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EXECUTIVE SUMMARY 

When water has nowhere to escape from the surface of a roadway, it can disrupt the tire-
to-pavement adhesion of a travelling vehicle and lead to hydroplaning. Pavement macrotexture 
provides the pathways for water to drain, which allows for the necessary grip between tire and 
pavement. Macrotexture, which is quantified by the FDOT in terms of mean profile depth 
(MPD), is analyzed by the State Materials Office using a high-speed point-laser mounted along 
the driver side wheel path of a friction testing vehicle. The FDOT uses point-lasers to determine 
MPD values that correspond to the precise location a locked-wheel friction test. 

While the point-laser is capable of accurately measuring MPD on flexible pavement, the 
system fails to capture the anisotropic (measurements in different directions produce different 
values) texturing of rigid pavement, such as longitudinally-ground (LGD) concrete. A 
prospective solution to this issue was to utilize a vehicle-mounted line-laser that collects texture 
data in a three-dimensional (3D) manner, as opposed to the two-dimensional (2D) collection of a 
point-laser. The three dimensions in which the line-laser collects texture data are transversely 
along the length of the laser spectrum, longitudinally in the direction of vehicle travel, and 
vertically as height measurements. 

As a result, two line-laser systems were purchased by the State Materials Office from 
pavement equipment specialists, International Cybernetics (ICC), and installed on two friction 
testing vehicles. The line-laser itself was developed by LMI Technologies and is identified as the 
Gocator-2342-3B-12. After receiving the line-laser systems from ICC, the devices had shown 
poor correlation with accepted MPD values on both flexible and rigid pavement. This discovery 
was the conclusion of a texture device harmonization study conducted by the State Materials 
Office in 2018. 

Since then, the University of North Florida (UNF) research team has developed and 
executed a research-based approach in configuring the line-laser system to accurately assess 
pavement macrotexture on a network-level. This was done by configuring and optimizing the 
line-laser collection parameters through a series of static and dynamic tests on inactive roadways. 
Once it was determined that the line-laser was accurately capturing MPD in a controlled setting, 
the precision and accuracy of the system were further validated on both flexible and rigid 
pavement through a statewide macrotexture assessment. 

Currently, the updated line-laser system produces MPD values that are highly correlated 
with accepted reference values on both flexible and rigid pavement in both a repeatable and 
reproducible manner. As a result, the UNF research team recommends implementing this line-
laser system into production. Utilizing the updated line-laser system will allow the FDOT to 
accurately assess the macrotexture of Florida’s longitudinally-ground concrete roadways at 
highway speeds. 
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CHAPTER 1 – INTRODUCTION 
On average, weather-related events cause approximately 1.2 million vehicle crashes 

within the United States every year. Of these weather-related crashes, 70% occurred on wet 
pavement and resulted in approximately 4,050 fatalities [1]. When water cannot escape from the 
surface of pavement, it can disrupt the tire-to-pavement adhesion and lead to hydroplaning. 
Pavement macrotexture provides the pathways for water to drain, allowing the necessary grip 
between tire and pavement. Macrotexture is the primary indicator of wet-weather skid resistance, 
splash and spray, and tire/road interaction noise [2]. All these characteristics play an important 
role in safety while driving on the road. 

Macrotexture is defined as pavement surface profile features with a wavelength between 
0.5 and 50 millimeters. Figure 1-1 shows a schematic illustrating the distinction between 
macrotexture and microtexture, where the latter is due to small scale features below 0.5 
millimeters [3]. While there are several terms used to quantify pavement macrotexture, the 
FDOT quantifies macrotexture in terms of MPD. MPD, as defined by ASTM E1845 “Standard 
Practice for Calculating Pavement Macrotexture Mean Profile Depth,” is the average of all mean 
segment depths (MSD) within a test section [4]. As shown in Figure 1-2, MSD is a two-
dimensional height measurement that is calculated using a 100-millimeter baseline divided into 
two equal segments. The highest peak of each segment is determined, and the difference between 
the average of the two peaks and the average profile height of the sample is the MSD [3, 5]. 
When determining the MPD of a test section, it is ideal to take a continuous profile over the 
entire length of the test section if possible [4]. 

Figure 1-1. Macrotexture and microtexture illustration [3]. 

Figure 1-2. MSD calculation diagram [4]. 
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 Higher levels of macrotexture are preferable for the wet-weather performance of 
pavement. As speed increases, macrotexture is the predominant road characteristic that accounts 
for wet-skid resistance. Figure 1-3 displays a diagram of the influence that texture has on various 
road characteristics. Static and visual macrotexture measurement methods, such as the sand-
patch method, are superseded by high-speed measurements due to the difficulty associated with 
measuring large pavement areas. With the significance that wet-skid resistance has on road 
safety, regular high-speed macrotexture assessments should be implemented to help reduce 
weather-related vehicle accidents [6]. 

 
Figure 1-3. Texture and road characteristic relationships [6]. 

PROBLEM STATEMENT 
The primary objective of this research project is to validate and implement a vehicle-

mounted line laser system for network-level macrotexture measurement. For the system to be 
capable of network-level data collection, a vehicle-mounted, contactless laser measurement 
device is required to be used at highway speeds without obstructing traffic. Previous studies 
conducted by the State Materials Office have shown successful high-speed texture data 
collection on flexible pavement using point-lasers. These studies were considered successful 
based on a high correlation in MPD measurements between the point-laser and the circular track 
meter (CTM) reference device. However, on rigid pavement, the point-laser was unable to 
accurately capture the texture profile due to its anisotropic texturing. In Florida, rigid pavement, 
such as concrete, undergoes a longitudinal diamond grinding process to establish skid-resistance 
and rainwater runoffs. Since point-lasers are 2-D measurement devices (one dimension is in the 
travel direction and the other dimension contains vertical height measurements), they are only 
capable of measuring isotropic or homogenous texture profiles. Therefore, a 3-D measurement 
device capable of measuring in the transverse direction, such as a line-laser, was determined to 
be a potential solution to this issue. 
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CHAPTER 2 – LITERATURE REVIEW 
MACROTEXTURE MEASUREMENT METHODS AND DEVICES 
Sand Patch Method 

The sand patch method is a volumetric approach to measuring pavement macrotexture in 
accordance with ASTM E965, “Standard Test Method for Measuring Pavement Macrotexture 
Depth Using a Volumetric Technique.” The tools required to perform this method are a known 
volume of sand or ASTM E965 compliant glass beads, a measuring device (tape measurer or 
ruler), a brush, and a hard rubber-faced spreading disk. The measurement process begins by 
clearing the pavement area of any debris using a brush and ensuring that the sample section is 
free of cracks. Next, a known volume of sand or glass beads is poured onto the road surface. At 
the FDOT, the volume of sand or glass beads used in sand-patch testing is either 24.58 milliliters 
for dense-graded surfaces or 49.16 milliliters for open-graded surfaces.  From there, the sand or 
beads are distributed evenly across the pavement using the spreading disk to form a circle. This 
is done until the surface depressions are filled to the level of the pavement peaks. Finally, the 
diameter of the circle is measured at four different locations while rotating approximately 45 
degrees between each measurement. The diameter used in the MTD calculation is the average of 
the measured diameters. The formula used to measure MTD is shown below in Equation 2-1. 

𝑀𝑀𝐸𝐸𝐸𝐸 =  4∗𝑉𝑉
𝜋𝜋∗𝐷𝐷2

  (Equation 2-1) 

In this equation, 𝑉𝑉 denotes the known initial volume of the sand or glass beads and 𝐸𝐸 is 
the average patch diameter. In this method of testing, the sand or glass beads are only to be used 
once and should not be recycled [7, 8]. Figure 2-1 shows an FDOT employee performing the 
sand patch test. 

Figure 2-1. Sand patch testing. 

While the sand-patch method is relatively simple to perform, the results of the testing are 
predominately based on the operator. Studies have shown that MTD values produced through 
this method generally have low levels of reproducibility [9]. 
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Circular Track Meter (CTM) 
 A CTM is a static measurement device used for macrotexture profiling [9]. It uses a 
charged coupled device (CCD) laser displacement sensor to accumulate MPD and root mean 
square (RMS) measurements [10, 11]. The CTM measures the pavement profile along a circular 
track with a 284-millimeter diameter. The circumference of the circular track is divided into 
eight equally sized segments labeled A through H [10]. The MPD and RMS values are calculated 
for each individual segment, as well as the entire sample. Figure 2-2 shows the track path of a 
CTM and the eight segments used in its measurements. As specified by ASTM E2157 “Standard 
Test Method for Measuring Pavement Macrotexture Properties Using the Circular Track Meter,” 
when using a CTM to analyze texture, the pavement surface should be dry, clear of any debris, 
and a homogenous test section that is free of unique features, such as cracks or joints [12]. 

 
Figure 2-2. CTM measurement track and segments [11]. 

 A commonly used CTM was developed by Nippo Sangyo Company, Limited. This 
device meets the CTM requirements stated in ASTM E2157, and is used by the FDOT State 
Materials Office. This CTM has a laser spot diameter of 70 micrometers and a resolution of three 
micrometers. It takes 1,024 samples per revolution at a tangential velocity of six meters per 
minute which results in a total measurement time of approximately 45 seconds. As seen in Figure 
2-3, the laser displacement sensor is mounted on a rotating arm 80 millimeters above the 
pavement’s surface. It is a portable device weighing approximately 13 kilograms that can be 
powered using a 12V DC automobile battery. The macrotexture measurement data is collected 
through the provided software on a notebook computer which records the MPD and RMS of the 
macrotexture profiles [11, 12]. A shortcoming of the CTM is that it is a static measurement 
method. Therefore, it is beneficial for producing reference or project-level data, but it cannot be 
used for network-level assessments.  
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Figure 2-3. Nippo Sangyo CTM (left). Underside of the CTM (right) [11]. 

High-Speed Laser-Based Measurement Devices 
High-speed laser-based measurement devices analyze macrotexture through optical 

triangulation using a laser light source and a CCD laser sensor. These devices take contactless 
measurements at highway speeds (45-70 mph) without obstructing traffic. Point-lasers, also 
known as spot-lasers, are currently the most commonly used device for high-speed texture 
analysis. However, line-laser technology has been growing in popularity with an emphasis on 3-
D mapping of pavement surfaces [13, 14]. Point-lasers develop a 2-D surface profile by emitting 
light that is reflected off the pavement’s surface and captured by a light sensor. Triangulation 
through common trigonometric functions is used to determine the distance between the laser and 
the pavement surface profile. Line-lasers operate in a similar fashion, but the laser is spread 
through optics into a light sheet that shines on a line along the pavement surface. A line of 
texture heights is then triangulated and measured using a sensor with hundreds of measurement 
rows. This is the functionality that allows for nearly continuous 3-D data collection during high-
speed system-wide surveys. Figure 2-4 shows a component diagram of the laser-based 
measurement systems, and Figure 2-5 is an example of line-laser system [14-16]. 

Figure 2-4. Laser-based measurement system diagram [16]. 
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Figure 2-5. LMI Technologies line-laser diagram [28]. 

These systems are typically mounted on the lower part of a vehicle in either the front or 
the rear. Their positioning is either aligned with the vehicle’s longitudinal axis or along the 
vehicle wheel path [14]. The sampling frequency of a point-laser sensor is normally between 32 
kHz to 64 kHz, while line-laser sensors operate at a much lower frequency typically between 2.5 
kHz to 10 kHz [14-16]. Appropriate sampling rates of the lasers are crucial to macrotexture 
measurement. When the sampling rate is too high, higher signal noise occurs. When the 
sampling rate is too low, the pavement profile may be misrepresented [2]. 

COMPARING VARIOUS LASER-BASED TEXTURE MEASUREMENT DEVICES 
A Practical Approach to Measuring and Reporting Friction and Macro-Texture at Variable 
Test Speeds [17] 

In 2008, the Florida Department of Transportation (FDOT) conducted an experiment to 
measure friction and macrotexture at various speeds (30, 40, and 50 mph). Macrotexture was 
analyzed by acquiring data with a high-speed point-laser measurement device. The 
measurements collected with the laser device were used to calculate MPD values of the 
pavement test sections. The high-speed point-laser device used in this experiment was a 64 kHz 
LMI Technologies Selcom Optocator that adhered to the requirements of ASTM E1845. The 
laser device was positioned along the driver-side vehicle wheel path. Testing was conducted on a 
variety of pavement types to replicate the wide range of state roadways in Florida. [17]. Figure 2-
6 shows the test vehicle and the high-speed laser measurement device. 
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Figure 2-6. Test vehicle (left). Point-laser measurement device (right) [17].

The test sections consisted of three open-grade hot mix asphalt (HMA) sections (Sites 2, 
3 and 6), five dense-grade HMA sections (Sites 1, 4, 5, 7 and 8), and two Portland Cement 
Concrete (PCC) sections (Sites 9 and 10). Ten high-speed macrotexture measurements were 
collected at each test speed (30, 40 and 50 mph) for each test section. The MPD values acquired 
using the high-speed laser device were compared against the MPD and MTD reference values 
collected using a CTM and the sand-patch method, respectively. The reference data was 
collected in accordance with the ASTM E2157 and ASTM E965 test standards [17]. 

The MPD values produced by the point-laser generally had a strong correlation with 
those from the CTM. However, the MPD measurements taken by the high-speed laser at Site 10, 
the longitudinally ground PCC surface, failed to correlate well with the reference measurements. 
Also, as seen in Table 2-1, the mean profile height measurements collected by the high-speed 
laser device did not significantly vary (± 1.0%) between the different test speeds [17]. Figure 2-7 
displays a graph comparing the MPD values produced by the high-speed laser and the CTM at 
each test section. Table 2-2 contains additional information about the test sites. 

Table 2-1. Summary of high-speed point-laser measurements at various speeds [17].

Speed 30 mph 40 mph 50 mph Avg. Diff. 
Mean (mm) 0.794 0.800 0.810 ± 1.0% 

Std. Deviation (mm) 0.593 0.582 0.547 ± 0.0081 
95% Conf. Int. (mm) ± 0.368 ± 0.361 ± 0.339 ± 0.0091 

Table 2-2. Site information [17]. 

Site ID Surface Aggregate Mix Design Roadway 
1 FC 12.5 M Granite SPM 06-4852B 26050000 
2 FC 5 Limestone QA 00-9506A 26050000 
3 FC 5 Granite LD 02-2523A 26050000 
4 FC 9.5 Granite SP 04-3068A 26005000 
5 FC 9.5 M Granite SPM 05-4408A 26070000 
6 FC 5 M Granite SPM 07-5509A 26010000 
7 FC 12.5 Limestone SP 02-1920A 28030001 
8 FC 12.5 M Limestone SPM 06-4609C 70011000 
9 Burlap Drag PCC - 79060000 
10 Long Grind PCC - 79060000 
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Figure 2-7. High-speed laser device vs. CTM MPD values at 40 mph [17].

Development of Texture Measurement System Based on Continuous Profiles from a Three-
Dimensional Scanning System [16] 

In 2010, a team at the Texas Department of Transportation designed and tested a system 
called VTexture based on 3-D measurements using laser triangulation. The system used a line-
laser containing a beam that was 0.25 millimeters wide and 500 millimeters long. It used a high-
speed 3-D digital camera with line-laser processing capabilities to record measurements. The 
VTexture system was capable of recording height measurements with a resolution of 10 
micrometers. The camera would trigger every 53.34 millimeters (2 inches) of travel distance and 
record a 2,048-point surface profile over the length of the line-laser. The unit was mounted on 
the rear towing hitch of a vehicle with a standoff distance of 380 millimeters (15 inches) above 
the pavement surface. Two line-laser orientations were tested as show in Figure 2-8; longitudinal 
measurements along the centerline of the vehicle, and transverse measurements perpendicular to 
the vehicle’s motion of travel along the wheel path. MPD measurements and other road 
parameters were calculated according to the ASTM E1845 standard [16]. 
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Figure 2-8. VTexture system longitudinal scan (left). Transverse scan (right) [16]. 

