 0 3 of each cluster
No. religion POIs 0.53 1.03 0 0 4
No. health POIs 0.20 0.80 0 0 7
No. public safety POIs 0.20 0.47 0 0 2
No. other POIs 0.15 0.36 0 0 1
Distance from different POIs
Distance to school 0.36 0.23 0.01 0.29 1.13
Distance to bar 0.28 0.19 0.01 0.22 0.84
Distance to fast food 0.37 0.33 0.01 0.26 1.64
Distance to restaurant 0.19 0.12 0.01 0.15 0.60 Distance from each cluster to
Distance to bank 0.28 0.28 0.03 0.17 1.42 its surrounding POIs (mile)
Distance to parking 0.09 0.02 0.04 0.10 0.15
Distance to café 0.47 0.38 0.02 0.36 1.58
Distance to fountain 0.32 0.21 0.02 0.28 0.89
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Table 6-3 Continued

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Distance from different POIs
Distance to pub 0.42 0.26 0.00 0.38 1.14
Distance to theatre 0.31 0.20 0.04 0.27 0.87
Distance to library 0.63 0.43 0.00 0.53 1.86
Distance to shelter 0.49 0.34 0.06 0.41 1.74
Distance to clinic 0.91 0.35 0.06 0.94 1.61 Distance from each cluster to
Distance to bus station 0.80 0.33 0.05 0.83 1.46 its surrounding POIs (mile)
Distance to bicycle parking 0.58 0.37 0.06 0.50 1.69
Distance to hospital 0.83 0.33 0.05 0.83 1.76
Distance to bicycle repair station 1.21 0.43 0.44 1.12 2.43
Distance to ferry terminal 0.60 0.29 0.01 0.58 1.41
Street characteristics derived from street view images (SVIs)
Percentage of road 0.30 0.07 0.06 0.31 0.43
Percentage of sidewalk 0.04 0.04 0.00 0.03 0.15
Percentage of building 0.26 0.13 0.01 0.27 0.54
Percentage of wall 0.01 0.02 0.00 0.00 0.16
Percentage of fence 0.02 0.03 0.00 0.01 0.16
Percentage of pole 0.01 0.00 0.00 0.01 0.02
Percentage of traffic light 0.00 0.00 0.00 0.00 0.00 Pixel-level percentage of 19
Percentage of traffic sign 0.00 0.01 0.00 0.00 0.07  objects in the panorama view
Percentage of vegetation 0.14 0.09 0.00 0.13 0.40 of each cluster
Percentage of terrain 0.03 0.04 0.00 0.02 0.25
Percentage of sky 0.14 0.10 0.00 0.11 0.43
Percentage of person 0.02 0.05 0.00 0.00 0.45
Percentage of rider 0.00 0.00 0.00 0.00 0.00
Percentage of car 0.02 0.03 0.00 0.01 0.13
Percentage of truck 0.00 0.02 0.00 0.00 0.18
Percentage of bus 0.00 0.00 0.00 0.00 0.00
Percentage of train 0.00 0.00 0.00 0.00 0.01
Percentage of motorcycle 0.00 0.00 0.00 0.00 0.04
Percentage of bicycle 0.00 0.00 0.00 0.00 0.03

Gainesville

Finally, we aggregated each cluster’s daily scooter ridership with the above influential factors
into the same spatial scale: 599 clusters for trip origins and 809 clusters for trip destinations in
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Gainesville. Tables 6-4 and 6-5 provide detailed information on the data types and descriptive

statistics of all dependent and independent variables within the two aggregated datasets,

separately for clusters of trip origins and destinations in Gainesville. Descriptive statistics of

daily ridership data for clusters of both trip origins and destinations revealed a much lower

median value and a higher standard deviation than the mean value, indicating high spatial

concentration levels of scooter trips in Gainesville. Most scooter trips were highly concentrated

in just a few clusters, while most clusters experienced lower daily scooter trip volumes.

Table 6-4 Descriptive statistics of daily scooter ridership and its influential factors across 599

clusters of trip origins in Gainesville, FL

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Daily ridership 0.304 0.609 0.001 0.107 6.126 Rides per day
Demographics
Population density 9.60 11.20 0.03 5.42 63.25 Continuous (people/acre)
Housing unit density 4.30 5.46 0.02 2.33 30.72 Continuous (HU/acre)
Median age 29.37 8.03 19.90 28.50 69.10 Continuous
Ratio of whites 0.54 0.23 0.05 0.60 0.87 Continuous
Ratio of males 0.48 0.06 0.30 0.49 0.69 Continuous
Average household size 2.17 0.42 1.50 2.16 3.34 Continuous
Built environment attributes
Bike lane density 0.04 0.07 0 0.02 0.53 Continuous (mile/acre)
Land use diversity 1.19 0.45 0 1.28 1.99 Continuous
Local road network density 0.06 0.09 0.00 0.03 0.54 Continuous (mile/acre)
Transit route density 0.60 0.95 0 0.37 7.61 Continuous (mile/acre)
Number of points of interest (POIs) in a 250-m (820-feet) buffer
No. residential POIs 0.50 0.98 0 0 10
No. education POIs 0.52 0.78 0 0 4
No. cultural POIs 0.15 0.52 0 0 4
No. recreational POIs 2.06 7.09 0 0 77
No. social POIs 059 152 0 0 14 The number of different
No. transportation POIs 13.68 2364 0 2 134 categories of POIs within a
No. commercial POIs 224 427 0 0 21 230-m (820-fect) buffer arca
No. government POIs 0.05 0.29 0 0 3 of each cluster
No. religion POIs 0.46 0.95 0 0 7
No. health POIs 0.19 0.62 0 0 5
No. public safety POIs 0.06 0.23 0 0 1
No. other POIs 0.14 0.55 0 0 5
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Table 6-4 Continued

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Distance from different POIs

Distance to school 0.54 0.38 0 0.44 1.68
Distance to bar 1.50 1.05 0.04 1.30 5.64
Distance to fast food 0.55 0.47 0.01 0.41 3.27
Distance to restaurant 0.47 0.39 0.01 0.35 2.62
Distance to bank 0.78 0.57 0.03 0.66 3.78
Distance to parking 0.29 0.28 0 0.14 1.50
Distance to café 0.79 0.57 0.02 0.70 3.44

Distance to fountain 0.51 0.34 0.01 0.43 2.25 Distance from each cluster to

Distance to pub 1.32 0.98 0.02 1.11 5.88 its surrounding POTs (mile)
Distance to theatre 1.22 0.92 0.00 0.96 6.02
Distance to library 0.92 0.71 0.01 0.71 3.39
Distance to shelter 0.35 0.29 0.01 0.27 2.28
Distance to clinic 0.96 0.63 0.03 0.81 3.10
Distance to bus station 2.60 1.27 0.10 2.32 5.80
Distance to bicycle parking 0.36 0.31 0.00 0.26 2.08
Distance to hospital 1.44 1.06 0 1.11 5.19
Distance to bicycle repair station 1.34 1.05 0.01 1.08 5.61
Distance to place of worship 0.38 0.29 0 0.30 1.31

Street characteristics derived from street view images (SVIs)

Percentage of road 0.25 0.08 0.00 0.25 0.44
Percentage of sidewalk 0.02 0.02 0 0.01 0.15
Percentage of building 0.07 0.08 0 0.04 0.52
Percentage of wall 0.00 0.01 0 0.00 0.20
Percentage of fence 0.01 0.02 0 0.00 0.14
Percentage of pole 0.01 0.00 0 0.00 0.03
Percentage of traffic light 0.00 0.00 0 0 0.01

Percentage of traffic sign 0.00  0.00 0 0.00 003  Tixel-level percentage of 19

Percentage of vegetation 038 016 002 037 095  oviectsinthe panorama view

Percentage of terrain 0.10 007 0 0.08 033 of each cluster

Percentage of sky 0.13 0.10 0 0.11 0.41
Percentage of person 0.00 0.01 0 0.00 0.08
Percentage of rider 0.00 0.00 0 0 0.00
Percentage of car 0.02 0.03 0 0.01 0.17
Percentage of truck 0.00 0.01 0 0 0.09
Percentage of bus 0.00 0.00 0 0 0.06
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Table 6-4 Continued

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Street characteristics derived from street view images (SVlIs)
Percentage of train 0.00 0.00 0 0 0.01 Pixel-level percentage of 19
Percentage of motorcycle 0.00 0.00 0 0.03 objects in the panorama view
Percentage of bicycle 0.00 0.00 0 0.06 of each cluster

Table 6-5 Descriptive statistics of daily scooter ridership and its influential factors across 809

clusters of trip destinations in Gainesville, FL

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Daily ridership 0.225 0.385 0.001 0.099 3.358 Rides per day
Demographics
Population density 9.43 11.13 0.03 5.39 63.25 Continuous (people/acre)
Housing unit density 4.29 5.43 0.02 2.33 30.72 Continuous (HU/acre)
Median age 29.76 8.24 19.9 28.6 69.1 Continuous
Ratio of whites 0.54 0.23 0.05 0.59 0.87 Continuous
Ratio of males 0.49 0.05 0.30 0.48 0.69 Continuous
Average household size 2.18 0.41 1.50 2.18 3.34 Continuous
Built environment attributes
Bike lane density 0.04 0.07 0 0.02 0.53 Continuous (mile/acre)
Land use diversity 1.21 0.44 0 1.28 1.99 Continuous
Local road network density 0.07 0.09 0.00 0.04 0.54 Continuous (mile/acre)
Transit route density 0.58 0.94 0 0.33 7.61 Continuous (mile/acre)
Number of points of interest (POlIs) in a 250-m (820-feet) buffer
No. residential POIs 0.48 0.97 0 0 10
No. education POIs 0.49 0.76 0 0
No. cultural POIs 0.15 0.52 0 0
No. recreational POIs 1.90 6.59 0 0 77
No. social POIs 052 139 0 0 14 The number of different
No. transportation POIs 13.17 23.76 0 1 139 categories of POIs within a
No. commercial POIs 212 420 0 0 27 230-m (820-feet) buffer area
No. government POIs 0.06 0.33 0 0 3 of each cluster
No. religion POIs 0.49 0.95 0 0 7
No. health POIs 0.18 0.57 0 0 5
No. public safety POIs 0.05 0.22 0 0 1
No. other POIs 0.13 0.52 0 0 5
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Table 6-5 Continued

Statistical indicator

Variable Variable description
Mean Std Min Median Max
Distance from different POIs

Distance to school 0.54 0.39 0.00 0.45 1.81
Distance to bar 1.57 1.13 0.04 1.35 6.19
Distance to fast food 0.55 0.48 0.00 0.43 3.22
Distance to restaurant 0.48 0.41 0.01 0.36 3.25
Distance to bank 0.78 0.57 0.02 0.66 3.72
Distance to parking 0.29 0.29 0 0.15 2.12
Distance to café 0.80 0.58 0 0.69 3.39

Distance to fountain 0.52 0.36 0.02 0.44 242 Distance from each cluster to

Distance to pub 1.36 1.05 0.02 1.13 6.45 its surrounding POTs (mile)
Distance to theatre 1.28 0.98 0.01 1.01 6.56
Distance to library 0.97 0.75 0.00 0.74 4.04
Distance to shelter 0.37 0.29 0.01 0.28 2.25
Distance to clinic 0.99 0.63 0.03 0.85 3.49
Distance to bus station 2.68 1.34 0.09 2.34 6.78
Distance to bicycle parking 0.37 0.32 0.00 0.28 2.25
Distance to hospital 1.46 1.06 0 1.15 5.14
Distance to bicycle repair station 1.40 1.07 0.01 1.18 6.12
Distance to place of worship 0.38 0.30 0.01 0.29 1.66

Street characteristics derived from street view images (SVIs)

