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Executive Summary 

As a method to increase friction and minimize hydroplaning potential, the Florida Department 

of Transportation (FDOT) places open-graded friction courses (OGFC) on multilane roadways 

with a design speed of 50 mph or greater (OGFC is called FC-5 in FDOT). While OGFC mixtures 

provide several safety benefits, their lives have been limited to approximately 14 years on average 

compared to nearly 20 years for dense-graded pavements in Florida. The reduced life is generally 

due to raveling, which can rapidly degrade pavement once initiated. In FDOT, a pavement crack 

rating (CR) is a score from 0 to 10 that reflects both the severity and the percent of pavement area 

affected by cracks, raveling, and patching. The subjectivity of estimating the extent and severity 

of raveling and the potential rapid rate of raveling can lead to difficulties in forecasting the life of 

pavements with an OGFC and quick reaction to localized OGFC treatment needs. Also, because 

raveling and patching are rolled up into the CR, it is difficult to distinguish how much of the CR 

is determined by cracking and how much by raveling. Therefore, in this research, the Pavement 

Analytics and Georgia Tech team investigated whether raveling can be assessed in a more detailed 

manner and appropriately accounted for in FDOT’s pavement condition survey rating. The 

research considered survey approaches as well as methodologies to rate and separate raveling that 

can proactively target the raveling-only treatment needs at an early stage before the rapid 

deterioration of OGFC begins. 

In this research, a literature review was conducted on practices of pavement rating computation 

and treatment decisions in FDOT and other state DOTs with a special focus on raveling. Four 

potential needs were identified for improvement in FDOT’s raveling-related practices. First, a 

rating system separating cracking and raveling is needed, which can proactively target the raveling 

treatment needs before rapid deterioration of OGFC sets in. With the separated distress ratings, 
new treatment decision criteria separating cracking and raveling are also needed. In this case, more 

cost-effective treatments (e.g., FC-5 only treatment) can be applied. Second, the in-field visual 

inspection methods for raveling can be error-prone, time-consuming, and labor-intensive. There is 

a need to develop an automated raveling detection and classification method. Third, the appearance 

of raveling on digital images is susceptible to ambient lighting conditions. To overcome this issue, 

using 3D pavement data is a better alternative for capturing pavement surface texture. Finally, a 

fixed raveling survey spatial unit is not defined in FDOT’s current practice, which causes difficulty 

in obtaining precise localization information for raveling. Currently, FDOT’s 3D pavement image 

size is 12 ft (4 m) by 15 ft (5 m) in transverse and longitudinal directions, respectively. With the 

detailed 3D pavement data, a fixed and multiscale survey unit (e.g., 15 ft, 100 ft, 0.1 mile or 1 mile, 

etc.) can be generated with proper data aggregation methods. 

Next, automated raveling detection and severity classification methods were investigated and 

recommended for FDOT. A literature review on existing automated methods was first conducted. 

Traditionally, research efforts on automated raveling detection and classification focused on 

nontrainable methods. These methods utilize nontrainable algorithms to calculate different 

indicators of raveling from the pavement data. However, these methods have several limitations, 

such as requiring certain assumptions about the pavement surface and lacking systematic 

validation and requiring frequent parameter tuning based on empirical experiments. In recent years, 

machine learning (ML) models for automated raveling detection and classification have been 

developed. By utilizing ML techniques to train a more robust model using real-world 3D pavement 

data that performs both raveling detection and classification, Tsai et al. (2021) overcame most of 
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the problems in nontrainable methods. Given its good performance achieved in a systematic 

validation, this ML method is recommended for further investigation. 

Based on the literature review, a feasibility study on using ML models for automated raveling 

severity classification on FDOT’s pavement data was conducted. The ML method in Tsai et al. 

(2021) was applied in the feasibility study, which includes the macrotexture features extracted 

from 3D pavement images and three traditional ML models: the Support Vector Classifier (SVC), 

random forest (RF), and Adaptive Boosting (AdaBoost). The 3D range images that FDOT had 

already collected using the Laser Crack Measurement System (LCMS) were used in this study. 

The raveling severity of each range image was annotated by FDOT engineers as the ground truth 

to train and evaluate the ML models. Through the feasibility study, two important conclusions are 

developed. First, the quality of annotation on raveling severity is critical for improving the 

performance of ML models. We found that all ML models achieved a better performance by 

training with the data that have a better annotation quality of raveling ratings. Second, with the 

provided quantized range images and around 8.5 miles of data, the outcomes of the study show 

that the ML models are feasible for per-image raveling classification on FDOT’s pavement data 

with suitable ML classifiers. RF classification has the best potential to be used for implementation 

in the future given its high accuracy achieved in the feasibility study. The RF classifier achieved a 

testing accuracy of 86.6% in this feasibility study. 

Based on the technology review and ML feasibility study, the preliminary recommendations 

for FDOT were developed. First, for the data collection devices, it is recommended to use FDOT’s 

existing 3D line laser imaging system to collect high-resolution pavement surface data. A more 

reliable automated raveling detection and classification method can be developed using the 3D 

pavement data. Therefore, resources can be optimized by utilizing the 3D pavement data that 

FDOT already collected using the LCMS. Second, the feasibility study of ML models shows 

promising outcomes in automated raveling classification on 3D pavement data. It is recommended 

that FDOT use the RF model for future implementation given its high accuracy achieved in the 

feasibility study. With automated raveling severity classification using 3D pavement images, this 

research outcome will enable FDOT to cost-effectively identify and locate raveling with a much 

better spatial resolution (e.g., 15 ft, 100 ft, 0.1 mile). Recommendations for future implementation 

are listed at the end of this report. 

Finally, raveling treatment criteria and condition rating are proposed for FDOT. The proposed 

treatment decision table consists of two levels of criteria: the overall pavement condition deduct 

and the individual distress deduct (such as raveling, cracking, rutting, etc.). The initial treatment 

criteria in the treatment decision table are designed based on the current rating practices in FDOT 

and the case study on two FDOT FC-5-only projects. Then, the proposed initial raveling deduct 

table is provided. The initial deduct values in the table are proposed based on the designed 

treatment criteria, the affected area and severity level of raveling, and the two FC-5 only projects. 

Although the initial treatment criteria and deduct values of raveling have been established based 

on two cases of FC-5-only project and engineering judgment, more cases (both successful and 

unsuccessful ones) should be studied for determining the right timing for applying FC-5-only 

treatment. 
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1. Introduction 

As a method to increase friction and minimize hydroplaning potential, the Florida Department 

of Transportation (FDOT) places open-graded friction courses (OGFC) on multilane roadways 

with a design speed of 50 mph or greater (OGFC is called FC-5 in FDOT). OGFC provides a skid-

resistant surface that also reduces splash and spray by allowing water to drain horizontally through 

the open structure rather than on the surface. Due to these safety features, roadway designers also 

have the option of placing OGFC on high-speed curbed roadways with a history of wet weather 

crashes. While OGFC mixtures provide several safety benefits, their lives have been limited to 

approximately 14 years on average compared to nearly 20 years for dense-graded pavements in 

Florida. The reduced life is generally due to raveling, which can rapidly degrade pavement once 

initiated. As part of FDOT's pavement management program, the State Materials Office (SMO) 

rates the condition of asphalt pavements annually to compute the overall pavement condition 

rating (PCR). The PCR is derived from three ratings, which are crack, rut, and ride.  A pavement 

crack cating is a score from 0 to 10 that reflects both the severity and the percent of pavement area 

affected by cracks, raveling, and patching. The crack rating is the only component of the pavement 

condition survey that is conducted by visual estimation. Due to the subjectivity associated with 

estimating the extent and severity of cracking and raveling, both are classified according to the 

following broad categories. 

• Severity: Light, moderate, or severe 

• Affected area: 1% to 5%, 6% to 25%, 26% to 50%, and greater than 50% 

The large ranges of the affected area of raveling, subjective visual rating, and potential rapid 

rate of raveling can lead to difficulties in forecasting the life of pavements with an OGFC and 

quickly reacting to localized OGFC treatment needs. Also, because raveling and patching are 

rolled up into the crack rating, it is difficult to distinguish how much of the crack rating is 

determined by cracking and how much by raveling. 

In this research study, the Pavement Analytics and Georgia Tech team conducted an 

investigation to determine if raveling can be assessed in a more detailed manner and appropriately 

accounted for in Florida's pavement condition survey rating as well as in subsequent pavement 

performance forecasting. The research considered survey approaches as well as methodologies to 

rate and separate raveling that can proactively target raveling-only treatment needs at an early 

stage before the rapid deterioration of OGFC begins. The research included the following tasks: 

Task 1 – Literature Review: The Pavement Analytics and Georgia Tech (PA/GT) team 

conducted a comprehensive literature review to determine the state-of-the-art practice, challenges, 

and critical issues for assessing, rating, and forecasting performance of pavements with OGFC. 

The team also reviewed FDOT’s pavement condition survey and forecasting methods to 

understand current practices and procedures. 

Task 2 – Raveling Condition Assessment: The PA/GT team investigated and recommended 

automated methods to assess the extent and severity of raveling. The methods considered current 

pavement condition data collection devices such as an inertial profiler and 3D data collection 

systems as well as other potential devices and methodologies. Recommended methods were 
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investigated for repeatability and accuracy. Survey practices, analysis methods, and reporting 

procedures were fully documented. 

Task 3 – Rating and Managing Pavements with Raveling: The PA/GT team identified the 

best practices determined from the literature review in consultation with the FDOT Project Team 

and the findings from Task 2 and evaluated those practices/methodologies to determine those that 

are most appropriate for use in rating the raveling condition of a roadway. The methodology 

weighed the benefits of reporting raveling as individual distress versus combining it with the other 

surface distresses. The impact on maintenance and rehabilitation strategies were also considered. 

In addition, raveling thresholds to trigger maintenance and rehabilitation were evaluated and 

discussed with the FDOT Project Manager. 

Task 4 – Draft Final and Closeout Teleconference: The PA/GT team has submitted a draft 

final report to the FDOT Research Center. The draft final report includes the literature review, a 

description of critical issues and challenges, automated procedures for assessing the condition of 

raveling, methods to predict raveling, and thresholds to trigger rehabilitation based on raveling. 

The PA/GT team Co-Principal investigators will schedule a closeout teleconference. The Co-

Principal investigators have prepared a comprehensive PowerPoint presentation. 

This report is organized as follows. Chapter 1 presents the introduction and the tasks of this 

project. Chapter 2 presents the literature review, including the practices of pavement rating 

computation and treatment decisions in FDOT and other State DOTs with a special focus on 

raveling, and the existing methods for automated raveling detection and severity level 

classification. Chapter 3 presents the feasibility study of machine learning (ML) for automated 

raveling classification using FDOT’s pavement data. Chapter 4 presents the design of raveling 

condition rating and treatment trigger for FDOT. Finally, Chapter 5 presents the conclusions of 

this project and recommendations for future works. 
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2. Literature Review 

2.1 FDOT’s Practices on Pavement Survey, Rating, and Treatment Decision 

2.1.1 Pavement Section Selection (FDOT, 2017) 

In FDOT’s practice, the pavement survey unit (a section) is the same as project termini with 

varying distances/lengths. The project termini are typically the spatial unit used for pavement 

treatment (maintenance and rehabilitation). The beginning and end points of the project termini 

are typically determined based on the following factors: 

1. County line 

2. County section or subsection  

3. Construction limits 

4. Significant changes in pavement condition. 

5. Structures in excess of 0.25 miles. 

6. Rigid pavement in excess of 0.50 miles within a flexible pavement section. 

7. Changes in the number of lanes (2 - 3 lanes, etc.) 

The survey and the recorded pavement rating are based on the whole section or project termini. 

During the survey, the operator keeps track of cracks. Usually, the rating is not split up unless there 

is a dramatic change between the small sections. Pavement sections less than 0.50 miles are not 

rated separately but are combined with adjacent sections having the most similar condition. 

2.1.2 Pavement Condition Rating (FDOT, 2017) 

FDOT’s overall pavement condition rating (PCR) is derived from three ratings - which are 

Crack, Rut, and Ride. 

1. Crack Rating (CR) is a combination of cracking, raveling, and patching. Three cracking 

classes are considered in CR and the definition and measurement of the affected area are 

shown in Table 1. Note that both patching and raveling are included in Class III. To 

calculate the CR, the total percent affected area and the predominant crack class has to be 

determined. The calculation is done by the following steps: 

a. Calculate the affected area of raveling by combining the affected area of all severity 

levels. (e.g., 5% light, 10% moderate, and 5% severe = 20% Raveling (Predominate 

severity level: moderate).) 

b. Calculate the affected area of Class III by combining the affected area of raveling, 

patching, and Class III cracking. (e.g., 15% Class III crack, 5% patching, 20% 

raveling = 40% Class III.) 

c. Calculate the total affected area by combining the affected area of all three crack 

classes. (e.g., 10% 1B, 12% II, 40% III = 62% total affected area.) 

d. Determine the predominant class by selecting the class with the highest percent 

affected area. (e.g., 10% 1B, 12% II, 40% III = Class III is the predominant class.) 
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e. Determine the deduct value based on the total affected area (e.g., 62%) and 

predominant class (Class III) from Table 2. Note that the wheel path (CW) and non-

wheel path (CO) are considered separately. The cracking on the wheel path (CW) 

has a higher deduct weight than the one on the non-wheel path as shown in Table 

2. (e.g., Assume Class III with 62% total affected area in CW, then from Table 2, 

giving a deduction code of L (deduction value of 7.0).) 

f. Calculate the CR based on the deduct value of CW and CO: 

𝐶𝑅 = 10 − (𝐶𝑊 𝑑𝑒𝑑𝑢𝑐𝑡 + 𝐶𝑂 𝑑𝑒𝑑𝑢𝑐𝑡) 

2. Rut Rating is determined by the rut depth. Rut depths are collected using a laser profiler. 

The laser profiler measures rut depths at highway speeds and record the average rut depth 

of the two-wheel paths for each section evaluated. The rut depth is then assigned a deduct 

value as shown in Table 3. 