During development of the VTexture system, it was discovered that sensor exposure time 
was the main cause for MPD values to vary with speed. Sensor exposure time refers to the period 
an optical sensor opens to receive reflected light from the pavement surface. The appropriate 
exposure time is determined based on the reflectivity of the pavement surface, the intensity of the 
laser light, and the sensitivity of the sensor. For example, low-reflective surfaces, low-power 
lasers, and low-sensitivity sensors are all reasons to increase exposure time so that the laser 
sensor can accumulate enough light for accurate measurements. Using the VTexture system 
while assessing the appropriate exposure time can allow for accurate and repeatable network-
level data collection between 0 and 70 mph vehicle travel speeds. Based on this study, it was 
determined that the system exposure time should not exceed 20 microseconds for network-level 
data collection at varying speeds [16]. 

Comparison of Surface Macrotexture Measurement Methods [18] 
In 2012, a study was conducted at the Ohio State University where three laser-based 

measurement systems were analyzed: LMI Technologies Selcom Optocator 2008-180/390 point-
laser profiler, Nippo Sangyo CTM, and Ames Engineering 3-D laser texture scanner. The various 
laser-based measurement methods were compared with reference data acquired through the sand 
patch method. Since the laser-based systems use software that calculates MPD, the MPD values 
were transformed into estimated texture depth (ETD) values to use for comparison. ETD is a 
converted volumetric value that allows for comparisons with MTD values produced by the sand-
patch method. Based on ASTM standards, the equation for calculating the ETD of the laser 
profile scanner, and the laser texture scanner is shown in Equation 2-2. Equation 2-3 shows the 
ETD formula using MPD values produced by the CTM [18]. 

𝐸𝐸𝐸𝐸𝐸𝐸 = 0 .2 + 0.8 ∗ 𝑀𝑀𝑀𝑀𝐸𝐸  (Equation 2-2) 

𝐸𝐸𝐸𝐸𝐸𝐸 = 0 .069 + 0.947 ∗ 𝑀𝑀𝑀𝑀𝐸𝐸  (Equation 2-3) 

The LMI Technologies point-laser profiler had a sampling rate of 62.5 kHz with a 
resolution of 45 microns. To simulate this system driving over a road, the laser had a standoff 
distance of 390 millimeters (15 inches) away from a spinning sample which was connected to a 
7,500 RPM metal grinder. This test bench simulated a vehicle driving at 25 mph. Figure 2-9 
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shows the laser profiler test setup. The CTM uses a point-laser with a spot size of 70 
micrometers and a resolution of three micrometers. Since the test samples were 304 millimeters 
in diameter, the CTM took measurements at a diameter of 284 millimeters. The Ames laser 
texture scanner provides a 3-D rendering of samples in an area that is 101.6 millimeters long and 
76.2 millimeters wide with a capacity of 1,200 lines. Like the CTM, the laser texture scanner has 
a limited scan area [18]. 

Figure 2-9. LMI Technologies point-laser profiler test bench [18].

When compared to the CTM and the laser profiler, the laser texture scanner provided 
ETD values closest to the MTD values of the reference data. The average difference between the 
ETD and the MTD values provided by the sand patch testing were 28% for the Ames laser 
texture scanner, 36% for the Dynatest laser profiler, and 37% for the CTM [18]. Figures 2-10 
and 2-11 show the relationship between MTD values collected through the sand patch method 
compared to values from the LMI Technologies laser profiler and Ames laser texture scanner, 
respectively. 

Figure 2-10. Sand patch ETD values vs. MPD values from the laser profiler [18]. 
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Figure 2-11. Sand patch MTD values vs. MPD values from Ames laser texture scanner [18]. 

Evaluation of Variability of Macrotexture Measurement with Different Laser-Based Devices [19] 

In 2015, a study was conducted at the 2.2-mile Virginia Smart Road test track located at 
the Virginia Tech Transportation Institute in Blacksburg, Virginia. The experiment compared the 
variability in measurements between a CTM and a high-speed laser measurement device. For 
reference measurements, ten evenly spaced measurements were taken with the CTM along the 
left-hand wheel path of each test section. Next, ten 50-mph collection runs were conducted in 
each test section using a high-speed point-laser device. Figure 2-12 shows the various test 
sections throughout the Virginia Smart Road. 

Figure 2-12. Virginia Smart Road sections and surfaces [19].
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The point-laser laser had a spot diameter of 0.2 millimeters and sampling frequency of 64 
kHz. Previous MTD values collected through the sand patch method were used as reference data 
to verify the measurement accuracy. The presence of outlier data or data spikes are common in 
profiles collected by high-speed laser devices; therefore, these invalid data points are replaced by 
linear interpolation of neighboring values. If the percentage of invalid data points exceeded 20% 
for a test section, the measurements were removed from the profile. For the high-speed laser 
device, one MPD value was generated per 100 millimeters of pavement. The ETD for the high-
speed laser device was calculated using Equation 2-4 [19]. 

𝐸𝐸𝐸𝐸𝐸𝐸 = 0.8 ∗ 𝑀𝑀𝑀𝑀𝐸𝐸 + 0.2  (Equation 2-4) 

The testing provided a poor correlation between MTD and ETD values using the data 
provided by the CTM and the high-speed laser measurement device. As a recommendation, a 
new method of measuring ETD was suggested to remove unwanted data noise and invalid sensor 
readings. The suggested method is the “square weight” ETD shown below in Equation 2-5 [19]. 

𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 =  ∑ 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖∗𝐿𝐿𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
∑ 𝐿𝐿𝑖𝑖

2𝑛𝑛
𝑖𝑖=1

 (Equation 2-5) 

In Equation 2-5 above, MPD𝑖𝑖  represents the mean profile depth within a series of 
profiles that corresponds to a specific profile length (L𝑖 ). Figure 2-13 below provides a 
schematic of this method with illustrations for the variables in Equation 2-5. 

Figure 2-13. Square weight estimated texture depth (𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠) schematic [19]. 

However, in a similar study presented at the 9th International Conference on Managing 
Pavement Assets in May 2015, removing these erroneous data spikes in high-speed MPD 
measurements resulted in a high correlation with CTM measurements. Figure 2-14 shows a clear 
depiction of the data spikes which are caused by outlier measurements. This testing was also 
conducted on the Virginia Smart Road and compared high-speed single-spot laser (HSSL) MPD 
measurements to those acquired using a CTM. Six measurements were taken along a wheel path 
at six different test sections and were followed by five test runs at 50 mph with the point-laser 
along the same wheel path and sections. As seen in Figure 2-15, a histogram was developed 
using the raw data from the laser measurements, and a combination of Gaussian and Laplace 
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distributions were used to identify and remove the data spikes. Next, a 2.5-millimeter low-pass 
filter was applied to the data and the MPD values were calculated. The outcome of this outlier 
removal resulted in a mean MPD value measured by the high-speed device that was “essentially 
the same” as the value calculated by the CTM [20]. 

Figure 2-14. High-speed laser profile measurements with data spikes [20]. 

Figure 2-15. Histogram with Gaussian/Laplace distribution for spike removal [20].
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Design and Verification of a Laser-Based Device for Pavement Macrotexture Measurement [21] 

In 2010, a laser-based system used to measure macrotexture was developed at the Wuhan 
University of Technology in Wuhan, China. The laser-based system contained a high-precision 
laser range finder (LRF), an optical-electrical rotary encoder (OERE), an ECU, a power supply, a 
laptop for data acquisition, and a three-wheel cart. The device operates in a way comparable to a 
traditional CTM. The LRF had a vertical resolution of at least 0.05 millimeters and a range of no 
less than 20 millimeters with a sampling frequency of 32 kHz. The OERE was used to measure 
the travel distance of the cart with high precision. A program was developed in MATLAB and 
Visual C++ to use for data acquisition and storage. The data acquired contained the pavement 
profile heights, the positions of measuring points, and the characteristic values [21]. 

To test the accuracy of the system, ten 330-foot pavement sections were analyzed. Each 
330-foot section was separated into five equal length subsections. The reference data was
collected through the sand-patch method which calculates MTD values. Since the laser-based
system measures MPD, Equation 2-6 was used to convert MPD to ETD.

𝐸𝐸𝐸𝐸𝐸𝐸 = 0.247 + 0.785 ∗ 𝑀𝑀𝑀𝑀𝐸𝐸 (Equation 2-6) 

When compared to the reference data, the laser-based system data provided a root-mean-
square error of 0.0782 and an 𝑅𝑅2 of 0.95. The 𝑅𝑅2 represented an acceptable fit for this 
experiment. The entire manufacturing cost of the device was less than $15,000 USD with the 
LRF accounting for 70% of the total cost. The device is shown below in Figure 2-16 [21]. 

Figure 2-16. Macrotexture measurement device [21].
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ACCURACY AND REPEATABILITY OF LASER-BASED DEVICES 
Repeatability and Agreement of Various High-Speed Macrotexture Measurement Devices [24] 

In 2019, a study was conducted on the 2.2-mile Virginia Smart Road test track located at 
the Virginia Tech Transportation Institute in Blacksburg, Virginia. Five high-speed macrotexture 
measurement devices were compared and analyzed. The term “high-speed” is designated to the 
vehicle mounted laser-based system traveling at 55 mph. The testing included high-speed (55 
mph), various constant speeds, and variable speed which included accelerating and decelerating. 
Device ID’s 1 – 4 were single-spot lasers and Device 5 was a line-laser. MPD was chosen as the 
parameter to quantify macrotexture. Table 2-3 shows the device specifications of each laser in 
the experiment [22]. 

Table 2-3. Specifications for laser measurement devices [22].

Given the large scope of data acquired by line-lasers, Device 5, the line-laser device, 
required a large amount of raw data outliers to be removed from the data set for MPD 
calculations. This outlier data was typically along the edges of the laser’s footprint. For every 
100 millimeters (3.9 inches) of travel, MPD calculations were made transverse to the travel 
direction [22]. 

As shown in Equation 2-7 below, the coefficient of repeatability, r, was derived from 
the mean-square error (MSE) of multiple runs of same device on the same pavement section. 

𝑟𝑟  = 1.96 ∗ √2 ∗ 𝜎SD  (Equation 2-7) 

For Device 5, 𝑟𝑟 was determined to be 0.085 millimeters after five runs on the same test 
section. It was determined that acceleration influences the data acquired by the line-laser. 
However, in the wide range of data collected, it did not have a significant impact on 
repeatability. The limits of agreement (LOA) analysis between the line-laser and single-spot 
lasers had shown low agreement in MPD values. This was determined to be caused by the line-
laser measuring the longitudinal texturing of concrete pavement which the single-spot lasers 
cannot measure. In contrast, the LOA improved significantly (by more than 50%) when 
comparing the line-laser to other single-spot lasers on asphalt surfaces. [22]. 

Evaluating Non-Contacting Macrotexture Laser Displacement Device Accuracy at Highway 
Speeds [23] 

In 2019, an experiment was conducted on the Virginia Smart Road to assess the accuracy 
of several different laser-based measurement devices and determine if speed and sensor exposure 
time were significant factors in these measurements. An LMI Technologies Gocator 2342 line-
laser was mounted in two different orientations, parallel and perpendicular to the vehicle’s 
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direction of travel, to be tested for MPD measurement accuracy. The line-laser had a sampling 
frequency of 5 kHz and a vertical resolution of 0.015 - 0.040 millimeters. The testing consisted 
of a 6061-aluminum plate with six different sections of grooves with various wavelengths. MPD 
values were to be measured at highway speeds (25, 45, and 65 mph). Shown below in Figure 2-
17 are the two orientations of the aluminum reference plate and the line-laser [23]. 

Figure 2-17. Aluminum reference plate (left). Test orientations (right) [23].

The reference data was collected using a Keyence LJ-V7200 line-laser in a controlled lab 
setting. Another variable in the testing was the exposure time of the line-laser (short, medium, 
long, and auto). As speed and exposure time increased, the macrotexture profile accuracy 
degraded. The line laser mounted perpendicular to the vehicle’s direction of travel did not 
accurately reproduce the section of the plate with the smallest waveform and had the largest 
MPD variability on the other sections. Aside from the perpendicularly mounted line-laser, the 
vehicle speed and exposure times did not bring the measurement values outside the ± 0.1-
millimeter tolerance established for this experiment [23]. 

Evaluation of the Repeatability and Reproducibility of Network-Level Pavement Macrotexture 
Measuring Device [24] 

In 2017, a study was conducted at Virginia Tech to evaluate the repeatability and 
reproducibility of network-level pavement macrotexture measuring devices. Two high-speed 
macrotexture measuring devices were used where one was mounted on a Sideways-Force 
Coefficient Routine Investigation Machine (SCRIM) system and the other on a portable Ames 
system. The laser-based sensor mounted on the SCRIM system measures macrotexture and 
friction and records MPD data in 1-meter (3.3-foot) increments. The SCRIM system records raw 
data every 0.1-meter while traveling at a speed of 30 to 50 mph. It alerts the user when MPD is 
outside the range of 0.5 – 3.0 millimeters. The Ames 8300 Survey Pro High-Speed Profiler uses 
high-speed laser sensors mounted at either the front and/or rear end of a vehicle to record 
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macrotexture and profile. This system uses an LMI Technologies Selcom Optocator 2008-
180/390 texture sensor rated at 62.5 kHz to provide data readings while traveling between 25 to 
65 mph. To provide accurate data readings the laser sensor was mounted within 7.09 inches of 
the pavement’s surface. This system collects and stores data using proprietary software [24]. 

The data collected using the two different high-speed measurement devices were 
compared against data acquired using a CTM. All three systems used software to compute and 
record the MPD of the pavement. The two high-speed systems used the average MSD 
measurements over a 1-meter (3.3-foot) length, but 10-meter (330-foot) lengths of pavement 
were also analyzed to find patterns within the acquired data. Using the average MPD of each 
section, the repeatability of the two high-speed systems was just over 0.1 millimeters. After 
removing the data on an outlier specimen, the 𝑅𝑅2 value between the Ames and the CTM data was 
determined to 0.959 which shows strong correlation. With the same outlier data removed, the 𝑅𝑅2 
value between the SCRIM and the CTM data was determined to be 0.916. The SCRIM system 
produced consistently lower MPD values when compared those acquired by the CTM [24]. 