Percentage of road 0.25 0.08 0.00 0.25 0.42
Percentage of sidewalk 0.02 0.02 0 0.01 0.15
Percentage of building 0.07 0.08 0 0.04 0.47
Percentage of wall 0.00 0.01 0 0.00 0.15
Percentage of fence 0.01 0.02 0 0.00 0.12
Percentage of pole 0.00 0.00 0 0.00 0.03
Percentage of traffic light 0.00 0.00 0 0 0.00

Percentage of traffic sign 0.00  0.00 0 000 004  Dixel-level percentage of 19

Percentage of vegetation 038 016 002 038 g9  oviectsinthepanorama view

Percentage of terrain 0.10 007 0 0.08 033 of each cluster

Percentage of sky 0.14 0.10 0.00 0.12 0.41
Percentage of person 0.00 0.01 0 0.00 0.08
Percentage of rider 0.00 0.00 0 0 0.01
Percentage of car 0.02 0.03 0 0.01 0.37
Percentage of truck 0.00 0.00 0 0 0.04
Percentage of bus 0.00 0.00 0 0 0.06

62



Table 6-5 Continued

. Statistical indicator . .
Variable Variable description

Mean Std Min Median Max

Street characteristics derived from street view images (SVIs)

Percentage of train 0.00 0.00 0 0 0.01 Pixel-level percentage of 19
Percentage of motorcycle 0.00 0.00 0 0 0.03 objects in the panorama view
Percentage of bicycle 0.00 0.00 0 0 0.02 of each cluster

6.2 Methods of Revealing the Relationships
6.2.1 Variable Selection

Jacksonville

With 61 influential factors (presented in Tables 6-2 and 6-3), we first applied the variance
threshold method to filter out features with little or no variability. Setting the variance threshold
at 0.001, we retained 57 independent variables whose variance exceeded this threshold.
Subsequently, we performed a correlation analysis among these 57 variables to remove one
variable from each pair of highly correlated variables. As a result, we retained 42 independent
variables for clusters of trip origins and 49 independent variables for clusters of trip destinations,
ensuring mutual correlation coefficients below 0.7. Next, we calculated the variance inflation
factor (VIF) values for these selected independent variables and sequentially removed variables
based on their VIF rankings until the remaining variables had VIF values less than 10 to avoid
multicollinearity concerns. Finally, we selected 28 independent variables for clusters of trip
origins and 34 independent variables for clusters of trip destinations to be ready for explaining
the patterns of micromobility usage in Jacksonville.

Gainesville

With 61 influential factors (presented in Tables 6-4 and 6-5), we first applied the variance
threshold method to filter out features with little or no variability. Setting the variance threshold
at 0.001, we retained 58 independent variables whose variance exceeded this threshold.
Subsequently, we performed a correlation analysis among these 58 variables to remove one
variable from each pair of highly correlated variables. As a result, we retained 52 independent
variables for clusters of trip origins and 53 independent variables for clusters of trip destinations,
ensuring mutual correlation coefficients below 0.7. Next, we calculated the variance inflation
factor (VIF) values for these selected independent variables and sequentially removed variables
based on their VIF rankings until the remaining variables had VIF values less than 10 to avoid
multicollinearity concerns. Finally, we selected 39 independent variables for clusters of trip
origins and 41 independent variables for clusters of trip destinations to be ready for explaining
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the patterns of micromobility usage in Gainesville.

6.2.2 Decision Tree Models

Using the selected variables, we employed the eXtreme Gradient Boosting (XGBoost) method, a
powerful ensemble learning technique involving multiple gradient-boosted decision trees, to
examine the impacts of different factors on scooter usage patterns [141] in Jacksonville and
Gainesville. Each tree within the XGBoost model works as a weak learner that sequentially and
adaptively learns from the data samples and previous trees to enhance model accuracy [83, 141].
Previous studies [83, 86] have consistently demonstrated that XGBoost models can match or
even outperform the effectiveness of more complex neural networks, i.e., convolution neural
networks and recurrent neural networks, in traffic flow forecasts. Capitalizing on its superior
predictive capability and better interpretability than deep networks, we selected the XGBoost as
a modeling framework to investigate the relationships between the patterns of scooter usage at
each cluster and various influential factors and further identify key variables with the usage
patterns in the two Florida cities.

6.2.3 SHAP (SHapley Additive exPlanations)

To enhance the interpretability of the XGBoost machine learning model, we introduced SHAP
(SHapley Additive exPlanations) values [134] to specifically characterize each independent
variable’s contribution and importance on the dependent variable’s model predictions. The
absolute value of SHAP indicates how much the independent variable affects the prediction of
the dependent variable, representing the extent of the impact. The sign of the SHAP value
indicates whether the independent variable positively or negatively affects the prediction of the
dependent variable, representing the direction of the impact. Therefore, the combination of the
XGBoost model and SHAP values constitutes an explainable machine learning approach,
allowing us to explain and understand the relationship between independent variables and the
scooter usage patterns at each cluster of both trip origins and destinations in Jacksonville and
Gainesville.

6.3 Relationship between Usage Patterns and Census-Level Attributes
6.3.1 Feature Importance to Usage Patterns

Using the results of the XGBoost model, we first calculated the SHAP values for each census-

level attribute and then ranked them by their relative importance to the usage patterns of scooter

trips in Jacksonville and Gainesville. The essence of deriving feature importance is to count and
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compare the frequency of each census-level attribute being used as the splitting variable in the
decision tree [142]. Figures 6-2 and 6-3 illustrate the feature importance rankings separately for
Jacksonville and Gainesville, where all variables are shown in the order of global feature
importance, with the first being the most important and the last being the least important. In
addition, increasing each feature from a low value (marked as blue points) to a high value
(marked as red points) potentially changes the absolute values and signs of the corresponding
SHAP. This change reflects how each independent variable affects the dependent variable.

Jacksonville

Figure 6-2 illustrates that in Jacksonville, local road network density and population density had
a greater impact on scooter trip patterns at clusters of trip origins than bike lane and transit route
density. Conversely, at clusters of trip destinations, local road network and transit route density
were more crucial than bike lane and population density. Overall, increasing local road network
density from a low value (marked as blue points) to a high one (marked as red points) could
promote motorized travel and reduce scooter usage. However, variations in other census-level
attributes had minimal impact on the SHAP values, indicating their limited influence on usage
patterns. Notably, bike lane density exhibited little correlation with scooter usage at both trip
origins and destinations, suggesting that areas without dedicated bike lanes can still experience
high scooter usage, where riders may use roadways or sidewalks, as illustrated in Figure 5-15.
However, planning dedicated bike lanes in these areas is essential to prevent potential collisions
and improve riding conditions.
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Figure 6-2 Feature importance rankings of census-level attributes to scooter usage patterns

Gainesville

Figure 6-3 shows that local road network density and transit route density were more important
than bike lane density and population density in shaping the patterns of scooter trips at clusters of
trip origins in Gainesville. In contrast, population density and local road network density were
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identified as more crucial census-level attributes than bike lane density and transit route density
in explaining the patterns of scooter trips at clusters of trip destinations in Gainesville. However,
the variations in these census-level attributes did not significantly change the SHAP values,
indicating that these attributes did not greatly contribute to the usage patterns. It was worth
noting that bike lane density did not exhibit a significant relationship with scooter usage at
clusters of both trip origins and destinations. This suggests that areas lacking dedicated bike
lanes can still experience high scooter usage, where riders must use roadways or sidewalks, as
shown in Figure 5-18. However, it is crucial to design and plan dedicated bike lanes in these
areas to avoid potential collisions and improve riding environments.
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Figure 6-3 Feature importance rankings of census-level attributes to scooter usage patterns

6.3.2 Impacts of Census-Level Attributes on Usage Patterns

Jacksonville

Figures 6-4 and 6-5 illustrate the relationship between census-level attributes and scooter usage
at clusters of trip origins and destinations, respectively. Overall, these attributes did not display
linear relationships with scooter usage, but changes in their values could modify the nature of
their impact. Specifically, lower census-level population density, bike lane density, transit route
density, and higher local road network density were more likely to negatively influence scooter
usage. However, an increase in population density, bike lane density, and transit route density,
along with a decrease in local road network density, could positively influence scooter usage at
nearby clusters of both trip origins and destinations. This is because higher population, bike lane,
and transit route densities encourage scooter usage by providing more bike lanes and better
connectivity to public transit. By contrast, higher local road network density promotes motorized
travel and reduces scooter usage. Additionally, there was no significant difference in how these
attributes affected scooter usage at clusters of both trip origins and destinations, indicating
minimal sociodemographic and built environment disparities between them.
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(a) Population density (b) Bike lane density
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Figure 6-4 Relationship between census-level attributes and scooter usage patterns at clusters of
trip origins in Jacksonville, FL
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(a) Population density (b) Bike lane density

0.10 =
010 -
u i Pusi ®
o 005 . E 0.05 osive
2 '] . Ux ) =
= . Positive 2 l' -
S 0001 "'_ T e T s
2 l : Negative 2 o o
2 > | § 0051 O Negative
S 0,05 1 g % o .
=
3 o8 a 0101
-0.10 & it
-0151 B
0 5 0 15 2 5 30 000 001 002 003 004 005 006
DEN_POP (People/Acre) Den_Bike_Lane (Mile/Acre)
(c) Transit route density (d) Local road network density
100 . 04 S = &
v 7 = ¢ g
5 R g 02 'I (I l Positive
& - @
g 050 Positive Ry Bl e e ——————————
[=
E 025 3 :
5 i . €,-02 Negative
& 000 C I . A e & 04 e 8
5 5 .
v -0.25 = - :
3 Negative s <0k H .
> 050 =
7 & ~v H z
" 075 &
- -10
-1.00 + : ; r r : ' . T T .
0 2 a 3 8 10 005 010 015 020 025
Den_Transit_Route (Mile/Acre) Den_Road_Network (Mile/Acre)

Figure 6-5 Relationship between census-level attributes and scooter usage patterns at clusters of
trip destinations in Jacksonville, FL

Gainesville

Clusters of trip origins: Figure 6-6 illustrates that census-level attributes did not display linear
relationships with scooter usage at clusters of trip origins, but changes in their values could
modify these relationships. For instance, when a census tract’s population density was less than
about 10 people per acre, bike lane density below 0.06 miles per acre, and transit route density
less than 0.2 miles per acre, these attributes negatively affected scooter usage at nearby clusters
of trip origins. However, once these thresholds were exceeded, their impact became positive.
Conversely, local road network density had the opposite effect: it positively impacted scooter
usage when below 0.02 miles per acre but negatively when above this threshold. Overall, an
increase in census-level population density, bike lane density, and transit route density, along
with a decrease in local road network density, were more likely to promote scooter usage at
adjacent clusters of trip origins, similar to the patterns observed in Jacksonville.
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(a) Population density (b) Bike lane density
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Figure 6-6 Relationship between census-level attributes and scooter usage patterns at clusters of
trip origins in Gainesville, FL

Clusters of trip destinations: Figure 6-7 indicates that census-level population density and local
road network density had similar relationships with scooter usage at clusters of trip destinations
as they did with trip origins. Specifically, when population density exceeded 10 people per acre
and local road network density was below 0.02 miles per acre, these attributes were more likely
to positively affect scooter usage at nearby clusters of trip destinations. By contrast, bike lane
density and transit route density did not show significant relationships with scooter usage, likely
due to the greater variability and flexibility of trip destinations compared to trip origins. Overall,
higher population density and lower local road network density were more likely to increase
scooter usage at clusters of trip destinations.
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Figure 6-7 Relationship between census-level attributes and scooter usage patterns at clusters of
trip destinations in Gainesville, FL

6.4 Relationship between Usage Patterns and Points of Interest (POls)
6.4.1 Relationship with the Number of POIs within a 250-m (820 feet) Buffer

As detailed in Section 6.1.2, we calculated the SHAP values for POI-related number attributes
and then ranked them by their relative importance to the usage patterns of scooter trips. Figures
6-8 and 6-9 illustrate these rankings separately for Jacksonville and Gainesville.

