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Metric Conversion Table 
 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
 LENGTH  

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

 AREA  
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

 
fl oz 
gal 
ft3 
yd3 

VOLUME 
fluid ounces 29.57 milliliters 
gallons 3.785 liters 
cubic feet 0.028 cubic meters 
cubic yards  0.765 cubic meters 

NOTE: volumes greater than 1000 L shall be shown in m3 

 
mL  
L 
m3 

m3 

 MASS  
oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

APPROXIMATE CONVERSIONS FROM SI UNITS 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

 LENGTH  
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

 AREA  
mm2 square millimeters 0.0016 square inches in2 
 
m2 

square meters 10.764 square feet ft2 
 
m2 

square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

 VOLUME  
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

 MASS  
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

 
*SI is the symbol for the International System of Units. Appropriate rounding should be made to 
comply with Section 4 of ASTM E380. 
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Executive Summary  
Despite the significance of real-time transit vehicle occupancy in evaluating the travel experience 
of riders and measuring the operational efficiency of transit services, it remains a challenge to 
accurately estimate transit vehicle occupancy, especially in a real-time and cost-effective 
manner. This is in stark contrast to real-time transit vehicle location information, which is 
already widely provided by transit agencies throughout the U.S. The primary goal of this project 
was to evaluate and validate various technologies for collecting transit vehicle occupancy 
information in real time. To achieve this goal, the following research tasks have been conducted.  
 
First, the project team conducted a full scan of potential technologies for estimating transit 
vehicle occupancy (both rail and bus) by conducting detailed and in-depth reviews of the 
relevant literature and practice. We identified the following technology options for the real-time 
estimation of transit vehicle occupancy: automatic passenger counter, automatic fare collection, 
crowdsourcing, onboard survey, mobile ticketing, temperature sensing, Wi-Fi, Bluetooth, 
cellular, optical and thermal cameras, lidar, and ultrasonic sensors. 
 
Then, an in-depth evaluation covering both technical and nontechnical factors was performed for 
each technology identified earlier. Technical factors included measurement accuracy, latency, 
reliability, level of automation, ease of implementation and use, and maintenance needs. Non-
technical factors included cost efficiency, privacy impact, and user acceptance.  
 
Next, considering the technical and non-technical evaluations of each technology and the 
technology availability in three Florida transit systems (StarMetro, Lynx, and Miami-Dade 
Transit), Wi-Fi was identified as a promising technology, among others. Notably, Wi-Fi probing 
is promising because it requires little hardware, data is available in real time, and no privacy 
issues exist.  
 
To evaluate the selected promising technologies in the field, pilot studies were conducted at three 
locations. With inputs from transit agencies, the research team selected three transit routes or 
lines for pilot studies at three different locations. Specifically, route Evergreen was selected for 
StarMetro in Tallahassee; route 104 was selected for Lynx in Orlando; and two Metro Mover 
loops, namely Omni Loop and Brickell Loop, were selected for Miami-Dade Transit. 
 
One technical challenge arising from MAC (Media Access Control) address randomization in 
Wi-Fi probing was noted. When MAC addresses are randomized, it is impossible to uniquely 
identify MAC addresses for estimation purposes. Therefore, the conventional approach of 
counting the number of unique MAC addresses as a proxy for the number of passengers will no 
longer work. We therefore proposed that other types of Wi-Fi frames or methods must be 
considered to explore the best potential of Wi-Fi data in estimating bus occupancy. We then 
identified many possible features and developed a data-driven approach for estimating vehicle 
occupancy. After feature engineering and hyperparameter tuning, satisfactory predictive results 
were obtained for the collected Wi-Fi frames in Tallahassee, Florida. For instance, the highest R2 
value that has been achieved is 0.84, which is considerably high. Comparable results were also 
achieved for data collected from Orlando and Miami. Therefore, this project demonstrated Wi-Fi 
frames can be used to estimate vehicle occupancy even though MAC addresses are randomized.  
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One shortcoming in the current analysis is that the data collection lasted for two weeks. When 
data are collected over a longer period, preferably continuously over time, the predictive 
performance can be further improved. Therefore, a data-driven learning algorithm that has been 
trained and tested on large-scale Wi-Fi frames can be used for transit vehicle occupancy 
estimation in practice.  
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CHAPTER 1. INTRODUCTION 
 Background 

Transit system planners and operators need transit vehicle occupancy data to enhance service 
delivery, evaluate the comparative effectiveness of transit operations, and evaluate the in-vehicle 
travel experience of transit passengers. The provision of real-time transit vehicle occupancy 
information is also crucial in assisting public transit passengers in making well-informed travel 
choices, including deciding whether to utilize the incoming bus or wait for the next available 
bus. Unlike the real-time transit vehicle arrival information that is already widely provided by 
transit agencies across the United States, real-time transit vehicle occupancy is rarely available. 
 
Traditional methods for determining the occupancy of transit vehicles commonly involve the 
utilization of manual surveys, data from automatic passenger counters (APCs), or data from 
automated fare collecting (AFC) systems. Each of these strategies has its disadvantages. The 
process of conducting manual surveys requires a significant amount of labor and is consequently 
associated with high costs. In a considerable number of cases, manual surveys are limited in their 
applicability considering the small sample size, and the data collected are also prone to human 
error, especially in areas with high levels of boarding and alighting. Although APCs have the 
potential to offer relatively precise passenger counts, their cost remains high for many transit 
agencies. Consequently, many agencies can only afford to implement APCs on partial routes. 
Furthermore, it should be noted that APCs are not designed to be utilized for real time data 
applications. Furthermore, the usage of AFC systems to gather occupancy data is limited to rail 
transport systems that are fully controlled and require ticket validation at both the points of entry 
and exit. Nevertheless, it is worth noting that only a limited number of transit systems in the 
United States possess AFC systems that effectively record both entry and exit transactions. As a 
result, the task of accurately determining the number of occupants in transit vehicles, especially 
in real-time and with little expense, remains a major challenge. 
 
The utilization of emerging information and communication technologies, including mobile 
ticketing, Wi-Fi, temperature monitoring, radio-frequency identification, and crowdsourcing, 
provides potential in enhancing the estimation of real time transit vehicle occupancy. Upon 
conducting a comprehensive analysis of the literature, it is evident that there is a lack of research 
that has assessed and substantiated the effectiveness of these technologies in accurately 
estimating transit vehicle occupancy. Thus, this project assessed and validated prospective 
information and communication technologies that have the potential to accurately determine the 
transit vehicles occupancy in real time. This study assessed a range of Florida transit agencies, 
taking into consideration their diverse characteristics such as size, service regions, types of 
services (bus and rail), and information technology infrastructure support. It is important to 
acknowledge that the compatibility of a particular technology may differ among transit agencies, 
as what works effectively for one may not be the preferred choice for another. 
 
This research has the potential to advance the current practice of collecting, validating, and 
disseminating real-time transit vehicle occupancy data. The obtained vehicle occupancy data can 
assist system operators in comprehending how transit capacity is utilized by location, route, 
travel orientation, and time. Once real-time vehicle occupancy data are available, transit agencies 
will be able to integrate these data into their mobile apps and station signage so that passengers 
can readily access it. The additional travel information, in addition to the real-time vehicle 
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arrival, provides a more comprehensive view of the transit service, thereby possibly attracting 
more travelers to the transit system. This report can also assist transit agencies that are not a part 
of this project’s pilot study in selecting their preferred vehicle occupancy data collection 
technology. 
 

 Research Overview and Structure 
In this section we will provide a general overview of the research project and the structure of this 
report. The goal of this project is to test and verify several technologies for gathering and 
estimating real-time transit vehicle occupancy. The objectives include but are not limited to the 
following:  

• Identify a list of prospective technology options for transit vehicle occupancy estimation 
by examining academic literature, news, and technical reports. 

• Evaluate all potential technologies from both a technical (e.g., measurement accuracy, 
latency, reliability, level of automation, ease of implementation and use, and maintenance 
requirements) and non-technical (e.g., cost efficiency, privacy impact, and user 
acceptance) standpoint. 

• Create extensive documentation of viable technologies, including their technical 
capabilities, privacy issues, implementation difficulties, risks costs, and potential 
vendors. 

• Conduct the pilot studies and validate selected technologies in Tallahassee, Orlando and 
Miami, Florida. 

 
The report is divided into six chapters. This chapter gives an overview of the project and the 
outline of the report. 
 
In Chapter 2, the literature review of relevant studies is presented and the list of the identified 
potential technologies for the real-time estimation of transit vehicle occupancy is also given.  In 
addition, a summary of the evaluation of the potential technologies based on their technical and 
technical factors is presented. Furthermore, based on the evaluation, applications of Wi-Fi 
technologies in public transportation are presented, followed by the identified research gaps from 
the review. 
 
Wi-Fi frame collection is described in Chapter 3. The fundamentals of Wi-Fi association process 
are described, so are the hardware needed and the setup of the hardware. Outdoor experiments 
and pilot studies were conducted in Tallahassee, Miami, and Orlando; and the description of the 
collected data is presented. 
 
In Chapter 4, the data driven methodology used to estimate the number of passengers is 
presented. Also, initial analysis of the data is presented. 
 
The results and discussion are presented in Chapter 5. Outdoor experiments result together with 
the results of the data driven approach for the pilot studies conducted are presented. 
 
Chapter 6 provides conclusions of the research project highlighting the major findings and 
recommended future work. 
 



3 
 

CHAPTER 2. LITERATURE REVIEW 
 Relevant Studies Review by Technology 

Many individuals utilize public transportation on a daily basis. The quality of service is an essential 
consideration for passengers when deciding whether to use the bus system. Enhancements in the 
domains of scheduling and passenger information are heavily dependent on the availability of real-
time data pertaining to bus location and in-vehicle congestion. The availability of bus location 
information through GPS is easily accessible and cost-effective. Obtaining accurate and up-to-date 
occupancy information in cost-effective and easily scalable ways represents a greater challenge. 
The availability of crowding information is of great significance, particularly when combined with 
short-term congestion predictions. This combination empowers operators to engage in dynamic 
scheduling practices, enabling them to manage a fluctuating load effectively. Additionally, it 
enhances passengers’ understanding of the present and anticipated conditions of the transportation 
systems.  

A detailed literature and practice review were conducted to identify all potential technologies for 
occupancy estimations. In addition to manual surveys, APCs, and AFC systems, the additional 
technologies that were identified include Crowdsourcing, Wi-Fi, Bluetooth, Cellular Networks, 
Optical, and Thermal Cameras, LiDAR, and Ultrasonic Sensors. Each of the identified 
technologies is evaluated based on technical and non-technical capabilities. The criteria used for 
the technical evaluation are as follows:  

a) Measurement accuracy: how close the technology’s measurements are to the ground truth 
value. 

b) Latency: how long it takes to provide occupancy estimation findings after processing and 
computing. 

c) Reliability: the capacity to work successfully despite real-world disturbances (e.g., weather 
changes, vehicle brightness.  

d) Level of automation: the extent of intervention from vehicle operators and other personnel 
needed to keep the system working. 

e) Implementation and use: the projected effort and complexity of using a proposed 
technology.  

f) Maintenance: support staff attempt to restore system functionality. The above criteria apply 
to both the software and hardware sides. Scholarly literature, technical standards, and 
pertinent reports were used to evaluate identified technologies. 
 

After the technical evaluations, a non-technical analysis was conducted. Technology may have all 
the desirable technical features, but it may not be selected for deployment due to non-technical 
factors. The non-technical evaluation involved re-evaluating those technologies with good 
technical capabilities through the following aspects:   

a) Cost: the estimated amount of capital and operating investments required.  
b) Privacy: protecting personal information (both vehicle operators and riders) from being 

observed by unauthorized parties,  
c) Public acceptance: attitudes from riders towards the occupancy estimation technologies  
d) Transit agency acceptance: perception of usefulness and ease of maintaining these 

technologies,  



4 
 

e) Vendor acceptance: vendors’ incentives for developing the required systems for the transit 
agencies.  

 
2.1.1 Automatic Passenger Counter 

Automatic Passenger Counters (APC) are special devices installed on transit vehicles (i.e., buses 
and trains) to keep track of the boarding and alighting movements of passengers. There are 
multiple types of APCs depending on the underlying technology. Infrared sensors can form a 
light barrier to detect the passage of people; pressure-sensitive switches (e.g., mechanical treadle 
mats) can be activated as passenger weight is applied on them; load sensors installed on 
suspensions of trains can also be used to estimate the number of passengers (Darsena et al., 2022; 
Nielsen et al., 2014). 
 
An example of a study that involves APC was conducted by Khomchuk et al. (2018). Since most 
train cars have installed electronic weighing sensors (E&T, 2020), the researchers used such 
weight data from the Copenhagen rail network to infer the train load. They indicated that the 
weight sensors could provide comparable passenger counts as infrared sensors. They also 
developed an algorithm to predict the crowding level for each train car by combining the weight 
data with some historical passenger data. Table 2-1 provides a list of some relevant studies 
involving APC technology. 

 
Table 2-1 APC Technology-Related Studies 

Study Research Topic Mode Data 
Classification 

Region 

Rakebrandt 
(2007) 

The concept and applications of 
APC systems. 

Bus/Rail N/A New York City, 
US 

Nielsen et 
al. (2014) 

A passenger counting technique 
that used the weighing systems 
installed in the majority of current 
trains to control brakes. 

Rail Real Time Denmark 

Khomchuk 
et al. 
(2018) 

Crowding level information to 
passengers waiting at arriving 
station through APC data. 

Rail Real Time Massachusetts, 
US 

Traunmuell
er et al. 
(2018) 

A low-cost approach to APC by 
using accelerometer measurement 
for estimating passenger loading. 

Rail Real Time Massachusetts, 
US 

Jenelius 
(2020) 

Crowding prediction problem 
based on real-time load data and 
examined the performance of 
numerous data-driven prediction 
algorithms. 

Rail Real Time Stockholm, 
Sweden. 
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Study Research Topic Mode Data 
Classification 

Region 

Murdan et 
al. (2020) 

Design, development, and testing 
of an Internet of Things-based 
system that uses an array of 
sensors to detect events in the 
vehicle and display real-time 
vehicle occupancy. 

Bus Real Time Mauritius 

Grgurević 
et al. 
(2022) 

An overview and study of the 
most widely employed methods, 
technology, and designs for on 
board passenger counting in 
public urban transport vehicles. 

