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Executive Summary

The Florida Department of Transportation (FDOT) Safety and Transportation System
Management and Operations (TSM&Q) programs have been collecting, archiving, and analyzing
a wide range of traffic, crash, event, and other data to improve congestion and safety on the State
Highway System (SHS). Dynamic crash prediction, a proactive safety management strategy,
predicts crash risk based on prevailing traffic conditions and applies crash prevention actions to
prevent crashes before occurrence. As an innovative technology, dynamic crash prediction
provides a potential way for FDOT to take advantage of information provided by intelligent
transportation system (ITS) devices and other sources, combined with increasingly available big
data/data analytics to effectively prevent crash occurrence and improve the safety and mobility
of Florida roadways. Although many Florida traffic agencies have shown interest in dynamic
crash prediction methods and have plans to implement them, there is no clear understanding on
the applicability of dynamic crash prediction in performance, implementability, integrability, and
impacts.

Realizing the challenges of using available big data to improve roadway safety and the potential
benefits of proactive safety management strategies, this project aimed to (1) document the
current state of practice of dynamic crash prediction methods and software based on a
comprehensive review of the literature, practices, and tools; (2) compare existing dynamic crash
prediction methods/software based on developed evaluation criteria and select methods/software
for potential use in Florida; (3) coordinate with FDOT District 4 and local agencies to conduct a
pilot study to demonstrate and evaluate selected dynamic crash prediction methods/software; (4)
conduct a pilot study to evaluate identified dynamic crash prediction methods/tools at selected
sites (covering both freeways and arterials) in FDOT District 4; and (5) develop
recommendations for implementing dynamic crash prediction in Florida.

A comprehensive literature review was conducted to summarize state-of- the-art dynamic crash
predictions, including a theoretical framework for dynamic crash prediction, data needs and
sampling methods, modeling algorithms, and performance. Meanwhile, online searching,
document review, and interviews were used to collect the information on the state-of-the practice
of dynamic crash prediction. The study identifies existing vendors and technologies and
understanding of implementation status and evaluates/compares identified technologies. Based
on the results, one technology (WayCare) was selected to conduct the pilot study. Knowledge
about dynamic crash prediction implementation was used to develop the pilot study plan.

Two study sites, covering freeway segments (1-95) and arterials (E Sunrise Blvd), were selected
considering historical crash records, traffic demands, traffic sensor availability, and
Transportation System Management & Operations (TSM&O) applications. Historical traffic data
and crash data for five years (2015-2019) were collected and provided to waycare for model
calibration. Using the calibrated model, the research team conducted an offline test using three-
month data (January, February, July) in 2020. Two performance measures were used in the
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evaluation—Recall, the percentage of crash events that can be predicted by the model; higher is
better, and Precision, the percentage of alarms (crash prediction) that are true; higher is better.
False Alarm Rate (FAR) is the flip side of Precision (=1-Precision), which is defined as the
percentage of alarms that are false; lower is better.

Based on the offline test, the following findings were obtained:

e The WayCare model presented better performance for the 1-95 site than the E Sunrise
Blvd site for Recall (25% vs. 11%) and FAR (83% vs. 93%). The high number of crashes
and relative simplicity of traffic patterns on the freeway may explain why the WayCare
model worked better on 1-95.

e The WayCare model presented varying Recall performances by period for both 1-95 and
E Sunrise Blvd.

On the 1-95 sites, the WayCare model presented “good” performance for the PM
period (3:00 PM-6:00 PM), with 55-65% of crashes predicted for different
months. These performances were close to WayCare’s evaluation based on
historical data for 2015-2019 (54% of crashes can be predicted for 1-95, on
average, without distinguishing periods), as shown in Appendix A.

The WayCare model had “poor” performance on I-95 for the Midday and Night
periods. The model outputs could not predict any crashes in most scenarios for
these periods except for the Midday period in July 2017 (6% of crashes can be
predicted).

It is worth noting that the Recall performance for the PM periods in July 2020
(55% of crashes can be predicted) was lower than those for January and February
2020 (64% of crashes can be predicted) and July 2017 (61%). This comparison
may imply that the COVID-19 pandemic event had an impact on model
performance (Recall reduction of 6-9%) on 1-95.

For E Sunrise Blvd, the WayCare model presented relatively “better”
performance for Midday (12:00 PM-3:00 PM) and PM (3:00 PM-6:00 PM).
Based on 2020 data, an average 20% of Midday crashes and 11% of PM crashes
could be predicted. It was interesting to find that the model had better
performance in July than in January or February 2020, which is the opposite of
the finding for 1-95.

e FAR were relatively high (= 70%) across scenarios (Precision was relatively low, <
30%). This implies that 70% (or higher) of alarms were not actually associated with a
crash. The possible causes are:

Underreported crashes — some minor crashes tend to not be reported to police and
thus are not included in the crash database but can be predicted by the WayCare
model.
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- Near-crash events — some near-crash events, such as serious conflicts, are high-
risk events but do not necessarily result in crashes. Prediction of these near-crash
events are useful to apply actions to prevent risky situations.

1-95 m Sunrise

70%

60%
60%

50%
40%

30%
20%
20%
11%
10%

0% 0% 0% 0% 0%
0%
6:00 - 9:00 AM 12:00-3:00 PM 3:00-6:00 PM 9:00 PM-12:00 AM
Prediction Time Window

Figure ES-1. Percentage of crashes that could be predicted (Recall)

The recommendations for implementation developed based on the pilot study are as follows:

e Implement the dynamic prediction model preferentially on freeways but work with
WayCare to improve model performance for periods other than PM considering the
following:

- Model produced good performance for the PM period (3:00-6:00 PM) on the
tested freeway section (correctly predicted 60% of crash cases).

- Local resources for model data input and crash prevention (i.e., traffic sensors,
ITS/T&SMO actions, etc.) are plentiful on interstates.

- Freeways experience high traffic volumes and excessive crash frequencies
compared to other road facilities; implementation of dynamic crash prediction
could bring significant safety and mobility benefits.

e Consider implementation of the dynamic prediction model on arterials but work with
WayCare to improve model performance for periods other than Midday and PM, if traffic
agencies have a high need for arterial safety management, considering the following:

- Model showed “positive” performance for the two periods on arterials (correctly
predicting 11-20% of crash cases).
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- Relatively high volumes and crash frequencies on major arterials introduce the
need for dynamic crash prediction and prevention; arterials have more complex
traffic patterns.

- Traffic agencies should decide on implementation based on their arterial safety
management goals and needs.

Real-time implementation of the model at TMCs will require maintaining traffic and
crash/incident data for the previous nine hours to predict crash rates for the next three-
hour prediction window. The time interval of traffic sensor data is suggested to be 20 sec
or 1 min. Longer time intervals can be applied; however, they may reduce prediction
performance. The protocol for data transfer between TMC SunGuide software and
databases and the WayCare web platform needs to be addressed.

Three crash prediction actions (DMS safety messages, stationary police cars with flashing
lights, advance warning to Road Rangers) were proposed based on WayCare’s experience
and the availability of TSM&O applications in FDOT District 4. A further study is
needed to address the safety and mobility of the crash prediction actions.
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1 Introduction
1.1 Background

According to the 2060 Florida Transportation Plan, Florida’s transportation system aims to
evolve over the next 50 years to support the transformation of Florida’s economy and
communities and proposes a vision of a fatality-free and congestion-free transportation system in
Florida. To support this goal, the Florida Department of Transportation (FDOT) has developed
various strategy plans such as the Florida Strategic Highway Safety Plan (SHSP) and the
Transportation Systems Management & Operations (TSM&O) strategy plan. These plans intend
to integrate programs to optimize the performance of multimodal infrastructures through
implementation of systems, services, and projects to preserve capacity and improve the security,
safety, and reliability of Florida’s transportation system. The TSM&O programs and supporting
ITS strategies are collecting, archiving, and analyzing big-scale data regarding traffic, weather,
crashes, construction and other events, signals, and videos to support traffic management
strategies using a proactive approach.

Big challenges remain in achieving the goal of a fatality-free transportation system in Florida As
shown in Figure 1, Florida experienced a rapid increase in traffic crashes for 2011-2018 (from
227,998 in 2001 to 403,626 in 2018) and a high yearly fatalities (> 3,000 in 2016-2018).
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Figure 1. Trends of Crashes, VMT, and Fatalities in Florida, 1998-2018
(Source: FLHSMV Traffic Crash Facts 2018)



Principle roads in urban areas (including interstates, expressways, and major arterials) accounted
for a major portion (41%, as shown in Figure 2) of traffic crashes, although these roads comprise
only around 15% of center miles on the Florida roadway system (1). Thus, developing effective
safety management strategies is an urgent task for FDOT and local agencies to reduce crashes
and prevent fatalities on the Florida roadway system, especially for urban principal roads that
carry high traffic volumes and suffer high crash risks.
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Figure 2. Distribution of Traffic Crashes by Roadway Type in Florida
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(Source: FDOT Crash Analysis Reporting [CAR] System)
1.2  Proactive Safety Management Strategy

The mission of FDOT is to provide a safe transportation system that ensures the mobility of
people and goods, enhances economic prosperity, and preserves the quality of environment and
communities. FDOT’s TSM&O programs have been collecting, archiving, and analyzing a wide
range of traffic, crash, event, and other data to improve congestion and safety on the State
Highway System (SHS). To use these big data to improve transportation safety, two strategies
may be applied, per the Federal Highway Administration (FHWA) Road Safety Audit
Guidelines:

e Reactive Approach — Based on analysis of existing crash data, focuses on identification of
locations experiencing safety problems (screening), problem definition (diagnosis), and
identification and implementation of countermeasures (cure).

e Proactive Approach — Aims to prevent safety problems before they manifest themselves
in the form of a pattern of crash occurrence.



The Highway Safety Manual (HSM) includes procedures to support the reactive approach, and
FDOT has associated data collection and archiving and has established processes in place for this
purpose, as shown in Figure 3.

Network
Screening

Post Diagnosis
Evaluation g

Project Treatment
Ranking Selection

Economic

Appraisal

Figure 3. Reactive Safety Management Strategy

However, the reactive safety management strategy has some limitations:

e The Reactive safety strategy relies on historical crash data that are often inaccurate,
incomplete, and outdated.

e The Reactive safety strategy is costly, as a long observation period (> three years) is
needed to accumulate sufficient samples of historical crash data.

e The Reactive strategy does not fully use big traffic and other high-resolution real-time
data; it is difficult to integrate with ITS/TMS&O applications to identify crash risk in
real-time and prevent crashes before occurrence.

Compared to the Reactive approach, the Proactive safety management strategy, as shown in

Figure 4, provides an innovative way to reduce potential crash risk prior to crash occurrence.
This approach has the following advantages:

e Crash prevention — Can prevent crash risks before crash occurrence and save life and
property loss.

e Relatively low cost — Does not rely on historical crash data; its implementation is quicker
and less costly.



e Integration — Is more effective in supporting the operations of FDOT ITS/TSM&O
programs. By fully using big data, it provides decision-making for FDOT TSM&O
actions to improve safety proactively.

Prevailing
Traffic
Conditions

Crash Potential
Risk Crash
Prevention Risk

ITS/ITSM&O
Actions

Figure 4. Proactive Safety Management Strategy

FDOT potentially could be more proactive through the use of dynamic crash prediction
methodologies, an innovative safety management strategy, to take advantage of information
provided by ITS devices and other sources, combined with increasingly available big data/data
analytics to predict crash statistics, such as location, time, and severity in real-time prior to crash
occurrence. Agencies using these methods or software can then proactively reduce the potential
for crashes and enhance traffic flow by implementing strategies before crashes occur and can
provide quick and effective responses if/when they do.

Although many Florida traffic agencies have shown interest in dynamic crash prediction methods
and have plans to implement them, there is no clear understanding of the applicability of these
existing methods in Florida in the following aspects:

e Performance — FDOT has limited knowledge of the accuracy and timeliness of existing
methods. What method can provide the best, or at least acceptable, outcomes in quick and
accurate real-time crash prediction?

e Implementability — FDOT has limited knowledge on how to easily implement the existing
crash prediction methods and the required capabilities and resources, including data
needs, software support, operation and management requirements, reliability and
robustness, and output content and format.



Integrability — FDOT has limited knowledge on integration of the existing prediction
methods/software in FDOT TMCs and TSM&O/Safety programs, including input data
interface, output format, hosting environment, compatibility to existing system and
related standard operating guidelines (SOGs)/action plans, and needed resources from
involved local agencies.

Impacts — FDOT has limited experience on the impacts of dynamic crash prediction on
safety and mobility on the Florida transportation system. What management strategies
and data-sharing and dissemination should be applied after crash prediction? What is the
effectiveness of the strategies in crash prevention and improvement of mobility?

This lack of knowledge prevents FDOT from implementing dynamic crash prediction to improve
Florida highway safety and mobility. Thus, research is necessary to address the above aspects
and evaluate the accuracy and timeliness of existing dynamic crash prediction methodologies,
their applications at TMCs, and their impacts on safety and mobility.
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Research Objectives

The primary goal of this research project is to evaluate existing dynamic crash prediction
methods and practices related to accuracy and timeliness, use in TMCs, and impacts on safety
and mobility for implementing a proactive safety strategy in Florida. To achieve this goal, the
objectives of this research project are the following:

Document the current state of practice of dynamic crash prediction methods and software
based on a comprehensive review of the literature, practices, and tools.

Provide an understanding of application uses, effectiveness, integration, and operations
and management (O&M) requirements.

Develop criteria for evaluation of existing dynamic crash prediction methods/software for
potential use by FDOT TSM&O and Safety programs.

Compare existing dynamic crash prediction methods/software based on developed
evaluation criteria and select methods/software for potential use in Florida.

Coordinate with FDOT District 4 and local agencies to conduct a pilot study to
demonstrate and evaluate selected dynamic crash prediction methods/software.

Estimate the safety and mobility benefits from the implementation of the developed
dynamic crash prediction.

Develop warrants, framework, and SOGs or an action plan that determine practical
methods, needed resources, and operations/management procedures to provide guidelines
on implementing dynamic crash prediction in Florida.



1.4 Report Organization

The report is organized as follows: Chapter 1 introduces the project background and research
objectives, and Chapter 2 presents a comprehensive review of previous studies related to
dynamic crash prediction, including theory framework, data needs, sampling methods, modeling
technologies, and performance. Identification and comparison of existing dynamic crash
prediction technologies are provided in Chapter 3, and Chapter 4 describes the pilot study
conducted in FDOT District 4, including site selection, data collection, offline testing procedure,
testing results, and suggested prevention actions. Finally, Chapter 5 presents conclusions and
recommendations for implementing dynamic crash prediction in Florida.



2 Literature Review
2.1  Theoretical Fundamentals for Dynamic Crash Prediction

The principle of dynamic crash prediction assumes that crash occurrence is correlated to
prevailing traffic conditions at a roadway facility. By investigating the traffic patterns prior to a
crash, it could predict the risk (probability) of crash occurrence. Previous studies have proven the
relationship between crash risk and macroscopic traffic flow characteristics such as volume,
speed, and density.

2.1.1 Crash-Flow Relationship

It has been suggested in latest studies that traffic volume has a nonlinearly monotonic connection
with crash count (3): with an increase in traffic volume, either at the aggregated (e.g., Annual
Average Daily Traffic [AADT]) or disaggregated (e.g., hourly rate) levels, the likelihood of
crashes tends to increase. High volumes signify frequent interactions among vehicles, resulting
in increased vehicle conflicts and risk of crashes. It is worth mentioning that the increase rate of
all crashes progressively diminishes when traffic volume increases; however, the increase rate of
multi-vehicle (MV) crashes keeps nearly constant as traffic volume increases. Figure 5 presents
the crash-flow relationship on urban road segments.
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Figure 5. Crash-Flow Relationship for Urban Segments (3)
2.1.2 Crash-Speed Relationship

Several previous studies (4—7) found that higher mean speed is associated with an increased
crash frequency. Examples of crash-flow relationships are given in Figure 6. However, the
Highway Safety Manual (HSM) (8) argues that the relationship of crash-speed presents a



U-shaped curve: the crash rate reaches the lowest point at 60 mph and increases when speed is
higher than 60 mph. Crashes related to low speed may be caused by low-speed-related
maneuvers (e.g., turning movements), roadway conditions, and congestion.