3. Ride Rating is based upon a scale of 0 (very rough) to 10 (very smooth). The International 

Roughness Index (IRI) is used to determine Ride Rating. The longitudinal laser profile of 

each wheel path is measured at highway speeds by a non-contact inertial laser profiler. 

Longitudinal laser profile data are collected at the smallest sample interval possible, usually, 

less than one inch, depending on data collection frequency and driving speed. The data are 

then processed using a longitudinal profile distance of 6 inches, a moving average of 12 

inches, and 300-foot wavelength filtering. The longitudinal profile data are used to 

calculate the IRI. 

After the Crack, Rut, and Ride Ratings are calculated, the PCR is determined by selecting the 

minimum value among these three ratings. 

Table 1. FDOT’s Crack classes. 

 Class IB Class II Class III 

Definition 

Hairline cracks < 1/8” 

wide in either the 

longitudinal or 

transverse direction. 

Cracks with 1/8” to ¼” 

wide. Also includes 

alligator cracking. 

Cracks > ¼” wide. 

Includes Raveling and 

Patching. 

Includes severely 

spalled Class II cracks. 

Measurement 

of the affected 

area 

Cracks are estimated 

individually for the total 

linear length. The width 

of the affected area is 

considered 1 ft        

(0.30 m). 

Cracks are considered 

rectangular, and the 

total affected area in 

square feet is counted. 

Cracks are considered 

rectangular, and the 

total affected area in 

square feet is counted. 
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Table 2. Deduction codes for Crack Rating (FDOT, 2017). 

 

 

Table 3. Calculation of Rut Rating (FDOT, 2017). 
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2.1.3 Raveling Survey and Rating (FDOT, 2017) 

In FDOT practice, the condition rating for raveling is included in Crack Rating (CR). Raveling 

is recorded only if the survey section has at least one percent of its area raveled and is categorized 

into three severity levels: 

1. Light (L): The aggregate and/or binder has begun to wear away but has not progressed 

significantly, with some loss of aggregate.  

2. Moderate (M):  The aggregate and/or binder has worn away, and the surface texture is 

becoming rough and pitted; loose particles generally exist; loss of aggregate has progressed. 

3. Severe (S):  The aggregate and/or binder has worn away and the surface texture is very 

rough and pitted; loss of aggregate is very noticeable. 

Figure 1 illustrates the raveling classification used by FDOT. During the survey, the total 

percent affected area and the predominant severity level, which has the highest affected area, 

are both recorded in FDOT’s database using the codes listed in Table 4. FDOT’s raveling codes 

(FDOT, 2017). (e.g., L1, M2, S1). The pavement survey unit (a section) is the same as the project 

termini with varying distances/lengths. The project termini are typically the spatial unit used for 

pavement treatment (maintenance and rehabilitation). Among the recorded raveling information, 

the affected area is the only information used in the calculation of CR although the severity level 

of raveling and code (representing the percentage of raveling area) are both recorded in the 

database. It is observed that the percentage of raveling area and the corresponding severity level 

could potentially be used to evaluate raveling-only treatment and perform raveling forecasting. 

 

Figure 1. Raveling classification in FDOT. 

With the visual inspection method used in the current FDOT raveling condition survey 

practice, it is extremely difficult to survey and record raveling with a detailed level of location 

reference resolution. Therefore, only the approximate percentage of raveling is recorded in a 

pavement project. For example, consider a 20-mile pavement project with 1-5% light raveling 

(i.e., code L1 in Table 4) being recorded by the manual survey. In this case, the project length 

for recording the distress is 20 miles; thus, it is difficult to locate the exact raveling location 

within the project limits. In addition, the current raveling distress has been combined with 

cracking and patching to yield a pavement Crack Rating within which it is difficult to 

differentiate and identify the impact of each distress type.  Consequently, it is very difficult for 

the current protocol to support FDOT’s identification of cost-effective pavement sections for 

resurfacing that replaces the FC-5 only.  
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Table 4. FDOT’s raveling codes (FDOT, 2017). 

 

2.1.4 Treatment Determination 

In FDOT’s current practice, PCR < 6.5 is the main threshold to trigger the need for pavement 

treatment. In an urban area, a lower speed < 50 mph, and a different threshold (ride rating < 5.5) 

are used. FDOT’s funding protocol focuses on performing resurfacing on the deficient pavement. 

Therefore, resurfacing is the major treatment method and there is no comprehensive pavement 

preservation treatment decision tree. FDOT's main treatment is to mill and overlay regardless of 

the percentage of raveling and cracking. If the sections with raveling-only are identified, the only 

difference will be the depth of milling and overlay to remove and replace the OGFC only rather 

than milling into the structural course to remove cracks as well. Note that although PCR is used as 

the threshold, the majority (90%) of treatment is triggered by CR < 6.5. The other two ratings 

(rutting and ride ratings) triggered less than 10% of treatment. 

2.1.5 Forecasting 

FDOT forecasts the total mileage of roads that are deficient (i.e., PCR rating less than 6.5) over 

a 5-year horizon for budget preparation. The forecasting can be categorized as follows: 

• 5-Year Forecast: Most concerned with total deficient lane miles. The deficient lane miles 

are translated into the total budget for the state. 

• 4-Year Forecast: Concerned with total deficient lane miles and individual road predictions. 

The budget is fixed but district-level allocation can be relatively adjusted among different 

districts. 

• 3-Year Forecast: Most concerned with individual lane predictions. The budget is fixed but 

district-level allocation can be adjusted. 

• 1-Year and 2-Year Forecasts: There is no budget flexibility in the 1 and 2-year time horizon.  

 Note that the 3 to 5-year forecasts are the highest priority of the pavement condition forecasting 

as the year 1 and 2 budgets cannot be changed. The practice of pavement distress forecasting in 

FDOT is also shown symbolically in Figure 2. 
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Figure 2. FDOT’s pavement condition forecasting practice. 

2.1.6 Current Issues and Needs for Improvement 

Based on the review of FDOT’s practices for its raveling survey and rating computation, the 

following are the potential issues and needs for improvement. 

Need 1: A rating system separating cracking and raveling. Currently, raveling and patching 

are rolled up into the CR. Therefore, it is difficult to distinguish how much of the crack rating is 

impacted by cracking proper and how much by raveling. For example, when there is both light 

cracking and heavy raveling, the CR does not differentiate between cracking and raveling as they 

are combined based on their respective areas.  In addition, raveling severity level is recorded but 

has not been used to compute CR. Cost-effective maintenance and rehabilitation, like raveling-

only treatment, cannot be applied because of the above-mentioned issues. For example, if raveling 

of an open-graded friction course was the sole distress responsible for a deficient CR, milling and 

replacement of the open-graded friction course, which does not touch the structural course, may 

be sufficient. If extensive cracking is also present, deeper milling to remove cracks may be required. 

Thus, a rating system separating cracking and raveling deducts and rating needs to be developed, 

which can proactively target the raveling treatment needs before rapid deterioration of OGFC sets 

in.  In this way, the rating computation results can be assessed and deducted as individual distress 

and can also be combined as a composite rating. 

Need 2: Automatic detection and classification of raveling instead of a visual survey. The 

current visual assessment of raveling is not precise because the recorded raveling affected area has 

large ranges (1 to 5%, 6 to 25%, 26 to 50%, and greater than 50%; see also Table 4). Therefore, 

there is a need to develop an automated raveling detection and classification process. The location 

and timing of raveling treatment are important. Cost-effective treatment to prevent rapid raveling 

deterioration of OGFC requires detailed measurement and recording to determine the location(s) 

of the raveling. The use of smaller intervals (e.g., 15-ft image size; 100-ft, 0.1 miles or 1 mile, etc.) 

to capture more precise trigger points for raveling treatment is desirable. However, since the 

raveling survey is conducted by visual estimation in FDOT’s current practice, the recorded percent 

of raveling affected area is based on the entire project section and the precise raveling location 

cannot be attained. Therefore, a digital survey and automatic raveling detection and classification 
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process are urgently needed to obtain and record more detailed and accurate information. 

Additional studies of automatic detection and classification of raveling were conducted in Task 2. 

Need 3: A consistent and fixed raveling survey unit. It is a challenge to ensure the visual 

survey data quality with the current FDOT survey practice since it does not have a fixed survey 

spatial unit.  For example, visually surveying and accurately determining the percentage of 

raveling area for a long section (e.g., a 10 or 20-mile section) is difficult. Some state DOTs (e.g., 

Georgia DOT, GDOT) has a consistent condition survey unit of one mile to ensure its survey 

consistency and accuracy. As mentioned in Need 2, the detailed recording to determine the location 

of deficient raveling and reveling rating at smaller intervals is important for determining and 

triggering raveling treatment. In FDOT’s current practice, the survey and the recorded pavement 

rating are based on the whole section, which has a variable length. Therefore, the length of a 

pavement section is usually too large to obtain precise localization information of raveling. 

Currently, the FDOT’s 3D pavement image size is 12ft (4m) by 15ft (5m) in transverse and 

longitudinal directions respectively. With the detailed 3D pavement data, a fixed and multi-scale 

survey unit (e.g., 15ft/5m, 100ft, 0.1 miles or 1 mile, etc.) can be generated with proper data 

aggregation methods. For example, the raveling condition can be recorded in image-size intervals 

and summarizing them in 0.1-mile segments then to the section level. This technology will allow 

the acquisition of more detailed information to localize, measure, and rate pavement distresses 

using a smaller survey unit so FDOT can more quickly react to early raveling. 

Need 4: A treatment criteria and threshold for triggering raveling-only treatment. 
Currently, CR < 6.5 is the primary threshold to trigger treatment in FDOT’s practice. However, as 

mentioned in Need 1, including raveling and patching in CR makes the maintenance and rehabilitation 

decision difficult to make as well as assess the more cost-effective treatment. Therefore, it is 

recommended that a revised rating system be developed that considers cracking and raveling 

individually as well as new treatment decision thresholds separating cracking and raveling where: 

1. Raveling is the only or predominant distress. 

2. Raveling and cracking are both presented. 

An example of separated treatment thresholds for cracking and raveling extent or severity 

levels is shown in Figure 2. With the detailed pavement survey data available from Need 2, 

information such as affected area, severity level, and trend of changes of raveling can be potentially 

used to determine the treatment decision threshold. 

 

Figure 3. An example of a separated treatment threshold for cracking and raveling. 
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2.2 Raveling Classification and Measurement by Other State DOTs 

2.2.1 Georgia Department of Transportation (GDOT) (GDOT, 2017) 

In GDOT practice, raveling is classified into Severity Levels 1, 2, and 3 based on the 

following definitions of raveling conditions: 

1. Level 1: Loss of a substantial number of stones.  

2. Level 2: Loss of most of the surface.  

3. Level 3: Loss of a substantial portion of the surface layer (>1/2 depth). 

Figure 4 illustrates the raveling classification in GDOT. During field surveys, raveling is 

closely observed, and an estimate (to the nearest 5%) is made of the extent and the predominant 

severity of the distress within each relatively short, rated segment. The percent of the length of the 

rated segment (a mile or partial mile) that contains raveling is recorded along with the predominant 

severity level. 

 

Figure 4. Raveling classification in GDOT (GDOT, 2017). 

By considering the condition rating of raveling along with the condition ratings of other 

pavement distresses (e.g., cracking, rutting, etc.), the treatment is then determined by the 

developed treatment decision tree (GDOT, 2017). In GDOT, micro-milling and thin overlay have 

been successfully developed and applied to cost-effectively treat raveling-only OGFC pavements 

in Georgia. The outcomes have been published in various journal papers (Gadsby and Tsai, 2020; 

Tsai et al., 2018; Tsai et al., 2016; Tsai et al., 2014b; Tsai et al., 2012; Lai et al., 2012). 

In GDOT’s pavement condition survey and pavement management system, a pavement project 

(say a 20-mile pavement project) is defined as a pavement section with consistent roadway 

characteristics that the same treatment can be applied. However, the pavement survey is in a finer 

unit which is one mile or less than one mile in the entire roadway network.  This provides one mile 

of spatial location resolution to differentiate different pavement conditions. In addition, the current 

raveling distress is recorded as independent distress so that it can be more easily identified and 

queried from a database.    

2.2.2 Oregon Department of Transportation (ODOT) (ODOT, 2019)  

In ODOT practice, the severity levels of raveling are defined as follows: 
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1. Low: Aggregate has worn away resulting in noticeably rough or pitted pavement surface 

texture in the left wheel path, right wheel path, or center lane zone. Loss of chip seal rock 

should be rated as raveling, but this is the maximum severity for chip sealed surfaces. 

2. Moderate: The surface texture is moderately rough and/or pitted with moderate loss of 

pavement surface aggregate in the left wheel path, right wheel path, or center lane zone. 

Loose aggregate particles may be present outside the traffic area. 

3. High: The surface texture is very rough and/or pitted with severe loss of pavement surface 

aggregate in the left wheel path, right wheel path, or center lane zone. Flat bottom potholes 

may be present where there is a complete loss of aggregate. 

Figure 5 illustrates the raveling classification in ODOT. During field surveys, raveling is 

identified by a roughened or pitted texture on the pavement surface. Mechanical abrasion from tire 

chains, studs, snowplows, or dragging equipment that results in significant loss of aggregate should 

be rated as raveling. Studded tire rutting which does not roughen up the texture significantly should 

not be rated as raveling. During the measurement, the linear feet of each severity level for the left 

wheel path, right wheel path, and center lane zones are recorded. The maximum quantity is 528 

feet for each zone and 1,584 feet per 0.10-mile. 

 

Figure 5. Raveling classification in ODOT (ODOT, 2019). 

2.2.3 Texas Department of Transportation (TxDOT) (TxDOT, 2015) 

The classification of raveling severity levels is based on the percentage of raveled area in 

TxDOT practice, which is defined as follows: 

1. Low: The percent of raveled pavement area is from 1% to 10%. 

2. Medium: The percent of raveled pavement area is from 11% to 50%. 

3. High: The percent of raveled pavement area is greater than 50%.  

During the measurement, raveling that occurs anywhere in the lane is rated following the rating 

code shown in Table 5. The rating code indicates the percent of the rated lane's total surface area. 