Bus/Rail Non-Real  
Time 

N/A 

 
2.1.2  Automatic Fare Collection 

The Automatic Fare Collection (AFC) system is an automated ticketing system being adopted by 
an increasing number of transit agencies. AFC typically consists of ticket vending machines, 
ticket checking machines, and automatic gate machines. It is noted that the primary purpose of 
AFC is for fare collection although AFC-generated data can be used to estimate ridership or 
vehicle occupancy (Asim et al., 2022). It is also common to jointly analyze APC and AFC data 
to comprehensively understand passenger activities. An example application of the AFC data is 
provided by Jang (2010), who conducted travel time and transfer pattern analyses using AFC 
data from Seoul, South Korea. As both the trip origin and destinations were recorded by the AFC 
system in the study, the number of boarding and alighting passengers for a vehicle at each stop 
could be collected. Sun & Schonfeld (2016) used train schedules and AFC data from the Beijing 
Subway to assign passengers to train trajectories, which further yielded the number of passengers 
taking each train. In this assignment, the entry time, entry station, exit time, and exit stations 
were all available. Table 2-2 lists some related studies involving AFC. 
 
 

Table 2-2 AFC Technology-Related Studies 

Study Research Topic Mode Data 
Classification 

Region 

Cui  
 (2006) 

Development of an algorithm to 
estimate bus passenger trip origin-
destination matrix (OD matrix) using 
data from the Automatic Data 
Collection systems such AFC. 

Bus Non-Real 
Time 
 

Massachusetts, 
US 
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Study Research Topic Mode Data 
Classification 

Region 

Jang  
(2010) 

The potential applications of 
automatically gathering smart card 
data and explored the usage of AFC 
data for transportation planning 
applications. 

Rail Non-Real 
Time 
 

Massachusetts, 
US 

Pelletier et 
al. (2011) 

The examination of smart card data 
usage in the context of public 
transportation. The study addressed 
data utilization at management's 
strategic, tactical, and operational 
levels (ridership statistics and 
performance indicators). 

Bus Non-Real 
Time 
 

Montreal, 
Canada 

Sun & 
Schonfeld 
(2016) 

AFC data were utilized to construct a 
schedule-based passenger path-choice 
prediction model for a multi-operator 
rail transport network. 

Rail Non-Real 
 Time 
 

Beijing,  
China 

Yang et al. 
(2021) 

Short-term passenger volume 
forecasting for urban train networks 
using smart-card data and deep 
learning 

Rail Non-Real 
 Time 
 

Beijing,  
China 

Özgün et 
al. (2022) 

Using reverse direction boarding to 
estimate alighting counts for public 
transportation vehicle occupancy 
levels. 

Bus Non-Real  
Time 

Antalya, 
Turkey 

 
 

2.1.3 Crowdsourcing 
The Texas A&M Transportation Institute (2022) website defines crowdsourcing as an innovative 
approach to engaging the public in decision-making. This strategy enables many individuals to 
act as information collectors and broadcasters to others in the crowd. Several research studies 
have explored the concept of crowdsourcing to collect and provide real-time transit information, 
as summarized in Table 2-3. 
 

Table 2-3 Crowdsourcing-Related Studies. 

Study Research Topic Mode Data 
Classification 

Region 

Stirling  
(2012) 

Tiramisu Transit App that uses 
crowdsourced information from riders 
to provide the predicted number of bus 
arrival times and occupancies. 

Bus N/A Syracuse, 
New York 
State, US 

Tejas et al. 
(2015) 

Crowd Sourcing to provide real-time 
information about buses. 

Bus Real Time India 



7 
 

Study Research Topic Mode Data 
Classification 

Region 

Vemula et al. 
(2015) 

Improving the usability of public 
transportation through crowdsourcing. 

Bus Real Time India 

Chaudhary et 
al. (2016) 

Occupancy prediction using 
crowdsourced data from smartphones. 

Bus Real Time India 

Haywood et 
al. (2017) 

Investigation of the cost of public 
transportation crowding in terms of 
passenger welfare. 

Bus Non-Real 
Time 

Paris, 
France 

Mukheja et 
al. (2017) 

Real-time positioning method using 
crowdsourced information from a 
smartphone. 

Bus Real Time India 

Lazo 
(2017) 

Commuters take charge of their 
commute through crowdsourced 
information from app-based services. 

Bus N/A Washington, 
US 

Wanek- 
Libman 
 (2020) 

Sharing crowding information in 
transit vehicles through crowdsourcing. 

Bus N/A Illinois, US 

Texas A&M 
Transportatio
n Institute 
(2022) 

Description of what crowdsourcing is 
and its impact on the community. 

Rail/ 
Bus 

Non-Real 
Time 

Texas, US 

 
As an example, Tejas et al. (2015) described a system that gathered bus occupancy information 
through crowdsourcing. The system used consisted of an Android module, a cloud module, and a 
QR code module. In this system, passengers scanned the QR codes painted on a bus to upload 
occupancy information to the cloud. Chaudhary et al. (2016) proposed a similar system and 
tested it with help from four students traveling in the same bus in Chandigarh, India. The authors 
provided the crowding information in five-level scale ranging from empty (less than 10 occupied 
seats) to standing (more than 50 passengers on-board). Chaudhary et al. (2016) stated that certain 
users had reported erroneous data, as the ground truth data were collected manually and used to 
validate the information. 
 
A transportation reporter (Lazo, 2017) from the Washington Post described how mobile apps 
were used to collect travel preferences (such as route, drop-off point, and departure time) from 
commuters to customize the commuter bus services. The reporter presented that Chariot, a 
commuter shuttle service provider, allowed users to pitch their preferred new route. However, 
Lazo (2017) did not mention any vehicle occupancy information collected or shared through 
crowdsourcing. In addition, Kim et al. (2019) performed an online survey to reduce 
overcrowding by investigating the effects of occupancy information designed to promote 
passenger behavior modification. The majority of participants, roughly 93.3%, indicated that the 
information was useful and that they were willing to shift to a less crowded carriage. 
Nevertheless, they indicated that further information beyond occupancy data such the number of 
empty seats would be required. 
The unique advantage of crowdsourcing is that no major capital investments in hardware are  
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needed, as passengers can report vehicle occupancy information voluntarily. The shortcoming of  
crowdsourcing lies in the quality of data submitted by passengers. Data validation and error  
correction is necessary. 
 

2.1.4 Cellular 
In a cellular network (or called wireless network), users with portable transceivers (e.g., mobile 
phones) can communicate with other users at a different location through fixed-location 
transceivers (also called cellular radio towers or cell sites). The radio signals exchanged between 
those transceivers can be used to track mobile devices and their users (Liu et al. 2014). Darsena 
et al. (2022) reported that cellular signals could be used for crowd-counting. Table 2-4 displays 
representative studies involving cellular data. 
 
Darsena et al. (2022) provided an example of a study that used radio wave signals of cellular 
communication and DL (Deep Learning) techniques for crowd estimation. The results of the 
study were 78% accurate. However, the authors indicated several setbacks associated with using 
cellular data for passenger estimation; these complications include the need to collect 
information from separate mobile phone operators, privacy issues, and the inability to distinguish 
passengers from the public. The authors added that the incoming 5G technology that utilizes very 
small cells would permit more precise monitoring, such as bus stops. 
 
There are a few challenges in estimating vehicle occupancy using cellular data. First, cellular 
data are owned by mobile carriers, such as Verizon or AT&T, rather than public transit agencies. 
Such cellular location data have to be acquired from multiple carriers. Second, cellular data need 
to be processed (e.g., removing data for those mobile users who are classified as non-transit 
passengers), which can take time. Third, the latency is high, because such cellular data are not 
available to transit operators in real-time. 
 

Table 2-4 Cellular Network Technology-Related Studies. 

Study Research Topic Mode Data 
Classification 

Region 

Aguilera et al. 
(2013) 

Cellular data for passenger 
flow measurement in an 
underground transit system. 

Rail  France 

Ramachandran 
(2013) 

Methods for determining and 
quantifying the relationship 
between the number of cell 
phone users and the overall 
number of persons in a given 
location. 

Transit/ 
Non-
Transit 

Non-Real 
Time 

New Jersey, 
US 

Shibata & 
Yamamoto 
(2019) 

Recommendation of a new 
crowd density observation 
technique for monitoring 
people flow. The suggested 
method measures the signal 

Non-
Transit 

N/A Japan 
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Study Research Topic Mode Data 
Classification 

Region 

intensity of cellular 
communication radio waves. 

Barbour et al. 
(2019) 

A unique approach for 
estimating building 
occupancy at an 
unprecedented scale using 
enormous amounts of 
passively gathered mobile 
phone data. 

Non-
Transit 

Non-Real 
Time 

Boston, 
Massachusetts, 
US 

 
 

2.1.5 Wi-Fi 
Wi-Fi is a network technology used for local area networking and internet access. Wi-Fi allows 
neighboring digital devices to exchange data via radio waves. Wi-Fi services are provided by 
public transportation or other passenger transport companies in order to improve the travel 
experience of their customers or increase ridership. Because many commuters carry Wi-Fi 
devices (e.g., 80%, according to Pu et al. (2021)) and a rising number of transit operators install 
Wi-Fi access points on their vehicles, the idea of predicting vehicle occupancy with Wi-Fi data 
has been investigated by numerous researchers in the literature. 
Estimating transit vehicle occupancy using Wi-Fi probe data is a promising alternative because it 
requires little technology and can potentially be accessed in real-time. It, like other device-based 
passenger counting approaches, suffers from overestimation (when a single user is carrying 
numerous devices) and underestimating (when a user is not carrying any devices). Those 
overestimation and underestimating issues, however, can be overcome with proper data filtration 
and re-scaling. Table 2-5 displays the representative studies involving Wi-Fi. 
 

Table 2-5 Wi-Fi Technology-Related Studies. 

Study Research Topic Mode Data 
Classification 

Region 

Kang et al.  
(2016) 

In-vehicle Wi-Fi-based 
tracking system that 
provides various analytics 
for transit operators. 

Bus  Madison, 
Wisconsin, US 

Pattanusorn et 
al. (2016) 

A real-time system for 
determining the position 
and occupancy of public 
transportation vehicles. 

Bus Real Time Thailand 

Jain et al.  
(2018) 

The impact of Wi-Fi on 
Trains to rail passengers. 

Rail Non-Real Time UK 

Traunmueller et 
al. (2018) 

Analyzing human mobility 
patterns in cities using Wi-
Fi probe and locational data 

Non-
Transit 

 Manhattan, New 
York City, US. 
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Study Research Topic Mode Data 
Classification 

Region 

Oransirikul et al. 
(2019) 

Estimation of the number 
of passengers by evaluating 
signals from their Wi-Fi 
devices and identifying 
them using a real-time 
filtering method as 
originating from passenger 
or non-passenger devices. 

Bus Real Time Japan 

Mehmood et al. 
(2019) 

Wi-Fi-based system for 
occupancy estimation in 
buses. 

Bus Real Time Australia 

Paradeda et al. 
(2019) 

Evaluating the feasibility of 
bus passenger estimates 
based on the detection of 
Wi-Fi MAC addresses of 
portable devices. 

Bus Non-Real 
Time 

Brazil 

Vieira et al.  
(2020) 

A system that estimated the 
number of passengers in 
buses or metro through the 
user’s smartphone and 
mathematical modeling. 

Bus Real Time Belo Horizonte, 
Brazil 

Nitti et al. 
(2020) 

A Wi-Fi-based Automatic 
Bus Passenger Counting 
System (iABACUS). The 
iABACUS aimed to 
observe and analyze urban 
mobility by tracking 
passengers on public transit 
vehicles during their whole 
route without requiring the 
passengers to take any 
action. 

Bus Real Time Italy 

Ryu et al. (2020) Practical application of Wi-
Fi detecting system for 
predicting passengers' 
origin-to-destination (O/D) 
trip and bus stop waiting 
times. 

Bus Non-Real Time Charlottesville, 
Virginia, 
US 

Tang et al.  
(2020) 

A passive Wi-Fi radar 
system for occupancy 
detection and people 
counting. 

Non-
Transit 

Non-Real Time UK 

Asim et al.  
(2022) 

Wi-Fi technology 
application to collect 

Bus Real Time Canada 
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Study Research Topic Mode Data 
Classification 

Region 

information on passenger 
activity for transit service 
planning and management. 

 
2.1.6 Bluetooth 

Bluetooth is a short-range wireless communication technology used to link electronic devices 
through radio waves. Weppner et al. (2014) presented an application of Bluetooth scanning for 
urban crowd monitoring. The dataset collected during a three-day event in Zurich, Switzerland 
involved 1,000 Bluetooth scanners, around 20,000 unique Bluetooth devices in discoverable 
mode, and nearly 200,000 discoveries. In the area of public transportation, Kostakos et al. (2010) 
also employed Bluetooth technology to estimate the origin-destination matrix in a case study in 
Portugal. They installed a Bluetooth scanner on the ceiling of a bus near the exit to detect 
passengers with their Bluetooth devices in discoverable mode. Kostakos et al. (2010) indicated 
that the proportion of users who set their Bluetooth devices in discoverable mode was around 
7.5%. They validated their estimation results by conducting a correlation analysis between the 
number of Bluetooth passengers and the number of validated tickets (considered ground truth). 
Kostakos et al. (2010) reached the conclusion that in the future, they would implement the GPRS 
connection to have remote access to their data in real time. Privacy concerns were raised by the 
authors because their system records precise passenger location data. RFID tickets, according to 
Kostakos et al. (2010), represent the same threat to passenger privacy. In addition, the low 
penetration rate is a significant shortcoming of Bluetooth-based passenger detection. Table 2-6 
lists some related studies involving Bluetooth technology. 
 

Table 2-6  Bluetooth Technology-Related Studies. 

Study Research Topic Mode Data               Classification 
Region 

Kostakos et 
al. (2010) 

A unique, low-cost wireless system that 
employed commercially available 
Bluetooth technology and identified 
and recorded end-to-end passenger 
travels. 

Bus N/A Maderia 
Island, 
Portugal 

Weppner et 
al. (2014) 

The possibility of employing Bluetooth 
scanning to monitor crowds in 
metropolitan environments. 

