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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.2 square millimeters mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square kilometers km2 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or "metric 

ton") 

Mg (or "t") 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 

Celsius oC 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

lbf pound force 4.45 newtons N 

lbf/in2 pound force per square inch 6.89 kilopascals kPa 
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mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

oC Celsius 1.8C+32 Fahrenheit oF 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
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lx  lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 
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FORCE and PRESSURE or STRESS 

N newtons 0.225 pound force lbf 
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*SI is the symbol for the International System of Units. Appropriate rounding should be made to 

comply with Section 4 of ASTM E380. (Revised March 2003) 
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EXECUTIVE SUMMARY 

The current Florida Department of Transportation (FDOT) method for estimating maximum scour 

depth around bridge foundations is considered the state-of-the-art when designing for steady flow 

sand scour. However, it is unclear how to utilize this method when bridge foundations are 

subjected to wave action, and the FDOT scour design method is only applicable to non-cohesive 

(i.e., sandy) bed materials. Over the past several years, the FDOT has devoted significant resources 

toward developing a scour design method for all bed materials, including cohesive sediments and 

rock. The FDOT’s Sediment Erosion Rate Flume (SERF) and Rotating Erosion Testing Apparatus 

(RETA) both may be used to develop cost-effective scour design solutions for cohesive sediments 

under steady flow conditions. Solutions from the SERF and RETA tend to be more accurate than 

applying the steady flow sand scour equations to cohesive materials because the SERF and RETA 

method take sediment conditions into account. The goal of this project was to begin a framework 

for utilizing the SERF and RETA under coastal scour conditions.  

 

The result of any series of SERF or RETA tests are called “erosion functions,” which are 

relationships between sediment erodibility and water-induced shear stress. Once erosion functions 

are computed for a given bed material, a conservative hydrograph is developed to simulate water 

flow over a bridge’s lifespan. Then, the maximum near-foundation bed stress associated with each 

flow condition is computed. For steady flows, this conversion from flow velocity to bed stress is 

relatively straightforward. When bridge foundations are subjected to wave action, it is much less 

clear how one computes design bed stress. This project was designed to fill this knowledge gap.  

 

During this project, several simulations of piles under wave attack were conducted using 

computational fluid dynamics (CFD). First, small-scale models were run using mesh parameters 

relative to wave parameters and pile geometry to verify that CFD could accurately reproduce 

previously reported experimental data. Once this was verified, models were upscaled to typical 

field scales using the same relative mesh parameters. Maximum near-pile shear stress data were 

recorded for each model run. Finally, a relatively simple parametric model that is a function of 

wave parameters and structural geometry was fit to these data. While this model reproduced CFD 

data with reasonable accuracy, results were somewhat skewed at lower stresses and inaccurate for 

higher stresses. A more sophisticated model was then developed, and this new model reproduces 

CFD data almost perfectly. This model may be used as a design tool for the single pile under wave 

attack condition. While it is likely incorrect to use this parametric model for more complex bridge 

geometries, it is likely that this model could be expanded in the future to account for typical 

complex bridge pier structures such as pile caps and pile clusters.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background Statement 

When Hydraulic Engineering Circular No. 18 (Arneson et al., 2012), the national design guideline 

for bridge scour, was developed in the early 1990s, it instructed design engineers to assume that 

all bed materials – i.e., sands, cohesive sediments, and rock – erode to the same depth over a 

structure’s lifespan based upon free-stream velocity and to use the maximum sand scour depth as 

the design criterion for bridge foundations. Maximum equilibrium local sand scour depth equations 

based upon free-stream velocity were developed over several years by both Colorado State 

University, called the “CSU Equations,” (Arneson et al., 2012) and the Florida Department of 

Transportation (FDOT), called the “FDOT Method” (FDOT, 2005). Both methods are similar in 

the sense that they use empirical data fitting to estimate equilibrium scour depth based upon several 

dimensionless parameters.  

 

The FDOT Method has provided more accurate predictions historically, partly because it takes the 

ratio between structure size and grain size into account. Several FDOT-funded studies showed that 

this method was a critical component associated with accurately computing equilibrium scour 

depth (Sheppard, 2004; Sheppard and Miller, 2006; Sheppard et al., 2004). The FDOT Method 

yields conservative predicted equilibrium scour depths when steady flow causes scour in non-

cohesive sediments. However, there are two issues with both the FDOT and CSU methods. First, 

neither the FDOT Method nor the CSU Equations take cohesion into account when computing 

scour depth. As such, both methods may produce overly conservative designs when bridges are 

founded on rock or cohesive sediments. Secondly, these methods are for steady flow only. Neither 

will produce accurate design information in a coastal environment where wave action causes scour.  