Jacksonville

Figure 6-8 shows that clusters of trip origins were typically near locations with more recreational
POlIs (such as bars, fountains, studios, and clubs), cultural POIs (like art centers, planetariums,
and theatres), and transportation POIs (such as parking, charging stations, car sharing, taxi, bus
stations, bicycle rental, repair, and parking stations). In contrast, clusters of trip destinations were
closer to areas with more cultural POIs, commercial POIs (such as banks, restaurants, fast food
outlets, cafes, marketplaces, events venues, dry cleaners, nail salons, money transfer services,
ATMs, food courts, and offices), and transportation POIs. This implies that scooter trips in
Jacksonville were primarily for engaging in cultural, recreational, and commercial activities and
facilitating access to other transportation facilities like parking, taxi, car-sharing, or bus stations.
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Figure 6-8 Feature importance rankings of POI-related number attributes to usage patterns

Gainesville

Figure 6-9 illustrates that clusters of trip origins were typically closer to locations with more
transportation POIs (such as parking, charging stations, car sharing, taxi, bus stations, bicycle
rental, repair, and parking stations), recreational POIs (such as bars, fountains, studios, and
clubs), and social POlIs (such as community centers, libraries, social centers, childcare facilities,
recycling centers, and social facilities). In contrast, clusters of trip destinations were closer to
areas with more transportation POIs, education POIs (like different schools, tutors, conference
centers, universities, colleges, and research institutes), commercial POIs (such as banks,
restaurants, fast food outlets, cafes, marketplaces, events venues, dry cleaners, nail salons,
money transfer services, ATMs, food courts, and offices), and recreational POIs. This implies
that scooter trips in Gainesville, FL, were mainly for commuting to work or school, connecting
with other modes of transportation, and engaging in recreational and quick errand activities.
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Using the results of Section 6.4.1 and POI frequencies in Jacksonville and Gainesville, we chose

some typical POIs to calculate POI-related distance attributes. This involved computing the
distance between these POIs and various clusters of trip origins and destinations to explore their

relationships with scooter usage at different clusters. These relationships are illustrated in Figures
6-10 and 6-11 for Jacksonville and Figures 6-12 and 6-13 for Gainesville. These figures show

how the proximity to different POIs, including café, bars, parking, fast food outlets, bicycle

parking, schools, libraries, and restaurants, influenced the frequency and patterns of shared

scooter trips. Understanding these spatial relationships can help plan and optimize micromobility
services to meet user needs and enhance urban mobility.

Jacksonville

Clusters of trip origins: Figure 6-10 shows that trip origin clusters near recreational and
commercial POIs, such as bars, fast food outlets, restaurants, and cafes, exhibited positive SHAP

values, indicating higher scooter usage in these areas. In contrast, the proximity to other POIs did

not significantly affect scooter usage. This suggests that these specific POIs were key generators
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of scooter trips in Jacksonville. Therefore, placing micromobility devices within a 0.2-mile
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Figure 6-10 Relationship between POI-related distance attributes and the scooter usage patterns
at clusters of trip origins in Jacksonville, FL

Clusters of trip destinations: Figure 6-11 shows that clusters of trip destinations near recreational
and commercial POlIs, such as bars, fast food outlets, restaurants, and cafes, had positive SHAP
values, indicating higher scooter usage in these locations, which was similar to the findings at
clusters of trip origins. Proximity to other POIs did not significantly impact scooter usage. This
suggests that these specific POIs were major attractions for scooter trips in Jacksonville, with
riders frequently parking within a 0.2-mile radius of these locations. Overall, these POIs served
as both generators and attractors of scooter trips, suggesting that shared scooter usage in
Jacksonville was primarily driven by recreational and dining activities, with balanced supply and
demand.
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Figure 6-11 Relationship between POI-related distance attributes and the scooter usage patterns

at clusters of trip destinations in Jacksonville, FL

Gainesville
Clusters of trip origins: Figure 6-12 illustrates that trip origin clusters near POIs such as schools,

restaurants, parking areas, and cafes had positive SHAP values, suggesting that proximity to
these locations increased scooter usage. In contrast, no significant relationship was observed
between proximity to other POIs and scooter usage. This indicates that schools, restaurants,

parking, and cafes were key trip generators for scooters in Gainesville. Placing micromobility

devices within a 0.2-mile buffer of these POIs could further encourage scooter trips in these

arcas.
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Figure 6-12 Relationship between POI-related distance attributes and the patterns of scooter
usage at clusters of trip origins in Gainesville, FL

Clusters of trip destinations: Figure 6-13 suggests that trip destination clusters near POIs such as
restaurants, parking areas, cafes, libraries, and bicycle parking had positive SHAP values,
indicating increased scooter usage in these locations. No significant relationship was found
between proximity to other POIs and scooter usage. This suggests that these specific POIs were
key attractions for scooter trips in Gainesville, with riders frequently parking scooters within a
0.2-mile buffer of these locations, often leading to higher scooter supply than demand. These
insights can inform vehicle rebalancing strategies, specifically by redistributing scooters from
trip-attracting POI areas with device overconcentration to trip-generating POIs with high demand
to balance device supply with demand and improve the efficiency of micromobility systems.
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Figure 6-13 Relationship between POI-related distance attributes and the patterns of scooter
usage at clusters of trip destinations in Gainesville, FL

6.5 Relationship between Usage Patterns and Street Characteristics from SVIs

As presented in Tables 6-2, 6-3, 6-4, and 6-5, clusters of both trip origins and destinations were
associated with street characteristics, for instance, a high pixel-level percentage of roads,
sidewalks, buildings, vegetation, terrain, and sky (open space) in their respective Street View
Images (SVIs). In other words, these clusters were typically located on urban streets with a high
density of roadways, sidewalks, buildings, vegetation, terrains, or open spaces compared with
other objects in their surroundings. To further investigate whether and how various street
characteristics influenced scooter usage, we calculated the SHAP values for the street
characteristics derived from SVIs of each cluster and ranked them by their relative importance to
scooter usage patterns in Jacksonville and Gainesville.

6.5.1 Feature Importance to Usage Patterns

Jacksonville, FL,

Figure 6-14 presents the feature importance rankings of street characteristics, highlighting that
the pixel-level percentages of sidewalks, terrain (road surface), and vegetation within their SVIs
were crucial factors influencing scooter usage at clusters of both trip origins and destinations in
Jacksonville. Additionally, the pixel-level percentage of fences at trip origin clusters and poles
(supporting traffic lights and streetlights) and sky (open space) at trip destination clusters had a
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greater impact on scooter usage compared with other objects in SVIs. This suggests that the
variations in the densities of sidewalks, fences, terrain, and vegetation on urban streets and their
surroundings (SVIs) would significantly influence scooter trip generation. Meanwhile,
differences in the densities of sidewalks, vegetation, sky, and poles (supporting traffic lights and
streetlights) in scooter parking streets and their surroundings highlighted how these street
characteristics may affect parking demand and conditions.
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Figure 6-14 Feature importance rankings of street characteristics to the scooter usage patterns
in Jacksonville, FL

Gainesville

Figure 6-15 illustrates the feature importance rankings of street characteristics, indicating that the
pixel-level percentages of sidewalks and sky (open spaces) in SVIs were key factors influencing
scooter usage at both trip origin and destination clusters in Gainesville. Additionally, the pixel-
level percentage of poles (supporting traffic lights and streetlights) at trip origin clusters and
buildings at trip destination clusters had a greater impact on scooter usage than other objects in
their SVIs. This suggests that streets with varying density levels of sidewalks, open spaces, or
poles (supporting traffic lights and streetlights) in the surroundings were more likely to influence
scooter trip generation. Riders were also more likely to park scooters on streets with a high
density of sidewalks, buildings, or open spaces, suggesting these streets or areas may experience
more short-distance trips and provide a better and safer riding environment.
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Figure 6-15 Feature importance rankings of street characteristics to the scooter usage patterns
in Gainesville, FL

6.5.2 Impact of Street Characteristics on Usage Patterns

Jacksonville

Clusters of trip origins: Figure 6-16 shows that street characteristics did not have linear
relationships with scooter usage at trip origin clusters, however, changes in feature values could
alter these relationships. For example, when the pixel-level percentage of sidewalks in SVIs of
origin clusters exceeded 2% and vegetation was below 20%, these characteristics positively
influenced scooter usage at trip origin clusters. Conversely, if sidewalks fell below this threshold
or vegetation exceeded it, their impact on scooter usage was more likely negative. Overall, an
increase in the pixel-level percentage of sidewalks and a decrease in the sky (open spaces) in
SVIs of origin clusters were associated with higher scooter usage at trip origins. This is likely
because, in the absence of dedicated bike lanes (see Figure 5-15), riders often share sidewalks
with pedestrians. Additionally, streets with a high density of vegetation in the surroundings
generally have fewer recreational and dining activities, resulting in lower riding demand in
Jacksonville.
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Figure 6-16 Relationship between street characteristics and the patterns of scooter usage at

clusters of trip origins in Jacksonville, FL

Clusters of trip destinations: Figure 6-17 suggests that the pixel-level percentage of sidewalks in
SVIs of destination clusters exhibited a similar relationship with scooter usage at clusters of trip
destinations as observed at clusters of trip origins. However, the impact of the pixel-level
percentage of vegetation in trip destination clusters’ SVIs showed an opposite pattern to that at
trip origin clusters. Specifically, when the pixel-level percentage of vegetation in SVIs of
destination clusters was below 15%, it negatively impacted scooter usage at clusters of trip
destinations, but when it exceeded 15%, the impact became positive. This is because streets with
a high density of vegetation, such as those near the St Johns River, were more likely to attract
scooter trips, rather than generate them. Therefore, higher pixel-level percentages of sidewalks
and vegetation in SVIs of destination clusters were more likely to elevate scooter usage at
clusters of trip destinations in Jacksonville. Additionally, poles (supporting traffic lights and
streetlights) had a positive impact on scooter usage at destination clusters when their pixel-level
percentage was below 0.3% (likely building-intensive areas) or above 1.5% (traffic facility-
intensive areas, such as transportation hubs) in the SVIs. Lastly, when the pixel-level percentage
of the sky (open space) in SVIs of destination clusters ranged between 0.75% and 0.2%
(typically recreational and commercial areas), it was also associated with increased scooter

parking at destination clusters.
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Figure 6-17 Relationship between street characteristics and the patterns of scooter usage at
clusters of trip destinations in Jacksonville, FL

Gainesville

Clusters of trip origins: Figure 6-18 shows that street characteristics did not have linear
relationships with scooter usage at clusters of trip origins, but changes in their feature values can
affect these relationships. For example, within the origin clusters’ SVIs, when the pixel-level
percentage of sidewalks was below 1.5% and the sky (open space) below 20%, both
characteristics negatively impacted scooter usage at clusters of trip origins. However, when they
exceeded the thresholds until reached 10% and 40%, respectively, they tended to positively
impact scooter usage. Overall, higher pixel-level percentages of sidewalks and sky (open spaces)
in SVIs of origin clusters were more likely to enhance scooter usage at clusters of trip origins.
This is because, in the absence of dedicated bike lanes (see Figure 5-18), riders must share
sidewalks with pedestrians, and meanwhile, more open spaces create a better riding environment,
thus promoting scooter trip generation in Gainesville.
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Figure 6-18 Relationship between street characteristics and the patterns of scooter usage at

clusters of trip origins in Gainesville, FL

Clusters of trip destinations: Figure 6-19 suggests that the pixel-level percentage of sidewalks
and buildings in the SVIs of destination clusters exhibited similar relationships with scooter
usage at clusters of trip destinations as the pixel-level percentage of sidewalks did at clusters of
trip origins. For instance, when the percentage of sidewalks exceeded 1% and buildings
exceeded 5% within the SVIs of trip destination clusters, both characteristics were likely to
positively influence scooter usage at these clusters. This is due to (1) the lack of dedicated bike
lanes (see Figure 5-18), which forces riders to share sidewalks with pedestrians and (2) buildings
mainly serving as typical attractions for scooter trips. Thus, higher pixel-level percentages of

sidewalks and buildings in the SVIs of destination clusters were typically associated with

increased scooter usage at trip destination clusters.
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6.6 Other Recommendations for Micromobility Facility Planning

In addition to analyzing the relationships between scooter usage patterns and various influential
factors, we conducted survey analysis with the survey data to derive other potential strategies for
micromobility facility planning, aiming to boost micromobility usage. The survey analysis
addressed the following planning perspectives:

6.6.1 Infrastructure Scoring and Willingness to Pay

In the survey, we asked micromobility users to rate different bicycle and scooter infrastructure
elements on a scale from 0 (nonexistent) to 5 (excellent). These elements included bike lanes,
free parking racks, secure access parking, trails, and wayfinding/directional signs. As shown in
Figure 6-20(a), secure access parking, such as lockers and valet services, received the lowest
rating, followed by wayfinding/directional signs, trails, bike lanes, and free parking racks, all
scoring below 3. This indicates a need to improve bike and scooter infrastructure, with the
priority on providing secure access to parking. We also asked users about their willingness to pay
for secure access parking, and the results are presented in Figure 6-20(b). About 50% of the
respondents were willing to pay $0.5-2, while about 40% were not willing to pay. These findings
provide hints for prioritizing infrastructure improvements and developing appropriate pricing
strategies.