Bus Real Time Zurich, 
Switzerland 

Basalamah 
(2016) 

A description of using Bluetooth low 
energy (BLE) tagging as an alternate 
way for crowd counting at bus stops; a 
large population carried BLE proximity 
tags that function as beacons and 
whose presence is detected by a few 
volunteers' smartphones.  

Bus Non-Real 
Time 

Saudi Arabia 
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2.1.7 Optical and Thermal Cameras 
It has been widely known that optical and thermal cameras can be used to detect and estimate the 
number of people in various settings (e.g., indoor or outdoor). Passengers of public 
transportation may be left behind on the train platform due to extreme congestion. Sipetas et al. 
(2020) provides an example of application in the domain of public transportation. Surveillance 
videos of a train station in Boston, Massachusetts were analyzed with image processing and 
people detection software to estimate the number of passengers who had departed the station 
without boarding. Using manual estimates, the estimation results were verified. It was 
determined that the estimation error did not exceed 10%.   
 
Darsena et al. (2022) indicated that the majority of optical camera-based crowd counting and 
detection research relies on computer vision technologies where crowds are identified in videos 
using particular features, such as motion tracking or facial recognition. The Office of Vehicle 
Technologies of the US Department of Energy also funded a project led by the Chattanooga Area 
Regional Transportation Authority, where computer vision models were used to collect ridership 
data from onboard camera videos through anonymous tracking of passengers (United States 
Department of Energy, 2020).  
 
In addition to optical cameras, thermal cameras can be used to detect people in low-light settings, 
complete darkness, or other difficult conditions (Darsena et al. 2022). Thermal cameras can be 
used to monitor crowding situations in both indoor and outdoor settings. Table 2-7 lists some 
related studies involving optical and thermal cameras. 
 

Table 2-7 List of Relevant Studies Involving Optical and Thermal Cameras. 

Study Research Topic Mode Data 
Classification 

Region 

Yu et al.  
(2007) 

A method for estimating the real-time 
passenger crowd flow in a bus with a 
complex background using image 
processing. 

Bus Real Time China 

Chen et al. 
(2008) 

A system using video processing to 
automatically count passengers entering 
and exiting buses 

Bus Real Time China 

Junior et al. 
(2010) 

An overview of crowd analysis with 
computer vision techniques, covering a 
variety of topics including people 
tracking, crowd density estimation, event 
detection, validation, and simulation. 

Non-
Transit 

Non-Real 
Time 

Brazil 

Lengvenis 
et al. (2013) 

An automated computer vision system for 
counting passengers. Four algorithms 
were developed to estimate the number of 
people using public transportation, and 
the benefits and challenges were 
examined. 

Bus Non-Real 
Time 

Kaunas, 
Lithuania 
Europe 

Hashimoto 
et al. (2015) 

Using a two-layer laser-based scanner set 
to track people in a group. 

Non-
Transit 

N/A Japan 
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Study Research Topic Mode Data 
Classification 

Region 

Liu et al.  
(2017) 

A passenger counting system that 
combined the CNN detection model and 
the Spatio-temporal context model. 

Bus Non-Real  
Time 

China 

Sipetas et 
al. (2020) 

Surveillance camera feeds analysis using 
image processing and object detection 
software to determine the number of 
passengers left behind at station 
platforms. 

Rail Non-Real 
Time 

Boston, 
Massachuset
ts, US 

Hsu et al. 
(2020) 

An approach for estimating the number of 
bus passengers using deep learning in a 
variety of scenarios. 

Bus Real Time Taiwan 

Wei et al. 
(2021) 

A CNN (convolutional neural network)-
based network named the MP-CNN 
(metro platform-CNN) was designed to 
properly count people on metro 
platforms. 

Rail N/A Zhengzhou, 
China 

 
2.1.8 Mobile Ticketing 

Mobile ticketing is a technology that enables users to purchase fares through their smartphones. 
Apanasevic & Rudmark (2021) demonstrated that ticketing is one of the core sources of 
information used for transit planning by most agencies. An interview conducted by the authors 
with a company in Denmark called Movia revealed that more passengers were switching to 
mobile ticketing solutions and that only 40 to 50 percent of their Movia passengers still used 
smartcards while the remaining use other means such as mobile ticketing. Moovit, a mobile 
ticketing app, provides user-reported occupancy information to help other riders plan their 
travels (Moovit, 2021).  
 
Rahman et al. (2016) used mobile ticketing data to estimate the origin-destination matrix for the 
East River Ferry (ERF), a privately-operated ferry service in New York. With the back-end data 
provided by the mobile ticketing app developer, Rahman et al. (2016) estimated O-D matrices 
and conducted a comparison with the traditional onboard surveys. Rahman et al. (2016) 
concluded that mobile ticketing was a good source of data for understanding where and when 
passengers use ferry services. 
 
Sørensen et al. (2019) reported that ticketing databases (including mobile ticketing) would be 
used for analytical purposes such as ridership, travel patterns, boarding at particular stops, and 
other information that will enable the providers to plan their services better. As mobile ticketing 
is part of the AFC system, mobile ticketing data are usually included in farebox data. 
 

2.1.9 Hybrid 
Multiple technologies can be combined to estimate transit vehicle occupancy or other metrics. 
For instance, Pu et al. (2019) detected both Wi-Fi and Bluetooth devices when estimating 
passenger flows. In an experiment conducted in Sydney, Australia, Moser et al. (2019) installed 
four different passenger counting technologies on a bus, two cameras, one of which was in the 
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front, two infrared sensors to cover both doors on the bus, five Wi-Fi sensors, and a sensor mat at 
the rear door. The experiment results were as follows: 80% from Wi-Fi sensing, 84% from video 
sensing, and 90% from sensor mat. The authors reported that the team successfully collected 
infrared data and gained insight into the appropriate positioning of the infrared sensor. Moreover, 
the authors noted that sensor mats could not be used for real-time estimation because data 
collected cannot be accessed instantly; however, infrared sensors and video sensing will be 
further assessed in the future for real-time estimation. Table 2-8 lists some related studies 
involving multiple technologies. 
 

Table 2-8 Relevant Studies Involving Multiple Technologies. 

Study Research Topic Mode Data 
Classification 

Region 

Kouyoumdjie
va et al. 
(2019) 

A detailed investigation of non-image-
based people counting methods. 

Transit/ 
Non-
Transit 

 Stockholm, 
Sweden 

Sørensen et al.  
(2019) 

A review of how the number of 
passengers on trains is measured, 
including technologies and practices of 
measuring actual ridership. 

Rail Non-Real 
Time 

Norway 

Moser et al. 
(2019) 

A methodology for empirically 
evaluating APC systems for 
deployment in public transport bus 
services. 

Bus Non-Real 
Time 

Australia 

Pu et al.  
(2019) 

Application of Wi-Fi and Bluetooth 
sensing devices to monitor real-time 
public transit ridership flow. 

Bus Real Time Seattle, 
US 

El-Tawab et 
al. (2020) 

Smart city data sensing using an IoT 
framework. 

Bus Real Time Virginia,  
US 

Jenelius 
(2020) 

A system used to deliver customized, 
anticipated in-vehicle crowding 
information to commuters on public 
transportation via mobile applications 
or at-stop screens.  

Bus Real Time Stockholm, 
Sweden. 

Noursalehi et 
al. (2021) 

A real-time predictive decision support 
platform that addresses both operations 
control and customer information 
requirements. 

Rail Real Time Massachuset
ts, US. 

Jiang et al. 
(2021) 

Advanced sensing and networking 
technologies that collect and analyze 
multimodal, multi-perspective, and 
real-time crowding data pertinent to 
crowd management. 

Non-
Transit 

Real Time Saudi 
Arabia 

Drabicki et al. 
(2022) 

Investigation of whether providing 
real-time crowding information (RTCI) 
at the stop on the two upcoming vehicle 

Bus Non-Real 
 Time 

Warsaw, 
Poland 
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Study Research Topic Mode Data 
Classification 

Region 

departures can encourage customers to 
wait for a less packed departure, hence 
reducing the bunching impact. 

Zhao et al. 
(2022) 

Using AFC and Wi-Fi data to 
investigate an effective method for 
detecting passengers in a metro system. 

Rail Non-Real  
Time 

Shenzhen, 
China 

 
2.1.10 Miscellaneous 

 
2.1.10.1 Manual Surveys 

Manual passenger counting was the most used passenger counting method in transit systems as 
of 1998 (Boyle 2008). Later, more transit agencies combined automated and manual methods in 
collecting ridership data. Based on a survey completed by New York City Transit, Masters et al. 
(2003) also indicated that manual surveys were largely used for passenger counting despite all 
the technological advancements in automated counting. Since manual counting is a versatile 
method, it can be used to count passengers in any mode of transportation, whether passengers are 
boarding or alighting from vehicles or changing routes. Masters et al. (2003) demonstrated that 
manual counts were mainly used to count people entering and exiting vehicles. Due to the high 
accuracy, manual surveys remain as the only way to collect the ground truth data in order to 
validate the estimation results using other counting technologies (Asim et al. 2022). 
However, it should be noted that manual surveys are time consuming, susceptible to human error 
and expensive. Manual surveys are not ideal for crowded areas, and data could be affected in 
scenarios such as unpredicted change in weather conditions. Hence most agencies end up 
combining manual surveys with other methods such as AFC and APC. 
 

2.1.10.2 Lidar (Light Detection and Ranging) 
LiDAR is a technology for locating far-off objects and figuring out their position, speed, or other 
details by examining the pulsed laser light reflected from their surfaces. LiDAR can maintain the 
number of people passing through an entry, thus enabling efficient access control and crowd 
management (Ganz Security, 2021). Lesani et al. (2020) employed LiDAR to count and identify 
the travel direction of each individual in environments with high pedestrian flows. The 
pedestrian counting was based high-frequency (everyone 20 ms) distance measurements with a 
16-channel LiDAR sensor. After comparing with the manual counting results (ground truth), 
Lesani et al. (2020) found overall 97% of pedestrians were accurately detected and counted. The 
authors proposed comparing 2D LiDAR and computer vision technology in terms of 
performance computing and cost as their future work. Kouyoumdjieva et al. (2020) reported that 
although LiDAR technology could achieve higher accuracy, the associated costs for equipment 
are high and may prevent large-scale deployments. It should be noted that most buses do not 
LiDAR sensors at present. 
 

2.1.10.3 Acoustic and Ultrasound Sensors 
According to Darsena et al. (2022), acoustic sensor-based methods count people using audio 
signals produced by speaking individuals or provided by cellphones. Kannan et al. (2012) 
developed a crowd counting technique based on audio tones using the microphones and 
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speakerphones that are often present on mobile phones. The solution was applied on 25 Android 
phones that were used for several studies at bus stops, on buses, in cafeterias, and classrooms. 
Another study on the acoustic-based solution using ultrasonic sounds was conducted by 
Kouyoumdjieva et al. (2020). The authors stated that the number of occupants could be deduced 
from the features of the received reverberation of transmitted waves, such as the receive time or 
the signal decay. The fundamental premise behind this method is that as the number of people in 
the room increases, the signal decays more quickly. As a result, the reverberation time can be 
utilized as a feature to evaluate occupancy. Another approach that can be used is to calculate the 
population by tracking the energy of the acoustic signal over time. 
 

2.1.10.4  Carbon Dioxide Concentration 
Environmental parameters are becoming popular for occupancy estimation. For instance, every 
person in a room emits CO2, the concentration of CO2 in the air can be used to estimate the 
number of individuals. Most of the research involving environmental parameters have been done 
within indoor/building settings. For example, Candanedo & Feldheim (2016) estimated 
workplace occupancy using data from light, temperature, humidity, and carbon dioxide sensors. 
In addition, Jiang et al. (2016) developed an indoor occupancy estimator which can estimate the 
number of real-time indoor occupants using a CO2 sensor which is part of a standard HVAC 
(Heat, Ventilation and Air-conditioning) system. Kouyoumdjieva et al. (2020) noted that 
numerous other parameters, such as venting mechanisms that continually lower the CO2 content, 
may affect the estimating accuracy.  Thus, these aspects need to be taken into consideration. 
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 Technical and Non-Technical Evaluation Summary 
In this section, we will provide the summary of the evaluation of potential technologies; we first considered the technological 
factors such as accuracy, latency, dependability, automation degree, ease of installation, and maintenance. We then assessed 
each technology using non-technical criteria such as cost, privacy, public acceptance, and transit agency acceptance. Table 2-9 
provides a high-level summary of the findings. 

Table 2-9 Evaluation of Potential Technologies 
Technology Accuracy Reliability Latency Level of 

Automation 
Level of 
Implementation 

Maintenance Cost Privacy Public 
Acceptance 

Transit 
Agency 
Acceptance 

Automatic 
Passenger 
Counter 

High High Medium Low Low Medium Medium Low Yes Yes 

Automatic Fare 
Collection 

High High Medium Low Low Medium Medium Medium Yes Yes 

Crowdsourcing Medium High Low Medium Low Medium Low Low Yes Yes 
Wi-Fi Medium Medium Low Medium Low Low Low High Yes Yes 
Bluetooth Medium Medium Low Low Low Low Low High Yes Yes 
Cellular Network Medium Low Medium Medium Medium Medium Medium Medium Yes Yes 
Optical and 
thermal Cameras 

High Medium Medium Medium Low Low High High - - 

Mobile Ticketing Medium Medium Medium Low Medium Low Medium High Yes Yes 
Hybrid High High Low Medium Medium Medium Medium Medium - - 
Manual Surveys High High Medium Low Medium Low Medium Low Yes Yes 
LiDAR High Medium Medium Medium 

 
Medium Medium Medium Medium - - 

Acoustic and 
Ultrasonic 
Sensors 

Low Low Medium Medium Medium Low Low Medium - - 

Carbon dioxide 
Concentration 

Low Low Medium Medium Low Low Medium Low Yes - 
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Not all the technologies evaluated above are available in Florida’s transit systems. Table 2-10 
show the technology availability survey results. We can find those available technologies include 
APC, AFC, Cellular Data, and Wi-Fi. In addition, manual surveys are used for obtaining ground 
truth data. Note that those technologies can be combined to achieve the best possible estimation 
accuracy and reliability. 
 