 

1.1.1 Predicting Scour Depth Using Erosion Functions 

In response to the cohesion issue, the FDOT sponsored much research associated with testing bed 

materials’ erosion rates. From the late 1990s through 2013, FDOT funded several projects 

involving development of and testing with two erosion rate testing devices – the Sediment Erosion 

Rate Flume (SERF) and the Rotating Erosion Testing Apparatus (RETA). Examples include 

Bloomquist and Crowley (2010); Bloomquist et al. (2012); Bloomquist et al. (2007); Crowley et 

al. (2012a); Crowley et al. (2012b); Crowley et al. (2012c); Crowley et al. (2014a). Because of the 

success of the RETA, the FDOT State Materials Office (SMO) in Gainesville, FL, built several of 

these devices and often uses them to test erosion rates of erodible rock and stiff sediment. Under 

steady flow conditions, results from the RETAs and SERF are often used to design for scour. This 

method, dubbed the SERF/RETA Method, is described as follows:  

 

1. Using the SERF or the RETA, an erosion function – i.e., an erosion rate versus shear stress 

relationship – is developed for a given bed material.  

2. Based upon field estimations and a conservative hydrograph, the bed shear stress in the 

field is estimated. 
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3. Using the relationships developed in (1), each shear stress from (2) is converted to an 

erosion rate for a specified length of time based upon each flow event. This results in total 

erosion for a given flow event.  

4. The total erosion over the structure’s lifespan is computed by adding the values from (3) 

for all erosion events.  

The principal investigator, with FDOT support, spent several years perfecting testing with the 

SERF and the RETA by conducting a series of field tests and developing computational models of 

the devices that showed how to measure erosion functions correctly and conservatively. As a result 

of this work, it is believed that the mechanics associated with laboratory testing component of this 

scour prediction method is now well understood.  

 

1.1.2 Predicting Scour Depth in a Coastal Environment  

Over the years, the Fredsoe and Sumer research group at the Technical University of Denmark has 

developed predictive equations for equilibrium scour depth due to wave action in non-cohesive 

sediment (Sumer and Fredsoe, 1998; Sumer and Fredsoe, 2001; Sumer et al., 1990; Sumer et al., 

1992). Like the FDOT Method and the CSU Equations for predicting non-cohesive scour under 

steady flow conditions, the method is based upon empirical results from laboratory testing. Results 

showed that under wave conditions, equilibrium scour depth is a function of Keuligan-Carpenter 

Number, KC:  

 

 𝐾𝐶 =
𝑈𝑚𝑇

𝐷
 (1-1) 

 

where 𝑈𝑚 is the maximum upstream flow velocity due to wave action at the bed; T is the wave 

period; and D is the structure (pile) width. Values for 𝑈𝑚 may be converted to a more useful form 

via the following expression:  

 

 𝑈𝑓𝑚 = √
𝑓𝑤

2
𝑈𝑚 (1-2) 

 

where 𝑈𝑓𝑚 is the maximum friction velocity and 𝑓𝑤 that is obtained by solving the following set 

of expressions numerically (Fredsoe, 1984):  

 

 
𝑑𝑧

𝑑(𝜔𝑡)
=

𝛽sin⁡(𝜔𝑡)

𝑒𝑧(𝑧−1)+1
−

𝑧(𝑒𝑧−𝑧−1)

𝑒𝑧(𝑧−1)+1
(
1

𝑈𝑜
) (

𝑑𝑈𝑜

𝑑(𝜔𝑡)
) (1-3) 

 

 𝛽 = 30𝜅2 (
𝑎

𝑘
) =

30𝜅

𝑘
(
𝑈𝑚

𝜔
) (1-4) 

 

 𝑧 =
𝑈𝑜

𝑈𝑓𝑚
𝜅 (1-5) 

 

in which k is the wave number; a is the free stream particle amplitude; 𝜔 is 
2𝜋

𝑇
; 𝜅 is von Karmann’s 

constant; and 𝑈𝑜 is the velocity at the top of the boundary layer. 
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The nondimensional Shields (1936) parameter is often used to describe critical shear stress – the 

stress required for sediment incipient motion. It is defined as:  