(a) Infrastructure scoring (b) Willingness to pay
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Figure 6-20 Illustration of (a) infrastructure scoring and (b) people s willingness to pay for
secure access parking
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6.6.2 Selection of Micromobility Devices

In the survey, we asked both micromobility users and non-users if they were more likely to ride
in two comparative scenarios: electric vs. non-electric and dockless vs. docked micromobility
devices. The survey results are shown in Figure 6-21: (1) Electric micromobility devices
attracted more returning users (who have ridden before) than first-time riders (who have never
ridden before). Approximately 70% of current users (who have ridden before) from the
respondents said they were more likely to ride if electric devices were available, while about
12% did not care whether the devices were electric or non-electric. In contrast, only about 46.7%
of non-users (who have never ridden before) from the respondents indicated they were more
likely to ride electric devices compared to non-electric ones. (2) Dockless micromobility devices
also attracted more returning users than first-time riders. About 51.4% of current users (who have
ridden before) from the respondents said they were more likely to ride if dockless devices were
available, while approximately 15% did not care whether the devices were dockless or docked.
By contrast, only about 29.5% of non-users (who have never ridden before) from the respondents
said they were more likely to ride dockless devices compared with docked ones, while the
remaining non-users had no preference or did not care about the docking status of micromobility
devices.
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(a) For Users (b) For Non-Users

Intention to Use Electric Micromobility Intention to Use Electric Micromobility

Electric vs
Non-electric

No

(c) For Users (d) For Non-Users

Intention to Use Dockless Micromobility Intention to Use Dockless Micromobility

Dockless vs
Docked

Maybe

Maybe

No

Figure 6-21 An illustration of (a)-(b) users’and non-users’ intention to ride electric
micromobility devices against non-electric ones and (c)-(d) users’ and non-users’ intention to
ride dockless micromobility devices against docked ones

6.6.3 Micromobility Accessibility and Availability

In the survey, we asked both micromobility users and non-users about their likelihood of riding
micromobility devices if they were easily accessible and available. This survey question aimed to
determine if increased accessibility and availability would influence users’ riding frequency and

non-users’ willingness to choose micromobility for their trips. The results are illustrated in
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Figure 6-22: Increased micromobility accessibility & availability also attracted more returning
users than first-time riders. Approximately 79.1% of current users (who have ridden before) from
the respondents indicated they were very likely (56.2%) or at least likely (22.9%) to ride more
frequently if the devices were easily accessible and available. In contrast, just about 46.5% of
non-users (who have never ridden before) from the respondents said they were very likely
(18.6%) or at least likely (27.9%) to ride under the same conditions, while the remaining non-
users were either unlikely or neural about using micromobility devices even if they were easily
accessible and available.

(a) For Users (b) For Non-Users
Likelihood to Use Micromobility if Easily Accessible and Available Likelihood to Use Micromobility if Easily Accessible and Available
Not likely

Neutral

Very likely ek

Open to it but interested in more info,

Neutral
very likely

Likely Likely

Open to it but interested in more info
Figure 6-22 Illustration of users’ and non-users’likelihood to ride micromobility if the devices
are easily accessible and available
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7. Relationships Between Micromobility and Public Transit in Florida

In this section, we used survey analysis, GIS-based spatial analysis, and parametric statistical
models to the survey data and transportation network data, aiming to reveal the relationship
between micromobility and public transit systems, for instance, the effects of micromobility on
transit accessibility and ridership. Additionally, we explored whether and how the relationship
between micromobility and public transit systems varied by trip duration, trip distance, or other
spatial influencing factors.

7.1 Methods of Revealing the Relationship between Micromobility and Transit
7.1.1 Descriptive Statistics: Survey Data

Using the survey data, we applied descriptive statistics to analyze individual travel behaviors
across different transportation modes, such as micromobility and public transit, to understand
their relationship, particularly the impact of micromobility on transit ridership. This analysis
involved calculating key statistical metrics like means, medians, frequencies, and probability
distributions. Finally, data visualization tools were used to further illustrate the patterns in the
relationship between micromobility and public transit in Florida.

7.1.2 GIS-based Spatial Analysis: Scooter Trip Data and Transit Route Data

Due to a lack of publicly available transit ridership data, we used GIS-based geospatial analysis
on scooter trip data and transit route data to evaluate the impacts of micromobility services on
transit accessibility and connectivity. This approach combined traditional GIS spatial analysis
[110], spatial matching algorithms [92], and measures of transit accessibility and connectivity
[104]. The core method involved using scooter location data and transit route data to determine
whether scooter trips fell within the catchment areas around transit stops [1]. The results can help
characterize the effects of micromobility on public transit accessibility in Florida.

7.2 Impact of Micromobility on Public Transit Accessibility

To assess the impact of micromobility on public transit accessibility, we used GIS-based spatial
analysis to capture changes in transit service areas and availability before and after introducing
shared micromobility devices. These changes can reflect the effects of micromobility on transit
accessibility because it measures not only the extent of transit service areas but also the ease of
access (in terms of time and distance) to transit stops [99]. Since micromobility programs are
designed to provide first-mile and last-mile mobility services that public transit cannot reach,
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their integration into existing transit networks is expected to enhance accessibility and
connectivity [1, 19, 29, 92]. In this project, we focused on Jacksonville and Gainesville as two
representative Florida cities to illustrate these impacts, as shown in Figures 7-1 and 7-2.

Jacksonville

= Transit route
* Scooter trip

Figure 7-1 Illustration of the spatial distributions of transit routes and scooter trips in
Jacksonville, FL
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Gainesville
\[ \ Sh &1 = Transit route
« Scooter trip
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Figure 7-2 lllustration of the spatial distributions of transit routes and scooter trips in
Gainesville, FL

Figures 7-1 and 7-2 show that in the service areas of shared scooters in Jacksonville and
Gainesville, the presence of scooters extended the reachable distance of public transit routes by
1-3 miles, in combination with the trip duration and distance ranges observed in Figures 5-5 and
5-6, providing faster and easier access to public transit systems compared with directly walking
to transit stops. This finding aligned well with previous studies [96-98]. Intuitively, the
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introduction of shared scooters as a feeder mode to connect with existing public transit systems
effectively expanded transit service areas and enhanced transit accessibility [99].

In Jacksonville, scooter trips were primarily concentrated in the downtown area, resulting in
increased transit accessibility mainly within that region. Conversely, areas without scooter
availability, such as those outside downtown, saw a minimal impact on transit accessibility. In
Gainesville, shared scooters had a much broader coverage, with most trips occurring near the
university campus and surrounding neighborhoods. Consequently, notable transit accessibility
increments were also concentrated in these areas. However, the impact on transit accessibility
was limited in parts of Gainesville farther from the campus, where scooters were less available or
used.

Overall, shared scooters contributed unevenly to transit accessibility in both time and space,
primarily due to their distinct spatiotemporal usage patterns (as discussed in Sections 5.4 and
5.5). From a theoretical standpoint, shared micromobility devices have significant potential to
enhance public transit accessibility within their service areas, especially for the first and last mile
that existing public transit systems do not cover.

7.3 Impact of Micromobility on Public Transit Ridership

In addition to examining transit accessibility, we used survey data to explore the impacts of
shared micromobility on public transit ridership. Lacking real-world ridership data before and
after the introduction of shared micromobility, we conducted surveys to capture people’s travel
behaviors related to micromobility and public transit. The survey data allowed us to assess the
potential and current integration of micromobility with public transit systems, focusing on trip
frequencies and purposes of using bikes or scooters to reach the nearest transit stop. Furthermore,
we analyzed how the duration and distance of shared trips might affect the relationship between
micromobility and public transit.

7.3.1 Trip Frequencies and Purposes of Riding to Transit Stops

Figure 7-3 illustrates the distribution of survey respondents’ trip frequency when using a bike or
scooter to reach the nearest transit stop. About 71.4% of respondents reported never using
micromobility options for this purpose, indicating a weak connection between micromobility use
and transit ridership. Among the remaining 28.6% who did use micromobility as a feeder mode
to public transit, usage frequency varied: 7.9% rode daily, 8.6% rode 2-3 times per week, 3.6%
rode once a week, and 8.6% rode 2-3 times per month. This finding aligned with previous studies
[90, 94] indicating that shared bikes and scooters can positively impact public transit usage.
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Frequency of Riding to Transit Stops

Everyday

2-3 times per week.

Once per week

2-3 times per month

Never

Figure 7-3 Distribution of trip frequency when riding a bike or scooter to reach the nearest

transit stop

Figure 7-4 further illustrates the distribution of trip purposes when riding a bike or scooter to
reach the nearest transit stop. The most common trip purpose of a bike- or scooter-transit shared
ride was commuting to work/school (27), followed by recreational activities (14), exercise (12),
tourism (6), shopping (6), and other purposes (2).

Trip Purpose of Riding to Transit Stops

Commuting

b ssguj

Recreation - 14

Exercise : 12

Categories

Durism 3

Shopping 4 6

Crhers 2

0 5 1 B P =
Counts
Figure 7-4 Distribution of trip purposes when riding a bike or scooter to reach the nearest

transit stop

90



7.3.2 Impact of Shared Trip Duration and Distance on Transit Ridership

As revealed by Reck et al. (2021), modal choice shifts and integrations can vary based on trip
duration and distance. To explore whether and how these factors influenced the relationship
between micromobility use and transit ridership, we examined the distributions of trip duration
and distance for bike or scooter trips to the nearest transit stop, along with their respective trip
frequencies, as shown in Figures 7-5 and 7-6.

Effects of trip duration to reach the nearest transit stop: Figure 7-5 shows that most trips to the
nearest transit stop lasted less than 10 minutes (68.6% of respondents) or between 10-20 minutes
(13.6% of respondents), aligning with the most common trip durations observed in Figures 5-
5(a) and 5-6(a) for Jacksonville and Gainesville. Despite these short durations when riding to the
nearest transit stop, the majority of respondents did not use micromobility options to connect
with public transit. Among those whose trips to the nearest transit stop were under 10 min, only
21 out of 95 respondents used micromobility to connect with public transit: 8 rode daily, 2 rode
2-3 times per week, 4 rode once per week, and 7 rode 1-3 times per month. This suggests that
public transit systems provide easy access such that people are more likely to directly walk to the
nearest transit stops or not use public transit.

