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EXECUTIVE SUMMARY 

This report details the development and implementation of the Smart Signal Performance 

Monitor (SSPM) system, a comprehensive platform designed to enhance intersection safety and 

operational efficiency in Florida's District 5, with an initial focus on Seminole County. Leveraging 

Automated Traffic Signal Performance Measures (ATSPM) data, the SSPM system provides data-

driven recommendations for traffic signalization strategies. 

The project began with the collection of two primary data types: detector configuration 

data from the Normalized Operational Equipment Management Initiative (NOEMI) and controller 

event log data from SunStore.  Recognizing the variability and potential inaccuracies in this data, 

a critical step involved a thorough data quality assessment. The Event Sequence Quality Checker 

(ESQC) was developed and employed to verify detector functionality and the integrity of event 

sequences, ensuring that subsequent analyses were based on reliable data.  Detector configurations, 

which vary significantly across intersections, were systematically categorized by phase and 

movement type (left-turn, through, right-turn, and shared) to manage this complexity and facilitate 

consistent data transformation. 

The core of the system involves transforming raw controller event log data into a rich set 

of performance measures. These include Signal Phasing and Timing (SPaT) metrics, vehicle 

volume, occupancy time, gap, headway, split failures, vehicle-vehicle conflicts, red-light running 

(RLR) incidents, pedestrian activity indicators, pedestrian delay, and pedestrian-vehicle conflict 

propensity. These measures are calculated at a granular cycle level and can be aggregated to 

various time intervals (e.g., 15 minutes, hourly) for trend analysis and recommendation generation. 
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Building on these performance measures, the project developed algorithms to recommend key 

traffic signalization strategies: 

• Yellow and Red Clearance Time Adjustment: A causal forest model estimates the 

impact of signal timing adjustments on conflict rates per vehicle, providing data-driven 

recommendations for optimizing these critical intervals.  

• Protected vs. Permitted Left-Turn Phasing: Recommendations are based on a gap 

analysis of opposing through movements and an estimation of left-turn volumes derived 

from turning movement count survey and stop-bar detector occupancy data.  

• Pedestrian Recall: A Beta-Binomial model estimates the probability of pedestrian 

presence, and k-means clustering identifies critical hours when pedestrian recall should be 

active.  

• Leading Pedestrian Interval (LPI) and No Right Turn on Red (NRTOR): These 

interconnected strategies are recommended based on an analysis of pedestrian-vehicle 

(right-turn) conflict propensity, calculated using pedestrian and vehicle exposure during 

concurrent phases.  

The SSPM system architecture integrates three main components: 

• Transform–Recommend–Rank (TRR) Server: This backend engine processes raw 

ATSPM data, applies the aforementioned algorithms to generate safety recommendations, 

and ranks intersections based on a composite safety score derived from normalized 

performance measures (vehicle-vehicle conflicts, RLR, pedestrian delay).  

• Database Server: Stores all transformed performance measures, safety recommendations, 

and intersection rankings, making them accessible via a set of RESTful APIs for dynamic 

querying.  
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• Frontend Server: A React-based user interface provides operators with interactive 

dashboards. The "Recommendation View" enables the exploration of performance 

measure trends (Measure Dashboard) and the visualization of specific strategy 

recommendations (Recommendation Dashboard).  The "Rank View" enables users to 

identify high-risk intersections based on customizable safety score weightings and selected 

time intervals.  

The SSPM system, tested with data from June 2024 for 19 intersections in Seminole 

County, demonstrates a viable end-to-end pipeline from raw data ingestion to actionable safety 

insights. While currently reliant on historical batch data, future work includes migration to live 

ATSPM feeds and a cloud-based (AWS) environment for enhanced scalability and real-time 

operational support.  The prototype provides FDOT with a powerful tool to proactively manage 

traffic signal operations, prioritize interventions, and ultimately improve road safety across the 

district. 
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CHAPTER 1: INTRODUCTION 

Signalized intersections are crucial nodes within the urban transportation network where 

the risk of conflicts and crashes can be substantial. Traditional approaches to traffic signal 

management have often been reactive, relying on historical crash data or periodic manual reviews 

to identify safety deficiencies. However, the advent of Automated Traffic Signal Performance 

Measures (ATSPM) presents a significant opportunity to shift towards a more proactive and data-

driven paradigm for improving safety at these locations. ATSPM systems offer high-resolution 

data from traffic signal controllers, capturing detailed information about signal timing, vehicle 

actuation, and pedestrian activity. 

By analyzing ATSPM data, traffic engineers can identify emerging safety issues and 

implement changes before crashes occur. While ATSPMs have been widely recognized for their 

utility in optimizing traffic flow and operational efficiency, their application for direct safety 

enhancements through targeted countermeasures is an area of evolving research and practice. 

There is a clear need to develop systematic methodologies and practical tools that can translate 

raw ATSPM data into actionable safety insights and recommendations for specific signalization 

strategies. 

This report details the research undertaken to address this need. It presents the development 

of algorithms and a comprehensive system designed to utilize ATSPM data for identifying and 

predicting safety improvement opportunities at signalized intersections within Florida’s District 5. 

The primary objective is to equip traffic operators with data-driven tools to enhance safety through 

informed adjustments to traffic signal operations, focusing on countermeasures such as yellow and 

red clearance timing, left-turn phasing, and pedestrian treatments. This work aims to transform 
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raw data into meaningful performance measures and, ultimately, into recommendations that can 

lead to safer intersection environments. 

This report proceeds as follows. Chapter 2 provides a foundational overview of ATPSM 

and details the two essential data sources: detector configuration files and controller event logs. 

Chapter 3 presents an extensive review of related works, encompassing project reports from US 

and state Departments of Transportation (DOT), existing GitHub repositories related to ATSPM 

systems, and a systematic review of academic literature on the mobility and safety applications of 

ATSPMs. This chapter also summarizes best practices for various operational countermeasures at 

intersections as recommended in technical manuals. Chapter 4 describes the data collection 

methodologies implemented for this project, focusing on acquiring detector configuration data 

from the Normalized Operational Equipment Management Initiative (NOEMI) and controller 

event log data from SunStore for ATSPM-equipped intersections, primarily in Seminole county. 

It also details the process of grouping detector configurations and the development of the Event 

Sequence Quality Checker (ESQC) to assess data quality. Chapter 5 elaborates on the algorithm 

development process. This includes the transformation of controller event log data into meaningful 

cycle-level performance measures such as Signal Phasing and Timing (SPaT), volume, occupancy, 

headway, and conflicts. It further details the methodologies for exploratory data analysis and the 

algorithms developed to provide recommendations for six key safety strategies: yellow and red 

clearance time adjustment, choice of protected versus permitted left-turns, pedestrian recall, 

Leading Pedestrian Interval (LPI), and No Right Turn on Red (NRTOR). Chapter 6 introduces 

the system architecture of the Smart Signal Performance Monitor (SSPM), a system developed to 

implement the derived algorithms and deliver actionable safety recommendations. This chapter 

outlines the core components of the SSPM, including the Transform-Recommend-Rank (TRR) 
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server, the database server, and the frontend server, which features interactive dashboard views for 

performance measure analysis, safety recommendations, and intersection safety ranking. 

Subsequent chapters are intended to cover the evaluation of the SSPM system, the functionalities 

of its report generation module, and a final summary of the research and implementation. Through 

the integration of real-time data processing, advanced analytics, and user-friendly interfaces, this 

work endeavors to make a significant contribution to advancing transportation safety technologies. 
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CHAPTER 2: OVERVIEW OF ATSPM 

ATSPM relies on two primary types of data: the detector configuration and the controller 

event log data. While the detector configuration data is crucial for interpreting detector actuation 

events associating vehicle detections with specific traffic movements, the controller event data is 

essential for analyzing signal timing performance and identifying vehicle movement events. This 

chapter investigates the detailed data structure and parameters to provide intersection performance 

analysis provided by ATSPM Documentation from Purdue University1. 

2.1. Detector Configuration  

Detector Configuration Data encompasses the structural and operational details of traffic 

detectors installed at intersections. It has the following key components: 

a) Approach: descriptions of where each detector is positioned within the approach. 

b) Detector width and lengths: Effective detecting width and length of detector 

c) Lane Type: Identification of which traffic movements (e.g., through, left turn, right turn, 

and the specific phases) each detector is designed to monitor. 

d) Detector Types: Specifications of the detection technology employed (e.g., inductive loops, 

video detection, radar). 

e) Channel Number: A unique identifier assigned to each detector input  

f) Phase Number: Specific traffic phases assigned to each detector 

g) Stopbar Distance: Detecting location from the stopbar detector 

 

1Purdue University ATSPM document 

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=jtrpaffdocs
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ATSPM detector configuration information varies in format across different administrative 

entities. FDOT utilizes Normalized Operational Equipment Management Initiative (NOEMI) 

reports to manage traffic operations throughout Florida’s roadway network. These reports include 

details on specific intersections, covering operation and maintenance activities. Figure 2-1 shows 

a section of the NOEMI report that addresses the configuration of the detectorFigure 2-1. The 

NOEMI report provides key information necessary for interpreting ATSPM controller event log 

data, which is discussed in detail in the next chapter. However, it is updated infrequently, often 

with several years between revisions, and relies primarily on manual processes.  

 

Figure 2-1. An Example of Detector Configuration Data in the FDOT NOEMI Report 

The accuracy of detector configuration is crucial, as it specifies the precise location of 

events recorded in log data. Inaccurate or outdated information leads to false or misleading 

intersection performance measurements. Although NOEMI reports provide configuration 

information for over 1800 intersections in Florida, this study focuses on a select number of 

intersections with verified data accuracy for further analysis.  
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2.2. ATSPM Controller Event Log data 

ATSPM Controller Event Log data encompasses information gathered and stored by traffic 

signal controllers and detectors. This data is typically collected in real-time or near-real-time, 

offering continuous insights into intersection operations. The ATSPM database primarily archives 

data on events such as vehicle detections and changes in traffic signals up to 0.1 seconds. 

Each event generated by the signal controller consists of four bytes: two for the event 

timestamp, one for the event code type, and one for the event parameter. The event code identifies 

the specific activity reported by the controller, such as phase initiation or termination, detection 

activation or deactivation, or errors. Consequently, the event code byte can report up to 256 distinct 

activities. Table 2-1 provides detailed descriptions of each event parameter. 

Table 2-1. Parameters of ATSPM Controller Event Log Data 

Parameter Description Field Type 

SignalID 

This column identifies the specific traffic signal or 

intersection. It’s typically a unique numerical or alphanumeric 

code assigned to each intersection in the network. 

integer 

TimeStamp 

This column records the exact date and time when an event 

occurred. It usually includes both the date and time, often 

down to 0.1 seconds for precise temporal analysis. 

DateTime 

EventCode 

This column contains a numerical code representing a specific 

type of event or action at the traffic signal. Different numbers 

correspond to different events, such as signal phase changes, 

vehicle detections, pedestrian button presses, and preemption 

events. 

integer 

EventParam 

This column provides additional information, or parameters 

related to the event specified by detector channel numbers and 

phases. 

integer 
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Table 2-2 provides a brief description of each event code. It is composed of traffic signal 

events, vehicle detection events, preemption, coordination, and maintenance events.  

Table 2-2. Parameters of ATSPM Controller Event Log data 

Event Type 
Event 

Code  
Event Code Types Descriptions 

Traffic 

signal 

0–20 
Active Phase 

Events 

Any phase-related status changes, such 

as activation or termination.  

21–30 
Active Pedestrian 

Phase Events 
Pedestrian-related phase status changes. 

31–40 Barrier/Ring Events Barrier and yellow permissive events. 

41–60 
Phase Control 

Events 

Phase hold, call, and omit status 

changes. 

61–80 
Phase Overlap 

Events 
Overlap status changes 

Vehicle 

detection 
81–100 Detector Events 

Detector activity and error status 

changes. 

Preemption 101–130 Preemption Events Preemption status changes 

Coordination 131-170 
Coordination 

Events 

Coordinated timing status changes, such 

as cycle length and split times. 

Maintenance 171–199 
Cabinet/System 

Events 

Controller property-related status 

changes, including alarms, clock 

updates, and power failures. 

User-defined 

functions 
200-255 User-defined event Future user-defined functions  

 

The type of event happening at intersections typically includes the beginning or end of a 

signal phase and the activation or deactivation of a detector. An illustrated overview of the high-

resolution event data is presented in Table 2-3. 
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Table 2-3 Example of High-Resolution Event Data from ATSPM 

Signal 

ID 
Time Stamp Event Code Event Parameter Remarks 

1067 2019-10-01 04:33.5 1 7 Phase 7 Green Begin 

1067 2019-10-01 04:35.3 82 4 Detector 4 On 

1067 2019-10-01 04:38.8 81 4 Detector 4 Off 

1067 2019-10-01 04:39.6 8 7 Phase 7 Yellow Begin 

1067 2019-10-01 04:43.1 82 8 Detector 8 On 

1067 2019-10-01 04:43.2 81 8 Detector 8 Off 

1067 2019-10-01 04:43.3 10 7 
Phase 7 Red Clearance 

Begin 

1067 2019-10-01 04:46.3 11 7 
Phase 7 Red Clearance 

End 

1067 2019-10-01 04:47.5 82 5 Detector 5 On 

1067 2019-10-01 04:48.1 81 5 Detector 5 Off 

 

In the United States, the ATSPM controllers typically adhere to the ‘dual-ring, eight-phase’ 

scheme for controlling traffic at intersections. This scheme ensures the non-overlapping, sequential 

progression of traffic phases over time, where the phases typically represent the left-turn and 

through movements of every roadway approach at an intersection. The diagram in Figure 2-2(b) 

(analogous to the intersection in Figure 2-2(a)) demonstrates a typical ‘dual-ring, eight-phase’ 

scheme, which includes rings and phase groups. The rings in the diagram denote the pathways for 

sequencing traffic phases, whereas phase groups separated by barriers represent a roadway 

approaching an intersection.  
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(a) Typical Intersection Depicting Traffic 

Phases 

(b) Configuration of ‘Dual-Ring, Eight-

Phase’ Operation 

Figure 2-2 Typical ‘Dual-Ring, Eight-Phase’ Scheme (Major Roadway Along North-South) 

 

Phase group 1 generally corresponds to the ‘major’ roadway, and phase group 2 to the 

‘minor’ roadway. The ‘dual-ring, eight-phase’ scheme functions on a set of rules as follows:  

h) At any given time, one phase from each of the two rings can operate. 

i) All operational phases must be within the same phase group. 

j) Each phase within a particular ring can operate concurrently with any phase from the 

alternate ring, provided they belong to the same phase group.  

k) The operation of phases in phase group 1 (i.e., ‘major’ roadway) is completely 

incompatible with those in phase group 2 (i.e., ‘minor’ roadway). 

l) The rings are permitted to cross the barrier when all the rings have arrived at this point. 

The cycle length is the duration between successive crossings of barrier 2. 
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CHAPTER 3: RELATED WORK 

This section reviews research reports from various projects from the Department of 

Transportation (DOT) and GitHub repositories related to existing ATSPM systems to minimize 

redundant efforts in this project. According to the Federal Highway Administration’s (FHWA) 

ATSPM site2, six relevant reports are available, sponsored by agencies such as the United States 

DOT, Indiana DOT, Utah DOT, and the American Association of State Highway and 

Transportation Officials (AASHTO). Utah and Oregon DOTs have also published GitHub 

repositories for processing ATSPM data. We examined the features of these repositories, including 

data characteristics, collection frequency, and their potential applicability to this project. We also 

identify any attributes that may require further development to achieve the project’s objectives. 

Given the diverse objectives of each agency’s analyses, this review is organized by an agency and 

mainly addresses the report’s unique efforts for conciseness. 

The review specifically focuses on the features of ATSPM data and use cases relevant to 

this study, which aims to evaluate the safety of intersections using ATSPM data and apply this 

information to recommend signalization strategies. Therefore, a discussion of how to install and 

maintain the ATSPM system is excluded from this review. We mainly analyze the types of data 

provided by ATSPM, whether this data has been used to recommend signalization strategies at 

intersections, and their deployment strategy.  

  

 

2 USDOT ATSPM summary 

https://ops.fhwa.dot.gov/arterial_mgmt/performance_measures.htm
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3.1. Atspm Project Reports and GitHub Repositories Published By DOT 

3.1.1. ATSPM Reports By DOT 

3.1.1.1. United States Department of Transportation (USDOT) 

The United States Department of Transportation (USDOT) published two detailed reports 

on the ATSPM system in 2020 with Atkins and Leidos, respectively. These reports 

comprehensively analyze traffic signal performance measures using ATSPM, highlighting the use 

cases in early adopter agencies and quantitive cost and benefit analysis. A summary of the two 

published USDOT reports is discussed in the following subsections. 

USDOT’2020 by Atkins 

This report reported eight detailed use cases of ATSPM, addressing those cases’ 

deployment strategies and the benefits they obtained. Those early adopters adopted various 

deployment strategies. Most agencies use the open-source ATSPM software developed by the Utah 

DOT. This approach involves maintaining high-resolution controller data storage and hosting a 

local installation of the software. The other approach is cooperating with traffic controller vendors. 

Some traffic controller vendors offer integrated ATSPM capabilities within their central traffic 

signal management software. In this model, a third-party provider hosts the ATSPM data, often in 

the cloud. This method typically involves installing supplemental data collection equipment and 

paying subscription fees. The USDOT reports provide several technical applications: 

a) ATSPM systems collect high-resolution data from traffic signal controllers, including 

events like phase changes and detector actuation. 

b) The data collected is processed using specialized software to generate performance 

measures such as approach delay, speeds, volumes, and arrivals on red. 
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c) The systems provide real-time monitoring capabilities, alerting engineers to issues such as 

detector malfunctions or signal failures. 

d) Various data visualization tools are developed to help engineers and stakeholders 

understand traffic performance metrics easily. 

The agencies reported in USDOT’s 2020 report tried to provide real-time performance data 

and alerts, improving traffic flow, safety, and operational efficiency. The collaborative efforts 

across various state and local agencies demonstrate the system’s scalability and effectiveness in 

different urban settings. USDOT’s 2020 report states that the project has been successfully 

implemented in various regions across the United States, demonstrating its versatility and 

effectiveness. Notable case studies include: 

a) Utah Department of Transportation (UDOT): 

 UDOT’s ATSPM system, developed in collaboration with Purdue University and 

FHWA, includes a suite of data visualization reports to evaluate traffic progression and 

identify unused green time.  

 UDOT has significantly reduced public complaints and improved operational efficiency 

using ATSPM at 99 percent of its 1,271 traffic signals. 

b) Georgia Department of Transportation (GDOT):  

 GDOT’s deployment uses the open-source ATSPM software from UDOT. The system 

aids in managing signal operations, particularly during events like the I-85 bridge 

collapse, by developing alternate routing plans and adjusting signal timing.  

 GDOT has connected 6,775 signals to the ATSPM system, improving overall traffic 

signal management. 
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c) Pennsylvania Department of Transportation (PennDOT): 

  PennDOT’s ATSPM goals focus on reducing delays, emissions, and crashes while 

promoting economic benefits. They have implemented a unified command and control 

platform integrating various ATSPM inputs to manage 2,184 signals statewide. 

d) Seminole County, Florida: 

  Seminole County’s ATSPM program, developed with FDOT and UDOT, supports a 

wide range of performance metrics. The county has upgraded 387 signals to record high-

resolution data. 

The key benefit of ATSPM, as demonstrated in the report, is that the system offers several 

benefits over traditional signal retiming methods. Traditionally, signal retiming is done every 3-5 

years at a cost of roughly $4,500 per intersection, often relying on public complaints and periodic 

data collection. ATSPM, however, allows for continuous performance monitoring, leading to 

proactive identification and correction of deficiencies. This shift to proactive management 

improves safety, enables targeted maintenance, and enhances overall traffic operations. The 

FHWA’s Every Day Counts (EDC-4) initiative promoted ATSPM, resulting in a significant 

increase in its adoption. By the end of EDC-4, 57% of states were demonstrating, evaluating, or 

institutionalizing ATSPM, a substantial increase from the initial 11 states.  
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USDOT’2020 by Leidos 

This report mainly tried to evaluate the economic costs and benefits of early adopter 

agencies. They report a flexible cost-benefit estimation methodology that covers both short-term 

and long-term benefits over the lifecycle of ATSPM implementations. Figure 3-1 shows that the 

methodology includes 16 cost items and 12 benefit items, each with specific formulas that agencies 

can adapt to their context. 

 

Figure 3-1. Primary Items in the Benefit-Cost Methodology (Leidos, 2020) 

 

This approach allows for a customized analysis based on the available data and specific 

conditions of different agencies. Table 3-1 shows the reported cost and benefit analysis, including 

detailed case studies from six early adopter agencies. 
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Table 3-1. Cost and Benefit Analysis from Case Studies 

Agency 
Main 

implementation 
Benefit 

No. of 

intersections 

Costs 

(E.) 

Benefit 

(E.) 

Utah DOT 

Developed an open-

source software 

package for 

ATSPMs. 

Improved traffic 

signal monitoring 

and maintenance, 

substantial cost 

savings. 

2,111 $11.5M $108.0M 

Georgia 

DOT 

Collaborated with 

UDOT to enhance 

the software. 

Streamlined signal 

performance 

monitoring and 

reduced response 

times. 

6,804 $0.9M $9.5M 

Pennsylva

nia DOT 

Focused on 

integrating ATSPMs 

into local agency 

operations. 

Enhanced detection 

and response to 

signal failures. 

100 

(hypothetical 

case) 

$0.4M $1.7M 

Lake 

County 

DOT 

Emphasized 

improving signal 

timing and reducing 

maintenance costs. 

Significant 

reduction in vehicle 

delays 

180 $0.3M $4.1M 

Maricopa 

County 

DOT 

Focused on data-

driven improvements 

to traffic 

management. 

Reduction in travel 

time and 

operational costs. 

170 $0.5M $1.5M 

Clark 

County, 

WA 

Faced initial challenges but gained 

substantial insights into system 

improvements. 

125 

This has yet to be 

fully quantified due 

to ongoing 

implementation. 

 

The USDOT’s 2021 report also highlights key lessons from interviews with six early 

adopter agencies. One of the main findings is that robust executive support is essential for the 
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effective implementation of ATSPM. Investments in signal maintenance prior to implementing 

ATSPM can significantly facilitate its integration. Additionally, it is crucial for agencies to adapt 

the methodology to their unique requirements and contexts. A common issue is that most agencies 

lack the capacity to analyze data sets to pinpoint problems thoroughly. Innovations like the 

Measurement, Accuracy, and Reliability Kit (MARK 1), developed by the Georgia Department of 

Transportation (GDOT), are making strides in this area by summarizing data from various 

locations.  

The development and implementation of ATSPM technology is a collaborative effort 

involving multiple stakeholders, such as FHW, state DOTs, and academic institutions. This 

collaboration has fostered the development of innovative data analysis techniques and performance 

metrics. Furthermore, agencies like the UDOT and the GDOT enhance public transparency by 

providing access to ATSPM data and analyses through public-facing websites, promoting 

community engagement and transparency. In essence, ATSPM systems represent a significant leap 

forward in managing traffic signals, aligning with the dynamic demands of modern transportation 

networks and yielding safer, more efficient, and cost-effective traffic operations. In summary, 

ATSPMs have proven to be valuable tools for improving traffic signal management. Their 

deployment strategies, diverse use cases, and significant benefits highlight their potential to 

transform how agencies manage and operate traffic signals, ultimately leading to more efficient 

and safer roadways. 

  



 

17 

3.1.1.2. Indiana Department of Transportation (INDOT) 

The Indiana Department of Transportation (INDOT) has published detailed reports on 

ATSPM data in 2014 and 2015. These reports provide a comprehensive analysis of traffic signal 

performance measures based on high-resolution controller event data, highlighting the significance 

and implementation of these measures for improving traffic signal systems. A brief summary of 

the published INDOT reports is discussed in the following subsections. 

INDOT’2014 

In 2014, INDOT published a report emphasizing the critical need for effective traffic signal 

operations within traffic management, often underestimated in budget and staffing allocations. It 

highlighted the lack of adequate performance reporting, obscuring the quality of the actual 

operation. The report aimed to provide a comprehensive suite of control-agnostic, discrete event-

based performance measures, including Automated Traffic Signal Performance Measures 

(ATSPM), applicable universally for analyzing traffic signal systems. 

This report discusses various aspects of signal timing that are critical for effective traffic 

management. It outlines different types of signal operations, such as fixed-time, semi-actuated, 

fully actuated, and adaptive control, each requiring specific detector data and operational strategies. 

The report details control elements like interval and phase timing, the role of vehicle detection in 

linking to signal output and the importance of signal cycles. Actuation methods are highlighted, 

emphasizing dynamic adjustments based on real-time traffic conditions. Signal coordination 

strategies aim to synchronize green times across intersections, while preemption and priority 

functions ensure timely responses for emergency vehicles and transit.  

The report presents a comprehensive analysis of various performance measures to assess 

and optimize traffic signal systems. The capacity performance measures evaluate intersection 
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utilization through metrics such as traffic volumes, cycle lengths, green time allocation, flow rate, 

headway, saturation flow rate, vehicle measures of effectiveness, green and red occupancy ratios, 

and the degree of intersection saturation.  

The progression performance measures focus on the efficiency of coordinated signal 

systems by examining vehicle delays, arrival patterns, percent on green, platoon ratio, arrival type, 

delay estimates, and the Purdue Coordination Diagram (PCD). The multimodal performance 

measures assess the accommodation of pedestrians, transit vehicles, and emergency vehicles using 

metrics like pedestrian delay, level of service (LOS), preemption response time and duration, and 

transit priority adjustments in green and red phases. Maintenance performance measures ensure 

system reliability by evaluating communication quality through ping success rates and data 

transmission failures, data completeness via automated audits and redundancy checks, and detector 

status by logging error frequency and duration. Every performance measure utilizes specific 

parameters to provide actionable insights for traffic management improvements. The parameters 

for every measure are illustrated in Table 3-2.  

These performance measures, detailed in the report, offer a structured approach to 

evaluating and enhancing traffic signal systems, ultimately leading to improved traffic flow and 

management efficiency. 
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Table 3-2. Summary of Performance Measures and Parameters 

Performance 

Measures 
Parameters 

Capacity 

Performance 

Traffic Volumes, Cycle Lengths, Green Time Allocation, Flow Rate, 

Headway, Saturation Flow Rate, Vehicle Measures of Effectiveness, Green 

and Red Occupancy Ratios, Degree of Intersection Saturation 

Progression 

Performance 

Vehicle Delays, Arrival Patterns, Percent on Green, Platoon Ratio, Arrival 

Type, Delay Estimates, Purdue Coordination Diagram (PCD), Flow Profiles, 

Shockwave Analysis, Maximum Queue Lengths 

Multimodal 

Performance 

Pedestrian Delay, Level of Service (LOS), Preemption Response Time, 

Preemption Duration, Transit Priority Adjustments in Green and Red Phases, 

Signal Changes, Vehicle Arrivals, Detection Technologies (GPS, Infrared, 

Radio-Based Systems) 

Maintenance 

Performance 

Communication Quality (Ping Success Rates, Data Transmission Failures), 

Data Completeness (Automated Audits, Redundancy Checks), Detector Status 

(Error Frequency, Error Duration) 

 

This INDOT report provides a comprehensive suite of performance measures for current 

traffic signal systems and paves the way for future advancements in traffic management. With the 

integration of more sophisticated data collection techniques, such as real-time crowdsourced data 

and advanced sensor technologies, future traffic signal systems can achieve even greater precision 

and efficiency. The continuous improvement of data processing algorithms and adopting machine 

learning models could further enhance the predictive capabilities of traffic management systems. 

Additionally, expanding the scope of multimodal performance measures to include emerging 

transportation modes, such as autonomous vehicles and micro-mobility solutions, will be crucial. 

Future efforts should also focus on the integration of these advanced systems—such as connected 

vehicle technology, adaptive signal control, and Internet of Things (IoT) devices—into existing 

infrastructure, ensuring scalability and adaptability. 
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INDOT’2015 

The INDOT report published in 2015 also emphasizes the need to integrate ATSPM into 

agency operations to enhance efficiency and effectiveness. Traditional traffic signal systems rely 

on fixed schedules and limited data inputs, leading to suboptimal performance. High-resolution 

data logging enables detailed analyses of traffic signal performance, identifying inefficiencies and 

allowing for targeted improvements. This data-driven approach optimizes signal timing plans, 

improving traffic flow and reducing congestion. The key findings in the report are: 

a) Technical Requirements for Implementation: 

• High-resolution controller data logging requires understanding the necessary infrastructure, 

software, and processes to handle increased data volume. 

• Identifying suitable detection configurations (e.g., loop detectors, video detectors) and 

ensuring adequate data storage capacities are crucial. 

• Managing latency to ensure seamless data collection, transmission, storage, and 

visualization is essential for real-time performance analysis. 

b) Detection of Vehicles: 

• Accurate vehicle detection at intersections is critical for optimizing traffic signal 

performance. 

• Various types of detectors, such as loop detectors and video detectors, provide essential 

data to signal controllers. 

• Detector failures can disrupt traffic flow, but high-resolution event data can identify such 

failures for timely maintenance and repairs. 

c) Evaluation of Local Signal Control: 
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• High-resolution data and visualizations assess the quality of traffic signal operations at 

individual intersections, examining metrics such as vehicle delay, queue length, and 

number of stops. 

• The evaluation process examines green time distribution and trends in initiation and 

termination. 

• Performance measures, such as phase failures and split failures, are aggregated to identify 

spatial and temporal “hot spots” of poor performance. 

• Detector failures can also be identified by monitoring inconsistencies in expected traffic 

patterns, anomalies in signal phase activation, continuous monitoring and alert systems, 

comparison with adjacent detectors, and correlation with external data sources. 

d) System Control Evaluation: 

• High-resolution and travel time data manage traffic signal progression along arterial 

corridors, ensuring coordinated scheduling of green times at neighboring intersections. 

• Evaluation involves assessing progression quality and optimizing signal offsets using data-

driven techniques like time-space diagrams and vehicle trajectory data. 

This INDOT report concludes that integrating high-resolution traffic signal performance 

measures through ATSPM into agency operations significantly enhances efficiency and 

effectiveness. Traditional systems relying on fixed schedules and limited data inputs result in 

suboptimal performance, whereas high-resolution data logging allows for detailed analysis and 

targeted improvements, leading to optimized signal timing plans, improved traffic flow, and 

reduced congestion. By addressing technical requirements such as detection, communication, and 

data processing, and by using data-driven approaches for system control evaluation, agencies can 

achieve significant improvements in traffic signal management and overall traffic operations. 
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3.1.1.3. Utah Department of Transportation (UDOT) 

The Utah Department of Transportation (UDOT) performed a comprehensive study to 

explore the potential of Automated Traffic Signal Performance Measures (ATSPM) data in 

estimating Annual Average Daily Traffic (AADT). Traditionally, UDOT has relied on short-

duration traffic counts to fulfill Federal Highway Administration (FHWA) requirements. These 

counts, conducted at approximately 6000 locations over three years, are labor-intensive, costly, 

and pose safety risks. The study aimed to determine whether ATSPM data from radar detectors at 

signalized intersections could be used to estimate AADT, thereby reducing the need for some short 

duration counts and balancing Continuous Counter Station (CCS) data in estimating seasonal 

adjustment factors. 

Two types of ATSPM detectors were analyzed in this study: Wavetronix SmartSensor 

Advance detectors and Wavetronix SmartSensor Matrix detectors. Advance detectors are installed 

300-400 feet upstream of signalized intersections and provide total through traffic counts. In 

contrast, Matrix detectors are installed at stop-bar locations and offer lane-by-lane turning 

movement counts. The study’s initial phase involved selecting test locations by mapping CCS and 

ATSPM detector sites. The selected sites had to be on the same road segment without intermediate 

access points, providing count data for the same route, direction, and period. 