PROCESSING TEXTURE DATA 
Removing Outliers From 3-D Macrotexture Data by Controlling the False Discovery Rate [25] 

Given the large amount of data readings produced by 3-D laser-based measurement 
devices, removing erroneous data and outlier measurements in post-processing has an important 
role in macrotexture analysis. When referring to a 3-D laser-based macrotexture measurement 
device, the three dimensions include the width of the line-laser beam, the longitudinal length the 
laser travels, and the surface texture heights. Erroneous data readings in both the positive and 
negative directions are common in these devices. Highly reflective surfaces can cause the laser 
light to reflect in an unpredictable manner which leads to erroneous data readings. These 
erroneous data readings can also be caused by extreme light diffusion through an aggregate. The 
data outliers are removed by setting a threshold of acceptable values in the data acquisition 
software. This threshold is difficult to determine considering the varying macrotexture readings 
of aggregates and cements. The false discovery rate (FDR) was the method chosen to determine 
the appropriate threshold. Unlike a fixed threshold, the FDR procedure accounts for the number 
of observations and the presence of outliers when producing an acceptable threshold. Figure 2-18 
displays a flowchart of the algorithm developed to handle outlier data using the FDR method. 
Once outliers are identified, they are replaced by interpolation of neighboring values. In this 
experiment, the outliers were set to zero since this was the mean of the flattened data set. The 
equipment used in this experiment were an Ames Engineering Laser Texture Scanner 9300 (for 
3-D pavement profiling) and a Nippo Sangyo CTM for reference data. Controlling FDR was
determined to be a highly effective method for removing outlier data by constantly adapting to
the dataset being analyzed [25].

Figure 2-18. Flowchart of outlier removal algorithm [25].
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SURVEY OF U.S. TRANSPORTATION AGENCIES ON MACROTEXTURE 
A survey of several state agencies was conducted by phone regarding experiences with 

high-speed network-level and project-level macrotexture data collection: 

• Texas – While performing network-level pavement friction data, macrotexture data from
a high-speed 3-D texture laser was acquired. The data has not yet been processed and
analyzed for accuracy. The Texas DOT has developed an in-house, line-laser based 3-D
texture measurement device with good accuracy and high repeatability for project-level
analysis (VTexture system).

• Virginia – Virginia DOT has done no network-level macrotexture data collection.
International Cybernetics (ICC) performs project-level pavement smoothness testing to
acquire international roughness index (IRI) measurements. A strong correlation in IRI
values between the point- and line-lasers for road smoothness measurements has been
shown. Results had shown IRI values within one inch per mile between the two devices.

• South Carolina – South Carolina DOT has begun collecting network-level macrotexture
data this year (Jan. 2019). Using Gocator line-lasers, macrotexture measurements along
vehicle wheel path have been collected. The data has not been processed yet, therefore,
no insight on the accuracy or shortcomings of the data collection process was provided.

• Alabama – Alabama DOT has collected 2-D network-level macrotexture data using
point-lasers, but do not necessarily use the data. Due to insufficient funds to perform
macrotexture analysis, texture measurement is completed in conjunction with network-
level friction testing. It is planned to start collecting 3-D profiles with Gocator line-lasers,
but currently do not find the need to implement testing at this moment.

• Iowa – Currently, the Iowa DOT is not collecting macrotexture data. A Gocator line-laser
is used for IRI measurements when testing for smoothness. Although no formal research-
based testing has been performed, the Iowa DOT has seen satisfactory results in the
repeatability of multiple line-laser tests for IRI measurements. The lasers are not mounted
perfectly transverse to the vehicle and are slightly angled to capture various road features.
This arrangement has allowed for acceptable IRI measurements within the agency.

In 2019, a study was conducted at Virginia Tech where surveys were collected of state
agencies to determine their macrotexture measurement equipment, frequency, and uses. Of the 
28 states that participated in the surveys about network-level macrotexture data collection, five 
states indicated that the available technology was not yet mature enough, 11 commented on the 
process being cost deterrent, and 12 states mentioned a lack of human resources to pursue 
collecting macrotexture data outside of the project-level basis. Also, the majority of those 
surveyed stated that they only collected macrotexture data while profiling the pavement. Several 
other states mentioned macrotexture data was only collected during friction testing. The most 
common device used for states that conducted network-level high-speed measurements was the 
point-laser, and for project-level cases a circular track meter (CTM) was used. The study stated 
that only one state (not identified) reported that they use line-lasers for network-level and 
project-level macrotexture data collection [2]. 
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FDOT MACROTEXTURE MEASUREMENT GAP ANALYSIS 
The current network-level macrotexture measurement process performed by the FDOT 

State Materials Office includes using a vehicle-mounted high-speed point-laser while traveling at 
highway speeds. Previous FDOT studies had shown close correlation between high-speed point-
laser measurements and measurements from a CTM on flexible pavement [28, 29]. In a 2017 
FDOT macrotexture measurement experiment, the testing showed that the point-laser does not 
accurately measure rigid pavement, such as concrete, at highway speeds. The testing included an 
LMI Technologies Selcom Optocator point-laser, with a sampling frequency of 64 kHz, mounted 
along the wheel path of a test vehicle. The texture measurements were done in conjunction with 
lock-wheel friction testing during this experiment. An image of the test vehicle and point-laser 
are shown in Figure 2-19 [26]. 

Figure 2-19. High-speed point-laser mounted to test vehicle [26].

According to the graph seen in Figure 2-20, MPD measurements produced by the point-
laser on rigid surfaces had poor correlation with the reference MPD values calculated by the 
Nippo Sangyo CTM. The rigid surfaces the graph is referring to in this experiment are concrete 
roads with longitudinal texturing [26]. Concrete roads undergo a texturing process, normally 
either tining or diamond grinding, to produce macrotexture [28]. All tining and diamond grinding 
processes are done longitudinal to the direction of traffic travel, unless otherwise requested by a 
project leader [28, 29]. Point-lasers are unable to measure concrete pavement because its texture 
varies depending on the direction of the measurements (longitudinal or transverse). This is 
because a point-laser measures one dimension as the travel distance along the pavement surface 
and measures the second dimension as texture elevation. As a result, while surveying a concrete 
road longitudinally, a 2-D profile produced by a point-laser misrepresents the true concrete 
pavement texture [28]. Figure 2-21 shows an image of concrete pavement after longitudinal 
diamond grinding. Since a line-laser takes 3-D measurements using a transverse laser light 
orientation, it can possibly overcome this limitation. This is because the width of the laser light 
produced by the line-laser can accurately capture the longitudinal texturing of concrete. 
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Figure 2-20. Point-laser MPD measurements vs. CTM reference MPD values [26].

Figure 2-21. Diamond ground concrete road [26]. 

 Another limitation of the point-laser systems arises when the laser is projected onto a 
rough surface. The laser light is typically scattered in an unpredictable manner due to pavement 
surface irregularities. As the pavement surface becomes rougher, its specular light reflectivity 
property decreases, and the scattering effect increases [14]. An image of this scattering effect is 
shown below in Figure 2-22. An advantage of using a line-laser system is that the numerous data 



21 

points it acquires from every profile reading greatly exceeds the number of data points from a 
point-laser. Since MPD measurements are dependent on the average height values of each 
sample, acquiring a large amount of data points per sample reduces the influence of inaccurate 
measurements caused by scattered laser light or outlier readings. Figure 2-23 shows a 
comparison between point-, wide-spot, and line-laser light footprints projected onto a surface [4]. 

Figure 2-22. Laser light scattering effect on a rough surface [14]. 

Figure 2-23. Point-laser, wide-spot, and line-laser (Roline) footprint comparison [26]. 

While line-lasers are a potential solution to the aforementioned issues, further research 
and testing is required to implement line-lasers into network-level macrotexture analysis. 
Based on data acquired from a 2018 FDOT experiment comparing point-laser measurements to 
line-laser measurements, there is a clear distinction between the measurements of the two 
lasers. As seen in Figures 2-24, 2-25, and 2-26, the measurements between the point-laser and 
line-laser do not correlate well on either flexible or rigid pavement. As previously shown in 
Figure 2-3, since measurements from the point-laser have good correlation with the CTM on 
flexible pavement, it could be concluded that the erroneous measurements were with the line-
laser. Discrepancies between line-laser and point-laser systems were also shown in the 2019 
Virginia Tech study [22].  



22 

Figure 2-24. Point-laser vs. line-laser measurements on concrete. 

Figure 2-25. Point-laser vs. line-laser measurements on dense-grade asphalt. 
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Figure 2-26. Point-laser vs. line-laser measurements on open-grade asphalt. 

The methodology involved with implementing line-lasers into high-speed network-level 
macrotexture measurement has not been successfully demonstrated within the available 
published literature. The Texas DOT, however, has indicated that the VTexture equipment that 
they developed in-house is capable of network-level measurement [17].  Different studies 
indicate varying levels of accuracy related to line-laser measurement of macrotexture, and testing 
has shown improvement of line-laser data with post processing, such as removing outlier data 
[27]. Further research, which is a focus of this study, is required to improve the line-laser system 
with respect to laser positioning, exposure time, data processing algorithms, and outlier 
measurement removal process. Once the performance of line-laser system has been enhanced, a 
comprehensive study of different texture reference devices (CTM, FTM, and TM2) and high-
speed measurement devices (point-laser and line-laser) will commence to determine the path 
towards improved network-level macrotexture measurement. 
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CHAPTER 3 – TEST PLAN 
Currently, the FDOT has an LMI Technologies Gocator-2342-3B-12 line-laser mounted 

along the driver-side wheel path of two of their friction evaluation vehicles. These line-laser 
systems were equipped to the FDOT owned Ford F-350’s by pavement equipment specialists, 
International Cybernetics (ICC). One laser is mounted underneath the vehicle along the driver-
side wheel path at an angle of approximately 30° relative to the x-axis of the vehicle and the 
other laser is mounted at 45°. The line-laser is mounted at an angle as opposed to perfectly 
transverse with the vehicle to capture periodic texturing along the x-direction. Figure 3-1 shows 
a diagram of the line-laser mounting orientation and the vehicle datum axes. 

Figure 3-1. Profile view and overhead view of the test vehicle (not shown to scale) [30].

After the line-laser captures raw height measurements, the data is processed using a 
program developed by ICC to calculate MPD. An overview this program is as follows: 

1) Drop-out points in the z-direction (uncaptured height values) are identified and replaced
through interpolation of neighboring values.

2) Raw z-axis data points are sorted according to their respective x- value within the profile.

3) Length of the scan is checked (ASTM E1845 requires 100 millimeters of data points with
point spacing ≤ 1 millimeter for MPD calculations), and the best 100-millimeter range
index is identified [4].

4) Slope suppression is applied to the profile and an interquartile range (IQR) is determined.

5) Outlier Removal Process: If a height measurement is greater than or equal to three times
the IQR, it is removed and replaced through the interpolation of neighboring values.

6) The data points along the x-axis are then resampled to 0.1-millimeter spaced intervals.

7) Lowpass filtering corresponding to the specifications listed in ASTM E1845 is applied.



25 

8) The data profile is then cropped to 100 millimeters based on the index previously
identified, and the mean segment depth (MSD) of the profile is determined.

9) MPD is determined by taking the average of all MSD values of every profile in the test
section.

As shown in previous FDOT line-laser precision studies, the current system is unable to
adequately depict macrotexture profiles on either flexible or rigid pavements. As previously 
discussed, resultant MPD values from these line-laser precision studies had low correlation with 
both point-laser data and reference data captured by the CTM. Based on the specifications of the 
line-laser itself, it was assumed that the current line-laser could achieve the desired project goals. 
Therefore, the issue of erroneous MPD measurements with the line-laser was determined to lie 
within the current system configuration or the post-processing program. 

TEST LOCATIONS 
Testing was conducted by the UNF research team in three stages. The first stage 

consisted of static testing, the second stage included dynamic accuracy testing on flexible 
pavements, and the third stage included repeatability testing on flexible and rigid pavement. For 
the first stage, static testing was conducted at the FDOT State Materials Office. Once static 
testing was complete, the second stage began with dynamic testing at the Williston Municipal 
Airport test track. The test track consists of a one-lane road approximately 3,800 feet in length 
with a turnaround at each end. Roughly half of the test track is open-grade pavement, and the 
remaining half is dense-grade. The test track is also closed to the public; therefore, it required no 
maintenance of traffic (MOT) to conduct testing. Figure 3-2 shows the Williston Municipal 
Airport test track.  

Figure 3-2. Williston Municipal Airport test track. 
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The third stage was conducted at the Williston Municipal Airport test track and a 
previously used FDOT test site containing concrete pavement. The selected concrete test site was 
used in an FDOT texture harmonization study in 2018 and is located along State Road 9B (SR 
9B) in Jacksonville, Florida. The test section consisted of approximately 2,500 feet of LGD 
concrete. To check the line-laser accuracy, MOT was established to take reference 
measurements. As done in the 2018 study, the testing was conducted in the left-hand wheel path 
of southbound lane three starting at Milepost 3. The test site contained five subsections which 
were evenly spaced 500 feet apart. Figure 3-3 shows images of the test site. 

Figure 3-3. SR-9B Test Site. 

TEST EQUIPMENT 
Line-Laser 

The initial focus of the testing was to configure the line-laser so that it can accurately 
collect reproducible texture data. A specifications table for the line-laser used in this experiment 
is shown below in Table 3-1. The table also includes a few of the configurable parameters within 
the Gocator Web interface. The Gocator Web interface is accessible via ethernet communication 
using the test vehicle computer. From the Web interface, the user can configure the line-laser 
sensor settings in real-time. The interface also has a feature where the user can view the returned 
line-laser light within an x- and z-coordinate system. Figure 3-4 shows an image of the line-laser 
with a diagram of its laser light [Field of View (FOV), Far End (FE), Close End (CE), 
Measurement Range (MR), Clearance Distance (CD)], and Figure 3-5 shows an image of the 
Gocator Web interface. 
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Table 3-1. Line-laser specifications [31].

Make and Model LMI Technologies Gocator 2342-3B-12 

Scan Rate Up to 5,000 Hz 

Field of View (FOV) 64 mm – 140 mm 

Points per Profile 1,280 

Resolution (X) 0.095 mm – 0.170 mm 

Resolution (Z) 0.015 mm – 0.040 mm 

Laser Class 3B (< 500 mW) 

Figure 3-4. LMI Technologies line-laser (left). The laser light diagram (right) [32].
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Figure 3-5. Gocator Web interface with a profile view of the line-laser [31].

Test Vehicle 
The test vehicle used in this experiment was an FDOT-owned pavement friction testing 

unit. The primary use of this vehicle is to perform locked-wheel skid-testing, where the vehicle 
collects texture data via a point-laser during lockups. However, the test vehicle is also equipped 
with a Gocator line-laser to collect texture data which can be used as a standalone system. An 
image of the test vehicle is shown below in Figure 3-6. 

Figure 3-6. FDOT pavement friction testing unit with line-laser.



29 

Circular Track Meter (CTM) 
To test the accuracy of the line-laser, reference measurements with accepted reference 

devices were required. The CTM used by the FDOT was developed by Nippo Sangyo Inc. and 
was the primary reference device for this project. The CTM is a static measurement device that 
has been widely accepted for producing accurate measurements of pavement macrotexture. 
Comparisons between MPD values computed by the CTM and MTD values produced from sand-
patch testing have shown a high-correlation with each other. Another advantage of the CTM is 
that it has an ASTM testing standard (ASTM E2157). Table 3-2 shows a few relevant 
specifications of the Nippo Sangyo CTM and Figure 3-7 shows the device. 

Table 3-2. CTM specifications [11]. 

Make and Model Nippo Sangyo CTM 

Scan Time Approx. 45 seconds 

Measurement Radius 142 mm 

Points per Profile 1,024 

Point Spacing Interval 0.87 mm (± 0.05 mm) 

Resolution (Z) 3 µm 

Figure 3-7. Nippo Sangyo circular track meter. 