Table 2-10 Technology Availability Survey Results 
Technology StarMetro LYNX Miami-Dade County 

Transit 
Automatic Passenger 
Counter (APC) 

 Yes  Yes  Yes 

Automatic Fare Collection 
(AFC) 

 Yes  Yes  Yes 

Crowdsourcing  No  No  No 
Wi-Fi  Yes  Yes  Yes 
Bluetooth  No  No  No 
Cellular Data  -  Yes*  - 
Optical and Thermal 
Cameras 

 No  No  No 

Mobile Ticketing  No  Yes  Yes 
Hybrid  No  No  No 
Manual Surveys  Yes  Yes  Yes 
LiDAR  No  No  No 
Acoustic/Ultrasound Sensors  No  No  No 
Carbon dioxide 
Concentration 

 No  No  No 

* Data could be available through a different agency upon request 
 

 Wi-Fi Applications Review 
Through the evaluation of the prospective technologies, Wi-Fi probing technology is found to 
have the most potential for real-time vehicle occupancy estimation. Public transit operators and 
other passenger transportation companies provide free Wi-Fi to improve the travel experience of 
their customers or get more people to use their services. One study of people who ride the 
Capitol Corridor trains in California found that free Wi-Fi led to a 2.7% rise in train ridership 
Dong et al. (2015). Wi-Fi probing is a promising option because it requires little hardware, and 
data can be made available in real time.  
 
Smartphones with Wi-Fi and Bluetooth are widely used, accounting for more than 80% of the 
market in the U.S. (Asim et al., 2022); approximately 307 million people are smartphone users, 
and the numbers are projected to continue to increase over time. The authors reported that most 
smartphone users leave their Wi-Fi mode on. It is also observed that Wi-Fi has a greater 
connection speed, range, and level of internet access than Bluetooth. Its detection rate is also 
substantially higher than that of Bluetooth. The discovery time for Bluetooth is roughly 10.21 



19 
 

seconds, while the discovery time for Wi-Fi is approximately 1 second (Videa & Wang, 2021). 
Wi-Fi is also more likely to be enabled on a mobile device than Bluetooth. Thus, the use of Wi-
Fi technology to estimate vehicle occupancy has been explored in the literature, with some 
studies involving combining Wi-Fi with other technologies, such as Bluetooth. 
 
The number of smartphones on board is, therefore, a potentially useful proxy for the number of 
passengers aboard the bus. In estimating the on-board crowding, one can monitor Wi-Fi signals, 
classify them as originating from non-passenger or passenger devices, and use the result as a 
proxy to estimate the number of passengers on board the bus. Wi-Fi-capable devices are assigned 
a unique identifier or ID. A smartphone can be identified by its international mobile equipment 
identification (IMEI) number or its MAC address (Hidayat et al., 2020). A MAC address is a 
unique code that does not contain any user-specific information. Using the probe request, or 
other Wi-Fi frames MAC addresses can be detected. Wi-Fi-enabled consumer devices routinely 
perform a wireless probe process by transmitting a “probe request” frame (Oliveira et al., 2019). 
The purpose of this method is for surrounding Wi-Fi Access Points (APs) to transmit information 
regarding accessible wireless networks. The scanning process occurs regardless of whether the 
user is connected to a wireless network or not, as long as the Wi-Fi interface is enabled. Even 
after connecting to a network, the device continues to scan for networks with stronger signal 
strength. 
 
The interval between sending two probe requests varies, depending on the type of operating 
system, such as Android, iOS, and Windows, and if the screen mode is on or off. Mobile devices 
send probe requests up to 55 times per hour on average (Freudiger, 2015). Overall, Android has 
the smallest interval, followed by Windows and iOS. When an iOS or Windows phone connects 
to a Wi-Fi network, it has a large interval of around 1,200 seconds. However, the Android phone 
maintains a short interval of 2.11 and 2.15 seconds (Li et al., 2016). The different probe request 
interval is caused by a differentiated energy-saving design of smartphones in Wi-Fi registered 
mode.  
 
Thus, a Wi-Fi sniffer can be used to monitor the transmission of different frames, such as probe 
requests. This method is easy to implement, non-participatory like passengers do not need to 
install an app or visit a particular website, and it is non-invasive; it does not affect passengers’ 
normal use of their devices. Several studies have explored the application of Wi-Fi technology in 
public transportation systems. Asim et al. (2022) detailed research done in Calgary, Canada 
using Wi-Fi sensors to learn about the habits of light rail riders. They noted that Wi-Fi sensing 
showed promise in comprehending passenger journeys, but that validation of Wi-Fi sensing 
calculations required manually obtained data or surveillance footage. 
 
Relatedly, Gu et al. (2021) tried to reconstruct the spatio-temporal trajectory of a rail transit 
passenger from partially captured Wi-Fi probe data in Shanghai, China. The potential of using 
Wi-Fi and/or Bluetooth to extract Origin-Destination (O-D) movements is presented by (Dunlap 
et al., 2016; Mishalani et al., 2016; Pu et al., 2019.). Mishalani et al. (2016) presented that using 
Wi-Fi data to identify transit passenger O-D flows holds potential when aggregated across 
numerous bus runs for a period of the day. This possibility is increased when Wi-Fi observations 
are linked with other data sources, particularly boarding and alighting counts obtained using 
APC technologies.  
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However, a few setbacks have been presented in the studies, which include capturing devices of 
non-passengers, thus creating an overestimation of occupancy. Also, not all passengers carry 
mobile devices or have Wi-Fi disabled on their mobile devices, thus leading to underestimation. 
Those challenges can be overcome through filtering and adjusting data. Vieira et al. (2020) 
provided one related case study of Wi-Fi probing in Belo Horizonte, Brazil. Kalman filters were 
used by Vieira et al. (2020) to adjust the passenger count.  
 
Paradeda et al. (2023) summarized that applications of Wi-Fi technology in public transportation 
have focused on the estimation of various variables such as bus stop, station, or terminal data 
(number of waiting passengers and/or their waiting times and/or in and outflows); OD matrixes; 
bus load; boarding and/or alighting; frequency of bus route use; travel times and transfers, as 
shown in Table 2-11. 
 

Table 2-11 Summary Applications of Wi-Fi in Public Transportation (Paradeda et al., 2023). 

Study Bus stop, station, 
or terminal data 

OD 
matrixes 

Bus 
load 

Boarding 
and/or 
alighting 

Algomaiah and Li (2022) — Yes Yes Yes 

Asim et al. (2022) Yes — Yes Yes 
EL-Tawab et al. (2019) Yes Yes — — 
Fukuda et al. (2017) — Yes Yes Yes 
Hakegard et al. (2018) — Yes Yes — 
Hidayat et al. (2020b) — — Yes — 
Ji et al. (2017) — Yes Yes — 
Junior and Medrano (2018) — — Yes Yes 

Junior et al. (2022) — — Yes Yes 
Myrvoll et al. (2017) — — Yes — 
Nitti et al. (2020) — — Yes — 
Oransirikul et al. (2016) Yes — — — 
Oransirikul et al. (2019) — — Yes — 
Pu et al. (2021) — Yes — — 
Ryu et al. (2020) Yes Yes Yes — 
Vieira et al. (2020) — — Yes — 

 
 Research Gaps 

Many researchers have used Wi-Fi to estimate the number of people utilizing public 
transportation. For example, Mishalani et al. (2016), Mikkelsen et al. (2016), Myrvoll et al. 
(2017), and Mehmood et al. (2019) are just a few examples. The previously mentioned review of 
the literature reveals that practically most of the previous research mainly considered probe 
requests only. This may be due in large part to the fact that in the original research, the source 
MAC address of a probe request was not randomly generated, suggesting that a specific mobile 
device may be uniquely identified. However, most smartphone manufacturers have implemented 
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MAC address randomization to safeguard user privacy. Vanhoef and Piessens (2016) argue that 
randomizing mobile devices' MAC addresses is a crucial step toward protecting users' privacy in 
an increasingly connected world. However, this does present a challenge in uniquely identifying 
devices for estimation purposes. 
 
MAC address randomization varies between devices and operating systems. Devices' MAC 
addresses can be changed after each network connection, on a regular basis in response to other 
events such as the mode of the screen of the device. The mobile device industry is extremely 
diverse, with a wide range of manufacturers and operating systems in use. Because each of these 
systems executes MAC address randomization differently, estimating device numbers becomes 
even more difficult. In addition, the frequency with which devices connect to Wi-Fi networks or 
other wireless networks varies, which also influences the accuracy of device counting. This 
makes establishing a steady baseline for device counting challenging.  

 
Therefore, because of the unpredictability and diversity of randomization algorithms, this 
privacy enhancement complicates calculating the number of devices in a network. Despite the 
randomization challenge, Vanhoef et al. (2016) suggested that it is possible to fingerprint the 
information elements of the probe requests and therefore identify a device and that authenticity 
of a MAC address can be determined by examining the OUI (Organization Unique Identifier) 
component, which can be cross-referenced with the IEEE table of registered vendors. If the OUI 
is not present in the table, the MAC address is classified as randomized; otherwise, it is 
categorized as non-random as suggested by Koç (2022) in the Master’s thesis. However, Rusca 
et al. (2023) reported that the randomization process is predominantly conducted on a per-burst 
basis, with a minor increase in burst duration observed while transitioning from iOS to Android. 
The authors added that the consistency of MAC randomization implementation varies among 
models from the same manufacturer, as evidenced by the differences observed between the 
iPhone 6 and the iPhone 11. 
 
Oliveira et al. (2019) reported that iPhone devices running iOS 10.1.1 exhibit a novel MAC 
randomization process in various scenarios. These scenarios include the device being locked or 
unlocked, the activation or deactivation of a Wi-Fi interface, and the establishment or attempted 
establishment of a connection to a Wi-Fi access point. Therefore, it may be argued that the 
determination of the time duration during which a random MAC address is utilized in certain 
mobile devices is not feasible, as this timeframe is contingent upon the manner in which 
individuals engage with their smartphones. When all MAC addresses are randomized, it is 
impossible to uniquely identify MAC addresses for estimation purposes; We argue that other types 
of Wi-Fi frames or methods must be considered to explore the best potential of Wi-Fi data in 
estimating transit vehicle occupancy. 
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CHAPTER 3. WI-FI FRAME DATA COLLECTION 
 Fundamentals of Wi-Fi Association Process 

The IEEE standard for Wireless Local Area Networks (WLAN) MAC (Media Access Control) 
and Physical Layer (PHY) is 802.11. The IEEE.802.11 standard documentation specifies the 
requirements for the exchange of information. The 802.11 protocol is used by Wi-Fi devices to 
transmit wireless network packets. The 2.4 GHz channel is utilized by mobile devices. 802.11b 
and 802.11g use the 2.4 GHz band while operational, while 802.11n and 802.11ac use either the 
2.4 GHz or 5 GHz band (Kalikova & Krcal, 2017). Wi-Fi frames are gathered in accordance with 
IEEE 802.11 specifications. IEEE 802.11 defines management, control, and data frames as the 
three distinct types of frames. 
 
Management frames are utilized for joining and exiting wireless networks. These are referred to 
as type 0 frames. The eight subtypes of management frames are beacon (0x8), probe request 
(0x4), probe response (0x5), association request (0x0), association response (0x1), reassociation 
request (0x2), reassociation response (0x3), authentication (0xb), de-authentication (0xc), 
disassociation (0xa), and action (0xd). To join the BSS (Basic Service Set), stations (such as 
mobile phones) submit association requests to access points. Control frames manage both frame 
acknowledgment and medium access. The control frames are identified as type 1. ACK-
Acknowledgement, Block ACK request, RTS-Request to Send, CTS-Clear to Send, Block ACK, 
PS-Poll, CF-End, and CF-End/CF-Ack are subtypes of Type 1. Data frames are referred to as 
type 2 and are employed for transmitting data. 
 
The Wi-Fi association process is a set of actions that a client device (for example, a smartphone 
or laptop) takes to connect to a Wi-Fi access point (AP) or router. This procedure is critical for 
establishing a safe and dependable wireless connection. The following are the important steps in 
the Wi-Fi association process: 

• Scanning: When a client device is turned on or comes into contact with a Wi-Fi network, 
it begins searching for available networks. The device listens for beacon frames 
broadcasted by neighboring APs during this phase. These beacons include critical 
network information such as the network's name (SSID), security protocols supported, 
and signal strength. 

• Network Selection: After scanning, the client device displays a list of available networks 
to the user. The user chooses a network to join based on its SSID and signal strength. 

• Authentication: After selecting a network, the client device begins the authentication 
procedure. For open networks (those without security), this step is skipped, and the 
device connects directly to the selected AP. For secured networks, however, to establish 
the authenticity of it, the client must supply the right pre-shared key (PSK) or credentials. 
Only authorized users can connect to the network as a result of this process. 

• After successfully authenticating, the client device sends an association request to the 
selected AP. The AP validates the credentials and accepts the association if they are 
correct. The client is now regarded to have connected to the network, and data 
transmission can commence. 
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Wi-Fi Association Security Considerations 
 
In Wi-Fi networks, security is of the utmost importance. The association procedure includes 
various security features to ensure data confidentiality and integrity: 

• Encryption: To protect data transfer, Wi-Fi networks often use encryption protocols such 
as WPA2 (Wi-Fi Protected Access 2) or its successor WPA3. These protocols encrypt 
data as it passes between the client and the AP, making it difficult for eavesdroppers to 
intercept and understand the information. 

• Authentication: As previously stated, clients must give valid credentials in order to 
connect to the network. This prevents unauthorized individuals from connecting to the 
Wi-Fi network. 

• Some networks employ the "hidden SSID" functionality, which means that the SSID is 
not broadcast in beacon frames. To connect, clients must manually enter the SSID, giving 
another degree of mystery to the network. 

 
In summary, the Wi-Fi association process can be explained as follows: The access point 
routinely emits a beacon frame to indicate its presence and provide stations (e.g., mobile phones) 
with the information needed to connect to the wireless network. Any devices with Wi-Fi enabled 
actively send probe request frames on a regular basis (Oliveira et al., 2019). Probe requests 
highlight the station's transmission speeds and 802.11 features. When receiving a probe request, 
an access point verifies if the station can support at least one common data rate. If their data rates 
are the same, the access point's SSID, supported data rates, encryption types (if needed), and 
other 802.11 features are advertised in a probing response.  
 

