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EXECUTIVE SUMMARY

This report details the development and implementation of the Smart Signal Performance
Monitor (SSPM) system, a comprehensive platform designed to enhance intersection safety and
operational efficiency in Florida's District 5, with an initial focus on Seminole County. Leveraging
Automated Traffic Signal Performance Measures (ATSPM) data, the SSPM system provides data-
driven recommendations for traffic signalization strategies.

The project began with the collection of two primary data types: detector configuration
data from the Normalized Operational Equipment Management Initiative (NOEMI) and controller
event log data from SunStore. Recognizing the variability and potential inaccuracies in this data,
a critical step involved a thorough data quality assessment. The Event Sequence Quality Checker
(ESQC) was developed and employed to verify detector functionality and the integrity of event
sequences, ensuring that subsequent analyses were based on reliable data. Detector configurations,
which vary significantly across intersections, were systematically categorized by phase and
movement type (left-turn, through, right-turn, and shared) to manage this complexity and facilitate
consistent data transformation.

The core of the system involves transforming raw controller event log data into a rich set
of performance measures. These include Signal Phasing and Timing (SPaT) metrics, vehicle
volume, occupancy time, gap, headway, split failures, vehicle-vehicle conflicts, red-light running
(RLR) incidents, pedestrian activity indicators, pedestrian delay, and pedestrian-vehicle conflict
propensity. These measures are calculated at a granular cycle level and can be aggregated to

various time intervals (e.g., 15 minutes, hourly) for trend analysis and recommendation generation.
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Building on these performance measures, the project developed algorithms to recommend key

traffic signalization strategies:

Yellow and Red Clearance Time Adjustment: A causal forest model estimates the
impact of signal timing adjustments on conflict rates per vehicle, providing data-driven

recommendations for optimizing these critical intervals.

Protected vs. Permitted Left-Turn Phasing: Recommendations are based on a gap
analysis of opposing through movements and an estimation of left-turn volumes derived

from turning movement count survey and stop-bar detector occupancy data.

Pedestrian Recall: A Beta-Binomial model estimates the probability of pedestrian
presence, and k-means clustering identifies critical hours when pedestrian recall should be

active.

Leading Pedestrian Interval (LPI) and No Right Turn on Red (NRTOR): These
interconnected strategies are recommended based on an analysis of pedestrian-vehicle
(right-turn) conflict propensity, calculated using pedestrian and vehicle exposure during

concurrent phases.

The SSPM system architecture integrates three main components:

Transform—Recommend-Rank (TRR) Server: This backend engine processes raw
ATSPM data, applies the aforementioned algorithms to generate safety recommendations,
and ranks intersections based on a composite safety score derived from normalized

performance measures (vehicle-vehicle conflicts, RLR, pedestrian delay).

Database Server: Stores all transformed performance measures, safety recommendations,

and intersection rankings, making them accessible via a set of RESTful APIs for dynamic

querying.

XV



¢ Frontend Server: A React-based user interface provides operators with interactive
dashboards. The "Recommendation View" enables the exploration of performance
measure trends (Measure Dashboard) and the visualization of specific strategy
recommendations (Recommendation Dashboard). The "Rank View" enables users to
identify high-risk intersections based on customizable safety score weightings and selected
time intervals.

The SSPM system, tested with data from June 2024 for 19 intersections in Seminole
County, demonstrates a viable end-to-end pipeline from raw data ingestion to actionable safety
insights. While currently reliant on historical batch data, future work includes migration to live
ATSPM feeds and a cloud-based (AWS) environment for enhanced scalability and real-time
operational support. The prototype provides FDOT with a powerful tool to proactively manage
traffic signal operations, prioritize interventions, and ultimately improve road safety across the

district.
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CHAPTER 1: INTRODUCTION

Signalized intersections are crucial nodes within the urban transportation network where
the risk of conflicts and crashes can be substantial. Traditional approaches to traffic signal
management have often been reactive, relying on historical crash data or periodic manual reviews
to identify safety deficiencies. However, the advent of Automated Traffic Signal Performance
Measures (ATSPM) presents a significant opportunity to shift towards a more proactive and data-
driven paradigm for improving safety at these locations. ATSPM systems offer high-resolution
data from traffic signal controllers, capturing detailed information about signal timing, vehicle
actuation, and pedestrian activity.

By analyzing ATSPM data, traffic engineers can identify emerging safety issues and
implement changes before crashes occur. While ATSPMs have been widely recognized for their
utility in optimizing traffic flow and operational efficiency, their application for direct safety
enhancements through targeted countermeasures is an area of evolving research and practice.
There is a clear need to develop systematic methodologies and practical tools that can translate
raw ATSPM data into actionable safety insights and recommendations for specific signalization
strategies.

This report details the research undertaken to address this need. It presents the development
of algorithms and a comprehensive system designed to utilize ATSPM data for identifying and
predicting safety improvement opportunities at signalized intersections within Florida’s District 5.
The primary objective is to equip traffic operators with data-driven tools to enhance safety through
informed adjustments to traffic signal operations, focusing on countermeasures such as yellow and

red clearance timing, left-turn phasing, and pedestrian treatments. This work aims to transform



raw data into meaningful performance measures and, ultimately, into recommendations that can
lead to safer intersection environments.

This report proceeds as follows. Chapter 2 provides a foundational overview of ATPSM
and details the two essential data sources: detector configuration files and controller event logs.
Chapter 3 presents an extensive review of related works, encompassing project reports from US
and state Departments of Transportation (DOT), existing GitHub repositories related to ATSPM
systems, and a systematic review of academic literature on the mobility and safety applications of
ATSPMs. This chapter also summarizes best practices for various operational countermeasures at
intersections as recommended in technical manuals. Chapter 4 describes the data collection
methodologies implemented for this project, focusing on acquiring detector configuration data
from the Normalized Operational Equipment Management Initiative (NOEMI) and controller
event log data from SunStore for ATSPM-equipped intersections, primarily in Seminole county.
It also details the process of grouping detector configurations and the development of the Event
Sequence Quality Checker (ESQC) to assess data quality. Chapter 5 elaborates on the algorithm
development process. This includes the transformation of controller event log data into meaningful
cycle-level performance measures such as Signal Phasing and Timing (SPaT), volume, occupancy,
headway, and conflicts. It further details the methodologies for exploratory data analysis and the
algorithms developed to provide recommendations for six key safety strategies: yellow and red
clearance time adjustment, choice of protected versus permitted left-turns, pedestrian recall,
Leading Pedestrian Interval (LPI), and No Right Turn on Red (NRTOR). Chapter 6 introduces
the system architecture of the Smart Signal Performance Monitor (SSPM), a system developed to
implement the derived algorithms and deliver actionable safety recommendations. This chapter

outlines the core components of the SSPM, including the Transform-Recommend-Rank (TRR)



server, the database server, and the frontend server, which features interactive dashboard views for
performance measure analysis, safety recommendations, and intersection safety ranking.
Subsequent chapters are intended to cover the evaluation of the SSPM system, the functionalities
of its report generation module, and a final summary of the research and implementation. Through
the integration of real-time data processing, advanced analytics, and user-friendly interfaces, this

work endeavors to make a significant contribution to advancing transportation safety technologies.



CHAPTER 2: OVERVIEW OF ATSPM

ATSPM relies on two primary types of data: the detector configuration and the controller
event log data. While the detector configuration data is crucial for interpreting detector actuation
events associating vehicle detections with specific traffic movements, the controller event data is
essential for analyzing signal timing performance and identifying vehicle movement events. This
chapter investigates the detailed data structure and parameters to provide intersection performance

analysis provided by ATSPM Documentation from Purdue University'.
2.1. Detector Configuration

Detector Configuration Data encompasses the structural and operational details of traffic
detectors installed at intersections. It has the following key components:

a) Approach: descriptions of where each detector is positioned within the approach.

b) Detector width and lengths: Effective detecting width and length of detector

c) Lane Type: Identification of which traffic movements (e.g., through, left turn, right turn,
and the specific phases) each detector is designed to monitor.

d) Detector Types: Specifications of the detection technology employed (e.g., inductive loops,
video detection, radar).

e) Channel Number: A unique identifier assigned to each detector input

f) Phase Number: Specific traffic phases assigned to each detector

g) Stopbar Distance: Detecting location from the stopbar detector

'Purdue University ATSPM document



https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=jtrpaffdocs

ATSPM detector configuration information varies in format across different administrative
entities. FDOT utilizes Normalized Operational Equipment Management Initiative (NOEMI)
reports to manage traffic operations throughout Florida’s roadway network. These reports include
details on specific intersections, covering operation and maintenance activities. Figure 2-1 shows
a section of the NOEMI report that addresses the configuration of the detectorFigure 2-1. The
NOEMI report provides key information necessary for interpreting ATSPM controller event log
data, which is discussed in detail in the next chapter. However, it is updated infrequently, often

with several years between revisions, and relies primarily on manual processes.

ID  Approach Lane Type Width  Length  Lane No. from Left Type Channel Phase  Stopbar Distance Slot Number Length
1 1N CHARLES RICHARD BEALL BLVD NB Left 12 190 1 Inductive Loop 1 1 0 null 40
2 1M CHARLES RICHARD BEALL BLVD NE Through 12 null 2 Inductive Loop 9 ] 150 null [
2 1M CHARLES RICHARD BEALL BLVD NB Through 12 null 2 Inductive P 11 6 330 null [
3 1M CHARLES RICHARD BEALL BLVD NB Through 14 null 3 Inductive Loop 10 ] 150 null [
3 1M CHARLES RICHARD BEALL BLVD NB Through 14 null 3 Inductive Loop 12 4] 330 null [
4 1M CHARLES RICHARD BEALL BLVD NE Right 12 175 4

E] 2 N PINE MEADOW DR WB Left 10 135 1 Inductive Loop 4 0 null 40
6 2 N PINE MEADOW DR WEB Through Right 12 null 2 Inductive Loop 4 0 null 40
7 3 N CHARLES RICHARD BEALL BLVD SB Left 12 205 1 Inductive Loop 8 5 0 null 40
g 3 N CHARLES RICHARD BEALL BLVD SB Through 12 null 2 Inductive Loop 2 2 150 null 6
8 3 N CHARLES RICHARD BEALL BLVD SB Through 12 null 2 Inductive Leop 4 2 330 null 6
] 3 N CHARLES RICHARD BEALL BLVD SB Through 14 null 3 Inductive Loop 3 2 150 null [
] 3 N CHARLES RICHARD BEALL BLVD 5B Through 14 null 3 Inductive Loop 5 2 330 null 6
10 3 N CHARLES RICHARD BEALL BLVD SB Right 12 170 4

11 4DOGWOOD TRL EB Left 12 85 1 Inductive Loo 13 g 0 null 40
12 4DOGWOOD TRLEB Through Right 12 null 2 Inductive Leop 4 g 0 null 40

Figure 2-1. An Example of Detector Configuration Data in the FDOT NOEMI Report
The accuracy of detector configuration is crucial, as it specifies the precise location of
events recorded in log data. Inaccurate or outdated information leads to false or misleading
intersection performance measurements. Although NOEMI reports provide configuration
information for over 1800 intersections in Florida, this study focuses on a select number of

intersections with verified data accuracy for further analysis.



2.2. ATSPM Controller Event Log data

ATSPM Controller Event Log data encompasses information gathered and stored by traffic
signal controllers and detectors. This data is typically collected in real-time or near-real-time,

offering continuous insights into intersection operations. The ATSPM database primarily archives

data on events such as vehicle detections and changes in traffic signals up to 0.1 seconds.

Each event generated by the signal controller consists of four bytes: two for the event
timestamp, one for the event code type, and one for the event parameter. The event code identifies
the specific activity reported by the controller, such as phase initiation or termination, detection

activation or deactivation, or errors. Consequently, the event code byte can report up to 256 distinct

activities. Table 2-1 provides detailed descriptions of each event parameter.

Table 2-1. Parameters of ATSPM Controller Event Log Data

Parameter

Description

Field Type

SignallD

This column identifies the specific traffic signal or
intersection. It’s typically a unique numerical or alphanumeric
code assigned to each intersection in the network.

integer

TimeStamp

This column records the exact date and time when an event
occurred. It usually includes both the date and time, often
down to 0.1 seconds for precise temporal analysis.

DateTime

EventCode

This column contains a numerical code representing a specific
type of event or action at the traffic signal. Different numbers
correspond to different events, such as signal phase changes,
vehicle detections, pedestrian button presses, and preemption
events.

integer

EventParam

This column provides additional information, or parameters
related to the event specified by detector channel numbers and
phases.

integer




Table 2-2 provides a brief description of each event code. It is composed of traffic signal

events, vehicle detection events, preemption, coordination, and maintenance events.

Table 2-2. Parameters of ATSPM Controller Event Log data

Event
Event Type v Event Code Types | Descriptions
Code
020 Active Phase Any phase-related status changes, such
Events as activation or termination.
Active Pedestri .
21-30 crive redestrian Pedestrian-related phase status changes.
Phase Events
Traffic - - - —
- 3140 Barrier/Ring Events | Barrier and yellow permissive events.
signa
41-60 Phase Control Phase hold, call, and omit status
Events changes.
Phase Overl
61-80 ase Lvertap Overlap status changes
Events
Vehlqe 21100 Detector Events Detector activity and error status
detection changes.
Preemption 101-130 | Preemption Events | Preemption status changes
Coordination 131-170 Coordination Coordinated timing sta.tus. changes, such
Events as cycle length and split times.
. Controller property-related status
) Cabinet/Syst: . .
Maintenance 171-199 abinelsysiem changes, including alarms, clock
Events .
updates, and power failures.
User-defined
St . cHne 200-255 | User-defined event | Future user-defined functions
functions

The type of event happening at intersections typically includes the beginning or end of a
signal phase and the activation or deactivation of a detector. An illustrated overview of the high-

resolution event data is presented in Table 2-3.



Table 2-3 Example of High-Resolution Event Data from ATSPM

fll)gnal Time Stamp Event Code | Event Parameter | Remarks

1067 | 2019-10-01 04:33.5 | 1 7 Phase 7 Green Begin

1067 | 2019-10-01 04:35.3 | 82 4 Detector 4 On

1067 | 2019-10-01 04:38.8 | 81 4 Detector 4 Off

1067 | 2019-10-01 04:39.6 | 8 7 Phase 7 Yellow Begin

1067 | 2019-10-01 04:43.1 | 82 8 Detector 8 On

1067 | 2019-10-01 04:43.2 | 81 8 Detector 8 Off

1067 | 2019-10-01 04:43.3 | 10 7 Phase 7 Red Clearance
Begin

1067 | 2019-10-01 04:46.3 | 11 7 Phase 7 Red Clearance
End

1067 2019-10-01 04:47.5 | 82 5 Detector 5 On

1067 | 2019-10-01 04:48.1 | 81 5 Detector 5 Off

In the United States, the ATSPM controllers typically adhere to the ‘dual-ring, eight-phase’
scheme for controlling traffic at intersections. This scheme ensures the non-overlapping, sequential
progression of traffic phases over time, where the phases typically represent the left-turn and
through movements of every roadway approach at an intersection. The diagram in Figure 2-2(b)
(analogous to the intersection in Figure 2-2(a)) demonstrates a typical ‘dual-ring, eight-phase’
scheme, which includes rings and phase groups. The rings in the diagram denote the pathways for

sequencing traffic phases, whereas phase groups separated by barriers represent a roadway

approaching an intersection.




: : Left-Turn Phase
: : (1,3,5,7)
N i 5 Through Phase
Major | ! (2,4,6,8)
i H Phase Group 1 Phase Group 2
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Y
E E Ring 1 g 7 % >
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ing i -
=
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: : Barrier 1 Barrier 2 Barrier 1
Major

(a) Typical Intersection Depicting Traffic (b) Configuration of ‘Dual-Ring, Eight-

Phases Phase’ Operation

Figure 2-2 Typical ‘Dual-Ring, Eight-Phase’ Scheme (Major Roadway Along North-South)

Phase group 1 generally corresponds to the ‘major’ roadway, and phase group 2 to the
‘minor’ roadway. The ‘dual-ring, eight-phase’ scheme functions on a set of rules as follows:

h) At any given time, one phase from each of the two rings can operate.

i) All operational phases must be within the same phase group.

j) Each phase within a particular ring can operate concurrently with any phase from the
alternate ring, provided they belong to the same phase group.

k) The operation of phases in phase group 1 (i.e., ‘major’ roadway) is completely
incompatible with those in phase group 2 (i.e., ‘minor’ roadway).

1) The rings are permitted to cross the barrier when all the rings have arrived at this point.

The cycle length is the duration between successive crossings of barrier 2.



CHAPTER 3: RELATED WORK

This section reviews research reports from various projects from the Department of
Transportation (DOT) and GitHub repositories related to existing ATSPM systems to minimize
redundant efforts in this project. According to the Federal Highway Administration’s (FHWA)
ATSPM site?, six relevant reports are available, sponsored by agencies such as the United States
DOT, Indiana DOT, Utah DOT, and the American Association of State Highway and
Transportation Officials (AASHTO). Utah and Oregon DOTs have also published GitHub
repositories for processing ATSPM data. We examined the features of these repositories, including
data characteristics, collection frequency, and their potential applicability to this project. We also
identify any attributes that may require further development to achieve the project’s objectives.
Given the diverse objectives of each agency’s analyses, this review is organized by an agency and

mainly addresses the report’s unique efforts for conciseness.

The review specifically focuses on the features of ATSPM data and use cases relevant to
this study, which aims to evaluate the safety of intersections using ATSPM data and apply this
information to recommend signalization strategies. Therefore, a discussion of how to install and
maintain the ATSPM system is excluded from this review. We mainly analyze the types of data
provided by ATSPM, whether this data has been used to recommend signalization strategies at

intersections, and their deployment strategy.

2 USDOT ATSPM summary
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3.1. Atspm Project Reports and GitHub Repositories Published By DOT
3.1.1. ATSPM Reports By DOT
3.1.1.1. United States Department of Transportation (USDOT)

The United States Department of Transportation (USDOT) published two detailed reports
on the ATSPM system in 2020 with Atkins and Leidos, respectively. These reports
comprehensively analyze traffic signal performance measures using ATSPM, highlighting the use
cases in early adopter agencies and quantitive cost and benefit analysis. A summary of the two

published USDOT reports is discussed in the following subsections.
USDOT’2020 by Atkins

This report reported eight detailed use cases of ATSPM, addressing those cases’
deployment strategies and the benefits they obtained. Those early adopters adopted various
deployment strategies. Most agencies use the open-source ATSPM software developed by the Utah
DOT. This approach involves maintaining high-resolution controller data storage and hosting a
local installation of the software. The other approach is cooperating with traffic controller vendors.
Some traffic controller vendors offer integrated ATSPM capabilities within their central traffic
signal management software. In this model, a third-party provider hosts the ATSPM data, often in
the cloud. This method typically involves installing supplemental data collection equipment and
paying subscription fees. The USDOT reports provide several technical applications:

a) ATSPM systems collect high-resolution data from traffic signal controllers, including
events like phase changes and detector actuation.
b) The data collected is processed using specialized software to generate performance

measures such as approach delay, speeds, volumes, and arrivals on red.
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¢) The systems provide real-time monitoring capabilities, alerting engineers to issues such as
detector malfunctions or signal failures.

d) Various data visualization tools are developed to help engineers and stakeholders
understand traffic performance metrics easily.

The agencies reported in USDOT’s 2020 report tried to provide real-time performance data
and alerts, improving traffic flow, safety, and operational efficiency. The collaborative efforts
across various state and local agencies demonstrate the system’s scalability and effectiveness in
different urban settings. USDOT’s 2020 report states that the project has been successfully
implemented in various regions across the United States, demonstrating its versatility and
effectiveness. Notable case studies include:

a) Utah Department of Transportation (UDOT):

* UDOT’s ATSPM system, developed in collaboration with Purdue University and
FHWA, includes a suite of data visualization reports to evaluate traffic progression and

identify unused green time.

* UDOT has significantly reduced public complaints and improved operational efficiency

using ATSPM at 99 percent of its 1,271 traffic signals.

b) Georgia Department of Transportation (GDOT):

* GDOT’s deployment uses the open-source ATSPM software from UDOT. The system
aids in managing signal operations, particularly during events like the 1-85 bridge

collapse, by developing alternate routing plans and adjusting signal timing.

* GDOT has connected 6,775 signals to the ATSPM system, improving overall traffic

signal management.
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c) Pennsylvania Department of Transportation (PennDOT):

¢ PennDOT’s ATSPM goals focus on reducing delays, emissions, and crashes while
promoting economic benefits. They have implemented a unified command and control

platform integrating various ATSPM inputs to manage 2,184 signals statewide.
d) Seminole County, Florida:

¢ Seminole County’s ATSPM program, developed with FDOT and UDOT, supports a
wide range of performance metrics. The county has upgraded 387 signals to record high-

resolution data.

The key benefit of ATSPM, as demonstrated in the report, is that the system offers several
benefits over traditional signal retiming methods. Traditionally, signal retiming is done every 3-5
years at a cost of roughly $4,500 per intersection, often relying on public complaints and periodic
data collection. ATSPM, however, allows for continuous performance monitoring, leading to
proactive identification and correction of deficiencies. This shift to proactive management
improves safety, enables targeted maintenance, and enhances overall traffic operations. The
FHWA’s Every Day Counts (EDC-4) initiative promoted ATSPM, resulting in a significant
increase in its adoption. By the end of EDC-4, 57% of states were demonstrating, evaluating, or

institutionalizing ATSPM, a substantial increase from the initial 11 states.
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USDOT’2020 by Leidos

This report mainly tried to evaluate the economic costs and benefits of early adopter
agencies. They report a flexible cost-benefit estimation methodology that covers both short-term
and long-term benefits over the lifecycle of ATSPM implementations. Figure 3-1 shows that the

methodology includes 16 cost items and 12 benefit items, each with specific formulas that agencies

can adapt to their context.

1. Controller procurement. 1. Replace manual data collection.

2. Firmware upgrades. 2. Avoid unneeded retiming and

3. External data collection. maintenance activities.

e e B 3. Reduce response time to public
investments. .

5.  Communications system service calls.
maintenance. 4. Value of performance

6. Detection system investments. documentation.

7. Detection system maintenance. 5. Fixfailed detectors.

8. Detector reconfiguration. 6. Fix broken communication.

9. Detector documentation. 7. Fix equipment failures.

L e S £l 8. Improve inefficient green

11. Server maintenance. L

12. Software license. distribution. o

13. Software installation. 9. Improve poor coordination.

14. Maintenance/troubleshooting. 10. Resolve pedestrian issues.

15. Business process integration. 11. Resolve preemption issues.

16. Active use of ATSPMs. 12. Improve safety.

Figure 3-1. Primary Items in the Benefit-Cost Methodology (Leidos, 2020)

This approach allows for a customized analysis based on the available data and specific
conditions of different agencies. Table 3-1 shows the reported cost and benefit analysis, including

detailed case studies from six early adopter agencies.
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Table 3-1. Cost and Benefit Analysis from Case Studies

Agenc Main Benefit No. of Costs Benefit
gency implementation intersections | (E.) (E.)
I d traffi
Developed an open- @prove ?a '1c
source software signal monitoring
Utah DOT and maintenance, 2,111 $11.5M | $108.0M
package for substantial cost
ATSPMs. .
savings.
Streamlined signal
. Collaborated with performance
Georgia o
UDOT to enhance monitoring and 6,804 $0.9M | $9.5M
DOT
the software. reduced response
times.
F d .
ocusecon Enhanced detection | 100
Pennsylva | integrating ATSPMs .
) . and response to (hypothetical | $0.4M | $1.7M
nia DOT | into local agency . .
, signal failures. case)
operations.
Emphasi
County tin?in an%i regducin reduction in vehicle | 180 $0.3M | $4.1M
DOT . g & delays
maintenance costs.
F d on data-
Maricopa dfi(\::;eimonrojeilents Reduction in travel
County P time and 170 $0.5M | $1.5M
to traffic .
DOT operational costs.
management.
This h ttob
Clark Faced initial challenges but gained S Has ye. © e
C . fully quantified due
County, substantial insights into system 125 .
. to ongoing
WA improvements. . .
implementation.

The USDOT’s 2021 report also highlights key lessons from interviews with six early

adopter agencies. One of the main findings is that robust executive support is essential for the
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effective implementation of ATSPM. Investments in signal maintenance prior to implementing
ATSPM can significantly facilitate its integration. Additionally, it is crucial for agencies to adapt
the methodology to their unique requirements and contexts. A common issue is that most agencies
lack the capacity to analyze data sets to pinpoint problems thoroughly. Innovations like the
Measurement, Accuracy, and Reliability Kit (MARK 1), developed by the Georgia Department of
Transportation (GDOT), are making strides in this area by summarizing data from various

locations.

The development and implementation of ATSPM technology is a collaborative effort
involving multiple stakeholders, such as FHW, state DOTs, and academic institutions. This
collaboration has fostered the development of innovative data analysis techniques and performance
metrics. Furthermore, agencies like the UDOT and the GDOT enhance public transparency by
providing access to ATSPM data and analyses through public-facing websites, promoting
community engagement and transparency. In essence, ATSPM systems represent a significant leap
forward in managing traffic signals, aligning with the dynamic demands of modern transportation
networks and yielding safer, more efficient, and cost-effective traffic operations. In summary,
ATSPMs have proven to be valuable tools for improving traffic signal management. Their
deployment strategies, diverse use cases, and significant benefits highlight their potential to
transform how agencies manage and operate traffic signals, ultimately leading to more efficient

and safer roadways.
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3.1.1.2. Indiana Department of Transportation (INDOT)

The Indiana Department of Transportation (INDOT) has published detailed reports on
ATSPM data in 2014 and 2015. These reports provide a comprehensive analysis of traffic signal
performance measures based on high-resolution controller event data, highlighting the significance
and implementation of these measures for improving traffic signal systems. A brief summary of
the published INDOT reports is discussed in the following subsections.

INDOT’2014

In 2014, INDOT published a report emphasizing the critical need for effective traffic signal
operations within traffic management, often underestimated in budget and staffing allocations. It
highlighted the lack of adequate performance reporting, obscuring the quality of the actual
operation. The report aimed to provide a comprehensive suite of control-agnostic, discrete event-
based performance measures, including Automated Traffic Signal Performance Measures

(ATSPM), applicable universally for analyzing traffic signal systems.

This report discusses various aspects of signal timing that are critical for effective traffic
management. It outlines different types of signal operations, such as fixed-time, semi-actuated,
fully actuated, and adaptive control, each requiring specific detector data and operational strategies.
The report details control elements like interval and phase timing, the role of vehicle detection in
linking to signal output and the importance of signal cycles. Actuation methods are highlighted,
emphasizing dynamic adjustments based on real-time traffic conditions. Signal coordination
strategies aim to synchronize green times across intersections, while preemption and priority

functions ensure timely responses for emergency vehicles and transit.

The report presents a comprehensive analysis of various performance measures to assess

and optimize traffic signal systems. The capacity performance measures evaluate intersection
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utilization through metrics such as traffic volumes, cycle lengths, green time allocation, flow rate,
headway, saturation flow rate, vehicle measures of effectiveness, green and red occupancy ratios,

and the degree of intersection saturation.

The progression performance measures focus on the efficiency of coordinated signal
systems by examining vehicle delays, arrival patterns, percent on green, platoon ratio, arrival type,
delay estimates, and the Purdue Coordination Diagram (PCD). The multimodal performance
measures assess the accommodation of pedestrians, transit vehicles, and emergency vehicles using
metrics like pedestrian delay, level of service (LOS), preemption response time and duration, and
transit priority adjustments in green and red phases. Maintenance performance measures ensure
system reliability by evaluating communication quality through ping success rates and data
transmission failures, data completeness via automated audits and redundancy checks, and detector
status by logging error frequency and duration. Every performance measure utilizes specific
parameters to provide actionable insights for traffic management improvements. The parameters

for every measure are illustrated in Table 3-2.

These performance measures, detailed in the report, offer a structured approach to
evaluating and enhancing traffic signal systems, ultimately leading to improved traffic flow and

management efficiency.
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Table 3-2. Summary of Performance Measures and Parameters

Performance

Parameters
Measures

Capacity Traffic Volumes, Cycle Lengths, Green Time Allocation, Flow Rate,
Headway, Saturation Flow Rate, Vehicle Measures of Effectiveness, Green

Performance . . .
and Red Occupancy Ratios, Degree of Intersection Saturation

Progression | Vehicle Delays, Arrival Patterns, Percent on Green, Platoon Ratio, Arrival
Type, Delay Estimates, Purdue Coordination Diagram (PCD), Flow Profiles,

Criormance | o ockwave Analysis, Maximum Queue Lengths

Pedestrian Delay, Level of Service (LOS), Preemption Response Time,
Preemption Duration, Transit Priority Adjustments in Green and Red Phases,
Performance | Signal Changes, Vehicle Arrivals, Detection Technologies (GPS, Infrared,
Radio-Based Systems)

Multimodal

Maintenance | Communication Quality (Ping Success Rates, Data Transmission Failures),
Data Completeness (Automated Audits, Redundancy Checks), Detector Status

Performance .
(Error Frequency, Error Duration)

This INDOT report provides a comprehensive suite of performance measures for current
traffic signal systems and paves the way for future advancements in traffic management. With the
integration of more sophisticated data collection techniques, such as real-time crowdsourced data
and advanced sensor technologies, future traffic signal systems can achieve even greater precision
and efficiency. The continuous improvement of data processing algorithms and adopting machine
learning models could further enhance the predictive capabilities of traffic management systems.
Additionally, expanding the scope of multimodal performance measures to include emerging
transportation modes, such as autonomous vehicles and micro-mobility solutions, will be crucial.
Future efforts should also focus on the integration of these advanced systems—such as connected
vehicle technology, adaptive signal control, and Internet of Things (IoT) devices—into existing

infrastructure, ensuring scalability and adaptability.
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INDOT’2015

The INDOT report published in 2015 also emphasizes the need to integrate ATSPM into

agency operations to enhance efficiency and effectiveness. Traditional traffic signal systems rely

on fixed schedules and limited data inputs, leading to suboptimal performance. High-resolution

data logging enables detailed analyses of traffic signal performance, identifying inefficiencies and

allowing for targeted improvements. This data-driven approach optimizes signal timing plans,

improving traffic flow and reducing congestion. The key findings in the report are:

a)

b)

Technical Requirements for Implementation:

High-resolution controller data logging requires understanding the necessary infrastructure,

software, and processes to handle increased data volume.

Identifying suitable detection configurations (e.g., loop detectors, video detectors) and

ensuring adequate data storage capacities are crucial.

Managing latency to ensure seamless data collection, transmission, storage, and

visualization is essential for real-time performance analysis.

Detection of Vehicles:

Accurate vehicle detection at intersections is critical for optimizing traffic signal

performance.

Various types of detectors, such as loop detectors and video detectors, provide essential

data to signal controllers.

Detector failures can disrupt traffic flow, but high-resolution event data can identify such

failures for timely maintenance and repairs.

Evaluation of Local Signal Control:
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e High-resolution data and visualizations assess the quality of traffic signal operations at
individual intersections, examining metrics such as vehicle delay, queue length, and

number of stops.

e The evaluation process examines green time distribution and trends in initiation and

termination.

e Performance measures, such as phase failures and split failures, are aggregated to identify

spatial and temporal “hot spots” of poor performance.

e Detector failures can also be identified by monitoring inconsistencies in expected traffic
patterns, anomalies in signal phase activation, continuous monitoring and alert systems,

comparison with adjacent detectors, and correlation with external data sources.

d) System Control Evaluation:

e High-resolution and travel time data manage traffic signal progression along arterial

corridors, ensuring coordinated scheduling of green times at neighboring intersections.

¢ Evaluation involves assessing progression quality and optimizing signal offsets using data-
driven techniques like time-space diagrams and vehicle trajectory data.