 

 Θ =
𝑈𝑓𝑚
2

(𝑆𝐺−1)𝑔𝐷50
 (1-6) 

 

where SG is the sediment’s specific gravity; 𝑔⁡is the acceleration due to gravity; and 𝐷50 is the 

mean sediment diameter. Nondimensionalized scour depth is given by the following expression:  

 

 
𝑦𝑠

𝐷
= 1.3{1 − exp[−0.03(𝐾𝐶 − 6)]} (1-7) 

 

Substituting Equations 1-1, 1-2, and 1-6 into Equation 1-7 yields:  

 

 
𝑦𝑠

𝐷
= 1.3 {1 − exp [−0.03 (𝑇

√𝐷50

𝐷
√
2(𝑆𝐺−1)𝑔𝛩

𝑓𝑤
− 6)]} (1-8) 

 

It is interesting to note (and not yet published) that this substitution shows that scour is a function 

of the ratio between grain size and structure size. This supports FDOT’s steady-flow scour 

equations and show why their results are more accurate than the CSU method.  

 

Upon first glance, it would appear that Sumer and Fredsoe solved the wave scour problem. 

However, further examination shows that, more research is required due to two issues. First this 

method has only been validated in sand and has yet to be used with cohesive materials or rock. In 

addition, results show that as KC approaches infinity (i.e., current becomes steady), scour depth is 

always the same regardless of free-stream velocity (Figure 1-1). Based upon the FDOT Method 

and CSU Equations, this cannot be correct. As a first step at resolving this issue, Sumer et al. 

(2013) examined backfilling around piles in waves and current. However, no one has yet 

completely unified wave scour with steady flow equilibrium scour depth prediction. And, as stated, 

no one has yet effectively examined wave scour in cohesive sediments or rock. Solving the 

unification issue would be of little practical value. However, solving the wave scour in cohesive 

sediment and rock issue could lead to significant overdesign cost savings. In addition, it should be 

possible to adapt the erosion function scour prediction method to both the cohesive and non-

cohesive scour cases 
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Figure 1-1. Nondimensionalized scour depth as a function of KC (adapted from Sumer et al., 

1992); note that this figure is for scour due to wave action only 

 

1.2 Goals and Objectives  

The objective of the research proposed herein is to adapt the FDOT SERF/RETA method so that 

it may be used in a coastal environment. To do this, a better understanding of bottom stresses 

around piles and pile groups subjected to wave action was required. Put another way, the only step 

necessary for adapting the SERF/RETA method for use in a coastal environment was to better 

understand the third step from Section 1.1.1 – finding shear stresses in the field. This project 

focused on single-pile configurations. In the future, it should be possible to adjust results to account 

for more complex pier geometries.  

 

Under steady flow conditions, two methods have been used to estimate bottom stress near a pile. 

The first method is relatively simple and involves coupling boundary layer theory with potential 

flow theory. From the late 1990s through 2010, the J-L. Briaud research group at Texas A&M 

University (TAMU) developed a more-sophisticated method that is much more accurate. This 

method is discussed in detail by Briaud et al. (2001); Briaud et al. (2004); Briaud et al. (2006); Oh 

et al. (2010) among others. To summarize, the method was developed by running several 

computational fluid dynamic (CFD) models for various pile group/pile cap/bridge pier 

configurations. Based upon these models, parametric equations were developed for maximum bed 

stress near the structures that are a function of structure size and velocity around the structure. 

Under steady flow conditions, maximum stress may be approximated as: 
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 𝜏𝑚𝑎𝑥 = 𝑘𝑤𝑘𝑠𝑝𝑘𝑠ℎ𝑘𝛼 {0.094𝜌𝑉
2 [

1

log(
𝑉𝐷′

𝜈
)
−

1

10
]} (1-9) 

 

in which 𝑘𝑤, 𝑘𝑠𝑝, 𝑘𝑠ℎ, and 𝑘𝛼 are correction factors for pier width, pile group spacing, pile length, 

and attack angle respectively; D’ is the effective structure width; and V is the free-stream velocity. 

Ultimately, a similar expression should be developed for waves. The goal of this project was to 

develop a similar equation or equations for a single pile subjected to wave attack. As a corollary, 

because an infinite KC implies a steady current, investigators further sought to develop an 

expression that would revert to Equation 1-6 under steady flow conditions. 