Freguency
B Everyday
N D3 times per week
Once per week
B0 2-3 times per month
Newver

70

Count

30 1

20

10

10-20 min
21-30 min
31-60 min
Over 1 h
Don't know

[=1]
Eelow 10 min ‘
|
I
|

Duraticn of riding to transit stops
Figure 7-5 Distributions of trip duration and its respective trip frequency when riding a bike or
scooter to reach the nearest transit stop
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When micromobility rides to the nearest transit stop ranged from 10 to 20 min, the proportion of
riding to connect with public transit was significantly higher despite similar in numbers: 1 out of
19 respondents rode daily, 7 rode 2-3 times per week, 1 rode once per week, and 8 rode 1-3 times
per month. This implies that when the duration of riding to the nearest transit stop was 10-20
min, shared micromobility trips were more likely to complement public transit. As the duration
of riding to the nearest transit stop increased beyond 20 min, fewer and fewer people would ride
a bike or scooter to connect with public transit. Additionally, we found that about 5% of
respondents had to ride a bike or scooter even for over 30 min if they planned to ride to the
nearest transit stop and connect with public transit. In most cases, this type of riding to connect
with public transit was unlikely to happen. Meanwhile, this implied that public transit services
were not easily available and accessible to them. Hence, the presence of shared micromobility
devices can serve as an important complementary mode for those living in areas with limited
transit access.

a0 Freguency
BN Eyveryday
35 N 7.3 times per week
30 Once per week
2-3 times per month
£ 5 Never
& 20
15
10
5
0 | M | . | - -

Less than 1 block |

Over 16 blocks {1-2 mile)
2-5 miles |

Over 5 miles |
Dan't know Ji

5-B blocks (D 25-0.5 mile) -
9-16 blocks {0.5-1 mile) -

1-4 blocks {about 330 feet to 025 mile) -

Distance of riding to transit stops

Figure 7-6 Distributions of trip distance and its respective trip frequency when riding a bike or
scooter to reach the nearest transit stop

Effects of trip distance to reach the nearest transit stop: Figure 7-6 shows that the distance of
using a bike or scooter to reach the nearest transit stop was mainly less than 0.5 miles (about
75.6% of respondents), implying easy access to public transit. This shared trip distance range
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complied with the most common trip distances observed in Figures 5-5(b) and 5-6(b) for
Jacksonville and Gainesville. However, the proportion of using micromobility to connect with
public transit was relatively low, especially when the trip distance to reach the nearest transit stop
was less than 0.25 miles. This is because many respondents preferred to walk to the nearest
transit stop directly within 4 street blocks or did not use public transit at all, based on our
interviews, discussions, and survey responses.

Conversely, when the trip distance to reach the nearest transit stop fell into the range of 0.25-0.5
miles and 1-2 miles, the proportion of using micromobility to connect with public transit
significantly increased, despite the number being lower than that in the previous distance ranges
of under 0.25 miles. This suggests that shared micromobility services could complement public
transit when the trip distance to the nearest transit stop is less than 2 miles, particularly when the
distance ranges from 0.25 to 0.5 miles and 1 to 2 miles. Similarly, we also observed that about
6.3% of respondents had to ride a bike or scooter over at least 2 miles if they planned to ride to
the nearest transit stop and connect with public transit. Although this type of riding was unlikely
to happen in the real world, this implied that people living in a transit-absence community might
ride a bike or scooter to get around, which filled a mobility gap in those areas that public transit
systems cannot cover.

7.4 Strategies to Promote Modal Integration between Micromobility and Transit

Based on the above findings, shared micromobility services can expand transit service areas and
improve connectivity, although their contributions to accessibility increments vary across time
and space, depending on micromobility usage patterns. Additionally, we found that shared
micromobility services can increase transit ridership, primarily when trips to the nearest transit
stop were under 20 min and less than 2 miles. Notably, when trips to the nearest transit stop were
in the range of 10-20 minutes and between 0.25-0.5 and 1-2 miles, the proportion of using
micromobility options to connect with public transit was significantly elevated. This provides
crucial planning implications for micromobility and public transit systems within 0.5 miles or 1-
2 miles between them to promote their modal integration. Finally, based on the findings from
survey data, we also put forward the following four strategies to promote micromobility and
public transit integration:

7.4.1 Strategy 1: Addressing Barriers to Modal Integration

In the survey, we asked micromobility users why they did not ride to nearby transit stops to
connect with public transit. Figure 7-7 lists the primary restricting factors for modal integration.
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The reasons included ‘too far to ride to transit,” ‘lack of bike lanes or safe routes to transit,” ‘lack
of safe bicycle/scooter storage near transit stops,” ‘infrequent transit services,’ ‘lack of adequate
parking space near transit stops,’ ‘other reasons (very close, easier to walk, not available),” ‘fear
of conflicts with buses/automobiles,” and ‘I do not use public transit’. This feedback offers
valuable insights for planning bike lanes to improve proximity and accessibility to nearby transit
stops and for improving public transit systems to promote modal integration.

Why People Do Not Ride to Transit Stops

Too far to ride to transit &

Lack of bike lanes or safe routes to transit
Lack of safe bicycle/scooter storage near transit stops 14
Infrequent transit services 14

Lack of adequate parking space near fransit stops

Others {Very close, Easier to walk, Not available)

Categories

Fear of conflicts with buses/automaobiles
| don’t use public transit 11
Lack of accommodations for bike/scooter onboard transit vehicles D
Weather B
Geographic barriers [hills, slopes, bridges) 8

Lack of informaticn on safe riding to transit stops 2

o 2 4 § 8 i} 12 14 16
Counts

Figure 7-7 Restricting factors for modal integration between micromobility and public transit

7.4.2 Strategy 2: Improvements in Public Transit Systems

Based on the survey data, improvements to public transit systems for better modal integration
included increasing transit frequency, extending operation hours, and expanding service areas.
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More Likely to Ride to Transit Stops with improvements of Public Transit Systems

Increase transit frequency

Extend operation time

Broaden service areas

Spacious bus interior for bike/scooter parking

Categories

More racks on a bus

Fare discount pelicy using a bike/scooter

Other (Not available, Do not use public transit)

Figure 7-8 Strategies of improvements in public transit to promote modal integration

7.4.3 Strategy 3: Amenity Improvements in Transit Hubs

Based on the survey data, transit hubs can improve amenities to enhance modal integration by
providing more free parking racks and secure access options (lockers, cages, and valet services).

More Likely to Ride to Transit Stops with Amenities in Transit Hub

Racks for free parking

Secure access parking (lockers, cages, valet)

More bicycle/scooter racks

Bike/scooter repair services

Categories

Personal lockers for gear/clothing

Caoffee shop

Others (Do not use public transit)h

,;.
5]
=
=

&

Counts

Figure 7-9 Strategies of amenity improvements in transit hubs to promote modal integration



7.4.4 Strategy 4: Improvement of Buses and Shared Micromobility Devices

Figures 7-9 and 7-10 both indicate that increasing racks on a bus and creating a spacious bus
interior for bike or scooter parking could encourage people to bring micromobility devices
onboard a bus and promote their modal integration. Meanwhile, it is crucial to increase the
number and spatial range of available shared micromobility devices around people-intensive
areas so that people are more likely to ride them to transit stops, even at a higher frequency.

(a) (b)

Frequency of Riding to Transit Stops if Shared Micromobility is Available

Frequency of Unable to Bring Micromohbiliy Onboard a Bus due to Full Rack
Everyday

nfa{No racks for buses in my area)

Everyday

Once per week

Never

Once per week

2-3 times per month

Never

2-3 times per month

Figure 7-10 Effects of improvements of buses and shared micromobility devices on their potential
modal integration: (a) availability of more racks on the bus and (b) availability of more shared

micromobility devices
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8. Patterns of Micromobility-Related Crashes in Florida

In this section, we applied survey analysis, data aggregation, descriptive statistics, visualization,
and geographic information system (GIS) based geospatial analysis on survey data, crash event
data, and bike lane network data. Our objective was to uncover the patterns of micromobility-
related crashes and identify their underlying causes, particularly focusing on the relationships
between micromobility crash patterns and infrastructure characteristics in Florida. Building on
these findings, we provide recommendations for facility planning to reduce crashes.

8.1 Characteristics of Micromobility-Related Crashes in Florida
8.1.1 Crash Occurrence

In the survey, we asked micromobility users if they had ever been involved in a crash while
riding. As illustrated in Figure 8-1, about 24.5% of respondents indicated they had experienced a
micromobility-related crash. This high crash occurrence, at least in Jacksonville, Orlando, and
Gainesville, FL, underscores the need to identify crash patterns and underlying causes to better
plan micromobility systems and reduce crashes.

Crash While Riding

Figure 8-1 Illustration of crash occurrence of micromobility riders

8.1.2 Spatiotemporal Patterns

Spatial Patterns
Figure 8-2 shows the spatial distribution of 24,420 micromobility-related crash events from Jan.
1%, 2021, to Feb. 1, 2024. Most crashes occurred in coastal cities/counties such as Tampa and
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Miami and central Florida cities like Orlando and Gainesville where there were high levels of
bike and scooter activity in these regions. It is straightforward to consolidate the correlation
between high micromobility usage and crash frequency.

@ Crash peint

Figure 8-2 Illustration of spatial distributions of crash events involving non-motorists in Florida

Temporal Patterns
We analyzed 24,420 micromobility-related crash events from Jan. 1%, 2021, to Feb. 1%, 2024, by
month, day of the week, and hour of the day to highlight the temporal variations in crashes

involving non-motorists in Florida, as shown in Figure 8-3. The temporal patterns of these
crashes closely mirrored micromobility usage trends (see Section 5.4) because higher usage
typically increased the likelihood of crashes. Crashes peaked in January, followed by October,
March, May, November, and other spring, autumn, and winter months, while Summer months
saw the fewest crashes due to reduced bike and scooter activity in high temperatures. More
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crashes occurred on weekdays than weekends, with higher frequencies during afternoon and
evening hours (3 pm-7 pm) and other daytime hours (7 am-3 pm).

(a) Monthly variations (b) Weekly variations (c) Daily variations
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Figure 8-3 Temporal patterns of micromobility-related crash events in FL: (a) monthly
variations, (b) weekly variations, and (c) daily variations

8.1.3 Contributing Factor Analysis

Crash Characteristics

To describe crash characteristics, we categorized 24,420 crash events by type of crash, type of
impact, and injury severity, and illustrated them in Figures 8-4(a)-(c). The most common type of
these crash events involved angle collisions between a bike or scooter and a pedestrian or a
single vehicle, primarily leading to no, possible, or non-incapacitating injuries of non-motorists.

(a) Type of crash (b) Type of impact (c) Injury severity
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Rear ta Side
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Incapacitating

Fatal (within 30 days)
Non Traffic Fatality

INJURY_SEVERITY

Sideswipe, Opposite Direction

S4_CRASH TYPE
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Figure 8-4 lllustration of crash characteristics: (a) type of crash, (b) type of impact, and (c)
injury severity
Non-motorists’ and Drivers’ Behaviors

To determine if non-motorists’ and drivers’ behaviors contributed to these crashes, we analyzed
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their characteristics and found that most were not related to alcohol or drugs (not shown), and
there were no significant sociodemographic profiles. As illustrated in Figures 8-5(a)-(c), before
crashes, most non-motorists were crossing roadways, cycling along roadways with traffic, or
cycling on sidewalks. Few engaged in improper actions, such as failing to yield rights-of-way or
failing to obey traffic signs, signals, or officers. However, most non-motorists lacked safety
equipment, with only a few wearing helmets. For drivers, as shown in Figures 8-5(d)-(e), most
did not depart from their lanes or show distraction before crashes. These phenomena indicate that
neither group typically engaged in improper actions, aside from non-motorists not using safety
equipment like helmets. Thus, the crashes were primarily due to non-behavioral factors.