The CCS dataset comprised hourly directional counts from 113 sites for the entire year 

2017, totaling 1,846,104 counts. The ATSPM dataset consisted of 15-minute interval counts from 

47 signals over the same period, amounting to 15,999,450 counts. The data from CCS and ATSPM 

pairs were mapped and unified in terms of direction labeling and time intervals for accurate 

analysis. This mapping process ensured that the datasets could be directly compared and analyzed 

effectively. 
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One of the crucial steps in the study was identifying and removing anomalous data, which 

could be caused by device malfunctions or other issues. Three anomaly detection methods were 

tested: the Inter Quantile Range (IQR) method, K-Means Clustering, and the Time of Day (TOD) 

and IQR-based method. The IQR method assumed that any hourly count beyond 1.5 times the IQR 

from the 75th percentile was an anomaly. The K-Means Clustering method partitioned data into 

clusters, identifying anomalies based on their distance from cluster averages. The TOD & IQR-

based method used historical data to set thresholds for anomalies, particularly for early morning 

hours. The analysis revealed the following: 

• UDOT’s use of ATSPM data can reduce the need for labor-intensive, costly short-duration 

traffic counts. By leveraging ATSPM data, UDOT can minimize the frequency of 

traditional traffic counts, thereby reducing costs and labor. 

• Matrix detectors provide reliable hourly traffic counts and accurate AADT estimates, 

complementing CCS data. Even without adjustment factors, Matrix detectors provided 

reliable estimates with average R-squared values of 0.93. 

• Anomaly detection, particularly the TOD & IQR method, is crucial for data accuracy. The 

TOD & IQR method demonstrated superior performance in identifying and removing 

anomalous data, ensuring the reliability of traffic count data from ATSPM detectors. 

• The number of lanes and detector configurations impact the accuracy of traffic counts from 

ATSPM data. Advance detectors were most accurate on two-lane roadways, while Matrix 

detectors improved as the number of detector channels increased. Single Matrix detectors 

were generally more accurate compared to multiple Matrix detectors at intersections. 

• This research supports the broader application of ATSPM data for efficient traffic 

management and planning. Matrix detectors estimated AADT with 88% accuracy 

compared to CCS sites and accurately estimated monthly seasonal factors with 97.5% 
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accuracy and day-of-week in month factors with 96.8% accuracy. These capabilities are 

valuable for making precise adjustments based on seasonal traffic patterns. 

3.1.1.4. American Association of State Highway and Transportation Officials (AASHTO) 

The main objective of AASHTO’s 2020 report is to provide guidance for agencies in 

implementing a performance measurement approach for traffic signal management. The report 

aims to help agencies evaluate whether this performance-based approach would be cost-effective 

for their system and to develop a plan for its implementation. While it also includes a data 

dictionary and communication materials, these were summarized in the above reports and thus 

excluded from this review. The report suggests detailed steps to integrate signal performance 

measures into the management of a traffic signal system, as follows: 

• Select Performance Measures: Determine which signal performance measures align best 

with the agency’s goals and methods. Identifying key measures is essential to avoid data 

overload and ensure effective decision-making. 

• Determine Implementation Scale: Decide whether to implement performance measures 

across the entire system at once or incrementally. Most agencies opt for an incremental 

approach, using pilot projects or integrating upgrades with existing maintenance programs. 

• Conduct System Needs Gap Assessment: Assess gaps in equipment, business processes, 

organizational structure, or resources required for implementation after selecting 

performance measures and intersections. 

• Procure Resources: Identify and acquire the additional resources needed for deployment 

and long-term maintenance based on the gap assessment results. 

• Configure System: Set up the equipment and software necessary for data collection, 

storage, and processing at both the intersection and system levels. Program each 

intersection with the relevant information. 
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• Verify System: Ensure data consistency and accuracy through a verification process post-

installation. Utilize external data from sensor networks or field studies to confirm the 

precision and correct calculation of performance measures. 

• Apply Performance Measures: Use performance measures to adjust signal timings, 

correct mis-programmed parameters, and identify malfunctioning equipment. 

• Integrate into Agency Practice: Incorporate performance measures into daily operations 

for continuous monitoring. This practice helps in evaluating the effectiveness of 

maintenance and operations, guiding resource allocation and funding decisions. 

This study provides the various steps involved in both traditional and ATSPM signal 

retiming. Figure 3-2 shows that, unlike traditional retiming, performance-based management with 

ATSPMs allows staff to continuously and proactively monitor the traffic signal system rather than 

making occasional, reactive changes. 

 

Figure 3-2. Traditional versus Performance-Based Signal Timing Process (AASHTO, 2020) 
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3.1.2. ATSPM GitHub By DOT 

The Utah Department of Transportation (UDOT) developed the ATSPM GitHub repository 

in 2017 to offer a suite of visual aids that utilize high-resolution data from signal controllers3. This 

open-source software enables real-time analysis and visualization of traffic signal performance, 

optimizing signal timing and coordination. In addition, the Oregon Department of Transportation 

(ODOT) published the “ATSPM_Aggregation” GitHub repository In 2023. The repository is a 

potential Python package designed to aggregate traffic signal performance measures (ATSPMs) in 

30-minute and 1-hour intervals from high-resolution controller data4. This repository assists traffic 

engineers and researchers in evaluating traffic signal performance through various metrics. The 

primary goal is to convert raw data from Automated Traffic Signal Controllers (ATCs) into 

meaningful performance metrics that can optimize traffic signal timing, improve traffic flow, and 

enhance overall intersection safety. The repository provides essential tools for processing high-

resolution traffic signal data and extracting valuable insights.  

  

 

3 UDOT ATSPM GitHub repository  

4 Oregon DOT ATSPM GitHub repository  

https://github.com/udotdevelopment/ATSPM
https://github.com/ShawnStrasser/ATSPM_Aggregation
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3.1.2.1. Data Characteristics, Aggregation Interval, and Their Applicability 

The traits of ATSPM systems include high-resolution data logging, automated data 

analysis, real-time monitoring, and advanced data visualization tools. These systems capture 

parameters such as vehicle volumes, delays, green time allocation, arrival on red, split failures, 

signal coordination metrics, and so on. Table 3-3 describes the definition of performance measures 

that can be derived from the ATSPM system. As per the reviewed reports and repositories, these 

parameters are aggregated at 30-minute and 1-hour intervals. However, aggregating data at more 

granular, cycle-level intervals could be more critical for detailed traffic signal performance 

evaluation. Aggregation at the cycle level provides precise insights into each signal cycle’s 

efficiency, allowing for real-time adjustments and optimization of signal timings at intersections. 

This level of detail is crucial for making real-time adjustments and optimizing signal timings at 

intersections, addressing specific issues affecting traffic flow and safety, and enhancing overall 

traffic efficiency and safety. 

 

Table 3-3. Definition of Performance Measures 

Measure Description 

Green/Yellow/ 

Red Duration 

Measure the amount of green, yellow, and red time served for a particular 

phase or overlap without requiring detection setup or mapping information. 

Phase 

Termination 

Type 

Indicates how a phase or overlap ends (gapped out, maxed out, or forced off), 

driven by arrivals in an actuated control system. Acts as a surrogate for 

capacity utilization without needing detector mapping. 

Volume per 

Time Period 

The count of vehicles is interpreted from the number of activations from a 

setback short-length detector or a dedicated count channel. 

Vehicles-per-

Hour (vph) 

The rate of vehicle arrivals for a one-hour period is typically converted from 

volume per time period. 
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Volume/Capacit

y Ratio (v/c) 

The number of vehicle arrivals during a period is divided by the theoretical 

capacity approximated from the green time served (less any startup loss). 

Maximum 

Vehicle Delay 

The greatest number of seconds between a detector activation at the stop bar 

during red to either the beginning of green or detector deactivation time for 

RTOR vehicles. 

Green/Red 

Occupancy 

Ratio 

Measure capacity utilization using amounts of detector occupancy during green 

and red portions of a phase, respectively. 

Split Failure 
Indication of overcapacity for a lane, phase, or movement triggered by 

exceeding certain occupancy ratios during green and red phases. 

Queue 

Estimation 

Measure the queue length using vehicle arrivals and estimated discharge rates 

(input-output method) or detector gap durations and counts (shockwave 

estimation method). 

Oversaturation 

Severity Index 
The ratio of unusable green time to total available green time in a cycle. 

Time to Service Measure of the time from the first detection to the beginning of green. 

Percent on 

Green  
The percentage of total vehicles arriving during a given cycle is in green. 

Purdue 

Coordination 

Diagram 

Visualization of the quality of a movement’s progression over time. 

Platoon Ratio 
The percentage of vehicles arriving on green is adjusted by the green time 

proportion per cycle (g/C). 

Cyclic Flow 

Profile 

Combines the distribution of vehicle arrivals and the probability of green, 

aggregated over a set of fixed-length cycles. 

Time–Space 

Diagram 

Visualization of estimated vehicle trajectories traversing a distance over time, 

including locations and phase status of signalized intersections. 

Red Light 

Running 

Measures vehicles entering and exiting a stop bar detection zone after the 

beginning of red. 
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3.1.2.2. Data Quality Check 

Ensuring data quality is fundamental in ATSPM systems. However, previous package does 

not provide this functionality. Data quality check process involves thorough checks on the data 

collected for the project, specifically focusing on detector on-off sequences, signal sequences, and 

anomaly detection. Monitoring the on-off sequences of detectors ensures that data collection is 

consistent and accurate, highlighting any potential malfunctions or inconsistencies in data 

recording. Analyzing signal sequences helps identify discrepancies between expected and actual 

signal performance, ensuring that the traffic signals operate as intended. Additionally, techniques 

like the Inter Quantile Range (IQR) method and the Time of Day (TOD) and IQR-based method 

are effective for identifying and removing anomalous data, such as outliers or unexpected 

variations. These data quality checks are essential for maintaining the reliability of collected data, 

supporting accurate traffic signal performance analysis, and ultimately aiding the optimization of 

signalization strategies to enhance intersection safety. 

 

3.1.2.3. Scope to Integrate Emerging Technologies 

Emerging technologies like digital twins, sensor fusion, and trajectory data offer significant 

opportunities to enhance ATSPM systems. Digital twins provide virtual representations of traffic 

systems, enabling real-time monitoring, simulation, and optimization of traffic signals. This 

technology can predict traffic patterns and assess the impact of different signalization strategies 

before implementation. Sensor fusion combines data from sources such as LiDAR, radar, and 

traditional traffic detectors to create a comprehensive and accurate picture of traffic conditions. 

Trajectory data offers detailed insights into traffic flow and behavior, which is crucial for precise 
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traffic signal optimization and identifying safety issues. Using these technologies can provide 

advanced performance measures and improve overall traffic management. 

The findings from the review can significantly benefit the project by offering an effective 

framework for evaluating intersection safety and recommending effective signalization strategies. 

The detailed performance measures and high-resolution data logging provide the necessary 

granularity for analyzing traffic signal performance at a cycle level, enabling precise adjustments 

to improve traffic flow and safety. Implementing regular data quality checks ensures the reliability 

and accuracy of the collected data, which is essential for informed decision-making. 

Though not within the current scope of the project, integrating emerging technologies like 

digital twins, sensor fusion, and trajectory data can further enhance ATSPM’s analytics capability. 

Digital twins can simulate various traffic scenarios, helping to predict and mitigate potential issues 

before they occur. Sensor fusion offers a more comprehensive view of traffic conditions, 

combining data from multiple sources for better accuracy. Trajectory data provides detailed 

insights into traffic patterns and behaviors, enabling more targeted interventions. 

Overall, the insights gained from the review can lead to a more effective and efficient 

approach to managing traffic signals, ultimately reducing fatalities and improving overall traffic 

flow and safety. 
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3.1.3. Summary 

The DOT project report and GitHub repositories offer numerous benefits for traffic signal 

management and operation. ATSPMs facilitate a proactive approach to traffic signal maintenance 

by continuously monitoring trends over time. This allows staff to identify issues before the public 

reports them. Automated alerts can highlight intersections with malfunctioning equipment or high-

traffic congestions, enabling technicians to pinpoint failures, understand when issues began, and 

determine when they were resolved.  

ATSPMs continuously collect and analyze real-time data, reducing the need for extensive 

field observations. This also supports strategies like transit signal priority and further optimizing 

traffic flow by signal retiming. Shareable reports that summarize the impacts of maintenance and 

operational activities facilitate transparent communication with stakeholders and policymakers. 

The data collected through ATSPMs can prioritize short-term maintenance needs and inform long-

term infrastructure improvements. These systems also allow agencies to implement adaptive signal 

control and other advanced systems under various conditions. This is essential for managing traffic 

during special events, emergencies, or unexpected incidents. 

While studies have demonstrated the cost-effective benefits of ATSPMs, most research has 

focused on intersection efficiency. Consequently, there are few safety features, and the existing 

GitHub repositories lack the cycle-level aggregation and safety features needed for comprehensive 

safety evaluations. Further research is required to address these gaps. 
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3.2. Literature Review on Mobility and Safety Applications of ATSPM 

This section provides a systematic review of recent academic literature concerning ATSPM. 

A comprehensive search through Elsevier’s Scopus database yielded 64 relevant journal articles 

and conference papers from 2018. The majority of these, 27 in total, were published in the 

Transportation Research Record. As illustrated in Figure 3-3, these papers were categorized based 

on their application areas, with each category’s paper count noted in parentheses. Papers were 

assigned to the most applicable category in cases where multiple applications were covered. 

 

Figure 3-3. Distribution of Research Papers by Application within ATSPM Studies 
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Our review criteria included only studies that utilized ATSPM data for analytical purposes; 

those that merely referenced the data were omitted. Notably, these studies employed ATSPM data 

sourced from within the United States, underscoring their direct relevance to this research. Figure 

3-4 displays a trend analysis of these studies, highlighting a significant surge in publications in 

2020, followed by a consistent upward trend. 

 

Figure 3-4. Annual Trends in the Utilization of ATSPM Data in Academic Studies. 

 

This review assesses how ATSPM has been employed across the studies, examining the 

objectives and methodologies. We tried to keep the review concise by only revealing their results 

if they were clearly noteworthy or worth mentioning. Where applicable, results are quantified to 

evaluate the potential impacts of ATSPM usage. The review also identifies gaps in the current 

research area, discussing areas that have not yet been thoroughly explored but are required. 
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3.2.1. ATSPM Data Preprocessing  

Preprocessing of ATSPM data is essential for managing ATSPM data from different 

agencies into one unified system. In previous studies, identifying and handling unrealistic data in 

ATSPM data and mapping detectors where event data is recorded are the most important issues 

for preprocessing ATSPM data. The problem of mapping detectors means identifying the detector 

configuration, i.e., where and what kind of detectors are installed, due to the heterogeneity of the 

recording system of ATSPM data managed by different agencies (Zarindast et al., 2024). 

3.2.1.1. ATSPM Data Anomaly Detection  

In this section, we review papers that focus on improving the quality and usability of 

ATSPM data by detecting anomalies and implementing quality control measures. These papers 

took a stepwise approach, observing the anomalies in ATSPM data, predefining their type, and 

filtering them out (Huang et al., 2018; Wang et al., 2023). For example, Wang et al. (2023) 

identified various types of anomalies: data switching, data shifting, data missing, and irregular 

curves. The authors employed a moving average and standard deviation approach to detect these 

anomalies, calculating z-scores for traffic volume data points. In their study, anomalies were 

flagged when z-scores exceeded a threshold of 2.0 (Wang et al., 2023).  

Huang et al. (2018) addressed the data anomaly issue by combining machine learning with 

visualization. They used cumulative demand plots to analyze traffic patterns over time, enabling 

the identification of days with missing or anomalous data. For example, periods where cumulative 

volume remained unchanged indicated potential data logging issues. Mean-shift clustering was 

employed to distinguish typical traffic days from atypical ones by comparing daily demand curves. 

This algorithm clustered days with similar demand patterns and identified outliers, facilitating the 

detection of anomalous days. The study found other specific detector sensor errors, such as stuck 
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and false call errors. Stuck call errors occurred when a detector showed occupancy for an 

excessively long period. False call errors were detected when a sensor recorded unusually high 

vehicle counts. Also, logging gap distributions were used to examine time intervals between 

logged events, flagging potential logging failures when there were long gaps. Lastly, phase status 

logging checked for missing pairs of phase status events.  

Those studies emphasized the critical role of high-quality data in traffic signal performance 

measures and proposed methods to ensure the integrity and usability of this data. However, these 

studies are based on predefined types of anomalies, so those algorithms cannot detect undefined 

anomalies. To overcome this limitation, it is necessary to consider a methodology to find 

anomalies based on data without a predefined definition of normal data in future studies. 

3.2.1.2. Detector Configuration Mapping   

The accuracy of ATSPM, particularly on detector event data, relies heavily on the accurate 

detector configuration information. However, unreliable detector configuration information and 

the inaccuracy of detector-to-phase mappings at ATSPM data are a significant challenge. This 

issue often arises due to inconsistent management systems, including outdated infrastructure, 

unrecorded changes, or the addition of new lanes (Mahajan et al., 2020; Zarindast et al., 2024). 

Zarindast et al. (2024) identify significant variations in how different agencies maintain records of 

detector configurations. Some agencies may have centralized databases, while others might rely 

on handwritten documentation or lack electronic records altogether. This inconsistency 

complicates the process of obtaining accurate and current detector configuration. Therefore, the 

primary objective of the studies in this section is to accurately map traffic detectors to their 

respective signal phases in ATSPM data. These studies collectively underscore the importance of 

precise detector configuration and data quality for the effective use of ATSPM. 
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Zarindast et al. (2024) address the challenge by developing a data-driven approach that 

utilizes machine learning algorithms. The study aims to automate the detection and correcting of 

anomalies in detector configurations. The core of the methodology in this paper is the Occupancy 

Pattern Association (OPA) algorithm, identifying detector types by examining occupancy patterns 

and calculating skewness, with presence detectors showing negative skewness and count detectors 

exhibiting positive skewness. Phase assignment is determined by analyzing the relationship 

between detector occupancy and the beginning of green. A drop point marks the transition from 

high to low occupancy after the green phase starts. The phase most frequently associated with 

these drop points is then identified as the corresponding phase for each detector.  

Mahajan et al. (2020) aim to develop a method for mapping detectors to their respective 

phases and distinguishing between stop bar and advance detectors. The methodology begins with 

the decomposition of high-resolution data streams into individual signal cycles by identifying 

repeated signal timing patterns. Once these cycles are identified, they are clustered based on similar 

phase timing patterns, which discriminate between green and red phases. Initial detector 

assignments are made by counting vehicle departures during green and red phases under moderate 

traffic conditions, mapping detectors to phases based on the phase that results in more vehicle 

departures during green. The distinction between stop bar and advance detectors is distinguished 

by analyzing low traffic volume cycles, such as those occurring at nighttime. By examining the 

order of detector activations as a single vehicle progresses through the intersection, the study 

determines the relative positions of the detectors. Frequent sets of detector activations during low-

volume periods further aid in distinguishing detectors close to the stop bar from those located 

further away. 
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The current ATSPM systems have detectors of varying lengths at stop bars or as advanced 

detectors. Emtenan and Day (2020) investigated the impact of various detector configurations and 

lengths on the accuracy of performance measurements and signal operations. After the simulation-

based analysis, the authors noted that longer detection zones tend to overestimate split failures, 

while shorter zones may underestimate them. They also recommended that detection zones be 

configured to lengths of approximately 30 to 50 feet, with calibrated GOR thresholds to match the 

detection zone length for accurate split failure estimation. In general, setback detectors should 

ideally be placed about 5 seconds of travel time from the stop bar to balance accuracy and 

practicality in signal operations. Lastly, lane-by-lane detection provides more accurate split failure 

estimates compared to approach-based detection (Emtenan and Day, 2020). These findings 

highlight the importance of proper detector configuration in traffic signal systems to ensure 

accurate performance measurement and effective signal operations. 

Those data-driven methods and conclusions offer a practical and scalable solution for 

diagnosing and correcting detector configuration errors. These papers have in common that they 

use an empirical approach to determine the configuration of the detector based on physically 

natural phenomena rather than a random fluctuation of event data. In conclusion, those papers 

highlight the importance of an organized and standardized way of managing ATSPM data for 

operations.   
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3.2.2. Mobility Applications  

Mobility application refers to the application of ATSPM in mobility-related fields such as 

vehicle volume and delay. It is usually used to evaluate various strategies for intersections using 

the metrics provided by ATSPM or to create new metrics using raw data from ATSPM and validate 

the metrics.  

3.2.2.1. Practical Manual for Implementation 

The primary objective of ATSPM is to evaluate the performance of intersections to enhance 

traffic signal operations and management. Reviewed studies in this section provide detailed 

manuals on installation (Zhang et al., 2019), traffic signal control strategies (Dobrota et al., 2024; 

Mitrovic et al., 2023), and new metrics (Dobrota et al., 2023), aiding in the installation and 

utilization of ATSPM data. These decision-making tools and metrics enable engineers to follow 

the best practices and reduce unnecessary trial and error and redundant efforts. 

Zhang et al. (2019) introduce available performance measures and the system architecture 

of ATSPM, emphasizing the differences between traditional signal systems and the capabilities of 

ATSPM. Their study covers technical considerations for installing ATSPM, such as data review 

and decoding, firmware testing, detector channel mapping, and cybersecurity protocols. 

Dobrota et al. (2024) developed a decision-making tool to recommend appropriate traffic 

signal control strategies by incorporating factors such as corridor characteristics, operational 

objectives, agency capabilities, and constraints. Their toolbox is designed to offer comprehensive 

solutions using data that is easily accessible to most agencies, such as annual average daily traffic 

and vehicle probe data. Similarly, Mitrovic et al. (2023) developed a data-driven decision support 

tool to identify optimal intersections for deploying adaptive traffic signal control systems, using 
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ATSPM data to quantify operational attributes. The tool identifies suitable intersections for 

adaptive traffic signal control deployment, reducing the time and resources required for decision-

making. The authors claim its robustness and flexibility apply to various networks. 

Dobrota et al. (2023) introduced three new metrics to overcome the shortcomings of 

traditional performance measures. First, the queued volume in the volume-to-capacity ratio 

addresses the issue of the volume-to-capacity ratio not distinguishing between queued and free-

flowing traffic. Second, cycle utilization measures the extent of time utilization within a cycle, 

improving the green occupancy ratio by indicating how effectively the green time is utilized 

throughout the cycle. Lastly, the volume-occupancy capacity utilization, overcoming the 

limitations of the green occupancy ratio, which does not account for the actual volume of traffic 

passing through the intersection, potentially leading to misleading interpretations in scenarios 

where occupancy is high but volume is low. 

3.2.2.2. Turning Movement Estimation 

An essential aspect of managing traffic congestion in intersections involves accurately 

estimating travel demand, including turning movements. While these turning movements are 

crucial for developing effective traffic management strategies, manually collecting turning 

movement data is labor-intensive and impractical for large-scale, long-term applications. As such, 

Karapetrovic and Martin (2021) focus on improving the real-time estimation of intersection 

turning movements, incorporating network geometric data and sparse link flow detections where 

traffic flow data is collected from a limited number of monitoring points or sensors. ATSPM data 

aided in calibrating their model and achieved an r-square of 0.70 for the left turn and 0.76 for the 

right turn on average for 5-min aggregation (Karapetrovic and Martin, 2021). Xu et al. (2023) 

developed a method for estimating network-level turning movement counts using ATSPM data. 
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ATSPM data provide detector occupancy time, detector-triggered counts, and green time duration 

to estimate the turning movement. The proposed model achieves reasonable accuracy, with a 

median root mean square error of 11 vehicles per 15 minutes for left and 12 vehicles per 15 minutes 

for right-turn movements (Xu et al., 2023). These approaches enable cost-effective, region-wide 

turning movement count estimation without additional infrastructure. 

Turning movement data is also used to evaluate and optimize various traffic management 

strategies. For example, Abdelrahman et al. (2020) evaluate the safety and operational 

performance of displaced left-turn intersections. Using ATSPM data, the authors analyze 

operational characteristics such as delay and turning volumes to determine the efficiency of 

displaced left-turn intersections compared to conventional ones. Their study shows that displaced 

left-turn intersections intersections can reduce intersection delay by 3.567 seconds per vehicle for 

the same left-turn volume, albeit with some safety trade-offs (Abdelrahman et al., 2020).  

3.2.2.3. Traffic Flow or Signal Phasing Prediction 

Traffic flow prediction is a traditional task that can be used in various ways. Especially, 

accurate predictions allow for dynamic adjustment and coordination of traffic signal timings, 

reducing wait times and improving the flow of vehicles through intersections (Day and Bullock, 

2020). In addition, predictive models help route vehicles through less congested paths, thus 

reducing commuter travel time. Researchers try to predict the traffic flow at the urban network 

using ATSPM. Previous studies primarily employed machine learning and deep learning models 

to predict intersection traffic flow (Karnati et al., 2022, 2021; Kazenmayer et al., 2022; Rahman 

et al., 2022). Using ATSPM data, they estimated traffic volume from vehicle arrivals and 

departures to develop models for predicting traffic dynamics and optimizing signal timing. 

Although the performance was critically dependent on the traffic flow and study site, these models 
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effectively captured non-linear traffic patterns, highlighting the potential for improving traffic 

management and operational efficiency. 

Since cycle-level data can help identify specific times within the signal cycle when traffic 

problems occur, such as queues building up or vehicles arriving during red lights, some researchers 

advanced fixed time interval aggregation to cycle length (Day and Bullock, 2020; Mahmoud et al., 

2021). For example, Day and Bullock (2020) focused on optimizing traffic signal offsets with 

predicted cycle-level characteristics. They generated detailed cyclic flow profiles with ATSPM to 

predict changes in traffic flows resulting from trial offset adjustments. Their method proved 

successful in approximately 95% of cases, demonstrating that high traffic volumes and precise 

green time distribution derived from ATSPM data significantly improve traffic signal coordination. 

Signal phasing and timing prediction are other prediction targets in the ATSPM data, as 

they enable dilemma zone warnings to be provided and optimize route planning. To this end, 

previous studies merged GPS information from multiple vehicles with signal timing data (Islam et 

al., 2024, 2022). Key features, such as waiting time, approach speed, and acceleration, were 

extracted based on geolocation data. These features were then used to train a long short-term 

memory (LSTM) model capable of predicting cycle lengths and phase durations up to six cycles 

in advance. The authors indicated that the LSTM model could predict cycle lengths with a mean 

absolute error of approximately 7 seconds and phase durations with an MAE of about 9 seconds.   
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3.2.2.4. Intersection Prioritization and Classification 

ATSPM data has also been instrumental in ranking intersections for improvement or 

intervention. Studies have developed scoring methods and performance metrics to evaluate various 

aspects, including safety, capacity, progression, communication, and detection aspects (Day et al., 

2018; B. Wang et al., 2022). Day et al. (2018) focus on evaluating corridor performance at the 

system level by using ATSPM data to develop subscores for communication, detection, safety, 

capacity allocation, and progression across eight signalized corridors in Indiana. Their findings 

indicate that maintenance issues significantly impact the overall performance of traffic signal 

systems, and the developed methodology provides a simplified metric for evaluating corridor 

performance, highlighting severe deficiencies in any operational aspect. 

Mahajan et al. (2019) and Wang et al. (2022) aim to develop a workflow for automatically 

scoring and ranking intersections based on performance, using ATSPM data to compute measures 

of effectiveness such as split failures, arrivals on red, arrivals on green, and traffic volume. 

Clustering and classification techniques identify patterns and bottlenecks in the traffic network, 

enabling proactive traffic signal management by categorizing intersections into clusters needing 

timing adjustments or detector error fixes (Mahajan et al., 2019; B. Wang et al., 2022). 

Bassett et al. (2023) aim to develop an automated method for flagging intersection 

approaches needing left-turn phasing changes based on gaps in opposing through traffic, using 

ATSPM data to validate the gap analysis tool. The method identifies left-turn approaches that 

require phasing changes, utilizing validated ATSPM data to provide reliable insights and improve 

efficiency in responding to left-turn complaints (Bassett et al., 2023).  
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3.2.2.5. Data Integration with Other Data Sources 

Several studies have explored and validated vehicle trajectory from alternative data sources 

to enhance and replicate ATSPMs. Crowdsourced probe vehicle data have demonstrated the 

potential to offer cost-effective and scalable solutions for traffic signal performance measurement 

(Emtenan and Day, 2022; Gayen et al., 2023; Saldivar-Carranza et al., 2021, 2024, 2023; Waddell 

et al., 2020a). Through comparative analysis, vehicle trajectory data were aggregated to evaluate 

metrics such as delay, percent arrivals on green, number of stops, and volume-to-capacity ratio. 

Table 3-4 compares metrics from ATSPM and probe vehicle data with their market penetration 

rates and aggregation intervals, as presented in the literature.  

Probe vehicle data has determined split failure by assessing whether a vehicle stops at least 

twice before crossing an intersection (Gayen et al., 2023; Saldivar-Carranza et al., 2021, 2023). 

Another metric probe vehicle data supplement the ATSPM is the downstream blockage, defined 

as when a queue at the downstream intersection obstructs the progression of vehicles. The results 

indicate that probe vehicle data can effectively replicate ATSPMs and provide scalable, cost-

effective solutions for nationwide implementation.  

Furthermore, probe data has been utilized to estimate various metrics, such as travel times 

(Sengupta et al., 2023), arrival time (Waddell et al., 2020b), and shockwave speeds (Zhang et al., 

2023), which cannot be obtained from ATSPM. Sengupta et al. (2023) focus on estimating arterial 

travel time distributions from ATSPM data. They developed a model that learns simulated probe 

trajectories from ATSPM data to estimate travel time distributions. The authors claim that their 

simulation study gave them a reasonable estimate of the travel time distribution using only ATSPM 

data (Sengupta et al., 2023). Similarly, Waddell et al., 2020b studied obtaining arrival times of 

vehicles at intersections from probe vehicle data. The study found that using low ping frequency 
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data can achieve 77% of the benefits of high-resolution data in optimizing signal offsets (Waddell 

et al., 2020b). 

Table 3-4. Compared performance metrics from ATSPM and probe vehicle data  

Metric Source 
Waddell et 

al., 2020a 

Saldivar-

Carranza 

et al., 2021 

Tahsin 

Emtenan 

and Day, 

2022 

Gayen et 

al., 2023 

Saldivar-

Carranza 

et al., 2023 

Saldivar-

Carranza 

et al., 2024 

Average 

delay 

ATSPM 

and 

Probe 

vehicle 

O O O    

Percent of 

arrival on 

green 

O O O  O  

Volume-to-

capacity 

ratio 

  O    

Percent of 

green 

duration 

  O    

Split failure  O  O O O 

Downstream 

blockage Probe 

vehicle 

 O   O  

Number of 

stops 
O O  O O O 

Market penetration 

rate 
0.02-0.04% 2% - 5%. 2.7% 4.5% 

Aggregation interval 1-5min 15 min 5-20min 4 cycles 15min 15min 

 

Vehicle trajectory data from CCTV data differs from probe vehicle data in that it can 

capture the trajectory of all vehicles, although its range is limited to specific intersections. CCTV 

can complement and validate the data provided by ATSPMs, yet surprisingly, little research has 

been conducted on this topic. One study attempted to augment ATSPM data by converting stop 
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bar sensors into advanced detection events using trajectories from CCTV data (Zhang et al., 2023). 

The motivation behind this was the absence of advanced detectors in most ATSPM systems. The 

study reconstructed vehicle trajectories from stop bar detectors using a traffic flow model, enabling 

the derivation of speed, occupancy, and shockwave speeds.  