 

1.3 Research Tasks  

To accomplish this project’s objectives, several simulations of piles subjected to wave attack were 

developed using CFD. Results from these models were used to develop a parametric model for 

maximum bed stress as a function of easily computable wave and structural parameters. Specific 

tasks associated with this research were: 

 

1. Task 1 – Conduct several small-scale simulations using mesh parameters relative to wave and 

structural geometry. Results were to be compared with previously reported data to verify that 

CFD could accurately reproduce experimental results. For each model, record maximum near-

pile shear stress.  

2. Task 2 – Upscale these small-scale models to typical field-scale conditions using the same 

relative mesh parameters associated with Task 1. For each model, record maximum near-pile 

shear stress.  

3. Task 3 – Use maximum stress data from Task 1 and Task 2 to develop a parametric model for 

maximum near-pile shear stress that is a function of wave and/or structural dimensions.  

4. Task 4 and Task 5 – Develop Draft Final and Final Reports.  

1.4 Report Organization  

This report details each of the research tasks enumerated in Section 1.3. In particular:  

 

1. Details about the CFD methodology are presented in Chapter 2.  

2. Results are presented in Chapter 3 along with analysis that indicated that data had been 

sufficiently matched.  

3. Detailed data analysis including details about the parametric design models are presented in 

Chapter 4.  

4. Chapter 5 presents a summary, conclusions from this study, and recommendations for future 

work.  
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CHAPTER 2 

METHODOLOGY  

2.1 Governing Equations 

Siemens’ Simcenter Star-CCM+ (2020) was used for all CFD modeling during this study. The 

discussion below details the governing equations associated with this model as well as the model 

conditions used throughout this study.  

 

2.1.1 The Turbulence Model  

Originally, investigators had thought that a k-epsilon RANS model would also be appropriate for 

this study. Investigators developed several models using k-epsilon RANS closure, but these 

models consistently become numerically unstable as the wave approached the vertical piles. In 

hindsight, this probably should have been expected. The premise behind the k-epsilon closure 

method is that turbulent production is somewhat balanced by turbulent dissipation (i.e., turbulence 

is more-or-less conserved) via the typical turbulent energy cascade. In the case of a large wave 

approaching a structure, significant turbulence is created because the wave tends to break against 

the structure. A breaking wave represents an almost-instantaneous turbulent production event that 

is not accurately described using a traditional energy cascade. As such, the k-epsilon approach 

fails to accurately describe the problem, and the model will fail to converge. 

 

Several attempts were made to correct this issue. First, k-omega closure was attempted, but similar 

issues were encountered. Because k-omega closure is very similar to k-epsilon closure, this was 

somewhat expected. Next, several different k-epsilon variations were modeled. The governing 

equations behind most k-epsilon variations are similar; their differences lie in the way walls are 

treated in terms of describing wall stress/associated turbulent dissipation at the walls. Most of these 

models failed as well for large waves. Eventually, investigators ran a series of models using large 

eddy simulation (LES) and detached eddy simulation (DES). A LES model solves directly for flow 

associated with larger eddies and therefore is not plagued by the turbulent dissipation issues 

associated with RANS closure. The downside to an LES model is that its associated wall stresses 

may be inaccurate. DES models combine the best aspects of both LES and RANS. Close to a wall, 

DES models use RANS assumptions that yield relatively accurate wall stresses. Further from the 

walls, DES models utilize LES-style computations. As such, DES should yield relatively accurate 

wall stresses and should also be able to handle highly turbulent waves.  

 

Performance of the LES and DES models was mixed. The LES model appeared to accurately 

reproduce the first wave that approached the pile but produced anomalous results near the water 

surface for subsequent waves. The DES models functioned well when coupled to a k-epsilon 

RANS model but poorly when coupled with a k-omega RANS model. Ultimately, the DES-k-

epsilon model was chosen for computations because it appeared to perform well under a variety 

of wave conditions and scales.  