The Power Model and an exponential function fitted to 19 data points for
injury accidents as a sensitivity analysis of data aggregation
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Figure 6. Crash-Speed Relationship (5)

Previous studies (4, 8-11) consistently found that large speed variation affects increased crash
frequency. An example of the crash-speed variation relationship is given in Figure 7.
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2.1.3 Crash-Density Relationship

A previous study (3) explored the relationship between crash frequency and traffic density and
found that, as shown in Figure 8, an increased density results in the likelihood of single-vehicle
(SV) increasing, peaking, and decreasing and increases the probability of MV crashes.
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2.1.4 Other Contributing Factors

Except for macroscopic traffic flow characteristics, crash occurrence is influenced by various
factors such as human factors, vehicle characteristics, and roadway/environment features. Some
of these factors are observed (e.g., geometric design, events, weather conditions), and some are
difficult to collect (e.g., driving behaviors near crashes). The observed factors could be included
in prediction models or using different models to address the impacts of these factors.

2.2 Fundamental Dynamic Crash Prediction Development

The occurrence of a traffic crash is a complex process and is caused by numerous factors,
including behavior, vehicle, traffic, roadway geometry, and environment. In all likelihood,
human error is the most significant factor contributing to traffic crashes and is estimated to
account for around 93% of all crashes (12). In practice, behavioral and vehicle factors are often
omitted because collection of information on the two factors in real time is difficult. The current
practices of dynamic crash prediction attempt to predict crash risk based on real-time traffic
conditions for different geometry and environmental conditions with the following assumption
(13):

A significant relationship exists between crash (occurrence) risk and traffic
conditions prior to a crash. Traffic conditions during a certain time interval
immediately before a crash, as a direct contributor, can be measured and linked to
crash likelihood, given roadway and environmental conditions.

Base on this assumption, numerous dynamic crash prediction methods with various technologies
have been developed since 2002. The fundamental components in the development of dynamic
crash prediction are shown in Figure 9.

2.3 Facility Type

In total, 36 previous studies indicate the roadway facility types for which their prediction models
were developed, as summarized in Table 1. Most previous studies (92%) focused on freeways,
including freeway basic segments, merge/diverge segments, and ramps. Only 8% of previous
studies (3 papers) investigated dynamic crash prediction on urban arterials. This phenomenon is
caused by the following factors:

e Uninterrupted traffic flow on freeways regulated by vehicle-vehicle and vehicle-roadway
interactions has simpler characteristics than the surface roads regulated by traffic signals
and conflicts of side traffic. The relative simplicity of traffic operations makes dynamic
crash prediction easier.

e Most important, traffic surveillance systems (e.g., loop detectors) are widely
implemented on freeway facilities (for example, interstates), and traffic data resolutions
(spatial and temporal) on freeways are higher than those on arterials. Data availability
and integrity resulted in most previous studies focusing on freeways.
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e Target roadway facilities

Facility Type * Freeway basic segment, ramp, arterials

¢ Model inputs for dynamic crash prediction
Predictor e Traffic conditions and other signficant contributing
factors

e Methods for producing and orginizing traning data
e Ratio of crash v.s. non-crash events

¢ Variable selection

e Temporal and spatial resolution

Sampling Method

e Statisical methods for dynamic crash prediction
Prediction Model e Parametric regression model
¢ Machine learning model

¢ Prediction accuracy and evaluation methods

Validation e Success alarm rate and false alarm rate

Figure 9. Fundamental Components of Dynamic Crash Prediction Development

Table 1. Summary of Roadway Facility Types in Dynamic Crash Prediction

- Number of
Facility Type Previous Studies Percentage
Freeway basic segment 16 44%
Freeway segment (basic + merge & diverge) 3 8%
Freeway interchange (mainline and ramp) 14 39%
Arterial 3 8%
Total 36

2.4 Predictors

Predictors, as the data fields (variables) for model inputs, are usually significant contributors to
crash occurrence. Based on the literature review, significant factors contributing to crash risk
include traffic conditions prior to crash occurrence, geometry, time, and environment conditions.
In most studies (94% of 36 papers), only traffic condition variables were treated as predictors in
prediction models; different models were developed to address the variation of other factors.
Only two studies (14, 15) used a location variable (ramp or not) as predictors in addition to
traffic conditions. Traffic condition predictors are summarized in Table 2.

A meta-analysis (13) showed that speed variation (including standard deviation and coefficient
of variance) highly affects the likelihood of crash occurrence. Average/median speed, average
density, and traffic volume have moderate impacts on crash occurrence, and the impact of traffic
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volume is considerably small. The variation of density and volume was beyond the scope of the
meta-analysis.

Table 2. Summary of Traffic Condition Predictors

Variable Number of Significance
Studies Level*
Mean 20 Moderate
Speed Median _ 1 Modgrate
Standard deviation 14 High
Coefficient of variance 18 High
Density Mea_m 26 Moderate
Variance 9 -
Mean 17 Low
Volume Standard deviation 11 -
Variance 8 -

*Significance level obtained from meta-analysis in a review paper (13).

Table 3 summarizes other factors identified in previous studies. Most were used to split models
(developing different models to account for different factor values) and/or be matched () to
eliminate their confounding influence. These factors include roadway geometry, environment,
and time of day.

Table 3. Summary of Other Factors

. Number of
Variable Studies Usage
Ramp 3 Predictor
Roadway Curve 6 Model split or match
Pavement condition (dry or wet) 4 Model split or match
Peak hour 6 Model split or match
Environment Lighting 4 Model split or match
Weather 5 Model split or match

2.5 Sampling Method

Dynamic crash prediction is a data-driven method. Sampling quality, which means how to select
and assembly data for training and prediction, is critical to dynamic crash prediction
development and implementation. In crash data sampling, the following should be considered:

e Data Balance — Traffic crashes are rare and random events. Previous studies collected
data on historical crashes for several years, but the number of crash events is still limited
(up to hundreds). On the other hand, non-crash events have massive data. Without control
of crash-to-non-crash ratios in sample data (data balance), the prediction model may
produce biased outputs (predominant zero-crashes).
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e Confounder Control — Traffic crash occurrence is caused by various factors. To
investigate the relative crash risk due to a change of traffic conditions (predictors), it is
necessary to fix other factors (confounders), such as weather and roadway conditions.

e Temporal Slice — Current traffic surveillance systems (e.g., loop detectors) can collect
traffic data in very short time intervals (< 1s). Raw data were often aggregated into longer
periods (e.g., 5 or 10 mins prior to crash) to suppress noise (13). In the development and
implementation of dynamic crash prediction models, it is necessary to determine
appropriate time slices of traffic condition data to capture the most significant impacts of
traffic conditions on crash occurrence.

e Spatial Range — Traffic conditions associated with a traffic crash usually are collected
from detectors near the crash location. The prediction method needs to determine the
spatial range of traffic data that significantly influence crash risk, such as detector
location (upstream and/or downstream) and number of detectors. The spatial range is
determined by configurations of traffic surveillance systems.

e Sampling Rate — Traffic sensors collect traffic data at a given time internal. The shorter
the time internal is, the better the model addresses data variance. However, not all data
sources support high-resolution data.

Figure 10 shows the distribution of sampling methods in previous studies for data balance and
confounder controls. Due to its simplicity, cost-effectiveness, and theoretical soundness (13), the
matched case-control method was predominantly used in previous studies (75%). In one paper,
bootstrap sampling technology was used to increase sample size. Eight studies did not control the
crash-to-non-crash event ratio and adopted an unbalanced sample for model development, and
Figure 11 shows the distribution of non-crash-to-crash ratios in sample data for model training in
previous studies.

Unbalanced
Sampling
8 (22%)

Bootstrap
Sampling
1 (3%)

;

Matched Case-
control
27 (75%)

Figure 10. Summary of Sampling Methods
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Figure 11. Summary of Non-Crash-to-Crash Ratio in Sample Data

Figure 12 shows the time slices used in previous studies. Almost 66% of previous studies found
that traffic conditions within the time slice of 5-10 mins prior to a crash had the most significant
impact on crash occurrence than other slices, including 0-5 mins (17%), 10-15 mins (11%), 0—
10 mins (3%), and 15-20 mins (3%).

0-10 mins

15-20min__—— _a* 1 (3%)
1 (3%)
10-15 mins
4 (11%

Figure 12. Summary of Time Slice in Dynamic Crash Prediction

The distribution of spatial intervals of traffic conditions in previous studies are presented in
Figure 13. Most previous studies (97%) collected traffic condition information upstream of a
crash, and 68% collected traffic conditions information downstream; only one study considered
download stream only.
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Figure 13. Summary of Spatial Range

Figure 14 presents the percentage of sampling rates from raw data sources in previous studies. In
these studies, 10-, 20-, and 30-sec and real-time traffic data were considered; however, half of
studies received data per 30 sec:

e Based on 30-sec traffic data, researchers would aggregate data and take measures to
improve the mobility or safety. Some de-noising strategies are employed in these studies
since near real-time raw data.

e The 10-, 20-, and 30-sec raw data have random noise since it is nearly real-time data
during short period. Generally, radar would archive speed, volume and occupancy
information at given short period.

e Raw data are difficult to work with in a modeling framework in the optimization system
(16). Thus, raw data would first aggregate into a given interval, such as 5 or 10 mins.
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Figure 14. Summary of Sampling Rate
2.6 Prediction Models

A prediction model is used to address the relationship between input data (traffic conditions) and
output (crash occurrence risk). Supervised machine learning methods have been widely used.
Table 4 summarizes prediction models developed in previous studies. As the output of dynamic
crash prediction is usually expressed as a binary variable (e.g., crash occurrence or not, alarm or
not, etc.), 33% of previous studies used discrete choice models (such as binary logistic model).
Data-driven classification models, such as Support Vector Machine, Neural Network, Bayesian
Network, CART, etc., were also developed.

Table 4. Summary of Prediction Models

Number

Category Method Years of Studies Percent
Parametric Discrete Choice Model 2004-2015 14 33%
Regression Other Regression Model 2003-2012 6 14%
Support Vector Machine 2014-2017 3 7%
Data-Driven Neural Network 1999-2014 9 21%
Method Bayesian Network 2004-2015 8 19%
CART and Others 2010-2011 2 5%

Table 5 summarizes the performance (accuracy) of prediction models. Two measures were
investigated in previous studies:

e Successful Alarm Rate = number of predicted crashes that are true crashes + number of
predicted crashes

e False Alarm Rate = number of predicted crashes that are not “true” crashes + number of
predicted crashes
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Different prediction models have diverse accuracy. A Bayesian Network has the highest
successful alarm rate (92%) but its range is wide (55-92%). A Support Vector Machine and a
Neural Network have similar performance. Only a few previous studies provided a False Alarm
Rate. It is worth noting that the performance data were derived from selected testing data in
research projects rather than real implementation; the value may not present the real performance
of the models in practice. A pilot study is needed to evaluate the different methods using more
diverse data for obtaining “real” performance.

Table 5. Summary of Prediction Model Performance

Category Method Successful Alarm Rate | False Alarm Rate
Parametric Regression Discrete Choice Model 58-82% 20%
Other Regression Model 65-78.3%
Support Vector Machine 67-88% 20.9%
. . Neural Network 70-86%
Machine-Learning Method 5 o ion Network 55-92% 10-23.7%
CART and Others 70-74%

2.7 Summary

This chapter summarized findings from a comprehensive literature review; a more detailed
summary is shown in Appendix A. The major findings are as follows:

e Traffic crash occurrence is associated with prevailing traffic flow characteristics (e.g.,
speed, density, volume). The risk of traffic crash in a short term can be predicted based
on real-time traffic flow data.

e Most previous studies focused on freeway segments due to the relatively simple crash-
traffic relationship and data availability. Limited studies were found to apply on arterials.

e Prediction inputs mainly include speed variation, average speed, density (occupancy),
and volume. These data were collected primarily from fixed vehicle detectors (loops,
Microwave Vehicle Detection Systems, or Bluetooth devices). The sampling rate (time
interval for collecting raw traffic data) is 10-30 secs.

e Most studies adopted supervised machine learning models to predict the crash occurrence
risk. The successful alarm rate reaches 58-92%.

It worth noting that the previous studies were developed and tested on limited datasets (Florida,
California, Germany), and the evaluation results may not represent their real performance in a
more “generalized” traffic condition. In addition, these studies focused on modeling and
algorithm research rather than products. The applicability of the dynamic crash prediction
models in real traffic conditions was not proven from the previous studies.
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3 Evaluation of Existing Dynamic Crash Prediction Technologies

The chapter summarizes the evaluation of existing dynamic crash prediction technologies.
Unlike the literature review, which focused on academic research, the evaluation aimed to
identify vendors that provide dynamic crash prediction products and compare different systems.
The evaluation results were used to understand the application status of dynamic crash prediction
and select products/vendors for the pilot study.

3.1 Evaluation Procedure

The evaluation procedure is shown in Figure 15. The evaluation included three major steps—
Search, Interview, and Evaluation.

Search potential Collect related
Search current users ) )
vendors and systems information
Interview with selected vendors Intervew with current vendors

Suggest products/vendors

Compare different products for pilot study

Figure 15. Procedure of Evaluation of Existing Crash Dynamic Prediction Technologies
3.1.1 Search

The research team searched vendors that potentially provide dynamic crash prediction function
and/or traffic data support using the Google search engine, advertisements, news, and
government reports. All information related to potential vendors (e.g., official websites, news,
flyers, and reports) was collected and reviewed to identify vendors and technologies that met
study needs. Meanwhile, to obtain practical experience of dynamic crash prediction
implementation, users that have implemented dynamic crash prediction or that planned to
implement/test a system were searched and identified. Information related to current users was
also collected and reviewed.

3.1.2 Interview

To obtain more detailed information on vendors and current users, the research team interviewed
selected vendors and current users through teleconferences, in-person meetings, and email
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questionnaires. The interviews aimed to (1) confirm vendor technologies/systems satisfying the
study objective, (2) collect detailed information on vendor technologies/systems that are
unavailable in documents, and (3) understand the practice of dynamic crash prediction from
current users, including successful experience and lessons they learned from the practice.

3.1.3 Evaluation

By assembling the information collected from searches and interviews, the research team
identified vendors that provided dynamic crash prediction technologies. The research evaluated
each identified vendor and its technologies based predefined criterions. Evaluation results were
used to select vendors for the pilot study.

3.2 Evaluation Criteria

Evaluation of the selected dynamic crash prediction systems was based on the following criteria:

e Functionality

e Performance and impacts

e Data and local resource needs
e Usability

e Maturity

3.2.1 Functionality

This category indicates the available functions provided by the selected systems. The expected
functions include the following:

e Dynamic crash prediction — A system can dynamically predict crash risk based on real-
time traffic and environmental data. This function emphasizes a critical prediction before
crash occurrence in real-time rather than a long-term prediction used in a traditional
safety study. This function is the minimum (enforced) requirement for dynamic crash
prediction.

e Crash risk alarm — A system can send out an alarm when a predicted crash risk is higher
than a configurable threshold. The system alarm could be an alert message to operators or
a signal to trigger actions. This function is required in the system.

e Crash prevention actions — A system can performance actions to prevent crash
occurrence after the prediction. This function is an optional module that enhances the
functionality of dynamic crash prediction.

¢ Incident detection — A system can detect incident occurrence based on prevailing traffic
conditions or video detection as quickly as possible for emergency responders. This
function aims to reduce incident detection time and prevent secondary crashes and
recurring congestion. This function module is optional.
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3.2.2

Long-term crash prediction — A system can analyze historical crash data and predict the
crash risk of roadway sites for the long term (e.g., monthly or yearly). This function does
not emphasize a prediction in real-time (dynamic) and is an optional module.