The review of those papers reveals that probe vehicle data were limited in their ability to 

utilize real-time information and the types of metrics that could be employed. In addition, probe 

vehicle-driven metrics should be carefully addressed since they are unreliable for generalizable 

use when the transmission frequency and market penetration rate are low. Therefore, unique 

metrics provided by ATSPMs, such as exact vehicle volume, signal phase and timing, shockwave 

speed, and queue length, could be unique metrics obtained from ATSPMs. This review highlights 

that the reliability of metrics provided by ATSPM data is largely unexplored. Validating them with 

high-precision sources such as CCTV or LiDAR and analyzing the situations in which they are 

prone to significant errors will help ensure the proper utilization of the information provided by 

ATSPM. 

3.2.2.6. Pedestrian Activity Estimation 

ATSPM records the activation times and locations of pedestrian push buttons, allowing 

researchers to infer pedestrian or bicycle volumes. Typically, pedestrians press push buttons only 

once, even when multiple individuals are waiting, necessitating additional data for accurate 

pedestrian counts. Previous study estimated crossing volumes by comparing ATSPM data with 

observed counts from video recordings (Singleton and Runa, 2021). The study found a strong 

correlation (0.84) between model-predicted and observed volumes, with a notably low mean 

absolute error of 3 persons per hour, demonstrating the efficacy of using traffic signal data for 
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pedestrian monitoring. The accuracy remained consistent even during the COVID-19 pandemic, 

confirming the robustness of the framework (Runa and Singleton, 2023). 

Estimated pedestrian volumes have been used to track pedestrian activity. One study 

assessed the impact of weather on pedestrian signal activity (Runa and Singleton, 2021), while 

another tracked pedestrian activity during the COVID-19 pandemic (Park et al., 2023; Singleton 

et al., 2023). Additionally, a study explored the relationship between the pedestrian crossing 

volumes and the built environment (Singleton et al., 2021) or split failure (Runa et al., 2024).  

ATSPM also records the time when the push button and pedestrian signal are actuated, 

enabling the estimation of pedestrian delay (Karimpour et al., 2022). Karimpour et al., 2022 

estimate pedestrian delay at signalized intersections using video-based sensors at four major 

signalized intersections to obtain actual delay. By combining traffic flow and pedestrian activity, 

they accurately captured fluctuations in average pedestrian delay, with mean absolute errors of 10 

to 13 seconds, outperforming conventional methods. 

3.2.2.7. Traffic Signal Priority Control 

Signal priority systems can dynamically adjust signal timing to prioritize specific vehicle 

types, a notable advantage offered by ATSPM systems. This system involves extending the green 

phase or shortening the red phase to reduce delays for the prioritized vehicle. Although some 

research has focused on prioritizing freight or snowplows (Lau et al., 2024; Talukder et al., 2022), 

most studies using ATSPM data have investigated transit signal priority systems. For example, 

field studies have assessed the performance of transit signal priority systems at signalized 

intersections without modifying the intersection (Jackson et al., 2023; Leonard et al., 2019). In 

these studies, V2I communication connected transit buses to traffic signals to request priority, 

evaluating the system’s performance. Similarly, Cvijovic et al. (2022) evaluated algorithms for 
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connected vehicle-based transit signal priority for regular buses and bus rapid transit (BRT) 

systems. Using ATSPM data to calibrate traffic conditions and simulate a real-world network, the 

study found that TSP resulted in significant delay reductions for both regular buses and BRT, with 

delays decreasing by 33% and 12%, respectively (Cvijovic et al., 2022). 

Since the rate of TSP requests being served was initially lower without any modification, 

several studies have developed different strategies to increase the effectiveness of the transit signal 

priority system by adjusting the intersection (Sheffield et al., 2021; Wang et al., 2020). Wang et 

al., 2020 investigated the performance of the transit signal priority system before and after signal 

retiming data, demonstrating an increase in the transit signal priority served rate from 33.12% to 

35.29% after retiming. Sheffield et al. (2021) approached the issue of low-served TSP requests by 

examining the sensitivity of different transit signal priority request thresholds on bus performance 

and traffic flow. Utilizing ATSPM data to measure split failures and green time changes when 

transit signal priority was granted, the study concluded that lower request thresholds significantly 

improved bus performance with a minor impact on general traffic. 

While transit signal priority has been proven effective in various studies, several issues 

remain. Although transit signal priority implementation improved travel time reliability and 

reduced delays at intersections, buses often traveled too fast for the system to register their requests 

((Jackson et al., 2023). Those observations indicate a need for increased ping frequency or 

extended detection zones, which increase operational costs. In addition, Jackson et al., 2023 found 

that buses equipped with signal priority improved their schedule adherence by 2% to 6%, which 

may be considered minor in less transit-oriented cities. Therefore, the cost-effectiveness of the 

transit signal priority system needs further evaluation, given the infrastructure and communication 

system costs it requires. Additionally, a balanced assessment should consider the overall traffic 
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impact of prioritizing transit buses. Evaluating appropriate preemption strategies for emergency 

vehicles, such as police cars and ambulances, is also necessary. 
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3.2.2.8. Simulation Studies 

Combined with simulation, ATSPM provided the data needed to conduct various studies, 

including signal time and trajectory optimization. Those studies used ATSPM to calibrate the 

simulator to replicate real-world intersections, enabling experiments that would otherwise be 

impossible or expensive to conduct in a field study. 

Signal time optimization aims to reduce the delay, crash, and fuel consumption of the 

intersection. Most studies have tried to optimize their timing, maintaining the order of phase 

unchanged (Alshayeb et al., 2023; Parks-Young and Sharon, 2022; Wang et al., 2021). Wang et al. 

(2021) proposed an adaptive traffic signal control system using connected vehicle data, where 

ATSPM data were employed to assign optimal green times and design dynamic progression plans 

for critical paths. Their system reduced average delay by 15.67% and 13.81% compared to fixed 

coordination and adaptive signal control systems, respectively. Similarly, Parks-Young and 

Sharon (2022) use actuated and adaptive signal controllers to manage mixed traffic of autonomous 

and human-operated vehicles. ATSPM data facilitated the development and testing of algorithms 

for computing safe signal timing bounds. Alshayeb et al. (2023) sought to optimize signal timing 

to reduce fuel consumption at signalized intersections. The study employed ATSPM data alongside 

traffic microsimulation and a stochastic genetic algorithm. The optimized signal timing resulted in 

an 8-12% reduction in fuel consumption under moderate conditions and up to 14% with a higher 

presence of heavy vehicles without significantly impacting traffic mobility. 

In another study, Wang et al. (2022) focused on optimizing the trajectories of connected 

automated vehicles (CAVs) along signalized arterials to minimize delays and lane-changing 

related costs under mixed traffic conditions. The researchers utilized ATSPM data to develop a 

two-stage optimization model for real-time trajectory planning. The model significantly reduced 
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stop delays for both CAVs and human-driven vehicles, especially under a high market penetration 

rate scenario (Wang et al., 2022). 

Urban networks with many signalized intersections have complex traffic patterns, 

including varying vehicle flows and signal timings. Without calibration, the model may not reflect 

these intricacies accurately, leading to unreliable results (Ahmad et al., 2023; Tariq et al., 2021). 

ATSPM data provided detailed information for calibrating simulation tools. Tariq et al. (2021) 

aimed to improve the calibration of signalized arterial simulation models using high-resolution 

signal controller data in conjunction with a multi-objective optimization technique. ATSPM data 

calibrated parameters such as split utilization ratio, green utilization ratio, arrival on green, and 

travel time. Ahmad et al. (2023) evaluated traffic operation conditions during wildfire evacuations 

using connected vehicle data. The study utilized ATSPM data to replicate signal phasing and 

overall traffic conditions during evacuation. 
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3.2.3. Safety Applications 

The application of ATSPM is a transformative approach in improving traffic safety, 

particularly by addressing issues such as red-light running (RLR), red-light crossing (RLC), 

dilemma zones, crash risk and conflict prediction, injury severity prediction, and vehicle and 

pedestrian exposure estimation. ATSPM enables real-time monitoring and adjustment of traffic 

signals, reducing RLR and RLC incidents and mitigating dilemma zones where drivers are 

uncertain whether to stop or proceed during a yellow light. By analyzing detailed traffic data, 

ATSPM enables accurate predictions of crash risk, conflict, and injury severity, facilitating 

proactive measures to prevent crashes and mitigate their impact. Additionally, ATSPM assesses 

vehicle and pedestrian exposure at intersections, providing insights to optimize signal timing and 

enhance safety measures for all road users. This section will delve into the specific applications of 

ATSPM in each of these areas, illustrating the significant improvements in traffic safety through 

this technology. 

3.2.3.1. Detection of Red Light Running and Crossing and Dilemma Zone 

Red light running (RLR) poses significant safety risks at intersections due to the severe 

nature of RLR-related crashes. According to a report by the Indiana DOT, RLR can be detected if 

the red phase and stop bar detector on-off events overlap. This overlap indicates that a vehicle 

entered and exited the stop bar during the red light. Figure 3-5 illustrates this detection logic, 

showing two detector on-off traces alongside the concurrent phase state. The upper graph depicts 

a detector presence trace with an off-on transition after the start of red and an on-off transition 

shortly after, suggesting a likely RLR incident. In contrast, the lower graph shows an off-on 

transition before the start of red, likely representing a vehicle entering during the yellow phase, 

which is excluded from RLR detection. 
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Figure 3-5. Conceptual overview of RLR detection using loop detector and phase event 

data (Indiana DOT, 2015) 

The application of ATSPM is essential in addressing RLR behavior at signalized 

intersections, a significant cause of intersection-related crashes. Utilizing high-resolution event-

based data, ATSPM systems provide detailed performance metrics, signal phasing and timing 

(SPaT), and traffic data, enabling precise analysis and intervention. The study conducted by 

Karimpour et al. (2023) used ATSPM data to develop finite mixture models to estimate RLR 

behavior across multiple intersections in Arizona. Key factors influencing RLR were identified, 

including traffic flow, intersection delay, number of approach lanes, and cycle length. It was found 

that increased traffic flow, intersection delay, and number of lanes elevated the likelihood of RLR, 

while longer cycle lengths reduced it. The study’s proposed method outperformed conventional 

models like the Poisson Generalized Linear Model (PGLM) and the Zero-Inflation Poisson 
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Regression Model (ZIPM) in accuracy and model fit. This method allows for proactive 

identification and mitigation of high-risk intersections, significantly contributing to traffic safety 

by reducing the frequency and severity of RLR incidents.  

Zhang et al. (2021) demonstrated the effectiveness of using pose estimation and machine 

learning models in predicting pedestrian red-light crossing (RLC) intentions at signalized 

intersections, a crucial aspect of traffic safety. By leveraging CCTV video data and Automated 

Traffic Signal Performance Measures (ATSPM), the researchers extracted key pedestrian variables 

such as joint angles, walking speed, waiting time, and green time of vehicle signals. The Random 

Forest (RF) model achieved the best performance, with a recall value of 0.757 and an AUC value 

of 0.849 for predicting RLCs, highlighting the significance of factors like walking speed and joint 

angles. This approach can be integrated into Infrastructure-to-Vehicle (I2V) applications to 

proactively warn drivers of potential pedestrian RLCs, thereby enhancing intersection safety. The 

study underscores the potential of combining ATSPM data with advanced computer vision and 

machine learning techniques to improve traffic safety outcomes and reduce pedestrian-related 

incidents at signalized intersections. 

The dilemma zone is a critical area at signalized intersections where drivers face 

uncertainty about whether to stop or proceed when the light turns yellow, often resulting in abrupt 

stops or speeding through the intersection, leading to potential crashes. The study by (Li et al., 

2020) highlights the critical role of ATSPM and connected vehicle (CV) technology in mitigating 

dilemma zone issues at signalized intersections, particularly for heavy vehicles, which have a 

higher risk due to longer stopping distances and braking performance differences. By leveraging 

position data from CVs and map-matching them to virtual waypoints, the researchers proposed 

triggering force gap out (FGO) before a vehicle enters the dilemma zone. ATSPM data recorded 
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the onset of yellow times and phase terminations, assessing vehicle positions relative to the 

dilemma zone. Combining CV technology with ATSPM data to trigger FGO reduced dilemma 

zone incursions by 34% in field tests, demonstrating the effectiveness of this integrated approach 

in enhancing the detection and mitigation of dilemma zones, thereby promoting safer intersection 

management. 

3.2.3.2. Real-Time Crash Risk and Conflict Prediction at Intersection  

Real-time crash risk prediction at intersections is a critical application of ATSPM, aiming 

to predict the likelihood of crashes (i.e., occurrence and non-occurrence of crashes) in real-time 

and take proactive measures to prevent them. (Yuan et al., 2019) employed a Long Short-Term 

Memory Recurrent Neural Network (LSTM-RNN) algorithm to address this challenge, leveraging 

real-time traffic data collected from traffic detectors through ATSPM. The study utilized the 

Synthetic Minority Over-sampling Technique (SMOTE) to balance the dataset, which is crucial 

given the rarity of crash events compared to non-crash events. By analyzing detailed traffic 

patterns, signal timing, and vehicle movements at 44 intersections in Oviedo, Florida, the LSTM-

RNN algorithm demonstrated superior performance in predicting crash risks compared to 

traditional conditional logistic models. The model achieved a higher sensitivity and a lower false 

alarm rate, highlighting its potential for practical deployment in traffic management systems to 

enhance intersection safety. 

Further enhancing the capabilities of ATSPM, (Yuan et al., 2021) developed a model for 

real-time cycle-level crash risk at signalized intersections based on high-resolution event-based 

data. Unlike previous studies that used fixed time intervals, this research focused on signal cycles, 

aligning with the cyclical nature of intersection traffic flow. Key factors identified included traffic 

volume, signal timing, headway and occupancy, traffic variation, shockwave characteristics, and 
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weather. Using undersampling strategies and developing conditional logistic and binary logistic 

models, the study focused on predicting crash risk based on these factors. The results indicated 

that higher cycle volume, arrivals on yellow, and traffic volatility significantly increased the odds 

of crash occurrence. This study demonstrated that leveraging high-resolution ATSPM data for 

cycle-level crash risk prediction offers a more accurate and responsive approach to real-time traffic 

safety management, providing critical insights for mitigating crash risks at signalized intersections. 

In addition, (Gong et al., 2020) applied ATSPM data in a multi-objective reinforcement 

learning framework to enhance adaptive traffic signal control (ATSC) systems for improving 

intersection safety. This approach utilized high-resolution ATSPM data to dynamically adjust 

signal timings based on real-time traffic conditions and crash risk predictions. The reinforcement 

learning model, trained on simulated traffic data, optimized both traffic efficiency and safety 

metrics. The results showed significant improvements over traditional ATSC methods, 

demonstrating the potential of integrating ATSPM with advanced machine learning techniques to 

proactively manage traffic and reduce crash risks at intersections. This innovative application 

underlines the versatility and effectiveness of ATSPM in addressing various aspects of traffic 

safety through real-time data analysis and adaptive signal control strategies. 

Conflict prediction, distinct from crash risk prediction, focuses on identifying potential 

conflicts between road users before they escalate into crashes. Zhang and Abdel-Aty (2022) 

developed a real-time pedestrian conflict prediction model using high-resolution ATSPM data and 

CCTV footage to derive conflict indicators like Post Encroachment Time (PET) and Time to 

Collision (TTC). The study utilized multiple machine learning models, with eXtreme Gradient 

Boosting (XGBoost) demonstrating the best performance, achieving an AUC value of 0.841 and a 

recall value of 0.739. The model predicted pedestrian conflicts at the signal cycle level, using 
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variables such as vehicle counts, green time, and pedestrian phase counts as surrogate measures 

for pedestrian exposure. The ability to predict conflicts one cycle ahead allows for timely 

adjustments to signal timing and proactive warnings to drivers, significantly enhancing 

intersection safety. This approach underscores the potential of integrating high-resolution ATSPM 

data with advanced machine learning techniques to improve real-time traffic safety management. 

3.2.3.3. Injury Severity Estimation 

Leveraging ATSPM significantly enhances the prediction of injury severity at intersections 

by utilizing real-time, high-resolution event-based detection records and crash data. (Kidando et 

al., 2021) applied ATSPM to analyze three years of data (2017-2019) from arterial highways in 

Tallahassee, Florida. By integrating ATSPM, the study collected detailed traffic flow and signal 

timing data, providing an accurate representation of traffic conditions leading up to crashes. The 

research employed Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) classifiers to 

identify critical factors influencing injury severity, such as the manner of collision, traffic volumes, 

signal timing, and arrival on red volumes. The XGBoost model outperformed the RF model, 

highlighting the effectiveness of ATSPM in improving prediction accuracy.  

Further analysis by (Kidando et al., 2022) explored the influence of real-time traffic events 

and signal-based variables on injury severity, incorporating Bayesian inference methods to 

estimate model parameters. The study identified that approach delay and platoon ratio, derived 

from ATSPM data, significantly influenced injury severity. The logistic model with a heavy-tailed 

distribution random effect was found to be the best fit, highlighting the necessity of accounting for 

site-specific variations. Key factors such as the manner of collision, occupant seat position, number 

of vehicles involved, gender, age, lighting condition, and day of the week were also significant 

predictors. The study’s findings provide valuable insights for transportation agencies to develop 
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countermeasures proactively, demonstrating the critical role of ATSPM in enhancing the precision 

and effectiveness of injury severity prediction at signalized intersections. 

3.2.3.4. Vehicle and Pedestrian Exposure Estimation  

The estimation of vehicle and pedestrian exposure at intersections is crucial for 

understanding and improving traffic safety. ATSPM play a pivotal role in this context by providing 

high-resolution data on traffic flow and signal operations. (Lee et al., 2019) utilized ATSPM data 

to analyze pedestrian crashes in suburban areas with low pedestrian activities. The study collected 

data from 219 intersections in Seminole County, Central Florida, including pedestrian calls and 

pedestrian logs from ATSPM systems. By calculating average daily pedestrian phases requested 

(ADPR) and average pedestrian phases provided (ADPP), the researchers were able to estimate 

pedestrian exposure more accurately. The study employed a Bayesian random-parameter Poisson-

lognormal model to evaluate the safety-in-numbers (SIN) effect, which suggests that as pedestrian 

numbers increase, their crash rates decrease. The findings indicated that intersections with higher 

pedestrian activity exhibited the SIN effect, highlighting the importance of accurate exposure 

estimation in enhancing pedestrian safety. 

(Mahmoud et al., 2021) further demonstrated the utility of ATSPM in estimating pedestrian 

and bicycle exposure by integrating it with crowdsourced data (Strava), CCTV footage, crash data, 

and various contextual factors such as land use and socio-demographic characteristics. The study 

employed multiple statistical and machine learning models, determining that the eXtreme Gradient 

Boosting (XGBoost) model offered the best performance. This model was then applied to estimate 

exposure at intersections and along roadway segments, which was crucial for developing Safety 

Performance Functions (SPFs). The integration of these diverse data sources with ATSPM enabled 

a comprehensive assessment of exposure, identifying significant hotspots for pedestrian and 
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bicycle crashes, particularly in urban areas with high activity levels. This research highlights the 

effectiveness of combining ATSPM with advanced analytical techniques and diverse data sources, 

providing transportation agencies with robust tools to enhance the safety of vulnerable road users. 

 

3.2.4. Summary of Literature Review 

Recent research on ATSPM highlights their significant impact on mobility and safety 

applications. ATSPM data is utilized to optimize traffic signal timing, reduce congestion, and 

enhance traffic flow through advanced machine learning models to predict traffic volumes and 

turning movements. Specific use cases include assessing pedestrian delays, transit signal priority, 

and evaluating detector configurations. Intersection prioritization leverages ATSPM data for 

scoring and ranking, employing data-driven techniques and expert input. Validation efforts explore 

alternative data sources, such as probe vehicle data, to enhance ATSPM’s scalability and 

effectiveness. Addressing data anomalies is critical, with research focusing on improving data 

quality through machine learning. Safety applications include detecting red light running, 

predicting pedestrian conflicts, and modeling static or real-time crash risks, emphasizing high-

resolution data’s role in enhancing predictive accuracy and traffic safety management. Future 

research should aim to standardize methods across diverse detector configurations and expand 

datasets with safety features such as approaching vehicle’s headway and surrogate safety measures 

for comprehensive traffic safety improvements. 
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3.3. Best Practices for Operational Countermeasures at Intersections 

This research proposes improvements in traffic signalization based on Automated Traffic 

Signal Performance Measures (ATSPM). An essential step involves reviewing established 

practices as recommended in technical manuals. This section outlines key aspects underscored in 

the existing manuals and suggests enhancements. The review primarily focuses on six strategic 

implementations: 

a) No Right Turn on Red 

b) Leading Pedestrian Interval (LPI) 

c) Protected and Permitted Left turn 

d) Yellow time adjustment 

e) Red time adjustment 

f) Pedestrian recall 

Relevant manuals such as the FDOT Design Manual (FDM), Federal Highway 

Administration Signalized Intersections Informational Guide (FHWA SIIG), Highway Capacity 

Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), and Traffic Engineering 

Manual (TEM) were reviewed, specifically their latest versions. This review concentrates on 

actionable insights from ATSPM’s traffic signal and detector event data, focusing on the existence 

of clear criteria to implement. Detailed explanations and excerpts are presented in APPENDIX. 
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3.3.1. Traffic Signal Strategies  

3.3.1.1. No Right Turn on Red (RTOR) 

Table 3-5 shows that different traffic manuals provide varied guidance on RTOR.  

Table 3-5. Summary of Best Practices for NRTR 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 

 No RTOR when sight distance is insufficient for safe maneuvering. 

 Restrict RTOR at intersections where vehicles may unexpectedly conflict with 

other road users, including pedestrians and cyclists. 

 No RTOR during exclusive pedestrian phases to protect pedestrians. 

FHWA 

SIIG 

(2013) 

 No RTOR is suggested where sight distance is inadequate for safe turning 

movements, which can lead to crashes. 

 RTOR is commonly restricted at intersections with high pedestrian traffic to avoid 

pedestrian-vehicle conflicts. 

 Certain vehicles like school buses are prohibited from turning right on red for 

safety reasons. 

HCM 

(2022) 

 Consider RTOR where right turns are critical to intersection operations.  

 Evaluate lane allocation to determine if prohibiting RTOR would benefit traffic 

flow and safety. 

 Factors such as right-turn flow rate, sight distance, and conflicting movements 

should be considered to determine the feasibility of RTOR. 

 Analyze the volume-to-capacity ratio for conflicting movements to assess whether 

prohibiting RTOR would reduce congestion or improve safety. 

FDM 

(2023) 

 RTOR is prohibited in the intersection bicycle box and two-stage bicycle turn box. 

 No right turn signs are required at specific intersections, including diverging 

diamond intersections 

TEM 

(2024) 

 Use static or dynamic “No Turn On Red” sign to prohibit turns on red. 

 Display dynamic signs during the LPI interval and the preceding yellow and red 

intervals. 
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The MUTCD emphasizes safety, recommending No RTOR where sight distance is limited 

or conflicts with pedestrians/cyclists are likely during exclusive pedestrian phases. FHWA SIIG 

echoes these concerns, suggesting NRTR restrictions where sight distance is inadequate or 

pedestrian traffic is high and for specific vehicles like school buses. In contrast, the HCM takes a 

more operational approach, advocating for careful evaluation of RTOR based on factors like lane 

allocation, right-turn flow rate, sight distance, and conflicting movements. The FDM focuses on 

specific scenarios, prohibiting RTOR in bicycle boxes and certain intersections. Lastly, the TEM 

provides practical guidance on using static or dynamic “No Turn On Red' signs to effectively 

implement these restrictions. While safety remains a common concern, the manuals differ in their 

emphasis on operational considerations and the level of detail in their recommendations. 

 

3.3.1.2. Leading Pedestrian Interval 

Leading Pedestrian Interval (LPI) implementation guidance varies across traffic signal 

manuals, as shown in Table 3-6. The MUTCD recommends LPIs at intersections with high 

pedestrian and conflicting turning vehicle volumes, advising a minimum 3-second duration to 

ensure pedestrians cross at least one lane. The FHWA SIIG similarly recommends LPIs, where 

pedestrian traffic is moderate to heavy, or pedestrian-vehicle interactions are frequent. The HCM 

provides broader guidance on timing walk intervals but lacks specific LPI criteria. The FDM does 

not mention LPIs. Lastly, the TEM offers a comprehensive approach, suggesting LPI reviews 

based on sight distance, geometry, and signal timing while providing maximum durations (10 

seconds for actuated, 7 seconds for automatic recall) and suggesting a 3-second duration for busy 

intersections. The TEM also includes a formula to calculate LPI duration based on various factors. 
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Overall, while the manuals generally agree on the benefits of LPIs, they differ in the specificity of 

their recommendations and the factors considered for implementation. 

Table 3-6. Summary of Best Practices for LPI 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 

 Consider LPI at intersections with high pedestrian and conflicting turning vehicle 

volumes. 

 Use at least 3 seconds of LPI to allow pedestrians to begin crossing and establish 

their presence in the crosswalk, ensuring they cross at least one traffic lane. 

FHWA 

SIIG 

(2013) 

 LPI are recommended where there is moderate to heavy pedestrian traffic to 

enhance pedestrian safety by allowing them to start crossing before vehicles get a 

green signal. 

 LPIs are encouraged in areas with frequent pedestrian-vehicle interactions to 

reduce conflicts and improve pedestrian safety. 

HCM 

(2022) 

 The manual describes how walk intervals should be timed with traffic signals, 

including leading pedestrian intervals, but does not specify exact criteria for their 

implementation. 

FDM 

(2023) 
 There is no specific mention of LPI or related strategies. 

TEM 

(2024) 

 Reviewed LPI implementation based on sight distance concerns, geometric 

updates, and suitability for exclusive pedestrian phases or concurrent but protected 

signal timing. 

 Maximum LPI duration is 10 seconds for actuated pedestrian phase and 7 seconds 

for automatic pedestrian recall. 

 Suggest a 3-second LPI duration for intersections operating close to capacity to 

balance pedestrian safety with traffic flow efficiency. 

 The manual also includes a formula (Formula 3.11.5.2-1) to calculate LPI duration 

based on crosswalk width, detector location, walking speed, and start-up lost time. 
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3.3.1.3. Protected or Permitted Left Turn 

Table 3-7 shows the guidance for protected or permitted left turns is more precise than 

other implementations using various factors and thresholds. While the MUTCD lacks specific 

mention of these turn types, the FHWA SIIG provides comprehensive criteria for protected-

permissive phasing, recommending it based on left-turn volume, the number of opposing lanes, 

opposing traffic speed, crash history, sight distance, road layout, opposing left-turn signals, and 

engineering studies. The HCM primarily focuses on volume thresholds, suggesting protected 

operation when the left-turn volume is high or combined with opposing through volume. The FDM 

outlines implementation details, such as using flashing yellow arrows for single-turn lanes and 

separate signals for dual lanes and discusses split phasing options. The TEM allows both leading 

and lagging protected/permissive left turns, favoring lagging, and permits concurrent LPIs except 

with flashing yellow arrows. While the manuals generally acknowledge the importance of 

protected and permitted left turns, their recommendations differ in their specificity and the factors 

considered for implementation, ranging from volume-based thresholds to broader considerations 

like safety and traffic flow. 
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Table 3-7. Summary of Best Practices for Protected or Permitted Left Turn 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 
 There is no specific mention of protected or permitted left turn  

FHWA 

SIIG 

(2013) 

 Protected-permissive left-turn phasing is recommended if a minimum of 2 left-

turning vehicles per cycle is observed. 

 This phasing is suggested when left turns cross three or more opposing lanes. 

 It is advised for situations where opposing traffic speeds exceed 45 mph. 

 A minimum of five left-turn collisions within a 12-month period suggests the need 

for protected/permissive phasing. 

 When sight distances are below the minimum requirements, this phasing should 

be considered. 

 Implement protected/permissive phasing in areas with atypical road layouts. 

 If the opposing left-turn approach has a left-turn signal, use protected/permissive 

phasing. 

 Any engineering study indicating the necessity for protected/permissive phasing 

should be followed. 

HCM 

(2022) 

 Protected operation is assumed when the left-turn volume reaches or exceeds 240 

vehicles per hour. 

 The product of left-turn volume and opposing through volume must exceed certain 

thresholds based on the number of opposing lanes. The thresholds are 50,000 for 

one opposing lane, 90,000 for two lanes, and 110,000 for three or more lanes. 

These thresholds ensure that the intersection can handle the traffic flow efficiently. 

 If there is more than one left-turn lane on the approach, protected phasing is 

recommended. 

FDM 

(2023) 

 Both protected or permissive phasing with flashing yellow arrow signal are 

available at single turn lane. 

 Only protected phasing implemented with a separate signal head at dual turn lanes.  

 Split phasing based on offset opposing approaches, heavy left-turn volumes, or 

left turns from multiple lanes. 
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TEM 

(2024) 

 Both leading and lagging protected/permissive left turns are allowed, with lagging 

preferred. 

 LPIs can be implemented concurrently with protected/permissive left turns, except 

when using flashing yellow arrow (FYA) signal heads, which prohibit permissive 

left turns during the LPI for safety. 

 

3.3.1.4. Yellow Time Adjustment 

The MUTCD recommends that the duration of yellow time should be determined by 

engineering practice, particularly referring to the ITE’s Handbook. It suggests a yellow change 

interval between 3 to 6 seconds, with a longer interval for approaches with higher speeds. The 

FHWA SIIG supports a similar interval range, with a commonly employed maximum of 5 seconds. 

It also suggests that local practices, including ITE’s standards, should dictate the length of the 

interval and recommend modifications in scenarios with high numbers of collisions and red-light 

violations. The HCM reiterates the 3 to 6 seconds interval, emphasizing longer durations for higher 

speed approaches. The FDM mandates that signal timings for the yellow change must align with 

the TEM. The TEM specifies a yellow change interval between 3 to 6 seconds, using the ITE 

formula for calculations. Table 3-8 summarizes the best practices for yellow time adjustment as 

presented in each manual. 
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Table 3-8. Summary of Best Practices for Yellow Time Adjustment 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 

 Duration of yellow time to be determined by engineering practice: ITE’s 

Handbook.  

 Yellow change interval between 3 and maximum 6 sec.  

 Longer interval for approaches with higher speeds 

FHWA 

SIIG 

(2013) 

 Yellow change interval between 3 and maximum 6 sec. 

 A maximum of 5 seconds is commonly employed. 

 Longer interval for approaches with higher speeds. 

 Local practice dictates the length of interval, including ITE’s standard. 

 Modifying the yellow may be considered where: high number of angle/left turn 

and rear-end collisions, and high number of red-light violations. 

HCM 

(2022) 

 Yellow change interval between 3 and maximum 6 sec.  

 Longer interval for approaches with higher speeds 

FDM 

(2023) 
 Signal timings for the yellow change must be in accordance with the TEM. 

TEM 

(2024) 

 Yellow change interval between 3 and maximum 6 sec.  

 To calculate the yellow change interval, the formula from the ITE is to be used. 

 

3.3.1.5. Red Time Adjustment 

The MUTCD advises determining the red clearance interval duration using engineering 

practice from the ITE’s Handbook, allowing for extension if a vehicle is predicted to violate red, 

with a maximum of 6 seconds. The FHWA SIIG typically sets the interval by local policy or 

calculation, recommending increases for wider intersections and adjustments for high collision and 

red-light violation areas. The HCM specifies a red clearance interval of 1 or 2 seconds. The FDM 

mandates alignment with the TEM, which specifies an interval between 2 and 6 seconds, calculated 
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using the ITE formula, with longer durations for complex intersections or those with safety 

concerns. Table 3-9 summarizes these best practices for red time adjustment. 

 

Table 3-9. Summary of Best Practices for Red Time Adjustment 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 

 Duration of red clearance interval time to be determined by engineering practice: 

ITE’s Handbook  

 Red clearance interval may be extended from its predetermined value if a vehicle 

is predicted to violate red. 

 Interval should have a duration not exceeding 6 seconds, with exception. 