The rated lane is decided as the lane that has the most distress on each roadbed. 
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Table 5. TxDOT’s raveling codes (TxDOT, 2015). 

 

2.2.4 Alabama Department of Transportation (ALDOT, 2017)  

In ALDOT practice, raveling is defined as the loss of bond between the asphalt binder and 

the aggregate through either a cohesion or adhesion failure, usually caused by the action of water. 

Raveling is not classified into different severity levels in ALDOT. Instead, the square feet of 

raveling are recorded per asphalt lane-mile. During the survey, the raters inspect the surface area 

for raveling, then measure and record the total square feet of raveling in all lanes. 

2.2.5 Summary 

Although raveling is defined in almost the same way by different DOTs, measurement and 

rating methods of its severity levels and extent change from agency to agency. This section 

describes the challenges and research needs for automated raveling detection and classification 

methods based on the reviewed practices of DOTs. 

First, the survey and classification of raveling in major transportation agencies are conducted 

manually through in-field visual inspection methods. These methods are time-consuming and 

labor-intensive. Also, these methods can be error-prone since raveling can appear differently when 

it is observed from a moving vehicle or standing on the ground. The manual recorded raveling 

conditions can also be subjective since some raters may tend to rate heavier than others. Moreover, 

a manual survey on high traffic volume highways can be challenging and dangerous to the raters 

because of the heavy traffic volume. Therefore, there is a need to develop an automated raveling 

detection and classification method to overcome these problems. 

Second, one of the main challenges of the raveling survey lies in the fact that raveling is the 

change of pavement surface texture, which causes its appearance on digital images, or 2D images, 

to be susceptible to ambient lighting conditions, especially for low-severity raveling. For example, 

under direct sunshine, it is hard to recognize lightly raveled surfaces. Since raveling develops 

quickly after it starts, DOTs must identify it in its early stage so that cost-effective treatments (e.g., 

OGFC replacement only) can be applied before it deteriorates to higher severity levels and requires 

more expensive corrective treatments. Therefore, the difficulty of low-severity raveling detection 

under natural lighting conditions can cause DOTs to be unable to perform cost-efficient treatments 

in a timely fashion. To overcome this issue, using 3D pavement data is a better alternative for 

capturing pavement surface texture because it is independent of ambient lighting conditions and 
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can be accurately collected at highway speed. Thus, a more reliable automated raveling detection 

and classification method can be developed using the 3D pavement data. 

 Finally, a fixed raveling survey spatial unit is not defined in some DOTs (e.g., TxDOT, FDOT). 

In this case, the pavement is rated based on a whole section, which has a variable length and is 

usually too large to obtain precise localization information for raveling. Currently, the FDOT’s 3D 

pavement image size is 12ft (4m) by 15ft (5m) in transverse and longitudinal directions 

respectively. With the detailed 3D pavement data, a fixed and multi-scale survey unit (e.g., 15ft/5m, 

100ft, 0.1 miles or 1 mile, etc.) can be generated with proper data aggregation methods. This 

technology will allow the acquisition of more detailed information to localize, measure, and rate 

pavement distresses using a smaller survey unit so DOTs can more quickly react to early raveling 

and apply localized treatment to optimize pavement asset management.  

2.3 Automated Methods for Raveling Detection and Classification 

Automated raveling detection and classification methods can be classified into two categories: 

nontrainable methods and machine learning (ML) models. Traditionally, research efforts on 

automated raveling detection and classification focused on nontrainable methods. These methods 

utilize nontrainable algorithms to calculate different indicators of raveling from the pavement data. 

In recent years, ML has become a popular technique in almost every field. By providing a sufficient 

amount of data, ML models can automatically learn the hidden structures or relationships in the 

data. This “data-driven” property makes ML models more robust and general. Following this trend, 

ML models for automated raveling detection and classification have also been developed. 

2.3.1 Nontrainable Methods 

Ooijen et al. (2004) developed the “Stoneway” algorithm to detect raveling on porous asphalt 

pavement. In this algorithm, raveling was detected by analyzing each longitudinal laser profile for 

gaps that were both above a length and depth threshold (Figure 6), indicating a possible loss of 

aggregate. The severity of raveling is classified by the percentage of aggregate missing on the 

surface. Several challenges are observed for the Stoneway algorithm. First, it was found that this 

approach generally underestimated raveling severity, scheduling maintenance operations later than 

recommended by visual condition surveys. Second, the road surface is assumed to be flat in both 

longitudinal and transverse directions, which limits the algorithm’s ability to generalize to diverse 

conditions of the pavements. Finally, this method analyzed longitudinal profiles 500 mm apart, 

which may be too sparse to obtain the representative condition of the road. 
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Figure 6. The Stoneway algorithm (Ooijen et al., 2004) 

Another method based on a similar concept to the Stoneway algorithm was developed by Scott 

et al. (2008). This method calculates the Mean Profile Depth (MPD) of the laser profile. Locations 

that differ from the characteristic level by a sufficient depth and over a significant length are 

deemed to be raveled. Based on this measurement, the proportion of the road affected by raveling 

is reported. Similar to the Stoneway method, the MPD method only worked when the assumption 

that the pavement surface was flat (no incline) was held. 

McRobbie and Furness (2008) and McRobbie et al. (2012) used a feature called Root Mean 

Square Texture (RMST) derived from 3D pavement data. Based on the RMST, a raveling detection 

algorithm that provides an estimate of the raveling condition is developed by comparing the 

distribution of RMST values in a small, or local, area against those from a much larger surrounding, 

or global, area. A group of sites totaling approximately 90 km was selected, representing a 

combination of different surface types (thin surface course, porous asphalt, hot rolled asphalt, etc.) 

and surface conditions. However, the pair of scales needed to be calibrated for each site makes this 

method not practical for implementation. Further research is needed to obtain the pair of scales 

that work for all pavement types. Another challenge for the RMST method is the determination of 

local and global areas, which should be different for different surfaces and road conditions. 

Different from the MPD and RMST methods that estimate absolute measurements of raveling, 

McRobbie et al. (2015) proposed a relative manner for estimating raveling conditions by 

identifying the changes in surface conditions among successive collected data. In this method, the 

3D profile data are aligned first in both longitudinal and transversal directions. Then, from 30 

candidate parameters, seven are selected to detect changes in 3D pavement data. The validation of 

this method only utilized the ground truth with raveling conditions collected in the lab. Also, a 

large number of standard surface shape parameters need to be tested by empirical experiments to 

determine their usability for quantifying surface disintegration. 

Laurent et al. (2012a; 2012b) proposed the Raveling Index (RI) to quantify raveling by 

measuring the volume of aggregate loss (holes due to missing aggregates) per unit of surface area 

(square meter). The volume of aggregate loss is measured automatically from the 3D pavement 

data using algorithms designed by the authors. However, no additional information is provided 

about these algorithms. The calculation of RI is defined as follows: 

𝑅𝐼 = 𝑉𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑙𝑜𝑠𝑠/𝐴𝑡𝑜𝑡𝑎𝑙 
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In the RI method, 3D line laser technology was used to collect high-resolution surface range 

data. Also, the density of 3D laser data used in this method was high enough to cover the entire 

lane transversely. However, the tests for raveling detection are very limited without systematic 

validation using a large-scale dataset. The general method used here is to perform raveling 

detection on the same road section repeatedly. The robustness of the raveling detection method is 

tested by observing if the results tend to be similar (Figure 7). Another validation conducted for 

the RI method is visually comparing RI on surfaces with different raveling severities, which is also 

not systematic. 

 

Figure 7. The repeatability test results of the RI method. Different colors indicate results from 

different passes (Laurent et al., 2012a). 

Mathavan et al. (2014) presented a method to detect raveling from 3D pavement images 

(intensity and range).  First, a texture descriptor method called Laws’ texture energy measure is 

used in conjunction with the Gabor filter and other morphological operations to distinguish road 

areas from each other.  Then raveled road areas are detected by estimating the standard deviation 

(STD) of the corresponding range data. By heuristically setting the thresholds for STD values, the 

raveling condition (within a limited grid) can be characterized as good, average, or bad. However, 

there is a lack of comprehensive validation in this paper. Detailed information on the validation 

dataset, such as the location of data collection and the distribution of raveling conditions in these 

data, are not mentioned in this paper.  Moreover, the outcome of raveling quantification is not 

compared with the ground truth (e.g., visual survey results) specified based on transportation 

agencies’ distress protocol (e.g. severity levels 1, 2, 3, or low, medium, and high). 

Several other studies developed automated methods to detect pavement defects, including 

raveling. Hadjidemetriou & Christodoulou (2019) identify video frames that include any type of 

pavement defect using the entropy of images. Zhou et al. (2006) proposed a pavement defect 

detection criterion based on the statistical models in the wavelet domain. However, these methods 
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only determine if an image contains any pavement defect or not. That is, raveling is mixed with 

all other pavement defects (e.g., cracks, potholes, rutting, etc.) in the detection results, which is 

not sufficient for the objective of this research (i.e., to independently classify raveling based on its 

severity level). 

2.3.2 Machine Learning (ML) Models 

Hoang (2019) proposed an ML model based on the Stochastic Gradient Descent Logistic 

Regression (SGD-LR) model to automatically detect raveling on real-world digital images. In this 

model, image texture-based features are first extracted from the statistical properties of color 

channels and the Gray-level Co-occurrence Matrix. A set of extracted features are then used as the 

input variables to train the SGD-LR model to classify image samples into two categories, which 

are non-raveling and raveling. Two challenges are observed in this study. First, the model only 

classifies images into non-raveling or raveling, and the classification of raveling severity levels is 

not available. Second, the digital images used in this model are collected with a controlled lighting 

condition and the model is not validated with more diverse conditions of the pavement images. 

A research team led by Professor Tsai at Georgia Tech had proposed a raveling detection and 

classification method using pavement surface data collected by 3D line laser technology and three 

ML models, the Support Vector Classifier (SVC), Random Forest (RF), and Adaptive Boosting 

(AdaBoost) (Tsai & Wang, 2015). This study was published in the International Journal of 

Pavement Research and Technology in 2021 (Tsai et al., 2021). We use the 2015 report as the 

reference in the remainder of this report since it has more details. This method consists of several 

steps (Figure 8). First, the collected 3D pavement data are pre-processed to remove invalid data 

points and eliminate the cross slope of the pavement. Second, each full-lane-width, 5-m pavement 

section on a 3D range image is evenly divided into six subsections with three in each wheel path 

(Figure 9), and the macro-texture features are calculated and extracted for each subsection. With 

the extracted macro-texture features, an RF model is then trained to classify each subsection into 

different severity levels of raveling based on GDOT practice. Finally, a raveling aggregation 

algorithm is developed to aggregate the classification results of the subsections to achieve a 

segment-level (~1 mile) raveling rating based on GDOT’s standard. The method was validated 

using large-scale, real-world 3D pavement data collected on I-85 and I-285 near Atlanta Georgia. 
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Figure 8. The raveling detection and classification method proposed by Tsai & Wang (2015). 

 

Range  

Figure 9. The six subsections of each 3D range image defined in Tsai and Wang (2015). 
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2.3.3 3D laser technology for automatic raveling detection and classification 

To be able to record detailed information for raveling and further develop a new rating system 

and treatment thresholds, a digital survey and assessment method with high accuracy is an essential 

component. FDOT has been collecting interstate highway 3D pavement data using 3D laser 

technology, the Laser Crack Measurement System (LCMS), for three years. 

In the U.S., 3D laser measurement has become a mainstream technology to collect high-

resolution 3D pavement surface images. A survey reported in 2017 shows eighteen states in the 

U.S. have indicated their use of an automated 3D data collection system, and seventeen states have 

said they have a plan to use it within two years (Zimmerman, 2017). 3D pavement data have been 

studied and applied on asphalt and concrete pavements to automatically or semi-automatically 

detect and measure cracking (Tsai and Li, 2012; Jiang and Tsai, 2016), rutting (Tsai et al., 2013, 

2015), potholes (Tsai and Chatterjee, 2018), and concrete joint faulting (Tsai et al., 2011; Geary 

et al., 2018). Advanced models based on statistics, computer vision, traditional machine learning, 

and deep learning have been successfully developed to utilize 3D pavement surface data to conduct 

automatic asphalt pavement crack detection (Zhang et al., 2017, 2019), crack classification (Tsai 

et al., 2014a; Wang et al., 2017; Li et al., 2020), crack deterioration analysis (Jiang et al., 2016), 

and raveling classification (Tsai and Wang, 2015), to cost-effectively and objectively manage 

pavements. The methods developed in these studies offered potential for use in this project to 

develop an automatic raveling detection and classification method for digital pavement condition 

assessment. Also, the resources could be optimized in this project by utilizing the LCMS data that 

FDOT already collected. 

2.3.4 Summary 

In summary, nontrainable methods for automated raveling detection and classification have 

several problems that constrain them from a broad application for different surfaces, different 

raveling conditions, or even different data sources. First, many methods are only capable of 

detecting raveling. The classification of the raveling severity is not available (Laurent et al., 2012a; 

Laurent et al., 2012b; Ooijen et al., 2004; McRobbie et al., 2015). Second, many of the indicators 

require certain assumptions about the pavement surface that might not apply to other cases (Ooijen 

et al., 2004; McRobbie & Furness, 2008; McRobbie et al., 2012; McRobbie et al., 2015). For 

example, RMST relies on the concept that raveled areas have a different texture pattern than non-

raveled ones. When applying RMST on a long stretch of consistently raveled pavement, this 

indicator might fail to identify the raveled areas. Third, the validation of the methods was very 

limited and not systematic (Laurent et al., 2012a; Laurent et al., 2012b; Mathavan et al., 2014). 

Without a sufficient amount of pavement data with diverse conditions, it is not adequate to 

objectively reveal the true performance and limitations of the methods. Finally, many methods 

require frequent parameter tuning and adjustment based on empirical experiments (McRobbie & 

Furness, 2008; McRobbie et al., 2012; McRobbie et al., 2015). Thus, it is difficult for 

transportation agencies to implement these automated methods on real-world pavement surface 

data to perform both raveling detection and classification. 