Presentation — A system can present prediction results and statistics in various formats
(text, figures, heat maps, etc.) on GIS maps or in printable reports. Other information
presentations, such as CCTV monitoring, are optional add-ons.

Roadway facility — The dynamic crash function should be implemented on various
roadway facilities, such as interstate highways, expressways, arterials, and signalized
intersections.

Performance

This category indicates the performance of dynamic crash prediction of the selected systems. The
major prediction performance measures include the following:

3.2.3

Prediction accuracy — Prediction accuracy is defined as the percentage of crash events
that can be successfully predicted. This criterion is a key performance measure, and a
high prediction accuracy is expected.

False Alarm Rate (FAR) — A FAR is defined as the percentage of predicted crash events
that are not true. A low FAR is expected.

Prediction threshold — The prediction systems alerts a crash occurrence if the predicted
crash risk is higher than the threshold. Threshold is a critical factor influencing prediction
performance (prediction accuracy and false alarm rate). Increasing the threshold can
reduce false alarms but may result in failure of alerting true crash events. Decreasing the
threshold may have an opposite effect. The threshold should be configured to allow users
to determine the best tradeoff between the two performance measures.

Timeliness — A prediction system can predict crash risk in advance of crash occurrence.
A long warning time allows traffic agencies to have enough opportunities to apply
actions for preventing crash occurrence.

Benefits

This category indicates the benefits of the dynamic crash prediction systems related to safety and
operations:

Safety impact — The safety impact of the dynamic crash prediction systems can be
measured by the number of crashes prevented and surrogate safety indicators such as
reduction in average speed and speed variance:

Operations impact — The operational impact of the dynamic crash prediction systems can
be measured by flow rate and average speed.
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3.24

Incident management impact — The impact of the systems on incident management can
be measured by the reduction in incident reaction time due to dynamic crash prediction if
a crash prevention action fails.

Data Needs

This category indicates the expected data for the implementation of dynamic crash prediction:

3.25

Historical data — Historical data are needed to calibrate the prediction model and include
crash data, traffic data, weather data, construction activities, traffic signal, and incident
events.

Real time data — Real-time data are used as model inputs. The calibrated model predicts
crash risk based on the real-time inputs. Real-time data are the same as historical data.

Primary data sources — The required data can be retrieved from local data sources (State
database and TMC sensors) or third-party data sources. Vendors having independent
third-party data sources can operate their systems on roadway facilities where local data
sources are unavailable.

Usability

This category indicates the usability of the three systems; measures of usability include the
following:

3.2.6

Platform — The system can be implemented on a cloud platform that does not need
additional hosting resources:

Data Application Programming Interface (API) — The system should provide API to
connect local data sources for real-time data feeding:

User interface — A user interface allows users to monitor system outputs and set system
configurations.

Integration with TSM&O systems — The system can be integrated into existing or
planning TSM&O systems.

Implementation without local data — The system can be implemented on roadway
segments with local data sources.

Technical Maturity

This category indicates the technical maturity of the three systems. Maturity measures include
the following:

Pilot study of dynamic crash prediction — If the dynamic crash prediction function has
been tested in a pilot study.
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e Implementation in Florida — If the system (non-function of dynamic crash prediction) has

been implemented or tested in Florida.

e Implementation in other states or countries — If the system (non-function of dynamic
crash prediction) has been implemented or tested in other states or countries.

3.3 Evaluation Results

The research identified 3 technologies from 11 potential vendors (see Appendix B). The three
vendors stated that they have the dynamic crash prediction functions but only one vendor
(WayCare) has implantable systems. Evaluation of the three technologies is shown in Table 6

through Table 11.

Table 6. Comparison of Selected Systems for Functionality

Function Requirement WayCare Vendor 2 Vendor 3
. . . Included and
Dynamic crash prediction (DCP) Required tested Stated Stated
Crash risk alarm Required Incltl:if;i dand Stated Stated
Crash prevention action Tested Not included | Not included
Police high-visibility Ootional Yes No No
Dynamic message P Yes No No
Incident response Yes No No
Incident detection Optional Included No No
Long-tgrm crash analysis and Optional Included Included Included
prediction
Web-based GIS map Required Yes Yes Yes
Formatted report Required Yes Yes Yes
CCTV Optional Yes No No
Roadway facility types for DCP
. Yes, but not Yes, but not
Interstate Required Yes, tested tested tested
Acrterial Required Yes, not tested Yes, butnot | Yes, but not
tested tested
Intersection Required Yes, but not Yes, but not Yes, but not
g tested tested tested
Table 7. Comparison of Selected Systems for Performance
Function WayCare Vendor 2 Vendor 3
Prediction accuracy 56%* Unknown Unknown
False Alarm Rate Unknown Unknown Unknown
Prediction threshold Unknown Unknown Unknown
Timeliness 2 hours, but may vary over sites Unknown Unknown

* Source: WayCare pilot study in Las Vegas
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Table 8. Comparison of Selected Systems for Benefits

Function WayCare Vendor 2 Vendor 3
Primary crash reduction 17%* Unavailable Unavailable
Secondary crash reduction 23%* Unavailable Unavailable
. 91% of drivers reduce speed to . .
Speed reduction 65 mph or lower* Unavailable Unavailable
Operational impact Unavailable Unavailable Unavailable
Incident reaction time reduction 12%* Unavailable Unavailable
* Source: WayCare pilot study in Las Vegas
Table 9. Comparison of Selected Systems for Data Needs
Function | WayCare | Vendor 2 | Vendor 3
Historical Data
Crashes Required for 3-5 yrs; the more Required for county and Required
years, the better performance state to get enough samples
Traffic Optional” Required Required
Weather Optional” Required Unclear
Construction events Optional” Unclear Unclear
Traffic signaling Optional” Unclear Unclear
Incident Optional” Unclear Unclear
Real-time Data
Crash Required (for model fine-tune) No No
Traffic Optional” Required Required
Weather Optional” Unclear Unclear
Construction events Optional” Unclear Unclear
Traffic signaling Optional” Unclear Unclear
Incident Optional” Unclear Unclear
Others
Primary data sources | TMC + third party | TMC | T™MC
*WayCare has third-party data sources for historical and real-time data.
Table 10. Comparison of Selected Systems for Usability
Function WayCare Vendor 2 Vendor 3
Platform Cloud-based Cloud-based Cloud-based
Data API Yes Yes No, TMC. should
provide
User interface Web Web Web
Integration with TSM&O systems/ devices | Yes, tested Unclear Unclear
Implementation without local data sources Yes No No
Table 11. Comparison of Selected Systems for Maturity
Function WayCare Vendor 2 Vendor 3
Previous pilot studies of DCP Yes, Nevada No No
. . . Yes, Tampa,
Implementation (hon-DCP) in Florida Pinellas, District 4 No No
Implementatlon (non-DCP) in other states or Yes Chicago, IL | CA, Canada
countries
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3.4 Existing Users

The research team identified and interviewed four local agencies that implemented or are
interested in dynamic crash prediction. A summary of these users is given in Table 12.

Table 12. Summary of Existing Users

Las Vegas, NV | Tampa, FL Pinellas County, FL Chicago, IL
System WayCare WayCare WayCare Open Data Nation
Implem;g?tlon of Pilot study No No No
Current Unknown Incident Incident Long-term crash
application identification identification prediction (monthly)
im'ﬁ:fng:ﬁn[;gp Unknown Yes Yes Unknown
Facility type Freeway Frgeway an d Freeway an d major Roadway network
major arterials arterials
DMS,
Dynamic crash stationary .
. ) X Freeway and major
prevention actions police car, No No arterials
with DCP incident
management

3.5 Summary

Based on the evaluation results, major conclusions are as follows:

e A limited number of vendors provide dynamic crash prediction functions that are an
innovative technology. Only one vendor (WayCare) has relatively mature systems for
dynamic crash prediction functions, although two other vendors stated that they have
similar technologies. A summary of these three technologies is shown in Table 13.

Table 13. Summary of Comparison

Function WayCare Vendor 2 Vendor 3

Maturlty of dynamic crash Best In development In development

production

Cras_h prevention actions after Tested No No

prediction

Documented performance and Yes No No

benefits

Additional functions Yes, |nc_|dent Yes, Iong-_te(m Yes, Iong-_tel.rm
detection crash prediction | crash prediction

Data requirement Relatively low High High/medium

Third-party data sources Yes No No

Implementability without Yes No No

local data sources

Easy to deploy Yes Yes Yes
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No current users were found to implement dynamic crash prediction systems, although
many agencies showed interest. Only the Nevada Department of Transportation (NDOT)
tested the functions in a pilot study. Two local agencies in Florida (City of Tampa,
Pinellas County) have implemented the WayCare system; however, they do not apply the
dynamic crash prediction.

Only one pilot study was found that tested WayCare’s dynamic crash prediction functions
in Las Vegas. The pilot study produced some preliminary results (see Table 7 and
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Table 8) and proved the concepts of dynamic crash prediction. Detailed information on

the Las Vegas pilot study is given in Appendix C. Information on dynamic crash
prediction is still limited because:

- The pilot study was conducted on freeway only, so performance of dynamic crash
prediction on arterials is unknown.

- Performance results (crash reduction) were based on a three-month pilot study
and are not very accurate and reliable.

- Evaluation results were reported by WayCare; no independent third-party
evaluation was found.
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4 Pilot Study

This chapter describes the pilot study conducted in FDOT District 4 that aimed to demonstrate
dynamic crash prediction in the Florida roadway environment and evaluate the performance of
dynamic crash prediction technologies with “real” traffic conditions. Pilot study results were
used to develop recommendations for implementing dynamic crash prediction in Florida.

4.1 Pilot Study Procedure

The pilot study procedure, as shown in Figure 16, consisted of three stages—Planning and
Preparation, Training, and Testing. First, the research team, in collaboration with the Project
Manager, determined vendors/technologies for the pilot study and invited the three vendors for
evaluation. Only WayCare committed to completing the pilot study within the project budget and
timeline. Thus, WayCare was selected to conduct the pilot study.

Technology Determination

Stage 1: Planning
¢ and Preparation

Site Selection

'

Data Preparation

Model Calibration
Offline Test

'

Evaluation

Stage 2: Training

Stage 3: Testing

Figure 16. Procedure of Pilot Study in FDOT District 4
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4.2 Study Sites

The research team selected study sites for the pilot study based on the following criteria:

e Historical records — Testbeds should have significant crash records and high traffic

volumes such that enough sample data can be collected for model training.

e Diversity — Testbeds should cover various roadway types (e.g., interstates and major
arterials) and geographic zones in the transportation network managed by FDOT District

4.

e Local data resources — Testbeds should be equipped with traffic monitoring systems
(e.g., point detectors, Bluetooth, etc.) and potentially other data collection resources, if

available (e.g., weather station).

e Traffic management capabilities — ITS should be available for use for applying actions to

reduce crash risk after prediction for the testbeds and should be connected to the

SunGuide system at the TMCs.

Three segments in District 4 (1-95, Sunrise Blvd, PGA Blvd) were identified initially based on
the selection criteria; however, the traffic sensors on PGA Blvd could not provide qualified
traffic data. Thus, two segments, covering freeways and arterials, were selected for the pilot

study.

421 Sitel-1-95
4211 Overview

The first testbed, as shown in Figure 17, is an interstate freeway segment along 1-95 in Broward
County. The boundary limits are Hallandale Blvd (Exit 18) to Davie Blvd (Exit 26). The site
includes the first, second, and fifth highest crash segments based on crash data for 2015-2018.

The characteristics of Site 1 are summarized in Table 14.

Table 14. Basic Characteristics of Site 1, 1-95

Boundary Hallandale Blvd (S) to Davie Blvd (N)
Facility type Interstate
Length 8.516 mi

Lane configuration (one-direction)

4 (general use) + 2 (express)

Number of interchanges

9 (including two ends)

Speed Limit

65 mph

AADT

275,000-319,000 vpd
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Figure 17. Site 1 — 1-95 Segment (Hallandale Blvd to Davie Blvd)
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4.2.1.2 Historical Crash Data

Historical crash data show that the 1-95 segment experienced very high crash frequencies for

2015-2018. Average yearly crash frequency was 2,617 per year, as shown in Figure 18, which is

more than 3,000 crashes per year after 2016. The monthly trend (Figure 19) shows that the top
crash months were October, November, December, and January, each having 250+ crashes per
month. Based on data collected from Signal Four Analytics, the 1-95 study site includes five
segments ranked 1st, 2nd, 5th, 6th, and 7th among the top 25 highest crash segments on 1-95 in
Broward County for 2015-2018, as shown in Figure 20. Spatial analysis of crashes over 0.1-mi

segments, as shown in Figure 21, indicates two sub-segments experiencing 300 or more crashes
per year, three experiencing 100-300 crashes per year, and six experiencing 50-100 crashes per

year.
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Figure 18. Average Yearly Crashes, 1-95 Study Site
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Figure 19. Average Monthly Crashes, 1-95 Study Site
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Figure 20. Top Crash Segments, 1-95 Study Site
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4.2.2 Local Data Sensors

The 1-95 study site is equipped with 56 microwave vehicle detection systems (MVDS) in the NB
direction and 53 MVDS in the SB direction. The average distance between two MVDS sensors is
approximately 0.4 mi. The layout of the traffic sensor locations is shown in Figure 22.
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4.2.2.1 TSM&O Programs and Devices

The 1-95 site includes 10 Dynamic Message Sign (DMS) devices at the following locations, as
shown in Figure 23:

e [-95N of I-595

e 195N of Griffin St

e [-95NB S of Griffin Rd

e 1-95S of Green St

e 1-95 SB N of Sheridan St

e |95 NB S of Hollywood Bivd
e 195 SB S of Hollywood Blvd
e 1-95 SB at Pembroke Rd
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4.2.3 Site 2 — E Sunrise Blvd Site
4.2.3.1 Overview

The second site is a principal arterial segment along E Sunrise Blvd between 1-95 and US-1
within the boundaries of Fort Lauderdale. The site includes 16 signalized intersections, 2
pedestrian signals, and 1 railroad crossing. Characteristics of Site 2 are presented in Table 15.

Table 15. Summary of Characteristics, E Sunrise Blvd Study Site

Category Characteristics Value
Geometry | Boundary 1-95 - US-1
Facility type Principal arterial
Length 3.023 mi
Lane configuration 3 per direction
Number of signalized intersections 16
Number of pedestrian signals 2
Number of railroad crossings 1
Median Configuration Raised median + directional opening
_ 40 mph (1-95 — N Federal Hwy),
Speed limit 35 mpph ((N Federal Hwy — UV;)—Q)
Traffic AADT 45,000-58,000 vpd

4.2.3.2 Historical Data

Average yearly crash frequency on the E Sunrise Blvd segment (see Figure 24) was 180 crashes
for 2014-2018), as shown in Figure 25. The monthly trend (Figure 26) shows that each month
experienced 50 or more crashes on this segment. Based on crash data from Signal Four
Analytics, the E Sunrise study site includes three intersections that are ranked the 57th, 72nd, and
89th among the top 100 highest crash intersections in Broward County for 2015-2018, as shown
in Figure 27. Spatial analysis of crashes over 0.1-mi segments indicates 11 sub-segments
experiencing 30 or more crashes per year, as shown in Figure 28.
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Average Yearly Crash Frequency

Average Monthly Crash Frequency
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Figure 25. Average Yearly Crash Frequency, E Sunrise Blvd Study Site

80
68
66 66
64 65
62

. 59 62

52 53 54 51
40
20
0

Jan Feb Mar Apr May  Jun Jul Aug Sep Oct Nov Dec

Figure 26. Average Monthly Crash Frequency, E Sunrise Blvd Study Site
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Figure 28. Crash Density, E Sunrise Blvd Study Site
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4.2.4 Local Data Sensors

In total, 5 MVDS devices and 7 Bluetooth devices are installed on the E Sunrise Blvd corridor
for traffic data collection. The device locations are shown in Table 16 and Figure 29.