 

The DES-k-epsilon model consisted of an Elliptic Blending DES that combined the features of the 

Elliptic Blending RANS model in the boundary layers, with LES model in unsteady regions. The 

transport equations associated with this model for the four unknown variables, turbulent kinetic 

energy, k; turbulent dissipation rate, 𝜖; normalized wall-normal stress component, 𝜑; and the 

elliptic blending factor, 𝛼, are as follows:  
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𝜕

𝜕𝑡
(𝜌𝑘) + ∇ ∙ (𝜌𝑘𝒗) = ∇ ∙ [(

𝜇

2
+

𝜇𝑡

𝜎𝑘
) ∇𝑘] + 𝑃𝑘 − 𝜌(𝜖 − 𝜖0) + 𝑆𝑘 (2-1) 

 

 
𝜕

𝜕𝑡
(𝜌𝜖) + 𝛻 ∙ (𝜌𝜖𝒗) = 𝛻 ∙ [(

𝜇

2
+

𝜇𝑡

𝜎𝜖
) ∇𝜖] +

1

𝑇𝑒
𝐶𝜖1𝑃𝜖 − 𝐶𝜖2

∗ 𝜌 (
𝜖

𝑇𝜖
−

𝜖𝑜

𝑇𝑜
) + 𝑆𝜖 (2-2) 

 

 
𝜕

𝜕𝑡
(𝜌𝜑) + ∇ ∙ (𝜌𝜑𝒗) = ∇ ∙ [(

𝜇

2
+

𝜇𝑡

𝜎𝜑
) ∇𝜑] + 𝑃𝜑 + 𝑆𝜑 (2-3) 

 

 ∇ ∙ (𝐿2∇𝛼) = 𝛼 − 1 (2-4) 

 

In these equations, 𝒗 is the mean velocity; 𝜇 is the dynamic viscosity; 𝑃𝑘, 𝑃𝜖, and 𝑃𝜑 are production 

terms; 𝐶𝜖1, 𝐶𝜖2
∗ , 𝜎𝑘, 𝜎𝜖, and 𝜎𝜑 are model coefficients; and 𝑆𝑘, 𝑆𝜖, and 𝑆𝜑 are user-specified source 

terms. L is the turbulent length scale given by:  

 

 𝐿 = 𝐶𝐿√
𝑘3

𝜖2
+ 𝐶𝜂

2√
𝜈3

𝜖
 (2-5) 

 

where 𝐶𝐿 and 𝐶𝜂 are model coefficients. 𝜖𝑜 is the ambient turbulence value in the source terms that 

counteracts turbulence decay. If an ambient source term is specified, then a specific time-scale, 𝑇𝑜 

is also required that is defined as: 

 

 𝑇𝑜 = max (
𝑘𝑜

𝜖𝑜
, 𝐶𝑡√

𝜈

𝜖𝑜
) (2-6) 

 

where 𝒗 is the mean velocity; 𝜇 the dynamic viscosity; 𝑃𝑘 is a production term; and 𝑆𝑘 is a user-

specified source term. Of course, these are the same equations that would be used for any elliptic 

blending RANS model. For our case, where DES was used, the typical turbulent dissipation rate, 

𝜖 is replaced by 𝜖.̅ Dissipation is then described by: 

 

 𝜖̅ =
𝑘
3
2

𝑑̅
 (2-7) 

 

where 𝑑 is given by: 

 

 𝑑 =
𝑘
3
2

𝜖
− 𝑓𝑑max(0,

𝑘
3
2

𝜖
− 𝜓𝐶𝐷𝐸𝑆𝛥) (2-8) 

 

in which  

 

 Δ = max(𝛥𝑥, 𝛥𝑦, 𝛥𝑧) (2-9) 

 

Δ is known as the filter width in which Δ𝑥, Δ𝑦, and Δ𝑧 are characteristic mesh spacing in all three 

spatial directions. 𝐶𝐷𝐸𝑆 is a model coefficient that is equal to 0.2. 𝑓𝑑 is given by: 
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 𝑓𝑑 = 1 − tanh[(8𝑟𝑑)
3] (2-10) 

 

 𝑟𝑑 =
𝜈𝑡+𝜈

√𝑈𝑖,𝑗𝑈𝑖,𝑗𝜅
2𝑑2

 (2-11) 

 

where 𝜈𝑡 is the kinematic viscosity; 𝜈 is the molecular viscosity; 𝑈𝑖,𝑗, the velocity gradients; 𝜅 the 

von Karman constant; and d the distance to the wall. The parameter 𝜓 is a low-Reynolds number 

correction function that prevents activation of the low-Reynolds number terms when the model is 

in “LES mode.” It is given by: 

 

 𝜓2 = min⁡{100, (1 −
𝐶𝑏1([𝑓𝑡2+(1−𝑓𝑡2)𝑓𝑣2] 𝑓𝑤

∗𝜅2𝐶𝑤1)⁄ )

(1−𝑓𝑡2)𝑓𝑣1
 (2-12) 