Fast Texture Meter (FTM) 
The FTM is a static reference device developed by ICC. It is a high-resolution texture 

measurement device that produces MPD calculations in accordance with ASTM E1845 [33]. The 
FTM produces a high-resolution pavement analysis using all the available data points in a texture 
profile and a low resolution CTM-equivalent MPD value using 1,024 data points. Some 
specifications of the FTM are shown below in Table 3-3. Through a previous study conducted by 
the FDOT State Materials Office, the CTM-equivalent (low-resolution) MPD values produced by 
the FTM were nearly identical to those produced by the CTM. However, the high-resolution 
MPD values produced by the FTM had shown a 5-10% difference in MPD calculations when 
compared to those produced by the CTM. Figure 3-8 shows a graph comparing MPD values 
from the FTM and CTM and Figure 3-9 shows the FTM device. Comparisons between high-
speed devices, the CTM, and the FTM were conducted. 

Table 3-3. FTM specifications [33]. 

Make and Model International Cybernetics FTM 

Scan Time 9.75 seconds 

Measurement Radius 159 mm 

Points per Profile 9,410 (± 6) 

Point Spacing Interval 0.053 mm 

Resolution (Z) 0.01 mm 

Figure 3-8. FTM vs. CTM comparison study. 
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Figure 3-9. Fast texture meter (FTM). 

Texture Meter 2 (TM2) 
The Texture Meter 2 (TM2) is a dynamic macrotexture measurement device developed 

by WDM. The device contains a line-laser mounted transverse to the travel direction and emits a 
100-millimeter-wide laser profile. The device operator collects texture data in either 10-meter 
(33-foot) or 50-meter (164-foot) intervals at an ideal walking speed of approximately two mph. 
However, using the “TM View” program provided by WDM, the operator can measure MPD 
values in shorter intervals. The sampling interval of the TM2 can be set from 2 to 5-millimeters 
(0.08 to 0.20-inches) of travel. For example, if the sampling interval is set to 5 millimeters (0.2 
inches), a 10-meter (33-foot) test section will contain 2,000 measurement profiles. The height 
measurement resolution is stated to be less than 0.05 millimeters [34]. Testing will include a 
comparison study of the accuracy of the TM2 as a reference device relative to the CTM and 
FTM. Figure 3-10 shows an image of the TM2.
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Figure 3-10. Texture meter 2 (TM2) [26]. 

Texture Reference Plate 
When determining pavement’s macrotexture, the true MPD value is unknown. As a 

result, accuracy testing with high-speed measurement devices on pavement has shown to be 
difficult. Therefore, the UNF research team designed and developed a texture reference plate 
with known dimensions and geometry. The material used for the reference plate is a 6061-
aluminum alloy. The dimensions of the plate were constrained to the maximum cutting 
parameters of a computer numeric control (CNC) Haas Mini-Mill located in the UNF Fabrication 
Lab. The plate dimensions are 292 millimeters wide, by 406 millimeters long, and a thickness of 
12.7 millimeters. These dimensions account for the measurement radius of the CTM, which was 
used as a reference device. The texture of the plate replicates longitudinal diamond ground 
concrete with slot depths of 1.5 millimeters. After machining, the plate was coated with flat-
finish gray primer to replicate the reflectivity properties of pavement. Figure 3-11 shows the 
completed texture reference plate, and Figure 3-12 shows a diagram of the plate’s geometry. 
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Figure 3-11. UNF research team texture reference plate. 

Figure 3-12. Texture reference plate geometry. 

The purpose of this texture reference plate was to check the line-laser’s measurement 
accuracy during static and dynamic testing. To verify the uniformity of the reference plate post-
machining, a member of the UNF research team took 20 evenly spaced depth measurements 
along the center of the plate using digital calipers. The resulting average depth of cut for the 
reference plate was 1.498 millimeters. Since the slots are two millimeters wide with 2-millimeter 
spacing between slots, the average depth of the reference plate is half this value, or 0.748 
millimeters. The measurements were separated into three 100-millimeter profiles and the average 
MPD of the plate was calculated. Next, the plate was measured using the CTM eight times with 
five relocations totaling 40 MPD measurements. Table 3-4 shows the results of the plate 
measurements. 

Table 3-4. Texture reference plate MPD values.

Attribute Texture Reference Plate % Difference from Design MPD 

Design MPD 0.750 mm N/A 

Caliper Measured MPD 0.753 mm 0.4% 

CTM Measured MPD 0.769 mm 2.5% 
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Pavement Samples 
For static testing, the FDOT had pavement samples available to the UNF research team 

for testing purposes. These samples were used for optimizing sensor exposure time based on the 
absorptivity and reflectivity of various pavement types. They were also used for determining the 
effect that ambient light has on measurement accuracy. The samples were placed underneath the 
line-laser with the vehicle parked in the FDOT calibration bay. From there, the returned laser-
light intensity and the number of available data points for each sample were analyzed. An image 
of these pavement samples is shown below in Figure 3-13. 

Figure 3-13. FDOT pavement samples. 
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TEST APPROACH AND METHODOLOGY 
The initial focus of the testing process was to optimize the line-laser configuration 

settings. As previously stated, this process was conducted in three stages which included static 
testing, dynamic testing, and precision testing. After optimizing the configuration settings to 
where the device would output accurate raw height measurements, the UNF research team began 
analyzing the post-processing program. To begin, optimizing the line-laser configuration settings 
was conducted as follows:  

Static Testing 
1) Sensor Exposure Time: Sensor exposure time refers to the amount of time the electronic 

shutter of a sensor remains open to receive reflected laser light [2]. The UNF research 
team analyzed the effect that exposure time has on various pavement types. For dark 
objects, longer exposure times are required to receive adequate triangulated laser light 
from the object’s surface, and the opposite is true for light-colored objects. Also, when an 
exposure time is too long for a certain pavement type, the reflected light intensity will be 
oversaturated. Since the line-laser determines height measurements by taking the center of 
mass of reflected light, oversaturated return light distorts the measurement accuracy [35]. 
Therefore, a range of exposure times that accounts for various pavement types needed to 
be determined. This included optimizing the current range of 20 to 200 µs based on the 
absorptivity and reflectivity of the pavement samples. Determining an optimized range of 
exposure times reduces saturation of returned laser light and provides an optimal number 
of data points for MPD calculations.
Test Procedure: The testing involved placing a single pavement sample under the line-
laser with the test vehicle parked in the FDOT calibration bay. Using the LMI 
Technologies Gocator Web interface, the UNF research team analyzed the laser-light 
intensity via an exposure map in “Video Mode” and the corresponding number of 
available data points collected by the sensor in “Profile Mode.” The optimum exposure 
time for a given pavement type is the value where a maximum number of data points in 
the profile are captured while minimizing the presence of visible outliers in the interface.

2) Ambient Light Effect: According to previous studies, there is a relationship between 
ambient light intensity, the color of the scanned surface, and laser scanning quality. 
Ambient light has been shown to cause erroneous data readings on certain 3D laser 
scanners, such as line-lasers [36]. As stated in an LMI Technologies Gocator training 
video, at low exposure times (< 400 µs) the laser sensor is “relatively immune” to 
ambient light [33]. Therefore, the UNF research team conducted an experiment to verify 
whether ambient light has an effect on MPD calculations.
Test Procedure: Testing was conducted in the FDOT State Materials Office calibration 
bay. Like the static exposure time test, laser-light intensity and the corresponding data 
points were analyzed via the Gocator Web interface in both “Video Mode” and “Profile 
Mode,” respectively. The testing included analyzing height measurements on the UNF 
texture reference plate in direct sunlight and while completely shaded. The raw height 
measurements were recorded and averaged per 100-millimeter profile and compared 
between the two configurations. If ambient light influences the measurement quality, the 
previously established exposure range would be intermittently reduced until the 
discrepancy is removed.
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3) Reference Measurements: Historically, the CTM has been a widely accepted reference 
device for macrotexture measurements. Although the “true” MPD of a roadway is 
unknown, the FDOT utilizes the CTM to produce accurate MPD values when conducting 
field assessments. In addition, the ASTM E2157 test method was developed to guide users 
in operating the device. As a result, the UNF research team utilized the CTM for reference 
measurements when assessing the accuracy of the update line-laser system. Test 
Procedure: Testing was conducted at a test track provided to the FDOT located the at 
Williston Municipal Airport. The test track was marked with traffic cones to designate
330-foot sections on both pavement types. Using the CTM, sixteen evenly spaced 
measurements were taken within each 330-foot section and averaged to find the overall 
MPD of the test section. The average MPD of the two sections on each pavement type was 
considered the overall test section average.

4) X-Resolution: According to the Gocator user manual, x-resolution refers to the distance 
between each measurement point along the length of the laser line [31]. This term is also 
commonly referred to as “point-spacing interval.” From previous testing conducted by the 
UNF research team, the average number of data points in each 100-millimeter profile is 
404 given the current configuration. This equates to an x-resolution of approximately 0.24 
millimeters. In this configuration, “Uniform Spacing” is disabled. Therefore, the x-
resolution is passively produced based on the clearance distance between the laser light on 
the surface and the sensor. A diagram illustrating x-resolution is shown in Figure 3-14. 
When the line-laser has “Uniform Spacing” mode enabled, the user can manually select 
the x-resolution accounting for up to 1,280 data points per profile. Figure 3-15 shows x-
resolution while in “Uniform Spacing” mode. A comparison study between the current x-
resolution setting and several other configurations was conducted. This comparison study 
determined how x-resolution affects MPD calculations.
Test Procedure: Testing will be conducted in the FDOT State Materials Office calibration 
bay. Using the texture reference plate developed by the UNF research team, measurements 
will be taken under several different x-resolution settings. The first test will be the current 
configuration with “Uniform Spacing” disabled and 1/2 sub-sampling. Sub-sampling 
allows the user to reduce the number of data points (e.g., ½ sub-sampling reduces the 
number of data points by half) and allow for faster processing speeds within the Gocator’s 
CPU. The next test will also have “Uniform Spacing” disabled, but without sub-sampling. 
Finally, the remainder of the testing will have “Uniform Spacing” enabled and test the 
following x-resolutions (millimeters): 0.1, 0.25, 0.5, 0.75, and 1.0. The average MPD will 
be calculated at each resolution setting and will be compared against the design MPD 
value. From there, the UNF research team will analyze the effect x-resolution has on 
measurement accuracy and determine the most appropriate setting.
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Figure 3-14. X-resolution for the line-laser [31]. 

Figure 3-15. Diagram displaying x-resolution in “Uniform Spacing” mode. 



38 

Dynamic Testing 
1) Sensor Exposure Time: As previously stated, longer exposure times at highway speeds 

have shown an “averaging effect” on macrotexture profiles. This effect blurs pavement 
features when the sensor is moving at high speeds and results in underestimated MPD 
measurements [36]. The UNF research team analyzed the relationship between exposure 
time, vehicle speed, and measurement accuracy.
Test Procedure: Testing was conducted at the Williston Municipal Airport test track. The 
testing included acquiring measurements with the line-laser at several constant highway 
speeds and various exposure times. The MPD for each exposure setting will be calculated 
and recorded. There will be three separate exposure settings to be tested: dynamic range, 
multiple fixed exposures, and single exposure. The dynamic range and multiple fixed 
exposure times to be tested were determined in static exposure testing. The dynamic range 
consisted of the lower and upper limits of the exposure times determined using the FDOT 
pavement samples. The multiple fixed exposure times will consist of the optimal exposure 
time for open-grade friction course (OGFC), dense-grade friction course (DGFC), and 
concrete also determined in static testing. The single exposure portion of testing consisted 
of one exposure time (160 µs) to analyze the “averaging” effect at various test speeds. The 
optimal exposure setting was determined based on the system’s ability to calculate MPD 
values closest to those from reference devices.

2) Sampling Rate: According to ASTM E1845, a minimum requirement of 10 evenly spaced 
profiles per 100 meters (330-foot) of test section shall be used when determining pavement 
MPD [4]. This requirement is easily achievable given a vehicle speed of 60 mph with a 
sampling rate of 3 Hz will capture at least 11 profiles per 100 meters (330-foot). However, 
given various periodic road characteristics such as tining or grooving, higher sampling 
rates are required to account for these characteristics in the texture profile. Also, since 
MPD values are calculated by taking the average of every MSD in the test section, the 
UNF research team analyzed the effect that the number of scan profiles per test section has 
on MPD [35].
Test Procedure: Testing was conducted at the Williston Municipal Airport test track. The 
test track was marked with traffic cones to designate 330-foot sections on both pavement 
types. Data previously collected with the CTM was used as a reference for accuracy. 
Beginning with the current sampling rate of 20 Hz, the test vehicle collected texture data at 
a constant speed of 40 mph within the two 330-foot test sections. The sampling rate was 
increased and tested up until the maximum possible value. Considering the processing 
power of the line-laser system, 1,440 Hz was the maximum sampling rate when utilizing 
the maximum z-resolution, or height precision. With this information, the UNF research 
team analyzed the effect sampling rate has on MPD calculations.
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3) Precision: Testing was conducted to check the measurement repeatability of the updated
line-laser system. The measurement repeatability refers to the system’s ability to produce
the same MPD results on a certain test section given multiple test runs. Assuming the test
parameters remained constant for each test run, the UNF research team calculated any
standard deviation (σSD) from the mean (x̅) MPD value to calculate the coefficient of
variation, COV. The equation for COV is shown below in Equation 3-1 and is expressed as
a percentage [22].

𝐶𝐶𝐶𝐶𝑉𝑉 = σSD/�̅�𝑥 (Equation 3-1) 

Test Procedure: Testing was conducted at the Williston Municipal Airport test track and 
a designated test section located on SR 9B. The beginning and end points at each test 
section were marked with reflective tape, and evenly spaced reference measurements were 
taken with each device. The OGFC and DGFC sections were 1,000 feet long and tested at 
constant speeds (40, 50, and 60 mph) to determine the measurement repeatability in 
intervals of 50, 100, 200, and 250 ft. The LGD concrete site at SR 9B was 2,500 feet long 
and contained five evenly spaced 500-foot subsections. Using the updated line-laser 
system, three high-speed runs were conducted at each test site. 

DATA PROCESSING AND PROGRAM ANALYSIS 
After data collection was completed, the data was processed using a program developed 

by ICC. Comparisons were made between manually calculated MPD values from raw height data 
and those produced by ICC’s post-processing program. If the post-processing program caused 
MPD values to diverge from reference values produced by the CTM, the UNF research team 
were to perform further analysis of the program in communication with ICC. If the program 
causes the MPD measurements to converge towards the reference MPD values, the UNF 
research team would then determine if any area of the program should be optimized. 

In the event of an issue within the post-processing program was discovered, the UNF 
research team would conduct further analysis of the program as follows:  

1) The Team would focus on the robustness of the algorithm regarding its ability to handle
very large datasets.

2) Comparisons would be made between MPD calculations using raw height measurements
and those with a lowpass filter applied per ASTM E1845 specifications [4].

3) The outlier removal and replacement method would also be analyzed. It was proposed by
ICC to input synthetic outliers into datasets to determine the processing algorithm’s
ability to identify and remove said outliers.

4) Testing would also determine the program’s ability to ignore “false” outliers as well.
False outliers are true values that are incorrectly identified as outliers and removed.

5) Analysis of alternative outlier replacement methods (i.e., False Discovery Rate) would be
considered and tested.
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TEST PLAN SCHEDULE AND GANTT CHART 
The test plan schedule for optimizing the line-laser system is shown below in Table 3-5. 

Additionally, a Gantt Chart is shown in Figure 3-16 to illustrate the testing timeline. 

Table 3-5. Test plan schedule. 