By utilizing ML techniques to train a more robust and general model using real-world 3D 

pavement data that performs both raveling detection and classification, Tsai & Wang (2015) 

overcame most of the above-mentioned problems. However, a major limitation of this method lies 
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in the fact that it is based on a traditional ML model. The main problem of traditional ML models 

is that a predefined feature extraction stage is required to reduce the complexity of the data and 

make patterns more visible to the trainable models. For image-based tasks, these handcrafted 

features limit the models to only learn from low-level features, such as edges or statistical 

properties. Without learning high-level features from the data, the performance of traditional ML 

models is limited even if more data are provided (Alom et al., 2019). Also, empirical experiments 

are still required to determine the suitable predefined features that are to be extracted from the data 

and train the models. 

Different from traditional ML models, the features of the data are automatically learned 

through the training process of deep learning (DL) models. That is, DL models utilize the data-

driven features learned from the training data instead of the handcrafted features, and a more 

accurate and robust model can be trained by providing more data (Alom et al., 2019).  

Convolutional neural networks (CNNs), a type of DL model widely used in computer vision, have 

already been studied on image-based, automated assessments of various pavement distress (Zhang 

et al., 2017; Maeda et al., 2018; Hsieh & Tsai, 2020a). However, the study of using CNNs and 

data-driven features to develop a more accurate and reliable automated raveling detection and 

classification model has been limited (Hsieh & Tsai, 2020b). 

2.3.5 Recommendation 

This research recommended the development of an automated raveling detection and 

classification method based on the ML models proposed by Tsai & Wang (2015) for two main 

reasons. First, by training the models to learn to make the decision using data with diverse 

conditions, ML models have been proven to achieve more accurate and robust performance not 

only for raveling detection and classification (Tsai & Wang, 2015; Hoang, 2019) but also for the 

detection and classification of many other pavement defects, such as cracks (Wang et al., 2017) 

and potholes (Hoang, 2018). Second, the ML models applied by Tsai & Wang (2015) have been 

systematically validated with large-scale, real-world pavement data using both raveling detection 

and severity levels classification following GDOT’s standard. Since the raveling severity levels 

defined by FDOT and GDOT are interchangeable, the experiments and validation of the ML 

models would largely benefit the development of the automated raveling detection and 

classification method for FDOT. However, as mentioned in Section 3.4, the utilization of the 

traditional ML model has its disadvantages and limitations. Since using DL and data-driven 

features to develop a more accurate and reliable raveling detection and classification model has 

not been explored as yet, it was also recommended to explore how DL can benefit the development 

of the automated method. Also, other new quantitative measurement indicators, like the percent of 

loss of aggregates, could be explored to leverage the 3D pavement data. 

Second, it was recommended to leverage the 3D pavement data already collected by FDOT. 

As mentioned in Section 2.6 Summary, 3D pavement data have the advantage of better capturing 

pavement surface texture because they are independent of ambient lighting conditions and can be 

accurately collected at highway speed. That is, a more reliable automated raveling detection and 

classification method can be developed using the 3D pavement data. Therefore, the resources could 

be optimized in this project by utilizing the 3D pavement data that FDOT already had collected 

using the Laser Crack Measurement System (LCMS). With the data already collected, not only 
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could a more accurate and robust ML model be trained, but also a systematic validation could be 

conducted. 

Finally, for implementation in the future, it was recommended to also consider noise removal 

and aggregation of survey results into a fixed spatial unit, say 0.1 miles or 1 mile. As mentioned 

in Section 2.6, having a fixed and smaller survey unit is important to obtain detailed information 

to localize, measure, and rate pavement distresses so that timely and cost-efficient treatments can 

be performed. Based on the study from Tsai and Wang (2015), the data pre-processing steps for 

noise removal, and the results aggregation process are both important for practical applications of 

automated raveling detection and classification. 

2.4 Pavement Rating Computation and Treatment Decision by Other State DOTs 

Here, the practices of three representative state DOTs were reviewed, including the Georgia 

Department of Transportation (GDOT), Texas Department of Transportation (Texas DOT), and 

Caltrans as they have similar environments but slightly different ratings and treatment designs. For 

each state DOT, its condition survey, rating, and treatment criteria was analyzed with a special 

focus on raveling related condition survey, rating computation, and treatment decisions. The 

discussion includes the condition survey spatial units as the pavement condition survey spatial 

units have changed from the visual survey to the automatic survey using automatically collected 

2D and 3D pavement images. The resulting finer survey unit also creates the opportunity for spatial 

optimization of maintenance and rehabilitation decisions to save money for transportation agencies. 

2.4.1 Georgia Department of Transportation (GDOT) (GDOT, 2017) 

In GDOT, pavement condition has been surveyed based on a fixed spatial unit (1 mile) by 

selecting a 100-ft representative sample survey section in each one-mile segment. The defects 

noted for each rating segment (e.g. 1 mile) within a project (a length of roadway with a common 

pavement section, similar structural conditions, and logical beginning and ending points, say 10 

miles) are then averaged to obtain the overall pavement condition rating for that project. A project 

rating is computed for the deduct values from individual distress types (10 types of pavement 

distresses), as shown below. Because the deducts for individual distresses are available in the 

GDOT deduct and rating computation, it is easy to apply an adequate and cost-effective treatment 

based on the following individual distress conditions (e.g. raveling-only). 

1. Rutting (depth) 

2. Load cracking (level 1-4) 

3. Block cracking (level 1-3) 

4. Reflection cracking (level 1-3) 

5. Raveling (level 1-3) 

6. Edge distress (level 1-3) 

7. Bleeding/Flushing (level 1 and 2) 

8. Corrugations/Pushing (level 1-3) 

9. Loss of section (level 1-3) 

10. Patches and pothole (counts) 
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 For each distress type, the predominant severity level and percent extent are identified, and the 

deduction of each distress type is calculated based on Figure 10. With the separated deduction of 

each distress type, the rating of each segment (1 mile) is then deducted from 100. To calculate the 

project rating, the average extent and predominant severity level for the entire project are 

calculated. Then, the deduction of each distress type is determined by Figure 10 and the project 

rating is deducted from 100. With the project rating and the individual distress deduction values, 

the treatment is then determined by the developed decision tree shown in Figure 11. 

 

Figure 10. The distress deductions in GDOT’s pavement rating computation (GDOT, 2017). 
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Figure 11. The treatment decision tree in GDOT’s practice (GDOT, 2017). BC: block cracking 

deduct, LC: load cracking deduct, RC: Reflective cracking deduct, RA: raveling deduct,  

RU: rutting deduct, BL: bleeding deduct, PA: patches and potholes deduct, LS: loss of pavement, 

ED: edge cracking deduct, CO: corrugations deduct. 

In GDOT, raveling is classified into Severity Levels 1, 2, and 3 based on the following 

definitions of raveling conditions: 

1. Level 1: Loss of a substantial number of stones.  

2. Level 2: Loss of most of the surface.  

3. Level 3: Loss of a substantial portion of the surface layer (>1/2 depth). 

By considering the condition rating of raveling along with the condition ratings of other 

pavement distresses (e.g., cracking, rutting, etc.), the raveling-related treatment is determined by 

the treatment decision tree in Figure 11. As shown in the figure, micro-milling and thin overlay 
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have been successfully developed and applied to cost-effectively treat raveling-only OGFC 

pavements in Georgia.  

In addition to the treatment decision tree shown in Figure 2, Georgia Tech has worked with 

GDOT to perform a series of research projects to develop cost-effective pavement preservation 

technologies to treat predominantly raveling distresses on Georgia’s interstate highways with 

open-graded friction course (OGFC) by applying (1) fog seal (Tsai, et. Al., 2021) at an early stage 

to slow down loss of aggregates and (2) micro-milling and thin overlay only for the OGFC layer 

at the right time. For micro-milling and thin overlay treatment only, studies include (a) 

characterizing micro-milling surface construction quality using newly established Ridge to Valley 

Depth (RVD) using 3D technology (Tsai, et. al. 2012; Tsai, et. al. 2014), (b) long-term 

performance of micro-milling and thin overlay (Tsai, et. al, 2016; Tsai, et. al. 2018; Tsai, et. al. 

2019), and (c) its benefits on environmental impact and sustainability (Gadsby & Tsai, 2020).   

There are two major differences between GDOT’s and FDOT’s rating systems. First, in GDOT, 

each distress has its individual deduct value. These individual deduct values are combined to obtain 

an overall deduct. With this two-level rating system, each distress can be more easily identified, 

and the corresponding treatments and trigger points can be designed in the treatment decision tree. 

Second, in GDOT’s pavement management system, a pavement project (say a 10 miles pavement 

project) is defined as a pavement treatment section with consistent roadway characteristics to 

which the same treatment can be applied. However, the pavement survey is in a finer unit (i.e. one 

mile or less than one mile) in the entire roadway network.  This provides one mile of spatial 

resolution to differentiate among pavement conditions so cost-effective pavement treatments can 

be applied. FDOT’s pavement condition survey unit is the same as a treatment section (say 10 

miles). This scale is too coarse to allow the use of pavement condition survey condition to support 

in-depth condition survey measures, like coring for the milling depth or making a finer and more 

suitable and optimal treatment decision spatially.  

2.4.2 Texas Department of Transportation (TxDOT) (TxDOT, 2015) 

The Pavement Management Information System (PMIS) in TxDOT contains more than 

195,000 data collection sections. On average, the PMIS data collection sections are 0.5 mile in 

length, although some are longer, and some are shorter. When traveling across a PMIS section, the 

raters rate the lane that has the most distress on each roadbed. The lane being rated can change 

from section to section while traveling down the road. When deciding which lane to rate, the 

distresses from worst to best (generally) are failures (a localized section of pavement where the 

surface has been severely eroded, badly cracked, depressed, or severely shoved), alligator cracking, 

block cracking, patching, longitudinal cracking, and transverse cracking. 

At the end of each PMIS section on flexible pavement, the raters enter their section ratings for 

all the flexible pavement distress types as shown below. The rating consists of a number for each 

of these ten distress types. The numbers indicate either the area or the amount of each distress that 

was observed. 

1. Rutting- shallow (0.5 inch–1 inch): Area (0–100%) 

2. Rutting – deep (1 inch–3 inch): Area (0%–10%) 

3. Patching: Area (0% – 100%) 
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4. Failures: Total number (0~99) 

5. Block cracking: Area (0~100%) 

6. Alligator cracking: Area (0~100%) 

7. Longitudinal cracking: Linear feet per station 

8. Transverse cracking: Number per station 

9. Raveling (0~3) 

10. Flushing (0~3) 

Different from FDOT and GDOT, the classification of raveling severity levels is only based 

on the percentage of raveled area by TxDOT, which is defined as follows: 

1. Low: The percent of raveled pavement area is from 1% to 10%. 

2. Medium: The percent of raveled pavement area is from 11% to 50%. 

3. High: The percent of raveled pavement area is greater than 50%.  

In TxDOT, the PMIS treatment decision support matrix for asphalt pavements is shown in 

Table 6. In the table, the pavement distresses are classified into low, medium, and high extent 

levels based on Table 7. As shown in Table 6, in addition to pavement distress, factors such as 

traffic and ride quality are also taken into consideration in the treatment decision. Note that for 

raveling, the recommended treatments in TxDOT are preventive maintenance. Also note that thin 

overlay treatment is recommended when raveling is presented but other distress, such as rutting 

and cracking, are not severe. 
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Table 7. Distress extent level definitions (Chang et al., 2014). 

 

2.4.3 California Department of Transportation (Caltrans) (Caltrans, 2017) 

In Caltrans, pavement condition data are collected continuously by customized vehicles fitted 

with sensing equipment. These data are then aggregated into larger segments as shown in Figure 

12. The data collection element (DCE) is the smallest unit distresses are collected, with length that 

is usually 26.4 ft. The 0.1-mile and 1-mile segments are the two levels of aggregation of data 

collection elements for which pavement distresses and conditions are reported. The pavement data 

collection segment (DCS) is the smallest unit for which pavement distresses and conditions are 

stored in the PaveM system. DCS is 0.1 mile or 528 ft in length, measured in the longitudinal 

direction. A DCS is comprised of multiple DCEs. Finally, the pavement reporting segments (PRS) 

are used to report the condition of the road in segments of about one mile, which includes multiple 

DCSs. For each unit (DCE, DCS, and PRS), each severity of each distress is recorded by extent 

percentage. 

 

Figure 12. Condition report segments in Caltrans (Caltrans, 2017). 

Like GDOT and TxDOT, Caltrans also uses individual ratings for each distress. Typically, the 

recorded numbers indicate either the length, area, or the amount of each distress that was observed. 

Each distress is also categorized into three severity levels (low, medium, and high) based on 

specific factors. 

1. Alligator A crack: Length (ft) and average width (severity factor) 

2. Alligator B crack: Length (ft) and average width (severity factor) 

3. Block crack: Area (ft2) and the average size of the block (severity factor). 

4. Edge crack: Length (ft) and average width (severity factor) 

5. Longitudinal crack: Length (ft), average width (severity factor), and the number of cracks. 

6. Transverse crack: Length (ft), average width (severity factor), and the number of cracks. 
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7. Pothole: Area (ft2), average depth, and the number of potholes (severity factor). 

8. Bleeding: Length (ft) and length ratio (severity factor). 

9. Raveling: Area (ft2) and area ratio (severity factor). 

Similar to TxDOT, the classification of raveling severity levels in Caltrans are based only 

on the percentage of raveled area, which is defined as follows: 

1. Low: The percent of raveled pavement area is from 1% to 10%. 

2. Medium: The percent of raveled pavement area is from 11% to 50%. 

3. High: The percent of raveled pavement area is greater than 50%.  

In Caltrans, the treatment decision tree for asphalt pavements is shown in Figure 13. Note that 

the alligator A and B cracks are the two distresses used in this decision tree. Other important factors 

for treatment decisions in Caltrans include IRI, average daily traffic, and the roadway class defined 

by Caltrans. 