 

𝐶𝑏1 and 𝐶𝑤1 are modeling coefficients that are equal to 0.1355 and 0.2 respectively. 𝑓𝑡2 is a 

damping function given by: 

 

 𝑓𝑡2 = 𝐶𝑡3 exp(−𝐶𝑡4𝜒
2) (2-13) 

and  

 𝜒 =
𝜈𝑡+𝜈

𝜈
 (2-14) 

2.1.2 VOF Model Formulation  

The Volume of Fluid (VOF) multiphase model predicts the distribution and movement of the 

interface of immiscible phases. The distribution of phases and the position of the interface are 

described by the fields of phase volume fraction, 𝛼𝑖. The volume fraction of phase 𝑖 is defined as: 

 

 𝛼𝑖 =
𝑉𝑖

𝑉
 (2-24) 

 

where 𝑉𝑖 is the volume of phase 𝑖 in the cell and 𝑉 is the volume of the cell. The volume fractions 

of all phases in a cell must sum to one: 

 

 ∑ 𝛼𝑖
𝑁
𝑖=1 = 1 (2-25) 

 

where 𝑁 is the total number of phases. Depending on the value of the volume fraction, the different 

fluids in a cell can be distinguished as one of three categories: 𝛼𝑖 = 0 when a cell is completely 

void of phase 𝑖, 𝛼𝑖 = 1 when a cell is completely filled with phase 𝑖, and 0 < 𝛼𝑖 < 1 values between 

the two limits indicate the presence of an interface between phases.  

 

The material properties calculated in the cells containing the interface depend on the material 

properties of the present fluids. The fluids present in an interface-containing cell are treated as a 

mixture: 

 

 𝜌 = ⁡∑ 𝜌𝑖𝛼𝑖𝑖  (2-26) 

 

 𝜇 = ∑ 𝜇𝑖𝛼𝑖𝑖  (2-27) 

 

 𝐶𝑝 = ∑
(𝐶𝑝)𝑖𝜌𝑖

𝜌𝑖 𝛼𝑖 (2-28) 
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2.1.3 The Wave Models  

Two wave models were used throughout this study. As shown below in Figure 2-1, as water depth 

and steepness change, various wave models become more or less applicable.  

 
Figure 2-1. Applicability of different wave theories (adapted from Le Méhauté, 1976) 

Figure 2-1 shows that in shallow water and for steeper waves, cnoidal theory is more appropriate 

while for deeper water and less steep waves, Airy (i.e., linear) wave theory is more appropriate. 

The small-scale simulations were conducted using relatively deep water and waves with relatively 

low steepness. As such, linear wave theory was used for small-scale simulations. During large-

scale simulations, water was relatively shallow, and the waves were relatively steep. Therefore, 

cnoidal wave theory was used during the large-scale simulations.  

 

2.1.3.1 First Order Waves  

First order waves utilize simple trigonometric profiles to approximate water surface elevation, 𝜂: 

 

 𝜂 = 𝑎 cos(||𝐾||𝑥 − 𝜔𝑡) (2-30) 

 

A velocity potential is found by linearly solving the Laplacian and used to define vertical and 

horizontal orbital velocities:  

 

 𝑣ℎ = 𝑎𝜔 cos(||K||x − 𝜔𝑡) 𝑒𝐾𝑧 (2-31) 
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 𝑣𝑣 = 𝑎𝜔 sin(||𝐾||𝑥 − 𝜔𝑡) 𝑒𝐾𝑧 (2-32) 

  

In these equations, 𝑎 is the wave amplitude; 𝜔 is the wave frequency; 𝐾 is the wave number vector 

and z is the vertical distance downward from the still water level. The wave period is:  

 

 𝑇 =
2𝜋

𝜔
 (2-33) 

And the wavelength is:  

 𝐿 =
2𝜋

||𝐾||
 (2-34)

   

Note that in these expressions, ||(some variable)|| represents the variable’s magnitude (for example, 

||K|| is the magnitude of the wave number vector, K). The dispersion relationship provides the 

relationship among wave period, water depth, and wavelength and is given below in Eq. 2-35:  

 

 𝑇 = [
𝑔

2𝜋𝐿
tanh (

2𝜋𝑑

𝐿
)]

−1
2⁄  (2-35) 

 