Test Type Test Parameter Start Date End Date Total Days 
Static Sensor Exposure Time & Ambient Light Effect 10/01/19 10/07/19 6 
Static Reference Data 10/07/19 10/14/19 7 
Static X-Resolution 10/14/19 10/28/19 14 

Dynamic Sensor Exposure Time 10/21/19 11/04/19 14 
Dynamic Sampling Rate 10/28/19 11/11/19 14 
Dynamic Ambient Light Effect 11/04/19 11/18/19 14 

N/A Data Processing & Program Analysis 11/11/19 12/02/19 21 
Dynamic Accuracy and Repeatability 11/18/19 12/09/19 21 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 

Test 
Parameter 

10/01 – 
10/07 

10/07 – 
10/14 

10/14 – 
10/21 

10/21 – 
10/28 

10/28 – 
11/04 

11/04 – 
11/11 

11/11 – 
11/18 

11/18 – 
11/25 

11/25 – 
12/02 

12/02 – 
12/09 

Sensor Exposure 
Time & Ambient 

Light Effect 

Reference Data 

X-Resolution

Sensor Exposure 
Time 

Sampling Rate 

Ambient Light 
Effect 

Data Processing 
& Program 
Analysis 

Precision 

Figure 3-16. Test plan Gantt Chart.
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CHAPTER 4 – OPTIMIZING THE LINE-LASER PARAMETERS 
STATIC TESTING 

Static testing was conducted at the FDOT State Materials Office. The testing included 
optimizing the sensor exposure time, analyzing the effect ambient light has on measurements, 
comparing various x-resolutions (point spacing interval), and analyzing static measurement 
repeatability. These parameters were tested using the vehicle-mounted LMI Technologies 
Gocator-2342-3B-12 line-laser in the State Materials Office commercial vehicle lot. The line-
laser was mounted along the driver’s side wheel path at a 45-degree angle relative to the 
transverse axis of the vehicle. The vehicle used for testing was an FDOT Friction Evaluation 
Unit (Ford F-350) also identified as Unit 10. Figure 4-1 shows the test vehicle. 

Figure 4-1. Test vehicle (Unit 10). 

Texture Reference Plate Measurements 
To begin, measurements of the texture reference plate developed by the UNF research 

team were taken using various devices. To analyze device measurement accuracy, the texture 
reference plate was created to establish a “ground-truth” texture MPD. The texture design of the 
plate replicates longitudinal diamond ground concrete with 2-millimeter-wide slots, slot depths 
of 1.5 millimeters, and 2-millimeter spacing between slots. The initial measurements shown 
below in Table 4-1 were taken with reference devices as well as the Gocator line-laser under its 
original configuration. 
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Table 4-1. Initial texture reference plate measurements.

Device MPD (mm) % Error from Design 
Design 0.75 N/A 

Circular Texture Meter (CTM) 0.77 2.5% 
Fast Texture Meter (FTM) 0.89 18.3% 
FTM – CTM Equivalent 0.79 5.3% 

Gocator Line-Laser Raw (Unprocessed) 0.82 9.3% 
Gocator Line-Laser Processed (MDR Pro) 0.87 16.1% 

As shown above, the design MPD of the texture reference plate is 0.75 millimeters. The 
device that produced an MPD value closest to that of the design was the CTM with 2.5% error. 
Based on the results of this test, the CTM MPD value was used as an acceptable reference value 
in subsequent testing. Also seen in the table above, the MPD values produced by the line-laser, 
both from raw measurements and post-processed through ICC software, were overestimated by 
9.3% and 16.1%, respectively. As a result, the UNF research team began investigating the 
current configuration settings of the line-laser and the ICC processing algorithm. Figure 4-2 
shows the line-laser on the texture reference plate during static measurements. 

Figure 4-2. UNF texture reference plate. 
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Sensor Exposure Time 
The ideal sensor exposure time varies based on the pavement type being analyzed. More 

specifically, the exposure time required to receive a desirable amount of reflected laser light 
depends on the reflectivity properties of the pavement. For example, dark-colored surfaces 
require longer exposure times to receive reflected laser light compared to light-colored surfaces. 
However, if the exposure time is too long (overexposed), the reflected light will be 
oversaturated. Since height measurements from the line-laser are produced by data points along 
the center of mass of reflected light on a surface, an oversaturated profile causes overestimated 
height measurements and unwanted noise in the dataset. If the sensor is underexposed for the 
selected pavement type, the electronic shutter of the sensor will not remain open long enough to 
capture reflected light which causes dropout points in the dataset. Figure 4-3 shows images from 
the Gocator Web interface for the line-laser when an exposure time is too long (overexposed). 
Figure 4-4 shows images of the interface if the exposure time is optimized for a specified 
pavement type. The images on the left are from the previously mentioned “Video Mode” and the 
images on the right are from the “Profile Mode.” 

Figure 4-3. Light intensity map (left). Data points captured by the sensor (right) – 200 µs. 

Figure 4-4. Light intensity map (left). Data points captured by the sensor (right) – 65 µs. 

Using various pavement samples provided by the FDOT, optimizing the sensor exposure 
time was conducted with samples both in direct sunlight and while shaded from the sun via a 
canopy tent. The pavement samples used in the experiment contained two open-grade friction 
course (OGFC) samples, two dense-grade friction course (DGFC) samples, and one concrete 
sample. Images of these samples taken during the exposure test are shown below in Figure 4-5. 
To begin, an initial exposure time was determined using the “Auto-Select” feature within the 
Gocator Web interface while the pavement sample was in direct sunlight. The “Auto-Select” 
feature determines the best-fit exposure time based on unknown factors within the system’s 
internal programming. From there, the exposure time was manually adjusted in increments of 
five microseconds while viewing the light intensity map in “Video Mode” and the availability of 
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data points in “Scan Mode.” Once oversaturation was removed, the optimal exposure time was 
recorded, and the process was repeated with the pavement sample completely shaded. In every 
case, the optimized exposure time was the same for the sample in direct sunlight and while 
shaded. Table 4-2 shows the results of the static exposure optimization testing. 

Figure 4-5. Pavement samples used in the static exposure time optimization experiment. 

Table 4-2. Sensor exposure time test results. 

Pavement Sample Direct Sunlight - Ideal 
Exposure Time (µs) 

No Sunlight - Ideal 
Exposure Time (µs) 

DGFC #1 (0.017” MPD) 40 40 
DGFC #2 (0.033” MPD) 40 40 
OGFC #1 (0.065” MPD) 70 70 
OGFC #2 (0.106” MPD) 60 60 
Concrete (0.028” MPD) 25 25 

In the original configuration of the line-laser, the exposure time was set as a dynamic 
range from 20 to 200 microseconds. Based on the results shown above, the upper limit of the 
dynamic range would allow the sensor to reach an overexposed state. This overexposed state 
creates a greater potential to capture outliers and unwanted noise. Another issue with the upper 
limit of the dynamic range being too high is that, at high speeds, it can create an “averaging 
effect” on profiles and result in underestimated MPD values, but this topic will be discussed in 
further detail in the “Dynamic Testing” section. It is recognized by the UNF research team that 
conclusions derived from this experiment are based on the reflectivity properties of the test 
samples. To compensate, the ideal dynamic range was determined to be 20 microseconds to 80 
microseconds to account for roadways that are outside the scope this testing. 
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Ambient Light Effect 
Resembling the sensor exposure time testing, the ambient light effect testing included 

collecting data on the previously used pavement samples in both direct sunlight and while 
completely shaded. Using the previously determined ideal exposure time for each sample, one 
pavement sample would be placed under the line-laser and approximately 60 measurement scans 
would be taken. Next, the average height for each 100-millimeter scan would be determined, and 
the overall average height for the test sample was calculated. Without moving the pavement 
sample, the canopy tent would be placed near the test vehicle to completely shade the sample 
from sunlight. From there, the average height of the sample would be determined, and the 
sunlight versus no sunlight values were compared. The process was then repeated for each 
pavement sample. The results of this test are shown below in Table 4-3. 

Table 4-3. Ambient light effect test results. 

Pavement Sample Avg. Height 
Sun (mm) 

Avg. Height 
No Sun (mm) 

Test Exposure 
Time (µs) 

Difference 
(mm) 

DGFC #1 (0.017” MPD) -0.349 -0.474 40 0.125 
DGFC #2 (0.033” MPD) -0.648 -0.638 40 0.010 
OGFC #1 (0.065” MPD) 0.604 0.558 70 0.046 
OGFC #2 (0.106” MPD) 0.229 0.240 60 0.011 
Concrete (0.028” MPD) -0.721 -0.738 25 0.017 

For most of the test samples, ambient light had little effect on the measurement quality of 
the line-laser. However, on DGFC #1, the difference in average height between the sunlight 
versus no sunlight configurations was 0.125 millimeters. Since the measurements shown above 
were raw, unfiltered measurements, the discrepancy may be attributed to high frequency 
components such as noise and transients within the data. Also, pavements with low MPD values, 
like the DGFC #1 sample in this test, have texture wavelengths that are shorter than those with 
high MPD values. Because of this, the laser-based system taking measurements must be very 
precise. Since these measurements were taken with the unoptimized system, this discrepancy 
could exist as a result of the one-half sub-sampling in the z-direction, which reduces 
measurement precision by half and allows for a larger influence of noise at short wavelengths. 
This test was completed in the early stages of the project, and it has since then been determined 
that ambient light did not have an effect on MPD calculations.  

X-Resolution (Point Spacing Interval)
To establish a coordinate system for the line-laser, the x-axis is along the width of the 

projected laser line, the z-axis is normal to the pavement and contains height measurements, and 
the y-axis is in the vehicle’s travel direction. The line-laser has two primary configurations 
regarding x-resolution, the first being “Non-Uniform Spacing” and the second being “Uniform 
Spacing”. Non-uniform spacing passively establishes an x-resolution based on the clearance 
distance between the line-laser and the surface. Within the non-uniform spacing setting, there are 
options for “No Sub-Sampling”, “1/2 Sub-Sampling”, and “1/4 Sub-Sampling”. Given that every 
camera column contains a single data point (height measurement), sub-sampling refers to the 
fraction of camera columns to be recorded and stored in the profile. For example, under the “1/2 
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Sub-Sampling” configuration, every second data point will be used in the measurement profile. 
Uniform spacing allows the user to select an x-resolution by specifying the desired point-spacing 
in millimeters, and the system produces a profile using evenly spaced data points based on that 
input value [32]. For example, given a profile width of 100 millimeters, an x-resolution of 0.5 
millimeters will produce 200 evenly spaced data points. An example of how x-resolution is 
established in non-uniform spacing mode is shown in Figure 4-6 and an example of x-resolution 
in uniform-spacing mode is shown in Figure 4-7. 

Figure 4-6. X-resolution with “Non-Uniform Spacing” enabled [32]. 

Figure 4-7. X-resolution with “Uniform Spacing” enabled. 



47 

Using the texture reference plate as a test surface, several x-resolutions were compared 
using both “Uniform Spacing” and “Non-Uniform Spacing” configurations. The original 
resolution settings for the line-laser system had non-uniform spacing enabled with ½ sub-
sampling in both the x- and z-directions. For this test, the raw height measurements were used to 
calculate the MPD at each resolution setting. The unprocessed results of the static resolution 
testing are shown below in Table 4-4. As previously mentioned, the design MPD for the texture 
reference plate was 0.75 millimeters and the CTM MPD was 0.77 millimeters. 

Table 4-4. Static resolution test results. 

Setting Resolution (mm) 
Number of 

Data 
Points 

Reference Plate 
Raw MPD 

(mm) 

% Difference 
from Design 

Uniform 
Spacing 
Disabled 

½ Sub-Sampling X & Z 
(Initial Setting) 404 0.819 8.4% 

½ Sub-Sampling X & No Sub-
Sampling Z 404 0.783 4.4% 

¼ Sub-Sampling X & No Sub-
Sampling Z 203 0.775 3.2% 

No Sub-Sampling in X or Z 
directions (Max Resolution) 808 0.790 5.1% 

Uniform 
Spacing 
Enabled 

1.0 101 0.752 0.3% 
0.75 134 0.767 2.2% 
0.5 201 0.775 3.2% 
0.25 402 0.788 4.8% 
0.1 1,004 0.795 5.7% 

Comparing the initial resolution setting to those from testing, ½ sub-sampling in the z-
direction negatively affected measurements and produced an MPD furthest from the design 
value. Sub-sampling in the z-direction reduces the accuracy of height measurements by utilizing 
only a fraction of the available data columns in the z-direction and, therefore, decreasing the 
number of potential height values. An initial observation would reveal that the 1-millimeter 
spacing produced an MPD value closest to the design MPD. However, ASTM E1845 states that 
the maximum sampling interval between measurement points should not exceed one millimeter 
[4]. Due to the inherent nature of laser-based measurement devices having dropout points and 
outliers, the valid point count in each 100-millimeter profile (maximum of 101 points at 1-
millimeter spacing) would be less than 100 and exceed the 1-millimeter resolution requirement. 
This issue also applies to the 0.75-millimeter uniform spacing with a maximum point count of 
134. Another observation is the relationship between MPD and the maximum number of data
points being similar in both non-uniform spacing and uniform spacing configurations. Since the
ICC post-processing program resamples each profile to 0.1-millimeter spacing, the UNF research
team decided to utilize this program feature and further observe the non-uniform spacing
configurations (½, ¼, and no sub-sampling in the x-direction) in dynamic testing.

• System Update: Z-resolution updated from “½ Sub-Sampling” to “No Sub Sampling”.
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DYNAMIC TESTING 
Building upon the results determined in static testing, dynamic testing was conducted at 

the Williston Airport Test Track. The test track is a one-lane road approximately 3,800 feet in 
length consisting of half OGFC and half DGFC. For dynamic testing, the UNF research team 
collected data using a software utility developed by ICC. The data collection had to be done with 
ICC software to utilize the ICC data processing program. The processing program handles 
several processes such as outlier removal, lowpass filtering, slope suppression, and MPD 
calculations. Two ICC programs were used for comparison during testing. The primary 
difference between the two programs was the method of lowpass filtering. The original 
processing program, which will be referred to as Program 1, contained a Butterworth bi-
quadratic lowpass filter. The recently developed processing program, which will be referred to as 
Program 2, contained a Savitzky-Golay convolution lowpass filter. Lowpass filtering is a process 
required by the ASTM E1845 to remove high-frequency components within the texture profile 
such as the influence of noise and transients [4]. 

Williston Airport Reference Measurements 
To begin, a 330-foot test section was marked with traffic cones on both the OGFC and 

DGFC portions of the test track. Within each of these 330-foot test sections, 16 evenly spaced 
reference measurements were taken with the CTM. The CTM measurements were taken along 
the driver-side wheel path. The results from reference measurements are shown below in Table 
4-5. Figure 4-8 illustrates the CTM locations at the Williston Airport Test Track.

Table 4-5. Williston Airport Test Track CTM reference data. 

DGFC – 100m Test Section OGFC – 100m Test Section 
Location Number Average MPD (mm) 

#1 0.44 1.66 
#2 0.39 1.62 
#3 0.45 1.94 
#4 0.43 2.17 
#5 0.50 1.83 
#6 0.51 1.75 
#7 0.47 1.72 
#8 0.55 2.07 
#9 0.40 1.92 
#10 0.48 1.78 
#11 0.37 1.83 
#12 0.46 1.77 
#13 0.44 2.06 
#14 0.44 1.92 
#15 0.42 1.68 
#16 0.41 1.57 

Overall MPD Avg. 0.448 1.831 
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Figure 4-8. Williston Airport test section measurement locations. 