(a) Non-motorists’ actions before crash  (b) Non-motorists’ action circumstance  (c) Non-motorists’ safety equipment
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Figure 8-5 Illustration of (a)-(c) non-motorists’ and (d)-(e) drivers’ behaviors

Environmental Circumstances

As non-motorists’ and drivers’ behaviors were not the main causes of these crash events, we
examined the environmental conditions associated with these crashes. As illustrated in Figure 8-
6, light, road surface, and weather conditions were generally good at the time of the crashes,
indicating that they were not significant contributing factors, either. Overall, it is reasonable to
infer that these crashes were primarily caused by specific location or street characteristics.
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(a) Lighting condition (b) Road surface condition (c) Weather condition
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Figure 8-6 lllustration of crash-related environmental conditions: (a) lighting, (b) road surface,
and (c) weather conditions

8.1.4 Location Analysis

As behavioral factors and environmental conditions were not the main causes of these crashes
and they displayed significant spatial distribution patterns (see Section 8.1.2), we conducted a
location analysis of these crashes to identify typical street and location characteristics that may
contribute to these incidents.

Street Characteristics
To identify typical street characteristics of crash occurrences, we tallied the total number of
crashes for different street types across the state of Florida. Figure 8-7(a) illustrates that although

crashes occurred on urban roads almost double those on rural roads, micromobility rides were
significantly higher on urban roads than those on rural roads. This means that there was a higher
crash likelihood on rural roads than on urban roads. Figure 8-7(b) shows that more crash events
occurred on local roads than on other types of roads, and meanwhile, parking lots experienced a
relatively high number of crashes. Thus, local roads and parking lots should be paid special
attention to reduce micromobility-related crashes.
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(a) Urban or rural (b) Road system identifier
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Figure 8-7 Illustration of the crash counts under various streets: (a) urban or rural and (b) road
system identifier

Location Characteristics

We examined specific crash locations and illustrated their relationships with crash counts in
Figure 8-8. Figure 8-8(a) presents those intersections with marked crosswalks had significantly
more crash events than travel lanes, sidewalks, intersections with unmarked crosswalks, bike
lanes, roadside, shoulders, driveway access, and other types of locations. As those intersections
with marked crosswalks and bike lanes typically experienced notably more micromobility rides,
the number of crash events was significantly lower on bike lanes than on intersections. This
indicates the effectiveness and necessity of dedicated bike lanes in reducing crash events. For
junction flags, intersections and intersection-related areas experienced high crash counts (about
half of the total crashes), followed by driveway/alley access-related areas and through roadway.
Additionally, although about 35%-40% of crash events were not-junction, Figure 8-8(c) shows
that most crash events occurred at locations less than 0.5 miles from intersections. These findings
highlighted the most common transportation infrastructure of crash occurrences in Florida.
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(a) Location (b) Junction flag (c) Proximity to intersections
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Figure 8-8 lllustration of the crash counts under different locations: (a) location, (b) junction
flag, and (c) proximity to intersections

Given that intersections and shoulders had higher crash counts, we delved into specific types of
these infrastructures and illustrated the relationships with crash counts in Figure 8-9. Figure 8-
9(a) suggests that more crashes occurred at four-way and T-intersections, although they
experienced high micromobility rides as well. In terms of the type of shoulder, curbs and paved
shoulders had more crash counts than unpaved ones, mainly because the former experienced
much more micromobility usage at the same time.
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Figure 8-9 lllustration of the crash counts under different intersection and shoulder settings: (a)
type of intersection and (b) type of shoulder
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8.2 Characteristics of Micromobility-Related Crashes in Gainesville, FL

In addition to examining micromobility crash characteristics across Florida, Gainesville was
selected as a representative city due to its complete micromobility datasets. These datasets
provided crucial insights into crash counts across time and space and allowed for calculating
crash percentages (crash counts divided by micromobility rides) to identify locations and street
characteristics that were more prone to crash events. This approach offered a comprehensive
understanding of crash events in Florida. Following the methodology outlined in Section 8.1, we
applied similar logic to analyze non-motorist crash patterns in Gainesville.

8.2.1 Temporal patterns

We aggregated 343 micromobility-related crash event data from Jan. 1%, 2021, to Feb. 1*, 2024,
by month, day of the week, and hour of the day to illustrate the temporal variations of crashes
involving non-motorists in Gainesville, as shown in Figures 8-10(a)-(c). Generally,
micromobility-related crashes followed similar temporal patterns to micromobility usage (see
Section 5.4) as higher usage typically led to a higher likelihood of crashes. Specifically, crash
events peaked in September, followed by October, November, August, and January through May.
More crashes occurred on weekdays than weekends, with a higher frequency during morning
rush hours (7 am-10 am) and afternoon off-rush and rush hours (1 pm-8 pm). These temporal
patterns were strongly associated with intensive student and university activities in the daytime
during the fall and spring semesters.

(a) Monthly variations (b) Weekly variations (c) Daily variations
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Figure 8-10 Temporal patterns of micromobility-related crashes in Gainesville, FL: (a) monthly
variations, (b) weekly variations, and (c) daily variations

8.2.2 Spatial Distributions

As shown in Figures 8-11(a)-(b), most of the 343 micromobility crash events happened within
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and around the university campus, particularly on streets like W University Ave, NW 13™ St, SW
Archer Rd, Gale Lemerand Drive, SW 34™ St, and SW 1-4™ Ave in Gainesville. Overlapping
these crash points with bike lanes in Figure 8-11(b) reveals two key findings:
(1) The bike lane network had poor connectivity due to a lack of dedicated bike lanes on
some major roads (highlighted with red circles) such as W University Ave, SW Archer
Road, SW 13" St, NW 13 St, NW 6™ St, and SW 154" Ave, and their adjacent local
roads.

(2) Approximately half of the 343 crashes happened on these major roads lacking dedicated
bike lanes. This suggests that the absence of dedicated bike lanes on these streets forced
riders to share roadways with motor vehicles or sidewalks with pedestrians, very likely
contributing to crashes.

(c) f}?a§hes, bike lanes, and
micramobility rides

Figure 8-11 Spatial distributions and street-level mapping of micromobility-related crash events
in Gainesville, FL

In Figure 8-11(c), we further analyzed the spatial overlap between the 343 crash locations, bike
lane networks, and micromobility usage during the same period and found that:

(1) Streets like W University Ave, SW Archer Road, SW 13" St, NW 13" St, NW 6™ St, and
SW 154" Ave, despite lacking well-connected dedicated bike lanes, experienced higher
micromobility usage.

(2) There was a strong correlation between micromobility usage and crash occurrences
within and near the university campus; higher micromobility usage typically resulted in
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more crashes.

(3) Outside the university campus, on roads like NW 43 St, NW 16® 39" and 53" Ave,
there was no strong correlation between micromobility usage and crash occurrences; high
crash occurrences were observed even with lower micromobility usage.

8.2.3 Contributing Factor Analysis

Based on the 343 crash events, we tallied the respective number of crashes in each circumstance,
including crash characteristics (type of collision, injury severity), behaviors of non-motorists and
drivers, and environmental conditions (lighting, road surface, weather). Our objective was to
identify typical characteristics of these contributing factors to crashes.

Crash Characteristics

To describe crash characteristics, we categorized crashes by type of crash, type of impact, and
injury severity, and illustrated them in Figure 8-12. The most common type of the 343 crash
events involved angle collisions between a bicycle/scooter and a single vehicle, primarily leading
to possible or non-incapacitating injuries of non-motorists.

(a) Type of crash (b) Type of impact (c) Injury severity

120 140
100 120

100

& 8 8
Crash_Caunt

Crash_Count
Crash_Count
2]

=}
=]
b=}

©
]
]

Pedestrian
Bicycle
Single Vehicle
Rear End
Other
Unknown

Parked Vehicle |
Rollover
Front to Rear
Frant to Front
Angle
Rear to Side
Other
Unknawn
Rear to Rear
MNone
Possible
Non-Incapacitating
Incapacitating
Fatal {within 30 days)
Mon-Traffic Fatality

Same Direction Sideswipe
Sideswipe, Same Direction

INJURY_SEVERITY

deswipe, Opposite Direction

S _CRASH TYPE

i
TYPE_OF_IMPACT

Figure 8-12 Illustration of crash characteristics: (a) type of crash, (b) type of impact, and (c)
injury severity in Gainesville, FL

Non-motorists’ and Drivers’ Behaviors

The findings shown in Figures 8-13(a)-(e) were almost the same as those derived in Figure 8-5
across the state of Florida. Neither non-motorists nor drivers typically engaged in improper

actions, aside from non-motorists not using safety equipment like helmets. Therefore, the crashes
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were primarily due to non-behavioral factors.

(a) Non-motorists’ actions before crash  (b) Non-motorists’ action circumstance  (c) Non-motorists’ safety equipment
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Figure 8-13 Illustration of (a)-(c) non-motorists’ and (d)-(e) drivers’behaviors in Gainesville,
FL

Environmental Circumstances

As illustrated in Figure 8-14, light, road surface, and weather conditions were generally good at
the time of the crashes, indicating that they were not significant contributing factors. However,
dark, wet, and rainy conditions, despite fewer crash counts, indeed increased the likelihood of

crash occurrences in contrast to daylight, dry, and clear ones. Overall, it is reasonable to infer
that these crashes were primarily caused by specific location or street characteristics.
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(a) Lighting condition (b) Road surface condition (c) Weather condition

=
a8
® =1
3 5}
i}
a

=]

2
=1
a8

Crash_Count
Crash_Count
8 G
5] e
Crash Count
B 0]
e 8

50 50
R R AR R R — T 0
£ ¥ £ E £ S T - T 5 & g 5 & £ 5
g 2 s 2 F 3
£ 5 & ] 8 £ % g R ¥ § & & &g & g
5 = o £ =]
a 5 = E

Dark - Lighted
Dark - Not Lighted
lud, Dirt, Gravel -{
Fog, Smog, Smoke |
Severe Crosswinds 4

=
ROAD_SURFACE_CONDITION

LIGHT_CONDITION CraSh cnunts WEATHER_(DND%DN

Dark - Unknown Lighting
eet, Hail, Freezing Rain

Blowing Sand, Soil, Dirt {

0.0030
0.0025

00025 0004
0.0020

ge

00020

0.0015
,0.0015

00010

Crash_Percentage
Crash_Percenta

00010

0.0005 0.0005

0.0000 0.0000 T T T T T 0.000

Orther
Dry

Wet
lcefFrast
il
Other

Daylight
Sand
Water
Crher
Unknown
Clear
Cloudy
Rain

Dark - Lighted
Dark - Net Lighted
Unknown

lud, Dirt, Gravel

Fog, Smog, Smoke |

Severe Crosswinds

=
ROAD_SURFACE_CONDITION

Crash percentages

n
LIGHT_CONDITION 'WEATHER_CONDITION

Dark - Unknown Lighting
eet, Hail, Freezing Rain

Blowing Sand, Soil, Dirt

Figure 8-14 Illustration of crash-related environmental conditions in Gainesville, FL: (a)
lighting, (b) road surface, and (c) weather conditions. The three figures above black dashed lines
refer to crash counts, while the three figures below black dashed lines refer to crash percentages
(ratio of crash counts to micromobility usage during the same period)

8.2.4 Location Analysis

As behavioral factors and environmental conditions were not the main causes of these crashes
and they showed significant spatial distributions (see Chapter 8.2.2), we conducted a location
analysis of the 343 crashes to identify typical street and location characteristics that may
contribute to these incidents.