In summary, Texas DOT and Caltrans classify raveling severity levels (low, medium, and 

high) based on only the percentage of raveled areas. This is different from GDOT and FDOT 

survey raveling conditions based on both the severity level (severity of aggregate loss) and the 

percentage of raveled areas. 
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2.4.4 Raveling Treatment Alternatives 

FDOT is seeking alternative treatments to cost-effectively treat raveling-only pavement 

distress (e.g. on FC5 pavement layer) in Florida’s interstate highways. An alternative raveling-

only pavement preservation method is presented below. It is the micro-milling and thin overlay. 

It has been successfully developed and implemented by GDOT since it was applied on I-75 near 

Perry, Georgia in 2007.  It has been applied on many interstate highway sections in Georgia.  The 

micro-milling and thin overlay have been successfully developed and applied to cost-effectively 

treat raveling-only OGFC pavements in Georgia. The outcomes have been published in various 

journal papers (Gadsby and Tsai, 2020; Tsai et al., 2018; Tsai et al., 2016; Tsai et al., 2014b; Tsai 

et al., 2012; Lai et al., 2012). Based on these intensive research studies, the benefits of micro-

milling and thin overlay are summarized below: 

• Economic Assessment: Results showed that the micro-milling and thin overlay method’s 

expected service life of 10-12 years is similar to the conventional method but will save 

Georgia $65,600 per lane mile over the conventional method. Its break-even service life is 

5 years in comparison to the conventional method. It is also a good crack relief treatment, 

evidenced by having only 5% cracking occurring in 5 years on an I-95 project using 3D 

sensing technology. 

• Environmental and Social Assessment: it produces 60% percent fewer greenhouse gases, 

uses 60% percent less water, and uses 60% percent less energy than the conventional 

method. The qualitative evaluation of social impacts, such as the reduced construction time 

and increased flexibility, shows improved safety for drivers and workers.   

• Overall, micro-milling and thin overlay is a promising, sustainable pavement preservation 

alternative that will save money for transportation agencies if it is applied appropriately on 

pavements with sound structural conditions. 

The following are the selected papers and reports related to a cost-effective alternative 

raveling-only treatment – “micro-milling and thin overlay”.   

Selected Papers: 

• Gadsby, A. & Tsai, Y. (2020). “Environmental Impact of New Micro-Milling and Thin 

Overlay and Conventional Milling for Sustainable Pavement Preservation”, International 

Journal of Pavement Research and Technology. June 2020 

• Tsai, Y., Wu, Y. Geary, G.  (2018). “Sustainable and Cost-Effective Pavement Preservation 

Method: Micro-Milling and Thin Overlay.” Journal of Transportation Engineering, Part 

A: Systems, Volume 144, Issue 10, October 2018. 

• Tsai, Y., Wu, Y., Gadsby*, A., Hanes, S.  (2016). “Critical Assessment of the Long-term 

Performance and Cost-effectiveness of a New Pavement Preservation Method: Micro-

Milling and Thin Overlay.” Transportation Research Record, 2550: 8-14. Top 3%, 160 

papers out of 5600 papers accepted for early publication. 

• Tsai, Y., Wu, Y., and Lewis*, Z. (2014). “Full-Lane Coverage Micromilling Pavement-

Surface Quality Control Using Emerging 3D Line Laser Imaging Technology.” Journal of 

Transportation Engineering. Volume 140 Issue 2.  
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• Tsai, Y., Wu, Y., Lai, J., Geary, G. (2012) “Characterizing Micro-milled Pavement 

Textures Using RVD for Super-thin Resurfacing on I-95 Using A Road Profiler”, 

Transportation Research Record, No.2306, pp.144-150. 

• Lai, J., M. Hines, S., Wu, P.Y., and Jared, D. (2012). “Pavement Preservation with 

Micromilling in Georgia – Follow-Up Study”. Transportation Research Record. Vol. 2292, 

pp. 81-87. 

Selected Reports: 

• Tsai, Y, Wang, Z., Gadsby A. (2018) Evaluation of the Long-term Performance and Benefit 

of Using An Enhanced Micro-milling Resurfacing Method Draft final report, Georgia 

Department of Transportation.  

• Tsai, Y, Wu, Y., Lai, J. S. (2012) Validation of RVD-Based Micro-milled Pavement Surface 

Texture Quality Control Draft final report, Georgia Department of Transportation.  

• Lai, J. S. (2011) Assessing Techniques and Performance of Thin OGFC/PEM Overlay on 

Micro-milled Surface, Final Report, Georgia Department of Transportation.  
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3. Feasibility Study of Machine Learning for Raveling Classification 

This chapter presents the feasibility study of ML for automated raveling severity level 

classification for FDOT. Three ML models were applied to determine their feasibility on FDOT’s 

pavement data. These models were also used in Tsai et al. (2021).  The pavement data that are used 

in this study are the 3D range images that FDOT already collected using the laser crack 

measurement system (LCMS). This chapter includes the introduction of the data used in this study, 

the applied ML models, the feasibility study of the ML models on FDOT’s data, and the 

conclusions and recommendations. 

3.1 FDOT’s Pavement Data 

3.1.1 Data description 

The pavement data used in this study are 3D range images collected and provided by FDOT. 

The provided range images contain the quantized range value with a range of 0 to 255 at each pixel 

location. The provided data spreadsheet from FDOT includes the unique ID (including the Road 

ID and Image ID), GPS location, and crack rating, and the MPD and RI of each image data. These 

3D pavement images were collected from seven different sections in six routes (each with a unique 

Roadway ID). These sections were selected to ensure the diversity of the severity levels of raveling. 

Table 8 shows the general information of these selected sections. The range images provided by 

FDOT for this feasibility study are approximately 8.5 miles in total, as shown in Table 8.  

Table 8. Selected sections of the 3D pavement image. 

Roadway ID US 
Rated 

Lane 

PCS 

BMP 

PCS 

EMP 

PCS 

Crack 

Rating 

PCS 

Raveling 

PCS 

Patching 

Image 

BMP 

Image 

EMP 

Num. of 

Images 

26260000 75 R3 0 9.27 10 None None 0.014 0.984 257 

27090000 10 R2 8.942 11.1 4.5 L3 None 8.947 11.098 569 

29170000 10 R2 16.323 20.69 4.5 M3 2 18.616 20.691 549 

37120000 10 R2 5.861 15.099 9 S1 None 8.558 9.588 273 

37120000 10 R2 15.099 25.508 4.5 S2 None 19.000 20.984 525 

72001000 295 R3 13.2 14.2 10 None None 13.201 14.193 263 

72020000 95 R3 6.774 7.95 0 M3 None 6.776 7.920 303 

 

3.1.2 Data annotation 

Each pavement image was manually annotated with the raveling ratings by FDOT’s rater, 

which has four levels based on FDOT’s specification: None, Low, Medium, and Severe. The 

manual rating of the raveling severity served as the ground-truth for training and evaluating the 

ML models. FDOT has conducted two versions of raveling rating annotation for the data described 

in Section 5.1.1. The following discussion presents the difference between the two versions of 

annotation. The feasibility study in this chapter used Annotation Data Set 1. 
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Annotation Data Set 1: In this version, four FDOT raters participated in the rating of raveling 

severity, and each rater came up with an individual decision by looking at the 2D, 3D, and forward 

images (Figure 14) at the same time. The number of pavement images with each annotated 

predominant raveling severity is shown in Table 9. After the feasibility study, which is presented 

in Section 3.3.3, the following issues were identified: 

1. Raters focused on different types and regions of the images during the annotations.  

2. Different raters performed the rating individually and had different decisions, which caused 

the annotations to be inconsistent for some range images. 

3. Scarring may affect the decision of the raveling rating annotation. 

These issues can affect the quality of the ground-truth annotations for the training of ML 

models, which can cause the models to have degraded performance. 

 

 

Figure 14. An example of the range: 3D image (left), 2D image (middle), and forward image 

(right) of the pavement. 

Table 9. Statistics of the rating of predominant raveling severity in Annotation Data Set 1. 

Roadway ID None Low Medium Severe Total 

26260000 257 0 0 0 257 

27090000 20 51 329 148 548 

29170000 20 33 194 301 548 

37120000 16 250 224 308 798 

72001000 263 0 0 0 263 

72020000 23 0 54 201 278 

Total 599 334 801 958 2692 

 

Annotation Data Set 2: To resolve the issues in Annotation Data Set 1, multiple discussions 

were held with FDOT to identify a revised annotation practice that could better ensure the 

annotation quality of raveling ratings. The identified practice includes the following important 

items: 
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1. Record all raveling severity levels presented on each range image. 

2. Record the decided predominant raveling severity level of each range image. 

3. Focus mainly on the range image during annotation. This is due to using range images to 

train the ML models. 

4. Instead of performing the rating individually, the raters collaborate and aggregate their 

decisions to come up with a final raveling rating annotation. 

5. Following the practical survey process, scarring should not be considered as raveling when 

annotating the severity levels on range images. 

6. Record if the predominant raveling severity level is difficult to decide for each range image. 

This can provide additional and useful information for model analysis. 

The number of pavement images with each annotated predominant raveling severity is 

demonstrated in Table 10. The results of the feasibility study using Annotation Data Set 2 are 

presented in Section 3.3.4. 

Table 10. Statistics of the rating of predominant raveling severity in Annotation Data Set 2. 

Roadway ID None Low Medium Severe Total 

26260000 257 0 0 0 257 

27090000 27 197 324 0 548 

29170000 22 482 44 0 548 

37120000 137 347 279 8 798 

72001000 263 0 0 0 263 

72020000 23 0 224 31 278 

Total 729 1053 871 39 2692 

 

3.2 Methodology 

This section introduces the applied ML models for the feasibility study. Specifically, given a 

3D pavement image from FDOT, the ML models were trained to classify it into the severity of 

low, medium, or severe if raveling is presented. The model consists of two stages, the feature 

extraction stage and the classification stage based on the extracted features. The following 

subsections introduce the extraction of features and the ML classifiers. 

3.2.1 Macrotexture Features 

According to Tsai and Wang (2015), the macrotexture analysis of the 3D pavement images can 

provide good features for training ML models to perform raveling classification. These 

macrotexture features consist of two main categories, which are the statistical features of the whole 

image and the distributions of the statistical features on all small patches of an image. 

Category 1 Features: The first category of the macrotexture features, which are the statistical 

features of the whole image, aims at capturing the changes in the characteristics of surface texture 

under different raveling severity levels. In this feasibility study, six macrotexture features were 

adopted from Tsai and Wang (2015), which are shown in Table 11. 
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Table 11. Macrotexture features for pavement images. 

Feature Formula 

Arithmetic mean �̅� =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1
 

Standard deviation 𝜎 = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2

𝑁

𝑖=1
 

Root mean square 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

Skewness 𝑆𝑘 =
1

𝑁
∑

(𝑥𝑖 − �̅�)3

𝜎3

𝑁

𝑖=1
 

Kurtosis 𝐾 =
1

𝑁
∑

(𝑥𝑖 − �̅�)3

𝜎3

𝑁

𝑖=1
 

Interquartile range 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

N: The total number of 

pixels. 

𝑥𝑖: The 𝑖𝑡ℎ pixel value 

of the flattened image. 

𝑄𝑖: The 𝑖𝑡ℎ quartile of 

the pixel values. 

  

 

Category 2 Features: The second category of the macrotexture features, which is the 

distributions of the statistical features on small patches of an image, aims at capturing the local 

characteristics of a raveled surface. For each range image, the six features (Table 11) are calculated 

for each small image patch with a size of 75 by 75 pixels, which is approximately 1 ft by 1 ft. For 

each feature, the distribution is captured by fitting a density function to the histogram of the feature 

values from all patches. The density function is then discretized by 100 data points. Thus, a feature 

vector with a size of 600 is extracted in this category. 

The two categories of features are combined, which results in a total of 606 features for each 

range image. These features are then served as the inputs to the ML classifiers, which are 

introduced in the next section. 

3.2.2 Raveling Severity Level Classifier 

After the extraction of image features, the ML classifier is applied to perform the raveling 

severity level classification. Three ML models were applied, including Support Vector Classifier 

(SVC), Random Forest (RF), and Adaptive Boosting (AdaBoost) in the feasibility study because 
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of their previously demonstrated promising classification capability on pavement defects (Tsai et 

al., 2021; Wang et al., 2017). They are all supervised, shallow ML models. 

Support Vector Classifier (SVC) Model: In SVC, training examples are mapped to points in 

space to maximize the width of the gap between the two categories. Testing examples are then 

mapped into that same space and predicted to belong to a category based on which side of the gap 

they fall (Cortes and Vapnik, 1995).  

Random Forest (RF) Model: In RF, multiple decision trees are constructed during training, 

and these decision trees are ensembled together to achieve more accurate and stable predictions 

(Ho, 1998).  

Adaptive Boosting (AdaBoost) Model: In AdaBoost, a sequence of weak learners (i.e., 

models that are only slightly better than random guessing, such as small decision trees) are trained 

on repeatedly modified versions of the data. The predictions from all of them are then combined 

through a weighted majority vote to produce the final prediction (Freund and Schapire, 1997).  

Given the 606 macrotexture features (Section 3.2.1) as the inputs, these three models were 

trained on the data with annotated raveling ratings (Section 3.1.2) to predict the raveling severity 

level of each range image. In this project, all models are implemented with Python and Scikit-

learn, which is a free software machine learning library for Python, for research purposes. 

3.3 Evaluation of the ML Models on FDOT’s Data 

The work described in this section evaluated the ML models introduced in Section 3.2.2 using 

FDOT’s data to analyze its feasibility. This section first presents the preparation of data and the 

evaluation metrics. Then, the evaluation results and discussions are demonstrated. 

3.3.1 Data preparation 

 Three ML models (SVC, RF, AdaBoost) were used for raveling classification in this feasibility 

study. The data provided by FDOT were used for this feasibility study, and the data were randomly 

split into training, validation, and testing datasets without duplication. The training dataset was 

used to train the ML models, the validation dataset was used to tune the hyperparameters of the 

models, and the testing dataset served as a set of unseen data to evaluate the performance of the 

models. To ensure that the training, validation, and test datasets contained a sufficient portion of 

each severity level, a stratified random splitting technique was applied with a distribution of 70%, 

10%, and 20%, respectively. The same data splitting was applied to both Annotation Data Set 1 

and Annotation Data Set 2. The number of range images for each severity level in the three datasets 

is shown in Table 12 and Table

Table 12. The distribution of the datasets of Annotation Data Set 1. 