When determining the MPD of a roadway, section 6.1.2 of ASTM E1845 states that it is 
sufficient to obtain 16 evenly spaced measurement locations regardless of the test section length 
[4]. Given this information, the UNF research team utilized the overall MPD average for each 
test section to use for comparison with the line-laser measurements. Figure 4-9 shows an image 
of the CTM at the Williston test track. 

Figure 4-9. CTM measurement at Williston Airport. 
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Sensor Exposure Time 
Further testing of the sensor exposure time was conducted in dynamic testing. This was 

done to analyze the “averaging effect” caused by elongated measurements at highway speeds as 
shown in Figure 4-10. These elongated measurements are dependent on the amount of time the 
sensor’s electronic shutter remains open to receive reflected light (exposure time). For example, 
at a speed of 40 mph with an exposure time of 50 microseconds, the return spot-width of each 
data point will be elongated by 0.894 millimeters of travel during each scan. Therefore, the 
dynamic exposure time testing was used to analyze this effect and how it applies to MPD. 

Figure 4-10. Averaging effect produced in dynamic testing. 

The testing was conducted on the 330-foot OGFC and DGFC test sections at the 
Williston Airport Test Track. Three exposure time configurations were tested at 20, 40, and 60 
mph. The first configuration consisted of the dynamic range setting previously established in 
static testing (20 to 80 µs). Using the dynamic range feature, the line-laser system finds the most 
suitable exposure time within a specified range based on the reflectivity properties of a surface. 
The second configuration was the multiple exposure setting. When multiple exposures are 
enabled, the user can specify up to five fixed exposure times and allow the system to determine 
which exposure is most suitable for the surface being analyzed. For this configuration, one 
exposure time was set for the three different pavement types. The exposure times were 20 µs for 
LGD concrete, 50 µs for DGFC, and 80 µs for OGFC. This was done to see if the system would 
apply the correct exposure time corresponding to the DGFC and OGFC pavements. The third 
configuration was a fixed single exposure. To enhance and observe the “averaging effect,” the 
single exposure was set to 160 µs. Table 4-6 shown below contains the results of the dynamic 
exposure testing. 

Table 4-6. Dynamic sensor exposure time test results with ¼ sub-sampling. 

Exposure Time Speed DGFC MPD (mm) OGFC MPD (mm) 

Dynamic Range 
(20 - 80 µs) 

20 MPH 0.445 1.849 
40 MPH 0.426 1.717 
60 MPH 0.418 1.761 

Multiple 
(20; 50; 80 µs) 

20 MPH 0.417 1.635 
40 MPH 0.391 1.603 
60 MPH 0.383 1.684 

Single 
(Long: 160 µs) 

20 MPH 0.443 1.735 
40 MPH 0.378 1.608 
60 MPH 0.361 1.556 

CTM Reference MPD (mm) 0.448 1.831 
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For the test results shown above, the sampling rate was kept at the original setting of 20 
Hz and the x-resolution was set to ¼ sub-sampling. The data was processed using Program 1 
containing the Butterworth lowpass filter. Looking at the results of the single exposure setting, a 
decreasing trend in MPD is shown relative to increasing speed on both pavement types. This 
confirms the relationship between vehicle speed, exposure time, and measurement accuracy. To 
overcome this relationship, the UNF research team decided to utilize the ½ and no sub-sampling 
configurations for subsequent testing in place of the ¼ sub-sampling. This was done based on the 
MPD values produced during static testing under these configurations being inherently higher. 
Since the results of the “dynamic range” configuration were closer to the accepted CTM MPD 
values when compared to the “multiple” configuration, subsequent testing was conducted using 
the dynamic exposure range of 20 to 80 microseconds. 

• System Update: The optimal exposure setting was determined to be a range of 20 – 80 µs.

Sampling Rate 
The sampling rate for the line-laser system refers to the number of scanned profiles 

collected each second. The original configuration contained a 20 Hz sampling rate which, at 60 
mph, equates to one profile collected every 4.4 feet of travel. Since CTM reference 
measurements were taken every 20 feet in each test section, and the measurement diameter of the 
CTM is 11.2 inches, the initial sampling rate to be analyzed was 100 Hz [11]. This equates to 
one profile captured every 0.88 feet of travel at 60 mph, and it was done to ensure at least one 
measurement profile would be captured within the vicinity of each CTM measurement on the test 
track. Considering that MPD calculations are based on the average of all MSD values in a test 
section, higher sampling rates would theoretically provide a more accurate representation of the 
actual MPD. However, too high of a sampling rate can induce signal noise and distort 
measurement accuracy [35]. Also, high sampling rates produce large data files which are limited 
to the memory capacity of the on-board computer. These factors were all considered in the 
development of the sampling rate test procedure. As previously stated, the sampling rate testing 
also served as a comparison study between no sub-sampling and ½ sub-sampling x-resolution 
settings. The ½ sub-sampling results are shown below in Table 4-7. 

Table 4-7. Sampling rate test results with ½ sub-sampling and processed with Program 1. 

Sampling 
Rate Speed DGFC MPD 

(mm) 

DGFC - % 
Error from 

CTM 

OGFC MPD 
(mm) 

OGFC - % 
Error from 

CTM 

100 Hz 
20 MPH 0.452 0.9% 1.822 -0.5%
40 MPH 0.440 -1.8% 1.884 2.9% 
60 MPH 0.440 -1.8% 1.836 0.3% 

200 Hz 
20 MPH 0.444 -0.9% 1.760 -3.9%
40 MPH 0.439 -2.0% 1.890 3.2% 
60 MPH 0.436 -2.7% 1.756 -4.1%

1,410 Hz 
(Max) 

20 MPH 0.458 2.2% 1.787 -2.4%
40 MPH 0.442 -1.3% 1.751 -4.4%
60 MPH 0.435 -2.9% 1.730 -5.5%

CTM Reference MPD 0.448 - 1.831 -
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Under the ½ sub-sampling configuration, Table 4-7 shows relatively consistent MPD 
values regardless of the given sampling rate. The standard deviations between all MPD values in 
each test section were 0.007 millimeters for DGFC and 0.055 millimeters for OGFC. Also, given 
the current resolution setting and sampling rates above, the measurement deviation due to 
increasing speed (as seen ¼ sub-sampling dynamic exposure testing) was greatly alleviated. 
Additionally, using the ½ sub-sampling configuration, the system had strong agreement with the 
reference MPD values produced by the CTM. The greatest differences in MPD between the line-
laser and CTM were 2.9% on DGFC and 5.5% on OGFC indicating that the line-laser is 
producing accurate results. The results with no sub-sampling are shown below in Table 4-8. 

Table 4-8. Sampling rate test results with no sub-sampling and processed with Program 1. 

Sampling 
Rate Speed 

DGFC 
Processed 

MPD (mm) 

DGFC - % 
Error from 

CTM 

OGFC 
Processed 

MPD (mm) 

OGFC - % 
Error from 

CTM 

100 Hz 
20 MPH 0.547 22.1% 1.861 1.6% 
40 MPH 0.517 15.4% 1.833 0.1% 
60 MPH 0.545 21.7% 1.738 -5.1%

200 Hz 
20 MPH 0.514 14.7% 1.900 3.8% 
40 MPH 0.531 18.5% 1.860 1.6% 
60 MPH 0.500 11.6% 1.768 -3.4%

1,410 Hz 
(Max) 

20 MPH 0.566 26.3% 1.866 1.9% 
40 MPH 0.518 15.6% 1.876 2.5% 
60 MPH 0.503 12.3% 1.805 -1.4%

CTM Reference MPD 0.448 - 1.831 - 

Based on the results in Table 4-7 and 4-8, there is no indication that MPD significantly 
varies between the initial and tested sampling rates (20 to 1,410 Hz). Since macrotexture has 
shown to be generally uniform along the length of a roadway, increasing the number of 
measurement profiles past 20 Hz does not have a significant effect on MPD calculations. 
Therefore, at the request of the project manager, the sampling rate would remain at 20 Hz to 
minimize the macrotexture file sizes. Additionally, Table 4-8 shows that the percent error values 
relative to reference measurements on DGFC are larger compared to those in the ½ sub-sampling 
configuration (similar error on OGFC). Also, the MPD values shown in Table 4-8 are nearly all 
overestimated and show larger variation with speed on DGFC compared to those in Table 4-7. 
The overall standard deviations between MPD values in each test section were 0.021 millimeters 
for DGFC and 0.051 millimeters for OGFC. One can speculate based on the standard deviations 
that the no sub-sampling option potentially produces less repeatable results on DGFC when 
compared to ½ sub-sampling shown in Table 4-7.  

• System Update: Sampling rate and x-resolution unchanged (20 Hz and ½ sub-sampling).

Based on the results above, the configuration settings to be implemented are as follows: 

• Exposure: Dynamic Range (20 µs – 80 µs)
• X-Resolution: Non-Uniform Spacing with ½ Sub-Sampling
• Z-Resolution: No Sub-Sampling
• Sampling Rate: 20 Hz
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PRECISION TESTING 
Precision testing was conducted at the Williston Airport test track and at SR 9B in 

Jacksonville, Florida to assess the repeatability of the line-laser system. A 1,000-foot test section 
was designated on both the OGFC and DGFC portions of the Williston test track. At SR 9B, the 
LGD concrete test site consisted of five consecutive 500-foot sections. In addition to precision, 
this testing allowed the UNF research team to assess the accuracy of the line-laser on concrete. 
All high-speed data collection was completed using the optimized system parameters as 
determined in previous testing. The repeatability of the system was evaluated by calculating the 
COV (Equation 3-1) between three runs. 

For the OGFC and DGFC test sections, various levels of precision were determined by 
comparing MPD values in 50-ft, 100-ft, 200-ft, and 250-ft intervals at several test speeds. 
However, since the concrete section was located on an active roadway, testing was conducted at 
60 mph and the collection procedure only allowed for comparisons in roughly 250-foot intervals. 
The results of the precision testing are shown below in Tables 4-9 and 4-10. Graphs illustrating 
these results on each pavement type at 60 mph are shown in Figures 4-11 to 4-19. 

Table 4-9. Line-laser COV on OGFC and DGFC at the Williston test track.

50 FT 100 FT 200 FT 250 FT 
OGFC DGFC OGFC OGFC DGFC OGFC OGFC DGFC 

40 mph 7.1% 6.1% 4.7% 7.1% 6.1% 4.7% 2.9% 2.0% 
50 mph 7.9% 5.7% 5.0% 7.9% 5.7% 5.0% 3.0% 2.3% 
60 mph 5.7% 5.9% 4.0% 5.7% 5.9% 4.0% 2.2% 2.2% 

Table 4-10. Line-laser COV and MPD comparison on LGD concrete at SR-9B (60 mph). 

COV (250 FT) 8.1% 
Line-Laser MPD (mm) 0.59 

CTM MPD (mm) 0.64 
Difference in MPD 7.5% 
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Figure 4-11. Precision results in 50-foot intervals on OGFC at 60 mph. 

Figure 4-12. Precision results in 50-foot intervals on DGFC at 60 mph.
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Figure 4-13. Precision results in 100-foot intervals on OGFC at 60 mph. 

Figure 4-14. Precision results in 100-foot intervals on DGFC at 60 mph.
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Figure 4-15. Precision results in 200-foot intervals on OGFC at 60 mph.

Figure 4-16. Precision results in 200-foot intervals on DGFC at 60 mph.
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Figure 4-17. Precision results in 250-foot intervals on OGFC at 60 mph. 

Figure 4-18. Precision results in 250-foot intervals on DGFC at 60 mph. 
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Figure 4-19. Precision results in 250-foot intervals on LGD concrete at 60 mph. 

Based on the results above, the updated line-laser system can produce repeatable results 
in segments as small as 100 feet on OGFC and DGFC. At this level of precision, the highest 
COV between three separate runs was shown to be 5.0% which occurred on the OGFC test 
section. On LGD concrete, the system was shown to have a COV of 8.1% while travelling at 60 
mph. In addition, when comparing the reference MPD from the CTM to MPD produced by the 
line-laser, the average difference was 7.5% between the five subsections. With these results, the 
UNF research team proceeded into subsequent testing with the updated line-laser system.
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TEXTURE PROCESSING PROGRAM ANALYSIS 
The primary function of the original data processing program was to calculate an MPD 

value that correlates to the location of a locked-wheel skid test in an area of interest. The 
algorithm contained a fixed lowpass filtering method that complied with the parameters stated in 
ASTM E1845 [4]. As previously stated, the dynamic testing conducted in Phase I compared two 
filtering methods (Butterworth and Savitsky-Golay) in separate versions of the processing 
program. While the testing only evaluated MPD results on OGFC and DGFC pavement, it was 
determined by the UNF research team that the Butterworth filter was the most suitable option. 

Working with the software developers at ICC, it was proposed to create a user interface 
containing several versions of the Butterworth lowpass filter. Each version maintained the 2.5-
millimeter pass and 5-millimeter stop bands as required by ASTM E1845, the primary difference 
in the alternative versions was the stop band (2.5 mm) attenuation magnitude. The three alternate 
versions of the Butterworth filter contain attenuation values of -3 dB, -6 dB, and -8 dB per 
octave. The user interface also contains the Savitsky-Golay lowpass filter. Figure 4-20 shows an 
image of the texture processing options in the new program. 

Figure 4-20. Texture processing program showing various lowpass filter versions.

Another feature of the new processing program is the ability to trim large binary files 
produced by the line-laser system. The current system collects texture data as soon as the vehicle 
DMI is activated. This results in large file sizes containing unneeded data during the collection 
process. To remove this unneeded data from the on-board computer, the program trims the 
binary files to contain only texture data collected during a locked-wheel skid test. This is made 
possible by correlating the event information located in the skid files produced by MDR Pro to 
texture measurements within the binary file. 

Utilizing the new features of the processing program, the UNF research team reprocessed 
the data from nine sites collected during the 2018 harmonization study. Previously, the MPD 
values produced by the line-laser system were underestimated on every pavement type that was 
tested. Every available filter in the new processing program was analyzed to see their effect on 
MPD. The results of reprocessing this data had shown only slight increases in MPD. Therefore, it 
was determined by the UNF research team that the bulk of the measurement errors were due to 
incorrect system parameters within the line-laser. 
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CHAPTER 5 – DEVICE HARMONIZATION AND PRECISION TESTING 
The purpose of this testing was to harmonize the recently updated line-laser with the 

existing point-laser and determine precision estimates for each system. The study was conducted 
at 15 of the 30 sites previously analyzed in the 2018 texture harmonization study [39]. These 15 
sites were chosen based on their proximity to the State Materials Office and are in Districts 2 and 
5. These test sites include five open-grade, five dense-grade, and five LGD concrete roadways.
Each test site also contained five subsections to further analyze the repeatability and accuracy of
the line-laser system. The subsections were evenly spaced approximately 500 feet apart. Table 5-
1 shown below lists the harmonization test sites and roadway information.

Table 5-1. Harmonization sites. 