This INDOT report concludes that integrating high-resolution traffic signal performance
measures through ATSPM into agency operations significantly enhances efficiency and
effectiveness. Traditional systems relying on fixed schedules and limited data inputs result in
suboptimal performance, whereas high-resolution data logging allows for detailed analysis and
targeted improvements, leading to optimized signal timing plans, improved traffic flow, and
reduced congestion. By addressing technical requirements such as detection, communication, and
data processing, and by using data-driven approaches for system control evaluation, agencies can

achieve significant improvements in traffic signal management and overall traffic operations.
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3.1.1.3. Utah Department of Transportation (UDOT)

The Utah Department of Transportation (UDOT) performed a comprehensive study to
explore the potential of Automated Traffic Signal Performance Measures (ATSPM) data in
estimating Annual Average Daily Traffic (AADT). Traditionally, UDOT has relied on short-
duration traffic counts to fulfill Federal Highway Administration (FHWA) requirements. These
counts, conducted at approximately 6000 locations over three years, are labor-intensive, costly,
and pose safety risks. The study aimed to determine whether ATSPM data from radar detectors at
signalized intersections could be used to estimate AADT, thereby reducing the need for some short
duration counts and balancing Continuous Counter Station (CCS) data in estimating seasonal

adjustment factors.

Two types of ATSPM detectors were analyzed in this study: Wavetronix SmartSensor
Advance detectors and Wavetronix SmartSensor Matrix detectors. Advance detectors are installed
300-400 feet upstream of signalized intersections and provide total through traffic counts. In
contrast, Matrix detectors are installed at stop-bar locations and offer lane-by-lane turning
movement counts. The study’s initial phase involved selecting test locations by mapping CCS and
ATSPM detector sites. The selected sites had to be on the same road segment without intermediate

access points, providing count data for the same route, direction, and period.

The CCS dataset comprised hourly directional counts from 113 sites for the entire year
2017, totaling 1,846,104 counts. The ATSPM dataset consisted of 15-minute interval counts from
47 signals over the same period, amounting to 15,999,450 counts. The data from CCS and ATSPM
pairs were mapped and unified in terms of direction labeling and time intervals for accurate
analysis. This mapping process ensured that the datasets could be directly compared and analyzed

effectively.
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One of the crucial steps in the study was identifying and removing anomalous data, which
could be caused by device malfunctions or other issues. Three anomaly detection methods were
tested: the Inter Quantile Range (IQR) method, K-Means Clustering, and the Time of Day (TOD)
and IQR-based method. The IQR method assumed that any hourly count beyond 1.5 times the IQR
from the 75th percentile was an anomaly. The K-Means Clustering method partitioned data into
clusters, identifying anomalies based on their distance from cluster averages. The TOD & IQR-
based method used historical data to set thresholds for anomalies, particularly for early morning

hours. The analysis revealed the following:

e UDOT’s use of ATSPM data can reduce the need for labor-intensive, costly short-duration
traffic counts. By leveraging ATSPM data, UDOT can minimize the frequency of

traditional traffic counts, thereby reducing costs and labor.

e Matrix detectors provide reliable hourly traffic counts and accurate AADT estimates,
complementing CCS data. Even without adjustment factors, Matrix detectors provided

reliable estimates with average R-squared values of 0.93.

e Anomaly detection, particularly the TOD & IQR method, is crucial for data accuracy. The
TOD & IQR method demonstrated superior performance in identifying and removing

anomalous data, ensuring the reliability of traffic count data from ATSPM detectors.

e The number of lanes and detector configurations impact the accuracy of traffic counts from
ATSPM data. Advance detectors were most accurate on two-lane roadways, while Matrix
detectors improved as the number of detector channels increased. Single Matrix detectors

were generally more accurate compared to multiple Matrix detectors at intersections.

e This research supports the broader application of ATSPM data for efficient traffic
management and planning. Matrix detectors estimated AADT with 88% accuracy

compared to CCS sites and accurately estimated monthly seasonal factors with 97.5%
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accuracy and day-of-week in month factors with 96.8% accuracy. These capabilities are

valuable for making precise adjustments based on seasonal traffic patterns.

3.1.1.4. American Association of State Highway and Transportation Officials (AASHTO)

The main objective of AASHTO’s 2020 report is to provide guidance for agencies in
implementing a performance measurement approach for traffic signal management. The report
aims to help agencies evaluate whether this performance-based approach would be cost-effective
for their system and to develop a plan for its implementation. While it also includes a data
dictionary and communication materials, these were summarized in the above reports and thus
excluded from this review. The report suggests detailed steps to integrate signal performance

measures into the management of a traffic signal system, as follows:

¢ Select Performance Measures: Determine which signal performance measures align best
with the agency’s goals and methods. Identifying key measures is essential to avoid data

overload and ensure effective decision-making.

¢ Determine Implementation Scale: Decide whether to implement performance measures
across the entire system at once or incrementally. Most agencies opt for an incremental

approach, using pilot projects or integrating upgrades with existing maintenance programs.

¢ Conduct System Needs Gap Assessment: Assess gaps in equipment, business processes,
organizational structure, or resources required for implementation after selecting

performance measures and intersections.

¢ Procure Resources: Identify and acquire the additional resources needed for deployment

and long-term maintenance based on the gap assessment results.

e Configure System: Set up the equipment and software necessary for data collection,
storage, and processing at both the intersection and system levels. Program each

intersection with the relevant information.
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¢ Verify System: Ensure data consistency and accuracy through a verification process post-
installation. Utilize external data from sensor networks or field studies to confirm the

precision and correct calculation of performance measures.

e Apply Performance Measures: Use performance measures to adjust signal timings,

correct mis-programmed parameters, and identify malfunctioning equipment.

o Integrate into Agency Practice: Incorporate performance measures into daily operations
for continuous monitoring. This practice helps in evaluating the effectiveness of
maintenance and operations, guiding resource allocation and funding decisions.

This study provides the various steps involved in both traditional and ATSPM signal
retiming. Figure 3-2 shows that, unlike traditional retiming, performance-based management with

ATSPMs allows staff to continuously and proactively monitor the traffic signal system rather than

Public Service Program

Request Signal Static

or Periodic Timing in Before/After
Retiming U (ontroller ! Study

making occasional, reactive changes.

Identify
Trigger Desired Develop New
Event Outcomes Signal Timing

v
o
w
-
v
o~
=
-
w

TRADITIONAL

Determine Program
Adjustments Using Signal Timing
ATSPM Reports in Controller

ATSPMs

Figure 3-2. Traditional versus Performance-Based Signal Timing Process (AASHTO, 2020)
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3.1.2. ATSPM GitHub By DOT

The Utah Department of Transportation (UDOT) developed the ATSPM GitHub repository
in 2017 to offer a suite of visual aids that utilize high-resolution data from signal controllers®. This
open-source software enables real-time analysis and visualization of traffic signal performance,
optimizing signal timing and coordination. In addition, the Oregon Department of Transportation
(ODOT) published the “ATSPM_Aggregation” GitHub repository In 2023. The repository is a
potential Python package designed to aggregate traffic signal performance measures (ATSPMs) in
30-minute and 1-hour intervals from high-resolution controller data*. This repository assists traffic
engineers and researchers in evaluating traffic signal performance through various metrics. The
primary goal is to convert raw data from Automated Traffic Signal Controllers (ATCs) into
meaningful performance metrics that can optimize traffic signal timing, improve traffic flow, and
enhance overall intersection safety. The repository provides essential tools for processing high-

resolution traffic signal data and extracting valuable insights.

3 UDOT ATSPM GitHub repository

4 Oregon DOT ATSPM GitHub repository
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3.1.2.1. Data Characteristics, Aggregation Interval, and Their Applicability

The traits of ATSPM systems include high-resolution data logging, automated data
analysis, real-time monitoring, and advanced data visualization tools. These systems capture
parameters such as vehicle volumes, delays, green time allocation, arrival on red, split failures,
signal coordination metrics, and so on. Table 3-3 describes the definition of performance measures
that can be derived from the ATSPM system. As per the reviewed reports and repositories, these
parameters are aggregated at 30-minute and 1-hour intervals. However, aggregating data at more
granular, cycle-level intervals could be more critical for detailed traffic signal performance
evaluation. Aggregation at the cycle level provides precise insights into each signal cycle’s
efficiency, allowing for real-time adjustments and optimization of signal timings at intersections.
This level of detail is crucial for making real-time adjustments and optimizing signal timings at
intersections, addressing specific issues affecting traffic flow and safety, and enhancing overall

traffic efficiency and safety.

Table 3-3. Definition of Performance Measures

Measure Description

Green/Yellow/ |Measure the amount of green, yellow, and red time served for a particular
Red Duration  |phase or overlap without requiring detection setup or mapping information.

Phase Indicates how a phase or overlap ends (gapped out, maxed out, or forced off),
Termination driven by arrivals in an actuated control system. Acts as a surrogate for

Type capacity utilization without needing detector mapping.

Volume per The count of vehicles is interpreted from the number of activations from a
Time Period setback short-length detector or a dedicated count channel.

Vehicles-per-  |The rate of vehicle arrivals for a one-hour period is typically converted from
Hour (vph) volume per time period.
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Volume/Capacit

The number of vehicle arrivals during a period is divided by the theoretical

y Ratio (v/c) capacity approximated from the green time served (less any startup loss).
. The greatest number of seconds between a detector activation at the stop bar
Maximum . . o e
. during red to either the beginning of green or detector deactivation time for
Vehicle Delay .
RTOR vehicles.
Green/Red . e . .
0 Measure capacity utilization using amounts of detector occupancy during green
ccupanc . .
. paney and red portions of a phase, respectively.
Ratio
Split Fail Indication of overcapacity for a lane, phase, or movement triggered by
it Failure . : . .
P exceeding certain occupancy ratios during green and red phases.
Queue Measure the queue length using vehicle arrivals and estimated discharge rates
ueu . .
oL (input-output method) or detector gap durations and counts (shockwave
Estimation .
estimation method).
Oversaturation

Severity Index

The ratio of unusable green time to total available green time in a cycle.

Time to Service

Measure of the time from the first detection to the beginning of green.

Percent on . . . . ..

G The percentage of total vehicles arriving during a given cycle is in green.
reen

Purdue

Coordination  |Visualization of the quality of a movement’s progression over time.

Diagram

Platoon Ratio

The percentage of vehicles arriving on green is adjusted by the green time
proportion per cycle (g/C).

Cyclic Flow Combines the distribution of vehicle arrivals and the probability of green,
Profile aggregated over a set of fixed-length cycles.

Time—Space Visualization of estimated vehicle trajectories traversing a distance over time,
Diagram including locations and phase status of signalized intersections.

Red Light Measures vehicles entering and exiting a stop bar detection zone after the
Running beginning of red.
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3.1.2.2. Data Quality Check

Ensuring data quality is fundamental in ATSPM systems. However, previous package does
not provide this functionality. Data quality check process involves thorough checks on the data
collected for the project, specifically focusing on detector on-off sequences, signal sequences, and
anomaly detection. Monitoring the on-off sequences of detectors ensures that data collection is
consistent and accurate, highlighting any potential malfunctions or inconsistencies in data
recording. Analyzing signal sequences helps identify discrepancies between expected and actual
signal performance, ensuring that the traffic signals operate as intended. Additionally, techniques
like the Inter Quantile Range (IQR) method and the Time of Day (TOD) and IQR-based method
are effective for identifying and removing anomalous data, such as outliers or unexpected
variations. These data quality checks are essential for maintaining the reliability of collected data,
supporting accurate traffic signal performance analysis, and ultimately aiding the optimization of

signalization strategies to enhance intersection safety.

3.1.2.3. Scope to Integrate Emerging Technologies

Emerging technologies like digital twins, sensor fusion, and trajectory data offer significant
opportunities to enhance ATSPM systems. Digital twins provide virtual representations of traffic
systems, enabling real-time monitoring, simulation, and optimization of traffic signals. This
technology can predict traffic patterns and assess the impact of different signalization strategies
before implementation. Sensor fusion combines data from sources such as LiDAR, radar, and
traditional traffic detectors to create a comprehensive and accurate picture of traffic conditions.

Trajectory data offers detailed insights into traffic flow and behavior, which is crucial for precise
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traffic signal optimization and identifying safety issues. Using these technologies can provide

advanced performance measures and improve overall traffic management.

The findings from the review can significantly benefit the project by offering an effective
framework for evaluating intersection safety and recommending effective signalization strategies.
The detailed performance measures and high-resolution data logging provide the necessary
granularity for analyzing traffic signal performance at a cycle level, enabling precise adjustments
to improve traffic flow and safety. Implementing regular data quality checks ensures the reliability

and accuracy of the collected data, which is essential for informed decision-making.

Though not within the current scope of the project, integrating emerging technologies like
digital twins, sensor fusion, and trajectory data can further enhance ATSPM’s analytics capability.
Digital twins can simulate various traffic scenarios, helping to predict and mitigate potential issues
before they occur. Sensor fusion offers a more comprehensive view of traffic conditions,
combining data from multiple sources for better accuracy. Trajectory data provides detailed

insights into traffic patterns and behaviors, enabling more targeted interventions.

Overall, the insights gained from the review can lead to a more effective and efficient
approach to managing traffic signals, ultimately reducing fatalities and improving overall traffic

flow and safety.
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3.1.3. Summary

The DOT project report and GitHub repositories offer numerous benefits for traffic signal
management and operation. ATSPMs facilitate a proactive approach to traffic signal maintenance
by continuously monitoring trends over time. This allows staff to identify issues before the public
reports them. Automated alerts can highlight intersections with malfunctioning equipment or high-
traffic congestions, enabling technicians to pinpoint failures, understand when issues began, and

determine when they were resolved.

ATSPMs continuously collect and analyze real-time data, reducing the need for extensive
field observations. This also supports strategies like transit signal priority and further optimizing
traffic flow by signal retiming. Shareable reports that summarize the impacts of maintenance and
operational activities facilitate transparent communication with stakeholders and policymakers.
The data collected through ATSPMs can prioritize short-term maintenance needs and inform long-
term infrastructure improvements. These systems also allow agencies to implement adaptive signal
control and other advanced systems under various conditions. This is essential for managing traffic

during special events, emergencies, or unexpected incidents.

While studies have demonstrated the cost-effective benefits of ATSPMs, most research has
focused on intersection efficiency. Consequently, there are few safety features, and the existing
GitHub repositories lack the cycle-level aggregation and safety features needed for comprehensive

safety evaluations. Further research is required to address these gaps.
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3.2. Literature Review on Mobility and Safety Applications of ATSPM

This section provides a systematic review of recent academic literature concerning ATSPM.
A comprehensive search through Elsevier’s Scopus database yielded 64 relevant journal articles
and conference papers from 2018. The majority of these, 27 in total, were published in the
Transportation Research Record. As illustrated in Figure 3-3, these papers were categorized based
on their application areas, with each category’s paper count noted in parentheses. Papers were

assigned to the most applicable category in cases where multiple applications were covered.

ATSPM Data
Preprocessing —— ATSPM data anomaly detection (2)
(5) — Detector configuration and mapping (3)
Mobility
Application —7—= Practical manual for implementation (4)
(48)

—e Turning movement estimation (3)

—e Traffic flow or signal phasing prediction (8)
—e Intersection prioritization and classification (4)
—= Data integration with other data source (9)

—e Pedestrian activity estimation (7)

—e Traffic signal priority control (7)

—e Simulation study (6)

Safety
Application —71—= Detection of red light running and crossing, and dilemma zone (3)
(11) —e Real-time crash risk and conflict prediction at intersection (4)

—e Injury severity estimation (2)

— Vehicle and pedestrian exposure estimation (2)

Figure 3-3. Distribution of Research Papers by Application within ATSPM Studies
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Our review criteria included only studies that utilized ATSPM data for analytical purposes;
those that merely referenced the data were omitted. Notably, these studies employed ATSPM data
sourced from within the United States, underscoring their direct relevance to this research. Figure
3-4 displays a trend analysis of these studies, highlighting a significant surge in publications in

2020, followed by a consistent upward trend.

Number of publications

15
2020 2021 2022 2023

2018 2019 May-24

-y

Figure 3-4. Annual Trends in the Utilization of ATSPM Data in Academic Studies.

This review assesses how ATSPM has been employed across the studies, examining the
objectives and methodologies. We tried to keep the review concise by only revealing their results
if they were clearly noteworthy or worth mentioning. Where applicable, results are quantified to
evaluate the potential impacts of ATSPM usage. The review also identifies gaps in the current

research area, discussing areas that have not yet been thoroughly explored but are required.
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3.2.1. ATSPM Data Preprocessing

Preprocessing of ATSPM data is essential for managing ATSPM data from different
agencies into one unified system. In previous studies, identifying and handling unrealistic data in
ATSPM data and mapping detectors where event data is recorded are the most important issues
for preprocessing ATSPM data. The problem of mapping detectors means identifying the detector
configuration, i.e., where and what kind of detectors are installed, due to the heterogeneity of the

recording system of ATSPM data managed by different agencies (Zarindast et al., 2024).

3.2.1.1. ATSPM Data Anomaly Detection

In this section, we review papers that focus on improving the quality and usability of
ATSPM data by detecting anomalies and implementing quality control measures. These papers
took a stepwise approach, observing the anomalies in ATSPM data, predefining their type, and
filtering them out (Huang et al., 2018; Wang et al., 2023). For example, Wang et al. (2023)
identified various types of anomalies: data switching, data shifting, data missing, and irregular
curves. The authors employed a moving average and standard deviation approach to detect these
anomalies, calculating z-scores for traffic volume data points. In their study, anomalies were

flagged when z-scores exceeded a threshold of 2.0 (Wang et al., 2023).

Huang et al. (2018) addressed the data anomaly issue by combining machine learning with
visualization. They used cumulative demand plots to analyze traffic patterns over time, enabling
the identification of days with missing or anomalous data. For example, periods where cumulative
volume remained unchanged indicated potential data logging issues. Mean-shift clustering was
employed to distinguish typical traffic days from atypical ones by comparing daily demand curves.
This algorithm clustered days with similar demand patterns and identified outliers, facilitating the

detection of anomalous days. The study found other specific detector sensor errors, such as stuck
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and false call errors. Stuck call errors occurred when a detector showed occupancy for an
excessively long period. False call errors were detected when a sensor recorded unusually high
vehicle counts. Also, logging gap distributions were used to examine time intervals between
logged events, flagging potential logging failures when there were long gaps. Lastly, phase status

logging checked for missing pairs of phase status events.

Those studies emphasized the critical role of high-quality data in traffic signal performance
measures and proposed methods to ensure the integrity and usability of this data. However, these
studies are based on predefined types of anomalies, so those algorithms cannot detect undefined
anomalies. To overcome this limitation, it is necessary to consider a methodology to find

anomalies based on data without a predefined definition of normal data in future studies.
3.2.1.2. Detector Configuration Mapping

The accuracy of ATSPM, particularly on detector event data, relies heavily on the accurate
detector configuration information. However, unreliable detector configuration information and
the inaccuracy of detector-to-phase mappings at ATSPM data are a significant challenge. This
issue often arises due to inconsistent management systems, including outdated infrastructure,
unrecorded changes, or the addition of new lanes (Mahajan et al., 2020; Zarindast et al., 2024).
Zarindast et al. (2024) identify significant variations in how different agencies maintain records of
detector configurations. Some agencies may have centralized databases, while others might rely
on handwritten documentation or lack electronic records altogether. This inconsistency
complicates the process of obtaining accurate and current detector configuration. Therefore, the
primary objective of the studies in this section is to accurately map traffic detectors to their
respective signal phases in ATSPM data. These studies collectively underscore the importance of

precise detector configuration and data quality for the effective use of ATSPM.
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Zarindast et al. (2024) address the challenge by developing a data-driven approach that
utilizes machine learning algorithms. The study aims to automate the detection and correcting of
anomalies in detector configurations. The core of the methodology in this paper is the Occupancy
Pattern Association (OPA) algorithm, identifying detector types by examining occupancy patterns
and calculating skewness, with presence detectors showing negative skewness and count detectors
exhibiting positive skewness. Phase assignment is determined by analyzing the relationship
between detector occupancy and the beginning of green. A drop point marks the transition from
high to low occupancy after the green phase starts. The phase most frequently associated with

these drop points is then identified as the corresponding phase for each detector.

Mahajan et al. (2020) aim to develop a method for mapping detectors to their respective
phases and distinguishing between stop bar and advance detectors. The methodology begins with
the decomposition of high-resolution data streams into individual signal cycles by identifying
repeated signal timing patterns. Once these cycles are identified, they are clustered based on similar
phase timing patterns, which discriminate between green and red phases. Initial detector
assignments are made by counting vehicle departures during green and red phases under moderate
traffic conditions, mapping detectors to phases based on the phase that results in more vehicle
departures during green. The distinction between stop bar and advance detectors is distinguished
by analyzing low traffic volume cycles, such as those occurring at nighttime. By examining the
order of detector activations as a single vehicle progresses through the intersection, the study
determines the relative positions of the detectors. Frequent sets of detector activations during low-
volume periods further aid in distinguishing detectors close to the stop bar from those located

further away.
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The current ATSPM systems have detectors of varying lengths at stop bars or as advanced
detectors. Emtenan and Day (2020) investigated the impact of various detector configurations and
lengths on the accuracy of performance measurements and signal operations. After the simulation-
based analysis, the authors noted that longer detection zones tend to overestimate split failures,
while shorter zones may underestimate them. They also recommended that detection zones be
configured to lengths of approximately 30 to 50 feet, with calibrated GOR thresholds to match the
detection zone length for accurate split failure estimation. In general, setback detectors should
ideally be placed about 5 seconds of travel time from the stop bar to balance accuracy and
practicality in signal operations. Lastly, lane-by-lane detection provides more accurate split failure
estimates compared to approach-based detection (Emtenan and Day, 2020). These findings
highlight the importance of proper detector configuration in traffic signal systems to ensure

accurate performance measurement and effective signal operations.

Those data-driven methods and conclusions offer a practical and scalable solution for
diagnosing and correcting detector configuration errors. These papers have in common that they
use an empirical approach to determine the configuration of the detector based on physically
natural phenomena rather than a random fluctuation of event data. In conclusion, those papers
highlight the importance of an organized and standardized way of managing ATSPM data for

operations.
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3.2.2. Mobility Applications

Mobility application refers to the application of ATSPM in mobility-related fields such as
vehicle volume and delay. It is usually used to evaluate various strategies for intersections using
the metrics provided by ATSPM or to create new metrics using raw data from ATSPM and validate

the metrics.

3.2.2.1. Practical Manual for Implementation

The primary objective of ATSPM is to evaluate the performance of intersections to enhance
traffic signal operations and management. Reviewed studies in this section provide detailed
manuals on installation (Zhang et al., 2019), traffic signal control strategies (Dobrota et al., 2024;
Mitrovic et al., 2023), and new metrics (Dobrota et al., 2023), aiding in the installation and
utilization of ATSPM data. These decision-making tools and metrics enable engineers to follow

the best practices and reduce unnecessary trial and error and redundant efforts.

Zhang et al. (2019) introduce available performance measures and the system architecture
of ATSPM, emphasizing the differences between traditional signal systems and the capabilities of
ATSPM. Their study covers technical considerations for installing ATSPM, such as data review

and decoding, firmware testing, detector channel mapping, and cybersecurity protocols.

Dobrota et al. (2024) developed a decision-making tool to recommend appropriate traffic
signal control strategies by incorporating factors such as corridor characteristics, operational
objectives, agency capabilities, and constraints. Their toolbox is designed to offer comprehensive
solutions using data that is easily accessible to most agencies, such as annual average daily traffic
and vehicle probe data. Similarly, Mitrovic et al. (2023) developed a data-driven decision support

tool to identify optimal intersections for deploying adaptive traffic signal control systems, using
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ATSPM data to quantify operational attributes. The tool identifies suitable intersections for
adaptive traffic signal control deployment, reducing the time and resources required for decision-

making. The authors claim its robustness and flexibility apply to various networks.

Dobrota et al. (2023) introduced three new metrics to overcome the shortcomings of
traditional performance measures. First, the queued volume in the volume-to-capacity ratio
addresses the issue of the volume-to-capacity ratio not distinguishing between queued and free-
flowing traffic. Second, cycle utilization measures the extent of time utilization within a cycle,
improving the green occupancy ratio by indicating how effectively the green time is utilized
throughout the cycle. Lastly, the volume-occupancy capacity utilization, overcoming the
limitations of the green occupancy ratio, which does not account for the actual volume of traffic
passing through the intersection, potentially leading to misleading interpretations in scenarios

where occupancy is high but volume is low.

3.2.2.2. Turning Movement Estimation

An essential aspect of managing traffic congestion in intersections involves accurately
estimating travel demand, including turning movements. While these turning movements are
crucial for developing effective traffic management strategies, manually collecting turning
movement data is labor-intensive and impractical for large-scale, long-term applications. As such,
Karapetrovic and Martin (2021) focus on improving the real-time estimation of intersection
turning movements, incorporating network geometric data and sparse link flow detections where
traffic flow data is collected from a limited number of monitoring points or sensors. ATSPM data
aided in calibrating their model and achieved an r-square of 0.70 for the left turn and 0.76 for the
right turn on average for 5-min aggregation (Karapetrovic and Martin, 2021). Xu et al. (2023)

developed a method for estimating network-level turning movement counts using ATSPM data.
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ATSPM data provide detector occupancy time, detector-triggered counts, and green time duration
to estimate the turning movement. The proposed model achieves reasonable accuracy, with a
median root mean square error of 11 vehicles per 15 minutes for left and 12 vehicles per 15 minutes
for right-turn movements (Xu et al., 2023). These approaches enable cost-effective, region-wide

turning movement count estimation without additional infrastructure.

Turning movement data is also used to evaluate and optimize various traffic management
strategies. For example, Abdelrahman et al. (2020) evaluate the safety and operational
performance of displaced left-turn intersections. Using ATSPM data, the authors analyze
operational characteristics such as delay and turning volumes to determine the efficiency of
displaced left-turn intersections compared to conventional ones. Their study shows that displaced
left-turn intersections intersections can reduce intersection delay by 3.567 seconds per vehicle for

the same left-turn volume, albeit with some safety trade-offs (Abdelrahman et al., 2020).

3.2.2.3. Traffic Flow or Signal Phasing Prediction

Traffic flow prediction is a traditional task that can be used in various ways. Especially,
accurate predictions allow for dynamic adjustment and coordination of traffic signal timings,
reducing wait times and improving the flow of vehicles through intersections (Day and Bullock,
2020). In addition, predictive models help route vehicles through less congested paths, thus
reducing commuter travel time. Researchers try to predict the traffic flow at the urban network
using ATSPM. Previous studies primarily employed machine learning and deep learning models
to predict intersection traffic flow (Karnati et al., 2022, 2021; Kazenmayer et al., 2022; Rahman
et al., 2022). Using ATSPM data, they estimated traffic volume from vehicle arrivals and
departures to develop models for predicting traffic dynamics and optimizing signal timing.

Although the performance was critically dependent on the traffic flow and study site, these models
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effectively captured non-linear traffic patterns, highlighting the potential for improving traffic

management and operational efficiency.

Since cycle-level data can help identify specific times within the signal cycle when traffic
problems occur, such as queues building up or vehicles arriving during red lights, some researchers
advanced fixed time interval aggregation to cycle length (Day and Bullock, 2020; Mahmoud et al.,
2021). For example, Day and Bullock (2020) focused on optimizing traffic signal offsets with
predicted cycle-level characteristics. They generated detailed cyclic flow profiles with ATSPM to
predict changes in traffic flows resulting from trial offset adjustments. Their method proved
successful in approximately 95% of cases, demonstrating that high traffic volumes and precise

green time distribution derived from ATSPM data significantly improve traffic signal coordination.

Signal phasing and timing prediction are other prediction targets in the ATSPM data, as
they enable dilemma zone warnings to be provided and optimize route planning. To this end,
previous studies merged GPS information from multiple vehicles with signal timing data (Islam et
al., 2024, 2022). Key features, such as waiting time, approach speed, and acceleration, were
extracted based on geolocation data. These features were then used to train a long short-term
memory (LSTM) model capable of predicting cycle lengths and phase durations up to six cycles
in advance. The authors indicated that the LSTM model could predict cycle lengths with a mean

absolute error of approximately 7 seconds and phase durations with an MAE of about 9 seconds.
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3.2.2.4. Intersection Prioritization and Classification

ATSPM data has also been instrumental in ranking intersections for improvement or
intervention. Studies have developed scoring methods and performance metrics to evaluate various
aspects, including safety, capacity, progression, communication, and detection aspects (Day et al.,
2018; B. Wang et al., 2022). Day et al. (2018) focus on evaluating corridor performance at the
system level by using ATSPM data to develop subscores for communication, detection, safety,
capacity allocation, and progression across eight signalized corridors in Indiana. Their findings
indicate that maintenance issues significantly impact the overall performance of traffic signal
systems, and the developed methodology provides a simplified metric for evaluating corridor

performance, highlighting severe deficiencies in any operational aspect.

Mahajan et al. (2019) and Wang et al. (2022) aim to develop a workflow for automatically
scoring and ranking intersections based on performance, using ATSPM data to compute measures
of effectiveness such as split failures, arrivals on red, arrivals on green, and traffic volume.
Clustering and classification techniques identify patterns and bottlenecks in the traffic network,
enabling proactive traffic signal management by categorizing intersections into clusters needing

timing adjustments or detector error fixes (Mahajan et al., 2019; B. Wang et al., 2022).

Bassett et al. (2023) aim to develop an automated method for flagging intersection
approaches needing left-turn phasing changes based on gaps in opposing through traffic, using
ATSPM data to validate the gap analysis tool. The method identifies left-turn approaches that
require phasing changes, utilizing validated ATSPM data to provide reliable insights and improve

efficiency in responding to left-turn complaints (Bassett et al., 2023).
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3.2.2.5. Data Integration with Other Data Sources

Several studies have explored and validated vehicle trajectory from alternative data sources
to enhance and replicate ATSPMs. Crowdsourced probe vehicle data have demonstrated the
potential to offer cost-effective and scalable solutions for traffic signal performance measurement
(Emtenan and Day, 2022; Gayen et al., 2023; Saldivar-Carranza et al., 2021, 2024, 2023; Waddell
et al., 2020a). Through comparative analysis, vehicle trajectory data were aggregated to evaluate
metrics such as delay, percent arrivals on green, number of stops, and volume-to-capacity ratio.
Table 3-4 compares metrics from ATSPM and probe vehicle data with their market penetration

rates and aggregation intervals, as presented in the literature.

Probe vehicle data has determined split failure by assessing whether a vehicle stops at least
twice before crossing an intersection (Gayen et al., 2023; Saldivar-Carranza et al., 2021, 2023).
Another metric probe vehicle data supplement the ATSPM is the downstream blockage, defined
as when a queue at the downstream intersection obstructs the progression of vehicles. The results
indicate that probe vehicle data can effectively replicate ATSPMs and provide scalable, cost-

effective solutions for nationwide implementation.

Furthermore, probe data has been utilized to estimate various metrics, such as travel times
(Sengupta et al., 2023), arrival time (Waddell et al., 2020b), and shockwave speeds (Zhang et al.,
2023), which cannot be obtained from ATSPM. Sengupta et al. (2023) focus on estimating arterial
travel time distributions from ATSPM data. They developed a model that learns simulated probe
trajectories from ATSPM data to estimate travel time distributions. The authors claim that their
simulation study gave them a reasonable estimate of the travel time distribution using only ATSPM
data (Sengupta et al., 2023). Similarly, Waddell et al., 2020b studied obtaining arrival times of

vehicles at intersections from probe vehicle data. The study found that using low ping frequency
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data can achieve 77% of the benefits of high-resolution data in optimizing signal offsets (Waddell

et al., 2020b).

Table 3-4. Compared performance metrics from ATSPM and probe vehicle data

. Tahsin . .
. Waddell et Saldivar- Emtenan | Gayen et Saldivar- | Saldivar-
Metric Source al.. 20202 Carranza and Da al.. 2023 Carranza | Carranza
K et al., 2021 Yo | 2 et al., 2023 |et al., 2024
2022
Average o o o
delay
Percent of
arrival on O O O O
green
ATSPM
Volume-to- and
capacity Probe 0]
ratio vehicle
Percent of
green O
duration
Split failure O O O O
Downstream o o
blockage Probe
vehicle
Number of o o 0 o 0
stops
Market f:t‘;e“at“’“ 0.02-0.04% | 2% i 5%. 2.7% 4.5%
Aggregation interval 1-5min 15 min 5-20min | 4 cycles 15min 15min

Vehicle trajectory data from CCTV data differs from probe vehicle data in that it can

capture the trajectory of all vehicles, although its range is limited to specific intersections. CCTV

can complement and validate the data provided by ATSPMs, yet surprisingly, little research has

been conducted on this topic. One study attempted to augment ATSPM data by converting stop
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bar sensors into advanced detection events using trajectories from CCTV data (Zhang et al., 2023).
The motivation behind this was the absence of advanced detectors in most ATSPM systems. The
study reconstructed vehicle trajectories from stop bar detectors using a traffic flow model, enabling

the derivation of speed, occupancy, and shockwave speeds.