Dataset None Low Medium Severe Total 

Train 419 233 561 670 1883 

Validation 60 34 80 96 270 

Test 120 67 160 192 539 

Total 599 334 801 958 2692 

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Library_(computing)
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Table 13. The distribution of the datasets of Annotation Data Set 2. 

Dataset None Low Medium Severe Total 

Training 510 736 610 27 1883 

Validation 73 106 87 4 270 

Test 146 211 174 8 539 

Total 729 1053 871 39 2692 

 

3.3.2 Evaluation Metric 

The ML models were evaluated by their performance on the testing dataset. Conventional 

metrics for multiclass classification were used for the evaluation. The accuracy of correctly 

predicting the severity levels gives a general performance measurement of the models, which can 

be calculated as follows: 

 Accuracy  =  
Total number of correct predictions

Total number of testing samples
 

To have a closer analysis of the performance, the recall and precision of each target class 

𝑖{None, Low, Medium, Severe} was used to provide the performance measurement of the models 

on each raveling severity level, which can be calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

Where 𝑇𝑃𝑖, 𝐹𝑁𝑖, and 𝐹𝑃𝑖 are the true positives (TPs), false negatives (FNs), and false positives 

(FPs) of severity level 𝑖, respectively. 

3.3.3 Evaluation Results and Discussions on Annotation Data Set 1 

Table 14 demonstrates the evaluation results of different ML models on Annotation Data Set 

1 and Annotation Data Set 2. In this section, the results on Annotation Data Set 1 (i.e., the middle 

column of Table 14) are discussed. The table shows that both the SVC and RF achieved around 

80% accuracy in classifying the predominant raveling severity of pavement images. 

 

Table 14. The accuracy of different annotation data sets. 

Model Annotation Data Set 1 Annotation Data Set 2 
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SVC 77.9% 84.6% 

RF 79.1% 86.6% 

AdaBoost 57.0% 66.2% 

 

Figure 15 shows the range images where the raveling severity levels were correctly predicted 

by the RF model. Among the three ML models, AdaBoost had the lowest accuracy of only 57%. 

This indicates that AdaBoost is not a suitable model for pavement raveling classification. On the 

other hand, RF achieved the best performance. One potential reason is that a total of 606 features 

were used and RF is especially effective when there is a large number of features. These results 

demonstrate that the ML models are feasible for FDOT’s pavement data with suitable ML 

classifiers, such as RF and SVC. 

 

Figure 15. Cases where the RF model correctly predicted the raveling severity level. 

 

To identify what should be done in the future for further improvement, a closer analysis was 

conducted for the RF model given that it had the best accuracy. Table 15 presents the confusion 

matrix of RF, along with the recall and precision values of each raveling severity level. From the 

table, it can be seen that a large portion of errors occurred in the confusion between Medium and 

Severe raveling. Therefore, the range images were evaluated that had the annotated predominant 

raveling severity as medium and severe. It was found that the major issue with these data is the 

inconsistency of the raveling rating annotation. That is, the standard for deciding the predominant 

level is not consistent among all range images and all raters. As shown in Figure 16, both range 

images were annotated with a raveling severity of severe while the pavement characteristics were 

very different. Figure 17 shows that the range images were annotated differently even when they 

had similar pavement characteristics. 
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Table 15. The confusion matrix of RF trained with Annotation Data Set 1. 

Confusion Matrix    

          Predicted 

Actual 
None Low Medium Severe 

Recall Precision 

None 117 3 1 0 0.97 0.94 

Low 5 48 11 3 0.72 0.73 

Medium 0 12 93 54 0.58 0.66 

Severe 0 0 37 151 0.79 0.73 

 

 

Figure 16. The inconsistency of raveling rating annotation in Annotation Data Set 1. The  

predominant level selected based on the majority annotations from four raters (shown with 

different colors on each image). If annotations from all raters are different, the predominant level 

follows the rating from the first rater. 
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Figure 17. The inconsistency of raveling rating annotation in Annotation Data Set 1. 

It was also noted that the inconsistency of annotation occurred more when the ratings from 

different raters were very diverse, such as the right image in Figure 16. These inconsistencies can 

be caused by the raters performing the rating individually by looking at different types and regions 

of the images shown in Figure 14. Furthermore, scarring on the pavement, which should not be 

considered as raveling, also affects the annotation of some images. An example of the scarring can 

be seen in Figure 18. The issues above can cause the degradation of annotation quality, which 

further leads to a degradation of the performance of ML models. Therefore, the most critical step 

for future improvement is to improve the annotation quality. Through a discussion with FDOT, a 

revised annotation practice was identified that can better ensure the annotation quality, as 

described in Section 3.1.2. 
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Figure 18. The effect of scarring on the raveling rating annotation in Annotation Data Set 1. 

3.3.4 Evaluation Results and Discussions on Annotation Data Set 2 

In this section, the evaluation results on Annotation Data Set 2 (i.e., the last column of Table 

14) are discussed. Two important observations can be made from the table: 

1. The quality of annotation largely affects the performance of the raveling classification 

models. From Table 14, it can be seen that with the revised annotation, all models trained 

with Annotation Data Set 2 achieved around 7% higher accuracy than models trained with 

Annotation Data Set 1. 
2. Among the three models, RF achieved the best performance in both Annotation Data Set 1 

and 2. This indicates that RF is the most suitable ML classifier for the automated raveling 

classification task based on FDOT’s data. 

Table 16 presents the confusion matrix for RF trained with Annotation Data Set 2. Figure 

19 shows several examples that raveling severity levels were correctly predicted by the RF model. 

From the confusion matrix, it is clear that the model achieved better recall and precision values 

compared to the same model trained with Annotation Data Set 1. This demonstrates the importance 

of annotation quality in the classification of raveling severity levels. One major problem is the 

confusion between Low and its nearby severity levels, which is primarily caused by the ambiguity 

of the adjacent severity levels. Although Severe raveling is much easier to identify, the decision 

between None and Low, or Low and Medium, can be challenging through visual inspection on 

pavement images when the raveling condition is at the boundary of adjacent severity levels. Figure 

20 shows several cases that the raveling severities are at the boundary of Low and Medium, and 
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the RF model did not generate correct predictions. Future studies can explore more systematic and 

quantitative labeling methods, such as incorporating calculated macrotexture features with visual 

inspections. Another future improvement is to include more data with the severe level or use over-

sampling techniques to improve the model’s performance on the raveling with severe severity. 

Table 16. The confusion matrix of RF trained with Version 2 Annotation. 

 

 

 

Figure 19. Cases where the RF model correctly predicted the raveling severity level. 
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Figure 20. Challenging cases where the RF model did not generate correct predictions. 

3.4 Preliminary Study on Deep Learning 

This section describes preliminary studies on applying deep learning (DL) for FDOT raveling 

classification using Annotation Data Set 2. The same data splitting in Table 13 was used to train 

and evaluate the DL models. 

3.4.1 Deep learning models 

In this study, convolution neural networks (CNNs) were used to perform raveling classification. 

The major component of the CNNs is the convolutional (Conv) layer, which consists of a set of 

trainable kernels. The kernels of the Conv layers are similar to filters that extract features from the 

images. However, instead of having fixed weights that extract specific features, the kernels of the 

Conv layers consist of trainable weights that will be automatically adjusted to extract the most 

suitable features learned from the training data. Other than the Conv layers, the network also 

consists of pooling layers and activation functions. Here, the maximum pooling (Maxpool) layer 

and the rectified linear unit (ReLU) activation function were used.  

Various architectures of CNNs have been developed in recent years. VGG (Simonyan and 

Zisserman, 2014) is an early developed network for image classification tasks. Although the VGG 

backbone may not achieve the current state-of-the-art performance, the VGG backbone is still 

popular because of its simplicity. The ResNet (He et al., 2016) largely improved the performance 

of CNNs. With a deeper backbone made possible by the residual blocks, the ResNet backbone can 

learn and extract more complex features to improve the performance. In this study, the 16-layer 

VGG (VGG16) and 50-layer Resnet (Resnet50) were trained and evaluated using Annotation Data 

Set 2 for raveling classification. 
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3.4.2 Training settings 

To train the models, the Adam optimizer was used, with cross-entropy loss and batch size of 2 

and 30 epochs. The Adam optimizer has an initial learning rate of 0.0001, and a step learning rate 

schedule was used, in which the learning rate was halved every 5 epochs. Early stopping was 

applied to select the weights of the model that obtained the best performance on the validation 

dataset during training. The selected weights were then used for the evaluation stage. Randomly 

flipping horizontally and vertically with a probability of 0.5 was used for data augmentation to 

prevent the models from overfitting the training data. Due to the high computation and memory 

requirements for training DL models, the input range images were downsized to 512 x 512 in this 

study. 

3.4.3 Evaluation Results 

Table 17 shows the accuracy of the two applied models. As expected, ResNet50 achieved a 

higher accuracy because of its deeper architecture and residual connections. Compared to shallow 

ML models in Table 14, ResNet50 did improve the accuracy, but the improvement is only around 

1%. Comparing the confusion matrix of ResNet50 (Table 18) and RF (Table 16), it can be seen 

that the DL models have similar issues as the traditional ML models, which were the ambiguity of 

the adjacent severity levels and too few images with the severe level.  

Future studies can be explored and designed using more advanced CNNs and finetuning 

techniques to further improve the performance of DL models. Some hyper-parameters that can be 

finetuned include the types of optimizers and loss functions, the learning rate and decay schedule, 

and different data augmentation methods. Oversampling techniques can also be explored to 

overcome the issue of having too few images with severe raveling severity during training. 

Furthermore, studies on advanced texture classification using deep learning can be sought and 

reviewed to adopt potential methods for improvement. 

Table 17. The confusion matrix of RF trained with Version 2 Annotation. 

Model Accuracy 

ResNet50 87.9% 

VGG16 83.9% 
 

Table 18. The confusion matrix of ResNet50 trained with Annotation Data Set 2. 

Confusion Matrix    

          Predicted 

Actual 
None Low Medium Severe Recall Precision 

None 145 1 0 0 0.99 0.96 

Low 6 189 16 0 0.90 0.83 

Medium 0 36 137 1 0.79 0.87 

Severe 0 1 4 3 0.38 0.75 
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From the test outcomes, the best traditional ML model is RF with 86.6% accuracy and the best 

DL model is ResNet50 with 87.9% accuracy. Although DL has slightly better accuracy, the 

difference is not significant. Also, the application of DL models requires Graphics Processing 

Unit (GPU) resources, which further requires the installation and maintenance of necessary 

software, such as CUDA. During the evaluation, the DL models typically require around one 

minute to process the testing dataset (around 500 images) with a single NVIDIA GeForce RTX 

2080Ti GPU, while the traditional ML models typically require around 10 seconds with CPU 

resources. In considering the above trade-off, it is recommended to use traditional ML, specifically 

the RF model, for the subsequent FDOT’s automatic raveling classification implementation. 
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4. The Proposed Raveling Rating and Treatment Trigger for FDOT 

In this section, the design of raveling condition rating and treatment trigger for FDOT is 

proposed. The recommended design rationale for the raveling rating and treatment trigger is 

described. Then, the procedure to set up the trigger ratings for treatment decisions is presented. 

4.1 The Design Rationale 

First, the Crack Rating (CR) used in FDOT’s current practice was divided into three individual 

distress, i.e., Cracking, Raveling, and Patching, each with its own rating. Next, the raveling rating 

and treatment decision trigger were developed based on the concept of reverse engineering. 

Specifically, the treatment trigger was determined by considering the potential treatment decision. 

Then, the deduction table for the raveling condition was designed using the decided treatment 

trigger and other factors, such as raveling affected area and severity. The design presented in this 

report is structured to allow use of individual pavement distress deducts (e.g. raveling, cracking, 

etc.), reflecting individual distress condition, and the combined overall rating condition for making 

a more informed treatment decision. To obtain the overall deduct from the individual deducts, it is 

assumed that individual deducts are independent. This is the same as current FDOT practice which 

assume raveling area and cracking area are independent in deduct and rating computation. 

Therefore, the overall deduct can be obtained by either summing the individual deducts or selecting 

the maximum individual deduct.  

4.1.1 Design the treatment decision and trigger 

The proposed treatment decision and trigger table consist of two levels of criteria: the overall 

pavement condition deduct and the individual distress deduct. An example of the proposed 

treatment decision and trigger table is shown in Table 19. As shown in the table, the overall deduct 

serves as the first level of decision-making. Then, the individual deducts of each distress were 

taken into consideration to obtain the final treatment decision. Here, to make it similar to current 

FDOT practice, it is recommended that a deduct range of 0~10 and a rating < 6.5 (or a deduct >
3.5) be used as the main treatment trigger (i.e., pavement with > 3.5   deduct is considered 

deficient). The same design rationale can be flexibly applied to different rating scales (e.g., 0~100) 

and spatial units (e.g., 5m, 1mile, etc.) if FDOT plans to have finer rating scales in the future. 

To determine the adequate treatment criteria in Table 19, the data of two projects with FC-5 

only treatment provided by FDOT were utilized. The important information of these two cases is 

shown in Table 20. The first project is on I-75 in Alachua County (Roadway ID: 26260000), which 

is shown in the upper portion of Table 20. In this project, the overlay was applied in 2002 and the 

section was resurfaced again in 2017. This is a normal lifespan for most FC5 surfaces, so this 

would be considered a successful thin overlay. The second project is on I75 in Marion County 

(Roadway ID: 36210000), which is shown in the lower portion of Table 20. In this project, there 

was more extensive cracking than what was present in the Alachua County project. This overlay 

lasted 9-10 years so that it failed prematurely given the average life of FC5 surfaces is 14 years. 

The year that FC-5 only was applied is labeled in yellow in Table 20. 

These cases provided the initial treatment criteria for FC-5 only in Table 19 based on the 

following criteria: 
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1. Following the overall deduct trigger (i.e., > 3.5 deduct), the raveling deduct for FC-5 

treatment criteria is also set to > 3.5. 