FHWA 

SIIG 

(2013) 

 Red clearance interval is typically either set by local policy or calculated using an 

equation. 

 Interval should be increased as intersections are widened. 

 Modifying the red clearance interval may be considered where: high number of 

angle/left turn and rear-end collisions, and high number of red-light violations. 

HCM 

(2022) 
 The red clearance interval is typically 1 or 2 s. 

FDM 

(2023) 
 Signal timings for the red clearance interval must be in accordance with the TEM. 

TEM 

(2024) 

 Interval should have a duration not exceeding 6 seconds. 

 To calculate the red clearance interval, use the formula from the ITE.  

 The red clearance interval must be between 2 and 6 seconds long. 

 Longer red clearance intervals may be appropriate for wide or complex 

intersections or those with a crash history or limited sight distance. 
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3.3.1.6. Pedestrian Recall 

The MUTCD suggests a walk interval of at least 7 seconds, reducing to 4 seconds for low 

pedestrian volumes. It evaluates pedestrian clearance time at speeds of 4 ft/s (extended pushbutton 

press), 3.5 ft/s (normal), and below 3.5 ft/s for areas with slower pedestrians. Pedestrian signals 

are recommended for safe crossing assistance, engineering judgment, partial street crossing, and 

where vehicular signals are not visible to pedestrians. The FHWA SIIG advises setting the walk 

interval based on local policy, recommending a minimum of 7 seconds, but allowing as low as 4 

seconds if conditions permit. Longer walk times are recommended in downtown areas, school 

zones, and areas with many elderly pedestrians. The HCM specifies a minimum walk time of 7 

seconds for actuated phases, allowing shorter times if appropriate, and suggests setting intervals 

based on vehicle and pedestrian needs for pretimed and coordinated phases. The FDM highlights 

the need for longer walk times in school crossings or areas of high pedestrian activity. The TEM 

eliminates the need for a push button or passive detection and ensures that pedestrian walk and 

clearance intervals are provided in each cycle. Table 3-10 summarizes these best practices for 

pedestrian recall. 
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Table 3-10. Summary of Best Practices for Pedestrian Recall 

Source 

(Year) 
Best Practices 

MUTCD 

(2009) 

 In normal scenario, the walk interval should be at least 7 sec in length. However, 

for low pedestrian volume the interval is 4 sec. 

 To evaluate the sufficiency of the pedestrian clearance time: 4 ft/s (extended 

pushbutton press), 3.5 ft/s (normal condition), <3.5 ft/s (slower pedestrians) 

 Pedestrian signals should be used under the following conditions: requires 

assistance for safe crossing, engineering judgement, permitted to cross a portion 

of the street, no vehicular signal indications are visible to pedestrians. 

FHWA 

SIIG 

(2013) 

 The walk interval varies based upon local agency policy.  

 A minimum walk time of 7 seconds, although walk times as low as 4 seconds may 

be used if pedestrian volumes do not require a 7-second interval. 

 In downtown areas, longer walk times are often appropriate to promote walking 

and serve pedestrian demand.  

 School zones and areas with large numbers of elderly pedestrians also warrant 

consideration and the display of walk times more than the minimum walk time. 

 FHWA pedestrian design guidance recommends a lower speed if needed to 

accommodate users who require additional time to cross the roadway, and in 

particular a lower speed where there are concentrations of children/elderly. 

HCM 

(2022) 

 For an actuated or non-coordinated phase, minimum walk time of 7 seconds, 

although walk times as low as 4 seconds may be used if pedestrian volumes and 

characteristics do not require a 7-second interval. 

 For pretimed phase, walk intervals should be set to the amount of time vehicles 

need the green light minus the time pedestrians need to clear the intersection.  

 For a coordinated phase, the controller is sometimes set to use a coordination mode 

that extends the walk interval for most of the green interval duration. 

FDM 

(2023) 
 Longer walk time in school crossings or other areas of high pedestrian activity. 

TEM 

(2024) 

 The pedestrian recall mode eliminates the need for a push button or passive 

detection and ensures that pedestrian walk, and clearance intervals are provided in 

each cycle. 
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3.3.2. Summary of Best Practices 

While generally aimed at improving traffic flow and pedestrian safety, the six traffic signal 

strategies vary in the specificity and detail of their implementation guidelines across different 

traffic manuals. No Right Turn on Red (NRTR) guidelines range from prioritizing safety concerns 

(limited sight distance, pedestrian conflicts) to operational considerations (lane allocation, right-

turn flow rate). The Leading Pedestrian Interval (LPI) recommendations also vary, with some 

manuals focusing on pedestrian volume and vehicle-pedestrian interactions, while others provide 

broader guidance on timing walk intervals. Protected or Permitted Left Turn implementation is the 

most complex, with factors ranging from left-turn volume and opposing traffic to sight distance 

and crash history. 

Yellow Time Adjustment and Red Time Adjustment have the most consistent guidelines 

across manuals, with specific recommendations for the duration (3-6 seconds for yellow, 1-6 

seconds for red) and adjustments for higher speeds or specific intersection conditions. These 

strategies prioritize safety by ensuring sufficient time for vehicles to clear the intersection or stop 

safely. Pedestrian Recall guidelines are also diverse, with recommendations for minimum walk 

times (4-7 seconds), adjustments for pedestrian speed, and considerations for specific areas (school 

zones, downtown areas). Overall, while the manuals generally agree on the benefits of these 

strategies, the variations in their recommendations highlight the need for careful consideration of 

local conditions, traffic patterns, and safety concerns when implementing these strategies.  
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CHAPTER 4: Data Collection  

4.1. Data Collection 

In this report, we acquired two types of data: detector configuration and controller event 

log data. The data were collected at ATSPM-equipped intersections in Brevard, Lake, Orange, 

Osceola, Seminole, Marion, Volusia, Flagler, and Sumter counties in District 5, Florida, USA. 

However, the scope of this project is limited to the intersections in Orange and Seminole counties. 

This chapter describes the data collection process implemented in this report. 

4.1.1. Detector Configuration Data 

The detector configuration data was collected from the NOEMI. NOEMI provides a 

snapshot of the current status of the signal system. In the form of reports, NOEMI offers detailed 

data on detector configuration5.  

Prior to acquiring the detector configuration data, we identified all intersections in the 

concerned counties in District 5, Florida, USA, from NOEMI. Specifically, we gathered 

information on all ATSPM-equipped intersections linked to the Signalized Intersection Inventory 

Application (SIIA). The selection based on SIIA aligns with the scope of this project. In total, 2092 

intersections were identified, although not all are active6.  

The detector configuration data of all ATSPM intersections were collected using an open 

API from NOEMI. The API is: ‘https://noemi.cflsmartroads.com/ssv/report.html?id={siiaID}’ 

 

 

5 NOEMI - Smart Signal View 
6 NOEMI - ATSPM availability 

https://noemi.cflsmartroads.com/ssv/
https://noemi.cflsmartroads.com/atspm/
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Abnormality in Detector Configuration Data 

Given the absence of other sources, we relied on detector configuration data from NOEMI. 

To verify the reliability of this data, we conducted a preliminary manual review of this data for a 

sample of ATSPM equipped intersections. We found logging errors in the detector configuration 

data, specifically in phase numbering (the identifier of phases along an approach), detector length, 

detector distance from the stop bar, and possibly channel numbering (the identifier of unique 

detectors on a phase). Figure 4-1 provides an example of the problem with phase numbering. As 

shown in the figure, there is an inconsistency in phase numbering in the ‘Phase’ column, indicating 

an abnormality. 

 

Figure 4-1. Abnormality in Detector Configuration 

 

Based on our review of the phase numbering, we identified 1817 intersections without 

abnormality in phase numbering. The frequency distribution of the normal and abnormal 

intersections based on abnormalities in phase numbering is shown in Figure 4-2. As indicated in 

the figure, Orange County has the highest number of intersections without abnormality in phase 

numbering. Moreover, the only intersection in Flagler County was identified as abnormal. 
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Figure 4-2. Distribution of Intersections Based on Abnormalities in Phase Numbering 

 

It should be noted that our preliminary analysis was solely based on abnormalities in phase 

numbering, and our conclusions may be inaccurate pending more investigation and scrutiny in 

latter efforts. As such, we recommend a thorough review of the detector configuration data for all 

ATSPM-equipped intersections in the NOEMI system, focusing on detector length, detector 

distance from the stop bar, and channel numbering. 
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4.1.2. Controller Event Log Data 

The controller event log data is openly archived in SunStore as CSV staged files for each 

day of the current running month and as ZIP staged files for every month since January 2018.  

We directly accessed the ZIP staged files from SunStore. This report primarily focuses on 

selecting ATSPM-equipped intersections in Orange and Seminole counties rather than any in-

depth data processing and feature extraction. Hence, we only collected data for May 2024. This 

data included controller event logs for all intersections in concerned counties in District 5, Florida, 

USA, though the scope is limited to the intersections in Orange and Seminole counties.  

The descriptive summary of the detector configuration and controller event log data 

collected for this report is shown in Table 4-17. 

Table 4-1. Descriptive Summary of Collected Data 

Data Type Source Month/Year Counties Covered 

Detector Configuration NOEMI - Brevard, Lake, Orange*, 

Osceola, Seminole*, Marion, 

Volusia, and Sumter Controller Event Log SunStore May/2024 

 

7 *Counties within the scope of this project. Initially, Orange County was not within the scope. 

However, this county was added later by the Florida Department of Transportation (FDOT) by 

recommending intersections. 
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4.2. Grouping Detector Configuration and Data Quality Check 

Detector configurations in ATSPM-equipped intersections exhibit variance, and not all 

detectors at these intersections produce high-quality event data. In this chapter, we analyze the 

collected data on detector configurations and controller event logs to identify and group unique 

detector configurations and develop a pipeline to assess the data quality. 

4.2.1. Grouping Detector Configuration 

Variability in detector configuration is common at ATSPM-equipped intersections. The 

detector configuration may vary per intersection, per type of approach (e.g., major or minor roads) 

and type of phase (e.g., left-turn, through, and right-turn). This variability can affect consistency 

and uniformity in data transformation and decision-making for future tasks in this project. 

Therefore, it is crucial to identify and group unique detector configurations. 

The most advanced configurations exist in the form of count detectors, stop bars, and 

setbacks, as illustrated in Figure 4-3. However, detector configurations in the 1817 ATSPM 

equipped intersections in Brevard, Lake, Orange, Osceola, Seminole, Marion, Volusia, and Sumter 

counties in District 5, Florida, USA, feature only stop bars and setbacks. Therefore, in this report, 

the configuration including a ‘count detector’ is disregarded when identifying and grouping 

detector configuration. 
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Figure 4-3. Advanced Detector Configuration 

 

Simply knowing the existence of stop bars and setbacks is not enough to identify and group 

detector configurations. More precise metrics are needed. Therefore, we defined four reference 

metrics for this purpose, including: 

a) Whether more than two lanes exist in a phase. 

b) Whether a setback detector exists in a phase. 

c) Whether multiple setback detectors exist in a phase. 

d) Whether a stop bar exists in a phase. 

Based on the metrics, we identified and grouped detector combinations in three different 

ways, which are described in the following sections. 

4.2.1.1. Grouping by Intersection  

In this method, we grouped detector configurations by evaluating the entire intersection’s 

configuration. This process involved first identifying all unique detector configurations based on 
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the entire intersection layout and then grouping them accordingly. This method resulted in over 

500 distinct detector combinations. 

4.2.1.2. Grouping by Type of Approach 

In ATSPM equipped intersections, there are two types of approaches: major and minor. 

Typically, major approaches are part of arterial roads, but they can also be part of collector roads. 

However, minor approaches are usually part of collector roads. Therefore, major approaches 

generally have more advanced detector configuration systems compared to minor approaches, 

marking a distinction in configurations.  

In this method, we grouped detector configurations by considering the layout per the 

approach type. This method resulted in 218 unique detector configurations for major approaches 

and 119 for minor approaches. 

4.2.1.3. Grouping by Type of Phase 

Types of phases at intersections can include left-turn, through movement, and right-turn 

phases. Additionally, there can be shared lanes that serve multiple phases. In this method, prior to 

grouping detector configurations, we defined the types of phase into four groups: left-turn, through, 

right-turn, and shared. The shared phase refers to a lane that can accommodate multiple phases 

simultaneously. 

This method resulted in a significantly lower frequency of unique detector configurations 

based on the type of approach, making it a more practical choice for grouping. In contrast, the 

frequency of unique detector configurations by intersection and by type of approach is extremely 

high. Since our upcoming tasks involve data transformation that relies on detector configuration, 

a less frequent grouping is preferred to facilitate transformation and enhance generalizability, 
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making grouping with high frequency unfeasible. Therefore, we selected grouping by phase type 

and will use this method for future tasks in this project. The frequency distribution of unique 

detector configurations by the type of phase is shown in Figure 4-4. 

 

Figure 4-4. Frequency Distribution of Unique Detector Configurations by Type of Phase 

 

The schematic diagram of the unique detector configurations per type of phase is shown in 

Figure 4-5. The “L,” “T,” “R,” and “S” denoting left turn, through movement, right turn, and 

shared lane, respectively. For every phase, ‘Type 1’ represents the configuration with no detector. 

The algorithm that calculates the performance measure does not change based on the presence or 

absence of a channel number. Also, If we Including this would make the number of possible 

configuration types too large. Therefore, this configuration classification system does not consider 

channel numbers, only the type and location of the detector. If the channel number does not exist 

and the detector is tied to all across the lanes, it is assigned a type based on the type and location 

of the detector. 
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(a) Left-Turn Phase 

 

(b) Through Phase 
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(c) Right-Turn Phase 

 

(d) Shared Phase 

Figure 4-5. Schematic Diagram of the Unique Detector Configurations by Type of Phase 

 

The descriptive summary of the detector configurations by type of phase (based on the 

defined reference metrics) is presented in Table 4-2. The optimal detector configurations are 

‘Types 4, 7, 9’ for the left-turn phase, ‘Types 4, 9, 11’ for the through phase, ‘Types 4, 7, 8’ for 

the right-turn phase, and ‘Types 4, 6, 8’ for the shared phase. These configurations are preferred 

because they minimize restrictions on determining performance measures using controller event 

log data, which will be addressed in future tasks of this project. However, not every intersection is 
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equipped with the most optimal detector configurations per type of phase. Specifically, for the left-

turn phase, 46, 23, and 12 intersections have ‘Types 4, 7, and 9,’ respectively. For the through 

phase, 75, 199, and 95 intersections have ‘Types 4, 9, and 11,’ respectively. For the right-turn 

phase, 26, 3, and 5 intersections have ‘Types 4, 7, and 8,’ respectively. And for the shared phase, 

153, 1, and 44 intersections have ‘Types 4, 6, and 8,’ respectively. 
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Table 4-2. Descriptive Summary of Detector Configurations by Type of Phase 

Type of 

Configuration 

Type of Phase 

Left-Turn Through Right-Turn Shared 

1 <= 2 lane(s)* 

2 <= 2 lane(s)*, stop bar exists  

3 <= 2 lane(s)*, setback exists 

4 <= 2 lane(s)*, stop bar exists, setback exists 

5 <= 2 lane(s)*, multiple setbacks exist 

6 > 2 lanes**, stop bar exists > 2 lanes** 
> 2 lanes**, stop bar 

exists 

> 2 lanes**, stop bar 

exists, setback exists 

7 
> 2 lanes**, stop bar exists, setback 

exists 
> 2 lanes**, stop bar exists 

> 2 lanes**, stop bar 

exists, setback exists 

> 2 lanes**, multiple 

setbacks  

8 > 2 lanes**, multiple setbacks  > 2 lanes**, setback exists > 2 lanes**, stop bar exists, multiple setbacks exist 

9 
> 2 lanes**, stop bar exists, multiple 

setbacks  

> 2 lanes**, stop bar exists, 

setback exists 
- - 

10 - > 2 lanes**, multiple setbacks  - - 

11 - 
> 2 lanes**, stop bar exists, 

multiple setbacks  
- - 

In the schematic diagrams (Figure 4-5(a)-Figure 4-5(d)),  

*  The only lane, identified as L, T, R, or S, represents <= 2 lane(s).  

** The triple lanes, identified as L, T, R, or S, represent > 2 lanes.  
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The frequency distribution of all ATSPM equipped intersections in the District 5, Florida, 

USA, per unique detector configuration by phase type is presented in Figure 4-6. 

 

(a) Left-Turn Phase 

 

(b) Through Phase 

 

(c) Right-Turn Phase 

 

(d) Shared Phase 

Figure 4-6. Frequency Distribution of ATSPM equipped Intersections per Unique Detector 

Configuration by Type of Phase 

 

Figure 4-6 indicates that ‘Type 2’ is the most common detector configuration found in 

ATSPM equipped intersections in the counties concerned in District 5, Florida, USA, for all types 

of phases. Figure 4-6(b) also shows that a significant number of intersections have detector 
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configurations ‘Types 4, 9, and 11’ along through phase. Further, Figure 4-6(c) reveals that many 

intersections with a dedicated right-turn phase lack detectors on them, classified as ‘Type 1’.  

A descriptive summary of the most common and optimal detector configuration per type 

of phase is presented in Table 4-3. 

Table 4-3. Descriptive Summary of Most Common and Optimal Detector Configuration 

Type of Phase Most Common Configuration Optimal Configuration 

Left-Turn Type 2 Type 4, Type 7, Type 9 

Through Type 2 Type 4, Type 9, Type 11 

Right-Turn Type 2 Type 4, Type 7, Type 8 

Shared Type 2 Type 4, Type 6, Type 8 
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4.2.2. Data Quality Check 

A critical challenge for this project is the quality of controller event log data produced by 

detectors in ATSPM-equipped intersections. The logging process involves timestamping events, 

such as changes in signal outputs and detector states, with a resolution of a tenth of a second. 

Several factors can negatively impact this logging, including lack of regular maintenance of 

detectors, electrical and mechanical failures, communication failures, outdated configurations, and 

adverse environmental conditions (Day et al., 2016). As a result, not every intersection in Brevard, 

Lake, Orange, Osceola, Seminole, Marion, Volusia, and Sumter counties in District 5, Florida, 

USA, provides reliable detectors that produce high-quality data. Therefore, it is essential to 

develop a pipeline to identify which detectors generate good data and which do not. This pipeline 

assists in selecting sample intersections in Orange and Seminole counties, ensuring that only 

intersections with detectors that consistently produce quality data are included. 

Signal timing and detector on-off sequences are crucial event logs produced by detectors 

in ATSPM equipped intersections. As such, they serve as critical indicators for verifying the 

quality of controller event log data. The signal timing sequence follows a distinct pattern: ‘start of 

green - start of yellow - start of red clearance - start of red’ for every phase at the intersection (Day 

et al., 2014). The detector on-off sequence is ‘detector on - detector off’ (Day et al., 2014). If any 

sequence in the controller event log data does not adhere to these patterns, it can be considered 

anomalous. Based on this principle, we devised a framework named the Event Sequence Quality 

Checker (ESQC) to assess the quality of data produced by detectors in ATSPM equipped 

intersections. 
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4.2.2.1. Event Sequence Quality Checker (ESQC) 

Our framework, ESQC, operates using a dual-step logic, as illustrated in Figure 4-7. In the 

first step, ESQC checks if the detectors at the input intersections are producing any controller event 

log data. If they are not producing any data, then ESQC moves to the next input. However, if they 

are producing data, then in the second step, ESQC verifies all possible event sequences in the data, 

matching them against the patterns ‘start of green - start of yellow - start of red clearance - start of 

red’ and ‘detector on - detector off.’ The output of the ESQC is a report indicating whether the 

detectors at ATSPM-equipped intersections are producing data and, if so, the percentage of 

anomalous sequences in the data. 

 

Figure 4-7. Event Sequence Quality Checker (ESQC) 
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It is important to note that ESQC processes each data set on a daily basis (i.e., sequential 

processing). Therefore, if a month of data is analyzed for any intersection, it will generate daily 

reports showing the temporal variation in the quality of the data for all the days in the month. 

4.2.2.2. Data Quality Check Results 

We tested our framework on the controller event data produced by detectors in ATSPM-

equipped intersections in the concerned counties in District 5, Florida, USA, for May 2024. 

However, in this subsection, we are only presenting the results of Orange and Seminole counties. 

Figure 4-8 presents the results of the first step of ESQC. Figure 4-8(a) shows that out of 

695 intersections in Orange County (see Figure 4-2), detectors in nearly 600 intersections, on 

average, produced data for 23 days in May 2024. Figure 4-8(b) indicates that for the same month, 

out of 310 intersections in Seminole County (see Figure 4-2), detectors in nearly 300 intersections, 

on average, produced data for 22 days in May 2024.  

 

(a) Orange County 

 

(b) Seminole County 

Figure 4-8. Daily Frequency Distribution of Intersections with Detectors Producing 

Controller Event Log Data in May 2024 
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Figure 4-9 presents the results of the second and final step of ESQC. Figure 4-9 (a) and 

Figure 4-9(b) show that for both Orange and Seminole counties, detectors in nearly every 

intersection produced very poor-quality data until May 20, 2024. Each line in the figure represents 

different intersections. Given that all intersections failed on specific days, it is probable that the 

cause was a system-wide outage or maintenance activity rather than an issue at each individual 

intersection. The quality began to improve after this date across all the intersections. The figures 

also indicate that detectors in Seminole County intersections were more consistent in producing 

high-quality data compared to those in Orange County. 

 

(a) Orange County 

 

(b) Seminole County 

Figure 4-9. Daily Error Percent Distribution of Intersections with Detectors Producing 

Controller Event Log Data in May 2024 
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4.3. Intersection Selection 

4.3.1. Intersection Selection 

In selecting the intersections, our primary focus was to maximize the inclusion of ATSPM-

equipped intersections with the optimal detector configurations (see Section 4.1.3 and Figure 4-5), 

especially for through phases. We selected the intersections in two different ways. They are: 

e) Direct recommendation from Florida Department of Transportation (FDOT). 

f) Randomly sampling ATSPM-equipped intersections with the optimal detector 

configurations for the through phase (see Section 4.1.3, Figure 4-5(b), and Table 4-3) that 

produce high-quality controller event log data (see Section 4.2 and Figure 4-7). 

4.3.1.1. Direct Recommendation from FDOT  

FDOT recommended 13 ATSPM equipped intersections. Out of the 13, one was from 

Orange County, and 12 were from Seminole County. Figure 4-10 presents the recommended 

intersections along with their unique signal identifiers. Experts from FDOT selected these 

intersections by analyzing variations in detector configurations and geometries, controller event 

log data, channel (i.e., detector) activation status and more. 

It is important to note that the initial project scope only included ATSPM-equipped 

intersections from Seminole County. However, as FDOT recommended one intersection from 

Orange County, we are now also considering ATSPM-equipped intersections from Orange County 

within the scope of this project. 
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Figure 4-10. Recommended Intersections from FDOT 

Checking Detector Configuration Groups and Data Quality  

We analyzed the intersections recommended by FDOT using the available data. 

Specifically, we identified the detector configuration groups (by phase type, as defined in Figure 

4-5) for the recommended intersections. Also, we applied our proposed ESQC to verify whether 

the detectors at these intersections produced any high-quality data in May 2024. 

Figure 4-11 presents the results of our analysis on detector configuration groups. Figure 

4-11(a) shows that the left-turn phase detector configuration of all recommended intersections 

from FDOT is ‘Type 2.’ Figure 4-11(b) reveals the infrequency of the optimal detector 

configurations (i.e., ‘Types 4, 9, 11’) for the through phase. Figure 4-11(c) indicates that there are 

five intersections with a dedicated right-turn phase that have no detectors.  
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(a) Left-Turn Phase 

 

(b) Through Phase 

 

(c) Right-Turn Phase 

 

(d) Shared Phase 

Figure 4-11. Frequency Distribution of the Recommended ATSPM equipped Intersections 

per Unique Detector Configuration by Type of Phase 
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(a) Orange County 

 

(b) Seminole County 

Figure 4-12. Daily Frequency Distribution of the Recommended Intersections with 

Detectors Producing Controller Event Log Data in May 2024 

Figure 4-12 and Figure 4-13 show that detectors in all the recommended intersections are 

producing high-quality data after May 20, 2024. Each line in figures 5-4(a) and 5-4(b) represents 

different intersections. However, detectors in the intersections in Seminole County exhibited some 

anomalies on May 26-27. 

 

(a) Orange County 

 

(b) Seminole County 

Figure 4-13. Daily Error Percent Distribution of the Recommended Intersections with 

Detectors Producing Controller Event Log Data in May 2024 
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From our analysis of the recommended intersections, we concluded that more intersections 

with detectors producing high-quality data are needed, particularly those with ‘Types 4, 9, 11’ 

detector configurations along through phase. 

4.3.1.2. Sampling Intersections with Optimal Detector Configuration 

In Orange and Seminole counties, 373 intersections have optimal detector configuration 

along through phase (i.e., ‘Types 4, 9, 11’). To select a sample of these intersections, we 

implemented a stratified random sampling technique, focusing on intersections with optimal 

detector configurations along through phase. The intersections were divided into 11 strata based 

on unique detector configurations along through phase (see Figure 4-5(b)). Our strata of interest 

were ‘Types 4, 9, 11.’ Moreover, we limited our selection to Seminole County and sampled 7 

ATSPM-equipped intersections from this area, as shown in Figure 4-14.  

 

Figure 4-14. Selected Intersections (Seminole County) through Stratified Sampling 
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The frequency distribution of the selected intersections per unique detector configuration 

by type of phase is depicted in Figure 4-15. We selected the intersections exclusively from 

Seminole County. Figure 4-15(b) shows that our selection resulted in a higher number of optimal 

detector configurations (i.e., ‘Types 4, 9, 11’) along through phase compared to those 

recommended by FDOT. Moreover, the variation in detector configuration types for the left-turn 

phase also increased with our selection using the stratified sampling technique. 

 

(a) Left-Turn Phase 

 

(b) Through Phase 

 

(c) Right-Turn Phase 

 

(d) Shared Phase 

Figure 4-15. Frequency Distribution of the Selected ATSPM equipped Intersections  
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We also ensured that our selected intersections were not only generating data (Figure 

4-16(a)) but that the data was of high quality (Figure 4-16(b)), especially after May 20, 2024, by 

applying ESQC. Each line in the figure 4-5(b) represents different intersections. 

 

(a) Step 1 of ESQC (Figure 4-7 

 

(b) Step 1 of ESQC (Figure 4-7) 

Figure 4-16. Applying ESQC on the Selected Intersections 

4.3.2. Summary of Selected Intersections 

Table 4-4 presents a descriptive summary of the ATSPM equipped intersections 

recommended and selected for future tasks. 
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Table 4-4. Descriptive Summary of Recommended and Selected Intersections 

Signal 

ID 

SIIA 

ID 
Intersection Name Latitude Longitude 

Type of 

Intersecti

on 

Nos. of Lane in 

Through Phase** 

(maj1, maj2) / 

(min1, min2)* 

County Remarks 

1300 44 SR-434 at Grant St 28.69785 -81.33809 4-Legged (2, 2) / (1, 1) 

Seminole 
Recommend 

by FDOT 

1315 1178 
SR 434 at North Winter 

Park Dr 
28.69792 -81.31766 3-Legged (2, 2) / (0, 0) 

1325 1188 SR 434 at Edgemon Ave 28.69835 -81.30957 4-Legged (2, 2) / (1, 1) 

1330 1190 SR 434 at Moss Rd 28.6987 -81.30548 4-Legged (2, 2) / (1, 1) 

1455 1225 
SR 436 & Academy Dr / 

Lake Brantley Rd 
28.66686 -81.43134 4-Legged (3, 3) / (1, 1) 

1470 620 SR 436 @ SR 434 28.66535 -81.419 4-Legged (3, 3) / (3, 3) 

1725 1397 SR 46 & CR 426 (1st St) 28.73339 -81.11515 4-Legged (1, 1) / (1, 1) 

1790 1421 
SR 426 & SR 417 SB 

Ramp 
28.61863 -81.25926 3-Legged (2, 3) / (0, 0) 

1795 1426 
SR 426 & SR 417 NB 

Ramp 
28.61866 -81.25791 3-Legged (3, 2) / (0, 0) 

2055 234 
Lake Mary Blvd & 

Country Club Rd 
28.75629 -81.32206 4-Legged (2, 2) / (1, 1) 

2485 4122 Bunnel Rd @ Eden Park 28.6528 -81.43563 4-Legged (1, 1) / (1, 1) 
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2665 4175 
Howell Branch Rd at Plaza 

Entrance (Butler) 
28.62521 -81.31892 4-Legged (2, 2) / (1, 1) 

D5I-

3000 
515 

US 17/92 at SR423/Lee 

Rd 
28.60595 -81.36518 4-Legged (2, 2) / (2, 1) Orange 

1285 53 SR-434 @ Range Line Rd 28.69786 -81.36221 4-Legged (2, 3) / (1, 1) 

Seminole 
Selected by 

UCFSST 

1290 42 
SR-434 at Florida Central 

Pkwy 
28.69783 -81.35289 4-Legged (2, 2) / (1, 1) 

1707 4197 SR 46 & Mellonville Ave 28.7868 -81.2562 4-Legged (2, 2) / (1, 1) 

1500 794 SR436 @ Westmonte dr 28.66183 -81.39358 4-Legged (4, 4) / (1, 1) 

1490 72 
SR-436 at Lynchfield Ave 

/ Frances Dr 
28.66189 -81.39902 4-Legged (4, 3) / (1, 1) 

1555 65 

SR-436 / Semoran Blvd / 

Altamonte Dr at CR-427 / 

Maitland Ave 

28.66335 -81.36578 4-Legged (3, 3) / (1, 1) 

1960 254 
HE Thomas Jr Pkwy @ 

Airport Blvd 
28.78647 -81.29763 4-Legged (2, 2) / (2, 2) 

* Each major and minor road can have multiple approaches. For instance, at a four-legged intersection, there can be two approaches along the major roads (maj1 

and maj2) and two approaches along the minor roads (min1 and min2).  

** An approach along a road may not have any through phase. 
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The quality of data was checked using our Event Sequence Quality Checker (ESQC). In 

particular, we checked signal timing (‘start of green - start of yellow - start of red clearance - start 

of red’) and detector on-off (‘detector on - detector off’) sequence. The check results of the 19 

intersections in Seminole County are depicted in Figures 2-1 and 2-2. 

 

Figure 4-17. Daily Frequency Distribution of Intersections with Detectors Producing 

Controller Event Log Data in June 2024 

 

Figure 4-17 shows that, on average, detectors at the selected 19 intersections reported data 

for 29 days in June 2024. Detector activity at a few intersections exhibited slight fluctuations until 

June 10. However, the activity became stable and consistent from June 12 through the end of the 

month. 

The daily error percentage trend depicted in Figure 4-18 indicates that detectors at most 

intersections produced data with an average error percentage below 10% throughout June 2024, 

demonstrating the reliability of the data used for Task 2. The only exception was the detectors at 

the intersection of SR 436 and SR 434 (Signal ID: 1470), which produced data with error 
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percentages exceeding 10% but remaining below 20%. In the analysis, all 19 intersections were 

retained after removing the erroneous sequences. 

 

Figure 4-18. Daily Error Percent Distribution of Intersections with Detectors Producing 

Controller Event Log Data in June 2024 

  



 

100 

CHAPTER 5: Algorithm Development 

We selected 20 intersections in Seminole and Orange counties in District 5, Florida, USA, 

by analyzing detector configuration and checking the quality of controller event log data. This 

chapter overviews the process of transforming accurate controller event log data into meaningful 

performance measures. The term “intersections” in this report specifically refers to those equipped 

with the Automated Traffic Signal Performance Measures (ATSPM) system. 

 

5.1. Performance Measure Calculation 

5.1.1. Detector Configuration (Simplified)  

The controller event log data produced by detectors installed at intersections can be 

processed to derive various performance measures, such as volume, occupancy, headway, red-

light running, and more. However, this transformation heavily relies on the detector configuration 

at the intersections. 