The review of those papers reveals that probe vehicle data were limited in their ability to
utilize real-time information and the types of metrics that could be employed. In addition, probe
vehicle-driven metrics should be carefully addressed since they are unreliable for generalizable
use when the transmission frequency and market penetration rate are low. Therefore, unique
metrics provided by ATSPMs, such as exact vehicle volume, signal phase and timing, shockwave
speed, and queue length, could be unique metrics obtained from ATSPMs. This review highlights
that the reliability of metrics provided by ATSPM data is largely unexplored. Validating them with
high-precision sources such as CCTV or LiDAR and analyzing the situations in which they are
prone to significant errors will help ensure the proper utilization of the information provided by

ATSPM.
3.2.2.6. Pedestrian Activity Estimation

ATSPM records the activation times and locations of pedestrian push buttons, allowing
researchers to infer pedestrian or bicycle volumes. Typically, pedestrians press push buttons only
once, even when multiple individuals are waiting, necessitating additional data for accurate
pedestrian counts. Previous study estimated crossing volumes by comparing ATSPM data with
observed counts from video recordings (Singleton and Runa, 2021). The study found a strong
correlation (0.84) between model-predicted and observed volumes, with a notably low mean

absolute error of 3 persons per hour, demonstrating the efficacy of using traffic signal data for
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pedestrian monitoring. The accuracy remained consistent even during the COVID-19 pandemic,

confirming the robustness of the framework (Runa and Singleton, 2023).

Estimated pedestrian volumes have been used to track pedestrian activity. One study
assessed the impact of weather on pedestrian signal activity (Runa and Singleton, 2021), while
another tracked pedestrian activity during the COVID-19 pandemic (Park et al., 2023; Singleton
et al., 2023). Additionally, a study explored the relationship between the pedestrian crossing

volumes and the built environment (Singleton et al., 2021) or split failure (Runa et al., 2024).

ATSPM also records the time when the push button and pedestrian signal are actuated,
enabling the estimation of pedestrian delay (Karimpour et al., 2022). Karimpour et al., 2022
estimate pedestrian delay at signalized intersections using video-based sensors at four major
signalized intersections to obtain actual delay. By combining traffic flow and pedestrian activity,
they accurately captured fluctuations in average pedestrian delay, with mean absolute errors of 10

to 13 seconds, outperforming conventional methods.

3.2.2.7. Traffic Signal Priority Control

Signal priority systems can dynamically adjust signal timing to prioritize specific vehicle
types, a notable advantage offered by ATSPM systems. This system involves extending the green
phase or shortening the red phase to reduce delays for the prioritized vehicle. Although some
research has focused on prioritizing freight or snowplows (Lau et al., 2024; Talukder et al., 2022),
most studies using ATSPM data have investigated transit signal priority systems. For example,
field studies have assessed the performance of transit signal priority systems at signalized
intersections without modifying the intersection (Jackson et al., 2023; Leonard et al., 2019). In
these studies, V2I communication connected transit buses to traffic signals to request priority,

evaluating the system’s performance. Similarly, Cvijovic et al. (2022) evaluated algorithms for
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connected vehicle-based transit signal priority for regular buses and bus rapid transit (BRT)
systems. Using ATSPM data to calibrate traffic conditions and simulate a real-world network, the
study found that TSP resulted in significant delay reductions for both regular buses and BRT, with

delays decreasing by 33% and 12%, respectively (Cvijovic et al., 2022).

Since the rate of TSP requests being served was initially lower without any modification,
several studies have developed different strategies to increase the effectiveness of the transit signal
priority system by adjusting the intersection (Sheffield et al., 2021; Wang et al., 2020). Wang et
al., 2020 investigated the performance of the transit signal priority system before and after signal
retiming data, demonstrating an increase in the transit signal priority served rate from 33.12% to
35.29% after retiming. Sheffield et al. (2021) approached the issue of low-served TSP requests by
examining the sensitivity of different transit signal priority request thresholds on bus performance
and traffic flow. Utilizing ATSPM data to measure split failures and green time changes when
transit signal priority was granted, the study concluded that lower request thresholds significantly

improved bus performance with a minor impact on general traffic.

While transit signal priority has been proven effective in various studies, several issues
remain. Although transit signal priority implementation improved travel time reliability and
reduced delays at intersections, buses often traveled too fast for the system to register their requests
((Jackson et al., 2023). Those observations indicate a need for increased ping frequency or
extended detection zones, which increase operational costs. In addition, Jackson et al., 2023 found
that buses equipped with signal priority improved their schedule adherence by 2% to 6%, which
may be considered minor in less transit-oriented cities. Therefore, the cost-effectiveness of the
transit signal priority system needs further evaluation, given the infrastructure and communication

system costs it requires. Additionally, a balanced assessment should consider the overall traffic
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impact of prioritizing transit buses. Evaluating appropriate preemption strategies for emergency

vehicles, such as police cars and ambulances, is also necessary.
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3.2.2.8. Simulation Studies

Combined with simulation, ATSPM provided the data needed to conduct various studies,
including signal time and trajectory optimization. Those studies used ATSPM to calibrate the
simulator to replicate real-world intersections, enabling experiments that would otherwise be

impossible or expensive to conduct in a field study.

Signal time optimization aims to reduce the delay, crash, and fuel consumption of the
intersection. Most studies have tried to optimize their timing, maintaining the order of phase
unchanged (Alshayeb et al., 2023; Parks-Young and Sharon, 2022; Wang et al., 2021). Wang et al.
(2021) proposed an adaptive traffic signal control system using connected vehicle data, where
ATSPM data were employed to assign optimal green times and design dynamic progression plans
for critical paths. Their system reduced average delay by 15.67% and 13.81% compared to fixed
coordination and adaptive signal control systems, respectively. Similarly, Parks-Young and
Sharon (2022) use actuated and adaptive signal controllers to manage mixed traffic of autonomous
and human-operated vehicles. ATSPM data facilitated the development and testing of algorithms
for computing safe signal timing bounds. Alshayeb et al. (2023) sought to optimize signal timing
to reduce fuel consumption at signalized intersections. The study employed ATSPM data alongside
traffic microsimulation and a stochastic genetic algorithm. The optimized signal timing resulted in
an 8-12% reduction in fuel consumption under moderate conditions and up to 14% with a higher

presence of heavy vehicles without significantly impacting traffic mobility.

In another study, Wang et al. (2022) focused on optimizing the trajectories of connected
automated vehicles (CAVs) along signalized arterials to minimize delays and lane-changing
related costs under mixed traffic conditions. The researchers utilized ATSPM data to develop a

two-stage optimization model for real-time trajectory planning. The model significantly reduced
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stop delays for both CAVs and human-driven vehicles, especially under a high market penetration

rate scenario (Wang et al., 2022).

Urban networks with many signalized intersections have complex traffic patterns,
including varying vehicle flows and signal timings. Without calibration, the model may not reflect
these intricacies accurately, leading to unreliable results (Ahmad et al., 2023; Tariq et al., 2021).
ATSPM data provided detailed information for calibrating simulation tools. Tariq et al. (2021)
aimed to improve the calibration of signalized arterial simulation models using high-resolution
signal controller data in conjunction with a multi-objective optimization technique. ATSPM data
calibrated parameters such as split utilization ratio, green utilization ratio, arrival on green, and
travel time. Ahmad et al. (2023) evaluated traffic operation conditions during wildfire evacuations
using connected vehicle data. The study utilized ATSPM data to replicate signal phasing and

overall traffic conditions during evacuation.
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3.2.3. Safety Applications

The application of ATSPM is a transformative approach in improving traffic safety,
particularly by addressing issues such as red-light running (RLR), red-light crossing (RLC),
dilemma zones, crash risk and conflict prediction, injury severity prediction, and vehicle and
pedestrian exposure estimation. ATSPM enables real-time monitoring and adjustment of traffic
signals, reducing RLR and RLC incidents and mitigating dilemma zones where drivers are
uncertain whether to stop or proceed during a yellow light. By analyzing detailed traffic data,
ATSPM enables accurate predictions of crash risk, conflict, and injury severity, facilitating
proactive measures to prevent crashes and mitigate their impact. Additionally, ATSPM assesses
vehicle and pedestrian exposure at intersections, providing insights to optimize signal timing and
enhance safety measures for all road users. This section will delve into the specific applications of
ATSPM in each of these areas, illustrating the significant improvements in traffic safety through

this technology.
3.2.3.1. Detection of Red Light Running and Crossing and Dilemma Zone

Red light running (RLR) poses significant safety risks at intersections due to the severe
nature of RLR-related crashes. According to a report by the Indiana DOT, RLR can be detected if
the red phase and stop bar detector on-off events overlap. This overlap indicates that a vehicle
entered and exited the stop bar during the red light. Figure 3-5 illustrates this detection logic,
showing two detector on-off traces alongside the concurrent phase state. The upper graph depicts
a detector presence trace with an off-on transition after the start of red and an on-off transition
shortly after, suggesting a likely RLR incident. In contrast, the lower graph shows an off-on
transition before the start of red, likely representing a vehicle entering during the yellow phase,

which is excluded from RLR detection.
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End of Green interval - Start of Red Interval

Det Off

Figure 3-5. Conceptual overview of RLR detection using loop detector and phase event

data (Indiana DOT, 2015)

The application of ATSPM is essential in addressing RLR behavior at signalized
intersections, a significant cause of intersection-related crashes. Utilizing high-resolution event-
based data, ATSPM systems provide detailed performance metrics, signal phasing and timing
(SPaT), and traffic data, enabling precise analysis and intervention. The study conducted by
Karimpour et al. (2023) used ATSPM data to develop finite mixture models to estimate RLR
behavior across multiple intersections in Arizona. Key factors influencing RLR were identified,
including traffic flow, intersection delay, number of approach lanes, and cycle length. It was found
that increased traffic flow, intersection delay, and number of lanes elevated the likelihood of RLR,
while longer cycle lengths reduced it. The study’s proposed method outperformed conventional

models like the Poisson Generalized Linear Model (PGLM) and the Zero-Inflation Poisson

52



Regression Model (ZIPM) in accuracy and model fit. This method allows for proactive
identification and mitigation of high-risk intersections, significantly contributing to traffic safety

by reducing the frequency and severity of RLR incidents.

Zhang et al. (2021) demonstrated the effectiveness of using pose estimation and machine
learning models in predicting pedestrian red-light crossing (RLC) intentions at signalized
intersections, a crucial aspect of traffic safety. By leveraging CCTV video data and Automated
Traffic Signal Performance Measures (ATSPM), the researchers extracted key pedestrian variables
such as joint angles, walking speed, waiting time, and green time of vehicle signals. The Random
Forest (RF) model achieved the best performance, with a recall value of 0.757 and an AUC value
of 0.849 for predicting RLCs, highlighting the significance of factors like walking speed and joint
angles. This approach can be integrated into Infrastructure-to-Vehicle (I2V) applications to
proactively warn drivers of potential pedestrian RLCs, thereby enhancing intersection safety. The
study underscores the potential of combining ATSPM data with advanced computer vision and
machine learning techniques to improve traffic safety outcomes and reduce pedestrian-related

incidents at signalized intersections.

The dilemma zone is a critical area at signalized intersections where drivers face
uncertainty about whether to stop or proceed when the light turns yellow, often resulting in abrupt
stops or speeding through the intersection, leading to potential crashes. The study by (Li et al.,
2020) highlights the critical role of ATSPM and connected vehicle (CV) technology in mitigating
dilemma zone issues at signalized intersections, particularly for heavy vehicles, which have a
higher risk due to longer stopping distances and braking performance differences. By leveraging
position data from CVs and map-matching them to virtual waypoints, the researchers proposed

triggering force gap out (FGO) before a vehicle enters the dilemma zone. ATSPM data recorded
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the onset of yellow times and phase terminations, assessing vehicle positions relative to the
dilemma zone. Combining CV technology with ATSPM data to trigger FGO reduced dilemma
zone incursions by 34% in field tests, demonstrating the effectiveness of this integrated approach
in enhancing the detection and mitigation of dilemma zones, thereby promoting safer intersection

management.

3.2.3.2. Real-Time Crash Risk and Conflict Prediction at Intersection

Real-time crash risk prediction at intersections is a critical application of ATSPM, aiming
to predict the likelihood of crashes (i.e., occurrence and non-occurrence of crashes) in real-time
and take proactive measures to prevent them. (Yuan et al., 2019) employed a Long Short-Term
Memory Recurrent Neural Network (LSTM-RNN) algorithm to address this challenge, leveraging
real-time traffic data collected from traffic detectors through ATSPM. The study utilized the
Synthetic Minority Over-sampling Technique (SMOTE) to balance the dataset, which is crucial
given the rarity of crash events compared to non-crash events. By analyzing detailed traffic
patterns, signal timing, and vehicle movements at 44 intersections in Oviedo, Florida, the LSTM-
RNN algorithm demonstrated superior performance in predicting crash risks compared to
traditional conditional logistic models. The model achieved a higher sensitivity and a lower false
alarm rate, highlighting its potential for practical deployment in traffic management systems to

enhance intersection safety.

Further enhancing the capabilities of ATSPM, (Yuan et al., 2021) developed a model for
real-time cycle-level crash risk at signalized intersections based on high-resolution event-based
data. Unlike previous studies that used fixed time intervals, this research focused on signal cycles,
aligning with the cyclical nature of intersection traffic flow. Key factors identified included traffic

volume, signal timing, headway and occupancy, traffic variation, shockwave characteristics, and
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weather. Using undersampling strategies and developing conditional logistic and binary logistic
models, the study focused on predicting crash risk based on these factors. The results indicated
that higher cycle volume, arrivals on yellow, and traffic volatility significantly increased the odds
of crash occurrence. This study demonstrated that leveraging high-resolution ATSPM data for
cycle-level crash risk prediction offers a more accurate and responsive approach to real-time traffic

safety management, providing critical insights for mitigating crash risks at signalized intersections.

In addition, (Gong et al., 2020) applied ATSPM data in a multi-objective reinforcement
learning framework to enhance adaptive traffic signal control (ATSC) systems for improving
intersection safety. This approach utilized high-resolution ATSPM data to dynamically adjust
signal timings based on real-time traffic conditions and crash risk predictions. The reinforcement
learning model, trained on simulated traffic data, optimized both traffic efficiency and safety
metrics. The results showed significant improvements over traditional ATSC methods,
demonstrating the potential of integrating ATSPM with advanced machine learning techniques to
proactively manage traffic and reduce crash risks at intersections. This innovative application
underlines the versatility and effectiveness of ATSPM in addressing various aspects of traffic

safety through real-time data analysis and adaptive signal control strategies.

Conflict prediction, distinct from crash risk prediction, focuses on identifying potential
conflicts between road users before they escalate into crashes. Zhang and Abdel-Aty (2022)
developed a real-time pedestrian conflict prediction model using high-resolution ATSPM data and
CCTV footage to derive conflict indicators like Post Encroachment Time (PET) and Time to
Collision (TTC). The study utilized multiple machine learning models, with eXtreme Gradient
Boosting (XGBoost) demonstrating the best performance, achieving an AUC value of 0.841 and a

recall value of 0.739. The model predicted pedestrian conflicts at the signal cycle level, using
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variables such as vehicle counts, green time, and pedestrian phase counts as surrogate measures
for pedestrian exposure. The ability to predict conflicts one cycle ahead allows for timely
adjustments to signal timing and proactive warnings to drivers, significantly enhancing
intersection safety. This approach underscores the potential of integrating high-resolution ATSPM

data with advanced machine learning techniques to improve real-time traffic safety management.
3.2.3.3. Injury Severity Estimation

Leveraging ATSPM significantly enhances the prediction of injury severity at intersections
by utilizing real-time, high-resolution event-based detection records and crash data. (Kidando et
al., 2021) applied ATSPM to analyze three years of data (2017-2019) from arterial highways in
Tallahassee, Florida. By integrating ATSPM, the study collected detailed traffic flow and signal
timing data, providing an accurate representation of traffic conditions leading up to crashes. The
research employed Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) classifiers to
identify critical factors influencing injury severity, such as the manner of collision, traffic volumes,
signal timing, and arrival on red volumes. The XGBoost model outperformed the RF model,

highlighting the effectiveness of ATSPM in improving prediction accuracy.

Further analysis by (Kidando et al., 2022) explored the influence of real-time traffic events
and signal-based variables on injury severity, incorporating Bayesian inference methods to
estimate model parameters. The study identified that approach delay and platoon ratio, derived
from ATSPM data, significantly influenced injury severity. The logistic model with a heavy-tailed
distribution random effect was found to be the best fit, highlighting the necessity of accounting for
site-specific variations. Key factors such as the manner of collision, occupant seat position, number
of vehicles involved, gender, age, lighting condition, and day of the week were also significant

predictors. The study’s findings provide valuable insights for transportation agencies to develop
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countermeasures proactively, demonstrating the critical role of ATSPM in enhancing the precision

and effectiveness of injury severity prediction at signalized intersections.

3.2.3.4. Vehicle and Pedestrian Exposure Estimation

The estimation of vehicle and pedestrian exposure at intersections is crucial for
understanding and improving traffic safety. ATSPM play a pivotal role in this context by providing
high-resolution data on traffic flow and signal operations. (Lee et al., 2019) utilized ATSPM data
to analyze pedestrian crashes in suburban areas with low pedestrian activities. The study collected
data from 219 intersections in Seminole County, Central Florida, including pedestrian calls and
pedestrian logs from ATSPM systems. By calculating average daily pedestrian phases requested
(ADPR) and average pedestrian phases provided (ADPP), the researchers were able to estimate
pedestrian exposure more accurately. The study employed a Bayesian random-parameter Poisson-
lognormal model to evaluate the safety-in-numbers (SIN) effect, which suggests that as pedestrian
numbers increase, their crash rates decrease. The findings indicated that intersections with higher
pedestrian activity exhibited the SIN effect, highlighting the importance of accurate exposure

estimation in enhancing pedestrian safety.

and bicycle exposure by integrating it with crowdsourced data (Strava), CCTV footage, crash data,
and various contextual factors such as land use and socio-demographic characteristics. The study
employed multiple statistical and machine learning models, determining that the eXtreme Gradient
Boosting (XGBoost) model offered the best performance. This model was then applied to estimate
exposure at intersections and along roadway segments, which was crucial for developing Safety
Performance Functions (SPFs). The integration of these diverse data sources with ATSPM enabled

a comprehensive assessment of exposure, identifying significant hotspots for pedestrian and

57



bicycle crashes, particularly in urban areas with high activity levels. This research highlights the
effectiveness of combining ATSPM with advanced analytical techniques and diverse data sources,

providing transportation agencies with robust tools to enhance the safety of vulnerable road users.

3.2.4. Summary of Literature Review

Recent research on ATSPM highlights their significant impact on mobility and safety
applications. ATSPM data is utilized to optimize traffic signal timing, reduce congestion, and
enhance traffic flow through advanced machine learning models to predict traffic volumes and
turning movements. Specific use cases include assessing pedestrian delays, transit signal priority,
and evaluating detector configurations. Intersection prioritization leverages ATSPM data for
scoring and ranking, employing data-driven techniques and expert input. Validation efforts explore
alternative data sources, such as probe vehicle data, to enhance ATSPM’s scalability and
effectiveness. Addressing data anomalies is critical, with research focusing on improving data
quality through machine learning. Safety applications include detecting red light running,
predicting pedestrian conflicts, and modeling static or real-time crash risks, emphasizing high-
resolution data’s role in enhancing predictive accuracy and traffic safety management. Future
research should aim to standardize methods across diverse detector configurations and expand
datasets with safety features such as approaching vehicle’s headway and surrogate safety measures

for comprehensive traffic safety improvements.
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3.3. Best Practices for Operational Countermeasures at Intersections

This research proposes improvements in traffic signalization based on Automated Traffic
Signal Performance Measures (ATSPM). An essential step involves reviewing established
practices as recommended in technical manuals. This section outlines key aspects underscored in
the existing manuals and suggests enhancements. The review primarily focuses on six strategic

implementations:

a) No Right Turn on Red

b) Leading Pedestrian Interval (LPI)

¢) Protected and Permitted Left turn

d) Yellow time adjustment

e) Red time adjustment

f) Pedestrian recall

Relevant manuals such as the FDOT Design Manual (FDM), Federal Highway

Administration Signalized Intersections Informational Guide (FHWA SIIG), Highway Capacity
Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), and Traffic Engineering
Manual (TEM) were reviewed, specifically their latest versions. This review concentrates on
actionable insights from ATSPM’s traffic signal and detector event data, focusing on the existence

of clear criteria to implement. Detailed explanations and excerpts are presented in APPENDIX.
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3.3.1. Traffic Signal Strategies

3.3.1.1. No Right Turn on Red (RTOR)

Table 3-5 shows that different traffic manuals provide varied guidance on RTOR.

Table 3-5. Summary of Best Practices for NRTR

Source
(Year)

Best Practices

MUTCD
(2009)

No RTOR when sight distance is insufficient for safe maneuvering.

Restrict RTOR at intersections where vehicles may unexpectedly conflict with
other road users, including pedestrians and cyclists.

No RTOR during exclusive pedestrian phases to protect pedestrians.

FHWA
SIIG
(2013)

No RTOR is suggested where sight distance is inadequate for safe turning
movements, which can lead to crashes.

RTOR is commonly restricted at intersections with high pedestrian traffic to avoid
pedestrian-vehicle conflicts.

Certain vehicles like school buses are prohibited from turning right on red for
safety reasons.

HCM
(2022)

Consider RTOR where right turns are critical to intersection operations.

Evaluate lane allocation to determine if prohibiting RTOR would benefit traffic
flow and safety.

Factors such as right-turn flow rate, sight distance, and conflicting movements
should be considered to determine the feasibility of RTOR.

Analyze the volume-to-capacity ratio for conflicting movements to assess whether
prohibiting RTOR would reduce congestion or improve safety.

FDM
(2023)

RTOR is prohibited in the intersection bicycle box and two-stage bicycle turn box.

No right turn signs are required at specific intersections, including diverging
diamond intersections

TEM
(2024)

Use static or dynamic “No Turn On Red” sign to prohibit turns on red.

Display dynamic signs during the LPI interval and the preceding yellow and red
intervals.
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The MUTCD emphasizes safety, recommending No RTOR where sight distance is limited
or conflicts with pedestrians/cyclists are likely during exclusive pedestrian phases. FHWA SIIG
echoes these concerns, suggesting NRTR restrictions where sight distance is inadequate or
pedestrian traffic is high and for specific vehicles like school buses. In contrast, the HCM takes a
more operational approach, advocating for careful evaluation of RTOR based on factors like lane
allocation, right-turn flow rate, sight distance, and conflicting movements. The FDM focuses on
specific scenarios, prohibiting RTOR in bicycle boxes and certain intersections. Lastly, the TEM
provides practical guidance on using static or dynamic “No Turn On Red' signs to effectively
implement these restrictions. While safety remains a common concern, the manuals differ in their

emphasis on operational considerations and the level of detail in their recommendations.

3.3.1.2. Leading Pedestrian Interval

Leading Pedestrian Interval (LPI) implementation guidance varies across traffic signal
manuals, as shown in Table 3-6. The MUTCD recommends LPIs at intersections with high
pedestrian and conflicting turning vehicle volumes, advising a minimum 3-second duration to
ensure pedestrians cross at least one lane. The FHWA SIIG similarly recommends LPIs, where
pedestrian traffic is moderate to heavy, or pedestrian-vehicle interactions are frequent. The HCM
provides broader guidance on timing walk intervals but lacks specific LPI criteria. The FDM does
not mention LPIs. Lastly, the TEM offers a comprehensive approach, suggesting LPI reviews
based on sight distance, geometry, and signal timing while providing maximum durations (10
seconds for actuated, 7 seconds for automatic recall) and suggesting a 3-second duration for busy

intersections. The TEM also includes a formula to calculate LPI duration based on various factors.
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Overall, while the manuals generally agree on the benefits of LPIs, they differ in the specificity of

their recommendations and the factors considered for implementation.

Table 3-6. Summary of Best Practices for LPI

Source

(Year) Best Practices

* Consider LPI at intersections with high pedestrian and conflicting turning vehicle

MUTCD volumes.

(2009) * Use at least 3 seconds of LPI to allow pedestrians to begin crossing and establish
their presence in the crosswalk, ensuring they cross at least one traffic lane.

e LPI are recommended where there is moderate to heavy pedestrian traffic to
FHWA enhance pedestrian safety by allowing them to start crossing before vehicles get a

SIIG green signal.

(2013) | » LPIs are encouraged in areas with frequent pedestrian-vehicle interactions to
reduce conflicts and improve pedestrian safety.

* The manual describes how walk intervals should be timed with traffic signals,

}égzl\g including leading pedestrian intervals, but does not specify exact criteria for their
( ) implementation.
FDM . . . :
* There is no specific mention of LPI or related strategies.
(2023)

* Reviewed LPI implementation based on sight distance concerns, geometric
updates, and suitability for exclusive pedestrian phases or concurrent but protected
signal timing.

* Maximum LPI duration is 10 seconds for actuated pedestrian phase and 7 seconds

TEM for automatic pedestrian recall.
(2024)

* Suggest a 3-second LPI duration for intersections operating close to capacity to
balance pedestrian safety with traffic flow efficiency.

* The manual also includes a formula (Formula 3.11.5.2-1) to calculate LPI duration
based on crosswalk width, detector location, walking speed, and start-up lost time.
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3.3.1.3. Protected or Permitted Left Turn

Table 3-7 shows the guidance for protected or permitted left turns is more precise than
other implementations using various factors and thresholds. While the MUTCD lacks specific
mention of these turn types, the FHWA SIIG provides comprehensive criteria for protected-
permissive phasing, recommending it based on left-turn volume, the number of opposing lanes,
opposing traffic speed, crash history, sight distance, road layout, opposing left-turn signals, and
engineering studies. The HCM primarily focuses on volume thresholds, suggesting protected
operation when the left-turn volume is high or combined with opposing through volume. The FDM
outlines implementation details, such as using flashing yellow arrows for single-turn lanes and
separate signals for dual lanes and discusses split phasing options. The TEM allows both leading
and lagging protected/permissive left turns, favoring lagging, and permits concurrent LPIs except
with flashing yellow arrows. While the manuals generally acknowledge the importance of
protected and permitted left turns, their recommendations differ in their specificity and the factors
considered for implementation, ranging from volume-based thresholds to broader considerations

like safety and traffic flow.
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Table 3-7. Summary of Best Practices for Protected or Permitted Left Turn

Source
(Year)

Best Practices

MUTCD
(2009)

There is no specific mention of protected or permitted left turn

FHWA
SIIG
(2013)

Protected-permissive left-turn phasing is recommended if a minimum of 2 left-
turning vehicles per cycle is observed.

This phasing is suggested when left turns cross three or more opposing lanes.
It is advised for situations where opposing traffic speeds exceed 45 mph.

A minimum of five left-turn collisions within a 12-month period suggests the need
for protected/permissive phasing.

When sight distances are below the minimum requirements, this phasing should
be considered.

Implement protected/permissive phasing in areas with atypical road layouts.

If the opposing left-turn approach has a left-turn signal, use protected/permissive
phasing.

Any engineering study indicating the necessity for protected/permissive phasing
should be followed.

HCM
(2022)

Protected operation is assumed when the left-turn volume reaches or exceeds 240
vehicles per hour.

The product of left-turn volume and opposing through volume must exceed certain
thresholds based on the number of opposing lanes. The thresholds are 50,000 for
one opposing lane, 90,000 for two lanes, and 110,000 for three or more lanes.
These thresholds ensure that the intersection can handle the traffic flow efficiently.

If there is more than one left-turn lane on the approach, protected phasing is
recommended.

FDM
(2023)

Both protected or permissive phasing with flashing yellow arrow signal are
available at single turn lane.

Only protected phasing implemented with a separate signal head at dual turn lanes.

Split phasing based on offset opposing approaches, heavy left-turn volumes, or
left turns from multiple lanes.
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* Both leading and lagging protected/permissive left turns are allowed, with lagging

preferred.

TEM
(2024) ¢ LPIs can be implemented concurrently with protected/permissive left turns, except

when using flashing yellow arrow (FY A) signal heads, which prohibit permissive
left turns during the LPI for safety.

3.3.1.4. Yellow Time Adjustment

The MUTCD recommends that the duration of yellow time should be determined by
engineering practice, particularly referring to the ITE’s Handbook. It suggests a yellow change
interval between 3 to 6 seconds, with a longer interval for approaches with higher speeds. The
FHWA SIIG supports a similar interval range, with a commonly employed maximum of 5 seconds.
It also suggests that local practices, including ITE’s standards, should dictate the length of the
interval and recommend modifications in scenarios with high numbers of collisions and red-light
violations. The HCM reiterates the 3 to 6 seconds interval, emphasizing longer durations for higher
speed approaches. The FDM mandates that signal timings for the yellow change must align with
the TEM. The TEM specifies a yellow change interval between 3 to 6 seconds, using the ITE
formula for calculations. Table 3-8 summarizes the best practices for yellow time adjustment as

presented in each manual.

65



Table 3-8. Summary of Best Practices for Yellow Time Adjustment

S
(YOZZ:)B Best Practices
e Duration of yellow time to be determined by engineering practice: ITE’s
MUTCD Handbook.
(2009) * Yellow change interval between 3 and maximum 6 sec.
* Longer interval for approaches with higher speeds
* Yellow change interval between 3 and maximum 6 sec.
* A maximum of 5 seconds is commonly employed.
FHWA . . :
SIG * Longer interval for approaches with higher speeds.
(2013) * Local practice dictates the length of interval, including ITE’s standard.
* Modifying the yellow may be considered where: high number of angle/left turn
and rear-end collisions, and high number of red-light violations.
HCM * Yellow change interval between 3 and maximum 6 sec.
(2022) * Longer interval for approaches with higher speeds
130).Y S . .
(2023) Signal timings for the yellow change must be in accordance with the TEM.
TEM * Yellow change interval between 3 and maximum 6 sec.
(2024) * To calculate the yellow change interval, the formula from the ITE is to be used.

3.3.1.5. Red Time Adjustment

The MUTCD advises determining the red clearance interval duration using engineering

practice from the ITE’s Handbook, allowing for extension if a vehicle is predicted to violate red,

with a maximum of 6 seconds. The FHWA SIIG typically sets the interval by local policy or

calculation, recommending increases for wider intersections and adjustments for high collision and

red-light violation areas. The HCM specifies a red clearance interval of 1 or 2 seconds. The FDM

mandates alignment with the TEM, which specifies an interval between 2 and 6 seconds, calculated
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using the ITE formula, with longer durations for complex intersections or those with safety

concerns. Table 3-9 summarizes these best practices for red time adjustment.

Table 3-9. Summary of Best Practices for Red Time Adjustment

S
(YOZZ:)B Best Practices
* Duration of red clearance interval time to be determined by engineering practice:
ITE’s Handbook
MUTCD |, Red clearance interval may be extended from its predetermined value if a vehicle
(2009) . . )
is predicted to violate red.
* Interval should have a duration not exceeding 6 seconds, with exception.
* Red clearance interval is typically either set by local policy or calculated using an
FHWA equation.
SIIG * Interval should be increased as intersections are widened.
(2013) * Modifying the red clearance interval may be considered where: high number of
angle/left turn and rear-end collisions, and high number of red-light violations.
HCM * The red clearance interval is typically 1 or 2 s.
(2022)
FDM . o : . :
(2023) * Signal timings for the red clearance interval must be in accordance with the TEM.
* Interval should have a duration not exceeding 6 seconds.
* To calculate the red clearance interval, use the formula from the ITE.
TEM
(2024) * The red clearance interval must be between 2 and 6 seconds long.
* Longer red clearance intervals may be appropriate for wide or complex
intersections or those with a crash history or limited sight distance.
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3.3.1.6. Pedestrian Recall

The MUTCD suggests a walk interval of at least 7 seconds, reducing to 4 seconds for low
pedestrian volumes. It evaluates pedestrian clearance time at speeds of 4 ft/s (extended pushbutton
press), 3.5 ft/s (normal), and below 3.5 ft/s for areas with slower pedestrians. Pedestrian signals
are recommended for safe crossing assistance, engineering judgment, partial street crossing, and
where vehicular signals are not visible to pedestrians. The FHWA SIIG advises setting the walk
interval based on local policy, recommending a minimum of 7 seconds, but allowing as low as 4
seconds if conditions permit. Longer walk times are recommended in downtown areas, school
zones, and areas with many elderly pedestrians. The HCM specifies a minimum walk time of 7
seconds for actuated phases, allowing shorter times if appropriate, and suggests setting intervals
based on vehicle and pedestrian needs for pretimed and coordinated phases. The FDM highlights
the need for longer walk times in school crossings or areas of high pedestrian activity. The TEM
eliminates the need for a push button or passive detection and ensures that pedestrian walk and
clearance intervals are provided in each cycle. Table 3-10 summarizes these best practices for

pedestrian recall.
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Table 3-10. Summary of Best Practices for Pedestrian Recall

Source
" Best Practices
(Year)

* In normal scenario, the walk interval should be at least 7 sec in length. However,
for low pedestrian volume the interval is 4 sec.