2. There should be low cracking and rutting for FC-5 only treatment. Since the FC-5 only 

project in Alachua County was more successful, the crack and rut ratings in that project 

were used. Specifically, the crack and rut deduct for FC-5 treatment criteria is set to ≤ 2. 

*Note: If raveling is noted in years 2 or 3, the likelihood of an early failure due to raveling is high 

and the section should be closely monitored. In this case, the FC-5 only treatment can potentially 

be applied after close assessment, even if the raveling deduct is not greater than 4. 

Table 19. An example of the treatment decision table. 

Overall Deduct Individual Deduct Treatment 
 Factor Criteria  

≤ 3.5 - - No treatment 

> 3.5 

Raveling > 3.5* 

FC5 only 
Cracking ≤ 2 

Rutting ≤ 2 

... ... 

Raveling > 3.5 
Resurfacing (with 

deeper milling depth 

than FC5 only) 

Cracking > 2 

Rutting > 2 

... ... 

* Please see the additional note on this criterion above the table. 
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Table 20. Two projects with FC-5 only treatment in FDOT. 

Data 

Tested 

Roadway 

ID 

Crack 

Rating 
Rut Rating 

Ride 

Rating 
Raveling 

Pavement 

Age 

1/11/2001 26260000 9.5 8 8.2 M1 7 

1/10/2002 26260000 10 10 8.3 NULL 1 

1/10/2003 26260000 10 10 8.4 NULL 2 

1/7/2004 26260000 10 10 8.5 NULL 3 

1/11/2005 26260000 10 10 8.3 NULL 4 

1/10/2006 26260000 9.5 9 8.4 NULL 5 

1/11/2007 26260000 8.5 10 8.3 NULL 6 

1/9/2008 26260000 8.5 10 8.2 NULL 7 

9/15/2009 26260000 8.5 9 8.3 NULL 8 

8/18/2010 26260000 8.5 9 8.1 L1 9 

8/16/2011 26260000 8.5 9 7.9 L1 10 

1/12/2004 36210000 1 8 7.8 M2 NULL 

1/12/2005 36210000 10 10 8.3 NULL 1 

1/12/2006 36210000 10 9 8.2 NULL 2 

1/12/2007 36210000 10 10 8.3 NULL 3 

1/12/2008 36210000 9 9 8 NULL 4 

12/1/2009 36210000 8 9 8.2 NULL 5 

11/8/2010 36210000 7.5 9 8.1 L1 6 

11/28/2011 36210000 7.5 8 7.9 S1 7 

12/10/2012 36210000 6.5 9 7.9 S2 8 

12/9/2013 36210000 6.5 8 7.7 S2 9 

12/2/2014 36210000 4.5 8 7.5 S3 10 

 

4.1.2 Design the deduct tables 

For each distress, an individual deduct table can be set up based on its extent, severity (if 

applicable), and the trigger point designed in the treatment decision table. This is similar to the 

deduct table of Crack Rating in FDOT’s current practice. An example of the deduct table for 

raveling is shown in Table 21. In this initial deduct table, the treatment trigger designed in the 

previous step (i.e., raveling deduct > 3.5) is used with the cases shown in Table 20 to design the 

deduct values. The design rationale is as follows: 

1. Low raveling with greater than 50% affected area should be considered as deficient. 

Therefore, a deduct of 4 is assigned to low raveling with 51%+ area. 

2. For the project in Alachua County (Table 20), the raveling severity was M1 when FC-5 

only was applied. Following this case, a deduct of 4 is also assigned in medium raveling 

with 1%~5% area. 
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3. In the deduct table, higher affected area and severity should both lead to a higher deduct 

value. Here, one deduct difference for one level higher in the affected area and three deduct 

difference for one level higher in the severity were applied. 

Table 21. An example of the deduct table for raveling. 

Percentage of the 

affected area 
Raveling Severity 

 Low Medium Severe 

01 ~ 05 1 4 7 

06 ~ 25 2 5 8 

26 ~ 50 3 6 9 

51+ 4 7 10 
 

4.2 Refine the trigger ratings for treatment decision 

Although the initial treatment criteria and deduct values were established based on the two 

cases of FC-5 only treatment and engineering judgement, it is recommended that more cases (both 

successful and unsuccessful ones) be studied for determining the more suitable thresholds for 

applying FC-5 only resurfacing. The following steps can be performed in future work to identify 

more reasonable treatment criteria and deduct values:  

1. Identify several cases with the following different treatment decisions from FDOT: 

a. Isolated treatment (e.g., quick patch for safety reasons) when the extent of raveling 

is small but quite severe, or the raveling is not severe but has a large extent without 

other major distresses such as cracking and rutting. 

b. FC-5 resurfacing only where raveling is present but without other major distresses 

such as cracking and rutting. 

c. Traditional resurfacing where there are both raveling and other distress types. 

2. Then, study the pavement distress conditions on these cases, including: 

a. Severity level  

b. Affected area 

c. Duration (i.e., how long does raveling occur) 

3. Finally, establish the treatment decision and deduct trigger based on the above factors. 

4.3 Design the spatial unit for pavement condition survey 

Instead of using the current pavement condition survey unit the same as the project treatment 

unit (say, 10 miles), it is recommended that a finer pavement condition survey unit be used. With 

the advancement of sensor technology, FDOT can collect 2D/3D pavement images at a 15-ft (5m) 

interval. Thus, this 15ft value is recommended as the fundamental pavement condition survey 

spatial unit. All distresses would be automatically and semi-automatically extracted at this level. 

They can then be aggregated to different spatial units (e.g., 100-ft, 0.1 mile and 1 mile) to support 

different pavement maintenance and rehabilitation needs. For example, this 15-ft fundamental 

level pavement condition survey data can be mapped out to determine the appropriate coring 

locations for determining the appropriate milling depth. It can also be used to determine the optimal 
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maintenance and rehabilitation sections with homogeneous pavement conditions. For example, 

one may find one 200-ft section with poor condition requiring a deep patch while the remaining 

one mile is still in a good condition. Similarly, the pavement sections with raveling problems can 

be segmented for application of FC-5 resurfacing only to save maintenance and rehabilitation cost 

for FDOT. There are many other potential opportunities to take advantage of this high-resolution 

pavement condition survey data to optimize maintenance and rehabilitation for FDOT in the future. 
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5. Conclusions and Recommendations 

This research first conducted a literature review on practices of pavement rating computation 

and treatment decisions in FDOT and other State DOTs with a special focus on raveling. The 

following were identified conclusions and research needs: 

1. In FDOT, a rating system separating cracking and raveling is needed, which can 

proactively target the raveling treatment needs before rapid deterioration of OGFC sets in. 
Currently, CR < 6.5 is the primary threshold to trigger treatment in FDOT’s practice. However, 

including raveling and patching in CR makes the maintenance and rehabilitation decision 

difficult. Therefore, new treatment decision thresholds separating cracking and raveling are 

also needed. In this case, more cost-effective treatments (e.g., FC-5 only treatment) can be 

applied.  

2. The survey and classification of raveling in major transportation agencies are conducted 

manually through in-field visual inspection methods, which are error-prone, time-

consuming, and labor-intensive. Therefore, there is a need to develop an automated 

raveling detection and classification method to overcome these problems. 

3. The appearance of raveling on digital images is susceptible to ambient lighting conditions. 

To overcome this issue, using 3D pavement data is a better alternative for capturing 

pavement surface texture. A more reliable automated raveling detection and classification 

method can be developed using the 3D pavement data. 

4. A fixed raveling survey spatial unit is not defined in some DOTs (e.g., FDOT, TxDOT). 

In this case, the pavement is rated based on a whole section, which is usually too large to 

obtain precise localization information for raveling. Currently, FDOT’s 3D pavement 

image size is 12ft (4m) by 15ft (5m) in transverse and longitudinal directions respectively. 

With detailed 3D pavement data, fixed and multi-scale survey units (e.g., 15ft/5m, 100ft, 

0.1 miles or 1 mile, etc.) can be generated with proper data aggregation methods. This will 

help DOTs to react to early raveling more quickly and apply localized treatments. 

Next, a literature review on automated raveling detection and classification methods was also 

conducted. The results were as follows: 

1. Nontrainable methods for automated raveling detection and classification have several 

limitations. First, many methods are only capable of detecting raveling but not its severity 

level classification. Second, many of the indicators require certain assumptions about the 

pavement texture. Third, the validation of the methods was very limited and not systematic. 

Finally, many methods require frequent parameter tuning and adjustment based on 

empirical experiments. 

2. By utilizing ML techniques to train a more robust model using real-world 3D pavement 

data that performs both raveling detection and classification, Tsai & Wang (2015) and Tsai 

et. al (2021) overcame most of the problems in nontrainable methods. This method is based 

on traditional ML models, which require a predefined feature extraction stage to reduce the 

complexity of the data. 

Based on the literature review, a feasibility study on using ML models (SVC, RF, AdaBoost) 

for automated raveling severity classification on FDOT’s pavement data was conducted. Based on 

the feasibility study, the following conclusions were developed: 
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1. It was found that the annotation quality issue in Annotation Data Set 1 caused degraded 

performance in ML models. Therefore, Annotation Data Set 2 was developed based on a 

revised annotation practice that can better ensure the annotation quality of raveling ratings. 

The analysis showed that all ML models achieved a better performance by training with 

Annotation Data Set 2, which indicates that the quality of annotation on raveling severity 

is critical for improving the performance of ML models. 

2. With the provided quantized range images and around 8.5 miles of data, the outcomes of 

the study show that the ML models are feasible for per-image raveling classification on 

FDOT’s pavement data with suitable ML classifiers. RF has the best potential to be used 

for implementation in the future given its high accuracy achieved in the feasibility study. 

The RF classifier achieved a testing accuracy of 86.6% using Annotation Data Set 2. Future 

studies need to include more data with the severe classification level or use over-sampling 

techniques to improve the model’s performance on raveling with severe severity. 

3. A preliminary study was also conducted on using DL for raveling severity classification 

on FDOT’s pavement data. Two popular CNNs were used in this study, which were the 

VGG16 and ResNet50 models. Although DL has slightly better accuracy (ResNet50 

achieved 87.9% accuracy), the difference was not significant. Also, the application of DL 

models requires GPU resources and has a longer inference time. Therefore, it is 

recommended to use traditional ML, specifically the RF model, for subsequent 

implementation. 

Based on the technology review and ML feasibility study, the following were the preliminary 

recommendations for FDOT: 

1. For the data collection devices, it is recommended to use the 3D line laser imaging system, 

that FDOT already has, to collect high-resolution pavement surface data to leverage the 

already collected 3D pavement data collected by FDOT. FDOT can also add value to these 

already collected 3D pavement data to cost-effectively extract raveling. 3D pavement data 

have the advantage of better capturing pavement surface texture because they are 

independent of ambient lighting conditions and can be accurately collected at highway 

speed. That is, a more reliable automated raveling detection and classification method can 

be developed using the 3D pavement data. Therefore, the resources can be optimized by 

utilizing the 3D pavement data that FDOT already collected using the Laser Crack 

Measurement System (LCMS). 

2. The feasibility study of ML models shows promising outcomes (86.6% testing accuracy in 

Annotation Data Set 2) in automated raveling classification on 3D pavement data. It is 

recommended to use the RF model for future implementation given its high accuracy 

achieved in the feasibility study. 

3. With automated raveling severity classification using FDOT 3D pavement images, FDOT 

will be able to cost-effectively identify and locate raveling with a much better spatial 

resolution (e.g., 15-ft, 100-ft, 0.1 mile). This will enable FDOT to cost-effectively identify 

the roadway sections for resurfacing by replacing only the FC-5 to save substantial 

maintenance and rehabilitation cost. 

In addition, the following directions were recommended for further improving the ML models 

and for future implementation: 
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1. The design and selection of pavement texture features are important for improving the 

accuracy of automated raveling classification models. Additional features, such as Gray 

Level Co-occurrence Matrix (GLCM) (Nanni et al., 2013), can be explored in the future. 

In addition, studying how each feature contributes to the prediction of raveling severities 

in ML classifiers could be a worthwhile future work. 

2. Currently, the ML model predicts the predominant raveling severity for each range image. 

However, multiple severities of raveling can occur on a range image at the same time. The 

information for all presented raveling severities on the same 15-ft-long image could be 

used to modify and potentially improve the current models. 

3. For future implementation, the following items are required: 

a. Currently, the ML models are trained and evaluated with a small set of data (8.5 

miles) for research purposes. To better validate the feasibility of the ML models for 

implementation, a larger-scale validation dataset with diverse conditions will be 

required. 

b. In the feasibility study, Python libraries and codes already available were used for 

research purposes only. This tool is efficient and sufficient for this feasibility study 

to choose the right ML model. However, for future implementation, suitable 

programming language (e.g., C++), libraries, and code, that can be used for 

practical software development and deployment need to be explored. 

c. A spatial smoothing and clustering algorithm is required. After the ML models 

predict the raveling severity of each 15 ft 3D pavement image, the spatial continuity 

of the distribution of raveling should be considered to remove erroneous predictions 

or trigger a manual review for the quality control. 

d. Software developed for implementation, which consists of data preparation, 

processing, raveling prediction, spatial smoothing procedures, the QA/QC tool, and 

the reporting tool. The QA/QC tool is used to streamline the validation and 

correction of automatic raveling classification outcomes. In addition, how these 

processes should be integrated into FDOT’s overall data analysis workflow need to 

be further considered. 

e. A function, using automatic raveling detection and classification outcomes along 

with other pavement distress conditions (e.g., cracking, rutting, etc.), to identify 

and segment the roadway sections that the FC-5-only resurfacing can be applied to 

save substantial maintenance and rehabilitation money for FDOT. 

Finally, in this research, the authors have proposed raveling treatment criteria and condition 

ratings for FDOT. The proposed treatment decision table consists of two levels of criteria: the 

overall pavement condition deduct and the individual distress deduct (such as raveling, cracking, 

rutting, etc.). The initial treatment criteria in the treatment decision table (Table 19) were designed 

based on the current rating practices in FDOT and the case study on two FC-5-only projects. Then, 

the initial raveling deduct table is proposed (Table 21). The initial deduct values in the table are 

proposed based on the designed treatment criteria, the affected area and severity level of raveling, 

and the two FC-5-only projects. Although the initial treatment criteria and deduct values of 

raveling have been established based on two cases of FC-5 only project and engineering judgment, 

it is recommended that more cases (both successful and unsuccessful ones) be studied for 

determining more suitable thresholds for applying FC-5 only resurfacing.  