Table 16. Summary of MVDS and Bluetooth Devices, Sunrise Blvd Study Site

Sunl%wde Type Roadway Cross Street
M-11 MVDS SR-838/E Sunrise Blvd NW 17th Ave
M-12 MVDS SR-838/E Sunrise Blvd NW 12th Ave
M-13 MVDS SR-838/E Sunrise Blvd NW 4th Ave
M-14 MVDS SR-838/E Sunrise Blvd NE 8th Ave
M-15 MVDS SR-838/E Sunrise Blvd NE 17th Ave
B-15 Bluetooth SR-838/E Sunrise Blvd 1-95
B-16 Bluetooth SR-838/E Sunrise Blvd NW 17th Ave
B-17 Bluetooth SR-838/E Sunrise Blvd NW 12th Ave
B-18 Bluetooth SR-838/E Sunrise Blvd NW 9th Ave
B-19 Bluetooth SR-838/E Sunrise Blvd Andrews Ave
B-20 Bluetooth SR-838/E Sunrise Blvd NE 17th Ave
B-21 Bluetooth SR-838/E Sunrise Blvd | SR-5/Federal Hwy/US-1

7th St. g NE 16th P!

N Andréws Ave 5
NE 2nd Ave

NW-7th Ave &
NE 3rd Ave

3 Fort

N Federal Hwy
E

V9 S5surces: EsnlHEREIBEAMR Uses, Intemap, INCREMENT.
Thailaid). WBCE 1)

NE 7th Ave

NE 2nd St

and the GIS User Community

= NE 18th Ave

P.NRCan, Esri Japan, METI, Esri China (Hong Kona); EgjiiKoreaEsri

NE 2

Figure 29. Locations of MVDS and Bluetooth Devices, E Sunrise Blvd Study Site
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There are eight CCTV devices on the E Sunrise corridor to monitor traffic operations and
incidents, as shown in Table 17 and Figure 30.

Table 17. Summary of CCTV Devices, E Sunrise Blvd Study Site

SunGuide Roadway Cross Street
ID
C-19 SR-838/E Sunrise Blvd 1-95
C-20 SR-838/E Sunrise Blvd NW 9th Ave
C-21 SR-838/E Sunrise Blvd Andrews Ave
C-22 SR-838/E Sunrise Blvd NE 4th Ave
C-23 SR-838/E Sunrise Blvd Flagler Dr
C-24 SR-838/E Sunrise Blvd NE 8th Ave
C-25 SR-838/E Sunrise Blvd NE 15th Ave
C-26 SR-838/E Sunrise Blvd | SR-5/Federal Hwy/US-1

5" 3 - T ¥
£ B2

Figure 30. Locations of CCTV devices, E Sunrise Blvd Study Site
4241 DMS

There are two DMS devices on the E Sunrise corridor, as shown in Table 18. The locations of
DMS devices are shown in Figure 31.

Table 18: Attributes of DMS Devices, E Sunrise Blvd Study Site

SunGuide ID | Direction Cross Street Text Capacity
D-03 EB Before Powerline Rd | 2 lines, 13 characters
D-04 WB Beyond NE 17th Way | 2 lines, 13 characters
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https://www.google.com/maps/search/SR+5%2FFederal+Highway%2FUS-1?entry=gmail&source=g

Figure 31: Locations of DMS devices, E Sunrise Blvd Study Site
4.2.5 Site 3—-PGA Blvd
4.25.1 Overview

The third site is a principal arterial segment on PGA Blvd between a Florida’s Turnpike SB off-
ramp and Prosperity Farms Rd in Palm Beach County. This site includes five signalized
intersections, including three top crash intersections in West Palm Beach County. Site
characteristics are presented in Table 19, and the layout of Site 3 is shown in Figure 32.

Table 19. Summary of Characteristics, PGA Blvd Study Site

Category Characteristics Value
Boundary Florida’s Turnpike—Prosperity Farms Rd
Facility type Principal arterial
Length 3.865 mi

Geometry | Lane configuration 3-4 per direction
Number of signals 13
Median Attributes Raised median, full/directional openings
Speed Limit 45 mph

Traffic | AADT 38500-75000

4.25.2 Historical Crash Data

Spatial analysis of crash over segments between two signals indicates 11 sub-segments
experiencing 30 or more crashes per year, as shown in Figure 33. Yearly crash frequencies on the
PGA Blvd segment were 371, 482, and 376 crashes per year for 2016, 2017, and 2018,
respectively, as shown in Figure 34. The monthly trend (Figure 35) shows that each month
experienced 27 or more crashes on this segment. Based on Signal Four Analytics data, the PGA
Blvd study site includes three intersections among the top 100 highest crash intersections in West
Palm Beach County for 2016-2018.
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Figure 33. Crash Density, PGA Blvd Study Site
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Figure 34. Average Yearly Crash Frequency, PGA Blvd Study Site
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Figure 35. Average Monthly Crash Frequency, PGA Blvd Study Site
4.2.5.3 Data Sensors

The PGA corridor includes six portable traffic-monitoring stations, five Bluetooth devices, and
four MVDS devices for traffic data collection. Device locations are shown in
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Table 20.
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Table 20. Summary of Traffic Sensor Locations, PGA Blvd Study Site

Device ID Type Roadway Location
930072 Portable PGA Blvd | W of SR-91/FL Turnpike
930073 Portable PGA Blvd | E of SR-91/FL Turnpike
930074 Portable PGA Blvd | W of SR-9/1-95
935300 Portable PGABIvd | E
935402 Portable PGA Blvd | E of SR-811/Alt-AlA
930712 Portable PGA Blvd | E of Prosperity Farms Rd
1 Bluetooth PGA Blvd | Turnpike
2 Bluetooth PGA Blvd | Central Blvd
3 Bluetooth PGA Blvd | Military Trail
4 Bluetooth PGA Blvd | Garden Mall
5 Bluetooth PGA Blvd | Prosperity Farms Rd
1 MVDS PGA Blvd | FL Turnpike to Ballenisles Dr
2" MVDS PGA Blvd | Shady Lakes Dr to Military Trail
3 MVDS PGA Blvd | 1-95 to RCA Blvd
4 MVDS PGA Blvd | Campus Dr to Prosperity Farms Rd

“Not official number
Three CCTV devices are available on PGA Blvd for incident management:
e PGA Blvd at Florida’s Turnpike
e PGABIvd at I-95
e PGA Blvd at Gardens Mall
4254 DMS
Three DMS devices are installed on PGA Blvd:
e EB - PGA Blvd, W of Military Trail
e WB - PGA Blvd, W of Fairchild Gardens
e EB-PGA Blvd, W of Prosperity Farms Rd
4.3 Data Preparation
4.3.1 Data Collection

The research team collect data at Sites 1 and 2 in two stages: (1) collecting historical data for five
years (2015-2019) for model calibration purposes and (2) collecting latest data in 2020 for
offline testing. Historical data were also collected at Site 3; however, Site 3 was not included in
the offline test since its testing data were unavailable. Data collection for the three sites is
summarized in Table 21.
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Table 21. Summary of Data Collection

Characteristics Site 1: 1-95 Site 2: Sunrise Blvd | Site 3: PGA Blvd?®
Facility type Interstate Principal Arterial Principal Arterial
Length 8.516 mi 3.023 mi 3.865 mi

Calibration Data
Time Frame 2015 - 2019 2015 - 2019 2015 - 2019
Source RITIS! D4 TMC Here
Traffic ltems Volume, speed, Volume, speed, Volume, speed,
Data _ _ occupancy occupancy occupancy
Spatial Resolution By lane By lane By segment
Sampling Rate 20 sec 1 min 1 min
Source SignalFour? SignalFour? SignalFour?
Crash Data Items Date, time, direction | Date, time, direction qute, t|_me,
irection
Offline Testing Data
Time Frame Jan, Feb, Jul in 2020 | Jan, Feb, Jul in 2020
Source RITIS! D4 TMC
Traffic ltems Volume, speed, Volume, speed,
Data _ _ occupancy occupancy N/A
Spatial Resolution By lane By lane
Sampling Rate 20 sec 1 min
Source SignalFour? SignalFour?
Crash Data Items Date, time, direction | Date, time, direction

! Regional Integrated Transportation Information System, https://ritis.org/.

2 https://s4.geoplan.ufl.edu/.

3 Historical data collected for Site 3, but site not tested as offline testing data unavailable.

Traffic information such as speed, volume, and occupancy was collected from different sources.
For the 1-95 site, detector data were downloaded from the RITIS website (https://ritis.org/). The
interface of the RITIS detector tool is shown in Figure 36. Because there were no detector data
available for the E Sunrise Blvd site in the RITIS database, traffic data collected via the MVDS
were requested from FDOT District 4. Both datasets were lane-by-lane raw count data.

Crash data were also collected, including information such as crash time and crash location.
Crash data for both study sites were downloaded via the SignalFour Analytics website developed
by the GeoPlan Center at the University of Florida (https://s4.geoplan.ufl.edu/analytics/). The

interface of the SignalFour Analytics web application is shown in Figure 37.
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4.3.2 Data Processing

Raw calibration data (traffic and crash data for 2015-2019) were directly provided to WayCare
for model calibration. Testing data for January, February, and July 2020 were processed by the
research team to generate testing datasets. The data process procedure is described as follows.

Step 1: Split the Data by Segment — The WayCare model predicts crash risk for sub-zones

rather than for whole corridors. The sub-zones used for 1-95 and E Sunrise Blvd are shown in
Figure 38 and Figure 39, respectively. The research team grouped traffic data and crash data by

sub-zone.
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Step 2: Split Data by Time — The WayCare model predicts the crash risk for the next three
hours for a sub-zone based on the previous nine-hour traffic and crash data. The research team
divided the whole day into four periods, as shown in Table 22, and grouped the traffic and crash
data by the four time periods for each sub-zone.

Table 22. Time Periods Used for Prediction Input and Output

Time Periods Input Period (9 hrs before prediction) Prediction Period (3 hrs)

AM (morning) 9:00 PM (previous day)-6:00 AM 6:00-9:00 AM

MD (mid-day) 3:00 AM-12:00 PM 12:00-3:00 PM

PM (afternoon) 6:00 AM-3:00 PM 3:00-6:00 PM
Night 12:00 PM-9:00 PM 9:00 PM-12:00 AM

Step 3: Filter Data — The raw traffic dataset on the 1-95 sites contained some errors, such as
extreme values, missing data, or incorrect codes. These error data were removed to avoid their
impact on the prediction performance. Data filtering conditions were as follows:

e Speed —> 0 mph and < 100 mph
e Volume — > 0 vehicle per lane per 20 sec and < 50 vehicles per lane per 20 sec
e Occupancy —> 0% and < 80%

Upon completion of the three steps, the research team generated the model inputs, including
traffic and crash data. The data description of the model inputs is given in Table 23.

Table 23. Data Fields for Model Inputs

Field | Description/Format
Traffic Data
Time Time in 24-hour format — HH:MM:SS.S
Detector ID | Unique number for traffic sensors
Lane ID Integer number indicating a lane

Direction N/S for 1-95, E/W for Sunrise Blvd
Number of vehicles per lane per 20 sec (1-95 site)

Volume Number of vehicles per lane per one min (Sunrise Blvd)
Occupancy %
Speed Miles per hour
Crash Data
Datetime Crash date time — MM/DD/YYYY HH:MM
Latitude Latitude of crash location, decimal degree

Longitude Longitude of crash location, decimal degree
Direction N/S for 1-95, E/W for E Sunrise Blvd

4.4 Model Calibration

The WayCare team calibrated its prediction models based on the five-year historical data (2015-
2019) for the two study sites. A machine learning methodology was used to build the connection
between the input traffic/crash characteristics and the output crash risk. WayCare randomly
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selected samples from the calibration data for model training and evaluation, as shown in Figure
40.

9-hour input 3-hour output

I
%

2015 | Y ' 2019

Calibration

Figure 40. WayCare Model Training and Evaluation

The model was incorporated in a simple tool for offline model testing. With this tool, the users
upload the model inputs—nine-hour traffic data and crash data—through a webpage (Figure 41)
and downloads the prediction results using the same webpage (Figure 42).

Django administration

WELCOME, TAO. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home : Collector » Predictions » Add prediction

Add prediction
Incident data: Choose File no file selected
Sensors data: Choose File no file selected
" Deleted
Settings: i95 s
Created at:
ID:
Result:
Status: in-progress

Figure 41. Offline Prediction Interface — Upload Traffic and Crash Data
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Django administration

WELCOME, TAO. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home » Collector » Predictions

Select prediction to change
Action: | —— > Go 0 of 100 selected
(] SETTINGS  CREATED AT ~ RESULT STATUS DELETED
941 95 Sept. 16, 2020, 5:59 a.m. in- (x]
progress
940 95 Sept. 16, 2020, 5:58 a.m. in- (]
progress
939 95 Sept. 16,2020, 5:57 a.m. in- o
progress
938 95 Sept. 16, 2020, 5:57 a.m. prediction/output/2020-09- finished (]
16/prediction.csv
937 95 Sept. 16, 2020, 5:55a.m. prediction/output/2020-09- finished (]
16/prediction.csv
936 95 Sept. 16,2020, 5:54 a.m. prediction/output/2020-09- finished o
16/prediction.csv

Figure 42: Offline Prediction Interface — Download Prediction Results

The detailed model calibration procedure and results are given in Appendix A and Appendix B,
respectively.

45 Evaluation Methods

The research team conducted an offline test on the calibrated WayCare Model using the 2020
dataset. The offline test was independent of WayCare’s evaluation and assessed the performance
of the dynamic crash prediction methodology in the Florida roadway environment. The
evaluation criterions and procedure are given below.

45.1 Performance Measures

The prediction results of the model were compared to the archived crash events that
corresponded to the road segment and time period. Four assessment types were used in the
evaluation of prediction quality, as shown in Table 24:

e True Positive (TP) — Assesses the degree to which there were crashes; the model
successfully predicted them and thus triggered true alarms.

e False Positive (FP) — Assesses the degree to which there were no crashes; the model
predicted this incorrectly and triggered false alarms. This is also called Type I error.

e True Negative (TN) — Assesses the degree to which there were no crashes; the model
predicted them correctly and did not give alarms.
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e False Negative (FN) — Assesses the degree to which there were crashes; the model
predicted them incorrectly and did not give alarms. This is also called Type Il error.

Table 24. Concepts of Prediction Performance Metrics

Crash Cases No-Crash Cases
Alarm (predicted crash) TP (correctly predicted crash events) | FP (Type | error)
TN (correctly predicted
non-crash events)

No alarm (predicted no crash) | FN (Type Il error)

With the assessment types listed above, the following performance metrics (measures) were
calculated for the evaluation:

e Precision — probability of true alarms; that is, the percentage of true alarms that correctly
predicted the crash cases, calculated as the number of true alarms divided by the total
number of alarms.

Correctly Predicted Crashes TP
Total Alarms " TP + FP 1)

Precision =

e False Alarm Rate — probability of false alarms; that is, the percentage of false alarms that
an alarm is generated but no “real” crash event occurs.

Alarms w/o Crash Occurring  FP

False Alarm Rate = 1 — Precision = Total Alarms ~ TP + FP )

e Recall — Probability of crash detection; that is, the percentage of crash cases successfully
predicted, calculated as the number of crash cases predicted correctly divided by the total
number of crash cases.

Correctly Predicted Crashes TP

Recall = Total Crashes " TP +FN (3)

e Fl-score — Harmonic mean of precision and recall; the highest possible value of F-score
is 1 (or 100%), indicating perfect precision and recall, and the lowest possible value of
F-score is 0, if either precision or recall is zero.

2 X (Recall x Precision)
F1 = — 4)
Recall + Precision

e Accuracy — Percentage of true predictions including both true positive and true negative
prediction, calculated as the sum of TP and TN divided by the total population.