MUTCD * To evaluate the sufficiency of the pedestrian clearance time: 4 ft/s (extended
(2009) pushbutton press), 3.5 ft/s (normal condition), <3.5 ft/s (slower pedestrians)

* Pedestrian signals should be used under the following conditions: requires
assistance for safe crossing, engineering judgement, permitted to cross a portion
of the street, no vehicular signal indications are visible to pedestrians.

* The walk interval varies based upon local agency policy.

* A minimum walk time of 7 seconds, although walk times as low as 4 seconds may
be used if pedestrian volumes do not require a 7-second interval.

* In downtown areas, longer walk times are often appropriate to promote walking

FHWA .
and serve pedestrian demand.

SHG

(2013) * School zones and areas with large numbers of elderly pedestrians also warrant
consideration and the display of walk times more than the minimum walk time.

* FHWA pedestrian design guidance recommends a lower speed if needed to
accommodate users who require additional time to cross the roadway, and in
particular a lower speed where there are concentrations of children/elderly.

* For an actuated or non-coordinated phase, minimum walk time of 7 seconds,
although walk times as low as 4 seconds may be used if pedestrian volumes and
characteristics do not require a 7-second interval.

};((;21\/; * For pretimed phase, walk intervals should be set to the amount of time vehicles
( ) need the green light minus the time pedestrians need to clear the intersection.

* Fora coordinated phase, the controller is sometimes set to use a coordination mode
that extends the walk interval for most of the green interval duration.

FDM o . . : .
(2023) * Longer walk time in school crossings or other areas of high pedestrian activity.

* The pedestrian recall mode eliminates the need for a push button or passive
TEM . ) . oy
(2024) detection and ensures that pedestrian walk, and clearance intervals are provided in

each cycle.
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3.3.2. Summary of Best Practices

While generally aimed at improving traffic flow and pedestrian safety, the six traffic signal
strategies vary in the specificity and detail of their implementation guidelines across different
traffic manuals. No Right Turn on Red (NRTR) guidelines range from prioritizing safety concerns
(limited sight distance, pedestrian conflicts) to operational considerations (lane allocation, right-
turn flow rate). The Leading Pedestrian Interval (LPI) recommendations also vary, with some
manuals focusing on pedestrian volume and vehicle-pedestrian interactions, while others provide
broader guidance on timing walk intervals. Protected or Permitted Left Turn implementation is the
most complex, with factors ranging from left-turn volume and opposing traffic to sight distance

and crash history.

Yellow Time Adjustment and Red Time Adjustment have the most consistent guidelines
across manuals, with specific recommendations for the duration (3-6 seconds for yellow, 1-6
seconds for red) and adjustments for higher speeds or specific intersection conditions. These
strategies prioritize safety by ensuring sufficient time for vehicles to clear the intersection or stop
safely. Pedestrian Recall guidelines are also diverse, with recommendations for minimum walk
times (4-7 seconds), adjustments for pedestrian speed, and considerations for specific areas (school
zones, downtown areas). Overall, while the manuals generally agree on the benefits of these
strategies, the variations in their recommendations highlight the need for careful consideration of

local conditions, traffic patterns, and safety concerns when implementing these strategies.
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CHAPTER 4: Data Collection

4.1. Data Collection

In this report, we acquired two types of data: detector configuration and controller event
log data. The data were collected at ATSPM-equipped intersections in Brevard, Lake, Orange,
Osceola, Seminole, Marion, Volusia, Flagler, and Sumter counties in District 5, Florida, USA.
However, the scope of this project is limited to the intersections in Orange and Seminole counties.

This chapter describes the data collection process implemented in this report.
4.1.1. Detector Configuration Data

The detector configuration data was collected from the NOEMI. NOEMI provides a
snapshot of the current status of the signal system. In the form of reports, NOEMI offers detailed

data on detector configuration®.

Prior to acquiring the detector configuration data, we identified all intersections in the
concerned counties in District 5, Florida, USA, from NOEMI. Specifically, we gathered
information on all ATSPM-equipped intersections linked to the Signalized Intersection Inventory
Application (SIIA). The selection based on SIIA aligns with the scope of this project. In total, 2092

intersections were identified, although not all are active®.

The detector configuration data of all ATSPM intersections were collected using an open

API from NOEMI. The API is: ‘https://noemi.cflsmartroads.com/ssv/report.html?id={siialD}’

> NOEMI - Smart Signal View
* NOEMI - ATSPM availability
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Abnormality in Detector Configuration Data

Given the absence of other sources, we relied on detector configuration data from NOEMI.
To verify the reliability of this data, we conducted a preliminary manual review of this data for a
sample of ATSPM equipped intersections. We found logging errors in the detector configuration
data, specifically in phase numbering (the identifier of phases along an approach), detector length,
detector distance from the stop bar, and possibly channel numbering (the identifier of unique
detectors on a phase). Figure 4-1 provides an example of the problem with phase numbering. As
shown in the figure, there is an inconsistency in phase numbering in the ‘Phase’ column, indicating

an abnormality.

ID  Approach Lane Type Width  Length Lane No. from Left Type Channel Phase  Stopbar Distance Slot Number Length
1 1US-17-92 NEB Left 12 275 1 Inductive Loop 1 1 0 1 40
2 1US-17-92 NEB Left 12 320 2 Inductive Loop 2 1 0 1 40
3 1US-17-92 NEB Through 12 null 3 Inductive Loop 16 6 150 8 6
3 1US-17-92 NEB Through 12 null 3 Inductive Loop 19 6 330 10 6
4 1US-17-92 NEB Through 12 null 4 Inductive Loop 17 6 150 9 6
4 1US-17-92 NEB Through 12 null 4 Inductive Loop 20 5 330 10 6
5 1 US-17-92 NEB Through Right 12 null 5 Inductive Loop 18 6 150 9 6
5 1US-17-92 NEB Through Right 12 null 5 Inductive Loop 2 6 330 " 6
6 2 SEMINOLA BLVD SEB Left 12 205 1 Inductive Loop 9 3 0 5! 40
7 2 SEMINOLA BLVD SEB Left 12 205 2 Inductive Loop 10 3 0 5 40
8 2 SEMINOLA BLVD SEB Through 12 null 3 Inductive Loop 24 8 0 12 40
9 2 SEMINOLA BLVD SEB Through 12 null 4 Inductive Loop 25 8 0 13 40
10 2 SEMINOLA BLVD SEB Right 12 null 5 Inductive Loop 26 8 0 13 40

Figure 4-1. Abnormality in Detector Configuration

Based on our review of the phase numbering, we identified 1817 intersections without
abnormality in phase numbering. The frequency distribution of the normal and abnormal
intersections based on abnormalities in phase numbering is shown in Figure 4-2. As indicated in
the figure, Orange County has the highest number of intersections without abnormality in phase

numbering. Moreover, the only intersection in Flagler County was identified as abnormal.
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Figure 4-2. Distribution of Intersections Based on Abnormalities in Phase Numbering

It should be noted that our preliminary analysis was solely based on abnormalities in phase
numbering, and our conclusions may be inaccurate pending more investigation and scrutiny in
latter efforts. As such, we recommend a thorough review of the detector configuration data for all
ATSPM-equipped intersections in the NOEMI system, focusing on detector length, detector

distance from the stop bar, and channel numbering.
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4.1.2. Controller Event Log Data

The controller event log data is openly archived in SunStore as CSV staged files for each

day of the current running month and as ZIP staged files for every month since January 2018.

We directly accessed the ZIP staged files from SunStore. This report primarily focuses on
selecting ATSPM-equipped intersections in Orange and Seminole counties rather than any in-
depth data processing and feature extraction. Hence, we only collected data for May 2024. This
data included controller event logs for all intersections in concerned counties in District 5, Florida,

USA, though the scope is limited to the intersections in Orange and Seminole counties.

The descriptive summary of the detector configuration and controller event log data

collected for this report is shown in Table 4-17.

Table 4-1. Descriptive Summary of Collected Data

Data Type Source Month/Year | Counties Covered

Detector Configuration NOEMI - Brevard, Lake, Orange*,
Osceola, Seminole*, Marion,

Controller Event Log SunStore May/2024 Volusia, and Sumter

7 *Counties within the scope of this project. Initially, Orange County was not within the scope.
However, this county was added later by the Florida Department of Transportation (FDOT) by
recommending intersections.
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4.2. Grouping Detector Configuration and Data Quality Check

Detector configurations in ATSPM-equipped intersections exhibit variance, and not all
detectors at these intersections produce high-quality event data. In this chapter, we analyze the
collected data on detector configurations and controller event logs to identify and group unique

detector configurations and develop a pipeline to assess the data quality.

4.2.1. Grouping Detector Configuration

Variability in detector configuration is common at ATSPM-equipped intersections. The
detector configuration may vary per intersection, per type of approach (e.g., major or minor roads)
and type of phase (e.g., left-turn, through, and right-turn). This variability can affect consistency
and uniformity in data transformation and decision-making for future tasks in this project.

Therefore, it is crucial to identify and group unique detector configurations.

The most advanced configurations exist in the form of count detectors, stop bars, and
setbacks, as illustrated in Figure 4-3. However, detector configurations in the 1817 ATSPM
equipped intersections in Brevard, Lake, Orange, Osceola, Seminole, Marion, Volusia, and Sumter
counties in District 5, Florida, USA, feature only stop bars and setbacks. Therefore, in this report,
the configuration including a ‘count detector’ is disregarded when identifying and grouping

detector configuration.
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[ ] Setback
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Count Detector

Figure 4-3. Advanced Detector Configuration

Simply knowing the existence of stop bars and setbacks is not enough to identify and group

detector configurations. More precise metrics are needed. Therefore, we defined four reference

metrics for this purpose, including:

a)
b)
c)

d)

Whether more than two lanes exist in a phase.
Whether a setback detector exists in a phase.
Whether multiple setback detectors exist in a phase.

Whether a stop bar exists in a phase.

Based on the metrics, we identified and grouped detector combinations in three different

ways, which are described in the following sections.

4.2.1.1. Grouping by Intersection

In this method, we grouped detector configurations by evaluating the entire intersection’s

configuration. This process involved first identifying all unique detector configurations based on
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the entire intersection layout and then grouping them accordingly. This method resulted in over

500 distinct detector combinations.
4.2.1.2. Grouping by Type of Approach

In ATSPM equipped intersections, there are two types of approaches: major and minor.
Typically, major approaches are part of arterial roads, but they can also be part of collector roads.
However, minor approaches are usually part of collector roads. Therefore, major approaches
generally have more advanced detector configuration systems compared to minor approaches,

marking a distinction in configurations.

In this method, we grouped detector configurations by considering the layout per the
approach type. This method resulted in 218 unique detector configurations for major approaches

and 119 for minor approaches.
4.2.1.3. Grouping by Type of Phase

Types of phases at intersections can include left-turn, through movement, and right-turn
phases. Additionally, there can be shared lanes that serve multiple phases. In this method, prior to
grouping detector configurations, we defined the types of phase into four groups: left-turn, through,
right-turn, and shared. The shared phase refers to a lane that can accommodate multiple phases

simultaneously.

This method resulted in a significantly lower frequency of unique detector configurations
based on the type of approach, making it a more practical choice for grouping. In contrast, the
frequency of unique detector configurations by intersection and by type of approach is extremely
high. Since our upcoming tasks involve data transformation that relies on detector configuration,

a less frequent grouping is preferred to facilitate transformation and enhance generalizability,
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making grouping with high frequency unfeasible. Therefore, we selected grouping by phase type
and will use this method for future tasks in this project. The frequency distribution of unique

detector configurations by the type of phase is shown in Figure 4-4.
11
10
9
8 I . .
Left-Turn Through Right-Turn Shared
Phase Type

Frequency of Unique Detector Configuration
N IS o

o

Figure 4-4. Frequency Distribution of Unique Detector Configurations by Type of Phase

The schematic diagram of the unique detector configurations per type of phase is shown in
Figure 4-5. The “L,” “T,” “R,” and “S” denoting left turn, through movement, right turn, and
shared lane, respectively. For every phase, ‘Type 1’ represents the configuration with no detector.
The algorithm that calculates the performance measure does not change based on the presence or
absence of a channel number. Also, If we Including this would make the number of possible
configuration types too large. Therefore, this configuration classification system does not consider
channel numbers, only the type and location of the detector. If the channel number does not exist
and the detector is tied to all across the lanes, it is assigned a type based on the type and location

of the detector.
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Figure 4-5. Schematic Diagram of the Unique Detector Configurations by Type of Phase

The descriptive summary of the detector configurations by type of phase (based on the
defined reference metrics) is presented in Table 4-2. The optimal detector configurations are
‘Types 4, 7, 9’ for the left-turn phase, ‘Types 4, 9, 11’ for the through phase, ‘Types 4, 7, 8 for
the right-turn phase, and ‘Types 4, 6, 8’ for the shared phase. These configurations are preferred
because they minimize restrictions on determining performance measures using controller event

log data, which will be addressed in future tasks of this project. However, not every intersection is
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equipped with the most optimal detector configurations per type of phase. Specifically, for the left-
turn phase, 46, 23, and 12 intersections have ‘Types 4, 7, and 9,” respectively. For the through
phase, 75, 199, and 95 intersections have ‘Types 4, 9, and 11, respectively. For the right-turn
phase, 26, 3, and 5 intersections have ‘Types 4, 7, and 8,’ respectively. And for the shared phase,

153, 1, and 44 intersections have ‘Types 4, 6, and 8,” respectively.

81



Table 4-2. Descriptive Summary of Detector Configurations by Type of Phase

Type of Type of Phase
Configuration | Left-Turn Through Right-Turn Shared
1 <=2 lane(s)*
2 <=2 lane(s)*, stop bar exists
3 <=2 lane(s)*, setback exists
4 <=2 lane(s)*, stop bar exists, setback exists
5 <=2 lane(s)*, multiple setbacks exist

) > 2 lanes**, stop bar > 2 lanes**, stop bar
6 > 2 lanes**, stop bar exists > 2 lanes** . P . P )

exists exists, setback exists
sk : % . .
; > 2 lanes**, stop bar exists, setback ~ 2 lanes™*, stop bar exists > 2 lanes**, stop ?bar > 2 lanes™*, multiple
exists exists, setback exists setbacks
8 > 2 lanes**, multiple setbacks > 2 lanes**, setback exists > 2 lanes™*, stop bar exists, multiple setbacks exist
9 > 2 lanes**, stop bar exists, multiple > 2 lanes™*, stop bar exists,
setbacks setback exists
10 - > 2 lanes™*, multiple setbacks | - -
> 2 lanes™®*, stop bar exists,
11 - . - -
multiple setbacks

In the schematic diagrams (Figure 4-5(a)-Figure 4-5(d)),
* The only lane, identified as L, T, R, or S, represents <= 2 lane(s).

** The triple lanes, identified as L, T, R, or S, represent > 2 lanes.
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The frequency distribution of all ATSPM equipped intersections in the District 5, Florida,

498
199 I
9 10

USA, per unique detector configuration by phase type is presented in Figure 4-6.
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Figure 4-6. Frequency Distribution of ATSPM equipped Intersections per Unique Detector
Configuration by Type of Phase

Figure 4-6 indicates that ‘Type 2’ is the most common detector configuration found in
ATSPM equipped intersections in the counties concerned in District 5, Florida, USA, for all types

of phases. Figure 4-6(b) also shows that a significant number of intersections have detector
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configurations ‘Types 4, 9, and 11’ along through phase. Further, Figure 4-6(c) reveals that many

intersections with a dedicated right-turn phase lack detectors on them, classified as ‘Type 1°.

A descriptive summary of the most common and optimal detector configuration per type

of phase is presented in Table 4-3.

Table 4-3. Descriptive Summary of Most Common and Optimal Detector Configuration

Type of Phase Most Common Configuration Optimal Configuration
Left-Turn Type 2 Type 4, Type 7, Type 9
Through Type 2 Type 4, Type 9, Type 11
Right-Turn Type 2 Type 4, Type 7, Type 8
Shared Type 2 Type 4, Type 6, Type 8
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4.2.2. Data Quality Check

A critical challenge for this project is the quality of controller event log data produced by
detectors in ATSPM-equipped intersections. The logging process involves timestamping events,
such as changes in signal outputs and detector states, with a resolution of a tenth of a second.
Several factors can negatively impact this logging, including lack of regular maintenance of
detectors, electrical and mechanical failures, communication failures, outdated configurations, and
adverse environmental conditions (Day et al., 2016). As a result, not every intersection in Brevard,
Lake, Orange, Osceola, Seminole, Marion, Volusia, and Sumter counties in District 5, Florida,
USA, provides reliable detectors that produce high-quality data. Therefore, it is essential to
develop a pipeline to identify which detectors generate good data and which do not. This pipeline
assists in selecting sample intersections in Orange and Seminole counties, ensuring that only

intersections with detectors that consistently produce quality data are included.

Signal timing and detector on-off sequences are crucial event logs produced by detectors
in ATSPM equipped intersections. As such, they serve as critical indicators for verifying the
quality of controller event log data. The signal timing sequence follows a distinct pattern: ‘start of
green - start of yellow - start of red clearance - start of red’ for every phase at the intersection (Day
et al., 2014). The detector on-off sequence is ‘detector on - detector off” (Day et al., 2014). If any
sequence in the controller event log data does not adhere to these patterns, it can be considered
anomalous. Based on this principle, we devised a framework named the Event Sequence Quality
Checker (ESQC) to assess the quality of data produced by detectors in ATSPM equipped

intersections.
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4.2.2.1. Event Sequence Quality Checker (ESQC)

Our framework, ESQC, operates using a dual-step logic, as illustrated in Figure 4-7. In the
first step, ESQC checks if the detectors at the input intersections are producing any controller event
log data. If they are not producing any data, then ESQC moves to the next input. However, if they
are producing data, then in the second step, ESQC verifies all possible event sequences in the data,
matching them against the patterns ‘start of green - start of yellow - start of red clearance - start of
red’ and ‘detector on - detector off.” The output of the ESQC is a report indicating whether the
detectors at ATSPM-equipped intersections are producing data and, if so, the percentage of

anomalous sequences in the data.
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Figure 4-7. Event Sequence Quality Checker (ESQC)
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It is important to note that ESQC processes each data set on a daily basis (i.e., sequential
processing). Therefore, if a month of data is analyzed for any intersection, it will generate daily

reports showing the temporal variation in the quality of the data for all the days in the month.
4.2.2.2. Data Quality Check Results

We tested our framework on the controller event data produced by detectors in ATSPM-
equipped intersections in the concerned counties in District 5, Florida, USA, for May 2024.

However, in this subsection, we are only presenting the results of Orange and Seminole counties.

Figure 4-8 presents the results of the first step of ESQC. Figure 4-8(a) shows that out of
695 intersections in Orange County (see Figure 4-2), detectors in nearly 600 intersections, on
average, produced data for 23 days in May 2024. Figure 4-8(b) indicates that for the same month,
out of 310 intersections in Seminole County (see Figure 4-2), detectors in nearly 300 intersections,

on average, produced data for 22 days in May 2024.
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Figure 4-8. Daily Frequency Distribution of Intersections with Detectors Producing

Controller Event Log Data in May 2024
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Figure 4-9 presents the results of the second and final step of ESQC. Figure 4-9 (a) and
Figure 4-9(b) show that for both Orange and Seminole counties, detectors in nearly every
intersection produced very poor-quality data until May 20, 2024. Each line in the figure represents
different intersections. Given that all intersections failed on specific days, it is probable that the
cause was a system-wide outage or maintenance activity rather than an issue at each individual
intersection. The quality began to improve after this date across all the intersections. The figures
also indicate that detectors in Seminole County intersections were more consistent in producing

high-quality data compared to those in Orange County.

100

100

40

20

Error Percent
[=1] o]
o [=]
Error Percent
nN & (=2 @
o (=1 o (=]

0 0
OFNMTSUNONODNOENMITNOFRONOANMITINOSRO0N O et O NMPUOEDNIOANMTNOSNDOODANMTNOSRONO
NIIIYIQPQAQQrrindridirniriri AN NN NNANMMQ MYFIQOQQQLQrinidradirrdaiaifinioini AN NN Me
el el a R e N e N e N a N a N al a N a N a N e N a N a N a N a N el a R a N a N o R al a N a N a N a N s N ol o '] TOUONONNOOOOUONONOOOONOOUOUOUODLOOOOOLODOOuOODODDonne
TSSO oTSy e e A A A i B .
NN OO NN OO NN O NI NN O O OO NI OO NN N O NN N NN NN NN ™Y NN OO ON NI IO OO NN NN NN N NN NN NN NN NN
0000000000000 00000000000000000000 0000000000000 0000000D00D0000DO0000
ANANNANANANANANANANANNANANANANNNNANNNANANANNNANANNNANN ANNANNANANANNANNANANNANNANNNANNANNANNANNNNANANNANN
Date Date
(a) Orange County (b) Seminole County

Figure 4-9. Daily Error Percent Distribution of Intersections with Detectors Producing

Controller Event Log Data in May 2024
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4.3. Intersection Selection
4.3.1. Intersection Selection

In selecting the intersections, our primary focus was to maximize the inclusion of ATSPM-
equipped intersections with the optimal detector configurations (see Section 4.1.3 and Figure 4-5),

especially for through phases. We selected the intersections in two different ways. They are:

¢) Direct recommendation from Florida Department of Transportation (FDOT).
f) Randomly sampling ATSPM-equipped intersections with the optimal detector
configurations for the through phase (see Section 4.1.3, Figure 4-5(b), and Table 4-3) that

produce high-quality controller event log data (see Section 4.2 and Figure 4-7).
4.3.1.1. Direct Recommendation from FDOT

FDOT recommended 13 ATSPM equipped intersections. Out of the 13, one was from
Orange County, and 12 were from Seminole County. Figure 4-10 presents the recommended
intersections along with their unique signal identifiers. Experts from FDOT selected these
intersections by analyzing variations in detector configurations and geometries, controller event

log data, channel (i.e., detector) activation status and more.

It is important to note that the initial project scope only included ATSPM-equipped
intersections from Seminole County. However, as FDOT recommended one intersection from
Orange County, we are now also considering ATSPM-equipped intersections from Orange County

within the scope of this project.
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Figure 4-10. Recommended Intersections from FDOT

Checking Detector Configuration Groups and Data Quality

We analyzed the intersections recommended by FDOT using the available data.

the detectors at these intersections produced any high-quality data in May 2024.

Specifically, we identified the detector configuration groups (by phase type, as defined in Figure

4-5) for the recommended intersections. Also, we applied our proposed ESQC to verify whether

Figure 4-11 presents the results of our analysis on detector configuration groups. Figure

five intersections with a dedicated right-turn phase that have no detectors.

90

4-11(a) shows that the left-turn phase detector configuration of all recommended intersections
from FDOT is ‘Type 2.” Figure 4-11(b) reveals the infrequency of the optimal detector

configurations (i.e., ‘Types 4, 9, 11°) for the through phase. Figure 4-11(c) indicates that there are
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Detectors Producing Controller Event Log Data in May 2024

(a) Orange County
Figure 4-13. Daily Error Percent Distribution of the Recommended Intersect



From our analysis of the recommended intersections, we concluded that more intersections
with detectors producing high-quality data are needed, particularly those with ‘Types 4, 9, 11’

detector configurations along through phase.
4.3.1.2. Sampling Intersections with Optimal Detector Configuration

In Orange and Seminole counties, 373 intersections have optimal detector configuration
along through phase (i.e., ‘Types 4, 9, 11°). To select a sample of these intersections, we
implemented a stratified random sampling technique, focusing on intersections with optimal
detector configurations along through phase. The intersections were divided into 11 strata based
on unique detector configurations along through phase (see Figure 4-5(b)). Our strata of interest
were ‘Types 4, 9, 11.” Moreover, we limited our selection to Seminole County and sampled 7

ATSPM-equipped intersections from this area, as shown in Figure 4-14.

@ ntersections (Selected)

/ 1285 1700 - f = \
/ -0 I

I ] |
1490 _ _ 3500 1555
| = ..1 & '

i 4‘ 17 \

| ol

Figure 4-14. Selected Intersections (Seminole County) through Stratified Sampling
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The frequency distribution of the selected intersections per unique detector configuration

by type of phase is depicted in Figure 4-15. We selected the intersections exclusively from

Seminole County. Figure 4-15(b) shows that our selection resulted in a higher number of optimal

detector configurations (i.e., ‘Types 4, 9, 11°) along through phase compared to those

recommended by FDOT. Moreover, the variation in detector configuration types for the left-turn

phase also increased with our selection using the stratified sampling technique.
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Figure 4-15. Frequency Distribution of the Selected ATSPM equipped Intersections
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We also ensured that our selected intersections were not only generating data (Figure

4-16(a)) but that the data was of high quality (Figure 4-16(b)), especially after May 20, 2024, by

applying ESQC. Each line in the figure 4-5(b) represents different intersections.
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(b) Step 1 of ESQC (Figure 4-7)
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(a) Step 1 of ESQC (Figure 4-7

Figure 4-16. Applying ESQC on the Selected Intersections

4.3.2. Summary of Selected Intersections

Table 4-4 presents a descriptive summary of the ATSPM equipped intersections
95

recommended and selected for future tasks.



Table 4-4. Descriptive Summary of Recommended and Selected Intersections

Nos. of Lane in

. Type of
1 1A Through Phase**
Signal | S Intersection Name Latitude | Longitude | Intersecti . & . County | Remarks
ID ID on (majl, maj2)/
(minl, min2)*
1300 44 SR-434 at Grant St 28.69785 | -81.33809 | 4-Legged | (2,2)/(1,1)
SR 434 at North Winter
1315 1178 Park Dr 28.69792 | -81.31766 | 3-Legged | (2,2)/(0,0)
1325 1188 | SR 434 at Edgemon Ave 28.69835 | -81.30957 | 4-Legged | (2,2)/(1,1)
1330 1190 | SR 434 at Moss Rd 28.6987 -81.30548 | 4-Legged | (2,2)/(1,1)
SR 436 & Academy Dr/
1455 1225 Lake Brantley Rd 28.66686 | -81.43134 | 4-Legged | (3,3)/(1,1)
1470 620 | SR 436 @ SR 434 28.66535 | -81.419 4-Legged | (3,3)/(3,3) Seminol Recommend
€minolc
1725 1397 | SR 46 & CR 426 (1st St) 28.73339 | -81.11515 | 4-Legged | (1,1)/(1,1) by FDOT
R 426 R 417 SB
1790 1421 5 &S 7S 28.61863 | -81.25926 | 3-Legged | (2,3)/(0,0)
Ramp
SR 426 & SR 417 NB
1795 1426 28.61866 | -81.25791 | 3-Legged | (3,2)/(0,0)
Ramp
Lake Mary Blvd &
2 234 28.7562 -81.322 4-L 2,2)/(1,1
055 3 Country Club Rd 8.75629 81.32206 egged |(2,2)/(1,1)
2485 4122 | Bunnel Rd @ Eden Park 28.6528 -81.43563 | 4-Legged | (1,1)/(1,1)
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Howell Branch Rd at Plaza
2665 4175 Entrance (Butler) 28.62521 -81.31892 | 4-Legged | (2,2)/(1,1)

D5I- US 17/92 at SR423/L
oo 155 | ra a © 12860595 |-8136518 |4-Legged |(2,2)/(2, 1) Orange

1285 |53 | SR-434 @ Range Line Rd | 28.69786 | -81.36221 | 4-Legged | (2,3)/(1, 1)

R-434 at Flori tral
1290 |4p |SR-434atFloridaCentral | )0 Com0s | 0135089 | d-Legged | (2.2)/(1. 1)

Pkwy
1707 4197 | SR 46 & Mellonville Ave | 28.7868 -81.2562 4-Legged | (2,2)/(1,1)
1500 794 | SR436 (@ Westmonte dr 28.66183 | -81.39358 | 4-Legged | (4,4)/(1,1)

Selected by
R-436 at Lynchfield A '
SR-436 at Lynchfield Ave | )¢ < o0 | 130000 | 4-Legged | (4.3)/ (L I Seminole | erssT
/ Frances Dr

SR-436 / Semoran Blvd /
1555 65 Altamonte Dr at CR-427/ | 28.66335 -81.36578 | 4-Legged | (3,3)/(1,1)
Maitland Ave

1490 72

HE Thomas Jr Pkwy @

1960 254
? Airport Blvd

28.78647 | -81.29763 | 4-Legged | (2,2)/(2,2)

* Each major and minor road can have multiple approaches. For instance, at a four-legged intersection, there can be two approaches along the major roads (majl
and maj2) and two approaches along the minor roads (minl and min2).

** An approach along a road may not have any through phase.
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The quality of data was checked using our Event Sequence Quality Checker (ESQC). In

particular, we checked signal timing (“start of green - start of yellow - start of red clearance - start

of red’) and detector on-off (‘detector on - detector off”) sequence. The check results of the 19

intersections in Seminole County are depicted in Figures 2-1 and 2-2.
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Figure 4-17. Daily Frequency Distribution of Intersections with Detectors Producing

Controller Event Log Data in June 2024

Figure 4-17 shows that, on average, detectors at the selected 19 intersections reported data

for 29 days in June 2024. Detector activity at a few intersections exhibited slight fluctuations until

June 10. However, the activity became stable and consistent from June 12 through the end of the

month.

The daily error percentage trend depicted in Figure 4-18 indicates that detectors at most

intersections produced data with an average error percentage below 10% throughout June 2024,

demonstrating the reliability of the data used for Task 2. The only exception was the detectors at

the

intersection of SR 436 and SR 434 (Signal ID: 1470), which produced data with error
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percentages exceeding 10% but remaining below 20%. In the analysis, all 19 intersections were

retained after removing the erroneous sequences.
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Controller Event Log Data in June 2024
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CHAPTER 5: Algorithm Development

We selected 20 intersections in Seminole and Orange counties in District 5, Florida, USA,
by analyzing detector configuration and checking the quality of controller event log data. This
chapter overviews the process of transforming accurate controller event log data into meaningful
performance measures. The term “intersections” in this report specifically refers to those equipped

with the Automated Traffic Signal Performance Measures (ATSPM) system.

5.1. Performance Measure Calculation
5.1.1. Detector Configuration (Simplified)

The controller event log data produced by detectors installed at intersections can be
processed to derive various performance measures, such as volume, occupancy, headway, red-
light running, and more. However, this transformation heavily relies on the detector configuration

at the intersections.

Detector configurations at intersections can vary significantly. Not all approaches (major
or minor roads) to an intersection may have the necessary detector configuration. Again, variations
in configuration are common across different phases, such as left-turn movements or through
movements (which may include right-turns). In some cases, differences in configuration can also

occur between lanes within the same phase.

In this chapter, a summary of the detector configurations for the selected 19 intersections,

as shown in Figure 5-1, is provided in simplified layouts. At the lowest spatial resolution (per lane
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per phase per approach), the detector configuration of the selected intersections can be structured

into 6 types, as illustrated in Figure 5-1.

o o
] o o o
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Stopbar  [[] Setback

Figure 5-1. Schematic Diagram of the Detector Configurations by Lane
The phase and lane are two distinct concepts for the configuration taxonomy. A phase (left-
turn, or through (+right-turn) movements) can consist of different lane types, such as left-turn,

through, right-turn, or shared lanes.

Table 5-1. Phase-Lane Relation

Phase Type Related Lane Type

Left-Turn Left-Turn, Shared (Left-Turn + Right-Turn)

Through, Right-Turn, Shared (Left-Turn + Through + Right-

Th h (+Right-T
rough (+Right-Turn) Turn, Left-Turn + Through, Through + Right-Turn)

Given the lane-level detector configuration across the selected intersections is not
consistent, deriving performance measures at the lowest spatial resolution (per lane per phase per
approach) is not always achievable. This limitation was considered in calculating performance

measures from controller event log data.