Pavement 
Type Project ID Surface Location Speed BMP EMP Lane Material 

OGFC - 1 26060000 FC-5M SR 200 55 MPH 27.00 27.54 NBTL Granite 
OGFC - 2 26050000 FC-5 SR 24 65 MPH 12.15 12.54 NBPL Limestone 
OGFC - 3 26010000 FC-5M US 441 65 MPH 1.10 1.70 SBPL Granite 
OGFC - 4 28010000 FC-5 SR 200/US 301 65 MPH 3.01 3.58 SBTL Limestone 
OGFC - 5 73010000 FC-5AW SR5 65 MPH 1.41 2.00 NBTL Limestone 
DGFC - 1 27010000 FC-125MR SR 10 60 MPH 15.00 15.60 SBTL Limestone 
DGFC - 2 29040000 FC-12.5 SR 25/SR 100 60 MPH 3.30 3.87 NB Granite 
DGFC - 3 39020000 FC-125MR SR 121 60 MPH 10.59 11.79 NB Granite 
DGFC - 4 27010000 FC-125MR SR 10 60 MPH 13.3 13.9 EBTL Limestone 
DGFC - 5 28030001 FC-12.5 SR 16 60 MPH 6.94 7.47 WBTL Limestone 

Concrete - 1 72002027 LGD SR 9B 60 MPH 3.00 3.54 SBL3 NA 
Concrete - 2 79110000 LGD SR 400 70 MPH 17.01 17.70 NBL3 NA 
Concrete - 3 79060000 LGD SR 600/US 92 65 MPH 7.72 8.30 EBL2 NA 
Concrete - 4 79060000 BD SR 600/US 92 65 MPH 8.3 7.7 WBL2 NA 
Concrete - 5 72120000 LGD SR 228 60 MPH 4.11 4.71 EBTL NA 

STATEWIDE DATA COLLECTION 
In the 2018 harmonization study, MPD values produced by the point-laser had a strong 

correlation with those produced by the CTM on flexible pavement [39]. Also, since the CTM is 
considered a reputable texture reference device, the harmonization effort used the point-laser as a 
reference device for the open-grade and dense-grade test sections. Using the point-laser as a 
reference device on the ten flexible pavement sites eliminated the need for MOT in these 
sections. In addition, since the point-laser is mounted adjacent to the line-laser, data collection 
was done simultaneously with both devices.  However, since current point-laser technology is 
unable to accurately capture macrotexture on LGD concrete, the remaining test sections required 
MOT to collect reference measurements. At each of the five concrete sites, reference 
measurements were taken with the CTM and FTM. Once these reference measurements were 
completed, high-speed data collection was conducted using both the vehicle-mounted point- and 
line-laser. Figure 5-1 shows a map of the test sites. 
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Figure 5-1. Harmonization test locations. 

Reference Devices 
In accordance with ASTM E1845, there were a total of 20 evenly spaced measurement 

locations using the CTM and FTM at each test site [4]. These measurement locations were 
positioned along the driver-side wheel path approximately 125 feet apart. Without moving the 
devices, measurements with the CTM and FTM were repeated three times to obtain an average 
MPD value for that location. The UNF research team was only able to collect data with the TM2 
at one LGD concrete test site due to a software issue at the time of testing. Therefore, the TM2 
was excluded in the device comparisons for this study. However, a comparison between the TM2 
and line-laser at this site and the collected reference measurements are shown in Appendix B. 
Table 5-2 shown below further summarizes the data collection process. Figure 5-2 illustrates the 
measurement locations for each device, and Figures 5-3 and 5-4 show the devices. 

Table 5-2. Summary of reference measurements. 

Device Number of 
Runs 

Number of 
Locations 

Total Measurements 
per Site 

CTM 3 20 60 
FTM 3 20 60 
TM2 3 5 15 
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Figure 5-2. Reference measurement locations. 

Figure 5-3. CTM at an LGD concrete test site. 
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Figure 5-4. FTM (left). TM2 (right) at LGD concrete test sites. 
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High-Speed Devices 
For the high-speed devices, four repeat runs were conducted at each test site. Data 

collection with the line-laser and point-laser was activated by simulating a lock-wheel skid test 
(“fake” lockup) at an automated sampling interval of 500 feet. The simulation lockup activates 
the texture lasers for a time interval equivalent to a friction lockup (three seconds) and is 
repeated every 500 feet totaling five lockups per site. This method allowed the vehicle operators 
to collect data at the posted speed for each roadway without obstructing traffic flow. Each lockup 
occurred at the beginning of the five subsections that were designated with reflective tape. The 
high-speed data collection was conducted using both Unit 12 and Unit 13 to establish 
reproducibility between two vehicles with two different operators. As a note, Unit 13 was retrofit 
with the texture equipment from Unit 10, which was the vehicle used during the line-laser 
optimization testing. Figure 5-5 shows the Unit 12 test vehicle and Table 5-3 summarizes the 
high-speed data collection. 

Figure 5-5. Unit 12 test vehicle (top). Texture laser locations (bottom). 

Table 5-3. Summary of high-speed measurements.

Device Number of Runs 
per Vehicle 

Number of 
Locations Total Lockups per Site 

Line-Laser 4 5 20 
Point-Laser 4 5 20 



65 

Each vehicle contained an LMI Technologies Gocator line-laser mounted along the 
driver’s side wheel path.  However, the laser on Unit 12 was mounted 30 degrees from the 
transverse axis of the vehicle and at 45 degrees on Unit 13. Since concrete roadways in Florida 
contain longitudinal texture, as opposed to the isotropic texture of asphalt, the harmonization 
study allowed the UNF research team to analyze the effect, if any, that the line-laser angle has on 
MPD calculations for concrete. Figure 5-6 displays how the laser angle is measured using Unit 
13 on the UNF texture reference plate. 

Figure 5-6. Laser angle on the UNF texture reference plate. 

RESULTS 
To eliminate as many variables as possible, the test vehicles traveled together to each test 

site during sunlight hours to ensure data was being collected under the same environmental 
conditions. Before leaving, the research engineer ensured that each vehicle contained the 
optimized settings as determined in previous testing. The optimized settings are also listed in 
Appendix A. The vehicle operators performed data collection at the posted speed pertaining to 
each roadway. All data was collected using the MDRPro software, processed with the 
Butterworth filtering method within the Trimming Utility, and summarized in reports produced 
by WinSkid.  Additional comparisons were made using the Savitsky-Golay filtering method for 
the concrete sections; However, the results were undesirable compared to the Butterworth 
filtering method and, therefore, were excluded from this section of the report. Of the four runs 
conducted at each test site, the best three were selected when carrying out the device 
comparisons. However, all data pertaining to the harmonization study is shown in summarized 
tables located in Appendix B. 
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Flexible Pavement – OGFC and DGFC 
At the test sites containing flexible pavement, data collection with the point-laser and 

line-laser occurred simultaneously. Using the MDRPro software developed by ICC, the two 
lasers were triggered by the operator and programmed to perform a simulation lockup every 500 
feet until five lockups were collected. At the OGFC and DGFC test sites, the point-laser was 
used as a reference device to assess the accuracy of the line-laser. Graphs comparing the MPD 
values produced by the point and line-laser for each run and subsection on flexible pavement are 
shown below in Figures 5-7, 5-8, and 5-9. Figure 5-10 shows a comparison between the MPD 
values produced by Unit 12 and Unit 13. 

Figure 5-7. Line-laser and point-laser comparison on flexible pavement by Unit 12. 

Figure 5-8. Line-laser and point-laser comparison on flexible pavement by Unit 13. 
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Figure 5-9. Line-laser and point-laser comparison on flexible pavement with both vehicles. 

Figure 5-10. Comparison of laser angles on flexible pavement. 
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Based on the coefficient of determination (𝑅𝑅2) values in Figures 5-7 through 5-10 shown 
above, the updated line-laser system produces measurements that are highly correlated with 
those from the point-laser on flexible pavement. Furthermore, since the point-laser has shown to 
produce MPD values that have a strong correlation with those from the CTM, the UNF research 
team believes that the line-laser is accurately depicting the pavement’s macrotexture. Upon 
further inspection of the results in Figure 5-10, there is no indicator that the laser angle 
influences measurement accuracy on flexible pavement. This is believed to be a result of the 
homogenous aggregate distribution in flexible pavement. 

Rigid Pavement – LGD Concrete 
High-speed data collection at the rigid pavement sites was conducted in the same method 

as completed on flexible pavement. However, device comparisons against the line-laser were 
made with the CTM, FTM, and TM2, as opposed to the point-laser. This was done because the 
current point-laser system cannot accurately capture longitudinal texture. Similarly, the MPD 
values used for comparisons with the CTM and FTM excluded segments A and E which run 
nearly parallel with the vehicle’s direction of travel [11]. Images containing how the segments 
are denoted on the CTM and FTM are shown in Figure 5-11. Figure 5-12 shows a close-up 
image of the longitudinal texture on concrete roadways. Figures 5-13 to 5-19 show comparisons 
between the line-laser, point-laser, CTM, and FTM on concrete. 

Figure 5-11. FTM segments (left). CTM segments (right) [11].

Figure 5-12. Longitudinal texture of concrete roadways in Florida. 
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Figure 5-13. Line-laser and CTM comparison on LGD concrete by Unit 12. 

Figure 5-14. Line-laser and CTM comparison on LGD concrete by Unit 13. 
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Figure 5-15. Line-laser and FTM comparison on LGD concrete by Unit 12. 

Figure 5-16. Line-laser and FTM comparison on LGD concrete by Unit 13. 
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Figure 5-17. CTM and FTM comparison on LGD concrete. 

Figure 5-18. Laser angle comparison on LGD concrete. 
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Figure 5-19. Point-laser compared to line-laser on LGD concrete with both vehicles. 
In the comparisons shown above, MPD values produced by the line-laser for every run 

and subsection were compared against the average MPD of the four CTM or FTM locations in 
each subsection. The results show comparable MPD values between the line-laser and static 
devices. However, due to the small range of MPD values and several inaccuracies between 
devices, the 𝑅𝑅2 is lower than previously shown on flexible pavement. Further inspection of the 
data had shown an average ± 9.9% and ± 10.8% error between the CTM and line-laser on each 
subsection for Units 12 and 13, respectively. For comparison, when correlating point-laser MPD 
to the CTM in the 2018 harmonization study, results had shown differences of 15.5% on OGFC 
and 18.2% on DGFC between the two devices. In addition, the results above show no direct 
relationship between laser angle and MPD on LGD concrete. 

Since there were no CTM or FTM reference measurements taken at the flexible pavement 
sites for this study, a comparison between the updated line-laser system and CTM MPD values 
from the 2018 study is shown in Figure 5-20. In Figure 5-20, the CTM MPD values for concrete 
were collected during the course of this project. Figure 5-21 shows a comparison between the 
two vehicles and laser angles on all pavement types. 
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Figure 5-20. Line-laser and CTM MPD comparison on all pavement types with both vehicles. 

Figure 5-21. Comparing the Unit 12 and Unit 13 line-lasers. 
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Concrete Site 3 (79060000 EB – SR 600) was removed from the comparisons due to an 
abnormally high disagreement between the line-laser and CTM. At this site, a one-inch wide, 
elevated seam in the left-hand wheel path ran longitudinally throughout the test section. This 
elevated seam, when captured by the CTM, FTM, or line-laser, produced high MPD values 
relative to the surrounding LGD texture. While this feature was captured with the CTM and FTM 
at each measurement location, it was only intermittently captured by the line-laser during high-
speed testing. As a result, the standard deviations between runs for each subsection were high 
relative to those at the other LGD concrete test locations. This seam is shown in Figure 5-22. 

Figure 5-22. Texture feature in left-hand wheel path at SR-600 EB location. 
To harmonize the line-laser with the point-laser, several regression equations were 

established based on the comparisons shown above. Since the point-laser does not have a 
perfectly linear relationship with the line-laser, these regression equations are used to transform 
MPD produced by the point-laser to more closely align with MPD values produced by the line-
laser. These equations are summarized in Table 5-4. 

Table 5-4. Regression equations for the line-laser and point-laser.

MPD Between the Line-Laser and the Point-Laser (mm) 

OGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = 0.8918*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃  + 0.1854 (R² = 0.885) 

DGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿   = 0.9351*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.0731 (R² = 0.974) 

LGD Concrete 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = -0.1402*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.6844 (R² = 0.008) 
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In addition to the device comparisons, the repeatability and reproducibility of the line-
laser were quantified by calculating the repeatability limit (r) and the reproducibility limit (R). 
The repeatability and reproducibility limits indicate that 95% of all pairs of test results are 
expected to differ by no more than these calculated values for either repeatability or 
reproducibility testing conditions [37]. Equations 5-1 and 5-2 contain formulas for the 
repeatability and reproducibility limit, respectively. In the equations below, repeatability was 
calculated using the standard deviation in MPD between three runs for a given subsection (five 
subsections at each test site). Reproducibility was determined by calculating the standard 
deviation in MPD between both vehicles for each run and subsection. Tables 5-5 and 5-6 
contain the precision results using data from the 15 test sites. The mean and standard deviation 
values in the tables below are the average of all five test sites for each pavement type. 

r = 1.96×√2×σRepeat. Std. Dev. (Equation 5-1) 

R = 1.96×√2×σReprod. Std. Dev. (Equation 5-2) 

Table 5-5. Line-laser precision 

Mean, Pavement 𝑥𝑥 Type (mm) 

OGFC 1.74 

DGFC 0.76 

Concrete 0.64 

Combined 1.12 

̅

averages for each subsection and pavement type. 

Repeat. Reprod. 
Standard Standard Repeat. Reprod. 

Deviation, Deviation, Limit, r Limit, R 
𝜎𝜎𝑆𝑆𝑃𝑃.  𝜎𝜎𝑆𝑆𝑃𝑃.  (mm) (mm)  𝐷𝐷𝐿𝐿𝐷𝐷.  𝐷𝐷𝐿𝐿𝐷𝐷.
(mm) (mm) 
0.13 0.15 0.36 0.43 

0.05 0.08 0.15 0.20 

0.08 0.08 0.20 0.20 

0.09 0.11 0.25 0.30 

Table 5-6. Point-laser 

Pavement 
Type 

OGFC 

DGFC 

Concrete 

Combined 

̅

precision averages for each subsection and pavement type. 

Repeat. Reprod. 
Mean, Standard Standard Repeat. Reprod. 
𝑥𝑥 Deviation, Deviation, Limit, r Limit, R 

(mm) 𝜎𝜎𝑆𝑆𝑃𝑃.  𝜎𝜎𝑆𝑆𝑃𝑃.  (mm) (mm)  𝐷𝐷𝐿𝐿𝐷𝐷.  𝐷𝐷𝐿𝐿𝐷𝐷.
(mm) (mm) 

1.73 0.10 0.13 0.30 0.36 

0.79 0.03 0.05 0.10 0.18 

0.41 0.05 0.05 0.13 0.15 

1.07 0.08 0.10 0.20 0.25 
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CONCLUSIONS 
The updated line-laser system produces MPD values in strong agreement with those 

produced by the current point-laser system on flexible pavement. Given the 𝑅𝑅2 values shown in 
Figures 5-7 and 5-8, at a minimum this system can perform the same level of macrotexture 
analysis that the current point-laser system provides. Additionally, Figures 5-20 and 5-21 show 
that the two systems are capable of statewide macrotexture analysis with negligible influence 
related to laser angle or pavement type. When comparing MPD values to those from the CTM, 
the updated line-laser system is capable of capturing macrotexture on LGD concrete within an 
average error of ± 10.4% up to 70 mph. Similarly, this system has a slightly stronger correlation 
with ICC’s FTM providing an average MPD difference of ± 9.3% on LGD concrete.  