 Hardware Setup for Wi-Fi Frame Capture 
The hardware needed for Wi-Fi frame capturing is displayed in Figure 3-1. The initial setup 
includes the use of a mouse and keyboard; however, there is an option of a remote connection 
using a laptop instead, as displayed in Figure 3-2. In the initial step of the setup, the required 
three 
files were downloaded to boot the micro-computer, the Raspian OS was installed in the micro-
SD card and then placed in the micro-computer. Then, the Wi-Fi driver was installed, followed 
by installing remote connection software such as Putty or Nomachine software. The final step 
was enabling Wi-Fi sniffing software Wireshark. Once installation is complete packet sniffing 
can be conducted. 
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Figure 3-1 Initial hardware setup 

 
1. Micro-computer board: Le Potato (AML-S950X-CC) 
2. Micro SD card: 32 GB SanDisk Extreme (Inside Micro-computer) 
3. Wi-Fi adapter: TP Link W722N v2/v3 
4. Power supply: 5V-3A 
5. Standard HDMI to VGA cable 
6. Ethernet cable 
7. Keyboard  
8. Mouse 

 

 
Figure 3-2 Hardware after remote connection. 
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 Outdoor Experiments  
The field experiments were conducted to understand the Wi-Fi probing mechanism and 
randomization of MAC addresses; explore the relationship between signal strength in probe 
requests and distance of the mobile devices from sniffers, and the time and frequency of probe 
requests from mobile devices. The experiments were done by the Florida State University (FSU), 
the University of Central Florida (UCF) and Florida International University (FIU) researchers in 
open space at J.R Alford Greenway in Tallahassee, UCF Arboretum and FIU football field. The 
test fields are shown in Figure 3-3, Figure 3-4, and Figure 3-5.  
 
The experiments were conducted in two phases. In phase one, two types of experiments were 
conducted. In the first experiment, a series of tests were conducted using a Wi-Fi sniffer to detect 
the presence of a single iPhone at varying distances of 0, 10, 20, and 30 feet and randomization 
was on, phone settings left as default. Data on probe requests was collected for a duration of 10 
minutes at various distances. It is important to note that during the data collection process, the 
iPhone’s screen remained off but the device itself was switched on. Similarly, in the second 
experiment at varying distances the iPhone was repositioned at regular intervals of 3 minutes, 
with the screen mode on. 
 
In phase two, the research team conducted additional experiments turning on and off MAC 
address randomization feature. Three types of experiments were conducted: 
 

• First experiment: Probing for a Dell laptop at distances 0, 10, 20, and 30 ft from the Wi-
Fi sniffer. Collecting data for 10 minutes at each distance Laptop screen set to on and 
then off. 

• Second experiment: Probing for an iPhone 11 at distances 0, 10, 20, and 30 ft from the 
Wi-Fi sniffer. Collecting data for 10 minutes at each distance Laptop screen set to on and 
then off. 

• Third experiment: Probing for Samsung Z flip (Android), at distances 0, 10, 20, and 30 ft 
from the Wi-Fi sniffer. Collecting data for 10 minutes at each distance Laptop screen set 
to on and then off. 

 
These experiments were conducted to better understand Wi-Fi probing mechanisms and MAC 
randomization to help oh how to better analyze the data in the next steps. 
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Figure 3-3 UCF test site 

 
Figure 3-4 FSU test site 

 
Figure 3-5 FIU test site 
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  Pilot Studies 
In this section we will provide a brief description of the conducted pilot studies in Tallahassee, 
Orlando and Miami Florida. 

3.4.1 StarMetro 
3.4.1.1 Automated Data Collection 

The bus route selected for pilot studies in Tallahassee, FL is Evergreen, which connects 
Tallahassee Community College (TCC) to Apalachee Parkway Walmart Shopping Center. The 
roundtrip travel time is approximately two hours. Two types of automated data, namely Wi-Fi 
frames and vehicle location data, were collected by the research team. Figure 3-6 shows the 
hardware used for collecting the Wi-Fi frames: 

• Raspberry Pi 3 Model B v1.2 with operating system installed on a micro-SD card. 
• Wi-Fi USB adapter: TP-Link (TL-WN722N) 
• Portable Power Banks (10,000mAH / 5V) 
• Portable monitor, keyboard, and mouse 

 

 

Figure 3-6 Hardware used for Wi-Fi frame collection. 
An open-source packet analyzer, called Wireshark, was installed on the Raspberry Pi to capture 
the Wi-Fi frames and later analyze such collected data. In addition, a smartphone with the GPS 
Tracks app installed was used to collect bus location data over time. An example bus trajectory 
from March 29th, 2023, is displayed in Figure 3-7. 
 

Raspberry Pi 3 Power Bank Wi-Fi USB Adapter

Mouse Keyboard Portable monitor
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Figure 3-7 GPS trajectory of an Evergreen bus (TCC to Apalachee Parkway Walmart) 

3.4.1.2 Manual Data Collection 
While collecting the automated data, a checker manually counted the number of people getting 
on and off at every stop. The manually collected bus occupancy data were used as ground truth 
to validate the occupancy estimations from Wi-Fi frames. Some sample occupancy data are 
shown in Table 3-1. The actual bus departure time from each stop was also recorded. 
 

Table 3-1 A sample of a Customized Manual Survey Form for March 29th, 2023 
ON-BOARD PASSENGER CHECK CHECKER EM     
DATE 03/29/2023         
    PASSENGERS     
STOPS TIME ON OFF LOAD 
Tallahassee Community College 11:05 AM   30 
Appleyard Drive and Tennessee Street 11:06 AM 1 2 29 
N Mission Road and Appleyard Drive    29 
W Mission Road and Greenon Lane    29 
N Mission Road and Rexwood Drive 11:08 AM 1  30 
W Tharpe Street and N Mission Road    30 
N Mission Road and Tharpe Street    30 
W Tharpe Street and Burns Street    30 
W Tharpe Street and Trimble Road    30 
W Tharpe Street and Falcon Crest    30 
W Tharpe Street and Devra Drive 11:10 AM 1  31 

 
Two graduate students jointly completed the collection of Wi-Fi frame data and manual survey 
for a period of two consecutive weeks, starting from March 27th to April 7th, 2023. On each day, 
the students were expected to collect the data for two round trips. The data collection schedule 
was designed considering the availability of the involved graduate students. 
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3.4.1.3 Descriptions of Collected Data 

The Wi-Fi frames were collected under the IEEE 802.11 specifications using Wireshark. 
Management, control, and data frames are the three different types of frames defined in IEEE 
802.11. A general list of subtypes of management frames is provided in Table 3-2. In addition,  
Figure 3-8 shows an example probe request from a Wireshark capture file. 

 
Figure 3-8 Example of management frame (type 0) with subtype known as probe request. 

 
Table 3-2 List of Management Frame Subtypes 

Subtype Field Description 
0000  Association request 
0010 Reassociation request 
0100 Probe request 
1000 Beacon 
1010 Disassociation 
1100 De-authentication 
1011 Authentication 
1110 Action 
0001 Association response 
0011 Reassociation response 
0101 Probe response 

Note: Adapted from (howiwifi.com) 
 

https://howiwifi.com/2020/07/13/802-11-frame-types-and-formats/
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Control frames are used for frame acknowledgment and to manage access to the medium. 
Control frames are described as type 1. Type 1 subtypes are listed in Table 3-3. 
One of the control frame subtype examples is Request-To-Send (RTS). Stations transmit RTS 
frames to reserve the medium for the time specified in microseconds in the duration field, as 
shown in Figure 3-9. 
 

 
Figure 3-9 Example of control frame with subtype Request-to-Send (RTS). 

Table 3-3 List of Control Frame Subtypes 

Subtype Field Description 
0100 Beamforming Report Poll 
0101 VHT/HE NDP Announcement 
0110 Control Frame Extension 
0111 Control wrapper 
1000 Block ACK request 
1001 Block ACK 
1010 PS-Poll 
1011 RTS 
1100 CTS 
1101 ACK 
1110 CF-End 
1111 CF-End+CF-Ack 

Note: Adapted from (howiwifi.com) 
 
Data frames are used to transmit information and are described as type 2. The subtypes for data 
frames are shown in Table 3-4. Figure 3-10 depicts an example of a QoS data frame. QoS data is 
utilized whenever a QoS station is transmitted to another QoS station.  

https://howiwifi.com/2020/07/13/802-11-frame-types-and-formats/
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Figure 3-10 Example of data frame (type 2) with subtype QoS Data. 

 
Table 3-4 List of Data Frames Subtypes 

 

Note: Adapted from (howiwifi.com) 
 
The various Wi-Fi frames collected were stored in PCAP files which stands for packet capture. 
One packet capture file was associated with each trip. The average size of the packet capture 
files was 40 MB. The file sizes ranged from 5.6 MB to 110 MB. Variation is dependent on 
variables such as the number of commuters and the packet capture duration. Due to the capture 
of more packets, trips with a greater number of passengers typically have larger file sizes. In a 
similar manner, longer travel times result in longer capture durations, resulting in larger file 
sizes. PyShark was utilized to read the files and export the files to Excel format. The variables 
that were selected for the subsequent analysis include average captured length, average data rate, 

Subtype Field Description 
0000  Data 
0001 Data+CF-Ack 
0010 Data+CF-Poll 
0011 Data+CF-Ack+CF-Poll 
0100 Null (no data) 
0101 CF-Ack (no data) 
0110 CF-Poll (no data) 
0111 CF-Ack+CF-Poll (no data) 
1000 QoS Data 
1001 QoS Data+CF-Ack 
1010 QoS Data+CF-Poll 
1011 QoS Data+CF-Ack+CF-Poll 
1100 QoS Null (no data) 
1101 Reserved 
1110 QoS CF-Poll (no data) 
1111 QoS CF-Ack+CF-Poll (no data) 

https://howiwifi.com/2020/07/13/802-11-frame-types-and-formats/
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average signal strength, average duration, the unique number of MAC addresses of (source, 
transmitter, transmitter, receiver, destination) of specific subtypes, number of packets and unique 
number of MAC addresses by selected type and subtype. 
 
The extracted information came from different layers. First, the radio tap layer contained the 
channel frequency, length, and data rates. Second, the WLAN radio layer contained the signal 
strength and duration information. Third, the WLAN layer included: type, subtypes, source 
address, transmitter address, receiver address, destination address and BSSID. Lastly, the WLAN 
management layer contained the SSID, wps_vendor_id, WLAN-supported rates, and WLAN HT 
capabilities. This layer could be used to identify the manufacturers of the devices/ stations, hence 
providing useful information when analyzing the data for occupancy estimations. 
 
The heat map was to visualize and explore the collected data. Figure 3-11 displays the total 
number of packets for different types and subtypes. Some types and subtypes had more packets 
compared to others. For example, it is observed that type 1 with request to send, clear to send, 
and type 0 for probe request and probe responses, as highlighted in Figure 3-11, cover the most 
information and were explored further to discover any potential relations with the vehicle 
occupancy. 
 

 
Figure 3-11. Total number of packets for different types and subtypes. 

Furthermore, the number of unique source addresses for different types and subtypes was also 
visualized, as shown in Figure 3-12. Probe requests were observed to contain more data in type 
0. Similarly, Figure 3-13 illustrates the unique number of MAC addresses of the receiver address 
where Acknowledgment, clear-to-send, and probe responses are observed to contain most of the 
data in type 1.  
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Figure 3-12 Unique number of source MAC addresses for types and subtypes. 

 
Figure 3-13 Unique number of receiver MAC addresses for types and subtypes. 

The number of unique MAC addresses by frame type, subtype, and address type is used as the 
features. For instance, in a probe request, the source address or transmitter address represents the 
MAC address of a mobile device while the destination address or receiver address is the address 
of an access point. Nonetheless, in a probe response, the source address becomes the address of 
an access point. After extracting the key attributes from the Wireshark capture files and merging 
data from all days, we can compute the values of features (independent variables) over time 
assuming different time intervals, e.g., 1 minute, 2 minutes, and 5 minutes. 
 

3.4.2 Lynx 
3.4.2.1 Automated Data Collection 

In the pilot study in Orlando, the automated data collection refers to the collection of Wi-Fi 
frame or packet data using hardware shown in Figure 3-14. Wi-Fi frame data include the wireless 
signal information coming from mobile devices such as cellphones, laptops, and tablets, from the 
vicinity of the Wi-Fi sniffer. In the pilot study, the sniffer was located on the bus.  
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Figure 3-14 Hardware (right) for Wi-Fi probe data collection in Lynx bus (left) 

Two types of frame collection software Wireshark (GUI application) and tshark (without GUI 
application) were installed in the Raspberry OS of Le Potato board. TP Link W722N Wi-Fi 
adapter was plugged into the board. The monitor mode feature of this adapter aims to capture 
Wi-Fi frame data from all Wi-Fi traffic received on a wireless channel. Once the bash scripting 
code for collecting the Wi-Fi probe was executed from the terminal of the Le Potato board, the 
probe data collection began. As the Le Potato board did not have its own monitor and keyboard, 
we connected a laptop using ethernet and sent codes in the terminal of the Le Potato board. The 
Wi-Fi frame data were automatically stored on a micro-SD card. The power was supplied from a 
power bank to smoothly run the data collection.  

 
The hardware was located at the seat just behind the back door (almost at the center of the bus) 
so that Wi-Fi probe data from all the passengers can be collected without any bias of distance. 

 
3.4.2.2 Manual Data Collection 

The manual data collection refers to the passenger count data at different bus stop locations 
along the subject route. In the pilot study, route 104 was the selected route for the pilot study as 
shown in Figure 3-15. A logbook was used to write down the number of passengers who got 
on/off the bus at bus stops, and the stop locations were recorded using the “GPS Coordinates” 
Android app. The location information was later merged with logbook data based on stoppage 
time. 

 
The data were collected from the seat (slightly elevated) just behind the back door which helped 
to observe the passengers getting off/on. 

 
3.4.2.3 Data Collection Schedule 

Both manual and automated data were collected simultaneously in the Lynx bus. A total of ten 
business days from March 27, 2023, to April 7, 2023, were selected for this data collection along 
Route 104 in the city of Orlando. 

 

  
 

Micro-SD 

Micro-
computer 

Wi-Fi Adapter Power bank 
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Figure 3-15 Lynx route 104 connecting the university and downtown Orlando 

Every day two trips were chosen for data collection. The first trip (from UCF Campus Superstop 
to Lynx Central Station in downtown Orlando) was scheduled to depart at 8:55 am. The second 
trip was a return trip with around 10-15 minutes of break time that was scheduled to depart from 
Lynx Central Station at 10:15 am. The total duration of data collection from both trips was 
around 1 hr. and 15 minutes.  