Table A-1 in A. Appendix provides a summary of the detector configurations for each

intersection, including details on approach type, phase type, and lane type.
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5.1.2. Transformation

When processed correctly, controller event log data can be transformed into various Signal
Phasing and Timing (SPaT) and traffic-related performance measures. Our objective was to derive
these measures at the lowest possible temporal resolution (i.e., cycle-level) and, where feasible, at
the lowest spatial resolution (i.e., per lane per phase per approach). In cases where lane-level
measures could not be calculated, we opted for the next higher spatial resolution (e.g., per phase

per approach).

The transformation generated performance measures that primarily include SPaT, volume,
occupancy time, headway, conflicts, red-light running, pedestrian activity indicator, pedestrian

delay, and shockwave properties.

5.1.2.1. Signal Phasing and Timing (SPaT)-Related Measures

The SPaT-related measures include the duration of different signal types (i.e., green,
yellow, red clearance, and red) as well as the cycle length. These measures were derived using
event codes corresponding to the start of green, yellow, and red clearance phases, and the end of
red clearance (Anik et al., 2025). The start and end of all cycles were determined using the ‘dual-
ring, eight-phase’ framework. According to this framework, a complete traffic cycle is defined as
the duration between successive crossings of the “Barrier” (Day et al., 2014). Cycle length simply

represents the length of each distinct complete cycle.
5.1.2.2. Vehicle Traffic-Related Measures

Vehicle traffic-related measures primarily include volume, occupancy, headway, traffic

conflicts, and red-light running. These measures were derived by transforming vehicle detection
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event log data generated by controllers in ATSPM systems. Figure 5-2 illustrates the vehicle
detection mechanism. The detector (stop bar or setback) is activated when the front of a vehicle
enters the detection zone (t,,) and deactivates when the rear exits the zone (t,75). We assumed
that a valid detection event for a vehicle (n) requires a “detector on” event to always precede a
“detector off” event. Instances where only one of these events was recorded were considered
detection errors and were excluded from the analysis.

th, (1
on i

tors

n+1l ([
ton {1

5

Detector on (1)

Detector off (0)

n n
tO‘H. t

off on off

t71+1 tn+1

Figure 5-2. Vehicle Detection Mechanism

The volume of vehicles was calculated using the vehicle detection event log data from
back detectors (i.e., setbacks). Setbacks are typically very short in length (6—10 feet), enabling
them to distinctly capture the “detector on” and “detector off” events for each vehicle. Vehicle

volume was calculated by counting all valid “detector on-off” sequences, as shown in Equation

5-1.

Volume = Z Detection{y,_o s (5-1)

where n represents the sequence of a valid detection event.
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Invalid sequences, such as isolated “detector on” events without a corresponding “detector
off” or isolated “detector off” events without a preceding “detector on,” occasionally occurred due
to sensor malfunctions or data transmission errors. These incomplete sequences typically do not
represent valid vehicle detections and were generally discarded during data processing. However,
in certain cases, when the pattern of events and traffic flow suggested that an isolated “on” or “off”
event was likely part of a missed detection, imputation was applied to estimate the presence of a
vehicle. Specifically, if an isolated “on” or “off” event occurred within a short time window of a
valid detection sequence, it was inferred that the corresponding “off” or “on” event was likely
missed, and the isolated event was treated as a valid detection, contributing one vehicle to the
volume count. The time window threshold for identifying these likely missed detections was not
fixed arbitrarily. Instead, it was determined hourly based on the average gap between valid

“detector on-off” sequences for each hour of the day.

A platoon refers to a group of vehicles traveling together, often due to coordinated signal
timing or natural traffic flow dynamics. Platoon ratio quantifies the quality of progression on an
approach. The platoon ratio represents the ratio of the number of vehicles arriving during the green
phase to the proportion of the green interval of the total cycle. This can be expressed as (Equation

2-2):

Volumeg C

Platoon Ratio, R, = (2-2)

Volumergta;  Signal Durationg

where Volume; represents volume of vehicle arriving during green signal. C and

Signal Durationg represent cycle length (in sec), and duration (in sec) of green signal, respectively.
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The arrival type is a qualitative measure of how well vehicles are grouped into platoons
when reaching an intersection. It ranges from 1 (worst platoon condition) to 6 (best platoon
condition). A higher platoon ratio typically corresponds to a better arrival type, reflecting improved
traffic progression. The relationship between platoon ratio and arrival type, suggested by HCM

(2000), is summarized in Table 5-2.

Table 5-2. Relationship Between Platoon Ratio and Arrival Type

Arrival Type Range of Platoon Ratio Default Value Progression Quality
1 R, <0.50 0.333 Very poor

2 0.50 <R, <0.85 0.667 Unfavorable

3 0.85 <R, <115 1.000 Random arrivals
4 1.15 <R, <150 1.333 Favorable

5 1.50 <R, < 2.00 1.667 Highly favorable
6 R, > 2.00 2.000 Exceptional

Occupancy time is defined as the duration during which the presence zone (denoted by the
stop bar) is occupied by vehicles approaching an intersection. This is calculated as the interval
between the “detector on” (t,) and “detector off” (t(’}f ) events recorded by the stop bar detector

(Equation 2-3).

Occupancy Time™ = tg;r — tgy, (2-3)

A split failure occurs when a phase cannot serve all its demand within one cycle, i.e., if it
takes a vehicle two or more cycles to execute its movement at an intersection, a split failure has

occurred. As per Purdue, when both green occupancy ratio (GOR) (Equation 2-4), and red
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occupancy ratio in the first five seconds of red (RORs) (Equation 2-4) are high (typically 80

percent or higher), a split failure occurs (Equation 2-5).

Occupancy Time Occupancy Timeg_
GOR = -6, RORg = ——— s

Signal Durationg ’

1, if (GOR = 80% & ROR5 = 80%)

Split Failure = { 0, else

(2-4)

(2-5)

where Occupancy Time; and Signal Duration; represent occupancy (in sec) during

green signal, and duration (in sec) of green signal, respectively. Occupancy Timeg_s represents

occupancy (in sec) during the first five seconds of red signal.

Headway refers to the time interval between two consecutive vehicles approaching an

intersection from the same direction. It was calculated as the time difference between the current

“detector on” event (t2,) and the previous “detector on” event (t; 1) recorded by the setback, as

shown in Figure 5-3. Mathematically, headway (also called time headway) can be calculated as

follows (Equation 2-6)

Headway” = t, — tI !

[7] Setback (Back Detector)

Y

Space

Figure 5-3. Time Headway
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Speed-dependent conflict metrics, such as time-to-collision (TTC) and deceleration rate to
avoid collision (DRAC), are commonly used to quantify traffic conflicts. However, these metrics
require vehicle speed, which cannot be estimated at the selected intersections or any other
intersections in Seminole County due to the detector configuration (detectors do not measure
vehicle length). To address this limitation, headway was used as an alternative metric for
identifying traffic conflicts. A traffic conflict is defined as an event where the headway falls below
a specified threshold. While there is no universally accepted threshold for defining traffic conflicts,
values between 1 and 3 seconds are commonly used. For instance, U.S. driver training programs
indicate that maintaining a headway of less than 2 seconds is unsafe (Michael et al., 2000), while

Swedish police use a threshold of 1 second (Vogel, 2003).

In this report, the threshold was set to 2 second, as it is generally considered the most

critical and dangerous point in the spectrum. Traffic conflict is defined as (Equation 2-7):

1, if Headway < 2 sec (2-8)

Conflict = {O, else

A Red Light Running (RLR) event occurs when a vehicle enters an intersection after the
traffic signal has turned red, thereby violating the red signal. Calculating RLR events using
ATSPM systems requires detectors to be placed at the edge of the approach to the intersection.
While stop bar detectors are typically installed at this location, they present a challenge for
accurately identifying RLR events due to their large detection length (typically greater than 50
feet). Because stop bar detectors can accommodate more than one vehicle at a time, they do not
reliably indicate whether a vehicle has violated the red signal. For instance, if one vehicle violates

the red signal while another vehicle is already on the stop bar, the detector will remain activated,

107



making it difficult to distinguish RLR events. To address this limitation, we propose an algorithm
to estimate RLR events using only “detector off” events recorded by stop bar detectors.
Specifically, if a “detector off” event is recorded during the red clearance or red, the event is
flagged as RLR, regardless of whether the corresponding “detector on” event occurred during the

green, yellow, red clearance, or red.

It is important to note that this method provides a close approximation rather than a precise
estimation, as there may be situations where an RLR event occurs, but the “detector on” event
persists due to multiple vehicles occupying the stop bar. Therefore, instead of estimating the
frequency of RLR events, we focused on flagging red clearance or red signal with potential RLR
occurrences, using an indicator of 0 (no RLR) and 1 (RLR). The RLR flagging scenario is

illustrated in Figure 5-4.

Green Yellow Red Clearance + Red

Detector Off

Detector On i_|_| |_| : |—|
Detector Off

Figure 5-4. Red Light Running Flag Using “Stop Bar”

RLR is defined as (Equation 2-9):

RLR = {1, if Any(Detectorf(rcr)|Detector,nicy rer)) (2-9)
0, else
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where G,Y,RC, and R represent the different signal types namely green, yellow, red

clearance, and red, respectively.

All vehicle traffic-related performance measures were calculated at a cycle-level temporal
resolution, with spatial resolution varying between lane-, phase-, and approach-level depending on
the measure. Variations in the measures across different signal types were also recorded. A detailed

descriptive summary of these measures is provided in Table 5-3.

5.1.2.3. Pedestrian Traffic-Related Measures

Pedestrian activity indicator and delay are pedestrian traffic-related measures that can be
calculated using pedestrian detection event log data. At the selected intersections in Seminole
County, the ATSPM systems detect pedestrians via push buttons. Specifically, the pedestrian

detector is activated (¢t when a pedestrian presses the button and is automatically deactivated
p,on p p Yy
(tp,ofr) after a short duration. We assumed that a valid pedestrian detection event requires a

“pedestrian detector on” event to precede a “pedestrian detector off” event. Any instance where
only one of these events was recorded was considered a detection error and excluded from the

analysis.

One limitation of pedestrian detectors in ATSPM systems is that they are not fully
compatible with quantifying pedestrian volume. For example, if multiple pedestrians intend to
cross an intersection, only those who press the button are recorded, while others are not. As a result,
the detectors cannot provide an accurate count of the total number of pedestrians. However, this

limitation does not diminish the utility of pedestrian detectors.

Pedestrian activity indicator was calculated to determine the presence of pedestrians using

the “pedestrian detector on” and “pedestrian detector off” events. This indicator represents a binary
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variable with values 0 (no pedestrian present) and 1 (pedestrian present), that can be

mathematically expressed as (Equation 2-10):

1, if Detection, (on-ofs)

2-1
0, else (2-10)

Pedestrian Activity Indicator = {

Pedestrian delay is defined as the time a pedestrian waits after pressing the button until the
pedestrian signal begins (start of the “Walk” signal). This wait time was calculated as the
difference between the timestamp of the first button press and the start of the pedestrian signal.

Mathematically, pedestrian delay is expressed as (Equation 2-11):

Pedestrian Delay = t, waik egin — (tp,on|First Press) (2-11)

All pedestrian traffic-related performance measures were calculated at a cycle-level
temporal resolution, and phase-level spatial resolution. A detailed descriptive summary of these

measures is provided in Table 5-3.
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Table 5-3. Descriptive Summary of Performance Measures

iati
Task Performance Unit Detector Temporal | Spatial ;’a;lia 111(:11
Group Measures Configuration | Resolution | Resolution T);fpeg
: T 3,4,5, Approach-
Vehicle Volume Count ypes pp v
6 Level*
Counting Bina
Pedestrian Activity Y Phase-
. Count (0 | - -
Indicator Level
/1)
Percent Arrival on Approach-
o Types 3,4, 5, pp )
Green 6 Level*
Types 3,4, 5 Approach-
Platoon Ratio - ypes 3, %, 2, pp -
6 Level*
. : Lane-
Progression | Occupancy Time Seconds Types 2, 4, 6 4
Level
L Cycle- Lane-
Split Failure Count Types 2,4, 6 -
Level Level
) Phase-
Pedestrian Delay Seconds | - -
Level
. Types 3,4, 5 Approach-
(Time) Headway Seconds ypes 3, 4,9, PP v
6 Level*
Conlflict (Vehicle- Types 3,4, 5 Approach-
. ( Count ypes 5 Ty < pp \/
Vehicle) 6 Level*
Safety .
Red Light Running Binary Lane-
o Count (0 | Types2,4,6 -
(Flag) Level
/1)
Pedestrian-Vehicle Numeric Phase-
. . Types 2,4, 6 -
Conflict Propensity*** | (0-1) Level

*Resolution at the phase and lane levels is feasible; however, approach-level resolution offers the highest accuracy.

** Approximate estimation.

***Determined using pedestrian exposure and vehicle exposure during pedestrian activity duration
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5.2. Exploratory Data Analysis and Safety Scoring

In this chapter, we provide an overview of the exploratory analysis carried out on the
performance measures to gain insights necessary for making recommendations on the six metrics

for the selected intersections.
5.2.1. Data Aggregation

The performance measures were calculated from controller event log data at a cycle-level
temporal resolution. While this resolution is highly effective for capturing the nuances of Signal
Phasing and Timing (SPaT) and traffic conditions at intersections, understanding broader temporal
patterns requires data aggregation over longer intervals. To gain insights into these patterns, the

data was aggregated at 15, 30, 45, and 60-minute intervals.
5.2.2. Data Analysis

In Task 3, we primarily relied on performance measures aggregated at 60-minute intervals
(i.e., hourly temporal resolution) to provide hourly recommendations on the six metrics. Therefore,
this section mainly focuses on presenting the hourly trends and distributions of the various
calculated measures. Along with the trends, 95% confidence intervals are shown to account for the
variability in the data. The confidence intervals are calculated under the assumption that the
sampling distribution of the mean is approximately normal. This assumption is valid given our
sufficiently large sample size (n > 30), which allows the application of the Central Limit Theorem.

The intervals were computed using Equation 3-1.

CI =fiz(j—ﬁ) (2-10)

where x is the sample mean, z is 1.96 for a 95% confidence level (assuming normal

distribution), s is the sample standard deviation, and n is the sample size.
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Although all intersections were analyzed, for clarity, the hourly trends and distributions are
illustrated for only one study intersection. The intersection at SR436 and Westmonte Drive (Signal
ID: 1500), as shown in Figure 5-5, were chosen for the presentation of our analysis, as it had the
most comprehensive detector configuration (see Table A-1), allowing the calculation of almost all

performance measures, including measures for right-turn lanes.

Left-Turn Phase
(1,3,5,7)
: ' Through Phase
Minor | | (2,4,6,8)
8] [2] ,

---------- Major---------

(5]

(4]

Mipor

(@) (b)

Figure 5-5. Intersection at SR436 and Westmonte Drive (Signal ID: 1500)
It is important to note that while the temporal resolution for trends and distributions is

hourly, the spatial resolution follows the phase-specific resolutions outlined in Table 5-3.
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5.2.2.1. Signal Phasing and Timing (SPaT)-Related Measures

Figure 5-6 illustrates the hourly variation in cycle length at the intersection of SR436 and

Westmonte Drive, along with the 95% confidence interval (CI) to capture variability in cycle

length throughout the day.

Between midnight and early morning (12:00 AM — 3:00 AM), cycle lengths are
significantly high, likely due to low traffic volumes and signal control strategies that

allocate longer cycles when fewer vehicles are present.

A steep increase is observed during the morning peak hours (6:00 AM — 9:00 AM),

coinciding with increased traffic demand as commuters travel to work.

The afternoon and evening period (4:00 PM — 8:00 PM) exhibits relatively stable cycle
lengths, likely due to consistent traffic demand. However, after 8:00 PM, cycle lengths

begin to decline, reflecting reduced vehicle volumes and potentially shorter green phases.

The confidence interval remains wide during both midnight and morning peak hours,
indicating greater variability in cycle lengths during these times. This could be attributed
to irregular traffic patterns, signal control adjustments, or fluctuating vehicle arrivals,

particularly in low-traffic conditions.

Overall, this analysis highlights the dynamic nature of traffic signal operations throughout

the day, with cycle lengths adapting based on time-of-day traffic conditions and operational

strategies.
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Figure 5-6. Hourly Trend of Cycle Length

Figure 5-7 presents the hourly variations in signal durations for green, yellow, red
clearance, and red signals across left-turn (Phases 1, 3, 5, 7) and through phases (Phases 2, 4, 6,
8). These trends illustrate how signal timings adjust throughout the day to accommodate varying

traffic conditions.

Green Signal Duration:

Through phases (Phases 2, 4, 6, 8) generally have longer green times than left-turn phases
due to higher traffic volumes in the through movement. Among them, Phase 2 exhibits the longest
green duration, remaining consistently high throughout the day. Phase 5 (left-turn movement)
shows notable peaks from noon to evening (12:00 PM — 7:00 PM), indicating periods of high left-
turn demand. Phases 4 and 8 (through movements on minor road (refer to Figure 5-5)) show

relatively low and stable green durations throughout the day.
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Figure 5-7. Hourly Trend of the Duration of Different Signal Types
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Yellow Signal Duration:

e Yellow durations typically range between 3—6 seconds for most phases, except between

midnight and early morning (12:00 AM — 3:00 AM) on major road (Phases 1, 6, 5, and 2).

e Phases on minor road (Phases 3, 8, 7, and 4) remain constant, showing no variations

throughout the day.

Red Clearance Duration:

¢ Red clearance durations mostly fall within the expected range of 2—6 seconds, ensuring

adequate clearance time for vehicles exiting the intersection.

e After 8:00 AM, red clearance durations for phases on major roads are shorter compared to

those on minor roadways.

Red Signal Duration:
e Left-turn phases (Phases 1, 5, 3, and 7) consistently have longer red durations throughout
the day, indicating signal priority for through movements.

e Through phases (Phases 2 and 6) on major roads have the shortest red durations compared

to all other phases.

5.2.2.2. Vehicle Traffic-Related Measure

Figure 5-8 presents the hourly trends of vehicle volumes observed during green and red
signals for each approach at the intersection of SR436 and Westmonte Drive. The figure highlights
the differences in traffic demand between major (westbound and eastbound) and minor
(northbound and southbound) road approaches, showing how signal control prioritizes major road

traffic while minor road movements experience longer red durations.
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Major Road Approaches (Westbound & Eastbound):

e The westbound and eastbound approaches, which belong to the major road, exhibit
significantly higher vehicle volumes, particularly during morning peak hours (7:00 AM —

9:00 AM) and evening peak hours (4:00 PM — 6:00 PM).

e Vehicle volumes remain consistently high during green signals, reflecting their priority in

signal phasing.
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Figure 5-8. Hourly Trend of Approach-Level Vehicle Volume

Minor Road Approaches (Northbound & Southbound):

e The northbound and southbound approaches, representing minor roads, show lower overall

vehicle volumes compared to the major road approaches.

e These approaches experience moderate peaks during mid-afternoon hours (3:00 PM — 5:00

PM).
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e Unlike the major roads, red signal durations dominate minor road traffic, indicating that

priority is given to the major road movements.

¢ The confidence intervals for red signal volumes in minor road approaches are wider during

peak hours, suggesting greater variability in waiting vehicles.

Figure 5-9 illustrates the hourly variations in platoon ratio for all approaches at the
intersection of SR436 and Westmonte Drive, providing insights into traffic flow efficiency and
signal coordination. The platoon ratio is a measure of traffic progression, where values closer to
1.0 indicate well-coordinated movement, and values significantly above 1.0 suggest favorable

conditions with well-formed platoons (refer to Table 5-2).

Major Road Approaches (Westbound & Eastbound):

e The westbound and eastbound approaches (major roads) consistently exhibit platoon ratios
between 1.15 and 1.50 during peak hours (7:00 AM — 9:00 AM and 4:00 PM — 6:00 PM),

indicating favorable progression and efficient signal coordination.

¢ Confidence intervals are narrow, reinforcing that traffic progression remains predictable

and well-regulated on these approaches.
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Figure 5-9. Hourly Trend of Approach-Level Platoon Ratio

Minor Road Approaches (Northbound & Southbound):

e The northbound and southbound approaches (minor roads) frequently exhibit platoon ratios

exceeding 1.50, indicating persistent platoon formations rather than occasional occurrences.

e Variability in platoon ratio is more distinct during midnight hours, as indicated by the wider
confidence intervals, likely due to inconsistent vehicle arrivals and lower traffic volumes.
Figure 5-10 illustrates the hourly variations in phase-level occupancy time during the red

signal for all approaches at the intersection of SR436 and Westmonte Drive. The occupancy time
in the figure represents the average of the hourly mean occupancy across all lanes within a given
phase, providing a comprehensive measure of vehicle presence and queuing during red signal

periods.
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Major Road Approaches (Eastbound & Westbound):

e The eastbound and westbound approaches (major roads) exhibit higher occupancy times
during the morning (7:00 AM — 9:00 AM) and evening (4:00 PM — 6:00 PM) peak hours,

indicating increased vehicle accumulation while waiting for the green signal.

e Occupancy time trends remain elevated throughout the day, reinforcing the impact of

sustained traffic demand on major road approaches.

Minor Road Approaches (Northbound & Southbound):

¢ In the northbound and southbound approaches (minor roads), left-turn phases (Phases 3,
and 7) display slightly lower occupancy times compared to through phases (Phases 8, and

4).
While occupancy time was calculated at lane-level resolution (refer to Table 5-3), it is
presented at phase-level resolution for better clarity and interpretation. All remaining lane-level

features are also represented at phase-level resolution.

Figure 5-11 illustrates the hourly variations in split failure across all approaches at the
intersection of SR436 and Westmonte Drive. Split failure occurs when the allocated green time is
insufficient to clear the queued vehicles within a phase, leading to unmet demand and potential
congestion. The figure highlights phase-specific and time-dependent patterns in split failures,

indicating differences in traffic demand and signal performance across approaches.
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Figure 5-11. Hourly Trend of the Phase-Level Split Failure (Purdue Standard)

123



Major Road Approaches (Eastbound & Westbound):

Phases 1 and 5 (eastbound major road) and Phases 2 and 6 (westbound major road)

experience the highest split failures, particularly during afternoon and evening peak periods.

Split failures in Phase 5 remain elevated throughout the day, indicating consistent traffic

demand exceeding the allocated green time.

Phase 2 exhibits a sharp increase in split failures between 3:00 PM and 6:00 PM, reflecting

congestion buildup.

Minor Road Approaches (Northbound & Southbound):

Phases 4 and 8 exhibit moderate split failures in the afternoon and evening, likely due to

left-turn demand exceeding available green time.
Phase 3 and 7 show steady but comparatively less frequent split failures.

Figure 5-12 presents the hourly variations in headway during green and red signals for

through-moving vehicles at Phase Nos. 2, 4, 6, and 8. Headway, defined as the time interval

between consecutive vehicles approaching the intersection, serves as an indicator of traffic flow

efficiency and vehicle interaction patterns across different phases and time of the day.

Major Road Phases (Phases 2 & 6):

Phases 2 and 6, representing major road approaches, exhibit shorter headways during peak
hours (6:00 AM —9:00 AM and 4:00 PM — 6:00 PM), indicating higher traffic demand and

reduced spacing between vehicles.

The shorter headways during peak periods suggest a well-utilized green signal, as vehicles

arrive in denser formations, minimizing gaps between consecutive vehicles.

Between midnight and early morning (12:00 AM — 3:00 AM), headways during green are

very high, reflecting lower demand and more dispersed vehicle arrivals.
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Figure 5-12. Hourly Trend of the Phase-Level Headway

Minor Road Phases (Phases 4 & 8):

Phases 4 and 8, representing minor road approaches, consistently exhibit higher headways
than major road phases throughout the day, reflecting lower traffic volumes, less frequent

vehicle interactions, and larger gaps between consecutive arrivals.

Headway variations during midnight and early morning hours are more distinct, as
indicated by wider confidence intervals, likely due to irregular vehicle arrivals in low-

demand conditions.

Headway variations during midnight and early morning hours are more distinct, as
indicated by wider confidence intervals, likely due to irregular vehicle arrivals in low-

demand conditions.
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Figure 5-13 illustrates the hourly variations in traffic conflicts occurring during green and
red signals across different phases. The trends highlight temporal and phase-specific differences

in conflict occurrences throughout the day.
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Figure 5-13. Hourly Trend of the Phase-Level Conflict

Major Road Phases (Phases 2 & 6):

¢ Phases 2 and 6 (major road approaches) experience the highest number of conflicts during,
particularly between 6:00 AM and 9:00 AM, and 4:00 PM and 7:00 PM, suggesting

increased interaction among vehicles during the morning and evening peak periods.
e No. conflict during red remain low throughout the day.

Minor Road Phases (Phases 4 & 8):

e Conflicts during red signals are relatively infrequent, but Phase 4 exhibits a gradual

increase during midday, followed by a subsequent decline.
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Figure 5-14 illustrates the hourly variations in red light running (RLR) flags, which
represent the number of signal cycles with red light violations across different approaches. The
trends reveal temporal and directional variations in RLR activity, highlighting peak periods and

potential safety concerns.
Eastbound Approach (Major Road):

e Significant RLR activity is observed for Phase 1 in the afternoon hours, peaking between

3:00 PM and 5:00 PM.

e For Phase 6, RLR activity peaks in the morning around 8:00 AM, indicating potential
morning rush-hour congestion or aggressive driver behavior during peak commuting times.
Following this peak, RLR occurrences decline but gradually rise again in the evening,

though at a lower intensity compared to the morning.
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Figure 5-14. Hourly Trend of the Phase-Level Red Light Running Flag

Southbound Approach (Minor Road):

e For Phase 3, RLR occurrences gradually increase from 5:00 AM to 10:00 PM, indicating

a steady rise in violations throughout the day.

e Phase 8 exhibits persistent RLR trends throughout the day, indicating frequent violations,

possibly due to long red signal durations or turning movement conflicts.

5.2.2.3. Pedestrian Traffic-Related Measures

Figure 5-15 illustrates the hourly variations in pedestrian activity indicator across all
pedestrian phases at the intersection of SR436 and Westmonte Drive. The pedestrian activity
indicator is represented as a binary measure (0 or 1) per signal cycle, where 1 indicates pedestrian

presence and 0 indicates no pedestrian presence. This method serves as a proxy for pedestrian
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activity, as ATSPM detectors only capture whether an actuation (e.g., a push button press)

occurred, rather than the actual number of pedestrians crossing. The key observations are:

No. of Cycles With Pedestrian

No. of Cycles With Pedestrian

Morning Peak (7:00 AM — 9:00 AM): Pedestrian activity increases steadily for Phases 4

and 8, indicating higher pedestrian demand during early commuting hours.

Evening Peak (5:00 PM — 8:00 PM): A second significant increase in pedestrian presence

is observed across all phases, aligning with commute times and recreational movement.

Late Night (After 9:00 PM): Pedestrian activity gradually declines, suggesting minimal

pedestrian demand during late-night hours.
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Figure 5-15. Hourly Trend of the Phase-Level Pedestrian Activity Indicator
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Figure 5-16 illustrates the hourly variations in pedestrian delay across all pedestrian phases
at the intersection of SR436 and Westmonte Drive. Pedestrian delay represents the waiting time
experienced by pedestrians before receiving a walk signal, which is influenced by signal phasing,

vehicle demand, and pedestrian actuation requirements. The key observations are:

e Morning Hours (6:00 AM — 10:00 AM): Pedestrian delays remain relatively low, with

gradual increases observed as traffic demand builds.

e Midday Period (11:00 AM — 2:00 PM): Phase 6 experiences its highest pedestrian delay
around 1:00 PM, suggesting possible delays due to signal timing prioritization for vehicular

movements.

e Afternoon and Evening Peak (3:00 PM — 7:00 PM):Phases 2 and 4 exhibit increasing
pedestrian delays, peaking around 5:00 PM, reflecting higher vehicle demand and extended
pedestrian waiting times. Phase 8 shows relatively stable pedestrian delay throughout the

day, with moderate peaks observed in the evening hours.
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Figure 5-16. Hourly Trend of the Phase-Level Pedestrian Delay
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5.3. Yellow and Red Clearance Time Adjustment

5.3.1. Current Standard and Background

Yellow and Red Clearance phases are typically timed using kinematic equations reliant on
assumed driver behaviors, such as reaction time and approach speed, as outlined in the FDOT

TEM. Equations 4-1 and 4-2 define the yellow and red clearance signal duration.

. 1.47v 41
B 2(a+Gg) @1

R = W+L (4-2)
T 147v

Notions & Definitions:

Y = yellow signal duration (seconds),

t = perception-reaction time (1.4 seconds),

e v =approach speed of the vehicle (mph),

e a = deceleration rate in response to the yellow signal (10 ft/sec?),
e g=acceleration due to gravity (32.2 ft/sec?),

e (= grade percentage (positive for uphill, negative for downhill).
e R =red clearance signal duration (seconds),

e IV = intersection width (feet), measured from the near-side stop line to the far edge of the

conflicting traffic lane along the actual vehicle path,
e L =vehicle length (20 feet),

Signal length is primarily determined by approach speed and intersection width, as default

values are unavailable, and most roads in Florida have no grade. This study obtained speed limit
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data from the FDOT Sunstore and manually measured intersection width using Google satellite
imagery to assess whether current red clearance durations meet the standard. Appendix A-2
presents the FDOT TEM recommendations for yellow and red clearance phase durations alongside
the observed distribution. The analysis revealed that while most intersections adhered to the yellow

time standard, red clearance durations frequently did not meet the recommended values.

Meanwhile, assumptions on those parameters, such as approach speed as speed limit and
fixed reaction time across drivers, often diverge from real-world conditions, sometimes leading to
poorly calibrated signals that either sacrifice efficiency for safety or vice versa (Jerome et al.,
2022). Also, these parameters are not available in the current study site's detector configuration.
With growing urban traffic volumes, optimizing the duration of these transition phases demands a

paradigm shift from integrating high-resolution behavioral data to replacing assumptions.

This study bridges this gap by applying causal forest to isolate the impact of signal
adjustments while controlling for variables like traffic volume and platoon ratio. Although
dynamic yellow time is neither feasible nor permitted in Florida, this study evaluates the potential
effects of implementing dynamic yellow time on intersection safety. Results reveal an adaptive
signal adjustment technique for the yellow and red clearance phases that reduces conflict rates at
these phases by up to 6% and 7%, respectively. By aligning signal timing with observed driver
behavior rather than idealized assumptions, this work provides a scalable framework for FDOT to

enhance intersection safety through a data-driven approach.
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5.3.2. Algorithm
5.3.2.1. Calculation of Conflict Rate Per Vehicle

We assumed that signal adjustments only affects the yellow and red clearance signals since
adjusting the yellow and red clearance signals is unlikely to have an effect on the green and red
times because the effect dilutes over time. For yellow we only tested increasing the phase, while
for red clearance time we tested both an increase or decrease. The frequency of conflicts during
the yellow and red clearance phase is influenced by factors such as yellow duration, traffic volume,
and the number of lanes. However, monitoring only the frequency of conflicts for signal
adjustment has several drawbacks. For example, extending the yellow duration tends to increase
conflicts, often falsely rendering the increasing signal duration less effective at most intersections.
Likewise, reducing the yellow duration decreases conflicts, primarily due to a shorter time window
for conflicts to occur. An analysis based solely on conflict frequency indicates that risks are
concentrated during peak traffic hours, and it largely ignores nighttime. Therefore, it is essential

to account for exposure when analyzing these patterns.

This study addressed this issue by calculating the conflict rate per vehicle (CRPV), referred
to as the conflict rate for simplicity. This metric represents the proportion of vehicles involved in
conflicts relative to the total number of vehicles passing through during yellow signal phases.
Accordingly, the traffic conflict rate per vehicle at a particular phase i (CRPV?) is defined via
Equation 4-1:

TC'  Yjer, I(TH; < 2)

: —
V' Yier,1 (t{m <t).