Street Characteristics

To identify typical street characteristics of crash occurrences, we first tallied the total number of
crashes for different street types. Then, we calculated the crash percentage by dividing these
counts by micromobility usage during the same period. Since data on micromobility usage was
not available for rural roads, we did not calculate or display crash percentages for rural roads.
Figure 8-15(a) illustrates that although more crashes occurred on urban roads than on rural roads,

the crash percentage on urban roads was low (about 0.25%). This means, on average, there was
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one crash for every 400 micromobility rides. Figure 8-15(b) shows that more crashes occurred on
state and local roads than on other types of roads, but interstate and private roadways had higher
crash percentages compared with state and local roads. Thus, interstate and private roadways
should also be paid extra attention to reduce micromobility-related crashes.
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Figure 8-15 Illustration of the crash counts (above black dashed lines) and percentages (below
black dashed lines) under various streets in Gainesville, FL: (a) urban or rural and (b) road
system identifier

Location Characteristics

We examined specific crash locations and illustrated their relationships with crash counts and
percentages in Figure 8-16. Figure 8-16(a) shows that while intersections with marked
crosswalks had significantly more crashes than bike lanes, sidewalks, shoulders, roadsides, and
other types of locations, intersections without marked or unmarked crosswalks and
shoulders/roadsides exhibited equivalent crash percentages (about 0.4%). These crash
percentages were higher than those for midblock with marked crosswalks (0.35%), intersections
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with unmarked crosswalks (0.32%), driveway access (0.3%), intersections with marked
crosswalks (0.27%), sidewalks (0.27%), and shared-use paths or trails (0.27%), and other
locations. Notably, bike lanes, despite higher crash counts, had a much lower crash percentage,
indicating the effectiveness and necessity of dedicated bike lanes in reducing crashes. For
junction flags, intersections and intersection-related areas experienced both high crash counts
(about 140 out of 343 crashes) and high percentages (about 0.65%), followed by driveway/alley
access-related areas (about 20 crashes and 0.2%) and shared-use paths or trails (about 2 crashes
and 0.25%), etc. This highlights the most common transportation infrastructure of crash
occurrences in Gainesville.
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Figure 8-16 Illustration of the crash counts (above black dashed lines) and percentages (below

black dashed lines) under different locations in Gainesville, FL: (a) location and (b) junction

Slag

Given that intersections and shoulders had higher crash counts and percentages, we delved into
specific types of these infrastructures and illustrated the relationships with crash counts and
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percentages in Figure 8-17. Figure 8-17(a) suggests that although more crashes occurred at four-
way and T-intersections, they had equivalent crash percentages (0.25%) to Y-intersections, which
were lower than the crash percentage (0.4%) for roundabouts. This indicates that roundabouts
should be avoided if budgets and space permit other types of intersections. Similarly, signalized
intersections were preferable to stop-controlled intersections, as the former had a lower crash
percentage. Regarding shoulder types, curbs outperformed both paved and unpaved shoulders in
reducing crash percentages.

(a) Type of intersection (b) Type of intersection control (c) Type of shoulder
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Figure 8-17 Illustration of the crash counts (above black dashed lines) and percentages (below
black dashed lines) under different intersection and shoulder settings in Gainesville, FL: (a) type
of intersection, (b) type of intersection control, and (c) type of shoulder

8.2.5 Strategies to Mitigate Micromobility-Related Crashes

Finally, we inquired both micromobility users and non-users about their likelihood of riding

micromobility devices given a better and safer riding environment. This survey question aimed
to determine if improved riding environments would influence users’ riding frequency and non-
users’ willingness to choose micromobility for their trips. The results are illustrated in Figure 8-

18: Safer riding environments encouraged both users and non-users to ride micromobility.
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Figure 8-18 Illustration of users’ and non-users’likelihood to ride micromobility given a better
and safer riding environment

Building upon the above findings, we put forward several strategies to alleviate crashes and
encourage micromobility usage in Florida:
(1) To plan dedicated bike lanes on streets, particularly for those with high usage, to improve
bike network connectivity and address potential crashes.
(2) To encourage non-motorists to wear safety equipment (e.g., helmets) and avoid riding
under dark, wet, and rainy conditions in contrast to daylight, dry, and clear ones.
(3) To avoid roundabouts and stop-controlled intersections and prefer using signalized
intersections with clear markings if both budgets and space permit.
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9. Summary

The purpose of this research project is to develop an integrated framework for micromobility
analytics that applies to the state of Florida, aiming to understand micromobility usage patterns
and crash events, uncover their underlying causes, and investigate the relationship between
micromobility and other transportation modes, with a particular focus on public transit. Our
proposed modeling framework for micromobility analytics included three key modules: data
collection and acquisition, data aggregation and analysis, and pattern recognition and analysis.
Specifically, using the spatiotemporally aggregated trip data, individual trip-level data, survey
data, and crash data, the proposed framework applied descriptive statistics, data aggregation and
visualization, survey analysis, cluster analysis, and GIS-based spatial analysis to reveal the
patterns of micromobility usage and crashes, including travel behaviors, trip characteristics,
users’ sociodemographic profiles, and spatiotemporal distribution. In conjunction with spatial
influential factors, the framework applied an explainable machine learning model (XGBoost +
SHAP) to identify crucial underlying causes and characterize the relationship between these
patterns and different factors. Additionally, the framework applied descriptive statistics and GIS-
based spatial analysis to trip data, survey data, and transit route data to characterize the
relationship between micromobility and public transit. Our findings from the framework can
provide valuable insights for micromobility facility planning, including device and location
choices and infrastructure improvements, to increase micromobility usage, reduce crash events,
and enhance modal integration with public transit in Florida. The main findings are listed below:

1. Micromobility usage patterns and underlying causes:
(1) Travel behaviors: Regarding the motives and barriers to using micromobility devices, the

top four factors influencing decisions are travel times, costs, safety concerns, and
weather. Although nearly 50% of survey respondents have used micromobility devices,
people still prefer driving or using public transit regularly. Micromobility options like
bikes and scooters remain important complementary modes for covering distances and
accessing areas that are less reachable or convenient by driving or public transit.

(2) Trip characteristics: Most micromobility trips are under 20 min and less than 2 miles,
indicating they primarily offer flexible mobility for short distances. Both trip duration

and distance distributions approximately follow a negative exponential pattern. Based on
survey data, the most common purposes for riding a bike or scooter are recreational
activities and commuting to work or school, followed by running quick errands, health
and fitness, shopping, and getting to transit stops.

(3) Users’ characteristics: Males, individuals of White and Asian, young adults aged 18-34, at

least part-time workers, and full-time students are more likely to use micromobility
options compared to other groups.
(4) Temporal patterns: Micromobility programs generally follow typical temporal cycles. In
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the first year, bike and scooter trips often peak initially before gradually declining, partly
due to some vendors exiting the market because of financial challenges. Additionally,
micromobility trips exhibit distinct monthly, weekly, and hourly variations. In
Gainesville, trips usually peak between 12 pm and 6 pm on weekdays from September to
November, largely driven by increased university and student activities during the spring
and fall semesters. However, major events like football game days can significantly boost
weekend trips. In Jacksonville, most trips occur between 7 pm and 11 pm on weekends,
primarily for leisure and non-commuting purposes.

(5) Spatial patterns: Micromobility rides are heavily concentrated in just a few census tract

block groups. In Gainesville, most trip origins and destinations are distributed on streets
within and around the university campus, indicating a high spatial concentration of
micromobility rides. Overlapping with bike lane networks, most streets with high
concentration levels of e-bike and scooter trips have designed and planned dedicated bike
lanes. However, NW 3™ Ave, SW Archer Rd, NW and SW 13 Street, as well as their
adjacent roads do not have well-connected dedicated bike lanes, despite having higher e-
bike and scooter trip volumes. In Jacksonville, most scooter trips occur in the downtown
area, where dedicated bike lanes are scarce. As a result, riders are forced to share
roadways with drivers or sidewalks with pedestrians, discouraging usage and increasing
crash risks.

(6) Impacts of crucial sociodemographic and built environment attributes: An increase in

census-level population density, bike lane density, and transit route density, and a
decrease in local road network density in urban areas are more likely to positively
influence bike and scooter usage. This is because higher population density, bike lane
density, and transit route density increase the likelihood of more people using bikes and
scooters due to more bike lane availability and better connectivity to public transit.
Conversely, focusing on urban areas, higher local road network density encourages more
motorized travel but reduces bike or scooter usage.

(7) Impacts of key Points of Interest (POIs): Trip origins are typically closer to locations with
more transportation POIs, recreational POIs, and social POIs in the surroundings. In

contrast, trip destinations are closer to areas with more transportation POIs, education
POIs, commercial POIs, and recreational POIs in the surroundings. This implies that
scooter trips are mainly for commuting to work/school, connecting to other modes of
transportation, and engaging in recreational activities. For instance, in Gainesville,
scooter trips typically start at locations near schools, restaurants, parking areas, and cafes,
and end at locations near restaurants, parking areas, cafes, libraries, and bicycle parking.
This suggests that scooter trips are primarily used for commuting, dining, and
recreational purposes. In Jacksonville, scooter trips typically start and end at locations
near bars, fast food outlets, restaurants, and cafes, implying shared scooter usage is
mainly driven by recreational and dining activities.
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(8) Impacts of street characteristics: Both trip origins and destinations are typically located

on urban streets with a higher density of roadways, sidewalks, buildings, vegetation,
terrains, or open spaces than other objects in the surroundings (or Street View images). In
addition, urban streets with a higher concentration of sidewalks, open spaces, or poles
(supporting traffic lights and streetlights) in the surroundings are more likely to generate
micromobility trips compared with streets with fewer ones. This is because, due to a lack
of dedicated bike lanes, riders must share sidewalks with pedestrians for micromobility
rides. Additionally, more open spaces typically provide a better riding environment to
encourage the generation of bike or scooter trips.

2. Micromobility crash patterns and underlying causes:
(1) Spatiotemporal patterns: Micromobility-related crashes follow similar temporal patterns

to micromobility usage, as higher usage typically leads to a higher likelihood of crashes.
For statewide distribution in Florida, most crashes occur in areas with high levels of bike
and scooter activity such as Tampa, Miami, Orlando, and Gainesville.

(2) Crash characteristics: The most common type of crash in Florida is the angle collision

between a bicycle/scooter and pedestrian or a single vehicle, usually resulting in no,
possible, or non-incapacitating injuries for non-motorists.
(3) Contributing factor analysis: Neither most non-motorists nor drivers engage in improper

actions, aside from non-motorists typically not using safety equipment like helmets.
Additionally, light, road surface, and weather conditions are generally good and are not
the main causes of these crashes. Thus, we infer that these crashes are primarily caused
by specific location and street characteristics (as shown in location analysis).

(4) Location analysis: Locations close to traffic facilities like roundabouts, stop-controlled

intersections, parking lots, intersections without markings, and unpaved shoulders, and a
lack of dedicated bike lanes are often associated with higher crash percentages (crash
counts divided by micromobility rides during the same period). These street facilities,
along with intersections (high crash counts but relatively low crash percentage) should be
paid special attention to reduce crashes involving non-motorists.

3. Relationships between micromobility and public transit:
(1) Transit accessibility enhancements: Shared scooters in Florida extend the reachable

distance of public transit by 1-3 miles by providing faster and easier access to public
transit systems compared with directly walking to transit stops. Thus, introducing shared
bikes or scooters as a feeder mode to connect with public transit effectively expands
transit service areas and enhances accessibility. However, transit accessibility increments
are unequal across time and space, relying on distinct spatiotemporal usage patterns.
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(2) Transit ridership impacts: Although shared scooters in Florida can boost transit ridership,
the positive impact is not very significant. This is because many respondents prefer to
walk to the nearest transit stop directly within 4 street blocks or do not use public transit
at all, based on our interviews, discussions, and survey responses. Based on the survey
data, about 28.6% reported they had used micromobility as a feeder mode to public
transit, with varying usage frequencies: 7.9% daily, 8.6% 2-3 times per week, 3.6% once
a week, and 8.6% 2-3 times per month. Furthermore, the most common trip purpose of a

shared scooter-transit ride is commuting to work or school, followed by recreational
activities and exercise. Additionally, the shared scooter-transit ride exists primarily when
trips to the nearest transit stop are under 20 min and less than 2 miles. Notably, when trip
durations to reach the nearest transit stop are within 10-20 min and trip distances are
0.25-0.5 or 1-2 miles, there is an increased proportion of using micromobility to connect
with public transit compared with other trip duration and distance ranges.