TP + TN
TP + FP + FN + TN ®)

Accuracy =
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It is worth noting that Precision (or FAR assessment), Recall, and F-score were more critical
measures than accuracy in this study. This is because, as stated earlier, accuracy is the percentage
of true predictions. A large proportion of true predictions used in accuracy calculation is
predicting no crashes (true negative predictions meaning no alarms triggered when there are no
crashes). This accuracy prediction of no crashes dilutes the value of the accuracy measure since
this is not the objective of implementing the product.

45.2 Evaluation Procedure

Figure 43 presents the procedure for evaluating the selected dynamic crash prediction system
based on the performance metrics listed in the previous section. Crash status (Crash/No Crash)
was indicated for each road segment and for each testing three-hour period (AM, MD, PM,
Night). Traffic (sensor data) and crash (SignalFour data) input files were prepared for each nine-
hour period before each three-hour testing period. Each pair of input files was uploaded to the
WaycCare offline model to create a prediction, and a prediction output file was then downloaded
to get the prediction results for a three-hour period at a study site. The steps of creating a
prediction and downloading the output file were repeated until all prediction output files were
retrieved. The prediction results were then compared with the crash statuses identified, as noted
previously. The comparison results were used to assess the prediction quality based on the four
assessment types (TP, FP, FN, TN), as reflected by the used performance metrics (Precision,
Recall, F-score, Accuracy), as defined in the previous section.

WayCare calibrated the model
Indicate crash status for each testing segment and period
Prepare traffic and crash input files for the model
Create a prediction with the model for a testing period
Download the prediction output file
Compare prediction results with crash statuses in reality

Calculate performance metrics

Figure 43. Flow Chart of Evaluation Procedure

The model was first evaluated with two months of data (January and February 2020). To
determine if the model was overfitted to the calibration, the test was also done for a month
(November 2017) included in the provided calibration data. Another month (July 2020) was also
tested to check the effect of the COVID-19 pandemic on the evaluation. As there was no
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significant difference in performance between the first two months (January and February 2020)
and July 2020, they were combined to get larger samples, and the results of the combined three
months (January, February, July 2020) are also presented in this study. Therefore, the following
four test periods were used in the analysis:

e January and February 2020 — Test using data not included in the calibration without
pandemic effect

e November 2017 — Test using data already used in calibration of model

e July 2020 — Test using data from a post-pandemic month

e January, February, July 2020 — Test using combined data not used in calibration

To evaluate the performance of the model during different periods in a day, the analysis was also
performed for the following periods:

e AM: 6:00 AM—9:00 AM

e MD: 12:00 PM-3:00 PM

e PM: 3:00 PM-6:00 PM

e Night: 9:00 PM-12:00 AM

e ALL: combination of the four time periods listed above

4.6 Offline Test Results for 1-95

Figure 44 to Figure 47 show the evaluation results for the 1-95 site for the four test periods—
January and February 2020, November 2017, July 2020, and January, February, July 2020.
Detailed information is given in Table 25. It is worth noting that the model could not produce all
the prediction output files successfully (for all tested three-hour periods) for the 1-95 site. The
missing output files could not be downloaded because they were always in “in-progress” status
instead of “finished.” For example, for the combined three-month (January, February, July
2020), the model run only 42.2% (1229 of 2912) of the prediction time intervals successfully;
however, the samples were enough for evaluation of the 1-95 site. It is not clear why the model
was not able to produce the prediction for all test intervals and this may be a software issue.

The overall F-score (for time period ALL) for January and February 2020 was 23% with a
Precision of 17% and Recall of 36%, as shown in Figure 44. The value based on the month used
in calibration (November 2017) was 28% with a Precision of 29% and Recall of 26%, as shown
in Figure 45. This indicates that the performance with the data used in the calibration was not
significantly better than the performance with the data not used in the calibration, indicating that
there was no overfitting issue. The overall F-score for July 2020 was 18% with Precision of 18%
and Recall of 18%, as shown in Figure 46. This performance was lower than that of January and
February 2020. Finally, the combined three-month results, as shown in Figure 49, indicate an
overall F-score of 20% with Precision of 17% and Recall 25%; that is, 17% of the alarms
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triggered by the model were true alarms (there were crashes in reality), and there was a
successful prediction of 25% of the true crashes.

The model had poor performance for the AM, MD, and Night periods but much better results for
the PM peak. For example, during the combined three-month period (January, February, July
2020), the number of crash cases tested for AM, MD, and Night were 26, 22, and 17,
respectively, but the model produced only one alarm for the AM peak (which was incorrect) and
another alarm for MD, which made the Precision, Recall, and F-score all 0%. However, for the
PM peak, the F-score was 27%, and the Recall was as high as 55%. This indicates that the
model possibly over-fit the PM crash data. It may be useful to produce different models for
different times of day.

It is worth noting that the results showed high accuracy of predictions (more than 85%) for AM,
MD, and Night in all four test periods despite poor Precision, Recall, and F-score. This proved
that the accuracy of predictions is not an important metric for this research, as noted earlier.

100% 93% 94%

88%

80% 74%

64%
60%

43%
40% 36%
27%
23%
20% 17% 17%

0% 0% 0% 0% 0% 0% 0% 0% 0%
0%
AM MD PM Night ALL

Precision ®mRecall ®mF-score = Accuracy

Figure 44. Evaluation Results for January and February 2020 at 1-95 Site
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88% 88%
79%
61%
55%
40%
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50 8%
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MD PM Night ALL

m Precision mRecall mF-score = Accuracy

Figure 45. Evaluation Results for November 2017 at 1-95 Site

0% 0% 0%
AM

92%

92% 94%
87%
69%
55%
27%
0 0,
18% 18 A)18%}8| &
0% 0% 0% 0% 0% 0% 'II
MD PM Night ALL

® Precision ®mRecall ®F-score © Accuracy

Figure 46. Evaluation Results for July 2020 at 1-95 Site
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100%
94%
91% 92% 0

82%
80%

60% 0% sa%

40%

27% 250

20%
20% 18% 17% 0

0% 0% 0% 0% 0% 0% 0% 0% 0%
0%
AM MD PM Night ALL

Precision m=Recall F-score = Accuracy

Figure 47. Evaluation Results for January, February, and July 2020 at 1-95 Site
Table 25. Summary of Offline Test Results for 1-95 Site

Time

Test Period Period Precision | FAR" | Recall | F-score | Accuracy | TP | FP | TN | FN
AM 0% ; 0% 0% 85% 0| 0 |145]| 26

November MD 17% | 83% | 6% 8% 88% 1| 5 |154] 17
2017 PM 30% | 70% | 61% 40% 550 | 27 | 63 | 70 | 17
Night 0% | 100% | 0% 0% 88% 0 | 1 |142] 18

ALL 29% | 71% | 26% 28% 79% | 28 | 69 | 511 | 78

] AM 0% | 100% | 0% 0% 88% 0] 1 |79]10
a;‘r‘:gry MD 0% 100% | 0% 0% 93% 0] 1 |85
Februar PM 17% | 83% | 64% 27% 43% | 16| 78 | 50 | 9
2020 Y I Night 0% ; 0% 0% 94% 0] 0]|75] 5
ALL 17% | 83% | 36% 23% 74% | 16 | 80 | 288 | 29

AM 0% ; 0% 0% 92% 0| 0 |184| 16

MD 0% ; 0% 0% 92% 0 | 0 |191] 17

July 2020 PM 18% | 82% | 55% 27% 69% | 12 | 54 | 132 | 10
Night 0% ; 0% 0% 94% 0 | 0 |188] 12

ALL 18% | 82% | 18% 18% 87% | 12 | 54 | 695 | 55

AM 0% | 100% | 0% 0% 91% 0 | 1 |263] 26

January, MD 0% | 100% | 0% 0% 92% 0 | 1 |275] 22
February, PM 18% | 82% | 60% 27% 580% | 28 | 132 | 182 | 19
July 2020 | Night 0% - 0% 0% 94% 0 | 0 |263] 17
ALL 17% | 83% | 25% 20% 82% | 28 | 134 | 983 | 84

*FAR (False Alarm Rate) = 1 — Precision
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4.7 Offline Test Results for E Sunrise Blvd

Figure 48 to Figure 51 show the evaluation results of the E Sunrise Blvd site for the four test
periods, respectively. Detailed information is given in
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Table 26. Different from the 1-95 site, the model produced all attempted 1,456 predictions
successfully for the E Sunrise Blvd site.

The overall F-score for the January and February 2020 test was only 5% with Precision of 5%
and Recall of 6%, as shown in Figure 48. The results based on the data used in the calibration, as
shown in Figure 49, indicate a much higher F-score at 14% with Precision of 10% and Recall of
20%. The overall F-score for July 2020 was 13% with Precision of 10% and Recall of 19%, as
shown in Figure 50, which proved that the model was not overfitted to the calibration data.
Finally, the combined three-month test results shown in Figure 51 indicate an overall F-score of
9% with Precision of 7% and Recall of 11%; that is, 7% of the alarms triggered by the model
were true alarms and 11% of the crashes were predicted.

Similar to the results of 1-95 site, the E Sunrise Blvd site also had poor performance for the AM
and Night periods, although it had much better results for MD and PM peak, especially MD.
During the combined three-month period (January, February, July 2020), the number of crash
cases tested for the AM and Night periods were 10 and 14, respectively, but the model produced
only one alarm for the Night period, which was incorrect, making Precision, Recall, and F-score
all 0%. However, for the MD and PM periods, the values of the F-score were 15% and 6%,
respectively.

The E Sunrise Blvd site also had a high accuracy of predictions, especially for the AM and Night
periods, but it was also because most of the true predictions were true negative predictions.

100% 97% 96%

89%
85%

80% 7%

60%

40%

0
20% 13%

596 6% 5% 500 [ 7% 506 6% 5%
0% 0% 0% 0% 0% 0%
0%
AM MD PM Night ALL

Precision = Recall F-score = Accuracy

Figure 48. Evaluation Results for January and February 2020 at E Sunrise Blvd Site
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Figure 49. Evaluation Results for November 2017 at E Sunrise Blvd Site

98% 95%

83%
7%
64%
19%
9% lOfy 3%
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AM MD Night
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Figure 50. Evaluation Results for July 2020 at E Sunrise Blvd Site
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Figure 51. Evaluation Results for January, February, July 2020 at E Sunrise Blvd Site
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Table 26. Summary of Offline Test Results for E Sunrise Blvd Site

Te_st T"T‘e Precision | FAR* | Recall F-score | Accuracy | TP | FP | TN | EN
Period Period

AM 0% 100% 0% 0% 94% 0 1 113 | 6

November MD 9% 91% | 22% 13% 7% 2 21 90 7
2017 PM 10% 90% | 33% 16% 64% 4 35 73 8
Night 20% 80% 13% 15% 91% 1 4 108 | 7

ALL 10% 90% | 20% 14% 81% 7 61 | 384 | 28

3 AM 0% - 0% 0% 97% 0 0 233 | 7
agggry MD 5% | 95% | 6% 5% 85% | 1 | 21 | 202 | 16
Februar PM 5% 95% 13% 7% 7% 2 42 | 182 | 14
2020 | Night 0% - 0% 0% 9%6% | 0| 0 | 231 | 9
ALL 5% 95% 6% 5% 89% 3 | 63 | 848 | 46

AM 0% - 0% 0% 98% 0 0 121 | 3

MD 19% 81% | 38% 26% 7% 5 21 90 8

July 2020 PM 3% 97% 9% 4% 64% 1 35 78 10
Night 0% 100% | 0% 0% 95% 0 1 118 | 5

ALL 10% 90% | 19% 13% 83% 6 | 57 | 407 | 26

AM 0% - 0% 0% 97% 0 0 354 | 10

January, MD 13% 87% | 20% 15% 82% 6 42 | 292 | 24
February, PM 4% 96% 11% 6% 72% 3 77 | 260 | 24
July 2020 Night 0% 100% | 0% 0% 96% 0 1 349 | 14
ALL 7% 93% | 11% 9% 87% 9 | 1201255 | 72

“FAR (False Alarm Rate) = 1 — Precision
4.8 Discussions and Conclusions

To facilitate discussion in this section, the research team focused on using two major
performance measures to evaluate the WayCare model:

e Recall — Percentage of crash events that can be predicted by the model; higher is better.

e Precision — Percentage of alarms (crash prediction) that are true; higher is better. False
Alarm Rate (FAR) is the flip side of Precision (=1-Precision), which is defined as the
percentage of alarms that are false; lower is better.

These two measures are institutive and straightforward to non-machine learning engineers. To
keep constant with machine-learning terms, the research team also provided F-score and
Accuracy for reference. Based on the offline testing results, findings were as follows:

e The WayCare model presented better performance for the 1-95 site than the E Sunrise
Blvd site for Recall (25% vs. 11%) and FAR (83% vs. 93%). The high number of crashes
and relative simplicity of traffic patterns on the freeway may explain why the WayCare
model worked better on 1-95.

e The WayCare model presents varying Recall performances by period for both 1-95 and E
Sunrise Blvd.
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— On the I-95 sites, the WayCare model presented “good” performance for the PM
period (3:00 PM-6:00 PM); 55-65% of crashes could be predicted for different
months. These performances were close to WayCare’s evaluation based on
historical data for 2015-2019 (54% of crashes could be predicted for 1-95, on
average, without distinguishing periods), as shown in Appendix A.

- The WayCare model had “poor” performance on 1-95 for the MD and Night
periods. The model outputs could not predict any crashes in most scenarios for
these periods except for the MD period in July 2017 (6% of crashes can be
predicted).

- Itiis worth noting that the Recall performance for the PM periods in July 2020
(55% of crashes predicted) was lower than those for January and February 2020
(64% of crashes predicted) and July 2017 (61%). This comparison may imply that
the COVID-19 pandemic event had an impact on model performance (Recall
reduction of 6-9%) on 1-95.

- For E Sunrise Blvd., the WayCare model presented relatively “better”
performance for MD (12:00 PM-3:00 PM) and PM (3:00 PM-6:00 PM). Based
on 2020 data, an average 20% of MD crashes and 11% of PM crashes could be
predicted. It was interesting to find that the model had better performance in July
than in January or February 2020, which is the opposite of the finding for 1-95.

e FARs were relatively high (= 70%) across scenarios (Precision was relatively low, <
30%). This implies that 70% (or higher) of alarms were not actually associated with a
crash. The possible causes are:

- Underreported crashes — some minor crashes tend to not be reported to police and
thus are not included in the crash database but can be predicted by the WayCare
model.

- Near-crash events — some near-crash events, such as serious conflicts, are high-
risk events but do not necessarily result in crashes. Prediction of these near-crash
events are useful to apply actions to prevent risky situations.

As no data for underreported crashes and near-crash events were available, it was impossible to
estimate a “true” false alarm rate. However, WayCare reported that, typically, in-vehicle data
show that the WayCare model can predict 20-30% more crashes that are not documented.
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5 Recommendations

Based on the pilot study results, the research team developed recommendations for implementing
dynamic crash predictions in Florida as well as implementation recommendations and action
plan.

5.1 Implementation Recommendations

Based on the pilot study results, the following recommendations for implementing dynamic
crash prediction were developed:

e Implement the dynamic prediction model preferably on freeways but work with WayCare
to improve model performance for periods other than the PM period considering the
following:

- Model produced good performance for the PM period (3:00-6:00 PM) on the
tested freeway section (correctly predicted 60% of crash cases).

- Local resources for model data input and crash prevention (i.e., traffic sensors,
ITS/T&SMO actions, etc.) are plentiful on interstates.

- Freeways experience high traffic volumes and excessive crash frequencies
compared to other road facilities; implementation of dynamic crash prediction
could bring significant safety and mobility benefits.

e Consider implementation of the dynamic prediction model on arterials but work with
WayCare to improve model performance for periods other than the MD and PM periods,
if traffic agencies have a high need for arterial safety management, considering the
following:

- Model showed “positive” performance for the two periods on arterials (correctly
predicting 11-20% of crash cases).