CRPV' = 4-1)
)
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where P; represents the set of time headway instances during phase i. The indicator
function 1(THj < 6) equals 1 if the condition TH; < § is satisfied, and 0 otherwise. V! denotes

the traffic volume during phase i. Here, this study used 2 seconds as the threshold to obtain enough
observations for modeling and inference. Also, the time headway is calculated using the setback
detector, meaning it only considers conflicts that occur on one approach. As a result, this study
monitors the conflict rate per vehicle at the yellow and red clearance phases that occurred

downstream of the intersection for signal adjustment.

5.3.2.2. Conflict Rate Estimation Models

This study employed three tree-based machine learning algorithms—Random Forest (RF),
Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost)—to estimate traffic
conflict rates. These models were selected for their ability to capture non-linear relationships

inherent in traffic dynamics while addressing challenges such as overfitting and data sparsity.

Random Forest, a bagging ensemble method, constructs multiple decision trees using
bootstrapped subsets of the data and aggregates predictions through majority voting. This approach
reduces overfitting by diversifying errors across individual trees, rendering RF robust to noise and
suitable for high-dimensional datasets. In contrast, AdaBoost, a boosting technique, iteratively
trains weak learners such as shallow decision trees by reweighting misclassified instances. While
computationally efficient for simpler datasets, AdaBoost’s sensitivity to noisy data and lack of
regularization limit its applicability to complex tasks. Extreme Gradient Boosting (XGBoost), a
state-of-the-art boosting framework, optimizes loss functions via gradient descent and incorporates

L1/L2 regularization to penalize model complexity. XGBoost leverages parallel processing to
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handle missing values effectively, though its performance depends heavily on careful

hyperparameter tuning.

Tree-based algorithms were chosen for their capacity to model non-linear interactions, such
as the combined effect of traffic volume and yellow signal duration while accommodating mixed
data types. Their inherent interpretability, when augmented with explainability techniques, aligns
with the study’s dual objectives of predictive accuracy and acquisition of insight for using causal

forest.

To address the black-box problem of machine learning models, Shapley Additive
exPlanations (SHAP) were applied to quantify feature contributions using principles from
cooperative game theory. SHAP values reveal the directionality (positive or negative influence)
and magnitude of variables such as yellow duration or lane count, while also revealing non-linear
interactions. A cumulative feature importance threshold of 70% was adopted to mitigate overfitting,

discarding noise-prone covariates.

Figure 5-17 presents the top 10 features that significantly influence the estimation of
conflict rate per vehicle during the yellow phase. The bar graph shows the percentage of total
feature importance. The label format was ‘“Phase Feature Direction Movement(Lane)”. For
example, “Yellow Volume Forward Through(T)” represents the Volume of forward direction in
the through movement during the yellow phase recorded at the through (T) lane. The shared lane
with the through and right-turn lane is recorded as TR. As a result, conflict rates per vehicle during
the yellow and red clearance period were most correlated to the volume of vehicles passing through

the intersection during the yellow phase.
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Top 10 Feature Importances (Average)
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Figure 5-17. Top 10 Feature Importance

The dataset was partitioned into training and testing subsets at an 80:20 ratio to ensure
robust validation. Hyperparameter optimization was conducted via grid search, which
systematically evaluated predefined parameter spaces to identify combinations maximizing model
performance on test data. Key hyperparameters included the number of estimators, maximum tree
depth, and learning rate. Table 5-4 presents the grid search results, displaying alternatives, with

the selected value shown in bold.
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Table 5-4. Hyperparameter Options and Selected Parameters

Parameter
Model
No. of estimators Max Tree Depth Learning Rate
AdaBoost 50, 100, 200 0.001, 0.01
RF 50, 100, 200 5,10 -
XGBoost 50, 100, 200 5,10 -

Table 5-5 presents a comparison of models estimating the conflict rate per vehicle
occurring during the yellow and red clearance phase of through movements. To ensure
comparability, consistent hyperparameter search procedures and feature sets were applied across
all models. Among these, XGBoost exhibited the best performance, achieving an R-squared value
of 0.457. Consequently, the subsequent analysis uses XGBoost to estimate the baseline and

treatment effect of the causal forest, as it provided the highest accuracy.

Table 5-5. Model Performance of Different Models

Performance Models

measure Random Forest AdaBoost XGBoost
R-square 0.453 0.366 0.457
MAE (%) 1.45 1.64 1.50
RMSE (%) 5.70 6.14 5.68
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5.3.2.3. Causal Forest

This study employs the causal forest algorithm to estimate heterogeneous treatment effects
(HTESs) across multiple signalized intersections. The causal forest partitions the feature space by
selecting splits that maximize treatment effect heterogeneity while simultaneously promoting a
covariate balance between treatment and control groups. To reduce overfitting and enhance
credibility, this study uses the “honesty” approach, which involves using separate samples for tree
construction and effect estimation. This dual-sample approach ensures that splits are selected based
on one part of the data and treatment effects are estimated on an independent subset. The HTE (7)

represents the impact of a treatment T' on an outcome y and is defined as Equation 4-2:

T=y(T") —y(T,) (4-2)

where y(T,) and y(T') denote the outcomes under control and treatment conditions,
respectively. In this study, T, represents the initial treatment level. To simulate signal timing
adjustments, a treatment adjustment factor AT is introduced, modifying the treatment level (T") as

shown in Equation 4-3.
T'=Ty+ AT (4-3)

The adjustment of treatment is determined by the observed signal durations, with the
objective being to enhance the reliability of the treatment effect and to ensure that durations remain
within the permitted range. In certain cases, The causal forest’s treatment effect makes a conflict
ratio fall below zero (i.e., T+ y(Ty) < 0). This often occurs when the predictive model
extrapolates to unobserved values, which is not feasible and requires correction. To address this,
the treatment effect is adjusted by setting T = —y(T}) in such instances, as expressed in Equation

4-4.
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t = max (7, —y(To)) (4-4)

This adjustment ensures that the conflict rate remains non-negative after the treatment is
applied. By incorporating this post-processing step, the analysis avoids overestimating the
treatment's impact, thereby providing a more conservative estimate of the recommendation's
effectiveness. The Conditional Average Treatment Effect (CATE), given a set of features x is

expressed as Equation 4-5.
7(x) = E(f|x) (4-5)

This formulation enables the causal forest to estimate treatment effects that are specific to
varying conditions, capturing the interactions between features and outcomes. Additionally, the
CATE was adjusted to ensure that the conditional average conflict rate after treatment remains
non-negative, preventing any overestimation of the CATE. This adjustment are presented in

Equation 4-6.
t(x) = max (7(x), —E (y(To)|x) (4-6)

The framework explicitly models the shift from T, to T;, enabling the estimation of
outcome changes under hypothetical interventions. This estimation approach is grounded in the
ignorability assumption, which posits that treatment assignment is independent of potential
outcomes, given the observed covariates. In addition, the Causal Forest relies on variability in the
data to produce reliable estimates of treatment effects. The method assumes a sufficient level of
data variability and covariate balance between treatment and control groups. A lack of these
conditions can undermine the accuracy and reliability of the estimated treatment effects.
Intersections with fixed signal durations typically lack the necessary variation for meaningful

analysis. In this study, however, variability is introduced through occasional deviations in signal
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timing, such as those caused by vehicle detection system activations. These fluctuations provide
the variability required for the Causal Forest to estimate the effects of signal timing adjustments
effectively. Therefore, the selection of signal adjustment candidates is informed by observed signal

durations.

5.3.2.4. Signal Adjustment Recommendation

Figure 5-18 shows the proposed recommendation system for yellow and red clearance
signal duration adjustment based on the causal forest. The algorithm begins by calculating various
performance measures from raw high-resolution event-based data and aggregates them by phase
level. The data is then split into training and test sets. The training set is fed into a modeling process
to learn key relationships between conflict ratio per vehicle and signal duration. Multiple models
are explored, with model selection performed by comparing performance metrics on the test set.
Once the best model is chosen, a causal forest is trained to understand how proposed signal
adjustments (treatments) would affect different intersections at different times. Causal forests
provide heterogeneous treatment effect estimates, indicating how each intersection is likely to
respond to each candidate signal duration. This approach captures variations across traffic signal
IDs, times of day, and whether it is a weekend or weekday, rather than relying on a one-size-fits-

all timing plan.

Signal adjustment candidates are identified by analyzing the distribution of yellow and red
clearance phases to enable accurate treatment estimation. Each candidate is assessed using a causal
forest, which provides estimates of HTEs. In this study, these effects were calculated by varying

the duration within specified ranges in 0.1-second increments. The results were averaged to

140



compute the CATE for each subgroup. The CATE for a given subgroup determines the

recommended signal duration.
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Figure 5-18. Recommendation System for Yellow and Red Clearance Signal Duration

The reliability of these estimates depends on subgroup size. Small subgroups may produce
unreliable averages, while large subgroups may overlook critical environmental variations, such
as changes in traffic conditions. To address this, CATE values were calculated for each intersection,
for every hour, and separately for weekdays and weekends. This ensures adequate sample sizes
while accounting for temporal variations, intersection-specific characteristics, and
weekday/weekend differences. The optimal signal duration is identified by selecting the candidate
with the lowest conflict rate per vehicle during the transition phase. Finally, the algorithm set the
recommended adjustments for the yellow signal duration to 0 if the systems recommend reducing
it, which is in line with current FDOT standards. This method integrates data-driven modeling,

hypothesis testing, and causal inference to enable iterative refinement of traffic signal control

strategies.
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5.3.3. Recommendation Results
5.3.3.1. Yellow and Red Clearance Duration Candidates

The proposed algorithm requires a reasonable number of observations for reliable
estimation, so the candidates should be investigated based on the observed frequency. Figure 5-19
shows the duration of yellow and red clearance times observed in the collected data. The figure
shows that most cycles are operated with 4-6 seconds for yellow and 2-4 seconds for red clearance.
This range ensures that recommended durations do not deviate excessively from existing guidelines.

Therefore, this study chose this range as a candidate for recommendation.
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400000 Red Clearance Duration (Forward Through)
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Figure 5-19. Observed Yellow and Red Clearance Durations.
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5.3.3.2. Conditional Average Treatment Effect

In this study, CATE denotes the average conflict rate that changes when all observations
of a given condition (intersection, time of day, weekend or not) are fixed to a certain duration.
Figure 5-20 presents the CATE of adjustments to yellow and red clearance signal duration,

evaluated for different times of the day and weekends.

The effect of adjustments was identified in increments of 0.1 seconds within the specified
phase duration ranges. Blue regions represent conditions where the adjustments are expected to
reduce conflicts per vehicle during the transition phase, while red regions denote an anticipated
increase. The duration with the lowest value in this contour will have the lowest conflict rate per
vehicle among the candidate durations and is therefore recommended. At the study sites, adjusting
signal duration to a fixed duration typically increased the conflict rate per vehicle in the transition
phase, as the smallest durations are found around the average observed duration. This can be
attributed to the flexibility of the signal's internal algorithm to adjust the signal based on the
vehicle's detection information. In such situations, signal adjustments are not only unnecessary

but, as demonstrated by the analysis, may inadvertently contribute to a rise in the conflict rate.

143



Conditional Average Observed Duration

~0.09 -0.06 ~0.03 000 003 006 009 Treatment Effect
6.0 7 : ]
£ 504 1 5 1
§45- . a“ & g 1 ID: 1285, Weekend
& 77 | 1D: 1285, Weekday 1D: 1285, Weekend a | B
4.0 4 . : . . .
6.0 7
3554 3
5 50 £ 3
g 454 - £254 1D 1200 Weckday
a " | 1D: 1290, Weekday ID: 1290, Weekend 0,0 e —
4.0 4 : : . . - - T T T
607 40 ]
§ 5-5 4‘-7 w g 35 ] -
5504 £ 304 y
£ 45 . — £ 254 ID: 1300, Weekda 1D: 1300, Weekend
¥ 1300, Weekday ‘ 1D: 1300, Weekend .. 8 20 e, o, ataedeby -
4.0 + E = : . . . : ; ; .
_ 40 |
3 235 -
§ 4 530 |
= = -
g -~ i & 257 ID:1315, Weekday 1 1ID; 1315, Weekend
a ID: 1315, Weekday | ID: 1315, Weekend 204 T e e | M IV
6.0 7 7 _ 4.0 ]
2 554 ""' ! ; "‘ EEER .
550 ] £ 301 1
S 454 A - - £259 1325, Weekday 1 ID: 1325, Weekend
a ID: 1325, Weekday ‘ 1D: 1325, Weekend = 20

Duration (sec)
n
=
1
Duration (sec)

g
o

6.0 7 - z 4.0 4 |
5‘5 | -_m 3‘5 | ]
| l ' i £ 3.0 1
——
454 i - 251 1D: 1330, Weekday 1 1D: 1330, Weekend
1D: 1330, Weekday 10D: 1330, Weekend
4.0 4 L . : .

4.0 4
— oy Y
3 EERE '
£ : 5301
E & e g 251 1D: 1455, Weekday 1D: 1455, Weekend
[=} 1D: 1455, Weekday 2.0 e — 1S "
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Time of day Time of day Time of day Time of day
(a) Yellow phase (b) Red clearance phase

Figure 5-20. Conditional Average Treatment Effect of Yellow (a) and Red Clearance (b)
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Figure 5-21(a) presents the recommended durations for yellow and red clearance signals
at each intersection, differentiated by time of day and weekday versus weekend, based on the
contour data shown in Figure 4-4. For most intersections, the current duration was recommended
because adjusting signal lengths was projected to increase conflict rates in the majority of cases.
This duration scheme is recommended as the default setting for intersections, with the possibility
of incorporating variability based on their internal algorithms. Introducing variability allows for
observing driver responses to different signal lengths, which can aid in refining future algorithms
by providing diverse data. This approach supports the estimation of treatment effects for
subsequent signal adjustments. As additional data on similar signal durations is collected, the

reliability of the adjustment algorithm is expected to improve.

Figure 5-21(b) shows the effect of the recommendation system, comparing the CATE of
the current average duration and that of the minimum duration. It shows the expected percentage
reduction in the conflict rate compared to the traditional system. It was estimated that the reduction
in conflict rate would be mainly concentrated during the daytime when traffic is high and conflicts
are common. The CATE of the proposed recommendation system is expected to be negative
because the recommendation system selects the duration that results in the lowest conflict rate
from a range of candidates. This feature ensures that the algorithm continuously improves safety

with each update.
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Figure 5-21. Recommended Duration (a) and Corresponding Conditional Average

Treatment Effect (b)

As these recommendations are data-driven and based on a complicated framework, the specific
factors influencing these values remain uncertain. Thus, signal adjustments should be limited to a small
set of candidate durations, including the existing range of duration. Gradual adjustments to the yellow
signal are particularly critical to ensure drivers have adequate time to adapt. This study provides

recommendations based on individual intersections and specific hours of the day. When signal timing
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varies between weekdays and weekends, the average value is recommended. In addition, the yellow
and red clearance duration for opposing intersections is set to be the same when the recommendation
is provided. Detailed recommended durations by intersection are attached in Table A-3 and Table

A-4.

Tables A-2 and A-3 present the recommended adjustments to the current duration values.
However, optimizing each signal timing must comply with the constraints outlined in local traffic
signal manuals, which may vary based on vehicle actuation events. If the recommended duration falls
outside this range, it must be adjusted accordingly. For instance, Florida specifies that yellow and red
clearance durations should not exceed six seconds. Therefore, if an intersection's current yellow signal
length is 5.9 seconds and an addition of 0.3 seconds is recommended, it should be adjusted to six

seconds to remain within the specified limits.
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5.4. Choice of Protected vs Permitted Left turn
5.4.1. Algorithm
5.4.1.1. Calculation of Gap from Stopbar Detector

The Signalized Intersections Informational Guide (2013) and the Highway Capacity
Manual (HCM) 2022 provide detailed criteria for determining when left-turn phasing is
appropriate at intersections using the volume of left-turn and through movements. However, this
study recommends the protected left turn using a gap-based method to focus on safety. FDOT
TEM standards utilize critical gap values to determine the need for a protected left-turn phase.
Critical gap estimation requires the observation of both accepted and rejected gaps, which cannot
be directly obtained in this study. Instead, the gap between opposing through movements is used
to assess left-turn safety and recommend a protected left-turn. Figure 5-22 illustrates a scenario

involving two consecutive vehicle detections.

Figure 5-22. Gap Calculation Method
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A gap is defined as the time interval between the exit of the first vehicle's rear from the
detector (£;) and the entry of the second vehicle. £, is not directly observable, as it depends on

detector length and vehicle speed. (Equation 5-1) defines the gap in this scenario.

Ldetector)

Gap = t4_f;=t4_(t3_
U1

(5-1)

While the effect of detector length is negligible when detector length (Lgetector) 1S short,
and speed is fast, but a short detector near the stop line is unavailable in Seminole County. If the
detector length is 40 feet, which is the typical length of a stopbar detector, and the vehicle speed
is 25 mph, the difference is approximately 1.1 seconds. Therefore, this study considered

detectors and approach speeds, which are assumed to be speed limits.

Gaps detected by individual detectors should not be used because left-turning vehicles
interact with vehicles across all conflicting lanes. When multiple detection channels span multiple
lanes, they are synchronized within a single detector. Specifically, only the first and last detection
events from the vehicle platoon are considered, even if the vehicles are in different lanes. This
approach is equivalent to using a single detector covering multiple lanes. Figure 5-23 illustrates

an example of a synchronized channel.

Channel 1

Channel 2

Channel 3

Synchronized !
Channel

Figure 5-23. Example of Synchronized Channel
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5.4.1.2. Left-turn Volume Estimation using Stopbar Detector

Protected left-turn recommendations depend on accurate left-turn traffic measurements,
which typically require short detectors at the near stop lines. Since these detectors are not available
in Seminole County, we developed an alternative approach to estimate traffic volume using
occupancy data from stopbar detectors. The stopbar-based method enables more scalable estimates
of left-turn volume since most intersections with ATSPM systems have stopbar detectors installed
on a lane-by-lane basis. Estimating left-turn volume requires an assumed saturation flow rate and
effective green time because stopbar detectors do not directly measure vehicle counts. Additionally,

this method is applicable only to intersections with protected left-turn phases.. The left-turn
volume at phase i (Vilef t) is determined via (Equation 5-2):

Vleft

4 = @ - Occupancy Ratio; - Effective green; - No. of lane

(5-2)
~ Q- (Z Occupancyg ¢, ., + Occupancyy,, ., — D)
Cleft

In this equation, Q represents the saturation flow rate for left-turning vehicles (veh/sec).

Occupancyg g, ., and Occupancyy,, ., denote the occupancy duration during the green and

yellow phases at the left-turn lane (€¢5;), respectively. T! refers to the lost time.

For validation of this approach, this study uses manually collected turning movement data
managed by FDOT. The data records traffic volumes for left-turn, through, right-turn, and U-turn
movements over eight hours, including peak hours, to support signal phase and timing decisions
at most intersections. This study multiplies hourly traffic volume by the cycle length to calculate the
left-turn volume per cycle. This study linearly interpolates missing hours due to recorder breaks and

excludes unobserved hours. We compared this traffic with the traffic obtained through Equation 5-1

150



to find the optimal saturation flow rate and lost time. Figure 5-24 shows optimization results using
observed turning movement data collected by FDOT. This study uses a total of 70,616 cycles for
optimization and observed an RMSE of 6.45 veh per cycle. As a result, this study uses 1,160 veh/hr

for saturation flow rate and O sec for loss time.
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Figure 5-24. Optimization Results of Saturation Flow and Lost Time.
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5.4.1.3. Recommended algorithm

The critical gap and follow-up gap determine the number of vehicles that can safely
complete a left turn, referred to as the allowable left-turn volume (ALV). Let P,?*" represent the
set of gaps during phase i, where Pigap = {91, 92, --,9xr}, the ALV of the opposing left-turn

approach is defined by (Equation 5-3).

critical

g —gap
ALV = Z lgapfollowup t1 (5-3)

Pgap

where | x| is the floor function, which returns the largest integer less than or equal to x.
The critical gap (gap™**) and follow-up gap (gap/°"WP) are set to 4.5 and 2.5 sec, based on
the default values in the HCM 2022. Figure 5-25 shows examples of average ALV per cycle,

aggregated on an hourly basis.
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When the ALV is lower than the left-turn demand, vehicles are exposed to unsafe left-turn
movements, and therefore, the permissive phase should be avoided. This study recommends a
protected left-turn phase when the probability of hours where the ALV falls below the left-turn
demand exceeds 20% within the observed period. The 20% threshold is the sole parameter used in
the algorithm, though practitioners may adjust it based on specific requirements and contextual
factors. Figure 5-26 shows examples of average hourly ALV and left-turn volume of westbound (WB)
and eastbound (EB) of intersection 1500 and 1555. For example, both intersections 1500 and 1555
have higher ALVs than left turn demand during the early morning hours, practitioner may consider

switching to permissive during these hours.
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Figure 5-26. Hourly ALV and Left-turn Volume
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5.4.2. Recommendation Results

Recommendations are made at intersections and times of day when left-turning traffic is
available, and stopbar detectors are available in the opposing approach. In this study, we used data
from turning movement data where they existed, and data from ATSPM where they did not. Figure
5-27 shows examples of ALV probability of hours where the ALV falls below the left-turn demand.
As turning movement observations were conducted from 7:00 to 19:00, the variation in probability
differences by observation time is not significantly different for each intersection.

Recommendation results for other intersections are attached in Table A-4.

SignallD 1500 SignallD 1555
100 1 ~ T Protected hourly, EB
Protected hourly, WB
80 - <+ === Decision Boundary
g
> 60 A .
:':3
2
[=] 40 4 T
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20 +-—b-r————— A ———— o -
0 A 4

Hour Hour

Figure 5-27. Protected Recommendation Examples
Although the configuration of detectors in the intersections examined did not support this
capability, the ATSPM system can estimate accurate left-turn volume when left-lane counting is
available. Alternatively, a cross-product approach leveraging third-party trajectory data can be
used to estimate hourly left-turn volume. These approaches will make these recommendations

available to a wider range of intersections.
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5.5. Pedestrian Recall

At signalized intersections, pedestrian phases can be configured as either recall or push-
button actuated. Pedestrian recall (PR) is a signal control strategy where pedestrian phases are
automatically activated during every cycle without requiring push-button activation. This chapter
presents the algorithm and results for recommending PR at the selected signalized intersections

based on performance measures.
5.5.1. Algorithm

Pedestrian recall (PR) is often implemented during periods of high pedestrian demand. We
analyze pedestrian presence probability at intersections to develop an algorithm that identifies the
most critical hours for each pedestrian phase necessitating PR implementation at selected
signalized intersections. The algorithm applies a three-step process:

e Calculation of Pedestrian Presence Probability: Calculate pedestrian presence

probability using pedestrian activity indicator.

¢ Identification of Critical Hours: Determine the critical hours for PR implementation

based on calculated pedestrian presence probability.

e Pedestrian Recall (PR) Recommendation: Recommend PR implementation for the

identified critical hours of each pedestrian phase.

5.5.1.1. Calculation of Pedestrian Presence Probability

Pedestrian presence probability (Ppp) represents the likelihood that a given signal cycle
will have pedestrian presence. In other words, Ppp is the probability that at least one pedestrian

actuation (button press or detector activation) occurs within a cycle, making it a key measure for
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determining pedestrian demand at intersections. A straightforward method to estimate Ppp is using

the observed proportion of cycles with pedestrian presence (Equation 6-1):

Y. Cycles with Pedestrian Presence per Hour
PP —

6-1
Y. Cycles per Hour 6-1)

While this method provides a direct estimate, it does not account for variability in

pedestrian arrivals across different days or under low pedestrian demand conditions.

To better capture day-to-day variability and overdispersion in pedestrian arrivals, a Beta-
Binomial model was used instead of a simple proportion. The Beta-Binomial approach models
pedestrian presence as a stochastic process, allowing for fluctuations in pedestrian activity across
different time periods. The probability of pedestrian presence per cycle is estimated using the Beta-

Binomial likelihood function (Equation 6-2):

a+ X

Sy 62)

where X is the number of cycles with pedestrian presence in a given period, N is the total
number of cycles in that period, and («, ) are the shape parameters of the Beta prior, learned from
the data. This formulation ensures that pedestrian presence probability is adjusted for data sparsity

and provides a more robust and reliable estimate.

The pedestrian presence probability was calculated at an hourly level. Morever, to quantify
variability, the 95% confidence intervals were determined using bootstrapping, which involved

resampling the dataset multiple times.
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5.5.1.2. Identification of Critical Hours

The critical hours for PR implementation correspond to periods with high pedestrian
presence probability. However, no predefined threshold exists to differentiate between low and
high pedestrian presence probability. To address this, k-means clustering was applied to the hourly
aggregated pedestrian presence probability data for all the study intersections, naturally grouping

the data into two categories: low probability and high probability.

Critical hours for PR were determined by comparing pedestrian presence probability values

against the centroid of the high-probability cluster. The decision rule is as follows:

o If, for a given hour, the lower bound of the pedestrian presence probability exceeds the
centroid of the high-probability cluster, that hour is considered statistically critical for PR

implementation.

It is important to note that, the threshold will dynamically change as more data and

intersections are added.
5.5.1.3. Pedestrian Recall (PR) Recommendation

PR was recommended for a pedestrian phase during hours identified as critical by

comparing pedestrian presence probability with the centroid of the high-probability cluster.
5.5.2. Recommendation Results

Our algorithm was applied to recommend PR across all selected intersections. The
identification of critical hours for a sample intersection, SR436 and Westmonte Drive (Signal ID:

1500), based on pedestrian presence probability (Ppp), are illustrated in Figure 5-28.
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Figure 5-28. Identification of Critical Hours to Recommend PR (Signal ID: 1500)
Figure 5-28(a) presents the clustering results of hourly aggregated pedestrian presence
probability data for all study intersections. The identified threshold for selecting critical hours is
0.13, which corresponds to the centroid of the high-probability cluster. This threshold indicates

that a 13% probability of at least one pedestrian actuation (button press or detector activation)
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within a cycle is considered critical for PR recommendation. Figure 5-28(b) displays the most
critical hours for all pedestrian phases at the SR436 and Westmonte Drive intersection (Signal ID:

1500). PR implementation is required for each phase during its identified critical hours at this

intersection.

The PR recommendations for the intersection at SR436 and Westmonte Drive (Signal ID:

1500) are shown in Figure 5-29.

Phase 2 Phase 6

1500 (W) 1500 (E)

1500 (N) 1500 (S}

Hour of Day Hour of Day
@ PR Not Recommended @ PR Recommended

Figure 5-29. Pedestrian Recall (PR) Recommendations for the Intersection at SR436 and
Westmonte Drive (Signal ID: 1500)

Comprehensive PR recommendations for all selected intersections are summarized in

Table A-6 in A. Appendix.
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5.6. Leading Pedestrian Interval and No Right Turn on Red

A Leading Pedestrian Interval (LPI) is a signal control strategy that provides pedestrians
with a short head start (3-7 seconds) to enter the crosswalk and cross the street before a parallel
green signal for vehicles. This approach reduces potential conflicts between pedestrians and
turning vehicles by allowing pedestrians to establish their presence in the crosswalk before
vehicles begin turning. A No Right Turn on Red (NRTOR) restriction complements an LPI by

prohibiting vehicles from making right-turns during a red light.

LPI and NRTOR primarily aim to enhance pedestrian safety at intersections by minimizing
the risk of pedestrian-vehicle conflicts. In this chapter, we present the algorithm and results for
recommending LPI and NRTOR at the selected signalized intersections based on performance

measures.
5.6.1. Algorithm

Leading Pedestrian Interval (LPI) and No Right Turn on Red (NRTOR) are strategies
aimed at reducing pedestrian-vehicle conflicts, particularly at intersections, by mitigating the risk
of collisions involving right-turn vehicles and pedestrians. To recommend LPI and NRTOR
effectively, it is crucial to have a comprehensive understanding of pedestrian-vehicle conflict risks

at intersections.

We propose a three-step framework for recommending LPI and NRTOR at the selected

intersections:

¢ Calculation of Pedestrian-Vehicle (Right-Turn) Conflict Propensity: Calculate conflict

propensity between pedestrian and right-turn vehicles.
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e Identification of Critical Hours: Identify the most critical hours for LPI and NRTOR

implementation using cluster-based thresholding of conflict risk levels.

e LPI and NRTOR Recommendation: Recommend LPI and NRTOR for the identified

critical hours specific to each pedestrian phase.

5.6.1.1. Calculation of Pedestrian-Vehicle (Right-Turn) Conflict Propensity

To calculate pedestrian-vehicle conflict propensity, we analyzed the interaction between
pedestrian and vehicle presence in concurrent pedestrian and vehicle phases at intersections. Our
approach considers pedestrian exposure (duration of pedestrian activity period), and right-turn
vehicle exposure (duration of right-turn vehicle presence within pedestrian activity period). The
pedestrian activity period is defined as the time from the first push-button activation to the end of
the pedestrian “Clearance” interval. Our algorithm for calculating pedestrian-vehicle conflict

propensity can be mathematically expressed as (Equation 7-1):

CPp_yy = Z mAd}' % (1 _ e—ka(Pexp,Vexp,g)) (7-1)
?

Notions & Definitions:

e (Pp_y: Represents the pedestrian-vehicle (right-turn) conflict propensity for a given
concurrent pedestrian phase P and vehicle phase V. The propensity score ranges between
0 and 1, where values closer to 1 indicate a higher propensity of conflict, while values

closer to 0 represent a lower propensity.
e ?: Denotes each lane within vehicle phase V that has right-turn vehicles.
e W,: Assumed lane-specific weights based on the contribution of right-turn vehicles:
W, = 1: Lanes dedicated to right-turns.

W, = 0.5: Lanes shared between right-turn and either through or left-turn vehicles.
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W, = 0.33: Lanes shared between right-turn and two other movements (e.g., left and

through).

. I/l//ldj (: W, X ZLVT;) Adjusted lane weight, ensuring each lane maintains its intrinsic
LW

weight while being distributed proportionally across multiple lanes.
e P,y Pedestrian exposure in pedestrian phase P is defined as the time interval from the

first push-button activation to the end of the pedestrian “Clearance” interval.

®  Vexp,e: Vehicle exposure in lane ¢ of vehicle phase V' (concurrent to pedestrian phase P),
defined as the duration a vehicle remains at the stopbar in lane € during the pedestrian

activity period (Pexp).

e H (Pexp,Vexp,[): The harmonic mean of pedestrian exposure P, and vehicle exposure

Vexp,¢» €nsuring a balanced contribution:

2X(PexpXVexp,e)

, if P,,>00rV >0
e H (Pexp,Vexp,{,) =1 PexptVexpys f Fexy exp,t

0, else

e k: A constant decay controlling the diminishing returns applied to the interaction between
pedestrian and vehicle presence. Higher values of k result in faster diminishing returns.
Diminishing returns were used to account for the decreasing marginal impact of high
pedestrian and vehicle exposure levels on conflict propensity, ensuring that extreme
activity values do not disproportionately inflate the calculated propensity.

The pedestrian-vehicle conflict propensity was calculated at an hourly level. Morever, to

quantify variability, the 95% confidence intervals were determined using bootstrapping, which

involved resampling the dataset multiple times.
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5.6.1.2. Identification of Critical Hour

LPI and NRTOR are complementary strategies designed to reduce pedestrian-vehicle
conflicts, and are often implemented simultaneously. However, there is no universally defined
threshold of conflict propensity for determining the critical hours requiring their implementation.
To establish a practical and simple decision criterion, we assume a 50th percentile threshold for

pedestrian-vehicle conflict propensity. The decision rule is:

e A specific hour is classified as statistically critical for LPI and NRTOR implementation if
the lower bound of its pedestrian-vehicle conflict propensity score exceeds the 50th

percentile.

It is important to note that practitioners can adjust this threshold based on specific

requirements and contextual considerations.
5.6.2. Recommendation Results

Due to limitations in detector configurations, our algorithm for recommending LPI and
NRTOR was applied exclusively to intersections with Type 2 and Type 4 configurations (see

Table A-1). Phases with right-turn lanes lacking detectors were excluded from the analysis.

The pedestrian-vehicle conflict propensity and clustering results for the intersection at
SR436 and Westmonte Drive (Signal ID: 1500) are shown in Figure 5-30. This intersection
includes Type 4 detector configurations on dedicated right-turn lanes for Phase 4 and Phase 8, as
well as on shared right-turn lanes for Phase 2 and Phase 6. The conflict propensity was calculated

using k = 0.01 and compared against a threshold score of 0.5 to identify critical hours.
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Figure 5-30. Identification of Critical Hours to Recommend LPI and NRTOR (Signal ID:
1500)

We recommend LPI and NRTOR based on the analysis of identified critical hours. The
recommendations for the intersection at SR436 and Westmonte Drive (Signal ID: 1500) are
presented in Figure 5-31(a) displays the LPI recommendation status, while Figure 5-31(b)

highlights the NRTOR recommendations.