4. Recommendations for facility planning:
(1) Location choices: Micromobility devices should be placed at locations with more

transportation, education, recreational, and commercial facilities or POIs. Specifically,
deploying devices within a 0.2-mile of schools, restaurants, parking, cafes, bars, and fast-
food outlets can encourage trip generation. In addition, placing more devices on urban
streets with high concentrations of sidewalks, open spaces, or poles (supporting traffic
lights and streetlights) in the surroundings can encourage micromobility usage.

(2) Device choices: The deployment of electric and dockless micromobility devices can
boost usage, in contrast to non-electric or docked ones. Additionally, strategies that
improve device accessibility and availability (e.g., increasing fleet size) are likely to

increase micromobility usage, especially attracting more returning users (who have
ridden before) than first-time riders (who have never ridden before).

(3) Micromobility rebalancing: Decision-makers can develop vehicle rebalancing strategies
for micromobility devices by redistributing bikes or scooters from trip-attracting POI
locations with device overconcentration to trip-generating POIs with high demand,

thereby balancing device supply with demand.

(4) Infrastructure planning: Strategies include prioritizing secure access parking (lockers and
valet services), avoiding roundabouts and stop-controlled intersections, using signalized
intersections with clear markings if both budgets and urban space permit, and planning
dedicated bike lanes on streets, especially for those with high usage, to improve bike
network connectivity and address potential crashes.

(5) Modal integration with public transit: Strategies include placing more micromobility
devices near transit stops (e.g., less than 2 miles) and planning dedicated bike lanes for
safe routes to transit stops. Improvements to public transit systems for better modal
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integration encompass increasing transit frequency, extending operation hours, and
expanding service areas. Additionally, transit hubs can provide more free parking racks
and secure access options such as lockers, cages, and valet services to enhance modal
integration between micromobility and public transit.

Final Remarks: The report is based on usage data from micromobility vendors — VeoRide and

Bird — and survey data we collected in three Florida cities — Gainesville, Orlando, and
Jacksonville, and it did not include data from other vendors and privately owned micromobility
devices. Therefore, the results of this research report have some limitations and potential biases.
Future research should include data from different sources, including privately owned
micromobility devices.
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Appendix: Florida Micromobility Usage Survey

Uiniversity of Florida (UF) & Flovida Department of Transportation (FDOT)
Welcome to the Florida Micromobility Usage Survey!

The Florida Micromobility Usage Survey 15 a tremendous effort to collect detailed data on the status of micromaobality
programs in the state of Flonda. Your responses to thas short (3-8 muinofes) survey will help shape the future of micromobality
in Flonida, By helpmg us understand where and how vou use micromobility devices (1Le., bicveles, scooters), as well as the
real and perceived motives o barmiers to mweromaobility, vou can help planners, engineers, and decision makers design and
plan micromobility programs in a safer, more equitable, easily accessible, and fully multrmedal manner.

The Florida Micromobility Usage Survey 15 supported by the Flonda Department of Transportation (FDOT) and
admimstered by International Center for Adaptation Plannimg and Design (1Adapt) of the Universitv of Flonda as part of a
statewide study on the micromaoblity usage and its integration with public transst, Thanks to all survey respondents for your
efforts and patience. If yvou have any guestions about this survey, please comtact kaifs lud@ufl edu. spensirufl edo
thormes bl o dotstate. 1.ws.

Micromobility Devices (1.c., Bicvele and Scooter) m the State of Flonda;

CONSENT FORM

Youare inmated to participate 1n a research study conducted by UF and FDOT, The purpose is to learn about your expenences
and attitudes towards micromebility devices in the state of Florida.

This research 15 anonymous. Anonvmous means that we will not record any information that could identify you, e.g., your
name, address, phunc number, date of birth, ete. There will be no lmkape between your identity and vour response. The
research team and FDOT are the only parties allowed to see the data, except as may be reguired by law. We wll only state
the group results if thes study report 15 published or presented at a professional conference. There are no foreseeable nsks 1o
taking part in this study. In addition, you may recerve no direct benefit from participating in this study, Participation in this
study is voluntary. You may choose not to participate and withdraw at any time of the study procedures without penalty, In
additron, vou may choose not o answer amy questions with which you are not comfortable.

The survey wall take about 5-8 minntes. If you understand the statements above and consent to participate in the stdy,
please select 1 Agree™ to begin the survey. 1f not; select 1 Do Not Agree™ to leave.

O | Agree ( Please continue to the survey )
O 1 Do Not Agree
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Micromobility Preferemce Qruesthons
(1: How aften do vou wtilize the following modes of transporation?

Everyday 2-3 vimes per week  Once per week  2-3 times per month Mever
Bicycle 0 | | | O
Srooter 3] | a (8| |
Diriving m| | O =] ]
Public transit | | (H| a O
Cither: ] (| O a O
02 Do you own any of the following micromobility devices (select all that applyv)?
O Bieycle O Seooter O 1 don’t own but rent & nde one of them O I don’t ever ride (Jump into Q7
03; If vou did nide, why do vou choose to ride a bicyclefscooter (sebect all that apply)?
O Fun O Exercise and fitness O Mental health and wellness O Reduce my environmental foobprmt
O Cos-effectivensss O Faster travel time O3 Crther,

(4 What type of micromohility (1.¢., bicycle, scooter) riders would vou eonsider voursel{™
[ Strong and fearless O Enthused and confident O Interested st concemed O Don’t know
(5 How Trequently do vou ride a bicvele'scooter for any of the following activities?

Evervday  2-3 times per week  Onee per week  2-3 times per month Mever
Commuting 1o workdschool O O O ] m]
Getting to transit stops 'm| O | O (|
Running quick errands m| O O o O
Shopping O O O O O
Recreation O O O O O
Health and fitness | O 0O | O
b | O 0O O O
(6; How would vou rate the following bicyclefscooter infrastructure m vour eommunsty 7
0 ( Nonesistent ) | 2 i 4 5 (Excellent)
Bike lanes O O O O O o
Racks for free parking O O O O (3| O
Secure access parking (locker, valet, etc.) O O | O O o
Trails O | O O O |
Way finding/directional signs for riding O o m| m| O o
Shared Micromobility Programs O o O o ] o
07 Would vou be more Hiely 1o nide if vou had access 1o an electric bicyele/scooter in contrast 1o non-clectric one’
O Yes O Ko Oihdayhe
(8 Would vou be more lkely 1o ride if vou had access to a dockless bicyelefscooter in eontrast 1o docked one?
O Yes O Ko Oibdayhe
% How likely are you 1o use a bicvele/sconter for travel purposes if bicyelefscooter i easily accessible and available?
O Very likely O Likely O Open o it but interested in more info O Meutral O Mot likely
OQ10: Hew likely are vou o use a hicyclefscopter for travel purposes given a better and safer ndmg environment?
O Very likely O Likely O Open 10 6t but interested in more info O Mewtral O Mot likely
Q11 If you didn’t rede, what prevents vou from usimg bicyeles or scooters for any purpose (select all that apply §?
O 1 don’t know how to rde O Weather O Too expensive to rent and ride O Tosn far to get o most destinatns
O Lack of adequate parking space at destinations O Lack of safe hicvcle/scooter storage at destinations
00 Fear of frequent bike/scooter theft O Lack of bike lanes or safe routes O Lack of information on safe trip
O Fear of conflicts with automobiles. O Geographic barriers (Le., hills, slopes, bridges) O Other:
(12 Have you ever been involved in a erash while nding a bcyelefscooter?
O Yes O Ko

b
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Micromability [nt tion Questions with Pablic Transit
(13: About how elose is the nearest transit stop 1o your residence?

[ Less than | bock [ 1-4 blecks (about 330 feet 1o 0.25 mile) O 5-8 hlocks (0.25-0.5 mile)

O %16 blocks (0.5-1 mide) O Ower 16 blocks { -2 mile) 0 2-5 miles O Ower 5 miles O Don't know
(214: Hew long do yvou think it would take you to nide 1o your nearest public transit stop™

O Below 10 min O B0-20 min O 21-30 min O 31-60 min Oifwerlh O Don’t know
015 How often do vou use a bicyclefscooter o get o transit stops?

O Everyday [ 2-3 umes per week O Onee per week [ 2-3 times per mondh O Never (Jump mio Q18)
(16 For what parpese(s) do you wse a bicyele/scooter 1o get 1o transit stops (select all that apply )7

O Commuting [ Recreation OO Exercise O Towrism O Shopping 0O Other;

17 Haw often have vou tried to bring a bike/scooter onboard a bus, but were unabie to becawse the rack was full?

O Everyday O Omce per week 0 2-3 times per month O Mever O nfa { Mo racks for buses in my area)

O18: If public trapsit systems had any of the following imprevements would you be more likely 1o use a bike/scooter 1o get 1o ransit
stops {select all that applyvy?

O Extend operation time O Increase transit frequency O Broaden service areas O Maore racks on a bus
O Fare discount policy using a bikefscomer O Spacious bus imterior for bikefscooter parking O Other:

Q1% If your transit hab had any of the following amenities would vou be more likely to use o bicyelefscooter 1o get b ransit stops
{sclect all that apply)?

O Maore bicyclefecooter racks O Racks for free parking O Secure access parking (lockers, cages, valet, ete.)
O Bikefscooter repair services O Persomal lockers for geariclothing O Coffee shop O Other;,

Q2 I vou own a bicyelefscooter, would voo consider paying a nominal fee to safely lock it mear a local transit hub?

[ Yes (30.5) O Yes (1) O Yes(32) O Yes (more than $2) OMo
21 If your community has a heyclefsoooter share system, how frequently do you use it to get to transit stops?

O Everyday 0O Chnece per week [ 2-3 umes per month 0O Mever O nfa
22 If you didn™t nde to transit stops, what prevents yvou from riding to transit stops (select all that apply 7

O Infrequent transit services O T far to nde b transit O Geographic barriers (hills, slopes, bridges)
O Lack of adequate parking space near transit stops O Lack of safe hcyclefscooter storage near iransi stops

O Lack of acoommodations for bike/scooter onboard transi vehicles O Lack of hike [anes or safe rowles &o fransit

O Lack of information on safe riding 1o transit stops O Fear of conflicts with buses/automobiles

O 1 don’t use public transn O Weather O Other;

Demographics

(23; Haw do you identify?

O Mfake O Female O Monbinary O 1 prefer not 0 answer

024: What age range do you fall into?

O Below 18 O 1824 OO0 25-34 0O 3544 O 45-54 O 55-64 O 65-T4 O 75 and over

025: In what ZIF CODE do vou reside? Please specify:
026 With what ethnicities do vou identify (select all that apply |7

O White O Black or African American O Amencan Indian O Alaska MNative
O Asan [ Native Hawaiian or (ther Pacific [slander [0 Hispanic or Lating O Oxher;
(27 What 5 the highest level of edueation vou have completed?
O Below high school O High school gradunse/GED O Some college, no degree O Associate degres
O Bachelor™s degree O Master’s degree or higher O Prefer not 1o answer O Criher:
(28 What s your current em plovment status?
O Wark par-time O Work full-time O Self-emploved O Mot employed
O Retired O Full-time student 0O Prefer not to answer O Otheer:
(2% What 5 your annual hoasehald income?
O Less than 320k O 520k o 835k O £33k w 550k I 550k 10 875k O 875k to 5100k 0O Owver $100k
30 Do you have any further thawehis er insights about nding bicy cles or sconters?
3

131