53 
 
 

References 

 
ALDOT. (2017). Level of Service Condition Assessment: Data Collection Manual, Alabama 

Department of Transportation. 

 

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. 

(2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292. 

 

Caltrans (2017). Automated Pavement Condition Survey Manual, California Department of 

Transportation. 

 

Chang, C., Saenz, D., Nazarian, S., Abdallah, I. N., Wimsatt, A., Freeman, T., & Fernando, E. G. 

(2014). TXDOT guidelines to assign PMIS treatment levels (No. 0-6673-P1). Texas. Dept. of 

Transportation. Research and Technology Implementation Office. 

 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. 
 

FDOT (2017) Flexible Pavement Condition Survey Handbook, Florida Department of 

Transportation. 

 

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and 

an application to boosting. Journal of computer and system sciences, 55(1), 119-139. 
 

Gadsby, A. & Tsai, Y. (2020) Environmental Impact of New Micro-Milling and Thin Overlay and 
Conventional Milling for Sustainable Pavement Preservation, International Journal of Pavement 
Research and Technology. https://doi.org/10.1007/s42947-020-0029-9 
 
GDOT (2017) Pavement Condition Evaluation System Manual, Georgia Department of 
Transportation. 
 
Geary, G. M., Tsai, Y., & Wu, Y. (2018). An Area-Based Faulting Measurement Method Using 
Three-Dimensional Pavement Data. Transportation Research Record, 2672(40), 41-49. 

 

Hadjidemetriou, G. M., & Christodoulou, S. E. (2019). Vision-and entropy-based detection of 

distressed areas for integrated pavement condition assessment. Journal of Computing in Civil 

Engineering, 33(3), 04019020. 

 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 

 

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE 

transactions on pattern analysis and machine intelligence, 20(8), 832-844. 
 

Hoang, N. D. (2018). An artificial intelligence method for asphalt pavement pothole detection 

using least squares support vector machine and neural network with steerable filter-based feature 

extraction. Advances in Civil Engineering, vol. 2018, Article ID 7419058, 2018. 

 



54 
 
 

Hoang, N. D. (2019). Automatic detection of asphalt pavement raveling using image texture based 

feature extraction and stochastic gradient descent logistic regression. Automation in 

Construction, 105, 102843. 

 

Hsieh, Y. A., & Tsai, Y. J. (2020a). Machine Learning for Crack Detection: Review and Model 

Performance Comparison. Journal of Computing in Civil Engineering, 34(5), 04020038. 

 

Hsieh, Y. A., & Tsai, Y. J. (2020b). Automated Asphalt Pavement Raveling Detection and 

Classification Using Convolutional Neural Network and Macrotexture Analysis. Accepted for 

presentation at the Transportation Research Board (TRB) 2021 Annual Meeting. 

 

Jiang, C., & Tsai, Y. J. (2016). Enhanced crack segmentation algorithm using 3D pavement data. 

Journal of Computing in Civil Engineering,30(3), 04015050. 

 
Jiang, C., Tsai, Y., & Wang, Z. (2016). Use of three-dimensional pavement surface data to analyze 
crack deterioration: Pilot study on Georgia State Route 26. Transportation Research Record,2589
(1), 154-161. 

 

Lai, J., M. Hines, S., Wu, P.Y., & Jared, D. (2012). Pavement Preservation with Micromilling in 

Georgia – Follow-Up Study. Transportation Research Record: Journal of the Transportation 

Research Board, Vol. 2292, pp. 81-87 

 
Laurent, J., Hébert, J. F., Lefebvre, D., & Savard, Y. (2012a). Using 3D laser profiling sensors for 
the automated measurement of road surface conditions. In 7th RILEM international conference on 
cracking in pavements (pp. 157-167). Springer, Dordrecht. 
 
Laurent, J., Hébert, J. F., Lefebvre, D., & Savard, Y. (2012b). High-speed network level road 
texture evaluation using 1mm resolution transverse 3D profiling sensors using a digital sand patch 
model. In Proceedings of the 7th International Conference on Maintenance and Rehabilitation of 
Pavements and Technological Control, Auckland, New Zealand (pp. 28-30). 

 
Li, B., Wang, K. C., Zhang, A., Yang, E., & Wang, G. (2020). Automatic classification of 
pavement crack using deep convolutional neural network. International Journal of Pavement 
Engineering,21(4), 457-463. 
 
Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., & Omata, H. (2018). Road damage detection 
and classification using deep neural networks with smartphone images. Computer‐Aided Civil and 
Infrastructure Engineering, 33(12), 1127-1141. 
 
Mathavan, S., Rahman, M. M., Stonecliffe-Jones, M., & Kamal, K. (2014). Pavement raveling 
detection and measurement from synchronized intensity and range images. Transportation 
Research Record, 2457(1), 3-11. 
 

McRobbie, S. & G. Furness (2008). Automated Detection of Fretting on HRA Surfaces, TRL 

Published Project Report 229, Transport Research Laboratory, Wokingham, Berks, U.K., 16 pp.  

 



55 
 
 

McRobbie, S., J. Iaquinta, A. Wright, P. Trumper, & J. Kennedy (2012). Development and 

Validation of Algorithms for the Automatic Detection of Fretting Based on Multiple Line Texture 

Data, Research into Pavement Surface Disintegration. Phase 2 Interim Report, Transport Research 

Laboratory, Wokingham, Berks, U.K.  
 
McRobbie, S., C. Wallbank, K. Nesnas, & A. Wright (2015). Use of High-Resolution 3-D Surface 
Data to Monitor Change over Time on Pavement Surfaces, Research into Pavement Surface 
Disintegration. Phase 3, Transport Research Laboratory, Wokingham, Berks, U.K. 
 
Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E., & Barrier, T. (2013). Different approaches for 
extracting information from the co-occurrence matrix. PloS one, 8(12), e83554. 
 

ODOT (2019) Pavement Data Condition Manual, Oregon Department of Transportation. 
 
Scott, P., K. Radband, M. Zohrabi, P. Sanders, S. McRobbie, & A. Wright (2008). Measuring 
Surface Disintegration (Raveling or Fretting) Using Traffic Speed Condition Surveys, 7th 
International Conference on Managing Pavement Assets, Calgary, AB, Canada, June 23–28, 2008. 
 
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556. 

 
Tsai, Y. C., & Chatterjee, A. (2018). Pothole detection and classification using 3D technology and 
watershed method. Journal of Computing in Civil Engineering,32(2), 04017078. 

 

Tsai, Y. C., Jiang, C., & Huang, Y. (2014a). Multiscale crack fundamental element model for real-
world pavement crack classification. Journal of Computing in Civil Engineering,28(4), 04014012. 

 

Tsai, Y. C. J., & Li, F. (2012). Critical assessment of detecting asphalt pavement cracks under 
different lighting and low intensity contrast conditions using emerging 3D laser technology. 
Journal of Transportation Engineering,138(5), 649-656. 

 
Tsai, Y. J., Li, F., & Wu, Y. (2013). A new rutting measurement method using emerging 3D line-
laser-imaging system. International Journal of Pavement Research and Technology,6(5), 667. 
 
Tsai, Y. J., & Wang, Z. (2015). Development of an asphalt pavement raveling detection algorithm 

using emerging 3D laser technology and macrotexture analysis (No. NCHRP IDEA Project 163). 

 

Tsai, J. Y., Wang, Z., & Gadsby, A. (2019). Evaluation of the Long-Term Performance and Benefit 
of Using an Enhanced Micro-Milling Resurfacing Method [GDOT 13-20] (No. FHWA-GA-18-
1320). Georgia. Department of Transportation. Office of Performance-Based Management & 
Research. 
 
Tsai, J. Y. C., Wang, Z. H., & Li, F. (2015). Assessment of rut depth measurement accuracy of 
point-based rut bar systems using emerging 3d line laser imaging technology. Journal of Marine 
Science and Technology, 23(3), 322-330. 

 



56 
 
 

Tsai, Y. J., Wu, Y., & Ai, C. (2011, January). Feasibility study of measuring concrete joint faulting 
using 3d continuous pavement profile data 2. In Proceedings of the Transportation Research 
Board 90th Annual Meeting, Washington, DC, USA (pp. 23-27). 
 
Tsai, Y., Wu, Y., Gadsby*, A., Hanes, S. (2016). Critical Assessment of the Long-term 
Performance and Cost-effectiveness of a New Pavement Preservation Method: Micro-Milling and 
Thin Overlay Journal of The Transportation Research Record, National Academy of Sciences, 
Washington, DC., 2016 (2550): 8-14. 
 
Tsai, Y., Wu, Y. Geary, G. (2018). Sustainable and Cost-Effective Pavement Preservation Method: 
Micro-Milling and Thin Overlay, Journal of Transportation Engineering, Part A: Systems, Volume 
144, Issue 10, October 2018. 
 

Tsai, Y, Wu, Y., Lai, J. S. (2012) Validation of RVD-Based Micro-milled Pavement Surface 

Texture Quality Control, Draft final report, Georgia Department of Transportation.  

 
Tsai, Y., Wu, Y., Lai, J., Geary, G. (2012) Characterizing Micro-milled Pavement Textures Using 
RVD for Super-thin Resurfacing on I-95 Using A Road Profiler, Journal of The Transportation 
Research Record, No.2306, pp.144-150. 
 
Tsai, Y., Wu, Y., and Lewis*, Z. (2014b). Full-Lane Coverage Micromilling Pavement-Surface 
Quality Control Using Emerging 3D Line Laser Imaging Technology. Journal of Transportation 
Engineering. Volume 140 Issue 2. 
 
Tsai, Y. C. J., Zhao, Y., Pop-Stefanov, B., & Chatterjee, A. (2021). Automatically detect and 
classify asphalt pavement raveling severity using 3D technology and machine 
learning. International Journal of Pavement Research and Technology, 14(4), 487-495. 
 
TxDOT (2015). Pavement Management Information System: Rater’s Manual, Texas Department 
of Transportation. 
 
Van Ooijen, W., Van den Bol, M., & Bouman, F. (2004). High-speed measurement of raveling on 
porous asphalt. In Symposium on Pavement Surface Characteristics [of Roads and Airports], 5th, 
2004, Toronto, Ontario, Canada. 

 
Wang, S., Qiu, S., Wang, W., Xiao, D., & Wang, K. C. (2017). Cracking classification using 
minimum rectangular cover–based support vector machine. Journal of Computing in Civil 
Engineering,31(5), 04017027. 
 
Wang, Z., & Pyle, T. (2019). Implementing a pavement management system: The Caltrans 
experience. International Journal of Transportation Science and Technology, 8(3), 251-262. 
 
Zhang, A., Wang, K. C., Fei, Y., Liu, Y., Chen, C., Yang, G., ... & Qiu, S. (2019). Automated 

pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network. 

Computer-Aided Civil and Infrastructure Engineering,34(3), 213-229. 
 



57 
 
 

Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X., Peng, Y., ... & Chen, C. (2017). Automated 

pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. 

Computer-Aided Civil and Infrastructure Engineering,32 (10), 805-819. 

 

Zimmerman, K. A. (2017). Pavement Management Systems: Putting Data to Work (No. Project 
20-05, Topic 47-08). 
 


	1. Introduction
	2. Literature Review
	2.1 FDOT’s Practices on Pavement Survey, Rating, and Treatment Decision
	2.1.1 Pavement Section Selection (FDOT, 2017)
	2.1.2 Pavement Condition Rating (FDOT, 2017)
	2.1.3 Raveling Survey and Rating (FDOT, 2017)
	2.1.4 Treatment Determination
	2.1.5 Forecasting
	2.1.6 Current Issues and Needs for Improvement

	2.2 Raveling Classification and Measurement by Other State DOTs
	2.2.1 Georgia Department of Transportation (GDOT) (GDOT, 2017)
	2.2.2 Oregon Department of Transportation (ODOT) (ODOT, 2019)
	2.2.3 Texas Department of Transportation (TxDOT) (TxDOT, 2015)
	2.2.4 Alabama Department of Transportation (ALDOT, 2017)
	2.2.5 Summary

	2.3 Automated Methods for Raveling Detection and Classification
	2.3.1 Nontrainable Methods
	2.3.2 Machine Learning (ML) Models
	2.3.3 3D laser technology for automatic raveling detection and classification
	2.3.4 Summary
	2.3.5 Recommendation

	2.4 Pavement Rating Computation and Treatment Decision by Other State DOTs
	2.4.1 Georgia Department of Transportation (GDOT) (GDOT, 2017)
	2.4.2 Texas Department of Transportation (TxDOT) (TxDOT, 2015)
	2.4.3 California Department of Transportation (Caltrans) (Caltrans, 2017)
	2.4.4 Raveling Treatment Alternatives


	3. Feasibility Study of Machine Learning for Raveling Classification
	3.1 FDOT’s Pavement Data
	3.1.1 Data description
	3.1.2 Data annotation

	3.2 Methodology
	3.2.1 Macrotexture Features
	3.2.2 Raveling Severity Level Classifier

	3.3 Evaluation of the ML Models on FDOT’s Data
	3.3.1 Data preparation
	3.3.2 Evaluation Metric
	3.3.3 Evaluation Results and Discussions on Annotation Data Set 1
	3.3.4 Evaluation Results and Discussions on Annotation Data Set 2

	3.4 Preliminary Study on Deep Learning
	3.4.1 Deep learning models
	3.4.2 Training settings
	3.4.3 Evaluation Results


	4. The Proposed Raveling Rating and Treatment Trigger for FDOT
	4.1 The Design Rationale
	4.1.1 Design the treatment decision and trigger
	4.1.2 Design the deduct tables

	4.2 Refine the trigger ratings for treatment decision
	4.3 Design the spatial unit for pavement condition survey

	5. Conclusions and Recommendations