Detector configurations at intersections can vary significantly. Not all approaches (major 

or minor roads) to an intersection may have the necessary detector configuration. Again, variations 

in configuration are common across different phases, such as left-turn movements or through 

movements (which may include right-turns). In some cases, differences in configuration can also 

occur between lanes within the same phase.  

In this chapter, a summary of the detector configurations for the selected 19 intersections, 

as shown in Figure 5-1, is provided in simplified layouts. At the lowest spatial resolution (per lane 
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per phase per approach), the detector configuration of the selected intersections can be structured 

into 6 types, as illustrated in Figure 5-1. 

 

Figure 5-1. Schematic Diagram of the Detector Configurations by Lane 

The phase and lane are two distinct concepts for the configuration taxonomy. A phase (left-

turn, or through (+right-turn) movements) can consist of different lane types, such as left-turn, 

through, right-turn, or shared lanes.  

Table 5-1. Phase-Lane Relation 

Phase Type Related Lane Type 

Left-Turn Left-Turn, Shared (Left-Turn + Right-Turn) 

Through (+Right-Turn) 
Through, Right-Turn, Shared (Left-Turn + Through + Right-

Turn, Left-Turn + Through, Through + Right-Turn) 

 

Given the lane-level detector configuration across the selected intersections is not 

consistent, deriving performance measures at the lowest spatial resolution (per lane per phase per 

approach) is not always achievable. This limitation was considered in calculating performance 

measures from controller event log data.  

Table A-1 in A. Appendix provides a summary of the detector configurations for each 

intersection, including details on approach type, phase type, and lane type. 
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5.1.2. Transformation 

When processed correctly, controller event log data can be transformed into various Signal 

Phasing and Timing (SPaT) and traffic-related performance measures. Our objective was to derive 

these measures at the lowest possible temporal resolution (i.e., cycle-level) and, where feasible, at 

the lowest spatial resolution (i.e., per lane per phase per approach). In cases where lane-level 

measures could not be calculated, we opted for the next higher spatial resolution (e.g., per phase 

per approach). 

The transformation generated performance measures that primarily include SPaT, volume, 

occupancy time, headway, conflicts, red-light running, pedestrian activity indicator, pedestrian 

delay, and shockwave properties. 

 

5.1.2.1. Signal Phasing and Timing (SPaT)-Related Measures 

The SPaT-related measures include the duration of different signal types (i.e., green, 

yellow, red clearance, and red) as well as the cycle length. These measures were derived using 

event codes corresponding to the start of green, yellow, and red clearance phases, and the end of 

red clearance (Anik et al., 2025). The start and end of all cycles were determined using the ‘dual-

ring, eight-phase’ framework. According to this framework, a complete traffic cycle is defined as 

the duration between successive crossings of the “Barrier” (Day et al., 2014). Cycle length simply 

represents the length of each distinct complete cycle.  

5.1.2.2. Vehicle Traffic-Related Measures 

Vehicle traffic-related measures primarily include volume, occupancy, headway, traffic 

conflicts, and red-light running. These measures were derived by transforming vehicle detection 
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event log data generated by controllers in ATSPM systems. Figure 5-2 illustrates the vehicle 

detection mechanism. The detector (stop bar or setback) is activated when the front of a vehicle 

enters the detection zone (𝑡𝑜𝑛) and deactivates when the rear exits the zone (𝑡𝑜𝑓𝑓). We assumed 

that a valid detection event for a vehicle (𝑛) requires a “detector on” event to always precede a 

“detector off” event. Instances where only one of these events was recorded were considered 

detection errors and were excluded from the analysis. 

 

Figure 5-2. Vehicle Detection Mechanism 

 

The volume of vehicles was calculated using the vehicle detection event log data from 

back detectors (i.e., setbacks). Setbacks are typically very short in length (6–10 feet), enabling 

them to distinctly capture the “detector on” and “detector off” events for each vehicle. Vehicle 

volume was calculated by counting all valid “detector on-off” sequences, as shown in Equation 

5-1.  

Volume = ∑ Detection(𝑜𝑛−𝑜𝑓𝑓)
𝑛  (5-1) 

where 𝑛 represents the sequence of a valid detection event. 
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Invalid sequences, such as isolated “detector on” events without a corresponding “detector 

off” or isolated “detector off” events without a preceding “detector on,” occasionally occurred due 

to sensor malfunctions or data transmission errors. These incomplete sequences typically do not 

represent valid vehicle detections and were generally discarded during data processing. However, 

in certain cases, when the pattern of events and traffic flow suggested that an isolated “on” or “off” 

event was likely part of a missed detection, imputation was applied to estimate the presence of a 

vehicle. Specifically, if an isolated “on” or “off” event occurred within a short time window of a 

valid detection sequence, it was inferred that the corresponding “off” or “on” event was likely 

missed, and the isolated event was treated as a valid detection, contributing one vehicle to the 

volume count. The time window threshold for identifying these likely missed detections was not 

fixed arbitrarily. Instead, it was determined hourly based on the average gap between valid 

“detector on-off” sequences for each hour of the day. 

 

A platoon refers to a group of vehicles traveling together, often due to coordinated signal 

timing or natural traffic flow dynamics. Platoon ratio quantifies the quality of progression on an 

approach. The platoon ratio represents the ratio of the number of vehicles arriving during the green 

phase to the proportion of the green interval of the total cycle. This can be expressed as (Equation 

2-2): 

 Platoon Ratio, 𝑅𝑝 =
Volume𝐺

VolumeTotal
×

𝐶

Signal Duration𝐺
 (2-2) 

where Volume𝐺  represents volume of vehicle arriving during green signal. 𝐶  and 

Signal Duration𝐺 represent cycle length (in sec), and duration (in sec) of green signal, respectively.  
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The arrival type is a qualitative measure of how well vehicles are grouped into platoons 

when reaching an intersection. It ranges from 1 (worst platoon condition) to 6 (best platoon 

condition). A higher platoon ratio typically corresponds to a better arrival type, reflecting improved 

traffic progression. The relationship between platoon ratio and arrival type, suggested by HCM 

(2000), is summarized in Table 5-2. 

Table 5-2. Relationship Between Platoon Ratio and Arrival Type 

Arrival Type Range of Platoon Ratio Default Value Progression Quality 

1 𝑅𝑝 ≤ 0.50 0.333 Very poor 

2 0.50 < 𝑅𝑝 ≤ 0.85 0.667 Unfavorable 

3 0.85 < 𝑅𝑝 ≤ 1.15 1.000 Random arrivals 

4 1.15 < 𝑅𝑝 ≤ 1.50 1.333 Favorable 

5 1.50 < 𝑅𝑝 ≤ 2.00 1.667 Highly favorable 

6 𝑅𝑝 > 2.00 2.000 Exceptional 

 

Occupancy time is defined as the duration during which the presence zone (denoted by the 

stop bar) is occupied by vehicles approaching an intersection. This is calculated as the interval 

between the “detector on” (𝑡𝑜𝑛
𝑛 ) and “detector off” (𝑡𝑜𝑓𝑓

𝑛 ) events recorded by the stop bar detector 

(Equation 2-3).  

Occupancy Time𝑛 = 𝑡𝑜𝑓𝑓
𝑛 − 𝑡𝑜𝑛

𝑛  (2-3) 

 

A split failure occurs when a phase cannot serve all its demand within one cycle, i.e., if it 

takes a vehicle two or more cycles to execute its movement at an intersection, a split failure has 

occurred. As per Purdue, when both green occupancy ratio (𝐺𝑂𝑅 ) (Equation 2-4), and red 
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occupancy ratio in the first five seconds of red (𝑅𝑂𝑅5) (Equation 2-4) are high (typically 80 

percent or higher), a split failure occurs (Equation 2-5). 

𝐺𝑂𝑅 =
Occupancy Time𝐺

Signal Duration𝐺
; 𝑅𝑂𝑅5 =

Occupancy Time𝑅−5

5
 (2-4) 

Split Failure = {
1, 𝑖𝑓 (𝐺𝑂𝑅 ≥ 80% & 𝑅𝑂𝑅5 ≥ 80%) 
0, 𝑒𝑙𝑠𝑒

 (2-5) 

where Occupancy Time𝐺  and Signal Duration𝐺  represent occupancy (in sec) during 

green signal, and duration (in sec) of green signal, respectively. Occupancy Time𝑅−5 represents 

occupancy (in sec) during the first five seconds of red signal. 

 

Headway refers to the time interval between two consecutive vehicles approaching an 

intersection from the same direction. It was calculated as the time difference between the current 

“detector on” event (𝑡𝑜𝑛
𝑛 ) and the previous “detector on” event (𝑡𝑜𝑛

𝑛−1) recorded by the setback, as 

shown in Figure 5-3. Mathematically, headway (also called time headway) can be calculated as 

follows (Equation 2-6) 

Headway𝑛 = 𝑡𝑜𝑛
𝑛 − 𝑡𝑜𝑛

𝑛−1 (2-6) 

 

 

Figure 5-3. Time Headway 
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Speed-dependent conflict metrics, such as time-to-collision (TTC) and deceleration rate to 

avoid collision (DRAC), are commonly used to quantify traffic conflicts. However, these metrics 

require vehicle speed, which cannot be estimated at the selected intersections or any other 

intersections in Seminole County due to the detector configuration (detectors do not measure 

vehicle length). To address this limitation, headway was used as an alternative metric for 

identifying traffic conflicts. A traffic conflict is defined as an event where the headway falls below 

a specified threshold. While there is no universally accepted threshold for defining traffic conflicts, 

values between 1 and 3 seconds are commonly used. For instance, U.S. driver training programs 

indicate that maintaining a headway of less than 2 seconds is unsafe (Michael et al., 2000), while 

Swedish police use a threshold of 1 second (Vogel, 2003). 

In this report, the threshold was set to 2 second, as it is generally considered the most 

critical and dangerous point in the spectrum. Traffic conflict is defined as (Equation 2-7): 

Conflict = {
1, 𝑖𝑓 Headway ≤ 2 sec
0, 𝑒𝑙𝑠𝑒

 
(2-8) 

 

A Red Light Running (RLR) event occurs when a vehicle enters an intersection after the 

traffic signal has turned red, thereby violating the red signal. Calculating RLR events using 

ATSPM systems requires detectors to be placed at the edge of the approach to the intersection. 

While stop bar detectors are typically installed at this location, they present a challenge for 

accurately identifying RLR events due to their large detection length (typically greater than 50 

feet). Because stop bar detectors can accommodate more than one vehicle at a time, they do not 

reliably indicate whether a vehicle has violated the red signal. For instance, if one vehicle violates 

the red signal while another vehicle is already on the stop bar, the detector will remain activated, 
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making it difficult to distinguish RLR events. To address this limitation, we propose an algorithm 

to estimate RLR events using only “detector off” events recorded by stop bar detectors. 

Specifically, if a “detector off” event is recorded during the red clearance or red, the event is 

flagged as RLR, regardless of whether the corresponding “detector on” event occurred during the 

green, yellow, red clearance, or red. 

It is important to note that this method provides a close approximation rather than a precise 

estimation, as there may be situations where an RLR event occurs, but the “detector on” event 

persists due to multiple vehicles occupying the stop bar. Therefore, instead of estimating the 

frequency of RLR events, we focused on flagging red clearance or red signal with potential RLR 

occurrences, using an indicator of 0 (no RLR) and 1 (RLR). The RLR flagging scenario is 

illustrated in Figure 5-4.  

 

Figure 5-4. Red Light Running Flag Using “Stop Bar” 

 

RLR is defined as (Equation 2-9): 

RLR = {
1, 𝑖𝑓 Any(Detector𝑜𝑓𝑓(𝑅𝐶,𝑅 )|Detector𝑜𝑛(𝐺,𝑌,𝑅𝐶,𝑅 ))

0, 𝑒𝑙𝑠𝑒
 

(2-9) 



 

109 

where 𝐺, 𝑌, 𝑅𝐶,  and 𝑅  represent the different signal types namely green, yellow, red 

clearance, and red, respectively. 

All vehicle traffic-related performance measures were calculated at a cycle-level temporal 

resolution, with spatial resolution varying between lane-, phase-, and approach-level depending on 

the measure. Variations in the measures across different signal types were also recorded. A detailed 

descriptive summary of these measures is provided in Table 5-3. 

 

5.1.2.3. Pedestrian Traffic-Related Measures 

Pedestrian activity indicator and delay are pedestrian traffic-related measures that can be 

calculated using pedestrian detection event log data. At the selected intersections in Seminole 

County, the ATSPM systems detect pedestrians via push buttons. Specifically, the pedestrian 

detector is activated (𝑡𝑝,𝑜𝑛) when a pedestrian presses the button and is automatically deactivated 

(𝑡𝑝,𝑜𝑓𝑓) after a short duration. We assumed that a valid pedestrian detection event requires a 

“pedestrian detector on” event to precede a “pedestrian detector off” event. Any instance where 

only one of these events was recorded was considered a detection error and excluded from the 

analysis. 

One limitation of pedestrian detectors in ATSPM systems is that they are not fully 

compatible with quantifying pedestrian volume. For example, if multiple pedestrians intend to 

cross an intersection, only those who press the button are recorded, while others are not. As a result, 

the detectors cannot provide an accurate count of the total number of pedestrians. However, this 

limitation does not diminish the utility of pedestrian detectors.  

Pedestrian activity indicator was calculated to determine the presence of pedestrians using 

the “pedestrian detector on” and “pedestrian detector off” events. This indicator represents a binary 
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variable with values 0 (no pedestrian present) and 1 (pedestrian present), that can be  

mathematically expressed as (Equation 2-10): 

Pedestrian Activity Indicator = {
1, 𝑖𝑓 Detection𝑝,(𝑜𝑛−𝑜𝑓𝑓)

0, 𝑒𝑙𝑠𝑒
 (2-10) 

 

Pedestrian delay is defined as the time a pedestrian waits after pressing the button until the 

pedestrian signal begins (start of the “Walk” signal). This wait time was calculated as the 

difference between the timestamp of the first button press and the start of the pedestrian signal. 

Mathematically, pedestrian delay is expressed as (Equation 2-11): 

Pedestrian Delay = 𝑡𝑝,Walk Begin − (𝑡𝑝,𝑜𝑛|First Press) (2-11) 

 

All pedestrian traffic-related performance measures were calculated at a cycle-level 

temporal resolution, and phase-level spatial resolution. A detailed descriptive summary of these 

measures is provided in Table 5-3. 
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Table 5-3. Descriptive Summary of Performance Measures 

Task 

Group 

Performance 

Measures 
Unit 

Detector 

Configuration 

Temporal 

Resolution 

Spatial 

Resolution 

Variation 

by Signal 

Type 

Counting 

Vehicle Volume Count 
Types 3, 4, 5, 

6 

Cycle-

Level 

Approach-

Level* 
✓ 

Pedestrian Activity 

Indicator 

Binary 

Count (0 

/ 1) 

- 
Phase-

Level 
- 

Progression 

Percent Arrival on 

Green 
% 

Types 3, 4, 5, 

6 

Approach-

Level* 
- 

Platoon Ratio - 
Types 3, 4, 5, 

6 

Approach-

Level* 
- 

Occupancy Time Seconds Types 2, 4, 6 
Lane-

Level 
✓ 

Split Failure Count Types 2, 4, 6 
Lane-

Level 
- 

Pedestrian Delay Seconds - 
Phase-

Level 
- 

Safety 

(Time) Headway  Seconds 
Types 3, 4, 5, 

6 
Approach-

Level* 
✓ 

Conflict (Vehicle-

Vehicle) 
Count 

Types 3, 4, 5, 

6 
Approach-

Level* 
✓ 

Red Light Running 

(Flag)** 

Binary 

Count (0 

/ 1) 

Types 2, 4, 6 
Lane-

Level 
- 

Pedestrian-Vehicle 

Conflict Propensity*** 

Numeric 

(0-1) 
Types 2, 4, 6 

Phase-

Level 
- 

*Resolution at the phase and lane levels is feasible; however, approach-level resolution offers the highest accuracy. 

**Approximate estimation. 

***Determined using pedestrian exposure and vehicle exposure during pedestrian activity duration  
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5.2. Exploratory Data Analysis and Safety Scoring 

In this chapter, we provide an overview of the exploratory analysis carried out on the 

performance measures to gain insights necessary for making recommendations on the six metrics  

for the selected intersections.  

5.2.1. Data Aggregation 

The performance measures were calculated from controller event log data at a cycle-level 

temporal resolution. While this resolution is highly effective for capturing the nuances of Signal 

Phasing and Timing (SPaT) and traffic conditions at intersections, understanding broader temporal 

patterns requires data aggregation over longer intervals. To gain insights into these patterns, the 

data was aggregated at 15, 30, 45, and 60-minute intervals. 

5.2.2. Data Analysis 

In Task 3, we primarily relied on performance measures aggregated at 60-minute intervals 

(i.e., hourly temporal resolution) to provide hourly recommendations on the six metrics. Therefore, 

this section mainly focuses on presenting the hourly trends and distributions of the various 

calculated measures. Along with the trends, 95% confidence intervals are shown to account for the 

variability in the data. The confidence intervals are calculated under the assumption that the 

sampling distribution of the mean is approximately normal. This assumption is valid given our 

sufficiently large sample size (n > 30), which allows the application of the Central Limit Theorem. 

The intervals were computed using Equation 3-1. 

CI = 𝑥̅ ± 𝓏 (
𝑠

√𝑛
) (2-10) 

where 𝑥̅  is the sample mean, 𝓏  is 1.96 for a 95% confidence level (assuming normal 

distribution), 𝑠 is the sample standard deviation, and 𝑛 is the sample size. 
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Although all intersections were analyzed, for clarity, the hourly trends and distributions are 

illustrated for only one study intersection. The intersection at SR436 and Westmonte Drive (Signal 

ID: 1500), as shown in Figure 5-5, were chosen for the presentation of our analysis, as it had the 

most comprehensive detector configuration (see Table A-1), allowing the calculation of almost all 

performance measures, including measures for right-turn lanes. 

  

(a) (b) 

Figure 5-5. Intersection at SR436 and Westmonte Drive (Signal ID: 1500) 

It is important to note that while the temporal resolution for trends and distributions is 

hourly, the spatial resolution follows the phase-specific resolutions outlined in Table 5-3.  
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5.2.2.1. Signal Phasing and Timing (SPaT)-Related Measures 

Figure 5-6 illustrates the hourly variation in cycle length at the intersection of SR436 and 

Westmonte Drive, along with the 95% confidence interval (CI) to capture variability in cycle 

length throughout the day. 

• Between midnight and early morning (12:00 AM – 3:00 AM), cycle lengths are 

significantly high, likely due to low traffic volumes and signal control strategies that 

allocate longer cycles when fewer vehicles are present.  

• A steep increase is observed during the morning peak hours (6:00 AM – 9:00 AM), 

coinciding with increased traffic demand as commuters travel to work.  

• The afternoon and evening period (4:00 PM – 8:00 PM) exhibits relatively stable cycle 

lengths, likely due to consistent traffic demand. However, after 8:00 PM, cycle lengths 

begin to decline, reflecting reduced vehicle volumes and potentially shorter green phases. 

• The confidence interval remains wide during both midnight and morning peak hours, 

indicating greater variability in cycle lengths during these times. This could be attributed 

to irregular traffic patterns, signal control adjustments, or fluctuating vehicle arrivals, 

particularly in low-traffic conditions. 

Overall, this analysis highlights the dynamic nature of traffic signal operations throughout 

the day, with cycle lengths adapting based on time-of-day traffic conditions and operational 

strategies. 
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Figure 5-6. Hourly Trend of Cycle Length 

 

Figure 5-7 presents the hourly variations in signal durations for green, yellow, red 

clearance, and red signals across left-turn (Phases 1, 3, 5, 7) and through phases (Phases 2, 4, 6, 

8). These trends illustrate how signal timings adjust throughout the day to accommodate varying 

traffic conditions. 

 

Green Signal Duration: 

Through phases (Phases 2, 4, 6, 8) generally have longer green times than left-turn phases 

due to higher traffic volumes in the through movement. Among them, Phase 2 exhibits the longest 

green duration, remaining consistently high throughout the day. Phase 5 (left-turn movement) 

shows notable peaks from noon to evening (12:00 PM – 7:00 PM), indicating periods of high left-

turn demand. Phases 4 and 8 (through movements on minor road (refer to Figure 5-5)) show 

relatively low and stable green durations throughout the day. 
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(a) Left-Turn Phases 

 

(b) Through Phases 

Figure 5-7. Hourly Trend of the Duration of Different Signal Types 
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Yellow Signal Duration: 

• Yellow durations typically range between 3–6 seconds for most phases, except between 

midnight and early morning (12:00 AM – 3:00 AM) on major road (Phases 1, 6, 5, and 2). 

• Phases on minor road (Phases 3, 8, 7, and 4) remain constant, showing no variations 

throughout the day. 

Red Clearance Duration: 

• Red clearance durations mostly fall within the expected range of 2–6 seconds, ensuring 

adequate clearance time for vehicles exiting the intersection. 

• After 8:00 AM, red clearance durations for phases on major roads are shorter compared to 

those on minor roadways. 

Red Signal Duration: 

• Left-turn phases (Phases 1, 5, 3, and 7) consistently have longer red durations throughout 

the day, indicating signal priority for through movements. 

• Through phases (Phases 2 and 6) on major roads have the shortest red durations compared 

to all other phases. 

 

5.2.2.2. Vehicle Traffic-Related Measure 

Figure 5-8 presents the hourly trends of vehicle volumes observed during green and red 

signals for each approach at the intersection of SR436 and Westmonte Drive. The figure highlights 

the differences in traffic demand between major (westbound and eastbound) and minor 

(northbound and southbound) road approaches, showing how signal control prioritizes major road 

traffic while minor road movements experience longer red durations. 
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Major Road Approaches (Westbound & Eastbound): 

• The westbound and eastbound approaches, which belong to the major road, exhibit 

significantly higher vehicle volumes, particularly during morning peak hours (7:00 AM – 

9:00 AM) and evening peak hours (4:00 PM – 6:00 PM). 

• Vehicle volumes remain consistently high during green signals, reflecting their priority in 

signal phasing. 

 

Figure 5-8. Hourly Trend of Approach-Level Vehicle Volume 

 

Minor Road Approaches (Northbound & Southbound): 

• The northbound and southbound approaches, representing minor roads, show lower overall 

vehicle volumes compared to the major road approaches. 

• These approaches experience moderate peaks during mid-afternoon hours (3:00 PM – 5:00 

PM). 
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• Unlike the major roads, red signal durations dominate minor road traffic, indicating that 

priority is given to the major road movements. 

• The confidence intervals for red signal volumes in minor road approaches are wider during 

peak hours, suggesting greater variability in waiting vehicles. 

 

Figure 5-9 illustrates the hourly variations in platoon ratio for all approaches at the 

intersection of SR436 and Westmonte Drive, providing insights into traffic flow efficiency and 

signal coordination. The platoon ratio is a measure of traffic progression, where values closer to 

1.0 indicate well-coordinated movement, and values significantly above 1.0 suggest favorable 

conditions with well-formed platoons (refer to Table 5-2). 

 

Major Road Approaches (Westbound & Eastbound): 

• The westbound and eastbound approaches (major roads) consistently exhibit platoon ratios 

between 1.15 and 1.50 during peak hours (7:00 AM – 9:00 AM and 4:00 PM – 6:00 PM), 

indicating favorable progression and efficient signal coordination. 

• Confidence intervals are narrow, reinforcing that traffic progression remains predictable 

and well-regulated on these approaches. 
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Figure 5-9. Hourly Trend of Approach-Level Platoon Ratio 

 

Minor Road Approaches (Northbound & Southbound): 

• The northbound and southbound approaches (minor roads) frequently exhibit platoon ratios 

exceeding 1.50, indicating persistent platoon formations rather than occasional occurrences. 

• Variability in platoon ratio is more distinct during midnight hours, as indicated by the wider 

confidence intervals, likely due to inconsistent vehicle arrivals and lower traffic volumes. 

Figure 5-10 illustrates the hourly variations in phase-level occupancy time during the red 

signal for all approaches at the intersection of SR436 and Westmonte Drive. The occupancy time 

in the figure represents the average of the hourly mean occupancy across all lanes within a given 

phase, providing a comprehensive measure of vehicle presence and queuing during red signal 

periods. 



 

121 

 

(a) Eastbound Approach (Major Road) 

 

(b) Westbound Approach (Major Road) 

 

(c) Southbound Approach (Minor Road) 

 

(d) Northbound Approach (Minor Road) 

Figure 5-10. Hourly Trend of the Phase-Level Occupancy Time During Red 
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Major Road Approaches (Eastbound & Westbound): 

• The eastbound and westbound approaches (major roads) exhibit higher occupancy times 

during the morning (7:00 AM – 9:00 AM) and evening (4:00 PM – 6:00 PM) peak hours, 

indicating increased vehicle accumulation while waiting for the green signal. 

• Occupancy time trends remain elevated throughout the day, reinforcing the impact of 

sustained traffic demand on major road approaches. 

Minor Road Approaches (Northbound & Southbound): 

• In the northbound and southbound approaches (minor roads), left-turn phases (Phases 3, 

and 7) display slightly lower occupancy times compared to through phases (Phases 8, and 

4). 

While occupancy time was calculated at lane-level resolution (refer to Table 5-3), it is 

presented at phase-level resolution for better clarity and interpretation. All remaining lane-level 

features are also represented at phase-level resolution. 

Figure 5-11 illustrates the hourly variations in split failure across all approaches at the 

intersection of SR436 and Westmonte Drive. Split failure occurs when the allocated green time is 

insufficient to clear the queued vehicles within a phase, leading to unmet demand and potential 

congestion. The figure highlights phase-specific and time-dependent patterns in split failures, 

indicating differences in traffic demand and signal performance across approaches. 
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(a) Eastbound Approach (Major Road) 

 
(b) Westbound Approach (Major Road) 

 
(c) Southbound Approach (Minor Road) 

 
(d) Northbound Approach (Minor Road) 

Figure 5-11. Hourly Trend of the Phase-Level Split Failure (Purdue Standard) 
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Major Road Approaches (Eastbound & Westbound): 

• Phases 1 and 5 (eastbound major road) and Phases 2 and 6 (westbound major road) 

experience the highest split failures, particularly during afternoon and evening peak periods. 

• Split failures in Phase 5 remain elevated throughout the day, indicating consistent traffic 

demand exceeding the allocated green time. 

• Phase 2 exhibits a sharp increase in split failures between 3:00 PM and 6:00 PM, reflecting 

congestion buildup. 

Minor Road Approaches (Northbound & Southbound): 

• Phases 4 and 8 exhibit moderate split failures in the afternoon and evening, likely due to 

left-turn demand exceeding available green time. 

• Phase 3 and 7 show steady but comparatively less frequent split failures. 

Figure 5-12 presents the hourly variations in headway during green and red signals for 

through-moving vehicles at Phase Nos. 2, 4, 6, and 8. Headway, defined as the time interval 

between consecutive vehicles approaching the intersection, serves as an indicator of traffic flow 

efficiency and vehicle interaction patterns across different phases and time of the day.  

Major Road Phases (Phases 2 & 6): 

• Phases 2 and 6, representing major road approaches, exhibit shorter headways during peak 

hours (6:00 AM – 9:00 AM and 4:00 PM – 6:00 PM), indicating higher traffic demand and 

reduced spacing between vehicles. 

• The shorter headways during peak periods suggest a well-utilized green signal, as vehicles 

arrive in denser formations, minimizing gaps between consecutive vehicles. 

• Between midnight and early morning (12:00 AM – 3:00 AM), headways during green are 

very high, reflecting lower demand and more dispersed vehicle arrivals. 
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Figure 5-12. Hourly Trend of the Phase-Level Headway 

Minor Road Phases (Phases 4 & 8): 

• Phases 4 and 8, representing minor road approaches, consistently exhibit higher headways 

than major road phases throughout the day, reflecting lower traffic volumes, less frequent 

vehicle interactions, and larger gaps between consecutive arrivals. 

• Headway variations during midnight and early morning hours are more distinct, as 

indicated by wider confidence intervals, likely due to irregular vehicle arrivals in low-

demand conditions. 

• Headway variations during midnight and early morning hours are more distinct, as 

indicated by wider confidence intervals, likely due to irregular vehicle arrivals in low-

demand conditions. 
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Figure 5-13 illustrates the hourly variations in traffic conflicts occurring during green and 

red signals across different phases. The trends highlight temporal and phase-specific differences 

in conflict occurrences throughout the day. 

 

Figure 5-13. Hourly Trend of the Phase-Level Conflict 

Major Road Phases (Phases 2 & 6): 

• Phases 2 and 6 (major road approaches) experience the highest number of conflicts during, 

particularly between 6:00 AM and 9:00 AM, and 4:00 PM and 7:00 PM, suggesting 

increased interaction among vehicles during the morning and evening peak periods. 

• No. conflict during red remain low throughout the day. 

Minor Road Phases (Phases 4 & 8): 

• Conflicts during red signals are relatively infrequent, but Phase 4 exhibits a gradual 

increase during midday, followed by a subsequent decline. 
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Figure 5-14 illustrates the hourly variations in red light running (RLR) flags, which 

represent the number of signal cycles with red light violations across different approaches. The 

trends reveal temporal and directional variations in RLR activity, highlighting peak periods and 

potential safety concerns. 

Eastbound Approach (Major Road): 

• Significant RLR activity is observed for Phase 1 in the afternoon hours, peaking between 

3:00 PM and 5:00 PM. 

• For Phase 6, RLR activity peaks in the morning around 8:00 AM, indicating potential 

morning rush-hour congestion or aggressive driver behavior during peak commuting times. 

Following this peak, RLR occurrences decline but gradually rise again in the evening, 

though at a lower intensity compared to the morning. 

 
(a) Eastbound Approach (Major Road) 

 
(b) Westbound Approach (Major Road) 
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(c) Southbound Approach (Minor Road) 

 
(d) Northbound Approach (Minor Road) 

Figure 5-14. Hourly Trend of the Phase-Level Red Light Running Flag 

 

Southbound Approach (Minor Road): 

• For Phase 3, RLR occurrences gradually increase from 5:00 AM to 10:00 PM, indicating 

a steady rise in violations throughout the day. 

• Phase 8 exhibits persistent RLR trends throughout the day, indicating frequent violations, 

possibly due to long red signal durations or turning movement conflicts. 

 

5.2.2.3. Pedestrian Traffic-Related Measures 

Figure 5-15 illustrates the hourly variations in pedestrian activity indicator across all 

pedestrian phases at the intersection of SR436 and Westmonte Drive. The pedestrian activity 

indicator is represented as a binary measure (0 or 1) per signal cycle, where 1 indicates pedestrian 

presence and 0 indicates no pedestrian presence. This method serves as a proxy for pedestrian 
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activity, as ATSPM detectors only capture whether an actuation (e.g., a push button press) 

occurred, rather than the actual number of pedestrians crossing. The key observations are: 

• Morning Peak (7:00 AM – 9:00 AM): Pedestrian activity increases steadily for Phases 4 

and 8, indicating higher pedestrian demand during early commuting hours. 

• Evening Peak (5:00 PM – 8:00 PM): A second significant increase in pedestrian presence 

is observed across all phases, aligning with commute times and recreational movement. 

• Late Night (After 9:00 PM): Pedestrian activity gradually declines, suggesting minimal 

pedestrian demand during late-night hours. 

 

Figure 5-15. Hourly Trend of the Phase-Level Pedestrian Activity Indicator 
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Figure 5-16 illustrates the hourly variations in pedestrian delay across all pedestrian phases 

at the intersection of SR436 and Westmonte Drive. Pedestrian delay represents the waiting time 

experienced by pedestrians before receiving a walk signal, which is influenced by signal phasing, 

vehicle demand, and pedestrian actuation requirements. The key observations are: 

• Morning Hours (6:00 AM – 10:00 AM): Pedestrian delays remain relatively low, with 

gradual increases observed as traffic demand builds. 