- Relatively high volumes and crash frequencies on major arterials introduce the
need for dynamic crash prediction and prevention; arterials have more complex
traffic patterns.

- Traffic agencies should decide on implementation based on their arterial safety
management goals and needs.

¢ Real-time implementation of the model at TMCs will require maintaining traffic and
crash/incident data for the past nine hours to predict crash rates for the next three-hour
prediction window. The time interval of traffic sensor data is suggested to be 20 sec or 1
min. Longer time intervals can be applied; however, they may reduce prediction
performance. The protocol for data transfer between TMC SunGuide software and
databases and the WayCare web platform needs to be addressed.
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5.2 Suggested Crash Prevention Actions

The WayCare model outputs an alarm if it predicts a high crash risk for a three-hour time
window. The alarm allows TMCs to activate actions to reduce crash risk prior to crash
occurrence within these time windows. As discussed in Chapters 2 and 3, previous studies
indicate that crashes are highly related to driving speed and speed variation. Thus, an effective
strategy for preventing crashes is to reduce and homogenize running speeds on roadway
segments with predicted crash alarms. In addition, sharing the predicted crash risk with incident
response services (i.e., Road Rangers) can reduce response time to potential crash events and,
consequently, mitigate the risk of secondary crashes and non-recurring congestion. The research
team proposes three actions to respond to predicted crash alarms considering the following
factors:

e Effectiveness — Crash prevention should realize any one of the two safety strategies—
speed management or information-sharing—and can theoretically improve safety and
mobility.

e Availability — Crash prevention actions should be widely implemented on Florida
interstates and arterials.

e Experience — Crash prevention actions should be tested with the dynamic crash prediction
in pilot studies; suggestions from vendors and/or current users are also considered.

e Proved benefits — Qualified and/or quantitative safety and mobility benefits of the
proposed prevention actions can be found in the literature.

5.2.1 Dynamic Message Signs (DMS)

DMS are widely implemented ITS/T&SMO devices on Florida interstates and major arterials.
They display dynamic messages to warn drivers about special events such as traffic congestion,
crashes, incidents, AMBER/Silver/Blue alerts, or work zones. As the operation cost of DMSs is
relatively low (TMCs directly operate DMSS), it is suggested to display safety messages on
DMSs upon receiving a predicted alarm for a three-hour time window. The suggested warning
message would be “Reduce Your Speed.” If law enforcement action is activated, the warning
messages would be “Reduce Your Speed” + “Police Ahead.”

5.2.2 Law Enforcement

Law enforcement activities regulate driving behaviors, especially driver speed choice, and
implementation requires cooperation from law enforcement agencies (Florida Highway Patrol on
interstates and County Sheriff on major arterials). Suggested law enforcement actions include a
stationary police car on the roadside with flashing blue lights or a patrolling police car along the
alarmed segment. Considering that the FAR of the prediction model is relatively high (> 80%),
the following factors could be considered to decide whether to apply law enforcement actions
and their duration:
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e If there are crashes occurring within the nine hours prior to the three-hour time window,
apply and keep law enforcement activation for three hours.

e If there are no crashes occurring within nine hours prior to the three-hour time window,
apply law enforcement as an option or shorten its activation duration.

5.2.3

Incident Response Vehicles

Increasing the patrolling frequency of incident response vehicles on alarmed segments can
reduce reaction time. TMCs should share a predicted alarm with Road Rangers or other incident
response services. However, a study of optimal patrolling scheduling is needed.

Table 27. Summary of Recommended Crash Prevention Actions

secondary crashes

Prevent primary and
secondary crashes

DMS Law Enforcement Incident
Management
Actions If no law enforcement, « Stationary police cars with | « Increase patrolling
“Reduce Your Speed” blue lights on roadside, or | frequencies of
If with law enforcement, » Patrolling police cars incident response
“Reduce Your Speed” vehicles
+“Police Ahead”
Activation Prediction alarm  Prediction Alarm, or » Prediction alarm
Criterions * Prediction Alarm + Crash
records for past nine hours
Activation Three-hour time window * Three-hour time window | « Three-hour time
Duration or less window or less
Agencies T™MC » FHP (for interstates) * Road Ranger (for
 County Sheriff (for interstates)
arterials)
Qualified Safety Alert drivers to reduce speed |« Alert drivers to reduce » Reduce emergency
Benefits Prevent primary and speed vehicle response

time
* Prevent secondary
crashes

Qualified
Mobility benefits

Reduce risk of non-recurring
congestion caused by crashes

Reduce risk of non-
recurring congestions
caused by crashes

* Reduce risk of non-
recurring congestion
caused by crashes

Quantitative
Safety Benefits

17% crash reduction on
interstates combing DMS and
stationary police cars!

9% of crash reduction
(presence of stationary
police car)?

17% crash reduction on
freeway combining DMS
and stationary cars®

» Unavailable

L WayCare report for Las Vegas pilot study.
2 Sarit Weisburd, “The Effect of Police Patrol on Car Accidents,” Master’s thesis, 2013.
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6 Summary and Conclusions
6.1 Summary

FDOT’s Safety and TSM&O programs have been collecting, archiving, and analyzing a wide
range of traffic, crash, event, and other data to improve congestion and safety on the SHS.
Dynamic crash prediction, a proactive safety management strategy, predicts crash risk based on
prevailing traffic conditions and applies crash prevention actions to prevent crashes before
occurrence. As an innovative technology, dynamic crash prediction provides a potential way for
FDOT to take advantage of information provided by ITS devices and other sources, combined
with increasingly available big data/data analytics to effectively prevent crash occurrence and
improve safety and mobility on Florida roadway systems. Although many Florida traffic
agencies have shown interest in dynamic crash prediction methods and have plans to implement
them, there is no clear understanding on the applicability of dynamic crash prediction in
performance, implementability, integrability, and impacts.

This project aimed to evaluate existing dynamic crash prediction methods and practices related
to accuracy and timeliness, use in TMCs, and impacts on safety and mobility for implementing a
proactive safety strategy in Florida. To achieve this goal, the following tasks were completed:

e A comprehensive literature review was conducted to summarize previous studies on the
following:

- Theoretical framework of dynamic crash prediction

- Data needs for dynamic crash prediction

- Spatial and temporal resolution for dynamic crash prediction
- Modeling methodologies

- Accuracy and timeliness

e Existing vendors providing dynamic crash prediction functions and existing users that
have implemented the functions were identified. Through interviews and document
review, the research team developed an understanding of the art-of-practice of dynamic
crash prediction.

e The research team evaluated the identified dynamic crash prediction technologies/
platforms in functionality, performance and impacts, data and local resource needs,
usability, and maturity. Based on the evaluation, one technology (WayCare) was selected
for the pilot study.

e The research team conducted a pilot study with the selected technology in FDOT District
4. First, the research team collected historical traffic and crash data for five years (2015-
2019) on two study sites (1-95 and E Sunrise Blvd). This dataset was provided to
WayCare for model calibration. With the calibrated model, the research team conducted
offline tests using 2020 data for three months (January, February, July). The performance
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of dynamic crash prediction in the Florida roadway environment, including interstates
and major arterials, was evaluated from the offline test.

The research team developed recommendations for implementing dynamic crash
predictions in Florida based on pilot study results and vendor evaluation. Crash
prevention actions were also suggested.

6.2 Conclusions

Major conclusions from this study are as follows:

Although many academic papers have explored dynamic crash prediction, including data
needs, sampling methods, algorithm/models, and performance, only a limited number of
vendors and technologies were found on the current market. Only one vendor (WayCare)
was found to provide relatively mature and integral commercial solutions.

No current users were found to implement dynamic crash prediction systems, although
many agencies have shown interest. Only the Nevada Department of Transportation
(NDOT) tested the functions in a pilot study. Two local agencies in Florida (City of
Tampa, Pinellas County) have implemented the WayCare system; however, they do not
apply the dynamic crash prediction function.

Only one pilot study (NDOT) was found to test the dynamic crash prediction system in a
real roadway environment. It produced some preliminary evaluation results and proved
the concepts of dynamic crash predictions; however, it lacked an independent assessment
from a third party and a comprehensive evaluation report.

With Florida data, the WayCare technology can predict crash risk for a three-hour time
window based on nine-hour traffic and crash information prior to the prediction. The
traffic data include speed, volume, and occupancy. If the predicted crash risk is higher
than a threshold, an alarm will be produced. However, the threshold is non-configurable
on the WayCare platform.

The pilot study showed that the WayCare model presents better prediction performance
on freeway segments than on arterials due to the relative simplicity of traffic patterns on
freeways. The WayCare model calibrated in this study exhibited various performances by
time windows for either freeway segments or arterials.

It is suggested to implement the dynamic prediction model preferably on freeways
because the model produced good performance for the PM period (3:00-6:00 PM) on the
tested freeway section (correctly predicted 60% of crash cases).

It is suggested to work with WayCare to improve its model performance for periods other
than PM on freeways and all periods on arterials. As a data-driven method, dynamic
crash prediction requires more data to upgrade prediction ability.
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Three crash prediction actions—DMS safety messages, stationary police cars with
flashing lights, and advance warning to Road Rangers—were proposed based on
WayCare’s experience and the availability of TSM&O applications in FDOT District 4.
A further study is needed to address the safety and mobility of these crash prediction
actions.

The WayCare system (and other systems) is hosted on a cloud platform that does not
need special implementation. However, a data connection is needed to feed real-time data
from TMCs to the WayCare platform. This data connection should be addressed in
follow-up studies considering security and reliability.
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Appendix A: Literature Review Matrix

Ref. Title 'g%‘étrepgggge%ﬁf‘ Methc'{(/::gldc;giy and Accuracy E:rrgi Sensor Type | Test Bed | Facility Type

(14) | Real-Time Crash Traffic data e Support Vector Detection Rate | 5min | Automatic Simulation | e Freeway
Prediction in Urban e Flow of vehicles Machines + * 67.89% Vehicle e Santiago,
Expressway Using ¢ Density of vehicles Logistic False Identification Chile
Disaggregated Data o Mean speed Regression ¢ 20.94%

o Std deviation speed | e Random Forest
(Parameter
Selection)

(17) | A Dynamic Bayesian | Traffic data e Dynamic Bayesian | Success Rate 5-20 Dual Loop Simulation | e Freeway
Network Model for o Flow of vehicles Network ¢ 76.40% min Detectors e Shanghai
Real-Time Crash e Input uses 9 False
Prediction Using different ¢ 23.70%

Traffic Speed combinations of
Conditions Data mean speed

(18) | A Bayesian Network- | Traffic data o Bayesian Belief Success Rate 4-9 Loop Simulation | Type of Road
Based Framework for | e No. of heavy vehicle | Net (BBN) ® 66% min Detectors o Freeway
Real-Time Crash count ¢ Random False w/o ramps
Prediction on the e Speed multinomial Logit | e 20% e 250 meters
Basic Freeway o Avg speed (RMNL) section
Segments Of Urban ¢ Avg occupancy Place
Expressways e Tokyo

(19) | Real-Time Crash Traffic data e Aggregated Log 20 min | Loop Simulation | Type of Road
Prediction Model for o Traffic density Linear model Detectors o Freeway
Application to Crash e Speed Place
Prevention in Freeway | e Avg variation of e Toronto
Traffic speed on each lane

o Avg variation of
speed difference
across adjacent
lanes

(20) | Real-Time Estimation | Traffic data e Epanechnikov Success Rate 5min | Loop Simulation | Type of Road
of Accident o Flow Kernel Function ® 65.4% Detectors o Freeway
Likelihood for Safety | e Occupancy Place
Enhancement e Speed o California

1-880
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(21) | Development of a Traffic Data e Random e Different 5-10 Loop Simulation | Type of Road
Real-Time Crash Risk | e Flow Parameter Models rates min Detector o Freeway
Prediction Model ¢ Occupancy o Fixed Parameter Place
Incorporating Various | e Speed Values o California
Crash Mechanisms ¢ Types of congestion 1-880
Across Different
Traffic States

(22) | A Genetic Traffic data e RF Model Success Rate 5-10 Loop Simulation | Type of Road
Programming Model o Flow o Genetic ® 75.4% min Detectors o Freeway
for Real-Time Crash ¢ Occupancy Programming Place
Prediction on e Speed o California
Freeways o Crash type 1-880

(23) | Use of Support Vector | Date and time of crash | e SVM Success Rate 5-10 Loop Simulation | Type of Road
Machine Models for Crash type ¢ 80% min Detector o Freeway
Real-Time Prediction | Weather conditions Place
of Crash Risk on Traffic data e Shanghai
Urban Expressways ¢ Vehicle count

o Avg speed
e Avg occupancy

(24) | Comprehensive Traffic data e Kohonen Success Rate 5-10 Loop Simulation | Type of Road
Analysis of the e Avg speed Clustering * 75% min Detector o Freeway
Relationship Between | crash type Algorithm Place
Real-Time Traffic e Multilayer e Orlando, I-
Surveillance Data and Perception 4
Rear-End Crashes on e Normalized Radial
Freeways Basis Function

e Neural Network

(15) | A Real-Time Crash Upstream e Bayesian Belief Success Rate 5 min Loop Simulation | Type of Road
Prediction Model for | ¢ Ramp flow Net e 55% Detectors e Freeway
the Ramp Vicinities of | e Flow False without
Urban Expressways e Congestion index ¢ 10% Ramps

downstream Place
e Flow e Tokyo
e Speed
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(25) | The Viability of Using | Traffic data e Random Forest for | Success Rate 30 min | AVI Simulation | Type of Road
Automatic Vehicle e Speed travel time Variable Selection | e 70% e Freeway
Identification Data for e Stratified Matched Place
Real-Time Crash Case Control e Orlando, I-
Prediction 4

(26) | Real-time Prediction Traffic data e Bayesian Matched | Success Rate 5-10 AVI Simulation | Type of Road
of Visibility Related e Mean speed Case Control * 73% min e Freeway
Crashes Weather Logistic Place

Crash type Regression Model ¢ Orlando, I-
4, 1-95

(27) | Towards Universal Traffic Data e Comparison of Success Rate 5-10 Loop Simulation | Type of Road
Freeway Incident o Std deviation of Different ° 71.4% min Detectors o Freeway
Success Algorithms speed Algorithms Place

e Avg volume e Melbourne,
Australia

(28) | A Method for Relating | Crash type ¢ Principal 5-10 Loop Case Study | Type of Road
Type of Crash to Traffic data Components min Detectors o Freeway
Traffic Flow e Flow Analysis Place
Characteristics on Highway geometry e Cluster Analysis e California
Urban Freeways Weather conditions

Visibility

(29) | Probabilistic Models | Accident data e Statistical Successful 5min | TASAS Case Study | Type of Road
of Freeway Safety Crash type Summarization Alarm Rate Database o Freeway
Performance Using | No. of vehicles involved ¢ 92.00% Loop Place
Traffic Flow Data as | Traffic data Detectors e California
Predictors ¢ Movement of vehicles

e VVolume
e Occupancy

(30) | Real-Time Traffic Data e Probabilistic Comparison of | 5min | Loop Simulation | Type of Road
Hazardous Traffic e Avg flow, speed, Neural Network 2 Models Detector e Freeway
Condition Warning occupancy e Bayesian Network Place
System: Framework | e Std deviation of speed, e California

and Evaluation

flow, occupancy
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(31) | Multiple-Model e Crash type e Bayesian Network | Model 5 min Loop Simulation | Type of Road
Framework for Comparison Detectors o Freeway
Assessment of Real- Place
Time Crash Risk ¢ Orlando,

I-4

(32) | Split Models for Traffic data e Stratum Case Successful 5min | Loop Simulation | Type of Road
Predicting Multivehicle | e Speed Control Logistic | Alarm Rate Detector e Freeway
Crashes During High- | e Vehicle count Regression * 89.30% Place
Speed and Low-Speed | o Occupancy ¢ Orlando,
Operating Conditions I-4
on Freeways