Based on the results above, the optimized line-laser system can produce repeatable results 
on all pavement types with an average repeatability limit, r, of 0.25 millimeters. Additionally, 
the reproducibility limit, R, between two different vehicles and operators was determined to be 
0.30 millimeters. These values were determined to be very close to the precision results of the 
point-laser in the same test sections. In addition, when comparing MPD values to those produced 
by the CTM, the line-laser had shown an average error of ± 11.2% on all pavement types. When 
compared to the point-laser on flexible pavement, the average error was determined to be ± 4.9% 
for Unit 12 and ± 5.4% for Unit 13 . While there was no evidence that the line-laser angle 
influences MPD, investigation of additional laser orientations is required to derive a conclusion. 

Overall, the UNF research team believes that implementing the line-laser system is an 
improvement to the current macrotexture analysis process. Utilizing the updated line-laser 
system will allow the FDOT to accurately assess the macrotexture of Florida’s longitudinally-
ground concrete roadways at highway speeds. Additionally, the robust amount of data collected 
in each scan of the line-laser is expected to provide a more accurate representation of 
macrotexture on flexible pavement as well. As a result, the UNF research team recommends 
utilizing the updated line-laser system in production macrotexture analysis. 
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CHAPTER 6 – IMPLEMENTATION PLAN 
OPERATIONAL PROCEDURE 

The updated line-laser system was designed to replace the current point-laser system 
regarding its macrotexture data collection that occurs during friction tests. Therefore, its primary 
role in field production is to accurately produce an MPD value pertaining the location of a 
locked-wheel skid test. This operation is performed using ICC’s MDRPro data collection 
software. The friction operators will collect texture data with the line-laser following their 
current procedure for testing. However, they should ensure certain preparations are completed 
before starting data collection, which are listed in Appendix A. 

DATA PROCESSING PROCEDURE 
Currently, data collected with the line-laser system needs to be trimmed and processed 

through software developed by ICC. This software will be referred to as the “Processing Utility.” 
Since the line-laser begins collecting data as soon as the operator enters the MDRPro “Run” 
screen, the Processing Utility removes all data within the binary (.bin) and .csv files that do not 
correspond to a locked-wheel skid test. This is done by correlating event information located in 
the MDRPro “Skid Logs,” which are automatically generated during collection, to the binary file 
containing texture measurements.  If texture data was collected with “Continuous Collection” 
enabled as opposed to “Skid Only Collection,” the Processing Utility will only keep 
measurements that were collected with the DMI enabled. In addition to the trimming feature, the 
Processing Utility allows the operator to select the appropriate lowpass filter, as required by 
ASTM E1845, that is applied to each texture profile. In the current configuration, line-laser data 
should be processed using the Version 1 Butterworth Filter. All files should be trimmed and 
processed through the Utility at the end of each collection day to preserve computer memory. 
Instructions on how to perform this task are shown below in Appendix B. 

CALIBRATION PROCEDURE 
The Gocator line-lasers are delivered pre-calibrated from the manufacturer. However, the 

sensor should undergo an alignment procedure to compensate for inaccuracies related to its 
mounted orientation. The manufacturer does not state a recommended alignment frequency, 
however, the UNF research team recommends that this process is completed in conjunction with 
the bimonthly friction calibration procedure. The sensor alignment procedure is easily completed 
within the Gocator Web interface and should be executed on a level surface (i.e., the State 
Materials Office calibration bay). Instructions on how to perform the alignment procedure are 
shown below in Appendix C. 

DEVICE VERIFICATION 
To ensure the line-laser is accurately producing MPD values, the device should undergo 

precision testing in conjunction with the bimonthly friction calibration. However, due to the 
nearest location of a suitable LGD concrete test site, it is recommended that precision testing on 
concrete is completed every other calibration (every four months) until the FDOT test track on 
US 301 is completed. Once the test track containing LGD concrete is completed, device 
verification on all three pavement types (open-grade, dense-grade, and concrete) should occur on 
a bimonthly basis. It should be noted that this procedure is already implemented as part of the 
current calibration process at five verification sites containing open-grade and dense-grade 
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pavement. Verifying the line-laser should be conducted in the same manner as was done with the 
point-laser. This includes five lockups spaced approximately 500 feet apart at each site with the 
water tank at half capacity and a full fuel tank. The MPD values produced by the line-laser 
should be within ±10% of historical values or those produced by reference devices. 

PARAMETER CONFIGURATION 
The updated line-laser system uses a configuration file containing the optimized 

parameters as determined by the UNF research team. The line-laser parameters are accessible 
through a Web-based interface which can be locally accessed through the friction truck’s 
onboard computer. If an operator requires specific adjustments to these parameters, instructions 
on how to execute this endeavor are shown below in Appendix D. 

HANDLING LEGACY POINT-LASER DATA 
Accepted point-laser data stored in a State Materials Office database, also referred to as 

“legacy data,” can be adjusted to provide stronger agreement with data produced by the updated 
line-laser system using a series of regression equations. As part of Task 4, the UNF research 
team determined these regression equations between the line-laser and point-laser systems using 
statewide texture data. Each regression equation pertains to a specific pavement type and should 
be used accordingly. Since the line-laser and point-laser produce MPD values that strongly agree 
on flexible pavement, the equations for open-grade and dense-grade only provide a very slight 
adjustment to point-laser MPD. Therefore, it is not currently necessary to adjust legacy data on 
flexible pavement using the regression equations below. However, on LGD concrete, legacy 
MPD values collected with the point-laser should be corrected using its corresponding regression 
equation. While the accuracy of the converted MPD values will vary, utilizing this equation to 
convert legacy LGD concrete data provides a more accurate depiction of the pavement’s true 
macrotexture at each site. These regression equations are shown below in Table 6-1.  

Table 6-1. Regression equations for comparisons between line-laser and point-laser MPD. 

MPD Between the Line-Laser and the Point-Laser (inches) 

OGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = 0.8918*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃  + 0.0073 (R² = 0.885) 

DGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿   = 0.9351*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.0029 (R² = 0.974) 

LGD Concrete 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = -0.1402*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.0269 (R² = 0.008) 

MPD Between the Line-Laser and the Point-Laser (millimeters) 

OGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = 0.8918*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃  + 0.1854 (R² = 0.885) 

DGFC 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿   = 0.9351*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.0731 (R² = 0.974) 

LGD Concrete 𝑀𝑀𝑀𝑀𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 = -0.1402*𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑃𝑃𝑖𝑖𝐿𝐿𝑃𝑃 + 0.6844 (R² = 0.008) 
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APPENDIX A – OPERATIONAL PROCEDURE 
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Operating the Line-Laser 

Step 1. Clean the line-laser emitter window and sensor window at the beginning of each day 

using a microfiber cloth. This is crucial to ensure that data collection is accurate. 

Figure A-1. A dirty line-laser. 

Step 2. Open the latest version of MDRPro. 

Step 3. Select the “Hardware Options” tab at the top of the interface. 

Step 4. Click the “Hardware Setup” button. 

Figure A-2. MDRPro interface.
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Step 5. Under the “Lasers” tab, click “Laser 2” and ensure that it is enabled. 

Figure A-3. MDRPro “Hardware Setup” page.

Step 6. After ensuring that the laser is enabled, allow the equipment to warmup for at least 

30 minutes before data collection. This will allow for even heat distribution 

throughout the system and promote high quality data collection. 

Step 7. Press F9 or the “Collect” button located on the Main page and begin macrotexture 

analysis (MPD) by initiating locked-wheel skid tests. 

Figure A-4. MDRPro "Main" page. 
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APPENDIX B – DATA PROCESSING PROCEDURE 
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Processing Line-Laser Data 

Step 1. To use the ICC Processing Utility, the computer must contain the Microsoft C++ 

Redistributable for Visual Studio 2015-2019 located here. 

Step 2. Copy the Processing Utility folder onto the computer. Note: the executable must 

remain in the folder containing all other dependent files, as shown below. 

Figure B-1. Accessing ICC's processing utility. 

Step 3. Run “LineLaserProcessingUtility.exe” as shown above. 

Figure B-2. Processing utility main screen. 

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
file://SM.dot.state.fl.us/MappedDrives/Pavement%20Systems/Shared/Alex%20Oracheff/Macrotexture/LineLaserProcessingUtility_LATEST
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Step 4. When the Processing Mode is set to “Folder”, the utility allows operators to batch 
process multiple files for a given roadway or individual files when set to “File.” 
Determine whether you would like to process a single file or the entire folder. 

Note: Although you can process multiple roadways at once, all the processed files 
will be output to a single location, so it is not recommended to do this. 

Step 5. Locate the folder/file you wish to be processed under “Source” and insert the same 

folder/file into the “Destination” location. These will replace the untrimmed files. 

Figure B-3. Choosing the source and destination folders for processing. 

Step 6. Next, click the  symbol in the upper left-hand corner and select “Macrotexture.” 

Step 7. Note* The “Default filter type…” is the Butterworth Filter – V1. 

Step 8. Select the appropriate lowpass filter (Butterworth V1) in the dropdown menu. 

Figure B-4. Selecting the lowpass filter for data processing. 
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Step 9. Finish processing by clicking “Process” at the bottom of the interface. The 

processed files will be in their designated Destination folder. Proceed to Steps 9 and 

10 for instructions on how to output a report summarizing the line-laser data. 

Figure B-5. File size before processing the line-laser data. 

Figure B-6. File size after processing the line-laser data. 
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APPENDIX C – CALIBRATION PROCEDURE 
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Calibrating the Line-Laser 
Each line-laser system arrives precalibrated from the manufacturer. However, it is recommended 

by the UNF research team to perform a laser alignment with the bimonthly calibration process. 

Step 1. Top off the vehicle fuel tank and fill the water tank to half capacity. 

Step 2. Ensure that the vehicle is parked on a level surface (i.e., within the calibration bay). 

Step 3. Open Google Chrome and type “192.168.1.10” into the search bar. Press “Enter.” 

Figure C-1. Accessing the Gocator line-laser Web interface. 

Step 4. When prompted, click “install the latest version.” 

Figure C-2. Adobe Flash Player error. 

Step 5. The pop-up shown below should appear. When it does, click “Allow.” 

Figure C-3. Bypassing the Adobe Flash Player error. 
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Step 6. At this point, a loading symbol will appear in the center of the screen. In the upper 

right-hand corner of the page, click the symbol shown below and select “Run Flash 

this time.” Note: The loading symbol will disappear after some time and a pop-up 

will appear. If this happens, close the page, and begin from Step 1. 

Figure C-4. Bypassing the Adobe Flash Player error. 

Step 7. Finally, the Gocator interface should appear. In the upper left-hand corner, ensure 

you have the “Scan” page selected. Under “Scan Mode,” select “Profile”. 

Figure C-5. Accessing the line-laser parameters. 

Step 8. From there, click the “+” symbol located on the “Alignment” tab and set “Type” to 

“Stationary” and “Target” to “Flat Surface.” 

Figure C-6. Setting the correct alignment parameters. 
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Step 9. Click “Align.” 

Step 10. Perform a visual inspection of the laser profile to ensure that the emitted spectrum is 

level along the x-axis and at “0” on the z-axis. If so, the alignment is complete. If 

not, reaffirm that the vehicle is on a level surface and click “Align” until completed. 

Figure C-7. User interface after a successful alignment. 

Step 11. Run the verification sites containing open-grade, dense-grade, and LGD concrete 

pavement. Compare the line-laser MPD values with those from historical data and 

reference devices. The line-laser MPD values should be within a ±10% difference of 

the accepted MPD values to pass. If the average difference in MPD for the five 

lockups exceeds 10% for a given site, clean the line-laser’s sensor and emitter 

windows and begin again at Step 2. 

Step 12. Once a year, operators should run the line-laser at each verification site with the 

vehicle’s water tank empty, at half capacity, and at full capacity, totaling three runs 

per site. This will ensure that the laser is accurate at varying heights. MPD values 

should be within a within a ±10% difference of the accepted MPD values to pass. 
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Configuring the Line-Laser Parameters 

Step 1. Open Google Chrome and type “192.168.1.10” into the search bar. Press “Enter.” 

Figure D-1. Accessing the Gocator line-laser Web interface. 

Step 2. When prompted, click “install the latest version.” 

Figure D-2. Adobe Flash Player error. 

Step 3. The pop-up shown below should appear. When it does, click “Allow.” 

Figure D-3. Bypassing the Adobe Flash Player error. 
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Step 4. At this point, a loading symbol will appear in the center of the screen. In the upper 

right-hand corner of the page, click the symbol shown below and select “Run Flash 

this time.” Note: The loading symbol will disappear after some time and a pop-up 

will appear. If this happens, close the page, and begin from Step 1. 

Figure D-4. Bypassing the Adobe Flash Player error. 

Step 5. Finally, the Gocator interface should appear. In the upper left-hand corner, ensure 

you have the “Scan” page selected. Under “Scan Mode,” select “Profile”. 

Figure D-5. Accessing the line-laser parameters. 
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Step 6. Clicking the “+” symbol on the “Trigger” tab opens a window where the operator to 

change the scan frequency of the line-laser. The default setting should be 20 Hz. 

 

Figure D-6. Adjusting the line-laser scan frequency. 

Step 7. Clicking the “+” symbol on the “Sensor” tab opens a window where the operator to 

change the exposure time (Step 8), point-spacing (x-resolution) and measurement 

precision (z-resolution) (Step 9), tracking window area (Step 10), and other 

“Advanced” line-laser parameters (Step 11). 
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Step 8. Under the “Exposure” section on the “Sensor” tab, the operator can input a range of 

exposure times where the line-laser will automatically select a best-fit value based 

on the pavement color. The default range is 20 to 80 microseconds. 

Figure D-7. Adjusting the line-laser exposure time. 
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Step 9. Under the “Spacing” section on the “Sensor” tab, the operator can select a “Sub-

Sampling” value pertaining the z-axis or x-axis. Sub-Sampling in the x-direction 

refers to the fraction of data points that will be used in the mean-segment depth 

calculation (MSD) for each profile. At a maximum, there can be 1280 points along 

the length of the laser spectrum. Sub-Sampling in the z-direction refers to the 

precision of height measurements, where a one-to-one value represents maximum 

precision. Operating the line-laser at maximum precision reduces the maximum 

possible scan frequency and limits the device operating speed. The default values 

are ½ in the x-direction and 1:1 in the z-direction. 

Figure D-8. Adjusting the line-laser exposure time. 
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Step 10. Under the “Active Area” section on the “Sensor” tab, the operator can input the area 

of the line-laser’s field of view for data collection. The system has a “Tracking 

Window” feature that searches within the active area for the line-laser’s return light 

to ensure all measurements are captured. Reducing the active area allows the line-

laser to operate at higher scan frequencies. The default parameters are shown below. 

 

Figure D-9. Active area settings. 

 

Figure D-10. Example of the active area (tracking window) shown in red. 
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Step 11. Under the “Advanced” section on the “Sensor” tab, there are several configurable 

parameters pertaining to the line-laser emitter and sensor. The UNF research team 

determined the most suitable dynamic exposure sensitivity value to be 5. These 

parameters should remain unchanged unless specified by the Research Engineer. 

 

Figure D-11. Advanced settings. 
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APPENDIX E – OPTIMIZED LINE-LASER PARAMETERS 
Optimized Line-Laser Parameters 

• Exposure: Dynamic Range (20 µs – 80 µs)

• X-Resolution: Non-Uniform Spacing with ½ Sub-Sampling

• Z-Resolution: No Sub-Sampling

• Sampling Rate: 20 Hz

• Processing: Butterworth Lowpass Filter

• Dynamic Exposure Sensitivity: 5
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