3.4.2.4 Descriptions of Collected Data 
Figure 3-16 represents a sample of the automated collected data after converting to a .csv file 
from the original pcap (Wireshark) file. The conversion was done using a bash script code in 
terminal. This dataset has six columns such as frame.number, frame.time, wlan.sa, wlan.da, 
wlan_radio.signal_dbm, and _ws.col.Info.  

 
The first column, “frame.number,” describes the order of the Wi-Fi probe signal (i.e., frame or 
packet) which was filtered based on the trip schedule. “Frame.time” describes the local date and 
time when the probe signal was captured. The MAC addresses of a sender and a receiver device 
for that particular probe signal were represented by “wlan.sa” and “wlan.da,” respectively. The 
signal strength in dBm units was collected in “wlan_radio.signal_dbm” column. The final 
column, “ws.col.Info” has information such as signal/frame type, subtype, SSID, etc. 
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Figure 3-16 Automated Wi-Fi probe data sample for April 7, 2023 

 
Manual data include two segments: the first segment is the passenger count data as shown in 
Figure 3-17 and the second segment is collected GPS data as shown in Figure 3-18. The 
passenger count data have a total of seven columns such as bus stop index, arrival time, 
#dropped off passengers, #picked up passengers, departure time, total passenger midway, and 
comments. The numerical order of locations where the bus stopped along the route in a trip was 
described by the “Bus Stop Index” column. “Arrival Time” and “Departure Time” columns 
represent the time when the bus arrives at a bus stop and departs from that stop, respectively. 
Note that this interval time duration between arrival and departure is also called the dwell time of 
that bus stop. The typical dwell time of bus stops except starting stop and ending stop of the trip 
was found to be less than 1 minute. The number of passengers getting on and off the bus at each 
bus stop is described by “#Picked up passenger” and “#Dropped off passenger” columns 
respectively. Based on these two columns, the number of total passengers between two 
consecutive bus stops is derived in “Total passenger midway” column. The column “Comments” 
described any additional information.       
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Figure 3-17 Manual passenger count data sample for April 7, 2023 (inbound trip) 

The GPS coordinate data has four columns: name, latitude, longitude, and address. The time 
when the bus stopped along the route in a trip was described by column “name”, whereas the 
location is described by columns “latitude” and “longitude”. Descriptive information of the 
location is described by column “address”.  
 

 
Figure 3-18 Manual GPS data sample for April 7, 2023 (inbound trip) 

3.4.3 Miami-Dade 
The data collection for the pilot study in the Miami-Dade Transit took place in the Metromover 
train system, which provides frequent service. The capacity per vehicle is around 90 passengers. 
On average, the travel time between stations is relatively short, typically between 1 and 3 minutes. 
The Metromover system consists of three lines: the Omni Loop, the Brickell Loop, and the Inner 
Loop. Data was collected for every station on the Omni Loop and the Brickell Loop, except 
Freedom Tower station, as it was temporarily closed for renovations during the data collection 
period. 
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3.4.3.1 Automated Data Collection 
In the Miami-Dade Transit site, automated data collection is from three different sources: sniffer 
devices for Wi-Fi frame data, smartphones for on-site GPS data, and Swiftly API for querying 
Mover location data (GPS traces). 
First, a sniffer was equipped in a vehicle for capturing network traffic. The sniffer consisted of a 
Le Potato board, a Wi-Fi adapter, a portable monitor, a remote keyboard with a touchpad, and two 
power banks. Figure 3-19 illustrates the assembly diagram of the device. However, to prioritize 
security and passenger concerns issues during data collection, the sniffer device was concealed in 
a bag, except for the Wi-Fi adapter for signal reception. 

 
Figure 3-19 Sniffer device assembly diagram 

Next, on-site GPS data were collected from smartphones installed with the necessary tracking 
applications. This data provided information on the geographical location and speed of the vehicles 
throughout their routes. For the pilot study, Android phones utilized the GPS Logger application, 
while iOS devices used GPS Tracks. Both applications are available for free download. 
Lastly, to complement the GPS data from smartphones, we utilized the Swiftly API, a third-party 
service offering real-time transit data. This API provides detailed information about vehicle 
locations, speed, and other relevant transit data which can be utilized as a cross-referencing and a 
backup source of the smartphone-collected GPS data in case of any operational issues with the 
smartphone applications. 

   
(a) for Android Devices (b) for iOS Devices (c) Swiftly API 

Figure 3-20 GPS data source 

 
3.4.3.2 Manual Data Collection 

For manual data collection, onboard passenger count is conducted to obtain the ground truth data 
of vehicle occupancy. A customized passenger counting form adapted from StarMetro onboard is 
utilized. Figure 3-21 illustrates an example of the Omni loop On-board Passenger Check Form. 
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During the data collection, checkers recorded the initial number of passengers onboard and each 
metro mover’s arrival and departure times. They also recorded the number of passengers boarding 
and alighting at each stop. Finally, the passenger load is calculated after the trip.  

 
Figure 3-21 Omni loop passenger check form 

3.4.3.3 Data Collection Schedule 
The data collection schedule for the pilot study on the Omni loop and Brickell loop spanned two 
full weeks, from March 27 to April 9, 2023, including both weekdays and weekends. Data was 
collected every day within a four-hour period, specifically from 12:00 PM to 4:00 PM. During this 
time, two checkers were assigned per day, with one checker assigned to each loop to collect data 
simultaneously on each loop.  
 
On Mondays, the schedule was adjusted due to a conflict, with the Omni loop being surveyed in 
the morning from 8:00 AM to 12:00 PM and the Brickell loop from 2:00 PM to 6:00 PM. It is 
important to note that minor adjustments were made to the schedule due to incidents or issues 
during the data collection. For instance, the sniffer device ran out of batteries. Moreover, some 
Metro mover operations disrupted the data collection process and required the checkers to re-
collect the data again to ensure a complete trip, such as power problems, resulting in temporary 
halts. Additionally, the train was redirected from its initial loop to travel on a different loop. The 
travel time of one completed loop is approximately 30-40 minutes. Therefore, we aimed to 
complete around 3 to 4 trips per loop per day to gather sufficient data to ensure accurate and 
comprehensive results. 
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3.4.3.4 Descriptions of Collected Data 
The collected data from each trip for this pilot study involved packet capture files (PCAP files) for 
network traffic data, manual passenger counting data, GPS data from smartphones, and GPS data 
from Swiftly API. During the 14-day data collection period, our primary objective was to collect 
around 3 to 4 trips per loop per day. We successfully achieved this goal, resulting in a total of 107 
completed trips which are 52 trips from the Omni loop and 55 trips from the Brickell loop. 
 
Each trip was associated with a single packet capture file. The size of the packet capture files 
varied between 5.3 MB and 40.7 MB, and the average was 27.9 MB. The variation depends on 
factors such as the number of passengers on board and the packet capture duration. Generally, trips 
with higher passenger counts tend to have larger file sizes due to the capture of more packets. 
Similarly, trips with longer travel times result in longer capture durations, leading to increased file 
sizes. 
 
In summary, we have collected a comprehensive range of data sources. These include packet 
capture files, manual passenger counting data, smartphone GPS data, and GPS data obtained 
through the Swiftly API. We aim to enhance the accuracy and effectiveness of the occupancy 
estimation by combining these diverse sources of information. 
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CHAPTER 4. DATA-DRIVEN APPROACH 
 Regression 

In this section, we present the conceptual design of a data-driven approach for estimating transit 
occupancy from collected Wi-Fi frames. For a new set of collected data such as types/subtypes, 
we first compute the values of those relevant features and then predict Y (occupancy). This is a 
data-driven approach for understanding how Y can be estimated from probe data. The true 
number of mobile devices on a bus is never known. We will not try to estimate or predict it. 
Instead, we examine a proxy, denoted Y, which is the number of observed passengers on board. 
For a given set of collected data (types/subtypes), we try to derive a few features to characterize 
or approximate X, namely X1, X2 etc. The target variable vehicle occupancy can be modelled as 
a continuous variable implying a regression task. The relationship between the features and the 
occupancy is described in Eq. (1).  
 
𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖,𝛽𝛽) + 𝑒𝑒𝑖𝑖 (1) 
 
Exploratory analysis was conducted to identify the relationship between the independent 
variables such as average signal strength, packets count and average RSSI (Received Signal 
Strength Indicator) for different types and subtypes to the dependent variable (occupancy). 
Figure 4-1 shows the data aggregated over 5 minutes interval. The figure illustrates that overall, 
as the average packet count increases the average passenger head count also increases despite a 
few outliers that were observed.  
 

 
Figure 4-1 Average packet count vs. average headcount for each trip in 5-minute interval 

We conducted some preliminary analysis to explore various features and their relationship to the 
ground truth manual passenger counts. Some examples include, the average received signal 
strength and the total number for packets received was compared the number of passengers. It 
was observed that there is a positive correlation between the number of passengers and the 
average signal strength as shown in Figure 4-2. As we explored our data further, we observed 
that as the bus got to the C.K Steele Plaza terminal, a lot of noise was captured, and several bus 
router packets from other buses were captured, as presented in Figure 4-3. 
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Figure 4-2 Number of passengers vs. average signal strength on April 7, 2023 (2-minute interval) 
Some MAC addresses appeared in a cluster at certain times when the bus arrived at the C.K 
Steele Plaza terminal, and some appeared throughout the entire trip indicating onboard Wi-Fi 
router as shown in Figure 4-4. In our analysis, we used the OUI to remove the probe data 
requests that we know are related to the bus routers. The flowchart of an overview of the 
methodology of how data is being processed is shown in Figure 4-5. In summary, the process can 
be explained as follows: we first convert the Wi-Fi probe data .pcap files to .csv files and filter 
the needed relevant data; we then use Python to organize the data in fixed time intervals; the data 
was then combined with the manually collected data to generate feature variables which will be 
input for our machine learning model. 
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Figure 4-3 A sample of total number of packets received in relation to the bus stop 

 
Figure 4-4 Wi-Fi routers observed through the trip on April 5, 2023 
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Figure 4-5 Data processing methods overview 

 Classification 
Classification algorithms allow for the classification of data into specified classes or categories, 
enhancing efficient pattern identification and prediction. Machine learning classification methods 
are widely divided into two types: supervised learning and unsupervised learning. The most 
prevalent approach to classification is supervised learning, in which the algorithm is trained on 
labeled data, which means that each input data point is paired with a matching target label or 
class. The goal of this sort of learning is to create a model that can accurately predict the class 
labels of unknown data.  
Among the most prominent supervised classification methods are: 

• Logistic regression is a basic yet powerful classification method that models the link 
between input data and the likelihood of a binary outcome. 

• Decision Trees: To classify data points, decision trees employ a hierarchical framework 
of decisions.  

• Random Forest: A random forest is an ensemble method for improving classification 
accuracy and reducing overfitting by combining numerous decision trees. 

• SVM: A powerful method that finds a hyperplane to split data into multiple classes while 
maximizing the margin between classes. 

• Deep learning neural networks, specifically convolutional neural networks (CNNs) for 
image classification and recurrent neural networks (RNNs) for sequence data, have 
transformed the classification discipline. 
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On the other hand, unsupervised learning works with unlabeled data and tries to find underlying 
structures or patterns in the data. They are not conventional classification techniques, although 
they can be applied to tasks like clustering, which obliquely categorizes data points. 
Unsupervised learning methods that are widespread include: 

• K-Means Clustering: K-means divides data points into clusters based on how similar they 
are, making it a useful tool for class discovery and segmentation. 

• Hierarchical Clustering: By arranging data into a tree-like form, hierarchical clustering 
reveals hierarchical linkages within the data. 
 

Classification model was also utilized in occupancy prediction which could provide the crowding 
level of the vehicle. For instance, the occupancy can be categorized into groups such as if the 
headcount is less than 5 then it’s very low, if less than 10 then it’s low, if less than 15 it’s 
medium and if greater than 15 then it’s high occupancy level. A new column is added as a 
categorical variable to indicate occupancy level. 
 

 Data Preprocessing 
Data pre-processing was conducted to eliminate unnecessary information. The steps to the data 
preprocessing methods are as follows: 

• Step 1: We removed the requests that were observed for multiple days, e.g., three days in 
a row that were not associated with the passengers on-board. 

• Step 2: Remove requests of Cradle point which is associated with the bus routers. 
 

• Step 3: Fill in intervals: if columns 'j1' and 'j2' are both 1 for a particular MAC, then all 
columns between them should be set to 1. Removing any observed short lasting and long-
lasting addresses that were present throughout the trip such as the raspberry pi, drivers’ 
device and data collector devices. 
 

• Remove features counts that have more than 100 missing values and remove samples that 
have missing values. 