(33) | Dynamic Variable e Crash type e PARAMICS Successful 5min | Loop Simulation | Type of Road
Speed Limit Strategies | Traffic data Microsimulation Alarm Rate Detectors o Freeway
for Real-Time Crash e Flow e (Software) * 85.00% Place
Risk Reduction on e Speed difference ¢ Orlando,
Freeways -4

(34) | Estimation of Real- Traffic data o Multi-Layer Success Rate 15-20 | Loop Simulation | Type of Road
Time Crash Risk: Are | e Avg speed Perceptron Neural | e 79%, 77%, | min Detector e Freeway
All Freeways Created | o Avg volume Network 70%, 70% Place
Equal? e Avg occupancy e Orlando,

1-4, 1-95

(35) | Calibrating a Real- Weather e Logistic Success Rate 5 min Loop Simulation | Type of Road
Time Traffic Crash- Data Regression * 59% Detector e Freeway
Prediction Model Using | Traffic data Weather Data Place
Archived Weather and | e Speed variance e Orlando,
ITS Traffic Data e Avg occupancy I-4

(36) | ldentifying Crash Traffic data e Probabilistic Success Rate 10-15 | Loop Simulation | Type of Road
Propensity Using e Volume Neural Network e 70% min Detector o Freeway
Specific Traffic Speed | e Occupancy Place
Conditions e Avg Speed ¢ Orlando,

I-4
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(37) | New Algorithms for Traffic data e Pairwise Model 5 min Loop Simulation | Type of Road
Filtering and ¢ VVolume Detector o Freeway
Imputation of Real- e Occupancy Place
Time and Archived « Speed ¢ Orlando,
Dual-Loop Detector I-4
Data in 1-4 Data
Warehouse

(38) | Development of a Crash data e Fisher Success Rate 0-30 Loop Simulation | Type of Road
Crash Risk Index to Traffic data Discriminant ® 65.7 min Detector e Freeway
Identify Real Time e Speed Analysis Place
Crash Risks on e Volume e Conditional e California
Freeways e Occupancy Logistic

Regression

(39) | An Analysis of Urban Crash type o Artificial Neural Success Rate | 5min | City Police Simulation | Type of Road
Collisions Using An Time of day Network e 58.33% Records e Arterial
Artificial Intelligence Weather condition TABTOT Place
Model Crash data e Milan

(40) | Crash Risk Assessment | Traffic data e Matched Case Success Rate 5 min Loop Simulation | Type of Road
Using Intelligent e Variation of speed Control Logistic e 72.50% Detector o Freeway
Transportation Systems | e Avg occupancy Regression Place
Data and Real-Time e Std deviation of e Orlando
Intervention Strategies volume
to Improve Safety on
Freeways

(41) | Linking Roadway Traffic data e Generalized Success Rate 0-15 Loop Simulation | Type of Road
Geometrics and Real- ¢ Avg speed Estimating * 78.34% min Detector o Freeway
Time Traffic e VVolume Equation Place
Characteristics to « Occupancy ¢ Orlando
Model Daytime

Freeway Crashes
Generalized Estimating
Equations for
Correlated Data
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(42) | Big Data Applications | Traffic data ¢ Bayesian Logit Success Rate | 5-10 Microwave Simulation | Type of Road
in Real-Time Traffic e Avg speed Model * 65.70% min Vehicle e Freeway
Operation and Safety e VVolume e First Order Detection Place
Monitoring and e Occupancy Reliability System e Orlando
Improvement on Urban | o Congestion index Analysis
Expressways

(43) | Potential Real-Time Traffic data e Overall Avg Flor 5-10 Loop Simulation | Type of Road
Indicators of Sideswipe | e Avg speed Rate min Detector e Freeway
Crashes on Freeways e Avg flow e (Modification of

e Avg occupancy Parameters)
e Crash type

(44) | Road Traffic Traffic data e Ordered Response | Successful 5-10 STATS19 Case Study | Type of Road
Congestion and Crash | e Avg speed Model Alarm Rate min UK road e Freeway
Severity: Econometric e Avg flow e 78.34% crash data Place
Analysis Using e Avg occupancy o UK
Ordered Response o Crash severity
Models

(45) | Big Data Analytics Traffic data o Kafka Successful 5-10 Video Simulation | Type of Road
Architecture for Real- e Speed e SUMO Alarm Rate min Loop e Freeway
Time Traffic Control e Position ¢ 60.32% Detector Place

o Travel time e Munich
¢ \olume

e Obstacle

e Occupancy

(46) | Large-scale Automated | Traffic data e Motion Prediction | Success Rate 5-10 CCTV Before and
Proactive Road Safety | e Avg speed e Measurement of * 94% min After Study
Analysis Using Video | e VVolume count Tracking Accuracy
Data

(47) | Bayesian Updating Traffic data ¢ Naive Bayesian Successful 5-10 Loop Simulation | Type of Road
Approach for Real- e Avg speed Alarm Rate min Detector e Freeway
Time Safety Evaluation | e Std deviation of ® 75.93%
with Automatic Vehicle speed

Identification Data

e Coefficient of
variation of speed
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(48) | Real-time Crash Risk Traffic data e Binary Logit Successful 0-5 Loop Simulation | Type of Road
Prediction Models o Std deviation of Alarm Rate min detector o Freeway
Using Loop Detector speed ¢ 60.26%
Data for Dynamic e Coefficient of
Safety Management variation of speed
System Applications e Avg density

(49) | Predicting Crash Traffic data ¢ Binary Logit Successful 5-10 Loop Simulation | Type of Road
Likelihood and e Std deviation of Alarm Rate min detector e Freeway
Severity on Freeways speed ¢ 91.40%
with Real-Time Loop e Avg density
Detector Data e Avg volume

(50) | Real-time Crash Traffic data e C-SVM (Support | Successful 5-10 Loop Simulation | Type of Road
Prediction on Freeways | e Avg speed Vector Machine) | Alarm Rate min detector e Freeway
Using Data Mining and | e Std deviation of e 84.34%
Emerging Techniques speed

e Avg density

¢ Density variation

e Avg volume

e Std deviation of
volume
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Appendix B: Summary of Potential Vendors

Dynamic
Vendor Link Description System Function Crash
Prediction
WayCare http://waycare | Platform using in-vehicle | e Dynamic crash Yes
tech.com/ information and municipal prediction (mutual)
traffic data for predictive e Proactive traffic
insights and proactive management
traffic management optimization
optimization. e On-board automated
incident detection and
management
e Data-driven decision
for road safety
improvement, and
traffic flow and road
design assessment
OpenDataNat | https://visionz | Cloud-based, smart city, e Dynamic crash In
ion eronetwork.or | machine learning engine prediction (in development
g/resources/vi | and enterprise platform developing)
sion-zero- that brings together all e Connected cars
cities/ data available to predict e Data-driven decision
greatest risks of life. making
Brisksynergi | https://brisksy | Uses Al and Deep ¢ Crash detection based No
es nergies.com/ Learning to evaluate video on trajectories (from
traffic interactions to videos)
understand road user
behavior via cloud-based
platform. Platform
captures line pattern of
each vehicle and predicts
to reduce collisions.
Waze https://www.w | Free two-way data ¢ Data exchange No
aze.com/ccp exchange empowering
decisions to achieve
concrete community
impact.
Data4democr | https://github. | Open source application to | e Crash prediction ?
acy com/Data4De | build crash prediction

mocracy/crash
-model

modeling application that
leverages multiple data
sources to generate set of
dynamic predictions to
identify potential trouble
spots and direct timely
safety interventions.
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http://waycaretech.com/
http://waycaretech.com/
https://visionzeronetwork.org/resources/vision-zero-cities/
https://visionzeronetwork.org/resources/vision-zero-cities/
https://visionzeronetwork.org/resources/vision-zero-cities/
https://visionzeronetwork.org/resources/vision-zero-cities/
https://visionzeronetwork.org/resources/vision-zero-cities/
https://brisksynergies.com/
https://brisksynergies.com/
https://www.waze.com/ccp
https://www.waze.com/ccp
https://github.com/Data4Democracy/crash-model
https://github.com/Data4Democracy/crash-model
https://github.com/Data4Democracy/crash-model
https://github.com/Data4Democracy/crash-model

UrbanLogiq

https://www.u

rbanlogig.com
[traffic

Platform to analyze traffic
data and predict behavior
based on historical data
and real-time data.

e Dynamic crash
prediction (in
developing)

e Smart traffic
management

e Integration of various
data resources

In
development

MioVision https://miovisi | Solutions to help improve | e Crash detection based No
on.com/ mobility and livability in on trajectories (from
cities of all sizes. videos)
GreenRoad https://greenro | Platform to provide real- e Fleet management No
ad.com/ time driver behavior data | e Process driver behavior
and give alerts to drivers data and give alerts to
and managers of vehicle drivers
fleet.
TTC https://www.tt | Division of TTC Group e Fleet management No
Driverprotect | c- dedicated to delivering e Driver risk
driverprotect.c | driver risk management management
om/ and work-related road
safety. End-to-end
managed service is
committed to minimizing
workplace road safety risk
and optimizing driver-
related business
performance.
Mojio https://www.m | Provides real-time GPS e Fleet management No
connected car | oj.io/connecte | and behavior data for ¢ Process driver behavior
and Motion d-car- connected customer carsto | data
platform/ help to shape clear
understanding of driver
behavior
Numina http://www.nu | Deploy-anywhere sensor e Crash detection based No
mina.co/ solution that gives cities on pedestrian

unprecedented traffic data.

trajectories from videos
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https://www.urbanlogiq.com/traffic
https://www.urbanlogiq.com/traffic
https://www.urbanlogiq.com/traffic
https://miovision.com/
https://miovision.com/
https://greenroad.com/
https://greenroad.com/
https://www.ttc-driverprotect.com/
https://www.ttc-driverprotect.com/
https://www.ttc-driverprotect.com/
https://www.ttc-driverprotect.com/
https://www.moj.io/connected-car-platform/
https://www.moj.io/connected-car-platform/
https://www.moj.io/connected-car-platform/
https://www.moj.io/connected-car-platform/
http://www.numina.co/
http://www.numina.co/

Appendix C: WayCare and Pilot Study in Las Vegas
C.1 Introduction to WayCare

WayCare is a start-up company headquartered in Tel Aviv, Israel, with offices in the U.S. It
provides cloud-based solutions to shape future city mobility by using in-vehicle information and
public traffic data for predictive insights and proactive traffic management optimization,
including:

e Crash and incident identification and prediction

e Traffic management operations

e Dynamic traffic flow characteristic optimization

e Law enforcement & emergency services

e Roadway & safety service patrol

e Traffic engineering assessment for roadway safety

To archive these functions, WayCare’s systems integrate real-time data from various resources
beyond the existing roadway infrastructure, such as:

e TMC traffic monitoring data (loop, Bluetooth, etc.)

e Roadway camera feeds

¢ In-vehicle data (OBD II, navigation apps, telematics, Waze, etc.)
e Localized weather data

e Events (construction, lane closures, concerts, sports, etc.)

e Public transit

e Historical crash/incident data

WayCare integrates an implementable and tested dynamic crash prediction function in its
system. To understand the features of the WayCare system, the research team conducted three
interviews with WayCare staff and also searched news reports, webpages, and technical reports
related to WayCare, especially dynamic crash prediction and prevention. WayCare has launched
projects in Las Vegas, Nevada; Tampa and Pinellas County, Florida; and agencies in Delaware.

Based on the collected information, the dynamic crash prediction functions of the WayCare
system are summarized below.

Platform and Deployment

The WayCare system is a cloud-based system that does not require deployment of specific
hardware or software packages in local TMCs. A web-based user interface (Ul) running on an
Internet-connected computer software allows TMC users to access system functions, including
monitoring traffic operations on target roadways, receiving crash risk warning information,
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configuring system settings, etc. An example of the WayCare interface for incident monitoring is

given in Figure 52.
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Figure 52. Web-based Interface of WayCare System Implemented in Nevada

(Source: Provided by WayCare)

The deployment of the WayCare system requires two stages: on-boarding and go-live.

e On-boarding (Calibration) — WayCare collects historical and real-time data from both
external and internal data resources. WayCare then customizes the platform based on user
needs and trains the prediction model based on the collected data.

e Go-live (Operation) — Once model training is completed, the system is activated online to
monitor traffic conditions and predict crash risk. WayCare provides training and ongoing
technical support at this stage.

System Functions

The current version of the WayCare system provides three major functions—dynamic crash
prediction, incident detection, and reactivation of safety analysis.

e Dynamic crash prediction—The WayCare system can monitor real-time traffic conditions
on target roadway segments. A machine-learning model continuously predicts crash risk
based on the traffic conditions. The Ul displays the predicted risk on a map with colors or
texts to indicate the risk level. Once the crash risk is higher than a predefined threshold
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(i.e., 83% used in the Nevada pilot study), the system sends a warning message to the
TMC and other involved agencies.

e Incident detection—The WayCare system provides a function to detect an incident/crash
event after its occurrence. The integrated CCTV can display the field conditions to TMC
staff.

¢ Reactivation of safety management—The WayCare system can collect historical crash
data. Based on historical crash data, the system identifies the segments with a high crash
risk and displays it on maps.

Roadway Facility Type

The dynamic crash prediction function of the WayCare system can be implemented in various
roadway facility types, such as basic freeway segments and merging and diverging segments
near interchanges. It tested the dynamic crash prediction function on two types of facilities in the
Nevada pilot study. It also states that dynamic crash prediction can be applied on arterial
corridors. Testing results for this facility type are not available.

Data Needs

Data needs are different for calibration (on-boarding) and operation (go-live). The system
calibration needs historical data for model training, which includes:

e Historical crash data — Historical crash data are required from TMCs. The minimum
requirement is one-year of historical data with location and direction information.
However, multiple years of historical crash data are suggested; more crash data allows
better training performance.

e Historical traffic data — Traffic conditions associated with identified crash events are an
optional request from TMCs. WayCare can retrieve traffic data from external data
resources (e.g., Waze). However, high-resolution traffic data from a TMC is suggested,
as the data can significantly improve training performance.

e Historical weather data — Weather conditions associated with identified crash events are
an optional request from TMCs. WayCare can retrieve weather conditions from external
resources.

e Historical event data — Event information (e.g., construction, sports, concert, etc.) that
associates with identified crash events is required from TMCs.

The data needs for online operations include:

¢ Real-time traffic data — WayCare can obtain real-time traffic conditions from external
data resources (such as Waze) as traffic inputs for crash risk prediction. This means that
even without traffic data from TMCs, the WayCare system can predict crash risk based
on third-party data. This feature is beneficial for implementing the system in areas
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without local traffic data resources. However, high-resolution traffic data from TMCs are
suggested. The prediction performance of the WayCare system can be improved
significantly by using these high-quality data.

e Event data — WayCare needs event information (e.g., construction, concert, etc.) from
TMCs or local agencies.

e Weather data — WayCare can obtain weather data from external resources. However,
real-time weather conditions from local weather sensors is beneficial to improve
prediction performance.

In summary, WayCare has its own data resources for model training and system operations,
including floating car data from navigation apps (e.g., Waze) and weather condition information
providers. In future, it plans to integrate individual vehicle sensor data (such as braking, speed,
acceleration, etc.) from vehicle manufacturers. In addition, it expects high-resolution traffic data
and multiple-year crash data to improve crash risk prediction performance. The accuracy and
efficiency of dynamic crash prediction depends on data quality and quantity.

Crash-Prevention Actions

The WayCare system can send a warning message to TMCs, law enforcement, and emergency
response departments when a predicted crash risk is higher than a predefined threshold. For
instance, the pilot study in Nevada adopted 83% as the threshold. With warning information,
local agencies may apply several control actions to prevent crash occurrence. The WayCare
system tested three crash-prevention actions in the pilot study in Nevada:

e Police high-visibility presence — A police car with lights presents in a high-risk segment.
Drivers slow down their speed and, consequently, reduce crash occurrence speed.

e Dynamic message system — Warning messages display on a DMS board in the upstream
of the high-risk segment to notify drivers to pay attention to potential risk and slow down
their speed.

e Emergency service — A warning message of potential crash risk is sent to emergency
rescue services so reaction time to incidents can be significantly reduced.