Phase 2 Phase 6

1500 (W) 1500 (E)

1500 (N) 1500 (S)

A e A H A A A - A A A A A A

Hour of Day Hour of Day
@ LPI Not Recommended @ LPI Recommended

(a) LPI Recommendation
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(b) NRTOR Recommendation

Figure 5-31. LPI and NRTOR Recommendations for the Intersection at SR436 and
Westmonte Drive (Signal ID: 1500)

A comprehensive summary of LPI and NRTOR recommendations for all selected
intersections with Type 2 and Type 4 configurations (Figure 4-5; Table A-1) can be found in
Table A-7 and Table A-8 in A. Appendix, respectively. The pedestrian-vehicle conflict propensity,
which served as the basis for the recommendations across all intersections, was calculated using k

=0.01.

It is important to note that adjusting the value of k will impact the conflict propensity scores:
increasing k will lead to higher scores, whereas decreasing k will result in lower scores. The final

dashboard will have the option to tweak this parameter.

LPI and NRTOR were recommended simultaneously during the critical hours of high
pedestrian-vehicle conflict propensity, i.e., when lower bound of propensity exceeds 50

percentile.

165



CHAPTER 6: System Architecture

In this chapter, we present the development of the Smart Signal Performance Monitor
(SSPM) system. The SSPM system integrates three key components: the Transform—Recommend—
Rank (TRR) server, the database server, and the frontend server. A high-level overview of the
architecture of the SSPM system is depicted in Figure 6-1. This chapter details the role and
architecture of each component, emphasizing how they work together to deliver accurate and

efficient safety recommendations for traffic signal operations.

The system architecture described in this chapter was developed and tested using ATSPM
data collected from 19 study intersections in Seminole County, Florida, for June 2024 (refer to the
Task 3 report for additional details). Once fully deployed, the system is expected to automatically
scrape, process, and analyze SunStore data and deliver actionable safety recommendations to
FDOT operators to support safer and more efficient traffic operations at intersections throughout

Seminole County, Florida.
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6.1. Transform—Recommend—Rank (TRR) Server

As the name suggests, the TRR server comprises three core modules, as shown in Figure

6-2: (1) the transform module, (2) the recommend module, and (3) the rank module.

TRR Server
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Figure 6-2. Architecture of the Transform—Recommend—Rank (TRR) Server

6.1.1. Transform Module

The transform module is the central component of the TRR server, as the accuracy and
reliability of the recommend and rank modules depend heavily on it. This module processes raw
ATSPM data, performs data quality checks, and transforms clean, error-free data into cycle-level
performance measures, including Signal Phasing and Timing (SPaT), volume, occupancy,
headway, split failures, vehicle-vehicle conflicts, red-light violations, pedestrian activity indicators,

pedestrian delay, and pedestrian-vehicle conflict propensity.
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6.1.2. Recommend Module

The recommend module applies the signal safety enhancement algorithms developed in
Task 3. Using statistical and machine learning models, such as the Beta-Binomial model, Causal
Forest, and XGBoost, this module processes performance measures produced by the transform
module to generate specific safety recommendations. These include interventions like Yellow and
Red Clearance Time Adjustment, Protected/Permitted Left Turn, Pedestrian Recall, Leading

Pedestrian Intervals (LPI), and No Right Turn on Red, as specified in the project scope.

Most recommendations are generated using a binary classification framework (0 or 1) to
indicate whether a specific safety treatment is warranted. However, the module provides a
quantitative duration recommendation instead of a binary output for Yellow and Red Clearance
Time Adjustments. A summary of the performance measures used, the analytical methods applied,
and the corresponding type of recommendation is provided in Table 6-1. All recommendations
are computed at three temporal resolutions (15-minute, 30-minute, and 1-hour) for each study
intersection. Since real-time ATSPM data was not available during development, this module
performed batch-level analysis on historical data over a defined period. This ensured the statistical

validity and reliability of the generated recommendations.

6.1.3. Rank Module

The rank module ranks all study intersections based on a unified safety score derived from
multiple standardized performance measures (vehicle-vehicle conflicts, red light violations, and
pedestrian delay) at the cycle-level resolution. Given that intersections may have varying numbers
of phases (left-turn or through movements), the module applies a normalization and aggregation

strategy to ensure fair and meaningful comparisons.
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Table 6-1. Summary of Performance Measures, Methods, and Recommendation Types in the Recommend Module

Safety Metric Key Performance Measures Method Recommendation Type
Yellow Time Adjustment Volume, Occupancy, Gap, Split Continuous (Duration in Sec)
Failure, Red Light Running, Causal Forest + XGBoost

Red Clearance Time
Adjustment

Pedestrian Delay

Continuous (Duration in Sec)

Protected/Permitted Left Turn

Occupancy, Gap

Binary (0 = Not Recommended,
1 = Recommend)

Pedestrian Recall

Pedestrian Activity

Bayesian Beta-Binomial

Binary (0 = Not Recommended,
1 = Recommend)

Leading Pedestrian Interval
(LPD)

No Right Turn on Red

Occupancy, Pedestrian Activity

Bootstrapping +
Threshold-Based

Binary (0 = Not Recommended,
1 = Recommend)
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Safety Score Computation Steps:

To ensure fair comparison across intersections, especially when they have varying numbers
of approaches and phases, raw performance measure values are normalized using a robust,
distribution-based method. The normalization approach differs based on the type of performance

measures: continuous-valued or binary indicator.
Continuous-Valued Features (e.g., Conflicts, Pedestrian Delay)

For continuous measures such as vehicle-vehicle conflicts and pedestrian delay, a global
reference distribution is constructed using values collected from all study intersections across all
signal cycles. In the current implementation, this reference distribution is derived from the
transformed features generated by the transform module for June 2024. As more data becomes
available, the global distribution is dynamically updated to reflect the expanded dataset, ensuring

long-term consistency and fairness in scoring.

From this global distribution, the 95th percentile (Pg5) is computed for each measure m.
This value serves as a robust threshold that limits the influence of outliers and ensures that all
normalized values fall within the[0, 1] range. The normalization rule is:

xM™(i,j,¢)
(m) o

. , if x(i,j,c) <P
Xnorm (i, j,€) =1 p™ ”

(2-1)

1, else

where x ™ (i,, ) is the raw value for measure m, intersection i, phase j, and cycle c. Pg(sm ) is the
global 95th percentile for measure m. This method avoids local biases (e.g., cycle-based

normalization) and creates a globally fair, outlier-resistant safety scale.
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Binary Indicator Features (e.g., Red Light Running Flag)

For binary-valued features such as red-light running, percentile-based normalization is not
applicable. Since values are already bounded in {0, 1}, they are already normalized by definition,

and are passed directly to the aggregation step (Step 2) without any transformation.

Aggregation Across Phases per Cycle: After normalization, normalized scores across all
phases within each intersection and cycle was aggregated to obtain a single per-measure score for

each intersection per cycle. The default aggregation function is the arithmetic mean:

N;
(m) 1 m (2-
Ml’ (C) = ﬁz xnorm(’v]: C)
ti=1 2)

where Mi(m)(c) is the score for measure m at intersection i, cycle c, and N; is the number

of active phases at intersection i.

Composite Safety Score Calculation: A composite safety score was computed for each
intersection and cycle as a weighted sum of the individual per-measure scores. The weights are

derived from expert judgment and reflect the relative importance of each safety indicator:

(2-
Si(c) = wy - Ci(c) + wy - Ri(c) + w3 - Pi(c)
3)

where C; is the normalized vehicle-vehicle conflict score, R; is the normalized red-light
violation score, and P; is normalized the pedestrian delay score. wy, w,, and ws are the weights

derived from expert judgment (w; = 0.5, w, = 0.3, w3 = 0.2).
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Time Interval-Based Aggregation and Ranking: To provide dynamic, time-aware safety
assessments, cycle-level composite scores are aggregated over rolling time intervals of 15 minutes,

30 minutes, and 60 minutes:

1
Si(T) = N_z S;(c)
Tcer 4)

where T is the aggregation interval (e.g., 15-min window). N is the number of cycles
within interval T. These interval-based scores are used by the Rank module to continuously rank
intersections based on their safety performance, enabling proactive safety monitoring and targeted

interventions.

6.2. Database Server

The architecture of the database server is illustrated in Figure 6-3. This server is
responsible for storing the transformed performance measures, safety recommendations, and
intersection rankings (based on safety scores) generated by the various modules of the TRR server.
By centralizing these outputs, the database ensures that all system results are readily accessible for

both immediate use and in-depth analysis.

The database server maintains a comprehensive archive of TRR server outputs for June
2024 on data collected from 19 study intersections (refer to the Task 3 report for details). This
dataset was used to demonstrate performance measure trends, visualize the six safety

recommendations in Table 6-1, and generate intersection rankings in the frontend server.
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Figure 6-3. The architecture of Database Server

6.2.1. API Endpoints and Data Access

To enable seamless communication between the backend system and the operator-facing
dashboard, a modular set of RESTful Application Programming Interfaces (APIs) has been
implemented. These APIs support dynamic querying of data aggregated at different temporal
resolutions (e.g., cycle, 15-min, 30-min, 60-min) and filtered by signal, feature type, and other

relevant metadata. The current API endpoints are organized into three categories:

. Performance Measure APIs
. Safety Metric Recommendation APIs
. Safety Ranking APIs

All API endpoints are organized under three primary namespaces: /api/measures,

/api/recommendation, and /api/ranking.
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Performance Measures API: /api/measures

This endpoint retrieves performance measure data for a specified intersection (signalID)
at a user-selected aggregation level. Aggregations supported include: “Cycle”, *15 min”, “30

min”, and Y60 min”.

(1) Required Query Parameters:

Parameter Type | Description

signallID String | ID of the signalized intersection (e.g., “1500”)

99 ¢¢ 99 ¢¢

featureName | String | Feature name (e.g., “volume,” “conflict,

gap”)

aggregation | String | Temporal aggregation level (e.g., “Cycle,” “15 min,” “30 min”)

startDate String | ISO 8601 format timestamp (e.g., “2024-06-01T10:00:00Z)

endDate String | ISO 8601 format timestamp (e.g., “2024-06-01T11:00:00Z)

Timestamps must be in ISO 8601 format (YyyY-MM-DDTHH:mm:ssz) and should match

UTC (Z = Zulu time). Internally, timestamps are stored in UTC.
(2) Example Request:

/api/measure?signaliD=1500&featureName=volume&interval=15min&startDate

=2024-06-01T10:00:00Z&endDate=2024-06-01T11:00:002

(3) Sample Response (JSON):

" id": "67£5182565da%82782157479",
“signalID”: “1500”,

“feature”: “greenVolumePhasell”,
“featureName”: “volume”,

“cycleLength”: 194.36,
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“value”: 5,
"signalType": "green",
“laneType”: “L”,

“phaseNo”: 1,

“timeStamp”:

“2024-06-01T10:00:00.0002",

“day”: 1,
“month”: 6,
“year”: 2024
}
]
(4) Response Attribute:
Field Type Description
_id String MongoDB object ID
signallD String ID of the intersection
feature String Internally generated feature key
featureName String Human-readable feature label (e.g., “volume”)
cyclelength Number Cycle duration (only for “Cycle” level)
value Number Extracted @etric value for cycle-lev.el data only. 'If value is
present, min, max, mean, and std will not be available.
min Number
mnax Number Minimum, maximum, average, and standard deviation of
the metric across the aggregation window. If min, max,
mean Number | 1yean and std are present, value will not be available.
std Number
signalType String Signal phase type (“green”, “yellow”, etc.)
laneType String Lane identifier (“L” for left, “T” for through, etc.)
phaseNo Integer Signal phase number
timeStamp ISO Date | UTC timestamp for the observation
day/month/year | Integer Redundant date components for indexing and filtering
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Safety Metric Recommendation API: /api/recommendation

This endpoint retrieves safety metric recommendation data for a given intersection
(signallD) and safety metric (Yellow and Red Clearance Time Adjustment, Protected/Permitted
Left Turn, Pedestrin Recall, Leading Pedestrian Intervals (LPI), and No Right Turn on Red) at a
selected aggregation level. Supported aggregations include: “15 min”, “30 min”, and “60 min”.
This API returns probability-based outputs, statistical bounds, and binary recommendation flags

for safety interventions.

(1) Required Query Parameters:

Parameter Type Description

signallD String | ID of the signalized intersection (e.g., “15007)

featureName | Stri Name of the safety feature (e.g., “pedestrianPresenceProbability”,
rin . .
& “conflictPropensity”)

aggregation | String | Aggregation level: “15”, “30”, or “60”

year Number | Year of data (e.g., 2024)

month Number | Month of data (e.g., 6 for June)

The system currently uses month-level batch recommendations. All entries retrieved will

correspond to the selected signallD, featureName, aggregation, year, and month.
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(2) Example Request:

/api/recommendation?signalID=1500&featureName=pedestrianPresenceProbab

ility&interval=15&year=2024&month=6

(3) Sample Response (JSON):

" id": "6678babc2f7d938f4f5el2cc",
“signalID”: “15007,

“feature”: “pedestrianPresenceProbability”,
“phaseNo”: 3,

“year”: 2024,

“month”: 6,

“time”: “10:007,

“alpha”: 3.12,

“beta”: 5.88,

“probability”: 0.348,
“lowerBound”: 0.21,

“upperBound”: 0.51,

“threshold”: 0.30,

“recommend”: 1,
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(4) Response Attributes:

Field Type Description
_id String | MongoDB object ID
signallD String | ID of the intersection
. Internal name of the feature used for modeling (e.g.,

feature String . .

pedestrianPresenceProbability)
phaseNo Integer | Signal phase number
year Integer | Year of the recommendation data
month Integer | Month of the recommendation data
time String | Time in HH:mm format representing the hour block (e.g., “10:00”)
alpha Number | Estimated o parameter (for Beta model) or statistical posterior
beta Number | Estimated f parameter (for Beta model) or statistical posterior
probability | Number Estlmated probability of safety event (e.g., pedestrian presence,

conflict occurrence)
lowerBound | Number | Lower bound of the confidence interval (e.g., 95%)
upperBound | Number | Upper bound of the confidence interval
threshold Number | Decision threshold used to determine recommendation

Binary recommendation (1 = treatment warranted, 0 = no
recommend Integer

treatment)

Optional decay constant (used in conflictPropensity-related
k Number P y ( . P Y

features only); null otherwise

Safety Ranking API: /api/ranking

This endpoint retrieves intersection-level safety rankings derived from aggregated
performance measures. The ranking algorithm integrates multiple indicators (e.g., vehicle-vehicle
conflicts, red-light violations, and pedestrian delay) to generate a unified safety score for each

intersection over a specified time frame.
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(1) Required Query Parameters:

Parameter

Type

Description

aggregation | String

Aggregation level (e.g., *15”, 30", *60”). Determines the
resolution of score computation

startDate String

ISO 8601 formatted timestamp indicating the beginning of the time
window (e.g., *2024-06-01T00:00:002")

endDate

String

ISO 8601 formatted timestamp indicating the end of the time
window (e.g., “2024-06-30T23:59:592")

weightLabel Suﬁ@

Dash-separated weights for conflict, red-light running, and
pedestrian delay (e.g., “0.5-0.3-0.2"). The weights must sum to
1.

(2) Example Request:

api/rank?interval=60&startDate=2024-06-01T00:00:00Z&endDate=2024-06-

30T23:59:59Z&weightLabel=0.5-0.3-0.2

(3) Sample Response (JSON):

" id": "6817a854261e032aa67b4683",
“weightLabel”: “0.5-0.3-0.2",
“timeStamp”: “2024-06-01T00:00:00.0002",

“signalID”:

\\1707",

“conflictScore”: 0.27314814814814814,
"runningFlagScore": 0.09523809523809523,

“pedestrianDelayScore”: 1,

“conflictWeight”: 0.5,

"runningFlagWeight": 0.3,

“pedestrianDelayWeight”: 0.2,
“safetyScore”: 0.36514550264550266,
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“year”: 2024,
“month”: 6,

“day”: 1,

(4) Response Attributes:

Field Type Description

_id String | MongoDB object ID

signallID String | ID of the signalized intersection

weightLabel String Combination of weights used for computing
safetyScore

li fli re (e.g., vehicle-vehicle

conflictScore Number Norrga ized conflict score (e.g., vehicle-vehic
conflicts)

runningFlagScore Number Scor§ based on red-light running frequency or
severity

pedestrianDelayScore | Number | Normalized pedestrian delay score

conflictWeight Number | Weight applied to the conflict score

runningFlagWeight Number | Weight applied to the red-light running score

pedestrianDelayWeight | Number | Weight applied to the pedestrian delay score
Final weighted safety score computed as:
(conflictWeight x conflictScore) +

safetyScore Number | (runningFlagWeight x runningFlagScore)
+ (pedestrianDelayWeight x
pedestrianDelayScore)
Rank among all intersections (1 = highest safet

rank Integer g ( & Y
score)

. ISO .
timeStamp UTC timestamp for the record
Date
year, month, day Integer | Redundant date fields for filtering and indexing
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6.2.2. API Endpoints Accessibility

The current setup is hosted on a local development server, and the API endpoints are

accessible only from the host machine (e.g., http://127.0.0.1:2500).

When the backend is deployed on a cloud environment (e.g., an AWS EC2 instance) or an
external server (e.g., FDOT infrastructure), the base IP address (or domain) in all API requests

should be updated accordingly. The table below provides examples:

Environment API Base URL Example

Local Testing http://127.0.0.1:2500/api/...

AWS Deployment http://<aws-ec2-ip>:2500/api/...
FDOT Server http://<fdot-server-ip>:2500/api/...

6.3. Frontend Server

The frontend server is carefully designed to facilitate interaction between FDOT operators
and the safety analytics system. Built with a modern component-based architecture in React, the
interface enables seamless querying and visualization of data for safety interventions and
intersection rankings. The interface is organized into two main webpages to support its dual
function: 1) Recommendation View and 2) Rank View, each aligned with a specific backend
module. These pages integrate intuitive selectors, visual displays, and responsive elements to

deliver a highly usable and analytically powerful dashboard experience.

The frontend server is designed with a user-friendly interface that allows operators to
effectively monitor intersection performance and identify critical locations. It supports decision-

making on whether safety interventions are needed. The interface is divided into two main views:
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(1) Recommendation View and (2) Rank View, each serving a distinct purpose aligned with the

scope of this project.

6.3.1. Recommendation View

The Recommendation View serves as an interactive and analytical interface where users
can examine safety-related performance trends and system-generated recommendations for
improving traffic signal operations. Designed to support data-driven decision-making, this view
combines high-resolution performance metrics and model-informed recommendations into an
accessible dashboard framework. The Recommendation View is composed of two main

components: Measure Dashboard and Recommendation Dashboard.

Interface Overview and Signal Selection

Upon entering the Recommendation View, users are first prompted to select a signalized

intersection of interest. This can be done in one of two ways:

Signal Map View: A spatial interface displays all monitored signal locations on an
interactive map (Figure 6-4(a)). Each cluster of intersections is marked by a green circle
containing the number of signals in that cluster. Users can zoom into a cluster and click on specific
signal markers, indicated by black pins, to load the corresponding dashboards. This spatial layout

is intuitive for users who prefer geographic selection based on area familiarity or regional analysis.

Signal List View: Alternatively, users can view a tabulated list of signals sorted by
Signal 1ID, SIIA 1ID, and Intersection Name (Figure 6-4(b)). This is useful for quick

access to known intersections or when working with specific IDs.
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These dual-selection mechanisms enhance usability, allowing both spatial and ID-based
entry points into the analysis. Users can either click on marker (Signal Map View), or row (Signal
List View) or manually enter a Signal ID in the input field at the bottom and press “Go” to

proceed.

AISPM ¥ 3

Automated Trafic Signal Performance Measures.

Dashboard ¥ Links ¥ FAQ About

Recommendation View

BELCEEN | Signal List

+

. 3 3

Enter Signal ID ‘ Go

= Loaflet | Tllas 1 Esri — Esil. DeLome, NAVTEQ

Recommendation View

Signal ID SHAID Intersection Name
1285 53 SR-434 @ Range Line Rd
SR-434 at Florida Central Pkwy
1300 a4 SR-434 at Grant St
1315 nze SR 434 at North Winter Park Dr
1325 nes SR 434 at Edgemon Ave
1330 180 SR 434 at Moss Rd
1455 1225 SR 436 & Academy Dr / Lake Brantley Rd
1470 620 SR 436 @SR 434
1490 72 SR-436 at Lynchfield Ave / Frances Dr
1500 794 SRA436 @ Westmonte Dr

1290 Go

(b)

Figure 6-4. Top Interface of Recommendation View: Signal Map and Signal List Selection
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6.3.1.1. Measure Dashboard

The Measure Dashboard is one of the major component of the Recommendation View,
purpose-built to support exploratory analysis of signal performance at a fine temporal and spatial
resolution. It offers a comprehensive set of tools that enable transportation engineers, analysts, and
agency staff to investigate traffic patterns, diagnose operational issues, and uncover contributing
factors to signal-level safety concerns. The dashboard is interactive and highly customizable,

supporting various layers of filtering and visual exploration.

After selecting a signalized intersection, users can directly interact with Measure

Dashboard, where they can perform the following actions:

1) Performance Measure Selection (Left Panel)

Displayed on the left sidebar, the system offers a list of Automated Traffic Signal
Performance Measures (ATSPM), covering both traditional traffic operations and advanced
surrogate safety metrics. These include duration, volume, occupancy, split failure, gap, headway,
conflict, red light running, pedestrian activity indicator, pedestrian delay, and pedestrian-vehicle
(right-turn) conflict propensity. These measures can be individually selected depending on the

user’s objective. For instance, to analyze recurring pedestrian delays or frequent near-misses.

2) Date and Time Range Selection

In the center panel (Figure 6-5), users are presented with date-time pickers to define a
specific analysis window. Start and End fields allow minute-level granularity, supporting both
short-term (e.g., peak hour) and long-term (e.g., full day, week) analysis. This flexibility enables:

¢ Focused investigation during complaint periods or special events
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e Comparison of before-and-after conditions due to signal timing changes
¢ Routine monitoring of daily performance

3) Time Interval Level Selection

To support varying levels of detail, the dashboard offers four interval intervals: cycle (most
granular), 15-minute, 30-minute, and 60-minute (Figure 6-5). Once selected, users must press the
“Confirm” button to proceed. This step ensures that the backend appropriately aggregates raw data

before visual rendering.

Interval level significantly impacts trend clarity. For example: cycle-level is ideal for
observing short-term volatility or event-triggered behaviors. Whereas, hourly or 30-minute levels

are more suited to identifying broad operational trends and daily patterns.

AISPM 2

Automated Trafic Signal Performance Measures.

Dashboard ¥ Links ¥ FAQ About

Performance Measures

Date Range
Duration
Start Date & Time
Volume
Time Interval Level

® Occupancy 06/01/2024 12 0 AM v

Split Failure 15 min 30 min 60 min

Gap End Date & Time

Conflict 06/01/2024 1 59 PM ~

Red Light Running

-
Pedestrian Activity Indicator e clee

Pedestrian Delay

Pedestrian-Vehicle (Right-Turn) Conflict
Propensity

Recommendations

Cuinnartad hu LIE Cmart 2. Cafa Tranennartatinn | ah (Il INC @ET) and Clarida Nanartmant nf Tranenartéatian (ENOT

Figure 6-5. Date Range and Time Interval Selection Panel in Measure Dashboard

4) Contextual Filters: Signal Type, Lane Type, and Phase Number
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To refine the analysis, users are required to specify the signal type, lane type, and phase
number (Figure 6-6). These contextual filters ensure the trendline reflects the exact operating
conditions under analysis. For example, observing occupancy on through lanes during green signal

of phase 2.

AISPM 2

o Traffc Signal a

Dashboard ¥ Links ¥ FAQ About

Performance Measures

Signal Type
Duration

Yellow Red Clerance Red
Volume
® Occupancy
split Failure Lane Type
Gap
Headway L TR R
Conflict
Red Light Running

Phase Number
Pedestrian Activity Indicator
pedsatinsley N IR

Pedestrian-Vehicle (Right-Turn) Conflict
Propensity

Create Chart
Recommendations

Cuinnartad hu LIGE @mart 2. Qafa Trancnartatinn | ah I INE @ET) and Clarida Nanartmant nf Tranenartatian (ENOT

Figure 6-6. Signal Type, Lane Type, and Phase Number Filter Panel in Measure
Dashboard

The availability of the options depends on the selected performance measure and the
detectors’ configuration. For instance, if the user selects the ‘Duration’ measure, the ‘Lane Type’
option will either be disabled or default to ‘N/A,” which, while still selectable, does not influence

the filtering process in this context.
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5) Chart Generation and Visualization

Upon configuring all parameters, the user clicks the “Create Chart” button, triggering
dynamic chart rendering on the lower portion of the page. The generated chart provides a time-
series trendline of the selected performance measure (e.g., occupancy) (Figure 6-7). Key
visualization components include:

e Y-axis: Represents the metric’s value (e.g., seconds of occupancy, vehicle count).

e X-axis: Represents the time progression, labeled with timestamps reflecting the selected

aggregation level and date range.
e Chart Tools: A control panel located in the top-right of the graph offers:

e Zoom In/Out: Allows users to focus on specific time windows.
* Reset View: Resets the chart to the full date range.

* Download Icon: Enables exporting the chart in image format (PNG/SVG) for

documentation or presentation.

Create Chart

Trendline

Occupancy (Sec)
S

»
o
8

2,
=
2:

Time (YYYY-MM-DD HH:MM)

Figure 6-7. Time-Series Trendline of Occupancy (sec) Across Selected Date Range
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The chart is responsive and adjusts its layout based on selected filters. High peaks in the
chart may signal traffic congestion, high pedestrian activity, or safety-critical events such as

frequent phase violations. The flow diagram of Measure Dashboard is depicted in Figure 6-8.

P oo Measure Dashboard

Performance Measures ! Input
Database ' ] Signal ID, Date and Time Range, and Interval :
] P Input :

' Signal Type, Lane Type, Phase No !

Figure 6-8. Workflow of Measure Dashboard

6.3.1.2. Recommendation Dashboard

The Recommendation Dashboard offers a comprehensive and interactive interface for
visualizing safety treatment recommendations derived from statistical and machine learning
models. This module enables transportation operators and analysts to assess when and where
specific interventions are warranted based on underlying traffic and safety conditions. The design
supports side-by-side exploration of multiple treatments, offering both temporal granularity and

operational clarity.
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1) Recommendation Type Selection (Left Panel):

On the left side of the interface, users are presented with a list of six key safety
metrics/treatments. One or more of these options can be selected for visualization: signal
adjustment, protected/permitted left-turn, pedestrian recall, leading pedestrian interval, and no
right-turn on red. This flexible selection feature allows users to focus on a single intervention or

compare multiple treatments concurrently (Figure 6-9).

2) Temporal Controls:

To ensure statistically valid and temporally consistent insights, the dashboard requires the

user to set time-specific parameters (Figure 6-9):

¢ Month and Year: Selected from dropdowns to define the data batch for analysis.

e Time Aggregation Interval: Options include 15-minute, 30-minute, and 60-minute

resolutions. Once an interval is selected, users must press the Confirm button to proceed.

AISPM ¥

Automated Trafic Signal Performance Measure:

Dashboard ¥ Links ¥ FAQ About

Performance Measures

Select Month Interval Level
Recommendations June v 2024 30 min 60 min
Signal Adjustment
Protected/Permitted Left-Turn

Pedestrian Recall

Leading Pedestrian Interval Go

@ No Right-Turn On Red

Figure 6-9. Month and Time Interval Selection Panel (with Multi-Treatment) in

Recommendation Dashboard
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After confirming the interval, a second panel becomes active, allowing users to select
signal phase simultaneously. This is especially useful for intersections with complex signal
configurations. Once these selections are finalized, the “Create Chart” button triggers the

generation of binary timeline visualizations for each selected recommendation.

3) Treatment Visualization

Each selected recommendation, except “Signal Adjustment,” is visualized as a time-series
binary bar chart (Figure 6-10), designed to highlight temporal patterns in treatment necessity. The
structure of the binary charts includes:

o X-axis: Represents the 24-hour daily timeline, segmented according to the selected interval
level (e.g., 15-minute blocks).

e Y-axis: Lists the selected phase numbers.

e Color-coded Segments:

* Red: Indicates that a recommendation is active for that phase and time interval, meaning

the treatment is advised.

* Green: Denotes that no recommendation is necessary for that phase and time period.

This binary visualization approach provides an intuitive and efficient way for users to
identify critical time windows during which interventions are most needed. For example,
consistent “Pedestrian Recall” recommendations during morning hours may signal heavy
pedestrian activity, whereas frequent “No Right-Turn on Red” suggestions during evening periods

may point to vehicular-pedestrian conflict risks at those times.
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Figure 6-10. Binary Timeline Chart Displaying Safety Treatment Recommendations by

Phase and Time Interval

Each chart includes advanced interaction tools similar to those in the MeasureDashboard:

e Zoom: Enables users to focus on a particular time window, such as a critical two-hour

interval during peak traffic.
¢ Reset View: Returns the chart to the full daily timeline.

¢ Download: Allows users to export the current chart as a PNG or SVG image for reporting
or documentation purposes.
These controls enhance usability, ensuring that users can explore the data dynamically

while also generating static visuals for analysis and communication.

4) Multi-Recommendation Display

The interface supports simultaneous visualization of multiple selected recommendation
types. Each selected treatment appears as an individual plot stacked vertically on the dashboard.

This layout facilitates a comparative review of safety interventions across time and signal phases.
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For instance, analysts can observe whether “Protected/Permitted Left Turn” and “Leading
Pedestrian Interval” are advised at overlapping intervals, providing insight into phase-level risk
correlations and operational conflicts. The flow diagram of the Recommendation Dashboard is

depicted in Figure 6-11.

T e e L TR e P TR EE TR EEEEL R, 3 Recommendation Dashboard

Mertric Recommendation ! ; Input
Database ' | Signal ID, Month, and Interval

T ]

Input
Phase No

\ 4

EEEA

Figure 6-11. Workflow of Recommendation Dashboard

6.3.2. Rank View

The Rank View is a comprehensive evaluation interface within the ATSPM dashboard that
enables stakeholders, such as traffic engineers and safety analysts, to assess and prioritize
signalized intersections based on their safety performance. This view integrates several filtering,
scoring, and visualization layers to deliver a dynamically ranked list of intersections, reflecting
their safety risk level for a specified time frame. It is particularly useful for identifying high-risk

intersections where interventions might be necessary.

193



6.3.2.1. Key Functional Components of Rank View

1) Date and Time Filtering (Figure 6-12)

The Rank View begins with a dual-panel configuration interface that allows users to define
the scope of analysis through temporal filters. The Date Range section includes two fields: Start
Date & Time, and End Date & Time. These fields allow users to focus on a specific timeframe.

For instance, one hour, a single day, or a particular operational window (e.g., peak hours).

2) Time Interval Level (Figure 6-12)

Alongside the date filters, users must choose the interval level for safety scoring and
ranking. The available intervals are: 15 minutes, 30 minutes, and 60 minutes. This selection
determines the granularity at which safety scores will be computed and ranked. For example, if
“30 min” is selected and the date range covers two hours, then the dashboard will return four
separate ranking tables, one for each half-hour block. Users can confirm the interval to finalize

their settings.

3) Weight Customization for Safety Scoring (Figure 6-12)

An essential feature of the Rank View is the ability to assign custom weights to each of the
three performance components that feed into the safety score: vehicle-vehicle conflict score, red

light running (rlr) score, and pedestrian delay score.

The weight sliders allow users to dynamically adjust the relative importance of each safety
metric. For instance, if pedestrian safety is a higher concern for a particular study, the analyst can

assign a higher weight to Pedestrian Delay. A validation mechanism ensures that the weights sum
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to exactly 1.0 before allowing further progression. This flexible weighting system supports a broad

spectrum of use cases, including:

e Prioritizing vehicle conflicts in high-volume corridors
e Targeting pedestrian safety in school zones

e Assessing red-light violations at signalized intersections

Once the user confirms the weights, the safety score is calculated using a weighted average

of the three metrics, and the dashboard is ready to generate rankings.