• Burst filtering: The Wi-Fi frame requests were observed to be sent in burst. In field 
experiments we observed a single MAC address by turning randomization off, however 
we have several MAC addresses in the pilot study data. Thus, we observed different 
MAC addresses as shown in Figure 4-6; and how we identified them as different burst. 
As shown, we have two devices that send number of requests at different times. The 
Figure 4-7 illustrates on how the burst calculation is done; clusters of bursts are identified 
based on the time difference between the two consecutive requests. Then, count the 
number of clusters for a specific time interval for various types/subtype, signal strength 
filters. Figure 4-8 displays all probe requests observed in 2 minutes. Identifying bursts 
from all sources can be challenging; hence filtering with signal strength can help remove 
noises and identify bursts from nearby devices. Figure 4-9 displays bursts after applying 
signal strength filter of greater than -60 dBm. 
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Figure 4-6 Android probe request from multiple MAC addresses 

  

 
Figure 4-7 Burst count calculation by observing two different MAC addresses 
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Figure 4-8 All probe requests observed in 2 minutes 

 

 
Figure 4-9 Probe requests observed in 2 minutes after applying RSSI filter greater than -60 dBm 
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CHAPTER 5. RESULTS AND DISCUSSION 
 Outdoor Experiments 
5.1.1 Phase 1: Signal Strength and Distance Analysis 

The results of the outdoor experiments are as follows. In the first experiment when 
randomization was left as default, randomized MAC addresses were observed. A notable finding 
was the presence of a significant number of probe requests originating from a single MAC 
address. Afterwards, the duplicate rows with the same MAC address were eliminated. The 
interval between probe requests was greater at the maximum distance compared to the shortest 
distance as displayed in Figure 5-1. The duration of the probe request gap was rather brief, with 
an average of approximately three seconds, as observed in Figure 5-2. A noticeable correlation 
between signal strength and distance is observed up to a distance of 20 feet. A range can be 
suggested for each distance based on the following average values: -45 dBm for a distance of 0 
ft, -55 dBm for a distance of 10 ft, and -75 dBm for a distance of 20 ft for the first experiment as 
displayed in Figure 5-3. For the second experiment, as shown in Figure 5-4, there appeared to be 
a slight inconsistency in the pattern in signal strength range when comparing the situation with 
the screen turned off. In the second experiment the average range was -35 dBm for a distance of 
0 ft, -55 dBm for a distance of 10 ft, and -60 dBm for a distance of 20 ft. The potential cause of 
this phenomenon could be attributed to a change in distance at consistent intervals of three 
minutes. 
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Figure 5-1 Outdoor Experiment 1 when iPhone screen is off 

 
Figure 5-2 Outdoor Experiment 2 when iPhone screen is on 
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Figure 5-3 Signal strength (dBm) vs. distance (ft) when screen is off 

 

 
Figure 5-4 Signal strength (dBm) vs. distance (ft) when screen is on 

 

5.1.2 Phase 2: Non-Randomized and Randomized MAC Addresses 
Analysis 

In this section, an extensive analysis of burst filtering was carried out subsequent to the 
observation of the tendency for requests to be transmitted in bursts. Experiment 1 revealed that 
when the randomization option for the laptop's MAC address was disabled, the laptop 
consistently emitted probe requests at one-minute intervals while the screen was on. In contrast, 
no more probe requests were observed after about one minute while the screen was inactive, as 
shown in Figure 5-5 and Figure 5-6. Additionally, it was noteworthy that each time probe 
requests were detected, they manifested as a distinct burst of requests. Importantly, throughout 
these instances, the MAC address remained constant when randomization was disabled, 
signifying a stable, unchanging identifier.  
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When the MAC address randomization option on the laptop was enabled, the Cloud Network 
technology manufacturer linked with the laptop no longer appeared in the OUI (Organizationally 
Unique Identifier) name list. Instead, the laptop's altered MAC address had to be determined by a 
careful analysis of other characteristics inherent in the intercepted packets. The "TAG OUI," for 
example, consistently held the value 5271450 in both testing settings, regardless of MAC address 
randomization. The randomized MAC addresses' temporal pattern of behavior closely resembled 
that of the non-randomized MAC address. Even though the true MAC address was hidden while 
randomization was turned on, the randomized MAC address did not change over time. 



52 
 

 
Figure 5-5 Experiment 1 laptop MAC randomization turned off 
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Figure 5-6 Experiment 1 laptop MAC randomization turned on 

Moreover, in experiment 2, probe requests were found for only distance 0 and screen on. Thus, 
all types of Wi-Fi frames were considered as displayed in Figure 5-7, the requests were sent in 
bursts. The true MAC address was observed and did not vary over time. When the MAC 
randomization is on, the changed MAC address is not identifiable among noise, different MAC 
addresses were used even in the same burst. In experiment 3, when the Android was tested, very 
few probe requests are captured when the screen is off. There is no parameter that can identify 
the randomized MAC addresses of the iPhone and android from the database as previously it was 
possible to use “OUI Tags” to identify the MAC address of the laptop. 
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Figure 5-7 Experiment 2 iPhone MAC randomization turned off 

 
Figure 5-8 Experiment 3 Android MAC randomization turned off 
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 StarMetro 

The results are presented in two distinct subsections. In the first subsection, labeled as "MAC 
Addresses Presence Analysis," the focus is on the examination and presentation of MAC 
address-related data, encompassing aspects such as dataset description, key findings regarding 
MAC presence patterns, and their interpretation within the study's context. In the subsequent 
subsection, the focus shifts to the "Machine Learning XGBoost Model," where the details of the 
XGBoost algorithm practical implications of the model's results are discussed. 
 

5.2.1 MAC Addresses Presence Analysis 
The MAC presence analysis was done by considering the probe request frame to better 
understand MAC address randomization. The total number of days and trips used in the analysis 
is nine days and thirty-two trips. The total unique MAC addresses on various days are 73,828. 
Majority of the MAC addresses around 80% are short lived and are not recurring, while some of 
the MAC addresses are found in only one trip but they are long-lived, no OUI names were found 
for the long-lived suggesting they could be randomized Mac addresses of devices as suggested 
by Koç (2022). Table 5-1 shows that most of them are not trip recurring, in addition out of the 
73,828, only 454 MAC count recurred for more than 10 trips. Table 5-2 presents similar results 
but for day recurring. In our data preprocessing, we excluded the MAC addresses that recurred 
for more than 3 days, these addresses were associated with non-passengers.  
 
Furthermore, Table 5-3 represents number of unique MAC addresses that lived for particular 
minutes.  Most of the MAC addresses are short lived, and only around 106 count lived for more 
than 20 minutes. The MAC presence analysis improved our prediction by including filters that 
eliminated the requests that were not associated with the passengers such as Cradle Point which 
is associated with the bus router and was observed throughout the trip. In addition, filtering data 
on location/stops were lots of non-passengers MAC addresses were captured which in our case 
was C.K Steele Plaza bus terminal. Thus, eliminating such noise influenced our model to 
perform better. 
 

Table 5-1 Unique MAC Addresses Trip Recurring Count 
Trip Recurrence Count Unique MAC 

Addresses Count 
1 70788 
2 1283 
3 428 
4 264 
5 153 
6 146 
7 100 
8 86 
9 67 

10 59 
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Table 5-2 Unique MAC Addresses Day Recurring Count 
Day Recurrence Count Unique MAC 

Addresses Count 
1 71139 
2 1177 
3 434 
4 262 
5 211 
6 171 
7 157 
8 202 
9 75 

 
 

Table 5-3 MAC Addresses Count Present in ‘x’ Minutes 

Total Minutes MAC Addresses 
Count 

1 71889 
2 2102 
3 624 
4 293 
5 179 
6 128 
7 92 
8 90 
9 83 
10 66 
11 50 
12 49 
13 29 
14 38 
15 31 
16 24 
17 8 
18 17 
19 6 
20 8 

 
5.2.2 Model Performance Prediction Results 

 
The features were grouped into two groups considering the time intervals of 1,2 and 5 minutes. 
The first group contained all features consisting of a total of 99 features, which included, hour, 
minute, average signal strength, total count sample, average duration, signal strength of different 
types and subtypes, burst counts etc. The second group contained 62 features which were 
features related to mobile devices such as probe requests, association requests, reassociation 
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request and others such average signal strength and device counts for signal strength with ranged 
from -70 dBm to -40 dBm. Table 5-4 represents the evaluation results for the XGBoost 
regression model's predictive performance. Specifically, it sheds light on how well the model 
performs in predicting outcomes in different time intervals. For instance, when considering a 1-
minute time interval and focusing on features that are directly related to mobile devices (referred 
to as "feature group 2"), the model achieved an R-squared value of 0.84. This R-squared value 
indicates that the model described approximately 84% of the variance in the data, suggesting a 
reasonably good fit. Additionally, the Root Mean Squared Error (RMSE), a measure of 
prediction accuracy, is found to be low approximately 2.46 for this same feature group and 
interval. 
 
Moreover, it's important to note that feature group 2 consistently outperformed feature group 1 
across different time intervals (1, 2, and 5 minutes). Feature group 2's superior performance was 
particularly noteworthy because it contains fewer features compared to feature group 1. For 
instance, when examining the 1-minute time interval, feature group 2 included a total of sixty-
two features, including the burst counts. In contrast, feature group 1 comprised of ninety-nine 
features for the same 1-minute intervals. This difference in the number of features has practical 
implications for computational efficiency, as working with a smaller set of features requires less 
computational time. 
 

Table 5-4 Predicted Performance of the Model 
Interval group 
(minute) 

Feature group R2 RMSE Full data shape 

1 1 0.826967 2.58 (1361, 99) 

1 2 0.842697 2.46 (1361, 62) 

2 1 0.734194 3.26 (503, 104) 

2 2 0.78012 3.02 (503, 63) 

5 1 0.636177 3.76 (128, 108) 

5 2 0.740434 3.45 (128, 64) 

 
Figure 5-9 shows the distribution of the prediction error compared to the true values. In the 
figure we can see that most of the prediction deviation is around zero which indicates the 
prediction is close to the true values.  
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Figure 5-9 Distribution of prediction error 

 
5.2.3 Feature Importance 

Feature importance analysis is a crucial component of machine learning regression models that 
enables us to comprehend the relative importance of input variables (features) in predicting the 
dependent variable. In our analysis we also analyzed the features to help us answer questions 
such as: Which features have the greatest influence on the model's predictions? Which features 
could be regarded less significant and omitted for simplification or computational efficiency? As 
shown in Figure 5-10, features such as hour, sample counts and average signal strength have 
more influence in the prediction results of the model, however, features such as association 
requests and block acknowledgement can be regarded as less significant features. In machine 
learning regression models, feature importance analysis is a valuable tool that helps us obtain 
insight into the significance of input features, enhance model interpretability, and potentially 
improve model performance. Feature importance analysis facilitated the making of 
knowledgeable decisions regarding feature selection, and model refinement. 

 
Figure 5-10 Feature importance results 

 
 

 Lynx 
 
We divide the preliminary results into two segments. First, exploratory data analysis that describes 
relationships between different feature (i.e., independent) variables such as probe request signal, 
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signal strength, unique number of MAC addresses etc., and target variable which is ground truth 
passenger number (i.e., manual passenger count). In addition, a relation between manual passenger 
count and automatic passenger count (APC) data is also described. Second, the preliminary results 
from prediction models using machine learning algorithms are described.    
 

5.3.1  Exploratory Data Analysis 
The exploratory data analysis is conducted based on inbound trip data on April 7, 2023. A strong 
similarity between the number of Wi-Fi probe request signals and the unique MAC among these 
signals is found at different timestamps with 1-minute timestep as shown in Figure 5-11. It is 
found that the number of probe requests ranges from 4 to 5 times the number of unique MAC 
addresses.  
 

 
Figure 5-11 Frequency profile of probe request and unique MAC during the inbound trip on 

April 7, 2023 
However, there is an inverse relation between the number of unique MAC addresses and the 
number of corresponding signal strengths. Figure 5-12 shows that from 9:00 am-9:24 am, a 
smaller number of unique MAC addresses with stronger signal strength are found compared with 
a completely inverse relation during the remaining time, 9:24 am-9:56 am.   

 
Figure 5-12 also shows the profiles of the frequency of unique MAC addresses and ground truth 
passenger count (i.e., manual passenger count) at different timestamps with a 1-minute timestep. 
At both ends (UCF Superstop and Lynx Central Station), the number of passengers is less, 
whereas the number of unique MAC addresses is comparatively much higher. As these two bus 
stops are also bus terminals (buses from other routes start and end their entire trip at this 
location), foreign MAC addresses from the vicinity were collected and therefore, the number of 
unique MAC addresses is very high. 
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Figure 5-12 Number of MAC addresses (top) and average signal strength (bottom) along every 

minute of inbound trip time on April 7, 2023 
Section numbers “1”, “2” and “3” in Figure 5-13 show similar trends between unique MAC 
addresses and passenger count. Segment “1” and “2” have a rising trend of passenger count that 
match with the rising trend of unique MAC number, whereas section number “3” has a falling 
trend in both unique MAC and passenger count. The trend of other segments does not match 
between unique MAC and passenger count.   

 
 

 
 

Figure 5-13 Number of unique MAC addresses (left) and ground truth passenger count (right) 
along every minute of inbound trip time on April 7, 2023 

 
We also conducted a statistical approach to study the relationship among more features which is 
described at the beginning of the “prediction model results” sections. Based on available APC 

More No. of MAC

Less No. of MAC
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data, Figure 5-14 is plotted to represent the relation between manual passenger count and APC 
data. It shows a similar trend between APC data and manual passenger count data with a positive 
offset multiplier that has a mean of 1.5 and a standard deviation of 0.5. As the APC data has a 
similar pattern to the manual count data with a small standard deviation, APC data may be easily 
transferred to manual passenger count data.  

 

 
Figure 5-14 Manual passenger count and APC data comparison for inbound and outbound trips 

on April 7, 2023 
 

5.3.2 Prediction Model Results 
A total of 12 features representing radio signal strength, time, signal/frame types, number of 
recurring MAC addresses within each bound (i.e., single trip recurring MAC) and both bound 
directions (i.e., both trips recurring MAC), and number of all device MAC addresses are 
considered independent variables. Ground truth passenger count (i.e., manual passenger count) is 
considered a dependent variable. A 5-minute timestep is considered.  From the correlation 
matrix, as shown in Figure 5-15, it is found that the feature “freqRecurMACWithinBound” has 
strong positive collinearity (1) with “stationMAC”. In addition, the feature 
“subtype_ProbeRequest” has strong positive collinearity with “freqRecurMACWithinBound” 
(0.9) and “stationMAC” (0.9). Therefore, to avoid overfitting in the prediction model, features 
“freqRecurMACWithinBound” and “stationMAC” are omitted. 
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Figure 5-15 Correlation matrix of variables for the prediction model 

Using sci-kit learn machine learning library four regression models: linear, polynomial with 2nd 
order, decision tree and random forest were developed. Besides regression models, two 
classification models: k-nearest neighbor (kNN) and random forest were also developed 
considering classification labels for passenger occupancy: almost empty (0-4), low (5-9), 
moderate (10-14), almost high (15-19), high (20-24) and very high (25-29).   

 
For the performance study of these models, one dataset from March 27 to 29 and April 3 to 6 
were accumulated. Considering the modified hold-out validation technique, 90% of this dataset 
was kept for the training model and the remaining 10% was kept for testing purposes. Another 
dataset combining March 30 and April 7 data was kept for validation purposes as unseen data. 