In addition to crash-prevention actions that have been tested, WayCare is planning and
developing innovative control strategies. An example is that WayCare can set up two-way
communication between the TMC and drivers using the Sirius XM radio system. Drivers can
receive notice of potential crash risk through two-way communication.

Performance and Impacts

The WayCare system tested its dynamic crash prediction and prevention in Nevada. According
to its self-report, the performance and impacts of dynamic crash prediction are as follows:
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e Accuracy — can correctly predict 56% of crash events

e Timelines — can provide a crash risk warning in advance, up to two hours

e System latency — nearly real-time (from time of data input to time of crash prediction
output)

e Crash reduction — around 17% crash reduction and 23% secondary crash reduction after
implementation of system

e Speed reduction — 91% of drivers reduce their speed below 65 mph in the high-risk
segments when a police car presents with flashing lights

e Emergency response time saving — can reduce Highway Patrol response time by 12%

Implementation

The Regional Transportation Commission (RTC) of Southern Nevada, in cooperation with
WayCare, completed a pilot study of dynamic crash prediction and prevention in July 2017. In
the first phase, the pilot study was along US-95 in Las Vegas. In Florida, Tampa and Pinellas
County also implemented the WayCare system. To date, efforts are focusing on incident
detection rather crash prediction, although they plan to implement the latter.

C.2 Pilot Study in Las Vegas

Overview

WayCare, with the Regional Transportation Commission (RTC) of Southern Nevada, Nevada
Highway Patrol (NHP), and the Nevada Department of Transportation (NDOT), conducted a
year-long pilot study that began in September 2017. This is the first pilot project of an Al-based
prediction and prevention of the crash risk based on real-time data in the US. The project has
successfully demonstrated that its Al—paired with specific responses from law enforcement and
transportation officials—can reduce highway collisions.

Period and Location

The first stage of the pilot study began in September 2017 and ended in September 2018. The
first stage included assessment of available external and internal data sources, historical and real-
time data collection, system customization, and a two-month go-live test (August—September
2018). The testing bed was a 5.4-mi interstate corridor, 1-95 from Russell Rd to Charleston Blvd
in Las Vegas. As shown in Figure 53, the features of the interstate segment are as follows:

e 47 through lanes on each direction

e 6 interchanges

e 2 horizontally curved sections

e Concrete barrier median

e Speed limit of 70 mph

e Dynamic Message System (DMS) in both directions
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Figure 53. Test Bed of Nevada Pilot Study
(1-15, Russell Rd to Charleston Blvd, Las Vegas)

Data Needs

The real-time traffic data in this pilot study was collected mainly from crowdsourced apps such
as Waze, a Google-owned company with the largest online community of motorists in the world.
The system refined and synthesized real-time information including speed, braking, and
acceleration. The pilot study also collected information on infrastructure, construction activities,
weather conditions, and special events (sports or concerts) from local agencies. The WayCare
system integrated these datasets and predicted potentially high crash-risk spots on the test bed. It
also connected to cameras along the test corridor for incident verification.

Crash Prediction and Prevention

Combining all kinds of the data, the WayCare platform continuously predicts when and where
crashes are likely to happen. In the Nevada pilot study, the warning-trigger threshold was set as
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83%. If the predicted crash risk was higher than this value, the WayCare system sent a crash
warning to TMC operators by popping up a warning window on the web-based UI.

With a crash risk alert, the WayCare system activated two crash-prevention actions, as shown in
Figure 54, in the Nevada pilot study.

e Police proactively positioned — Stationed police vehicles presented in the high-risk
segments with lights flashing. The high-visibility police vehicle increases driver attention
and reduces their speed.

e DMS with preliminary warning — Two kinds of warning messages were displayed on
DMS boards to notify upstream drivers of potential crash risk and encourage them to
reduce speed—“Reduce Speed” and “Police Monitoring Ahead.”
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Figure 54. Crash Prevention Actions in the Nevada Pilot Study
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(Source: Provided by WayCare)

Incident Response Solution

In addition to dynamic crash prediction, the WayCare system also tested incident response in the
Nevada pilot study. The procedure of incident response in the pilot study was as follows:

e The WayCare platform synthesized information from social media to crowdsourcing apps
(Waze) to identify crashes, near-crashes, or congestion events.

e Once the system identified an incident, the platform suggested potential problem areas
via pop-up windows.
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e TMC staff used those cameras more effectively, zooming out as far as a mile, then
sending confirmed incident reports with geotags and 30-second video clips to officers en
route.

e By receiving an advance or instant warning on an incident with detailed information,
officers could rapidly determine the exact location and detailed status of the incident and
quickly respond to the incident.

Effectiveness

The pilot study results showed that around 56% of crashes and incidents could be predicted. The
advanced crash-risk warning time was up to two hours. The impacts of the WayCare system
were identified as follows.

Speed Reduction

It was observed that 91% of drivers reduced their speed to lower than 65mph in the risk
segments where police vehicles presented with flashing lights. Because speed is a predominant
factor contributing to traffic fatalities, speed reduction is likely to decrease fatalities in traffic
crashes.

Primary Crash Reduction

A before-after study was conducted to compare primary crash frequency before (without) and
after (with) the implementation of the WayCare system. The comparison is given in Table 28.

Table 28. Before-After Comparison of Primary Crash Frequency
in Nevada Pilot Study

Stage Period Nur;\::sr of N:g::;:f Crashes per Day
Before May-July 2018 92 57 0.62
After August—September 2018 29 15 0.52
Crash Reduction Rate 17%

Response Time and Secondary Crash Reduction

The probability of secondary collision rises more than 2.5% for every minute a travel lane is
blocked. NHP officials estimated that with the WayCare system, there was a 12% improvement
in NHP response time to an incident and a 23% reduction in secondary crashes, which are often
more serious than primary crashes due to quicker incident clearance.
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Appendix D: WayCare Calibration Report
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Introduction:

Identifying dangerous road segments in real time carries
significant value to traffic operators and Highway patrol
agencies, allowing them to take proactive measures to
allocate resources and increase safety. In doing so, lives
may be saved, and much time, effort and money lost in
the clearance of such events, unexpected traffic they

cause and other inconveniences may be spared.

Usually the information available to law enforcement
agencies about such events is static and statistical in
nature, giving visibility only into “what historically took
place” at given locations. Waycare developed (and
continues refining) a machine learning (ML) approach
based on historical data from various sources to greatly

improve on those static methods.

In this project with the Center for Urban Transportation
Research in the University of South Florida we were
asked to implement and test such a model on three
different road segments, namely, portions of Oakland
Boulevard, Sunset Boulevard and Interstate 95. We were
given historical traffic accident data, speed sensor
measurements of different resolutions and construction
data. In this paper, we describe in general terms the
existing approaches (Literature overview), our approach
and results.

Literature Overview:

While in no way exhaustive, we mention here several
published articles pertaining to the topic of crash
prediction. Existing research typically either focuses on
determining the outcome of crashes [1] or very coarse
grained [2], predicting a year’s crash total as its goal. A
relatively recent model made 24-hour predictions over a
S5km x 5km cells [8]. Some models are ML-based [1-3],
others are parametric [4,5]. For a comprehensive review
on the topic, see cf. [6,7] and references therein. We have
yet to encounter a model offering operative time frames
and targets for prediction.

Our Approach:

We chose to proceed with ML methodology as our main
tool. Best practices in terms of data cleaning and feature
engineering were employed and will not be detailed.
The first question we address is what to set as the target
for our prediction. Since both temporal and spatial
characteristics are continuous, we cannot directly predict
the exact time and place of a potential incident. In
order for predictions to be of use as well as have some
predictive power, we need to bin both time and space.
All of the three road segments under investigation were
processed in a similar manner with minor changes
between them. We demonstrate the general approach
on the I-95 segment. Fig. 1 shows the spatial distribution
of incidents and the grouping derived from it.
Resulting groups are roughly half a mile in length (of
course, different directions are treated separately, i.e.
Northbound incidents are grouped separately from
Southbound).




Figure 1

P

Left: Overall incident distribution Right: Spatially grouped
on the |-95 segment incidents

Several spatial grouping methods were tested, including
distance-based, density-based, and clustering. Results did
not show significant difference in performance so we
chose a relatively uniform spacing that is easy to

implement and comprehend.

Next we address the question of temporal binning. Our
time frame needs to be such that it is operationally useful,
while at the same time providing non-trivial information
about the world. The first requirement would prevent us
from using a very short time frame. Given, for example,
near-real time speed measurements, we could attempt to
detect minor perturbations in the steady flow to try and
predict incidents minutes before they take place. This may
be mathematically easier than longer-term predictions
but would not be very useful from the perspective or
traffic managers of Highway Patrol. The second
requirement makes sure we avoid longer-term time
frames, such as days or weeks, converging to statistical
averages. Our time frame of choice after some

experimentation was three-hour time windows.

Having made these decisions we construct the target data
set to match our desired targets, i.e. grouping events by
spatio-temporal bins.

Data Processing:

Once our desired targets were set, all other datasets
were processed to match. Since we are binning large
segments of sensor data (as an example) into cne “event”,
we extract statistical descriptors of each such block to
make sure we retain as much useful information as

possible.

Model Construction:

After data had been properly cleaned, imputed and
binned, we proceeded to construct the actual model.
One of the main difficulties of the data is (thankfully)
the relative scarcity of “true” samples compared to
“false” ones. That is, there are many more three-hour
periods on each road segment where no events took
place compared to periods with one or more incidents.
Since imbalanced data sets are noteriously difficult for
machine learning models, we used standard and scme
proprietary techniques to handle the imbalance. A first-
pass model produces results shown in Fig. 2 (again,

demonstrated on [-95).

Figure 2

ROC curve
Top:
The ROC curve

True Positive Rate

-6000 Bottom:
6.7e+03 5000 Confusion matrix

4000 for the model

3000
2000
1000

predicted

As we can see from the confusion matrix, there are
roughly 8000 false events and about 1600 true ones.
For the next step we employ model stacking where
several principally different learners are combined

using a meta learner to produce the final outcome.




Remarks:

Parameter tuning: due to various constraints, we did not
perform full parameter optimization for the stacking
approach. Best-practice values were used. That means
that in principle, better performance may be achieved

given more effort.

Segment size: Our experiments with segment sizes show
that increasing the segment size typically helps decrease
false positive predictions. In casefalse positives are more
harmful than the spatial granularity is helpful, the model

may be optimized for usability.

Current conditions: While almost certainly self evident, it
should be noted that the current conditions on the road
dueto restrictions imposed as a result of the COVID-19
epidemic are markedly dierent than those the model
was trained on. Due to that we may expect deterioration

in performance.

Conclusion:

We presented here a machine learning model to predict
traffic accidents in the near future with relatively fine
spatial granularity. The model shows good performance
compared to baseline benchmarks (not discussed) such
as trivial frequency-based prediction and space-time
aggregated frequency prediction. In addition to the
parameter optimization mentioned above, the model
may be improved by incorporating additional data
sources such as weather conditions\forecast, ad-hoc
road conditions such as hazards, closures, etc and
incorporating better granularity of vehicles on the road
(propoertion of trucks, for instance). As it stands, however,
it presents a major source of previously unavailable
information that may benefit traffic managers and law

enforcement in their day-to-day operations.
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Appendix B: WayCare Evaluation Results

WayCare’s evaluation was based on the randomly-selected samples on 1-95 for 2015-20109.
Evaluation results for Sunrise Blvd are not included.

Crash Prediction Model in D4

Waycare Evaluation

Coalition Meeting Oct 24, 2020

FDOT CUTR CENTER FOR URBAN TRANSPORTATION RESEARCH

27 souTiiFLorRDA  waycare

Crash Prediction Model Evaluation

Input: Traffic Data (Speed, Volume, and Occupancy) and Crash Data for 9-
hour periods.

Output: prediction of crashes for the consecutive 3 hours after the input
data.

Calibration Time Frame: 2015-2019

Evaluation: randomly picked samples from calibration period. With some
fixes to the model.

9-hour input 3-hour output
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Crash Prediction Model Evaluation
Results Summary

Average Measures for All Groups

False alarms 04

Non Crashes 0.8 0755
07

False Alarm Rate =

Rate of predictions the madel was

correct predictions

Accuracy = ————————
¥ = Crashes + Non Crashes

Rate of cases the model was correct.

06 0544625
wrong out of non crash cases.

05 0.4305

0.4 036325

03

0.195
0.2
o -
0
False Alarm Rate Precision Recall F-1 Score Accuracy

2(Recall+Precision)

F1 Score = ——————
Recall+ Precision

Weighted average of precision and
recall.

. crashes predicted
Precision =

crashes predicted + false alarms crashes predicted
Recall =

L Crashes

Percentage of predictions the model was correct out of

all predictions for crashes. The higher the precision- the

Percentage of cases the model was correct
lower the false positives.

out of crash cases. The higher the recall- the
lower the false negatives.

Crash Prediction Model Evaluation

Caveats Limitations

* Given some of the false positives were near-
miss crashes, this can possibly explain high
numbers of false positives.

»  Off-line model developed solely using speed, volume, and
occupancy as real-time input. On-line model with live feeds

ensure increased data points and accuracy.

* Unreported Crashes- The true number of
crashes is unknown; therefore number of
reported crashes could be smaller than reality.

* Typically in-vehicle data sources for
Waycare account 20%-30% more incidents
detected.

and real-time input.

+ Initial rendering of model underwent manual fixes while on-
line model would benefits from deep learning capabilities
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Crash Prediction Model Evaluation

Accuracy and False Alarm Rates per Group
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Crash Prediction Model Evaluation

Assessing the model

In order to understand how useful a model is, we need to understand why using it is better than not using it.

For this example, we will take group number 7:

Ground Truth ‘ False Alarm Rate 0.157
CRASH NON-CRASH \ Precision 0.418
ALARM 143 199 342 Recall 0.481
NO ALARM 154 1072, 1226 ’ﬁare 0.448
297 1271 1561 Accuracy 0.775
- Number of Crashes
Probability for a Crash: Crashes + Non Crashes ~— 297 + 1271 — 0.1894
If we try to build a basic prediction model, where: CRASH NON-CRASH
- . . 0.19%0.19*1481= 0.19*(1-0.19)71481=
probability for an alarm = probability for crash, and given number of cases=1480 ey 53.13 227.38
then we will get these numbers: NO 0.197(1-0.19)*1481=  (1-0.19)*(1-0.19)*1481=
ALARM 227.38 973.09

Crash Prediction Model Evaluation

Assessing the model

Waycare’s machine learning model:

Ground Truth
CRASH NON-CRASH
ALARM 143| 199| 342|
MO ALARM 154| 1072 1226|
297, 1271 1568

Basic probability- based model:

CRASH NON-CRASH
0.19*0.19%1568= 0.19*(1-0.19)*1568=
ALARM 56.25 240.74
NO 0.19%(1-0.19)*1568=  (1-0.19)*(1-0.19)*1568=
ALARM 240.74 1030.25

Waycare's off-line model is better than a basic crash probability-based model.
It can be 2.5 times more accurate in correctly predicting a crash (143 in compared to 56), can reduce false alarms by
20% (199 compared to 240), and can reduce false negatives by 35%.
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Crash Prediction Model Evaluation

Off-Line Testing Discrepancy

Off-line models and testing in not standard Waycare offering. Given nature of project the team was tasked with
creating new tool which didn’t go through the regular development, QA & iterations.

Issues with the data processing in the real-time model- e.g. speed and occupancy levels were filtered incorrectly.

Some issues with the incidents assigned (specifically affecting January and February-Incidents 2018 were assigned to
segments using an incorrect field.

Less than half (42%) of rendering were successful which indicates some sort of error (testing or code).
July 2020 as one of the three tested month may be use given Covd-19 impact on traffic.

To achieve similar or better results to the crash prediction model mentioned previously necessary development
would be required or testing should be conducted on live platform with real-time data.
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