• Midday Period (11:00 AM – 2:00 PM): Phase 6 experiences its highest pedestrian delay 

around 1:00 PM, suggesting possible delays due to signal timing prioritization for vehicular 

movements. 

• Afternoon and Evening Peak (3:00 PM – 7:00 PM):Phases 2 and 4 exhibit increasing 

pedestrian delays, peaking around 5:00 PM, reflecting higher vehicle demand and extended 

pedestrian waiting times. Phase 8 shows relatively stable pedestrian delay throughout the 

day, with moderate peaks observed in the evening hours. 

 
Figure 5-16. Hourly Trend of the Phase-Level Pedestrian Delay 
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5.3. Yellow and Red Clearance Time Adjustment 

5.3.1. Current Standard and Background 

Yellow and Red Clearance phases are typically timed using kinematic equations reliant on 

assumed driver behaviors, such as reaction time and approach speed, as outlined in the FDOT 

TEM. Equations 4-1 and 4-2 define the yellow and red clearance signal duration. 

𝑌 = 𝑡 +
1.47𝑣

2(𝑎 + 𝐺𝑔)
 (4-1) 

𝑅 =
𝑊 + 𝐿

1.47𝑣
 

(4-2) 

Notions & Definitions: 

•  𝑌 = yellow signal duration (seconds), 

•  𝑡 = perception-reaction time (1.4 seconds), 

•  𝑣 = approach speed of the vehicle (mph), 

• 𝑎 = deceleration rate in response to the yellow signal (10 ft/sec²), 

• 𝑔= acceleration due to gravity (32.2 ft/sec²), 

• 𝐺= grade percentage (positive for uphill, negative for downhill). 

• 𝑅 = red clearance signal duration (seconds), 

• 𝑊 = intersection width (feet), measured from the near-side stop line to the far edge of the 

conflicting traffic lane along the actual vehicle path, 

• 𝐿 = vehicle length (20 feet), 

Signal length is primarily determined by approach speed and intersection width, as default 

values are unavailable, and most roads in Florida have no grade. This study obtained speed limit 
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data from the FDOT Sunstore and manually measured intersection width using Google satellite 

imagery to assess whether current red clearance durations meet the standard. Appendix A-2 

presents the FDOT TEM recommendations for yellow and red clearance phase durations alongside 

the observed distribution. The analysis revealed that while most intersections adhered to the yellow 

time standard, red clearance durations frequently did not meet the recommended values. 

Meanwhile, assumptions on those parameters, such as approach speed as speed limit and 

fixed reaction time across drivers, often diverge from real-world conditions, sometimes leading to 

poorly calibrated signals that either sacrifice efficiency for safety or vice versa (Jerome et al., 

2022). Also, these parameters are not available in the current study site's detector configuration. 

With growing urban traffic volumes, optimizing the duration of these transition phases demands a 

paradigm shift from integrating high-resolution behavioral data to replacing assumptions.  

This study bridges this gap by applying causal forest to isolate the impact of signal 

adjustments while controlling for variables like traffic volume and platoon ratio. Although 

dynamic yellow time is neither feasible nor permitted in Florida, this study evaluates the potential 

effects of implementing dynamic yellow time on intersection safety. Results reveal an adaptive 

signal adjustment technique for the yellow and red clearance phases that reduces conflict rates at 

these phases by up to 6% and 7%, respectively. By aligning signal timing with observed driver 

behavior rather than idealized assumptions, this work provides a scalable framework for FDOT to 

enhance intersection safety through a data-driven approach.   
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5.3.2. Algorithm 

5.3.2.1. Calculation of Conflict Rate Per Vehicle  

We assumed that signal adjustments only affects the yellow and red clearance signals since 

adjusting the yellow and red clearance signals is unlikely to have an effect on the green and red 

times because the effect dilutes over time. For yellow we only tested increasing the phase, while 

for red clearance time we tested both an increase or decrease. The frequency of conflicts during 

the yellow and red clearance phase is influenced by factors such as yellow duration, traffic volume, 

and the number of lanes. However, monitoring only the frequency of conflicts for signal 

adjustment has several drawbacks. For example, extending the yellow duration tends to increase 

conflicts, often falsely rendering the increasing signal duration less effective at most intersections. 

Likewise, reducing the yellow duration decreases conflicts, primarily due to a shorter time window 

for conflicts to occur. An analysis based solely on conflict frequency indicates that risks are 

concentrated during peak traffic hours, and it largely ignores nighttime. Therefore, it is essential 

to account for exposure when analyzing these patterns.  

This study addressed this issue by calculating the conflict rate per vehicle (𝐶𝑅𝑃𝑉), referred 

to as the conflict rate for simplicity. This metric represents the proportion of vehicles involved in 

conflicts relative to the total number of vehicles passing through during yellow signal phases. 

Accordingly, the traffic conflict rate per vehicle at a particular phase 𝑖 (𝐶𝑅𝑃𝑉𝑖) is defined via 

Equation 4-1: 

𝐶𝑅𝑃𝑉𝑖 =
𝑇𝐶𝑖

𝑉𝑖
=

∑ 1(𝑇𝐻𝑗 ≤ 2)𝑗∈𝑃𝑖

∑ 1 (𝑡𝑜𝑛
𝑗

< 𝑡𝑜𝑓𝑓
𝑗

)𝑗∈𝑃𝑖

 (4-1) 
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where 𝑃𝑖  represents the set of time headway instances during phase 𝑖 . The indicator 

function 1(𝑇𝐻𝑗 ≤ 𝛿) equals 1 if the condition 𝑇𝐻𝑗 ≤ 𝛿 is satisfied, and 0 otherwise. 𝑉𝑖 denotes 

the traffic volume during phase 𝑖. Here, this study used 2 seconds as the threshold to obtain enough 

observations for modeling and inference. Also, the time headway is calculated using the setback 

detector, meaning it only considers conflicts that occur on one approach. As a result, this study 

monitors the conflict rate per vehicle at the yellow and red clearance phases that occurred 

downstream of the intersection for signal adjustment. 

 

5.3.2.2. Conflict Rate Estimation Models 

This study employed three tree-based machine learning algorithms—Random Forest (RF), 

Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost)—to estimate traffic 

conflict rates. These models were selected for their ability to capture non-linear relationships 

inherent in traffic dynamics while addressing challenges such as overfitting and data sparsity. 

Random Forest, a bagging ensemble method, constructs multiple decision trees using 

bootstrapped subsets of the data and aggregates predictions through majority voting. This approach 

reduces overfitting by diversifying errors across individual trees, rendering RF robust to noise and 

suitable for high-dimensional datasets. In contrast, AdaBoost, a boosting technique, iteratively 

trains weak learners such as shallow decision trees by reweighting misclassified instances. While 

computationally efficient for simpler datasets, AdaBoost’s sensitivity to noisy data and lack of 

regularization limit its applicability to complex tasks. Extreme Gradient Boosting (XGBoost), a 

state-of-the-art boosting framework, optimizes loss functions via gradient descent and incorporates 

L1/L2 regularization to penalize model complexity. XGBoost leverages parallel processing to 
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handle missing values effectively, though its performance depends heavily on careful 

hyperparameter tuning. 

Tree-based algorithms were chosen for their capacity to model non-linear interactions, such 

as the combined effect of traffic volume and yellow signal duration while accommodating mixed 

data types. Their inherent interpretability, when augmented with explainability techniques, aligns 

with the study’s dual objectives of predictive accuracy and acquisition of insight for using causal 

forest. 

To address the black-box problem of machine learning models, Shapley Additive 

exPlanations (SHAP) were applied to quantify feature contributions using principles from 

cooperative game theory. SHAP values reveal the directionality (positive or negative influence) 

and magnitude of variables such as yellow duration or lane count, while also revealing non-linear 

interactions. A cumulative feature importance threshold of 70% was adopted to mitigate overfitting, 

discarding noise-prone covariates. 

Figure 5-17 presents the top 10 features that significantly influence the estimation of 

conflict rate per vehicle during the yellow phase. The bar graph shows the percentage of total 

feature importance. The label format was “Phase_Feature_Direction_Movement(Lane)”. For 

example, “Yellow_Volume_Forward_Through(T)” represents the Volume of forward direction in 

the through movement during the yellow phase recorded at the through (T) lane.  The shared lane 

with the through and right-turn lane is recorded as TR. As a result, conflict rates per vehicle during 

the yellow and red clearance period were most correlated to the volume of vehicles passing through 

the intersection during the yellow phase. 
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Figure 5-17. Top 10 Feature Importance 

 

The dataset was partitioned into training and testing subsets at an 80:20 ratio to ensure 

robust validation. Hyperparameter optimization was conducted via grid search, which 

systematically evaluated predefined parameter spaces to identify combinations maximizing model 

performance on test data. Key hyperparameters included the number of estimators, maximum tree 

depth, and learning rate. Table 5-4 presents the grid search results, displaying alternatives, with 

the selected value shown in bold.  
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Table 5-4. Hyperparameter Options and Selected Parameters 

Model 
Parameter 

No. of estimators Max Tree Depth Learning Rate 

AdaBoost 50, 100, 200 - 0.001, 0.01 

RF 50, 100, 200 5, 10 - 

XGBoost 50, 100, 200 5, 10 - 

 

Table 5-5 presents a comparison of models estimating the conflict rate per vehicle 

occurring during the yellow and red clearance phase of through movements. To ensure 

comparability, consistent hyperparameter search procedures and feature sets were applied across 

all models. Among these, XGBoost exhibited the best performance, achieving an R-squared value 

of 0.457. Consequently, the subsequent analysis uses XGBoost to estimate the baseline and 

treatment effect of the causal forest, as it provided the highest accuracy. 

Table 5-5. Model Performance of Different Models 

Performance 

measure 

Models 

Random Forest AdaBoost XGBoost 

R-square 0.453 0.366 0.457 

MAE (%) 1.45 1.64 1.50 

RMSE (%) 5.70 6.14 5.68 
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5.3.2.3. Causal Forest 

This study employs the causal forest algorithm to estimate heterogeneous treatment effects 

(HTEs) across multiple signalized intersections. The causal forest partitions the feature space by 

selecting splits that maximize treatment effect heterogeneity while simultaneously promoting a 

covariate balance between treatment and control groups. To reduce overfitting and enhance 

credibility, this study uses the “honesty” approach, which involves using separate samples for tree 

construction and effect estimation. This dual-sample approach ensures that splits are selected based 

on one part of the data and treatment effects are estimated on an independent subset. The HTE (𝜏) 

represents the impact of a treatment 𝑇′ on an outcome 𝑦 and is defined as Equation 4-2: 

𝜏 = 𝑦(𝑇′) − 𝑦(𝑇0) (4-2) 

where 𝑦(𝑇0)  and 𝑦(𝑇′)  denote the outcomes under control and treatment conditions, 

respectively. In this study,  𝑇0 represents the initial treatment level. To simulate signal timing 

adjustments, a treatment adjustment factor Δ𝑇 is introduced, modifying the treatment level (𝑇′) as 

shown in Equation 4-3. 

𝑇′ = 𝑇0 + Δ𝑇 (4-3) 

The adjustment of treatment is determined by the observed signal durations, with the 

objective being to enhance the reliability of the treatment effect and to ensure that durations remain 

within the permitted range. In certain cases, The causal forest’s treatment effect makes a conflict 

ratio fall below zero (i.e., 𝜏 + 𝑦(𝑇0) < 0 ). This often occurs when the predictive model 

extrapolates to unobserved values, which is not feasible and requires correction. To address this, 

the treatment effect is adjusted by setting 𝜏 = −𝑦(𝑇0) in such instances, as expressed in Equation 

4-4.  
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𝜏̂ = max (𝜏, −𝑦(𝑇0)) (4-4) 

This adjustment ensures that the conflict rate remains non-negative after the treatment is 

applied. By incorporating this post-processing step, the analysis avoids overestimating the 

treatment's impact, thereby providing a more conservative estimate of the recommendation's 

effectiveness. The Conditional Average Treatment Effect (CATE), given a set of features 𝑥 is 

expressed as Equation 4-5. 

𝜏(𝑥) = 𝐸(𝜏̂|𝑥) (4-5) 

This formulation enables the causal forest to estimate treatment effects that are specific to 

varying conditions, capturing the interactions between features and outcomes. Additionally, the 

CATE was adjusted to ensure that the conditional average conflict rate after treatment remains 

non-negative, preventing any overestimation of the CATE. This adjustment are presented in 

Equation 4-6. 

𝜏̂(𝑥) = max (𝜏(𝑥), −𝐸(𝑦(𝑇0)|𝑥) (4-6) 

The framework explicitly models the shift from  𝑇0  to 𝑇1
′ , enabling the estimation of 

outcome changes under hypothetical interventions. This estimation approach is grounded in the 

ignorability assumption, which posits that treatment assignment is independent of potential 

outcomes, given the observed covariates. In addition, the Causal Forest relies on variability in the 

data to produce reliable estimates of treatment effects. The method assumes a sufficient level of 

data variability and covariate balance between treatment and control groups. A lack of these 

conditions can undermine the accuracy and reliability of the estimated treatment effects. 

Intersections with fixed signal durations typically lack the necessary variation for meaningful 

analysis. In this study, however, variability is introduced through occasional deviations in signal 



 

140 

timing, such as those caused by vehicle detection system activations. These fluctuations provide 

the variability required for the Causal Forest to estimate the effects of signal timing adjustments 

effectively. Therefore, the selection of signal adjustment candidates is informed by observed signal 

durations. 

 

5.3.2.4. Signal Adjustment Recommendation  

Figure 5-18 shows the proposed recommendation system for yellow and red clearance 

signal duration adjustment based on the causal forest. The algorithm begins by calculating various 

performance measures from raw high-resolution event-based data and aggregates them by phase 

level. The data is then split into training and test sets. The training set is fed into a modeling process 

to learn key relationships between conflict ratio per vehicle and signal duration. Multiple models 

are explored, with model selection performed by comparing performance metrics on the test set. 

Once the best model is chosen, a causal forest is trained to understand how proposed signal 

adjustments (treatments) would affect different intersections at different times. Causal forests 

provide heterogeneous treatment effect estimates, indicating how each intersection is likely to 

respond to each candidate signal duration. This approach captures variations across traffic signal 

IDs, times of day, and whether it is a weekend or weekday, rather than relying on a one-size-fits-

all timing plan.  

Signal adjustment candidates are identified by analyzing the distribution of yellow and red 

clearance phases to enable accurate treatment estimation. Each candidate is assessed using a causal 

forest, which provides estimates of HTEs. In this study, these effects were calculated by varying 

the duration within specified ranges in 0.1-second increments. The results were averaged to 
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compute the CATE for each subgroup. The CATE for a given subgroup determines the 

recommended signal duration. 

 

Figure 5-18. Recommendation System for Yellow and Red Clearance Signal Duration 

The reliability of these estimates depends on subgroup size. Small subgroups may produce 

unreliable averages, while large subgroups may overlook critical environmental variations, such 

as changes in traffic conditions. To address this, CATE values were calculated for each intersection, 

for every hour, and separately for weekdays and weekends. This ensures adequate sample sizes 

while accounting for temporal variations, intersection-specific characteristics, and 

weekday/weekend differences. The optimal signal duration is identified by selecting the candidate 

with the lowest conflict rate per vehicle during the transition phase. Finally, the algorithm set the 

recommended adjustments for the yellow signal duration to 0 if the systems recommend reducing 

it, which is in line with current FDOT standards. This method integrates data-driven modeling, 

hypothesis testing, and causal inference to enable iterative refinement of traffic signal control 

strategies. 
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5.3.3. Recommendation Results 

5.3.3.1. Yellow and Red Clearance Duration Candidates 

The proposed algorithm requires a reasonable number of observations for reliable 

estimation, so the candidates should be investigated based on the observed frequency. Figure 5-19 

shows the duration of yellow and red clearance times observed in the collected data. The figure 

shows that most cycles are operated with 4-6 seconds for yellow and 2-4 seconds for red clearance. 

This range ensures that recommended durations do not deviate excessively from existing guidelines. 

Therefore, this study chose this range as a candidate for recommendation. 

 

Figure 5-19. Observed Yellow and Red Clearance Durations.  
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5.3.3.2. Conditional Average Treatment Effect 

In this study, CATE denotes the average conflict rate that changes when all observations 

of a given condition (intersection, time of day, weekend or not) are fixed to a certain duration. 

Figure 5-20 presents the CATE of adjustments to yellow and red clearance signal duration, 

evaluated for different times of the day and weekends.  

The effect of adjustments was identified in increments of 0.1 seconds within the specified 

phase duration ranges. Blue regions represent conditions where the adjustments are expected to 

reduce conflicts per vehicle during the transition phase, while red regions denote an anticipated 

increase. The duration with the lowest value in this contour will have the lowest conflict rate per 

vehicle among the candidate durations and is therefore recommended. At the study sites, adjusting 

signal duration to a fixed duration typically increased the conflict rate per vehicle in the transition 

phase, as the smallest durations are found around the average observed duration. This can be 

attributed to the flexibility of the signal's internal algorithm to adjust the signal based on the 

vehicle's detection information.  In such situations, signal adjustments are not only unnecessary 

but, as demonstrated by the analysis, may inadvertently contribute to a rise in the conflict rate. 
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Figure 5-20. Conditional Average Treatment Effect of Yellow (a) and Red Clearance (b) 
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Figure 5-21(a) presents the recommended durations for yellow and red clearance signals 

at each intersection, differentiated by time of day and weekday versus weekend, based on the 

contour data shown in Figure 4-4. For most intersections, the current duration was recommended 

because adjusting signal lengths was projected to increase conflict rates in the majority of cases. 

This duration scheme is recommended as the default setting for intersections, with the possibility 

of incorporating variability based on their internal algorithms. Introducing variability allows for 

observing driver responses to different signal lengths, which can aid in refining future algorithms 

by providing diverse data. This approach supports the estimation of treatment effects for 

subsequent signal adjustments. As additional data on similar signal durations is collected, the 

reliability of the adjustment algorithm is expected to improve. 

Figure 5-21(b) shows the effect of the recommendation system, comparing the CATE of 

the current average duration and that of the minimum duration. It shows the expected percentage 

reduction in the conflict rate compared to the traditional system. It was estimated that the reduction 

in conflict rate would be mainly concentrated during the daytime when traffic is high and conflicts 

are common. The CATE of the proposed recommendation system is expected to be negative 

because the recommendation system selects the duration that results in the lowest conflict rate 

from a range of candidates. This feature ensures that the algorithm continuously improves safety 

with each update. 
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Figure 5-21. Recommended Duration (a) and Corresponding Conditional Average 

Treatment Effect (b) 

 

As these recommendations are data-driven and based on a complicated framework, the specific 

factors influencing these values remain uncertain. Thus, signal adjustments should be limited to a small 

set of candidate durations, including the existing range of duration. Gradual adjustments to the yellow 

signal are particularly critical to ensure drivers have adequate time to adapt. This study provides 

recommendations based on individual intersections and specific hours of the day. When signal timing 
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varies between weekdays and weekends, the average value is recommended. In addition, the yellow 

and red clearance duration for opposing intersections is set to be the same when the recommendation 

is provided. Detailed recommended durations by intersection are attached in Table A-3 and Table 

A-4. 

Tables A-2 and A-3 present the recommended adjustments to the current duration values. 

However, optimizing each signal timing must comply with the constraints outlined in local traffic 

signal manuals, which may vary based on vehicle actuation events. If the recommended duration falls 

outside this range, it must be adjusted accordingly. For instance, Florida specifies that yellow and red 

clearance durations should not exceed six seconds. Therefore, if an intersection's current yellow signal 

length is 5.9 seconds and an addition of 0.3 seconds is recommended, it should be adjusted to six 

seconds to remain within the specified limits.  
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5.4. Choice of Protected vs Permitted Left turn 

5.4.1. Algorithm 

5.4.1.1. Calculation of Gap from Stopbar Detector 

The Signalized Intersections Informational Guide (2013) and the Highway Capacity 

Manual (HCM) 2022 provide detailed criteria for determining when left-turn phasing is 

appropriate at intersections using the volume of left-turn and through movements. However, this 

study recommends the protected left turn using a gap-based method to focus on safety.  FDOT 

TEM standards utilize critical gap values to determine the need for a protected left-turn phase. 

Critical gap estimation requires the observation of both accepted and rejected gaps, which cannot 

be directly obtained in this study. Instead, the gap between opposing through movements is used 

to assess left-turn safety and recommend a protected left-turn. Figure 5-22 illustrates a scenario 

involving two consecutive vehicle detections. 

 

Figure 5-22. Gap Calculation Method 
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A gap is defined as the time interval between the exit of the first vehicle's rear from the 

detector (𝑡2̂) and the entry of the second vehicle. 𝑡2̂ is not directly observable, as it depends on 

detector length and vehicle speed. (Equation 5-1) defines the gap in this scenario. 

𝐺𝑎𝑝 =  𝑡4 − 𝑡2̂ = 𝑡4 − (𝑡3 −
𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝑣1
)  (5-1) 

While the effect of detector length is negligible when detector length (𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟) is short, 

and speed is fast, but a short detector near the stop line is unavailable in Seminole County. If the 

detector length is 40 feet, which is the typical length of a stopbar detector, and the vehicle speed 

is 25 mph, the difference is approximately 1.1 seconds. Therefore, this study considered 

detectors and approach speeds, which are assumed to be speed limits.  

Gaps detected by individual detectors should not be used because left-turning vehicles 

interact with vehicles across all conflicting lanes. When multiple detection channels span multiple 

lanes, they are synchronized within a single detector. Specifically, only the first and last detection 

events from the vehicle platoon are considered, even if the vehicles are in different lanes. This 

approach is equivalent to using a single detector covering multiple lanes. Figure 5-23 illustrates 

an example of a synchronized channel. 

 

Figure 5-23. Example of Synchronized Channel 
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5.4.1.2. Left-turn Volume Estimation using Stopbar Detector 

Protected left-turn recommendations depend on accurate left-turn traffic measurements, 

which typically require short detectors at the near stop lines. Since these detectors are not available 

in Seminole County, we developed an alternative approach to estimate traffic volume using 

occupancy data from stopbar detectors. The stopbar-based method enables more scalable estimates 

of left-turn volume since most intersections with ATSPM systems have stopbar detectors installed 

on a lane-by-lane basis. Estimating left-turn volume requires an assumed saturation flow rate and 

effective green time because stopbar detectors do not directly measure vehicle counts. Additionally, 

this method is applicable only to intersections with protected left-turn phases.. The left-turn 

volume at phase 𝑖 (𝑉𝑖
𝑙𝑒𝑓𝑡

) is determined via (Equation 5-2): 

𝑉𝑖
𝑙𝑒𝑓𝑡

= 𝑄 ∙ Occupancy Ratio𝑖 ∙ Effective green𝑖 ∙ No. of lane

≈ 𝑄 ∙ ( ∑ Occupancy𝐺,ℓ𝑙𝑒𝑓𝑡
+ Occupancy𝑌,ℓ𝑙𝑒𝑓𝑡

ℓ𝑙𝑒𝑓𝑡

− 𝑇𝑙)  
(5-2) 

In this equation, Q represents the saturation flow rate for left-turning vehicles  (veh/sec). 

Occupancy𝐺,ℓ𝑙𝑒𝑓𝑡
 and Occupancy𝑌,ℓ𝑙𝑒𝑓𝑡

 denote the occupancy duration during the green and 

yellow phases at the left-turn lane (ℓ𝑙𝑒𝑓𝑡), respectively. 𝑇𝑙 refers to the lost time. 

 For validation of this approach, this study uses manually collected turning movement data 

managed by FDOT. The data records traffic volumes for left-turn, through, right-turn, and U-turn 

movements over eight hours, including peak hours, to support signal phase and timing decisions 

at most intersections. This study multiplies hourly traffic volume by the cycle length to calculate the 

left-turn volume per cycle. This study linearly interpolates missing hours due to recorder breaks and 

excludes unobserved hours. We compared this traffic with the traffic obtained through Equation 5-1 
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to find the optimal saturation flow rate and lost time. Figure 5-24 shows optimization results using 

observed turning movement data collected by FDOT. This study uses a total of 70,616 cycles for 

optimization and observed an RMSE of 6.45 veh per cycle. As a result, this study uses 1,160 veh/hr 

for saturation flow rate and 0 sec for loss time.  

 

Figure 5-24. Optimization Results of Saturation Flow and Lost Time. 
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5.4.1.3. Recommended algorithm 

The critical gap and follow-up gap determine the number of vehicles that can safely 

complete a left turn, referred to as the allowable left-turn volume (ALV). Let 𝑃𝑖
𝑔𝑎𝑝

 represent the 

set of gaps during phase 𝑖, where 𝑃𝑖
𝑔𝑎𝑝

= {𝑔1,  𝑔2,  … , 𝑔𝑘}, the ALV of the opposing left-turn 

approach is defined by (Equation 5-3).  

𝐴𝐿𝑉 = ∑ ⌊
𝑔 − 𝑔𝑎𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑔𝑎𝑝𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝
+ 1⌋

𝑘 

𝑔∈𝑃
𝑖
𝑔𝑎𝑝

  (5-3) 

where ⌊𝑥⌋ is the floor function, which returns the largest integer less than or equal to 𝑥.  

The critical gap (𝑔𝑎𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) and follow-up gap (𝑔𝑎𝑝𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝) are set to 4.5 and 2.5 sec, based on 

the default values in the HCM 2022. Figure 5-25 shows examples of average ALV per cycle, 

aggregated on an hourly basis. 

  

Figure 5-25. Examples of Allowable Left-turn Volume  
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When the ALV is lower than the left-turn demand, vehicles are exposed to unsafe left-turn 

movements, and therefore, the permissive phase should be avoided. This study recommends a 

protected left-turn phase when the probability of hours where the ALV falls below the left-turn 

demand exceeds 20% within the observed period. The 20% threshold is the sole parameter used in 

the algorithm, though practitioners may adjust it based on specific requirements and contextual 

factors.  Figure 5-26 shows examples of average hourly ALV and left-turn volume of westbound (WB) 

and eastbound (EB) of intersection 1500 and 1555. For example, both intersections 1500 and 1555 

have higher ALVs than left turn demand during the early morning hours, practitioner may consider 

switching to permissive during these hours.  

 

Figure 5-26. Hourly ALV and Left-turn Volume  
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5.4.2. Recommendation Results 

Recommendations are made at intersections and times of day when left-turning traffic is 

available, and stopbar detectors are available in the opposing approach. In this study, we used data 

from turning movement data where they existed, and data from ATSPM where they did not. Figure 

5-27 shows examples of ALV probability of hours where the ALV falls below the left-turn demand. 

As turning movement observations were conducted from 7:00 to 19:00, the variation in probability 

differences by observation time is not significantly different for each intersection. 

Recommendation results for other intersections are attached in Table A-4. 

 

Figure 5-27. Protected Recommendation Examples  

Although the configuration of detectors in the intersections examined did not support this 

capability, the ATSPM system can estimate accurate left-turn volume when left-lane counting is 

available. Alternatively, a cross-product approach leveraging third-party trajectory data can be 

used to estimate hourly left-turn volume. These approaches will make these recommendations 

available to a wider range of intersections.  
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5.5. Pedestrian Recall 

At signalized intersections, pedestrian phases can be configured as either recall or push-

button actuated. Pedestrian recall (PR) is a signal control strategy where pedestrian phases are 

automatically activated during every cycle without requiring push-button activation. This chapter 

presents the algorithm and results for recommending PR at the selected signalized intersections 

based on performance measures. 

5.5.1. Algorithm 

Pedestrian recall (PR) is often implemented during periods of high pedestrian demand. We 

analyze pedestrian presence probability at intersections to develop an algorithm that identifies the 

most critical hours for each pedestrian phase necessitating PR implementation at selected 

signalized intersections. The algorithm applies a three-step process: 

• Calculation of Pedestrian Presence Probability: Calculate pedestrian presence 

probability using pedestrian activity indicator. 

• Identification of Critical Hours: Determine the critical hours for PR implementation 

based on calculated pedestrian presence probability. 

• Pedestrian Recall (PR) Recommendation: Recommend PR implementation for the 

identified critical hours of each pedestrian phase. 

 

5.5.1.1. Calculation of Pedestrian Presence Probability  

Pedestrian presence probability (𝑃𝑃𝑃) represents the likelihood that a given signal cycle 

will have pedestrian presence. In other words, 𝑃𝑃𝑃 is the probability that at least one pedestrian 

actuation (button press or detector activation) occurs within a cycle, making it a key measure for 
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determining pedestrian demand at intersections. A straightforward method to estimate 𝑃𝑃𝑃 is using 

the observed proportion of cycles with pedestrian presence (Equation 6-1): 

𝑃𝑃𝑃 =
∑ Cycles with Pedestrian Presence per Hour

∑ Cycles per Hour
 (6-1) 

While this method provides a direct estimate, it does not account for variability in 

pedestrian arrivals across different days or under low pedestrian demand conditions. 

 

To better capture day-to-day variability and overdispersion in pedestrian arrivals, a Beta-

Binomial model was used instead of a simple proportion. The Beta-Binomial approach models 

pedestrian presence as a stochastic process, allowing for fluctuations in pedestrian activity across 

different time periods. The probability of pedestrian presence per cycle is estimated using the Beta-

Binomial likelihood function (Equation 6-2): 

𝑃𝑃𝑃 =
𝛼 + 𝑋

𝛼 + 𝛽 + 𝑁
 (6-2) 

where 𝑋 is the number of cycles with pedestrian presence in a given period, 𝑁 is the total 

number of cycles in that period, and (𝛼, 𝛽) are the shape parameters of the Beta prior, learned from 

the data. This formulation ensures that pedestrian presence probability is adjusted for data sparsity 

and provides a more robust and reliable estimate. 

The pedestrian presence probability was calculated at an hourly level. Morever, to quantify 

variability, the 95% confidence intervals were determined using bootstrapping, which involved 

resampling the dataset multiple times. 
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5.5.1.2.  Identification of Critical Hours 

The critical hours for PR implementation correspond to periods with high pedestrian 

presence probability. However, no predefined threshold exists to differentiate between low and 

high pedestrian presence probability. To address this, k-means clustering was applied to the hourly 

aggregated pedestrian presence probability data for all the study intersections, naturally grouping 

the data into two categories: low probability and high probability. 

Critical hours for PR were determined by comparing pedestrian presence probability values 

against the centroid of the high-probability cluster. The decision rule is as follows: 

• If, for a given hour, the lower bound of the pedestrian presence probability exceeds the 

centroid of the high-probability cluster, that hour is considered statistically critical for PR 

implementation. 

It is important to note that, the threshold will dynamically change as more data and 

intersections are added. 

5.5.1.3. Pedestrian Recall (PR) Recommendation 

PR was recommended for a pedestrian phase during hours identified as critical by 

comparing pedestrian presence probability with the centroid of the high-probability cluster.  

5.5.2. Recommendation Results 

Our algorithm was applied to recommend PR across all selected intersections. The 

identification of critical hours for a sample intersection, SR436 and Westmonte Drive (Signal ID: 

1500), based on pedestrian presence probability (𝑃𝑃𝑃), are illustrated in Figure 5-28.  
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(a) Identification of Cluster Centroids 

 

(b) Hourly Average Pedestrian Presence Probability with 95% Confidence Interval 

Figure 5-28. Identification of Critical Hours to Recommend PR (Signal ID: 1500) 

Figure 5-28(a) presents the clustering results of hourly aggregated pedestrian presence 

probability data for all study intersections. The identified threshold for selecting critical hours is 

0.13, which corresponds to the centroid of the high-probability cluster. This threshold indicates 

that a 13% probability of at least one pedestrian actuation (button press or detector activation) 



 

159 

within a cycle is considered critical for PR recommendation. Figure 5-28(b) displays the most 

critical hours for all pedestrian phases at the SR436 and Westmonte Drive intersection (Signal ID: 

1500). PR implementation is required for each phase during its identified critical hours at this 

intersection. 