 
Two performance metrics parameters root mean square error (RMSE) and R-Square were 
considered to understand the performance of regression models. On the other hand, accuracy and 
confusion matrix were parameters to understand the performance of classification models. 
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Table 5-5 Performance table for regression models 

Data Characteristics 
Model 

performance 
metrics 

Regression model 

Linear Polynomial Decision 
Tree 

Random 
Forest 

Train 
data  Mar. 27-

29; Apr. 
3-6  

90% 
data 

RMSE 

3.85 3.10 0.00 1.70 

Test data  10% 
data 3.50 61.62 3.59 3.05 

Cross-
validation 

data 

Mar. 30 
and Apr 7 

100% 
data 3.48 5.89 4.81 3.33 

Train 
data  Mar. 27-

29; Apr. 
3-6  

90% 
data 

R Square 

0.26 0.52 1.00 0.86 

Test data  10% 
data 0.17 Neg 0.12 0.37 

Cross-
validation 

data 

Mar. 30 
and Apr 7 

100% 
data Neg Neg Neg 0.06 

 
In terms of RMSE, the polynomial regression model shows very poor performance in test data 
followed by cross-validation data compared with the remaining models. The decision tree 
regression model shows large overfitting. The remaining models, the linear regression model and 
random forest regression model (with tuned hyperparameter: max_depth=61; estimators=11) show 
better performance as the mean of the target variable is 11.3. However, in terms of R-square, 
although random forest performs better than linear, the R-Square values from the random forest 
and other models perform poorly for test data and cross-validation data. In other words, the 
regression models cannot well-explain the variance of the target variable. The results are presented 
in Table 5-5. 
 
In terms of accuracy for cross-validation data by classification models, KNN (with tuned 
hyperparameter: n_neighbors=9) can predict 43% of observations, and the random forest model 
(with tuned hyperparameter: max_depth=41; n_estimators=41) can predict 51% of observations. 
However, random forest model shows overfitting as shown in Table 5-6. 

Table 5-6 Performance table for classification models 

Data Characteristics 
Model 

performance 
metrics 

Classification 
model 

kNN Random 
Forest 

Train data  Mar. 27-29; 
Apr. 3-6  

90% 
data 

Accuracy 

50% 100% 

Test data  10% 
data 56% 56% 

Cross-
validation 

data 

Mar. 30 and 
Apr 7 

100% 
data 43% 51% 
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Two confusion matrices for classification models are shown in Table 5-7 and Table 5-8. The 
darker cell represents the intensity of the wrong prediction of the label. For example, if true label 
is “low”, and the prediction is either “almost empty” or “moderate”, it means the absolute 
intensity of wrong classification is 1. If the prediction is “almost high”, the absolute intensity of 
wrong classification is 2. That’s why the “almost high” has more yellowish cell than either 
“almost empty” or “moderate”.  

 
The confusion matrix for random forest has 6 light yellowish cells with a total sum of 19 and 1 
dark yellowish cell with a value of 3. On the other hand, KNN has 5 light yellowish cells with a 
total sum of 24 and 2 dark yellowish cells with a sum of 2. By comparison, random forest has 
better accuracy.  
 

Table 5-7 Confusion matrix 1 

kNN 
Predicted 

Almost 
empty Low Moderate Almost 

high High Very 
high 

TRUE 

Almost empty 0 2 2 0 0 0 
Low 0 15 8 1 0 0 

Moderate 0 7 5 6 0 0 
Almost high 0 1 1 1 0 0 

High 0 0 0 0 0 0 
Very high 0 0 0 0 0 0 

 
 
 

Table 5-8 Confusion matrix 2 

Random Forest 

Predicted 

Almost 
empty Low Moderate Almost 

high High Very 
high 

TRUE 

Almost 
empty 0 4 0 0 0 0 

Low 1 14 6 3 1 0 
Moderate 0 4 9 5 2 0 

Almost high 0 0 1 2 0 0 
High 0 0 0 0 0 0 

Very high 0 0 0 0 0 0 
 
In both random forest regression and classification model, the number of recurring MAC within 
both bounds and signal strength have shown large significance in predicting. Among the 
management frames, probe request and probe response have strong relationships in predicting 
passenger occupancy as shown in Figure 5-16. 
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Figure 5-16 Feature importance by random forest model 
 

 Miami-Dade 
5.4.1 Machine Learning Results 

A series of experiments are performed, starting with Case 1, referred to as the Base Case, where 
no filtering was applied, and all Wi-Fi packets were used in the machine learning process. 
Following this, four main filtering conditions were individually applied, labeled as Case 2 to 
Case 5. For each case, the performance of the three-machine learning algorithm was evaluated, 
and the results were compared to the Base Case to measure the improvement in predictive 
accuracy.   
 
Figure 5-17 presents the results from different machine learning algorithms under various 
filtering conditions. After applying the filtering condition, the "Number of Features" column 
represents the number of selected features. "Accuracy Score" shows the average accuracy 
achieved, and "Standard Deviation" indicates the variability of the accuracy scores across 
different runs. The "Improvement (Compare to Base Case)" demonstrates how the accuracy 
score changed compared to the Base Case. Overall, three machine learning algorithms 
demonstrate a low standard deviation in all cases, with values ranging from 0.71% to 3.26%.  
 
In Case 2, the utilization of only probe requests had varying effects on the different machine 
learning algorithms. Naive Bayes showed a significant improvement in performance, suggesting 
that this filtering condition was particularly advantageous for this algorithm. However, Logistic 
Regression negatively impacted its performance, and Random Forest showed only slight 
improvements, indicating that the probe request filtering had a limited positive effect on this 
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model. Among the individual filtering conditions, applying an RSSI threshold (Case 3) 
consistently showed improvement across all machine learning algorithms. On the other hand, some 
filtering conditions, like removing MAC addresses associated with "Trip Recurring in a Day" 
(Case 3) and selecting only packets sent by specific smartphone OUIs (Case 4), did not yield 
noticeable improvements. According to the individual filtering condition results, using only probe 
requests (Case 2) and an RSSI threshold (Case 3), which have also been utilized in other relevant 
studies, demonstrate their effectiveness. Hence, these two filtering conditions were combined into 
Case 6. The results presented in Figure 5-17 highlight the remarkable improvement achieved from 
Case 6. As a result, Case 6 will be utilized in the feature selection process to obtain valuable 
insights into Wi-Fi packets.  

 
Figure 5-17 Machine learning results under different cases 

 

 
Figure 5-18 Accuracy scores of different algorithms across different cases 

 
5.4.2 Feature Selection   

The feature selection process involved high variance filtering and moderate correlation filtering. 
The aim was to reduce the number of features while preserving the model's performance and 
predictive accuracy. The results from the feature selection process are illustrated Figure 5-19. To 
compare the performance of the model before and after feature selection, we first assess the 
accuracy achieved by using all features from Case 6 without any feature selection. Figure 5-20 
shows the comparison of the accuracy across different feature selection methods. Notably, Naive 
Bayes consistently showed the lowest performance compared to the other algorithms, and the 
overall standard deviation remains low, ranging from 0.71% to 2.89%. 
 

Case 1
(Base Case) Case 2 Case 3 Case 4 Case 5 Case 6

Logistic Regression 56.53% 55.61% 57.34% 56.53% 45.35% 57.61%
Random Forest 54.85% 54.92% 57.54% 55.74% 43.80% 57.90%
Naive Bayes 47.47% 52.36% 53.87% 47.47% 40.74% 56.23%
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The feature selection process was conducted based on variation, using two variance thresholds: 
greater than or equal to 10 and greater than or equal to 1,000. Applying the threshold of 10 
resulted in 12 selected features, while the threshold of 1,000 led to a substantial reduction to only 
6 features. Surprisingly, despite the reduction from 31 to 12 features, the accuracy only 
experienced slight changes. However, when using the threshold of 1,000, the accuracy dropped 
significantly for all algorithms. 
 
Next, the feature selection process based on the correlation coefficient was explored, involving 
features with a correlation value with the occupancy level greater than or equal to 0.4. The results 
represent a substantial reduction from the original 31 features to 9. Interestingly, reducing the 
number of features did not significantly impact the overall accuracy. 
 

 
Figure 5-19 Feature selection results 

 
Figure 5-20 Accuracy scores of different algorithms across different feature selection methods 

 
The selected features are listed in Table 5-5. Notably, the nine features that remain after applying 
correlation coefficient filtering are a subset of the twelve features that were selected through 
variance filtering. This implies that these nine features exhibit high variance and correlation with 
occupancy level, influencing the predictive model.  
 
 

(1) Without Feature
Selection (2) Variance ≥ 10 (3) Variance ≥ 1,000 (4) Correlation

coefficient ≥ 0.4
Logistic Regression 57.61% 57.97% 56.95% 57.74%
Random Forest 57.90% 57.93% 57.25% 58.00%
Naive Bayes 56.23% 55.87% 54.69% 56.10%
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Table 5-9 Selected Features from Variance and Correlation Coefficient Filtering 
Feature Name                              Description Feature Selection Methods 

Variance ≥ 10 Correlation Coefficient≥ 
0.4  

avg_cap_len 
                                                    Average capture length 

✓ 
 

avg_duration Average duration ✓ 
 

count_MAC_non_recur The number of non-recurring MAC 
addresses 

✓ ✓ 

count_probe_request Number of probe request frames ✓ ✓ 
count_sample Number of Wi-Fi frames ✓ ✓ 
count_type_0 Number of Wi-Fi frames type 0 

(management frame) 
✓ ✓ 

sa_0_4 Number of source MAC addresses 
with type 0, subtype 4 
(probe request frame) 

✓ ✓ 

sum_sig_strength Sum of signal strength ✓ ✓ 
SSID_Missing Number of probe requests contain 

missing SSID or Wildcard 
✓ ✓ 

SSID_Specific Number of probe requests contain 
SSID name 

✓ 
 

unique_sa Number of unique source MAC 
addresses 

✓ ✓ 

unique_ta Number of unique transmitter MAC 
addresses 

✓ ✓ 

 
To better understand insights into these nine features, a correlation matrix was generated, as 
presented in Figure 5-25. The matrix analysis reveals strong correlations among these Wi-Fi 
features, which is expected due to their interrelated nature. The number of devices in the sniffer 
device's range affects the capture of Wi-Fi packets, resulting in more probe request frames and 
additional information like the count of MAC addresses and probe requests with missing SSID. 
Hence, these features show a positive correlation with the occupancy level. However, the sum of 
signal strength exhibits an inverse correlation with the occupancy level. When more active Wi-Fi 
devices are present, the sum of signal strength is lower, indicating a higher occupancy in the area. 
These strong correlations pose a significant challenge of multicollinearity when using Wi-Fi data 
for prediction. Eliminating redundant variables during data pre-processing might not be 
appropriate for this specific scenario, given the nature of Wi-Fi data. 
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Figure 5-21 Correlation matrix 
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CHAPTER 6. CONCLUSIONS 
 
This research project has first identified a number of emerging communication and information 
technologies that can be utilized for the estimation of transit vehicle occupancy. Subsequently, 
an evaluation was conducted for these technologies, taking into consideration their technical and 
non-technical capabilities. The comparative assessment of several technologies, including Wi-Fi, 
cellular data, APC, AFC, and manual survey, has revealed the potential of Wi-Fi probing 
technologies to estimate occupancy in real time. The utilization of Wi-Fi probing exhibits 
considerable potential, especially given its minimal hardware requirements and the real-time data 
availability. Field experiments were undertaken to evaluate the possibilities of Wi-Fi technology, 
and Wi-Fi technology was used in the pilot studies. 
 
To address the technical challenge arising from MAC address randomization, a data-driven 
approach was utilized for vehicle occupancy estimation using the collected Wi-Fi frame data. 
The findings from the bus occupancy estimations in Tallahassee and Orlando Florida, indicated 
that the maximum R-squared value was 0.84, signifying the model's capability to explain up to 
84% of the variance in the data, a noteworthy achievement. Additionally, we can observe a trend 
that emerges when concentrating exclusively on feature group 2, our model consistently delivers 
higher accuracy across all examined time intervals in comparison to the inclusion of feature 
group 1. These outcomes underline the effectiveness of feature selection in enhancing predictive 
performance. It is important to emphasize that the results obtained through the XGBoost 
regressor produce promising predictions. Nevertheless, there is room for further enhancement in 
the regression model's performance, particularly through the exploration of strategies to reduce 
and manage noise that may have been captured during the data collection process. Such 
refinements hold the potential to elevate the model's precision. 
 
In Miami-Dade, among the models tested, random forest achieved the highest accuracy score of 
58.00% with a standard deviation of 2.89%. Following closely, logistic regression secured the 
second position with an accuracy score of 57.74% and a standard deviation of 1.38%. Although 
random forest achieved the highest accuracy, it is worth noting that the accuracy level remains 
relatively low. Some of these reasons are associated with the operational aspects of Metromover: 

• The unique partially bidirectional loop operation of Metromover presents challenges in 
accurately estimating occupancy levels. Certain useful techniques, like time-to-live 
(TTL) analysis, commonly used in bus occupancy estimation, face limitations in this 
scenario, especially when GPS data is unavailable. The bidirectional movement of 
Metromover cars leads to devices being recounted and timestamped differently at the 
same station, causing false calculations in the time-to-live of MAC addresses. This 
issue arises as the device is marked both as "first time seen" and "last time seen" during 
its journey on the bidirectional section. 

• The proximity of neighboring stops in the transit system can lead to the loss of Wi-Fi 
packets. This loss occurs when the travel time between stations is shorter than the rate 
at which probe requests are sent, resulting in missing some Wi-Fi packet data. 
 

Other reasons for the relatively lower accuracy that can be attributed to factors beyond the transit 
system itself are listed below: 
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• Setting one specific signal strength filtering threshold to identify whether packets are 
from passengers or non-passengers might be problematic, as noted by (Pu et al., 2021). 
As this threshold may fluctuate in different environments and timeframes. 

• The accuracy of occupancy level predictions can be affected by human error in 
passenger counting. 
 

Given the complexities of the Metromover system, further research and innovative approaches are 
needed to address the discussed challenges and limitations effectively. 
 
For future studies, it is recommended to explore the utilization of Bluetooth data, GPS data, or 
the deployment of multiple sniffer devices on a vehicle to gain deeper insights. Combining these 
alternative data sources has the potential to enhance the accuracy and comprehensiveness of 
occupancy level estimation within the Metromover transit system. Such advancements would 
contribute significantly to the field and provide a more comprehensive understanding of 
passenger dynamics.  
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