AISPM

ucr
inutomated Traffc Signal Perfermancs
Dashboard ¥ Links ¥ FAQ About
Rank View
Time Interval Level
Date Range
Start Date & Time
06/01/2024 10 : 00 AM ¥
Risk Weights
End Date & Time
Vehicle-Vehicle Conflict Red Light Running Pedestrian Delay
06/01/2024 1 59 AM v
05 < 03 ¢ 0.2

Generate Rank

Figure 6-12. Rank View Configuration Panel
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4) Generating and Viewing Safety Rankings (Figure 6-13)

Upon pressing the “Generate Rank™ button, the dashboard fetches safety score data and
displays the output in the form of a ranked table. Each table corresponds to a single time interval

and is structured as follows:

Rank Signal Intersection Conflict RLR Ped Delay Safety
an
ID Name Score Score Score Score

Each intersection is assigned a rank based on its overall safety score: the higher the score,
the higher the risk, and thus the lower (better) the rank number. Rank 1 indicates the highest-risk

intersection.

5) Color-Coded Risk Categories (Figure 6-13)
To enhance interpretability, the rows in the table are color-coded based on the safety score:
¢ Red (= 0.6): High-risk intersections
e Yellow (0.4-0.6): Moderate-risk intersections

e Green (< 0.4): Safe intersections

This visual encoding allows users to immediately identify locations that require urgent
attention. For example, an intersection ranked first with a score of 0.65 would be highlighted in

red, drawing attention to its critical safety need.
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6) Pagination for Multi-Interval Visualization (Figure 6-13)

If the selected time window includes multiple time intervals, each interval is scored and
visualized independently, and separate tables are generated for each. The user can toggle between
intervals using pagination controls at the bottom of the page:

e Previous and Next buttons

¢ An indication of the current interval position, such as “Interval 1 of 4”

This design ensures that safety trends are not averaged across long timeframes, which can
obscure short-duration risks. Instead, each interval gets a dedicated table that maintains temporal

resolution and makes it easy to pinpoint when certain intersections pose the highest risk.

6/1/2024, 10:00:00 AM — 6/1/2024, 10:30:00 AM

Score = 0.6 (High Risk) 0.4 = Score < 0.6 (Moderate) Score < 0.4 (Safe)

Rank Signal ID Intersection Name Contlict Score RLR Score Ped Delay Score Safety Score
1 1480 SR-436 at Lynchfield Ave / Frances Dr 0.597 0.290 0174 0420
2 1780 SR 426 & SR 417 SB Ramp 0712 0.031 0.000 0.365
3 2665 Howell Branch Rd at Plaza Entrance (Butler) 029 0.389 0339 0330
4 1455 SR 436 & Academy Dr / Lake Brantley Rd 0.433 0160 0.251 0315
5 1500 SR436 @ Westmonte Dr 0.305 0.357 0173 0294
L] 1795 SR 426 & SR 417 NB Ramp 0.260 0.361 0127 0264
7 1555 SR-436 / Semoran Blvd { Altamonte Dr at CR-427 / Maitland Ave 0.437 0.078 0.086 0.259
8 1707 SR 46 & Mellonville Ave 0158 0345 0173 0217
El 1280 SR-434 at Florida Central Pkwy 0.351 0.076 0.000 0198
1 1470 SR436 @SR 434 0.249 0.092 0169 0186
n 1315 SR 434 at North Winter Park Dr 0.263 0138 0052 0183

« Interval 1of 4 Next

Supported bv UCF Smart & Safe Transportation Lab (UCF SST) and Florida Denartment of Transoortation (FDOT)

Figure 6-13. Interval-Based Safety Ranking Table with Color-coded Risk Classifications
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The flow diagram of Rank View is presented in Figure 6-14.

Rank View
Intersection Ranking ; Input
Database ' ' Date and Time Range, Interval, Risk Weights

A4

Figure 6-14. Workflow of Rank View
The current version of the dashboard was developed in alignment with the project’s original
scope, which specifically required the implementation of recommendation visualizations and
intersection risk-based rankings. Performance measure trend analysis was added as a value-added
feature to support exploratory insights. Additional modules, such as the Purdue Coordination
Diagram, Purdue Split Failure Diagram, distribution plots of performance measures, and a
comprehensive summary of all measures and metrics, will be incorporated before the final project

submission to FDOT.
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6.4. Summary

The prototype demonstrates a data pipeline by combining the Transform—Recommend—
Rank server, the database server, and the React-based dashboard. It moves from raw ATSPM
ingestion and quality verification through statistical modeling to a composite safety score that
ranks intersections by risk. This end-to-end pipeline was tested using data from June 2024 at 19
locations. It can deliver recommendations at 15-minute, 30-minute, and 60-minute intervals. The
system offers a roadmap for pilot and full-scale deployment. FDOT practitioners can test the
prototype at 19 intersections to compare suggestions between intersections using various

recommendation parameters.

A few limitations remain that need to be resolved before the broad application. The
prototype relies on historical batch data rather than live feeds. Moving to live ATSPM feeds and
migrating processing to AWS will support much larger data volumes in a secure, scalable
environment. The composite risk-score weights reflect expert judgment and may require
calibration for different regions. In addition, additional features may be required in the dashboard
to make it more user-friendly. The next steps involve migrating the prototype to AWS and setting
up ongoing performance checks with regular recalibration of the scoring weights. Integrating this
safety-performance platform into the statewide traffic operations framework will enable fully
automated signal calibrations and decision support that maintain proactive safety management

rather than reactive.
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CHAPTER 7: Conclusion

This report outlines the development of the Smart Signal Performance Monitor (SSPM)
system, a comprehensive tool that predicts safety opportunities and provides actionable
recommendations for traffic signal operations by leveraging Automated Traffic Signal
Performance Measures (ATSPM). The primary objective of the SSPM system is to enhance safety

at signalized intersections in Florida's District 5 through proactive traffic management.

The system's foundation is based on the utilization of ATSPM data, which encompasses
detector configuration from the Normalized Operational Equipment Management Initiative
(NOEMI) and controller event logs from SunStore. A critical aspect of the development involved
meticulous data collection, processing, and quality assurance, including the implementation of an
Event Sequence Quality Checker (ESQC) to ensure data reliability and accuracy. Raw ATSPM
data were transformed into cycle-level performance measures, including Signal Phasing and
Timing (SPaT), vehicle volume, occupancy, headway, traffic conflicts, red-light running (RLR)

incidents, and pedestrian activity and delay.

Building upon these performance measures, sophisticated algorithms were developed to
generate specific safety recommendations. These include adjustments to yellow and red clearance
times, informed by causal forest models, which demonstrated a potential reduction in conflict rates
of up to 7%. The determination of protected versus permitted left-turn phasing was based on gap
analysis and estimations of left-turn volume. Pedestrian recall strategies were recommended using
pedestrian presence probability calculated via a Beta-Binomial model. Furthermore,
recommendations for Leading Pedestrian Intervals (LPI) and No Right Turn on Red (NRTOR)

were derived from assessments of pedestrian-vehicle conflict propensity. The SSPM system
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architecture integrates a Transform—Recommend—Rank (TRR) server, a database server, and a

user-friendly frontend server, enabling FDOT operators to utilize the system's outputs effectively.

Key findings from this work include the successful development of a prototype system that
not only processes and analyzes ATSPM data but also provides ranked intersection safety scores
and specific intervention strategies. The study also identified and addressed challenges, including

abnormalities in detector configuration data from NOEMI and initial data quality issues.

Despite the significant advancements, the current study has limitations. The prototype
relies on historical batch data from June 2024 for 19 selected intersections in Seminole County
rather than live ATSPM feeds. Additionally, the weights used for the composite safety scores are

currently based on expert judgment and may require calibration for broader applicability.

Future work will focus on migrating the SSPM prototype to a cloud environment to
enhance scalability and enable the processing of live ATSPM data. This will involve establishing
ongoing performance checks and implementing regular recalibration of the safety scoring weights.
Further enhancements to the dashboard are also envisioned to improve user-friendliness and
incorporate additional analytical modules, such as the Purdue Coordination Diagram and Purdue

Split Failure Diagram.

In essence, the SSPM system represents a significant step towards data-driven, proactive
traffic safety management. By providing robust analytical capabilities and actionable insights, the
system empowers traffic operators to make more informed decisions, ultimately contributing to

safer and more efficient traffic operations at signalized intersections across Florida.
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A. Appendix

Table A-1. Summary of Detector Configuration Per Intersection

Detector Configuration Type (per Figure 4-5)

Signal | Approach Approach
s ‘Through’ Phase ‘Left-Turn’ Phase
ID Type Direction
‘Through’ Lane ‘Right-Turn’ Lane ‘Shared’ Lane ‘Left-Turn’ Lane ‘Shared’ Lane
Mai E 6 2 2
ajor
s ! W 4.6 2 2
Mi N 2 2 2
inor 3 2 3 2
Mai E 6 1 2
1290 - W 6 ! 2
. N 2 2
Minor
S 2 2 2
E 3 3 2
Major W 5 5 >
1300
. N 2 2
Minor
S 2
Mai E 5
T
1315 20 W 2
Minor N 2 2
Mai E 5 2
T
1325 - W > 2
. N 2
Minor
S 2
Mai E 5 1 2
ajor
2
1330 W > >
. N 2 2
Minor
S 2 2
E 5 2
1455 Major
W 5 2
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i N 2
mor
S 2 2
M E 1 1 2
ajor
1o W 1 1 2
1470
i N 5 1 2
mnor S 5.4.2 1 2
e E 4 2 4
1490 o w 4 4 2
. N 2 2
Minor
S 2
E 6 6 4
Major W 6 6 4
1500
. N 4 4 4
Minor
S 4 4 4
Ma NW 4 4 2
T
55 4o SE 4 4 2
i NE 2 2 2
nor SW 2 2
Ma E 4 4
ajor
1707 : W 4 4
i N 2
mor
S 2
NW 5 2
Major
1725 SE > 2
. N 4 2
Minor
S 2 2
E 3.5 1
Maj :
1790 ajor w 5 2
Minor S 1 2
M E 5 2
T
1795 4o w 3.5 1
Minor N 2 2
Ma E 5 1 2
1960 ajor w 5 5 2
Minor N 4 4 2
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S 4 4 2

Major E > 2

2055 W > > 2

Minor N 2 2

S 2 2

Major E 5 2

2485 : W > 2

Minor N 2 2

S 2 2

Major E > 2

2665 W 3 2
Minor N
S
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Table A-2. Summary of Yellow and Red Clearance Phase Duration of Through Phase

Speed Yellow Phase Duration Red Clearance Phase Duration
Signal | Approach | Approach l?l:l?t Intersection Observed* Observed*
ID Type Direction width(ft) TEM Percentile TEM Percentile
(mph) Mean Mean
5% 95% 5% 95%
. E 45 110 4.8 4.93 4.8 6 2.0 3.32 3 6
Major
1285 W 45 102 4.8 4.82 4.8 4.8 2.0 3.1 3 32
. N 20 130 3.0 3.88 2 4.1 52 2.36 2 2.4
Minor
S 35 121 4.0 3.22 2 3.7 2.8 2.36 2 2.5
. E 45 127 4.8 4.94 4.8 6 2.3 3.62 33 6
Major
1290 W 45 130 4.8 4.89 4.8 6 2.3 3.51 33 6
Minor N 35 127 4.0 3.93 2 4.1 2.9 2.92 2 3
S 20 124 3.0 2.88 2 3.8 49 2.24 2 2.5
. E 45 70 4.8 4.8 4.8 4.8 2.0 2 2 2
Major
1300 W 45 60 4.8 4.8 4.8 4.8 2.0 2 2 2
Minor N 20 85 3.0 34 34 34 3.6 2 2 2
S 25 81 34 34 34 3.4 2.8 2 2 2
. E 45 80 4.8 4.8 4.8 4.8 2.0 2 2 2
Major
1315 W 45 93 4.8 4.86 4.8 6 2.0 2.12 2 4
Minor N 25 -
Mai E 45 61 4.8 4.8 4.8 4.8 2.0 2 2 2
1125 aor W 45 65 48 48 48 48 2.0 2 2 2
. N 25 92 34 34 34 34 3.1 2.7 2.7 2.7
Minor
N 25 86 34 34 34 34 2.9 2.7 2.7 2.7
. E 45 83 4.8 4.8 4.8 4.8 2.0 2 2 2
Major
1330 AW 45 87 4.8 4.8 4.8 4.8 2.0 2 2 2
M N 25 82 34 2.9 2 34 2.8 2.32 2 2.5
ot S 25 104 3.4 339 3.4 3.4 3.4 25 25 25
Masor E 45 85 4.8 4.86 4.8 4.8 2.0 2.63 2.5 2.5
1455 J w 45 97 4.8 4.92 4.8 6 2.0 2.76 2.5 5
Minor N 25 117 34 291 2 4 3.8 2.36 2 2.8
S 35 130 4.0 3.31 2 34 3.0 2.84 2 2.9
. E 45 154 4.8 4.92 49 4.9 2.7 4.53 4.5 4.5
1470 1 Major W 45 165 48 492 49 49 28 452 45 45
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Minor N 45 147 48 455 2 49 26 411 2 44
! S 45 148 48 4.49 2 49 26 4.06 2 44
‘ E 45 78 48 5 48 6 2.0 275 23 6
Major
1490 w 45 68 48 493 48 6 2.0 257 23 46
Minor N 25 152 34 34 34 34 47 41 41 41
! S 25 163 34 34 34 34 5.0 41 41 41
‘ E 45 133 48 489 48 6 24 37 35 6
Major
1500 w 45 124 48 4.84 48 48 22 3.59 35 35
. N 30 165 37 323 2 3.7 42 373 2 44
Minor
S 30 164 37 314 2 3.7 42 36 2 44
Mai SE 40 143 44 442 44 44 28 2.94 29 29
155 ajor NW 40 84 44 45 44 6 2.0 3.08 29 58
Minor NE 40 116 44 235 2 34 24 222 2 29
SW 40 116 44 439 44 44 24 23 23 23
. E 40 58 44 44 44 44 2.0 2.01 2 2
Major
1707 w 40 76 44 443 44 44 2.0 2.03 2 2
Minor N 30 80 37 37 37 37 23 2 2 2
S 25 86 34 37 37 37 29 2 2 2
. SE 45 109 48 53 53 53 2.0 2 2 2
Major
125 NW 45 109 48 53 53 53 2.0 2 2 2
. N 45 130 48 53 53 53 23 38 2 45
Minor
S 30 122 37 358 2 42 33 3.01 2 34
Maior E 45 56 48 48 48 48 2.0 29 23 6
1790 J w 45 56 48 49 49 49 2.0 23 23 23
Minor S 25 - -
Maior E 45 67 48 49 49 49 2.0 27 27 27
1795 J W 45 105 48 491 49 49 2.0 278 27 28
Minor N 25 - -
v E 45 116 48 482 48 48 21 286 28 28
T
1060 4o W 45 106 48 485 48 48 2.0 291 28 28
Minor N 45 112 48 452 2 48 2.0 2.63 2 27
S 45 131 48 457 2 48 23 2.64 2 27
Mai E 45 86 48 445 45 45 2.0 223 2 3
2055 ajor w 45 81 48 455 45 6 2.0 238 22 44
Minor N 35 127 40 426 2 45 29 2.02 2 2
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S 35 159 4.0 4.19 2 4.5 35 2.02 2 2
. E 35 78 4.0 4.1 4.1 4.1 2.0 2 2 2
Major
2485 \\% 35 75 4.0 4.1 4.1 4.1 2.0 2 2 2
. N 25 76 34 3.28 2 44 2.7 2 2 2
Minor
S 40 74 44 4.34 4.4 4.4 2.0 2 2 2
Maior E 40 128 44 4.57 4.4 6 2.6 2.66 2.3 4.7
2665 J W 40 100 44 4.46 4.4 4.4 2.1 2.52 24 2.5
. N 25 80 34 34 34 34 2.8 2 2 2
Minor
S 25 77 34 34 34 34 2.7 2 2 2

*Observations were considered errors and excluded if they were less than 2 seconds or more than 6 seconds.
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Table A-3. Summary of Yellow Time Adjustment Recommendations

Signal | Approach | Approach Hour-of-day
ID Type Direction | 0 1 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13 |14 |15 |16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
Major w 01/ 0 {01]01]]02]02]02]02{02(02]02]02]02]02]02]02|02]02]| 0 0 0 0 0 0
1285 E 01/ 0 (01]01]02]02]02]02{02(02]02(02]02]02]02]02|02]02]| 0 0 0 0 0 0
. N
Minor 3
Major w 0 0 0 /01(01]01(02]01]02(02{02(01]01(01]|01]01/01]| 0 0 0 0 0 0 0
1290 E 0 0 0 /01(01]01(02]01]02(02{02(01]01(01]|01]01/01]| 0 0 0 0 0 0 0
. N
Minor 3
Major w 02102(02102]02]02]02|02{02(02]02(02]02]02|02]02(02]02(02]02]02]02]02]0.2
1300 E 02102(02102]02]02]02102{02(02]02(02]02]02|02]02(02]02(02]02]02]02]02]0.2
Minor N
S
Major w 01/01(01)02]02]02]02|02{02(02]02]02]02]02(02]02(02]01(01]0.1]0.1/]02]60.1]060.1
1315 E 01/01(01)02]02]02]02(02{02(02]02]02]02]02(02]02(02]01(01]0.1]0.1/]02]0.1]060.l1
Minor N
Major w 02102(02102]02]02(02|102{02(02]02]02]02]02|02]02(02]02]02]02]02]02]02]0.2
1325 E 02]102(02102(02]02(02|102{02(02]02]02]02]02|02]02(02]02]02]02]02]02]02]0.2
. N
Minor S
Major w 02102(02102]02]02]02102{02(02]02(02]02]02|02]02(02]02(02]02]02]02]02]02
1330 E 02]102(02102(02]02(02|102{02(02]02]02]02]02|02]02|02]02]02]02]02]02]02]0.2
Minor N
S
Major w 0 101(01(01(01(02(02{02(02]02(02|02]02|02]02(0.1]01| 0 0 0 0 0 0 0
1455 E 0 101(01(01(01(02(02{02(02]02(02|02]02|02]02|0.1]01| 0 0 0 0 0 0 0
Minor N
S
Major w 0 (01(01(01(01(01(01]601]01|01}01(01(0.1(01]0.1({01]0.1]01|0.1]0.1[01] 0 0 0
1470 E 0 (01(01(01(01(01(01]601]01|01]01(01(0.1(01]0.1({01]0.1]01|0.1]0.1[01] 0 0 0
Minor N
S
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Major W 0] o0]oJ]o]oJ]oJor[oi]o2[o02]02]02[02]02]02[01]01]0]O0]oO0]O0]o0]oO]oO

1490 E 0] 0]0]0] 0|0/ or]o1]02/02]02][02[02]02]02[01]01] 0 0] 0] 0]o0]O0]oO
Minor N
S

Major W 0] 0 01]02]02[02[02]02[02(02]02]02[02]02]02[02]02]02(02]01] 0] 0] 0]o0

1500 E 00 01]02]02[02[02]02]02[02]02]02[02]02]02[02]02[02(02][01] 0] 0] 0]o0
, N
Minor 3

Major W 04]05]05]06|06|06]06]|06]06]|06]|06]06]06]06]06]|06]06]|06]05]05]04]|04]05]03

lsss E 04]05]05]06|06|06]|06]|06]06]|06]|06]06]06]06]06]|06]06]|06]05]05]04]|04]05]03
. N
Minor 3

Major W 0606|0606 06|06]|06]|06]06|06]|06]06|06]|06]06]06]06]|06]|06]06]06]06]06]06

1707 E 0606|0606 06|06]06]06]06]06]|06]06]06]06]06]|06]06]06]06]06]06]06]06]06
Minor N
S

Major NW | o0lo]ololo]o|lo|lo]ololo]ololo]ololo]o|olo]o]o]o]o

125 SE |o|]o|o|o|o|lo|lo]o]o|lo]olo|lo]o|olo]ololo]o]lo|o]o]o
Minor N
S

. W 01| 0o ] o]o1]lot] o] oo o] o1]o1|or][o1][01|01]01]01]|01]01]01]02]02]02

1790 | Major E 01| 000 o1|o1] 0] 0|00/ 01[01[01][01]01|01]01][01][01]01]01]02]02]02
Minor N

Major W 01]01]01]01]01[01]01][01[01]01]01[01]01]01]01]01]01[01]01]01]01]0.1]01]0.1

1795 E 01]01]01]01]01]01]01]01[01]01]01]01]01]01]01]01]01[01]01]01]01]0.1]01]0.1
Minor N

Major w 01020202 020202 02[0202]02[02]02]02[02[02]02[02]02]02[01]01]01]0.1

1060 E 01]02]02]02]02]0202]02(0202]02[02]02]02[02]02]02[02]02]02[01]01]01]0.1
Minor N
S

Major W 04]04]06]07]06]06]07]06]06]|06]05]07|07]07]05]06]06]|04]04]03]03]02]03]03

2055 E 04]04]06]07]06]06]07]06]06]|06]05]07|07]07]05]06]06]|04]04]03]03]02]03]03
. N
Minor 3

2485 | Major W 09]09[09[09]09[09]09[09[09[09]09[09][09]09][0909]09][09]09]09]09]09]09]09

217




E 09{09({09({09(109]09{09({09(09|09]09]09({09(09|09]09]09[09|09]09[09]09{(0910.9
Minor N
S
Major \\% 04{04[03(04|/05/]06(05[05(05|06]|06]06(06|06|06|06]05(04(02|03]03]04(051/0.4
2665 E 04{04(03(04(05]06{05(05(05|106]|06]06(06|06|06|06]05(04(02|03]03]04(051/0.4
. N
Minor S
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Table A-4. Summary of Red Clearance Time Adjustment Recommendations

Signal | Approach | Approach Hour-of-day (Local Time)
ID Type Direction 0 1 2 3 4 5 6 7 8 9 |10 | 11 |12 | 13 | 14 |15 |16 | 17 | 18 | 19 | 20 | 21 | 22 23
Major W -0.5(-04(-02(-02(-0.1]{ 0 |-0.1|-0.1]-0.1]{-0.1| O 0 0 0 0 0 |-0.1]-0.1|-041-0.7{-0.7|-0.7(-0.8| -0.5
1285 E -0.5(-04(-02(-02(-0.1{ 0 |-0.1|-0.1]-0.1{-0.1| O 0 0 0 0 0 |-0.1]-0.1|-041-0.7{-0.7|-0.7(-0.8| -0.5
: N
Minor S
Major W -1.2(-1.3|-1.1|-0.6|-0.6|-0.4|-04(-04|-04]-04|-04(-04|-04]|-05|-04]-0.5|-0.6(-0.7[-0.7{-0.7|-09(-0.8]-0.8| -1.1
1290 E -1.2(-1.3|-1.1|-0.6|-0.6|-0.4|-04|-04|-04]-04|-04(-04|-04]|-05|-04]-0.5|-0.6(-0.7[-0.7]-0.7|-09(-0.8]-0.8| -1.1
: N
Minor S
Major % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1300 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Minor N
S
Major % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |-0.1(-0.1] O 0 -0.1
1315 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |-0.1(-0.1] O 0 -0.1
Minor N
Major W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1325 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
) N
Minor S
Major w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1330 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Minor N
S
Major w 0 0 0 |01 O 0 0 0 0 0 0 0 0 0 0 0 0 0 |-0.1]-03|-0.1|-0.1] O -0.1
1455 E 0 0 0 |01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |-0.1]-03(|-0.1[-0.1] O -0.1
Minor N
S
Major \% -1.6(-1.5|-1.5|-1.5|-1.5|-1.5|-1.5(-1.5|-1.5|-1.5|-1.5|-1.5|-1.5]|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.6|-1.6| -1.6
1470 E -1.6(-1.5|-1.5|-1.5|-1.5|-1.5|-1.5(-1.5|-1.5|-1.5|-1.5|-1.5|-1.5]|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.5|-1.6|-1.6| -1.6
Minor N
S
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Major W J02[-02[02[01]0]0JO0]oJlo]o]o]oJ]o]OoO]o]O]O]O]/-01]-05][-07]-05]-08] -02
1490 E 02]02(-02[01]l0]o0o]lo]o]lo|o]lo|o|o]|o0o|0O] 0| 0] O0/[01[-05][-07[-05]-08] -02
Minor N
S
Major W |-13]-09[-07]-05[-05]-05[-05]-0.5|-05-0.5]|-05]-0.5]-05-0.5]-05[-0.5]-05]-0.5]-05[-06]-09|-13|-13]| -1.4
1500 E 13]-09(-0.7]-05[-0.5]-05[-0.5]-0.5[-0.5]-0.5]-0.5|-0.5|-0.5]-0.5|-0.5]-05|-0.5|-05|-05]-0.6|-09|-13|-13] -1.4
, N
Minor 3
Major W |02[02[01]0]0o]olo]olo|olo|olo]o|o]o0o]|o0] o0/ 01[-02[02-03-02-04
E 02(02(01]0lo0o]olo]olo]olo|olo]o]lo]o]o]o0/[01][-02[02[-03[-02]-04
1555 . <
Minor S
Major W 0o [ro o oo oo oo [0 oo oo oo 0o o]o]o]o]0]04
1707 E Jo|lo]olo]olo]olo|olo]ololo|olo]lolo|lolo]olo]o|o] o4
Minor N
S
Major NW |o]olo]olo]olo]olo|olo|olo]olololo|olo]|o|o]o0o]|o0o] o
1725 SE |o0]lo|]olo|]oJlo|olo|o|lo|o|olo]olo]olo|o|o]olo]o|o] o
Minor N
S
. W |-01] 0 |-02] 0 o1]o1|-01]-01]-01] 00| o0]lo]olololo]olo]o|o]o] o] o
1790 | Maor E 201] 0 [-02] 0 [01]o1|-01]-01]-01] 00| O0]lO]O0O|O|O|O|]O|O]O|O]|O]| O] O
Minor N
Major W [0 [o[o o oo oo oo [0 o oo oo o ool olofo]0]0
1795 E Jolo]olo]olo]olo|ololololololololo]olo]lolo]o|o] o
Minor N
Major |0 [o[o ool orofo]olofoo]ofofololo]o]o]olooioll0
1060 E |o|lo]o|lo]o|lo]olo|olo|o|lo|o|o]o|]o|o]|o]o0o]o]|o0]-01]01] 0
Minor N
S
Major W0 [0 oo o "o oo [o o [0 oo oo oo ool 0o]00r0]0l
2055 E JoloJoilo]olo]olo|lolo|ololololo|olo|o]o]|o]o]|-01]o0] o1
. N
Minor 3
2485 | Major | W | o0 |O0]o0o]o|olo]o]o]o|]olo|lo|o|o]o|lo|lo]o]o|olo|o]|o]| o
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E 0 ) 0 0 0 0 0
Minor N
S
‘ w 02 0101 0.1 0.1 0 0.1 0.1
Major E 02 0101 0.1 0.1 0 20.1 20.1
2665 . 1]o0. . . . .
Minor N
S
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Table A-5. Summary of Protected Left-Turn Recommendation®

Signal | Approach | Approach Hour of Day (Local Time)
ID Type Direction 2 3 4 5 6 7 8 9 10 | 11 |12 [ 13 |14 |15 |16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
. E 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1
Major
1285 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Minor N 1 1 1 1 1 1 1 1 1 1 1 1 1
! S 1 1 1 1 1 1 1 1 1 1 1 1 1
Maior E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1200 S Y Ll 1|t ]ttt ittt ]ttt ittt ]1]1]1
Mi N 1 1 1 1 1 1 1 1 1 1 1 1 1
ot T g Tt |t 1t |1ttt lt]1]1]1
. E
Major
1300 W
Minor N 1 1 1 1 1 1 1 0 1 1 1 1 1
TS Tl 1t |ttt ittt ]1]i1
Mai E
1315 aor W
Minor N
Major E
jo W
1325
Mi N 1 1 1 1 1 1 1 1 1 1 1 1 1 0
mer g 11 1|11ttt ]ttt ]1]1]o0
. E
Major W
1
330 . N 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Minor
S 1 1 1 1 1 1 1 1 1 1 1 1 1 0
. E
Major W
1455
. N 1 1 1 1 1 1 1 1 1 1 1 1 1
Minor
S 1 1 1 1 1 1 1 1 1 1 1 1 1
Major E
1470 : W
. N 1 1 1 1 1 1 1 1 1 1 1 1 1
Minor 3

222




SE
NwW
NE

SW

SE
NW

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

1490

1500

1555

1707

1725

1790

1795

1960

2055

2485
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Minor

2665

Major

Minor

wn|Z 2 odlnlzls

* :1 indicate a protected left turn recommendation.
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Table A-6. Summary of Pedestrian Recall

Qlo|lo|o|c|oc|clc|c|o|o|o|e|e olo|lo|o|o|o|clo|c|o|o|o|o|o|o|e|e
Qlo|o|o|o|oclo|o|o|o|o|o|o|o olo|o|o|o|olclo|c|o|o|o|o|o|o|e|e
Slelo|o|lo|o|oclolo|o|o|o|o|e olo|lo|o|c|o|oclo|o|o|o|o|o|o|o|o|e
MRS SR EEEEE olo|lo|o|o|olclo|c|o|o|o|o|o|o|e|e
Qlo|lo|o|lo|olo|o|o|o|o|o|o|o olo|lo|o|o|olclo|c|o|o|o|o|o|o|e|e
Llo|lo|lo|lo|o|o|o|o|o|olo|olo olo|lo|o|oc|o|oc|o|o|o|o|o|o|o|—]|—]|o
Clo|lo|lo|lo|o|o|o|o|o|o|o|olo olo|lo|o|oc|o|oclo|o|o|o|o|o|o|—]|o|o
Slo|lo|lo|lo|o|o|o|o|o|o|o|o|o olo|o|o|o|o|c|o|c|o|o|o|o|o|o|e|o
CLic|lo|lo|lo|o|o|o|o|o|o|o|o|o olo|o|o|o|o|clo|c|o|o|o|o|e|~]|—]|o
Jlo|lo|o|o|o|c|o|oc|o|o|o|o|e olo|lo|o|c|o|clo|o|o|o|o|o|o|—]|o |~
H
Sl c|ololo|c|c|o|c|o|o|e|e|e olo|o|o|o|o|c|o|c|o|o|o|o|e|~|o|o
_
S
MHOOOOOOOOOOOOO olo|lo|o|o|o|c|o|c|o|o|o|o|o|o|e|o
N’
yl
MIOOOOOOOOOOOOO olo|lo|o|c|o|clo|o|o|o|o|o|o|o|o|e
.
°
mNOOOOOOOOOOOOO olo|lo|o|c|o|clo|o|o|o|o|o|o|o|—]|o
-
o|o|lo|ojc|lo|o|o|o|o|o|o|o|e olo|lo|o|o|o|c|o|c|o|o|o|o|o|o|e|o
®w|o|lo|ojo|lo|o|o|o|o|o|o|o|e olo|lo|o|c|o|clo|o|o|o|o|o|o|o|o|e
~|o|lo|lo|o|lo|o|o|o|o|o|o|o|e olo|o|o|c|o|clo|o|o|o|o|o|o|o|o|e
olo|o|lojoc|lo|o|o|o|o|o|o|o|e olo|o|o|o|o|c|o|c|o|o|o|o|o|o|e|o
n|o|lolojoc|lo|o|o|o|o|o|o|o|e olo|o|o|o|o|clo|c|o|o|o|o|o|o|eo|o
s |o|o|o|oc|o|oclo|o|o|o|o|o|e olo|lo|o|c|o|clo|o|o|o|o|o|o|o|o|e
njo|o|o|o|o|oclo|o|o|o|o|o|e olo|o|o|c|o|clo|o|o|o|o|o|o|o|o|e
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Minor
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Table A-7. Summary of Leading Pedestrian Interval (k

Hour of Day (Local Time)

23

22

21

20

19

18

17

16

15

14

13

12

11

10

0

Direction

Approach | Approach

Type

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor
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Signal

ID

1285
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1315

1325

1330

1455

1470
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Table A-8. Summary of No Right Turn On Red (k = 0.025)

Hour of Day (Local Time)

9

17 |18 | 19| 20 | 21 | 22 | 23

16

14 | 15

13

12

11

10

8

1

0

Direction

Approach | Approach

Type

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor

Major

Minor
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Signal

ID
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1455
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