The PR recommendations for the intersection at SR436 and Westmonte Drive (Signal ID: 

1500) are shown in Figure 5-29.  

 

Figure 5-29. Pedestrian Recall (PR) Recommendations for the Intersection at SR436 and 

Westmonte Drive (Signal ID: 1500) 

 

Comprehensive PR recommendations for all selected intersections are summarized in 

Table A-6 in A. Appendix. 
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5.6. Leading Pedestrian Interval and No Right Turn on Red 

A Leading Pedestrian Interval (LPI) is a signal control strategy that provides pedestrians 

with a short head start (3-7 seconds) to enter the crosswalk and cross the street before a parallel 

green signal for vehicles. This approach reduces potential conflicts between pedestrians and 

turning vehicles by allowing pedestrians to establish their presence in the crosswalk before 

vehicles begin turning. A No Right Turn on Red (NRTOR) restriction complements an LPI by 

prohibiting vehicles from making right-turns during a red light.  

LPI and NRTOR primarily aim to enhance pedestrian safety at intersections by minimizing 

the risk of pedestrian-vehicle conflicts. In this chapter, we present the algorithm and results for 

recommending LPI and NRTOR at the selected signalized intersections based on performance 

measures. 

5.6.1. Algorithm 

Leading Pedestrian Interval (LPI) and No Right Turn on Red (NRTOR) are strategies 

aimed at reducing pedestrian-vehicle conflicts, particularly at intersections, by mitigating the risk 

of collisions involving right-turn vehicles and pedestrians. To recommend LPI and NRTOR 

effectively, it is crucial to have a comprehensive understanding of pedestrian-vehicle conflict risks 

at intersections. 

We propose a three-step framework for recommending LPI and NRTOR at the selected 

intersections: 

• Calculation of Pedestrian-Vehicle (Right-Turn) Conflict Propensity: Calculate conflict 

propensity between pedestrian and right-turn vehicles. 
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• Identification of Critical Hours: Identify the most critical hours for LPI and NRTOR 

implementation using cluster-based thresholding of conflict risk levels. 

• LPI and NRTOR Recommendation: Recommend LPI and NRTOR for the identified 

critical hours specific to each pedestrian phase. 

5.6.1.1.  Calculation of Pedestrian-Vehicle (Right-Turn) Conflict Propensity 

To calculate pedestrian-vehicle conflict propensity, we analyzed the interaction between 

pedestrian and vehicle presence in concurrent pedestrian and vehicle phases at intersections. Our 

approach considers pedestrian exposure (duration of pedestrian activity period), and right-turn 

vehicle exposure (duration of right-turn vehicle presence within pedestrian activity period). The 

pedestrian activity period is defined as the time from the first push-button activation to the end of 

the pedestrian “Clearance” interval. Our algorithm for calculating pedestrian-vehicle conflict 

propensity can be mathematically expressed as (Equation 7-1): 

𝐶𝑃𝑃−𝑉 = ∑ 𝑊ℓ
𝐴𝑑𝑗

× (1 − 𝑒−𝑘×𝐻(𝑃𝑒𝑥𝑝,𝑉𝑒𝑥𝑝,ℓ))

ℓ

 (7-1) 

Notions & Definitions: 

• 𝐶𝑃𝑃−𝑉 : Represents the pedestrian-vehicle (right-turn) conflict propensity for a given 

concurrent pedestrian phase 𝑃 and vehicle phase 𝑉. The propensity score ranges between 

0 and 1, where values closer to 1 indicate a higher propensity of conflict, while values 

closer to 0 represent a lower propensity. 

• ℓ: Denotes each lane within vehicle phase 𝑉 that has right-turn vehicles.  

• 𝑊ℓ: Assumed lane-specific weights based on the contribution of right-turn vehicles: 

𝑊ℓ = 1: Lanes dedicated to right-turns.  

𝑊ℓ = 0.5: Lanes shared between right-turn and either through or left-turn vehicles. 
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𝑊ℓ = 0.33: Lanes shared between right-turn and two other movements (e.g., left and 

through). 

• 𝑊ℓ
𝐴𝑑𝑗

(= 𝑊ℓ ×
𝑊ℓ

∑ 𝑊ℓℓ
): Adjusted lane weight, ensuring each lane maintains its intrinsic 

weight while being distributed proportionally across multiple lanes. 

• 𝑃𝑒𝑥𝑝: Pedestrian exposure in pedestrian phase 𝑃 is defined as the time interval from the 

first push-button activation to the end of the pedestrian “Clearance” interval. 

• 𝑉𝑒𝑥𝑝,ℓ: Vehicle exposure in lane ℓ of vehicle phase 𝑉 (concurrent to pedestrian phase 𝑃), 

defined as the duration a vehicle remains at the stopbar in lane ℓ during the pedestrian 

activity period (𝑃𝑒𝑥𝑝). 

• 𝐻(𝑃𝑒𝑥𝑝, 𝑉𝑒𝑥𝑝,ℓ):  The harmonic mean of pedestrian exposure 𝑃𝑒𝑥𝑝 and vehicle exposure 

𝑉𝑒𝑥𝑝,ℓ, ensuring a balanced contribution:  

• 𝐻(𝑃𝑒𝑥𝑝, 𝑉𝑒𝑥𝑝,ℓ) = {

2×(𝑃𝑒𝑥𝑝×𝑉𝑒𝑥𝑝,ℓ)

𝑃𝑒𝑥𝑝+𝑉𝑒𝑥𝑝,ℓ
, 𝑖𝑓 𝑃𝑒𝑥𝑝 > 0 𝑜𝑟 𝑉𝑒𝑥𝑝,ℓ > 0 

0, 𝑒𝑙𝑠𝑒
 

• 𝑘: A constant decay controlling the diminishing returns applied to the interaction between 

pedestrian and vehicle presence. Higher values of 𝑘 result in faster diminishing returns. 

Diminishing returns were used to account for the decreasing marginal impact of high 

pedestrian and vehicle exposure levels on conflict propensity, ensuring that extreme 

activity values do not disproportionately inflate the calculated propensity. 

The pedestrian-vehicle conflict propensity was calculated at an hourly level. Morever, to 

quantify variability, the 95% confidence intervals were determined using bootstrapping, which 

involved resampling the dataset multiple times. 
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5.6.1.2. Identification of Critical Hour 

LPI and NRTOR are complementary strategies designed to reduce pedestrian-vehicle 

conflicts, and are often implemented simultaneously.  However, there is no universally defined 

threshold of conflict propensity for determining the critical hours requiring their implementation. 

To establish a practical and simple decision criterion, we assume a 50th percentile threshold for 

pedestrian-vehicle conflict propensity. The decision rule is: 

• A specific hour is classified as statistically critical for LPI and NRTOR implementation if 

the lower bound of its pedestrian-vehicle conflict propensity score exceeds the 50th 

percentile. 

It is important to note that practitioners can adjust this threshold based on specific 

requirements and contextual considerations. 

5.6.2. Recommendation Results 

Due to limitations in detector configurations, our algorithm for recommending LPI and 

NRTOR was applied exclusively to intersections with Type 2 and Type 4 configurations (see 

Table A-1). Phases with right-turn lanes lacking detectors were excluded from the analysis. 

The pedestrian-vehicle conflict propensity and clustering results for the intersection at 

SR436 and Westmonte Drive (Signal ID: 1500) are shown in Figure 5-30. This intersection 

includes Type 4 detector configurations on dedicated right-turn lanes for Phase 4 and Phase 8, as 

well as on shared right-turn lanes for Phase 2 and Phase 6. The conflict propensity was calculated 

using k = 0.01 and compared against a threshold score of 0.5 to identify critical hours. 
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Hourly Average Pedestrian-Vehicle (Right-Turn) Conflict Propensity 

Figure 5-30. Identification of Critical Hours to Recommend LPI and NRTOR (Signal ID: 

1500)  

We recommend LPI and NRTOR based on the analysis of identified critical hours. The 

recommendations for the intersection at SR436 and Westmonte Drive (Signal ID: 1500) are 

presented in Figure 5-31(a) displays the LPI recommendation status, while Figure 5-31(b) 

highlights the NRTOR recommendations. 

 

(a) LPI Recommendation 
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(b) NRTOR Recommendation 

Figure 5-31. LPI and NRTOR Recommendations for the Intersection at SR436 and 

Westmonte Drive (Signal ID: 1500) 

 

A comprehensive summary of LPI and NRTOR recommendations for all selected 

intersections with Type 2 and Type 4 configurations (Figure 4-5; Table A-1) can be found in 

Table A-7 and Table A-8 in A. Appendix, respectively. The pedestrian-vehicle conflict propensity, 

which served as the basis for the recommendations across all intersections, was calculated using k 

= 0.01. 

It is important to note that adjusting the value of k will impact the conflict propensity scores: 

increasing k will lead to higher scores, whereas decreasing k will result in lower scores. The final 

dashboard will have the option to tweak this parameter. 

LPI and NRTOR were recommended simultaneously during the critical hours of high 

pedestrian-vehicle conflict propensity, i.e., when lower bound of propensity exceeds 50th 

percentile. 
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CHAPTER 6: System Architecture 

In this chapter, we present the development of the Smart Signal Performance Monitor 

(SSPM) system. The SSPM system integrates three key components: the Transform–Recommend–

Rank (TRR) server, the database server, and the frontend server. A high-level overview of the 

architecture of the SSPM system is depicted in Figure 6-1. This chapter details the role and 

architecture of each component, emphasizing how they work together to deliver accurate and 

efficient safety recommendations for traffic signal operations.  

The system architecture described in this chapter was developed and tested using ATSPM 

data collected from 19 study intersections in Seminole County, Florida, for June 2024 (refer to the 

Task 3 report for additional details). Once fully deployed, the system is expected to automatically 

scrape, process, and analyze SunStore data and deliver actionable safety recommendations to 

FDOT operators to support safer and more efficient traffic operations at intersections throughout 

Seminole County, Florida. 
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Figure 6-1. The architecture of the SSPM System 
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6.1. Transform–Recommend–Rank (TRR) Server 

As the name suggests, the TRR server comprises three core modules, as shown in Figure 

6-2: (1) the transform module, (2) the recommend module, and (3) the rank module. 

 

Figure 6-2. Architecture of the Transform–Recommend–Rank (TRR) Server 

 

6.1.1. Transform Module 

The transform module is the central component of the TRR server, as the accuracy and 

reliability of the recommend and rank modules depend heavily on it. This module processes raw 

ATSPM data, performs data quality checks, and transforms clean, error-free data into cycle-level 

performance measures, including Signal Phasing and Timing (SPaT), volume, occupancy, 

headway, split failures, vehicle-vehicle conflicts, red-light violations, pedestrian activity indicators, 

pedestrian delay, and pedestrian-vehicle conflict propensity. 
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6.1.2. Recommend Module 

The recommend module applies the signal safety enhancement algorithms developed in 

Task 3. Using statistical and machine learning models, such as the Beta-Binomial model, Causal 

Forest, and XGBoost, this module processes performance measures produced by the transform 

module to generate specific safety recommendations. These include interventions like Yellow and 

Red Clearance Time Adjustment, Protected/Permitted Left Turn, Pedestrian Recall, Leading 

Pedestrian Intervals (LPI), and No Right Turn on Red, as specified in the project scope. 

Most recommendations are generated using a binary classification framework (0 or 1) to 

indicate whether a specific safety treatment is warranted. However, the module provides a 

quantitative duration recommendation instead of a binary output for Yellow and Red Clearance 

Time Adjustments. A summary of the performance measures used, the analytical methods applied, 

and the corresponding type of recommendation is provided in Table 6-1. All recommendations 

are computed at three temporal resolutions (15-minute, 30-minute, and 1-hour) for each study 

intersection. Since real-time ATSPM data was not available during development, this module 

performed batch-level analysis on historical data over a defined period. This ensured the statistical 

validity and reliability of the generated recommendations. 

6.1.3. Rank Module 

The rank module ranks all study intersections based on a unified safety score derived from 

multiple standardized performance measures (vehicle-vehicle conflicts, red light violations, and 

pedestrian delay) at the cycle-level resolution. Given that intersections may have varying numbers 

of phases (left-turn or through movements), the module applies a normalization and aggregation 

strategy to ensure fair and meaningful comparisons.
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Table 6-1. Summary of Performance Measures, Methods, and Recommendation Types in the Recommend Module 

Safety Metric Key Performance Measures Method Recommendation Type 

Yellow Time Adjustment Volume, Occupancy, Gap, Split 

Failure, Red Light Running, 

Pedestrian Delay 

Causal Forest + XGBoost 

Continuous (Duration in Sec) 

Red Clearance Time 

Adjustment 
Continuous (Duration in Sec) 

Protected/Permitted Left Turn Occupancy, Gap  Binary (0 = Not Recommended, 

1 = Recommend) 

Pedestrian Recall Pedestrian Activity Bayesian Beta-Binomial 
Binary (0 = Not Recommended, 

1 = Recommend) 

Leading Pedestrian Interval 

(LPI) 
Occupancy, Pedestrian Activity 

Bootstrapping + 

Threshold-Based 

Binary (0 = Not Recommended, 

1 = Recommend) 
No Right Turn on Red 
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Safety Score Computation Steps: 

To ensure fair comparison across intersections, especially when they have varying numbers 

of approaches and phases, raw performance measure values are normalized using a robust, 

distribution-based method. The normalization approach differs based on the type of performance 

measures: continuous-valued or binary indicator. 

Continuous-Valued Features (e.g., Conflicts, Pedestrian Delay) 

For continuous measures such as vehicle-vehicle conflicts and pedestrian delay, a global 

reference distribution is constructed using values collected from all study intersections across all 

signal cycles. In the current implementation, this reference distribution is derived from the 

transformed features generated by the transform module for June 2024. As more data becomes 

available, the global distribution is dynamically updated to reflect the expanded dataset, ensuring 

long-term consistency and fairness in scoring.  

From this global distribution, the 95th percentile (𝑃95) is computed for each measure 𝑚. 

This value serves as a robust threshold that limits the influence of outliers and ensures that all 

normalized values fall within the[0, 1] range. The normalization rule is: 

𝑥norm
(𝑚) (𝑖, 𝑗, 𝑐) = {

𝑥(𝑚)(𝑖, 𝑗, 𝑐)

𝑃95
(𝑚)

, 𝑖𝑓 𝑥(𝑖, 𝑗, 𝑐) < 𝑃95
(𝑚)

1, 𝑒𝑙𝑠𝑒

 (2-1) 

where 𝑥(𝑚)(𝑖, 𝑗, 𝑐) is the raw value for measure 𝑚, intersection 𝑖, phase 𝑗, and cycle 𝑐. 𝑃95
(𝑚)

 is the 

global 95th percentile for measure 𝑚 . This method avoids local biases (e.g., cycle-based 

normalization) and creates a globally fair, outlier-resistant safety scale. 
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Binary Indicator Features (e.g., Red Light Running Flag) 

For binary-valued features such as red-light running, percentile-based normalization is not 

applicable. Since values are already bounded in {0, 1}, they are already normalized by definition, 

and are passed directly to the aggregation step (Step 2) without any transformation. 

Aggregation Across Phases per Cycle: After normalization, normalized scores across all 

phases within each intersection and cycle was aggregated to obtain a single per-measure score for 

each intersection per cycle. The default aggregation function is the arithmetic mean: 

𝑀𝑖
(𝑚)(𝑐) =

1

𝑁𝑖
∑ 𝑥norm

(𝑚) (𝑖, 𝑗, 𝑐)

𝑁𝑖

𝑗=1

 

(2-

2) 

where 𝑀𝑖
(𝑚)(𝑐) is the score for measure 𝑚 at intersection 𝑖, cycle 𝑐, and 𝑁𝑖 is the number 

of active phases at intersection 𝑖.  

Composite Safety Score Calculation: A composite safety score was computed for each 

intersection and cycle as a weighted sum of the individual per-measure scores. The weights are 

derived from expert judgment and reflect the relative importance of each safety indicator: 

𝑆𝑖(𝑐) = 𝑤1 ∙ 𝐶𝑖(𝑐) + 𝑤2 ∙ 𝑅𝑖(𝑐) + 𝑤3 ∙ 𝑃𝑖(𝑐) 

(2-

3) 

where 𝐶𝑖 is the normalized vehicle-vehicle conflict score, 𝑅𝑖 is the normalized red-light 

violation score, and 𝑃𝑖 is normalized the pedestrian delay score. 𝑤1, 𝑤2, and 𝑤3 are the weights 

derived from expert judgment (𝑤1 = 0.5, 𝑤2 = 0.3, 𝑤3 = 0.2). 
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Time Interval-Based Aggregation and Ranking: To provide dynamic, time-aware safety 

assessments, cycle-level composite scores are aggregated over rolling time intervals of 15 minutes, 

30 minutes, and 60 minutes: 

𝑆𝑖
(𝑇)

=
1

𝑁𝑇
∑ 𝑆𝑖(𝑐)

𝑐∈𝑇

 
(2-

4) 

where 𝑇 is the aggregation interval (e.g., 15-min window). 𝑁𝑇  is the number of cycles 

within interval 𝑇. These interval-based scores are used by the Rank module to continuously rank 

intersections based on their safety performance, enabling proactive safety monitoring and targeted 

interventions. 

 

6.2. Database Server 

The architecture of the database server is illustrated in Figure 6-3. This server is 

responsible for storing the transformed performance measures, safety recommendations, and 

intersection rankings (based on safety scores) generated by the various modules of the TRR server. 

By centralizing these outputs, the database ensures that all system results are readily accessible for 

both immediate use and in-depth analysis. 

The database server maintains a comprehensive archive of TRR server outputs for June 

2024 on data collected from 19 study intersections (refer to the Task 3 report for details). This 

dataset was used to demonstrate performance measure trends, visualize the six safety 

recommendations in Table 6-1, and generate intersection rankings in the frontend server. 
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Figure 6-3. The architecture of Database Server 

 

6.2.1. API Endpoints and Data Access 

To enable seamless communication between the backend system and the operator-facing 

dashboard, a modular set of RESTful Application Programming Interfaces (APIs) has been 

implemented. These APIs support dynamic querying of data aggregated at different temporal 

resolutions (e.g., cycle, 15-min, 30-min, 60-min) and filtered by signal, feature type, and other 

relevant metadata. The current API endpoints are organized into three categories: 

• Performance Measure APIs 

• Safety Metric Recommendation APIs 

• Safety Ranking APIs 

All API endpoints are organized under three primary namespaces: /api/measures, 

/api/recommendation, and /api/ranking.  
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Performance Measures API: /api/measures 

This endpoint retrieves performance measure data for a specified intersection (signalID) 

at a user-selected aggregation level. Aggregations supported include: “Cycle”, “15 min”, “30 

min”, and “60 min”. 

 

(1) Required Query Parameters: 

Parameter Type Description 

signalID String ID of the signalized intersection (e.g., “1500”) 

featureName String Feature name (e.g., “volume,” “conflict,” “gap”) 

aggregation String Temporal aggregation level (e.g., “Cycle,” “15 min,” “30 min”) 

startDate String ISO 8601 format timestamp (e.g., “2024-06-01T10:00:00Z”) 

endDate String ISO 8601 format timestamp (e.g., “2024-06-01T11:00:00Z”) 

 

Timestamps must be in ISO 8601 format (YYYY-MM-DDTHH:mm:ssZ) and should match 

UTC (Z = Zulu time). Internally, timestamps are stored in UTC. 

(2) Example Request: 

/api/measure?signalID=1500&featureName=volume&interval=15min&startDate

=2024-06-01T10:00:00Z&endDate=2024-06-01T11:00:00Z 

(3) Sample Response (JSON): 

[ 

  { 

    "_id": "67f5182565da982782157479", 

    “signalID”: “1500”, 

    “feature”: “greenVolumePhase1L”, 

    “featureName”: “volume”, 

    “cycleLength”: 194.36, 



 

176 

    “value”: 5, 

    "signalType": "green", 

    “laneType”: “L”, 

    “phaseNo”: 1, 

    “timeStamp”: “2024-06-01T10:00:00.000Z”, 

    “day”: 1, 

    “month”: 6, 

    “year”: 2024 

  } 

] 

 

(4) Response Attribute: 

Field Type Description 

_id String MongoDB object ID 

signalID String ID of the intersection 

feature String Internally generated feature key 

featureName String Human-readable feature label (e.g., “volume”) 

cycleLength Number Cycle duration (only for “Cycle” level) 

value Number 
Extracted metric value for cycle-level data only. If value is 

present, min, max, mean, and std will not be available. 

min Number 

Minimum, maximum, average, and standard deviation of 

the metric across the aggregation window. If min, max, 

mean, and std are present, value will not be available. 

max Number 

mean Number 

std Number 

signalType String Signal phase type (“green”, “yellow”, etc.) 

laneType String Lane identifier (“L” for left, “T” for through, etc.) 

phaseNo Integer Signal phase number 

timeStamp ISO Date UTC timestamp for the observation 

day/month/year Integer Redundant date components for indexing and filtering 
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Safety Metric Recommendation API: /api/recommendation 

This endpoint retrieves safety metric recommendation data for a given intersection 

(signalID) and safety metric (Yellow and Red Clearance Time Adjustment, Protected/Permitted 

Left Turn, Pedestrin Recall, Leading Pedestrian Intervals (LPI), and No Right Turn on Red) at a 

selected aggregation level. Supported aggregations include: “15 min”, “30 min”, and “60 min”. 

This API returns probability-based outputs, statistical bounds, and binary recommendation flags 

for safety interventions. 

(1) Required Query Parameters: 

Parameter Type Description 

signalID String ID of the signalized intersection (e.g., “1500”) 

featureName String 
Name of the safety feature (e.g., “pedestrianPresenceProbability”, 

“conflictPropensity”) 

aggregation String Aggregation level: “15”, “30”, or “60” 

year Number Year of data (e.g., 2024) 

month Number Month of data (e.g., 6 for June) 

 

The system currently uses month-level batch recommendations. All entries retrieved will 

correspond to the selected signalID, featureName, aggregation, year, and month. 
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(2) Example Request: 

/api/recommendation?signalID=1500&featureName=pedestrianPresenceProbab

ility&interval=15&year=2024&month=6 

 

(3) Sample Response (JSON): 

[ 

  { 

    "_id": "6678ba6c2f7d938f4f5e12cc", 

    “signalID”: “1500”, 

    “feature”: “pedestrianPresenceProbability”, 

    “phaseNo”: 3, 

    “year”: 2024, 

    “month”: 6, 

    “time”: “10:00”, 

    “alpha”: 3.12, 

    “beta”: 5.88, 

    “probability”: 0.348, 

    “lowerBound”: 0.21, 

    “upperBound”: 0.51, 

    “threshold”: 0.30, 

    “recommend”: 1, 

  } 

] 
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(4) Response Attributes: 

Field Type Description 

_id String MongoDB object ID 

signalID String ID of the intersection 

feature String 
Internal name of the feature used for modeling (e.g., 

pedestrianPresenceProbability) 

phaseNo Integer Signal phase number 

year Integer Year of the recommendation data 

month Integer Month of the recommendation data 

time String Time in HH:mm format representing the hour block (e.g., “10:00”) 

alpha Number Estimated α parameter (for Beta model) or statistical posterior 

beta Number Estimated β parameter (for Beta model) or statistical posterior 

probability Number 
Estimated probability of safety event (e.g., pedestrian presence, 

conflict occurrence) 

lowerBound Number Lower bound of the confidence interval (e.g., 95%) 

upperBound Number Upper bound of the confidence interval 

threshold Number Decision threshold used to determine recommendation 

recommend Integer 
Binary recommendation (1 = treatment warranted, 0 = no 

treatment) 

k Number 
Optional decay constant (used in conflictPropensity-related 

features only); null otherwise 

 

 

Safety Ranking API: /api/ranking 

This endpoint retrieves intersection-level safety rankings derived from aggregated 

performance measures. The ranking algorithm integrates multiple indicators (e.g., vehicle-vehicle 

conflicts, red-light violations, and pedestrian delay) to generate a unified safety score for each 

intersection over a specified time frame. 
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(1) Required Query Parameters: 

Parameter Type Description 

aggregation String 
Aggregation level (e.g., “15”, “30”, “60”). Determines the 

resolution of score computation 

startDate String 
ISO 8601 formatted timestamp indicating the beginning of the time 

window (e.g., “2024-06-01T00:00:00Z”) 

endDate String 
ISO 8601 formatted timestamp indicating the end of the time 

window (e.g., “2024-06-30T23:59:59Z”) 

weightLabel String 

Dash-separated weights for conflict, red-light running, and 

pedestrian delay (e.g., “0.5-0.3-0.2”). The weights must sum to 

1. 

 

(2) Example Request: 

api/rank?interval=60&startDate=2024-06-01T00:00:00Z&endDate=2024-06-

30T23:59:59Z&weightLabel=0.5-0.3-0.2 

 

(3) Sample Response (JSON): 

[ 

  { 

    "_id": "6817a854261e032aa67b4683", 

    “weightLabel”: “0.5-0.3-0.2”, 

    “timeStamp”: “2024-06-01T00:00:00.000Z”, 

    “signalID”: “1707”, 

    “conflictScore”: 0.27314814814814814, 

    "runningFlagScore": 0.09523809523809523, 

    “pedestrianDelayScore”: 1, 

    “conflictWeight”: 0.5, 

    "runningFlagWeight": 0.3, 

    “pedestrianDelayWeight”: 0.2, 

    “safetyScore”: 0.36514550264550266, 
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    “year”: 2024, 

    “month”: 6, 

    “day”: 1, 

    “rank”: 1 

  } 

] 

 

(4) Response Attributes: 

Field Type Description 

_id String MongoDB object ID 

signalID String ID of the signalized intersection 

weightLabel String 
Combination of weights used for computing 

safetyScore 

conflictScore Number 
Normalized conflict score (e.g., vehicle-vehicle 

conflicts) 

runningFlagScore Number 
Score based on red-light running frequency or 

severity 

pedestrianDelayScore Number Normalized pedestrian delay score 

conflictWeight Number Weight applied to the conflict score 

runningFlagWeight Number Weight applied to the red-light running score 

pedestrianDelayWeight Number Weight applied to the pedestrian delay score 

safetyScore Number 

Final weighted safety score computed as: 

(conflictWeight × conflictScore) + 

(runningFlagWeight × runningFlagScore) 

+ (pedestrianDelayWeight × 

pedestrianDelayScore) 

rank Integer 
Rank among all intersections (1 = highest safety 

score) 

timeStamp 
ISO 

Date 
UTC timestamp for the record 

year, month, day Integer Redundant date fields for filtering and indexing 
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6.2.2. API Endpoints Accessibility 

The current setup is hosted on a local development server, and the API endpoints are 

accessible only from the host machine (e.g., http://127.0.0.1:2500). 

When the backend is deployed on a cloud environment (e.g., an AWS EC2 instance) or an 

external server (e.g., FDOT infrastructure), the base IP address (or domain) in all API requests 

should be updated accordingly. The table below provides examples: 

Environment API Base URL Example 

Local Testing http://127.0.0.1:2500/api/... 

AWS Deployment http://<aws-ec2-ip>:2500/api/... 

FDOT Server http://<fdot-server-ip>:2500/api/... 

 

6.3. Frontend Server 

The frontend server is carefully designed to facilitate interaction between FDOT operators 

and the safety analytics system. Built with a modern component-based architecture in React, the 

interface enables seamless querying and visualization of data for safety interventions and 

intersection rankings. The interface is organized into two main webpages to support its dual 

function: 1) Recommendation View and 2) Rank View, each aligned with a specific backend 

module. These pages integrate intuitive selectors, visual displays, and responsive elements to 

deliver a highly usable and analytically powerful dashboard experience. 

The frontend server is designed with a user-friendly interface that allows operators to 

effectively monitor intersection performance and identify critical locations. It supports decision-

making on whether safety interventions are needed. The interface is divided into two main views: 
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(1) Recommendation View and (2) Rank View, each serving a distinct purpose aligned with the 

scope of this project. 

 

6.3.1. Recommendation View 

The Recommendation View serves as an interactive and analytical interface where users 

can examine safety-related performance trends and system-generated recommendations for 

improving traffic signal operations. Designed to support data-driven decision-making, this view 

combines high-resolution performance metrics and model-informed recommendations into an 

accessible dashboard framework. The Recommendation View is composed of two main 

components: Measure Dashboard and Recommendation Dashboard. 

 

Interface Overview and Signal Selection 

Upon entering the Recommendation View, users are first prompted to select a signalized 

intersection of interest. This can be done in one of two ways: 

Signal Map View: A spatial interface displays all monitored signal locations on an 

interactive map (Figure 6-4(a)). Each cluster of intersections is marked by a green circle 

containing the number of signals in that cluster. Users can zoom into a cluster and click on specific 

signal markers, indicated by black pins, to load the corresponding dashboards. This spatial layout 

is intuitive for users who prefer geographic selection based on area familiarity or regional analysis. 

Signal List View: Alternatively, users can view a tabulated list of signals sorted by 

Signal ID, SIIA ID, and Intersection Name (Figure 6-4(b)). This is useful for quick 

access to known intersections or when working with specific IDs.  



 

184 

These dual-selection mechanisms enhance usability, allowing both spatial and ID-based 

entry points into the analysis. Users can either click on marker (Signal Map View), or row (Signal 

List View) or manually enter a Signal ID in the input field at the bottom and press “Go” to 

proceed.  

 

(a) 

 

(b) 

Figure 6-4. Top Interface of Recommendation View: Signal Map and Signal List Selection  
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6.3.1.1. Measure Dashboard 

The Measure Dashboard is one of the major component of the Recommendation View, 

purpose-built to support exploratory analysis of signal performance at a fine temporal and spatial 

resolution. It offers a comprehensive set of tools that enable transportation engineers, analysts, and 

agency staff to investigate traffic patterns, diagnose operational issues, and uncover contributing 

factors to signal-level safety concerns. The dashboard is interactive and highly customizable, 

supporting various layers of filtering and visual exploration. 

After selecting a signalized intersection, users can directly interact with Measure 

Dashboard, where they can perform the following actions: 

 

1) Performance Measure Selection (Left Panel) 

Displayed on the left sidebar, the system offers a list of Automated Traffic Signal 

Performance Measures (ATSPM), covering both traditional traffic operations and advanced 

surrogate safety metrics. These include duration, volume, occupancy, split failure, gap, headway, 

conflict, red light running, pedestrian activity indicator, pedestrian delay, and pedestrian-vehicle 

(right-turn) conflict propensity. These measures can be individually selected depending on the 

user’s objective. For instance, to analyze recurring pedestrian delays or frequent near-misses. 

 

2) Date and Time Range Selection 

In the center panel (Figure 6-5), users are presented with date-time pickers to define a 

specific analysis window. Start and End fields allow minute-level granularity, supporting both 

short-term (e.g., peak hour) and long-term (e.g., full day, week) analysis. This flexibility enables: 

• Focused investigation during complaint periods or special events 
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• Comparison of before-and-after conditions due to signal timing changes 

• Routine monitoring of daily performance 

3) Time Interval Level Selection 

To support varying levels of detail, the dashboard offers four interval intervals: cycle (most 

granular), 15-minute, 30-minute, and 60-minute (Figure 6-5). Once selected, users must press the 

“Confirm” button to proceed. This step ensures that the backend appropriately aggregates raw data 

before visual rendering. 

Interval level significantly impacts trend clarity. For example: cycle-level is ideal for 

observing short-term volatility or event-triggered behaviors. Whereas, hourly or 30-minute levels 

are more suited to identifying broad operational trends and daily patterns. 

 

 

Figure 6-5. Date Range and Time Interval Selection Panel in Measure Dashboard 

 

4) Contextual Filters: Signal Type, Lane Type, and Phase Number 
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To refine the analysis, users are required to specify the signal type, lane type, and phase 

number (Figure 6-6). These contextual filters ensure the trendline reflects the exact operating 

conditions under analysis. For example, observing occupancy on through lanes during green signal 

of phase 2. 

 

 

Figure 6-6. Signal Type, Lane Type, and Phase Number Filter Panel in Measure 

Dashboard 

 

The availability of the options depends on the selected performance measure and the 

detectors’ configuration. For instance, if the user selects the ‘Duration’ measure, the ‘Lane Type’ 

option will either be disabled or default to ‘N/A,’ which, while still selectable, does not influence 

the filtering process in this context. 
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5) Chart Generation and Visualization 

Upon configuring all parameters, the user clicks the “Create Chart” button, triggering 

dynamic chart rendering on the lower portion of the page. The generated chart provides a time-

series trendline of the selected performance measure (e.g., occupancy) (Figure 6-7). Key 

visualization components include: 

• Y-axis: Represents the metric’s value (e.g., seconds of occupancy, vehicle count). 

• X-axis: Represents the time progression, labeled with timestamps reflecting the selected 

aggregation level and date range. 

• Chart Tools: A control panel located in the top-right of the graph offers: 

 Zoom In/Out: Allows users to focus on specific time windows. 

 Reset View: Resets the chart to the full date range. 

 Download Icon: Enables exporting the chart in image format (PNG/SVG) for 

documentation or presentation. 

 

Figure 6-7. Time-Series Trendline of Occupancy (sec) Across Selected Date Range 
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The chart is responsive and adjusts its layout based on selected filters. High peaks in the 

chart may signal traffic congestion, high pedestrian activity, or safety-critical events such as 

frequent phase violations. The flow diagram of Measure Dashboard is depicted in Figure 6-8. 

 

 

Figure 6-8. Workflow of Measure Dashboard 

 

6.3.1.2. Recommendation Dashboard 

The Recommendation Dashboard offers a comprehensive and interactive interface for 

visualizing safety treatment recommendations derived from statistical and machine learning 

models. This module enables transportation operators and analysts to assess when and where 

specific interventions are warranted based on underlying traffic and safety conditions. The design 

supports side-by-side exploration of multiple treatments, offering both temporal granularity and 

operational clarity. 
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1) Recommendation Type Selection (Left Panel): 

On the left side of the interface, users are presented with a list of six key safety 

metrics/treatments. One or more of these options can be selected for visualization: signal 

adjustment, protected/permitted left-turn, pedestrian recall, leading pedestrian interval, and no 

right-turn on red. This flexible selection feature allows users to focus on a single intervention or 

compare multiple treatments concurrently (Figure 6-9). 

2) Temporal Controls: 

To ensure statistically valid and temporally consistent insights, the dashboard requires the 

user to set time-specific parameters (Figure 6-9): 

• Month and Year: Selected from dropdowns to define the data batch for analysis. 

• Time Aggregation Interval: Options include 15-minute, 30-minute, and 60-minute 

resolutions. Once an interval is selected, users must press the Confirm button to proceed. 

 

Figure 6-9. Month and Time Interval Selection Panel (with Multi-Treatment) in 

Recommendation Dashboard 
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After confirming the interval, a second panel becomes active, allowing users to select 

signal phase simultaneously. This is especially useful for intersections with complex signal 

configurations. Once these selections are finalized, the “Create Chart” button triggers the 

generation of binary timeline visualizations for each selected recommendation. 

 

3) Treatment Visualization 

Each selected recommendation, except “Signal Adjustment,” is visualized as a time-series 

binary bar chart (Figure 6-10), designed to highlight temporal patterns in treatment necessity. The 

structure of the binary charts includes: 

• X-axis: Represents the 24-hour daily timeline, segmented according to the selected interval 

level (e.g., 15-minute blocks). 

• Y-axis: Lists the selected phase numbers. 

• Color-coded Segments: 

 Red: Indicates that a recommendation is active for that phase and time interval, meaning 

the treatment is advised. 

 Green: Denotes that no recommendation is necessary for that phase and time period. 

This binary visualization approach provides an intuitive and efficient way for users to 

identify critical time windows during which interventions are most needed. For example, 

consistent “Pedestrian Recall” recommendations during morning hours may signal heavy 

pedestrian activity, whereas frequent “No Right-Turn on Red” suggestions during evening periods 

may point to vehicular-pedestrian conflict risks at those times. 
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Figure 6-10. Binary Timeline Chart Displaying Safety Treatment Recommendations by 

Phase and Time Interval 

Each chart includes advanced interaction tools similar to those in the MeasureDashboard: 

• Zoom: Enables users to focus on a particular time window, such as a critical two-hour 

interval during peak traffic. 

• Reset View: Returns the chart to the full daily timeline. 

• Download: Allows users to export the current chart as a PNG or SVG image for reporting 

or documentation purposes. 

These controls enhance usability, ensuring that users can explore the data dynamically 

while also generating static visuals for analysis and communication. 

 

4) Multi-Recommendation Display 

The interface supports simultaneous visualization of multiple selected recommendation 

types. Each selected treatment appears as an individual plot stacked vertically on the dashboard. 

This layout facilitates a comparative review of safety interventions across time and signal phases. 
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For instance, analysts can observe whether “Protected/Permitted Left Turn” and “Leading 

Pedestrian Interval” are advised at overlapping intervals, providing insight into phase-level risk 

correlations and operational conflicts. The flow diagram of the Recommendation Dashboard is 

depicted in Figure 6-11. 

 

Figure 6-11. Workflow of Recommendation Dashboard 

 

6.3.2. Rank View 

The Rank View is a comprehensive evaluation interface within the ATSPM dashboard that 

enables stakeholders, such as traffic engineers and safety analysts, to assess and prioritize 

signalized intersections based on their safety performance. This view integrates several filtering, 

scoring, and visualization layers to deliver a dynamically ranked list of intersections, reflecting 

their safety risk level for a specified time frame. It is particularly useful for identifying high-risk 

intersections where interventions might be necessary. 
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6.3.2.1. Key Functional Components of Rank View 

1) Date and Time Filtering (Figure 6-12) 

The Rank View begins with a dual-panel configuration interface that allows users to define 

the scope of analysis through temporal filters. The Date Range section includes two fields: Start 

Date & Time, and End Date & Time. These fields allow users to focus on a specific timeframe. 

For instance, one hour, a single day, or a particular operational window (e.g., peak hours). 

 

2) Time Interval Level (Figure 6-12) 

Alongside the date filters, users must choose the interval level for safety scoring and 

ranking. The available intervals are: 15 minutes, 30 minutes, and 60 minutes. This selection 

determines the granularity at which safety scores will be computed and ranked. For example, if 

“30 min” is selected and the date range covers two hours, then the dashboard will return four 

separate ranking tables, one for each half-hour block. Users can confirm the interval to finalize 

their settings. 

 

3) Weight Customization for Safety Scoring (Figure 6-12) 

An essential feature of the Rank View is the ability to assign custom weights to each of the 

three performance components that feed into the safety score: vehicle-vehicle conflict score, red 

light running (rlr) score, and pedestrian delay score. 

The weight sliders allow users to dynamically adjust the relative importance of each safety 

metric. For instance, if pedestrian safety is a higher concern for a particular study, the analyst can 

assign a higher weight to Pedestrian Delay. A validation mechanism ensures that the weights sum 
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to exactly 1.0 before allowing further progression. This flexible weighting system supports a broad 

spectrum of use cases, including: 

• Prioritizing vehicle conflicts in high-volume corridors 

• Targeting pedestrian safety in school zones 

• Assessing red-light violations at signalized intersections 

 

Once the user confirms the weights, the safety score is calculated using a weighted average 

of the three metrics, and the dashboard is ready to generate rankings. 

 

 

Figure 6-12. Rank View Configuration Panel 
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4) Generating and Viewing Safety Rankings (Figure 6-13) 

Upon pressing the “Generate Rank” button, the dashboard fetches safety score data and 

displays the output in the form of a ranked table. Each table corresponds to a single time interval 

and is structured as follows: 

 

Rank 
Signal 

ID 

Intersection 

Name 

Conflict 

Score 

RLR 

Score 

Ped Delay 

Score 

Safety 

Score 

 

Each intersection is assigned a rank based on its overall safety score: the higher the score, 

the higher the risk, and thus the lower (better) the rank number. Rank 1 indicates the highest-risk 

intersection. 

 

5) Color-Coded Risk Categories (Figure 6-13) 

To enhance interpretability, the rows in the table are color-coded based on the safety score: 

• Red (≥ 0.6): High-risk intersections 

• Yellow (0.4–0.6): Moderate-risk intersections 

• Green (< 0.4): Safe intersections 

 

This visual encoding allows users to immediately identify locations that require urgent 

attention. For example, an intersection ranked first with a score of 0.65 would be highlighted in 

red, drawing attention to its critical safety need. 
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6) Pagination for Multi-Interval Visualization (Figure 6-13) 

If the selected time window includes multiple time intervals, each interval is scored and 

visualized independently, and separate tables are generated for each. The user can toggle between 

intervals using pagination controls at the bottom of the page: 

• Previous and Next buttons 

• An indication of the current interval position, such as “Interval 1 of 4” 

 

This design ensures that safety trends are not averaged across long timeframes, which can 

obscure short-duration risks. Instead, each interval gets a dedicated table that maintains temporal 

resolution and makes it easy to pinpoint when certain intersections pose the highest risk. 

 

Figure 6-13. Interval-Based Safety Ranking Table with Color-coded Risk Classifications 
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The flow diagram of Rank View is presented in Figure 6-14. 

 

Figure 6-14. Workflow of Rank View 

The current version of the dashboard was developed in alignment with the project’s original 

scope, which specifically required the implementation of recommendation visualizations and 

intersection risk-based rankings. Performance measure trend analysis was added as a value-added 

feature to support exploratory insights. Additional modules, such as the Purdue Coordination 

Diagram, Purdue Split Failure Diagram, distribution plots of performance measures, and a 

comprehensive summary of all measures and metrics, will be incorporated before the final project 

submission to FDOT. 
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6.4. Summary 

The prototype demonstrates a data pipeline by combining the Transform–Recommend–

Rank server, the database server, and the React-based dashboard. It moves from raw ATSPM 

ingestion and quality verification through statistical modeling to a composite safety score that 

ranks intersections by risk. This end-to-end pipeline was tested using data from June 2024 at 19 

locations. It can deliver recommendations at 15-minute, 30-minute, and 60-minute intervals. The 

system offers a roadmap for pilot and full-scale deployment. FDOT practitioners can test the 

prototype at 19 intersections to compare suggestions between intersections using various 

recommendation parameters.  

A few limitations remain that need to be resolved before the broad application. The 

prototype relies on historical batch data rather than live feeds. Moving to live ATSPM feeds and 

migrating processing to AWS will support much larger data volumes in a secure, scalable 

environment. The composite risk-score weights reflect expert judgment and may require 

calibration for different regions. In addition, additional features may be required in the dashboard 

to make it more user-friendly. The next steps involve migrating the prototype to AWS and setting 

up ongoing performance checks with regular recalibration of the scoring weights. Integrating this 

safety-performance platform into the statewide traffic operations framework will enable fully 

automated signal calibrations and decision support that maintain proactive safety management 

rather than reactive. 
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CHAPTER 7: Conclusion 

This report outlines the development of the Smart Signal Performance Monitor (SSPM) 

system, a comprehensive tool that predicts safety opportunities and provides actionable 

recommendations for traffic signal operations by leveraging Automated Traffic Signal 

Performance Measures (ATSPM). The primary objective of the SSPM system is to enhance safety 

at signalized intersections in Florida's District 5 through proactive traffic management. 

The system's foundation is based on the utilization of ATSPM data, which encompasses 

detector configuration from the Normalized Operational Equipment Management Initiative 

(NOEMI) and controller event logs from SunStore. A critical aspect of the development involved 

meticulous data collection, processing, and quality assurance, including the implementation of an 

Event Sequence Quality Checker (ESQC) to ensure data reliability and accuracy. Raw ATSPM 

data were transformed into cycle-level performance measures, including Signal Phasing and 

Timing (SPaT), vehicle volume, occupancy, headway, traffic conflicts, red-light running (RLR) 

incidents, and pedestrian activity and delay. 

Building upon these performance measures, sophisticated algorithms were developed to 

generate specific safety recommendations. These include adjustments to yellow and red clearance 

times, informed by causal forest models, which demonstrated a potential reduction in conflict rates 

of up to 7%. The determination of protected versus permitted left-turn phasing was based on gap 

analysis and estimations of left-turn volume. Pedestrian recall strategies were recommended using 

pedestrian presence probability calculated via a Beta-Binomial model. Furthermore, 

recommendations for Leading Pedestrian Intervals (LPI) and No Right Turn on Red (NRTOR) 

were derived from assessments of pedestrian-vehicle conflict propensity. The SSPM system 
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architecture integrates a Transform–Recommend–Rank (TRR) server, a database server, and a 

user-friendly frontend server, enabling FDOT operators to utilize the system's outputs effectively. 

Key findings from this work include the successful development of a prototype system that 

not only processes and analyzes ATSPM data but also provides ranked intersection safety scores 

and specific intervention strategies. The study also identified and addressed challenges, including 

abnormalities in detector configuration data from NOEMI and initial data quality issues. 

Despite the significant advancements, the current study has limitations. The prototype 

relies on historical batch data from June 2024 for 19 selected intersections in Seminole County 

rather than live ATSPM feeds. Additionally, the weights used for the composite safety scores are 

currently based on expert judgment and may require calibration for broader applicability. 

Future work will focus on migrating the SSPM prototype to a cloud environment to 

enhance scalability and enable the processing of live ATSPM data. This will involve establishing 

ongoing performance checks and implementing regular recalibration of the safety scoring weights. 

Further enhancements to the dashboard are also envisioned to improve user-friendliness and 

incorporate additional analytical modules, such as the Purdue Coordination Diagram and Purdue 

Split Failure Diagram. 

In essence, the SSPM system represents a significant step towards data-driven, proactive 

traffic safety management. By providing robust analytical capabilities and actionable insights, the 

system empowers traffic operators to make more informed decisions, ultimately contributing to 

safer and more efficient traffic operations at signalized intersections across Florida.  
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A. Appendix 

Table A-1. Summary of Detector Configuration Per Intersection 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Detector Configuration Type (per Figure 4-5) 

‘Through’ Phase ‘Left-Turn’ Phase 

‘Through’ Lane ‘Right-Turn’ Lane ‘Shared’ Lane ‘Left-Turn’ Lane ‘Shared’ Lane 

1285 

Major 
E 6 2  2  

W 4, 6 2  2  

Minor 
N 2 2  2  

S  2 2 2  

1290 

Major 
E 6 1  2  

W 6 1  2  

Minor 
N   2 2  

S 2 2  2  

1300 

Major 
E 3  3 2  

W 5  5 2  

Minor 
N  2 2   

S   2   

1315 
Major 

E 5  5   

W 5   2  

Minor N  2  2  

1325 

Major 
E 5  5 2  

W 5  5 2  

Minor 
N   2   

S   2   

1330 

Major 
E 5 1  2  

W 5  5 2  

Minor 
N  2   2 

S  2 2   

1455 Major 
E 5  5 2  

W 5  5 2  
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Minor 
N   2   

S   2 2  

1470 

Major 
E 1 1  2  

W 1 1  2  

Minor 
N 5 1  2  

S 5, 4, 2 1  2  

1490 

Major 
E 4 2  4  

W 4  4 2  

Minor 
N   2 2  

S   2   

1500 

Major 
E 6  6 4  

W 6  6 4  

Minor 
N 4 4  4  

S 4 4  4  

1555 

Major 
NW 4  4 2  

SE 4  4 2  

Minor 
NE  2 2 2  

SW  2 2   

1707 

Major 
E 4  4 3  

W 4  4 2  

Minor 
N   2   

S   2   

1725 

Major 
NW   5 2  

SE   5 2  

Minor 
N   4 2  

S   2 2  

1790 
Major 

E 3, 5 1    

W 5   2  

Minor S  1 2   

1795 
Major 

E 5   2  

W 3, 5 1    

Minor N  2  2  

1960 
Major 

E 5 1  2  

W 5  5 2  

Minor N 4  4 2  
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S 4  4 2  

2055 

Major 
E 5 1  2  

W 5  5 2  

Minor 
N 2 2  2  

S 2 2  2  

2485 

Major 
E   3 2  

W   3 2  

Minor 
N   2 2  

S   2 2  

2665 

Major 
E 5   2  

W 3   2  

Minor 
N  2   2 

S   1 2  
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Table A-2. Summary of Yellow and Red Clearance Phase Duration of Through Phase 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Speed 

limit 

(mph) 

Intersection 

width(ft) 

Yellow Phase Duration Red Clearance Phase Duration 

TEM 

Observed* 

TEM 

Observed* 

Mean 
Percentile 

Mean 
Percentile 

5% 95% 5% 95% 

1285 

Major 
E 45 110 4.8 4.93 4.8 6 2.0 3.32 3 6 

W 45 102 4.8 4.82 4.8 4.8 2.0 3.1 3 3.2 

Minor 
N 20 130 3.0 3.88 2 4.1 5.2 2.36 2 2.4 

S 35 121 4.0 3.22 2 3.7 2.8 2.36 2 2.5 

1290 

Major 
E 45 127 4.8 4.94 4.8 6 2.3 3.62 3.3 6 

W 45 130 4.8 4.89 4.8 6 2.3 3.51 3.3 6 

Minor 
N 35 127 4.0 3.93 2 4.1 2.9 2.92 2 3 

S 20 124 3.0 2.88 2 3.8 4.9 2.24 2 2.5 

1300 

Major 
E 45 70 4.8 4.8 4.8 4.8 2.0 2 2 2 

W 45 60 4.8 4.8 4.8 4.8 2.0 2 2 2 

Minor 
N 20 85 3.0 3.4 3.4 3.4 3.6 2 2 2 

S 25 81 3.4 3.4 3.4 3.4 2.8 2 2 2 

1315 
Major 

E 45 80 4.8 4.8 4.8 4.8 2.0 2 2 2 

W 45 93 4.8 4.86 4.8 6 2.0 2.12 2 4 

Minor N 25 -         

1325 

Major 
E 45 61 4.8 4.8 4.8 4.8 2.0 2 2 2 

W 45 65 4.8 4.8 4.8 4.8 2.0 2 2 2 

Minor 
N 25 92 3.4 3.4 3.4 3.4 3.1 2.7 2.7 2.7 

S 25 86 3.4 3.4 3.4 3.4 2.9 2.7 2.7 2.7 

1330 

Major 
E 45 83 4.8 4.8 4.8 4.8 2.0 2 2 2 

W 45 87 4.8 4.8 4.8 4.8 2.0 2 2 2 

Minor 
N 25 82 3.4 2.9 2 3.4 2.8 2.32 2 2.5 

S 25 104 3.4 3.39 3.4 3.4 3.4 2.5 2.5 2.5 

1455 

Major 
E 45 85 4.8 4.86 4.8 4.8 2.0 2.63 2.5 2.5 

W 45 97 4.8 4.92 4.8 6 2.0 2.76 2.5 5 

Minor 
N 25 117 3.4 2.91 2 4 3.8 2.36 2 2.8 

S 35 130 4.0 3.31 2 3.4 3.0 2.84 2 2.9 

1470 Major 
E 45 154 4.8 4.92 4.9 4.9 2.7 4.53 4.5 4.5 

W 45 165 4.8 4.92 4.9 4.9 2.8 4.52 4.5 4.5 
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Minor 
N 45 147 4.8 4.55 2 4.9 2.6 4.11 2 4.4 

S 45 148 4.8 4.49 2 4.9 2.6 4.06 2 4.4 

1490 

Major 
E 45 78 4.8 5 4.8 6 2.0 2.75 2.3 6 

W 45 68 4.8 4.93 4.8 6 2.0 2.57 2.3 4.6 

Minor 
N 25 152 3.4 3.4 3.4 3.4 4.7 4.1 4.1 4.1 

S 25 163 3.4 3.4 3.4 3.4 5.0 4.1 4.1 4.1 

1500 

Major 
E 45 133 4.8 4.89 4.8 6 2.4 3.7 3.5 6 

W 45 124 4.8 4.84 4.8 4.8 2.2 3.59 3.5 3.5 

Minor 
N 30 165 3.7 3.23 2 3.7 4.2 3.73 2 4.4 

S 30 164 3.7 3.14 2 3.7 4.2 3.6 2 4.4 

1555 

Major 
SE 40 143 4.4 4.42 4.4 4.4 2.8 2.94 2.9 2.9 

NW 40 84 4.4 4.5 4.4 6 2.0 3.08 2.9 5.8 

Minor 
NE 40 116 4.4 2.35 2 3.4 2.4 2.22 2 2.9 

SW 40 116 4.4 4.39 4.4 4.4 2.4 2.3 2.3 2.3 

1707 

Major 
E 40 58 4.4 4.4 4.4 4.4 2.0 2.01 2 2 

W 40 76 4.4 4.43 4.4 4.4 2.0 2.03 2 2 

Minor 
N 30 80 3.7 3.7 3.7 3.7 2.3 2 2 2 

S 25 86 3.4 3.7 3.7 3.7 2.9 2 2 2 

1725 

Major 
SE 45 109 4.8 5.3 5.3 5.3 2.0 2 2 2 

NW 45 109 4.8 5.3 5.3 5.3 2.0 2 2 2 

Minor 
N 45 130 4.8 5.3 5.3 5.3 2.3 3.8 2 4.5 

S 30 122 3.7 3.58 2 4.2 3.3 3.01 2 3.4 

1790 
Major 

E 45 56 4.8 4.8 4.8 4.8 2.0 2.9 2.3 6 

W 45 56 4.8 4.9 4.9 4.9 2.0 2.3 2.3 2.3 

Minor S 25 -     -    

1795 
Major 

E 45 67 4.8 4.9 4.9 4.9 2.0 2.7 2.7 2.7 

W 45 105 4.8 4.91 4.9 4.9 2.0 2.78 2.7 2.8 

Minor N 25 -     -    

1960 

Major 
E 45 116 4.8 4.82 4.8 4.8 2.1 2.86 2.8 2.8 

W 45 106 4.8 4.85 4.8 4.8 2.0 2.91 2.8 2.8 

Minor 
N 45 112 4.8 4.52 2 4.8 2.0 2.63 2 2.7 

S 45 131 4.8 4.57 2 4.8 2.3 2.64 2 2.7 

2055 
Major 

E 45 86 4.8 4.45 4.5 4.5 2.0 2.23 2 3 

W 45 81 4.8 4.55 4.5 6 2.0 2.38 2.2 4.4 

Minor N 35 127 4.0 4.26 2 4.5 2.9 2.02 2 2 
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S 35 159 4.0 4.19 2 4.5 3.5 2.02 2 2 

2485 

Major 
E 35 78 4.0 4.1 4.1 4.1 2.0 2 2 2 

W 35 75 4.0 4.1 4.1 4.1 2.0 2 2 2 

Minor 
N 25 76 3.4 3.28 2 4.4 2.7 2 2 2 

S 40 74 4.4 4.34 4.4 4.4 2.0 2 2 2 

2665 

Major 
E 40 128 4.4 4.57 4.4 6 2.6 2.66 2.3 4.7 

W 40 100 4.4 4.46 4.4 4.4 2.1 2.52 2.4 2.5 

Minor 
N 25 80 3.4 3.4 3.4 3.4 2.8 2 2 2 

S 25 77 3.4 3.4 3.4 3.4 2.7 2 2 2 

*Observations were considered errors and excluded if they were less than 2 seconds or more than 6 seconds. 
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Table A-3. Summary of Yellow Time Adjustment Recommendations 

Signal 

ID 

Approach 

Type 

Approach 

Direction  

Hour-of-day 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
W 0.1 0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 

E 0.1 0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 

Minor 
N                         

S                         

1290 

Major 
W 0 0 0 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 

E 0 0 0 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1300 

Major 
W 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

E 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Minor 
N                         

S                         

1315 
Major 

W 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

E 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

Minor N                         

1325 

Major 
W 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

E 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Minor 
N                         

S                         

1330 

Major 
W 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

E 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Minor 
N                         

S                         

1455 

Major 
W 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 

E 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1470 

Major 
W 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 

E 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 

Minor 
N                         

S                         
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1490 

Major 
W 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1500 

Major 
W 0 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0 0 0 0 

E 0 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0 0 0 0 

Minor 
N                         

S                         

1555 

Major 
W 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.4 0.4 0.5 0.3 

E 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.4 0.4 0.5 0.3 

Minor 
N                         

S                         

1707 

Major 
W 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Minor 
N                         

S                         

1725 

Major 
NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1790 
Major 

W 0.1 0 0 0 0.1 0.1 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 

E 0.1 0 0 0 0.1 0.1 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 

Minor N                         

1795 
Major 

W 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

E 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Minor N                         

1960 

Major 
W 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

E 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

Minor 
N                         

S                         

2055 

Major 
W 0.4 0.4 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.7 0.7 0.7 0.5 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.3 0.3 

E 0.4 0.4 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.7 0.7 0.7 0.5 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.3 0.3 

Minor 
N                         

S                         

2485 Major W 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
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E 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

Minor 
N                         

S                         

2665 

Major 
W 0.4 0.4 0.3 0.4 0.5 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0.2 0.3 0.3 0.4 0.5 0.4 

E 0.4 0.4 0.3 0.4 0.5 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0.2 0.3 0.3 0.4 0.5 0.4 

Minor 
N                         

S                         
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Table A-4. Summary of Red Clearance Time Adjustment Recommendations 

Signal 

ID 

Approach 

Type 

Approach 

Direction  

Hour-of-day (Local Time) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
W -0.5 -0.4 -0.2 -0.2 -0.1 0 -0.1 -0.1 -0.1 -0.1 0 0 0 0 0 0 -0.1 -0.1 -0.4 -0.7 -0.7 -0.7 -0.8 -0.5 

E -0.5 -0.4 -0.2 -0.2 -0.1 0 -0.1 -0.1 -0.1 -0.1 0 0 0 0 0 0 -0.1 -0.1 -0.4 -0.7 -0.7 -0.7 -0.8 -0.5 

Minor 
N                         

S                         

1290 

Major 
W -1.2 -1.3 -1.1 -0.6 -0.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5 -0.4 -0.5 -0.6 -0.7 -0.7 -0.7 -0.9 -0.8 -0.8 -1.1 

E -1.2 -1.3 -1.1 -0.6 -0.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5 -0.4 -0.5 -0.6 -0.7 -0.7 -0.7 -0.9 -0.8 -0.8 -1.1 

Minor 
N                         

S                         

1300 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1315 
Major 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 0 -0.1 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 0 -0.1 

Minor N                         

1325 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1330 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1455 

Major 
W 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.3 -0.1 -0.1 0 -0.1 

E 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.3 -0.1 -0.1 0 -0.1 

Minor 
N                         

S                         

1470 

Major 
W -1.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.6 -1.6 

E -1.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.6 -1.6 

Minor 
N                         

S                         
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1490 

Major 
W -0.2 -0.2 -0.2 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.5 -0.7 -0.5 -0.8 -0.2 

E -0.2 -0.2 -0.2 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.5 -0.7 -0.5 -0.8 -0.2 

Minor 
N                         

S                         

1500 

Major 
W -1.3 -0.9 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.6 -0.9 -1.3 -1.3 -1.4 

E -1.3 -0.9 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.6 -0.9 -1.3 -1.3 -1.4 

Minor 
N                         

S                         

1555 

Major 
W -0.2 -0.2 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.2 -0.2 -0.3 -0.2 -0.4 

E -0.2 -0.2 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.2 -0.2 -0.3 -0.2 -0.4 

Minor 
N                         

S                         

1707 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 

Minor 
N                         

S                         

1725 

Major 
NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1790 
Major 

W -0.1 0 -0.2 0 0.1 0.1 -0.1 -0.1 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E -0.1 0 -0.2 0 0.1 0.1 -0.1 -0.1 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor N                         

1795 
Major 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor N                         

1960 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 

Minor 
N                         

S                         

2055 

Major 
W 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0.1 

E 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0.1 

Minor 
N                         

S                         

2485 Major W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

2665 

Major 
W 0 -0.2 0 0.1 0.1 0 -0.1 0 -0.1 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 -0.1 0 

E 0 -0.2 0 0.1 0.1 0 -0.1 0 -0.1 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 -0.1 0 

Minor 
N                         

S                         
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Table A-5. Summary of Protected Left-Turn Recommendation* 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Hour of Day (Local Time) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1     

S        1 1 1 1 1 1 1 1 1 1 1 1 1     

1290 

Major 
E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1     

S        1 1 1 1 1 1 1 1 1 1 1 1 1     

1300 

Major 
E                         

W                         

Minor 
N        1 1 1 1 1 1 1 0 1 1 1 1 1     

S        1 1 1 1 1 1 1 1 1 1 1 1 1     

1315 
Major 

E                         

W                         

Minor N                         

1325 

Major 
E                         

W                         

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1 0    

S        1 1 1 1 1 1 1 1 1 1 1 1 1 0    

1330 

Major 
E                         

W                         

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1 1    

S        1 1 1 1 1 1 1 1 1 1 1 1 1 0    

1455 

Major 
E                         

W                         

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1     

S        1 1 1 1 1 1 1 1 1 1 1 1 1     

1470 

Major 
E                         

W                         

Minor 
N        1 1 1 1 1 1 1 1 1 1 1 1 1     

S                         
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1490 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1500 

Major 
E 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 

W 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Minor 
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1555 

Major 
SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NW 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 

Minor 
NE                         

SW                         

1707 

Major 
E                         

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1725 

Major 
SE                         

NW                         

Minor 
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S                         

1790 
Major 

E                         

W                         

Minor S                         

1795 
Major 

E                         

W                         

Minor N                         

1960 

Major 
E                         

W                         

Minor 
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2055 

Major 
E                         

W                         

Minor 
N 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S                         

2485 Major E                         
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W                         

Minor 
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2665 

Major 
E                         

W                         

Minor 
N                         

S                         

*  :1 indicate a protected left turn recommendation.
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Table A-6. Summary of Pedestrian Recall 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Hour of Day (Local Time) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1290 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1300 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1315 
Major 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W                         

Minor N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1325 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1330 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1455 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1470 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
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1490 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

1555 

Major 
SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE                         

1707 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N                         

S                         

1725 

Major 
SE                         

NW                         

Minor 
S                         

N                         

1790 
Major 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor S                         

1795 
Major 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor N                         

1960 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2055 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2485 Major E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2665 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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Table A-7. Summary of Leading Pedestrian Interval (k = 0.01) 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Hour of Day (Local Time) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1290 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1300 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1315 
Major 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1325 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1330 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1455 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1470 

Major 
E                         

W                         

Minor 
S                         

N                         
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1490 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

1555 

Major 
SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1707 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1725 

Major 
SE                         

NW                         

Minor 
S                         

N                         

1790 
Major 

W                         

E                         

Minor S                         

1795 
Major 

W                         

E                         

Minor N                         

1960 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2055 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2485 Major E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2665 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 



 

 

 

Table A-8. Summary of No Right Turn On Red (k = 0.025) 

Signal 

ID 

Approach 

Type 

Approach 

Direction 

Hour of Day (Local Time) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1285 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1290 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1300 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1315 
Major 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1325 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1330 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1455 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1470 Major E                         
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W                         

Minor 
S                         

N                         

1490 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

1555 

Major 
SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1707 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1725 

Major 
SE                         

NW                         

Minor 
S                         

N                         

1790 
Major 

W                         

E                         

Minor S                         

1795 
Major 

W                         

E                         

Minor N                         

1960 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2055 Major W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2485 

Major 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2665 

Major 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minor 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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