2.1.3.2 Cnoidal Waves  

A cnoidal wave is nonlinear with an exact periodic wave solution. Cnoidal waves are used to 

describe gravity waves that have considerably long wavelengths compared to their respective 

depths; these conditions usually occur in shallow water. The solutions to cnoidal waves is the well-

known Korteweg-de Vries (KDV) equation where surface elevation is proportional to the square 

of the Jacobian elliptic function, cn( ). The KDV equation is usually expressed as a function of 𝜖 

which is the ratio between the wave height, H relative to the water depth, d. The solution to the 

KDV equation for water surface elevation is given below in Eq. 2-36: 

 
𝜂

𝑑
= 1 + (

𝜖

𝑚
)𝑚cn2 + (

𝜖

𝑚
)
2
(−

3

4
𝑚2cn2 +

3

4
𝑚2cn4) + (

𝜖

𝑚
)
3
[(−

61

80
𝑚2 +

111

80
𝑚3) cn2 +

(
61

80
𝑚2 −

53

20
𝑚3) cn4 +

101

80
𝑚3cn6]  (2-36) 

 

The solution to the KDV equation for velocity is very complicated, but similar in form to Eq. 2-

36 in the sense that it is also a function of 𝜖 and cn( ). For details, please refer to Korteweg and de 

Vries (1895).  

 

2.1.4 Wave Forcing  

Wave forcing allows the coupling of the simulation with a theoretical solution or simplified 

numerical solution specified by the VOF waves. By implementing the wave forcing function, the 

computing effort is reduced by using a reduced-size solution domain. Any problems associated 

with reflections of surface waves at the boundaries is eliminated resulting in a dampening feature 

and gradual forcing. Wave forcing is only applied to momentum and therefore is achieved by 

adding a source term to the momentum equations of the form: 

 

 𝑞𝜙 = −𝛾𝜌(𝜙 − 𝜙∗) (2-37) 
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where 𝛾 is the forcing coefficient; 𝜙 is the current solution of the transport equation; and 𝜙∗ is the 

value towards which the solution is forced. The source term is applied with a variable forcing 

coefficient over a specified forcing zone. The width of the forcing zone can be different depending 

on the boundaries, but the optimal width of the forcing zone depends on the modeled problem. The 

forcing coefficient relationship is derived from a smooth variation from zero at the inner edge of 

the forcing zone to the maximum value 𝛾 at the boundary in the form: 

 

 𝛾 = −𝛾𝑜𝑐𝑜𝑠
2(

𝜋𝑥∗

2
) (2-38) 

 

Forcing was used one wavelength upstream and downstream from the flow domains’ inlets and 

outlets.  

 

2.1.5 Eulerian Phases  

The Eulerian approach uses equations for multiple fluid elements making up a region fixed in 

space. Like the mass conservation equation, the rate of change per unit volume for a fluid is 

considered. The rate of change of property ɸ per unit volume for a fluid particle is given through 

the product of 
𝐷∅

𝐷𝑡
 and density, 𝜌 as stated below: 

 

 𝜌
𝐷∅

𝐷𝑡
= 𝜌(

𝜕∅

𝜕𝑡
+ 𝐮 ∙ ∇∅) (2-39) 

 

Two fluid phases were defined: water and air. Water was assumed to have a constant density of 

998
𝑘𝑔

𝑚3; dynamic viscosity of 8.89 x 10−4 Pa∙s; and molecular weight of 18
𝑘𝑔

𝑚𝑜𝑙
. Air was assumed 

to have a constant dynamic viscosity of 1.85 x 10−5Pa⋅ and molecular weight of 29
𝑘𝑔

𝑚𝑜𝑙
. The air’s 

compressibility was modeled using a simple ideal gas law: 

 

 𝜌 =
𝑝

𝑅𝑇
 (2-40) 

 

Where the specific gas constant, R, is defined as: 

 

 𝑅 =
𝑅𝑢

𝑀
 (2-41) 

 

Where 𝑅𝑢 is the universal gas constant and M is the molecular weight.  

 

2.2 Test Conditions, Geometry, and Meshing 

2.2.1 Test Conditions  

Test conditions associated with each model are shown below in Table 2-1 and Table 2-2:   
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Table 2-1. Large-Scale Test Matrix  

Run No T (s) H (m) h (m) D (m) L (m) 

LS1 8.00 4.50 7.50 1.53 63.16 

LS2 12.00 4.50 7.50 1.53 99.46 

LS3 16.00 4.50 7.50 1.53 134.57 

LS4 8.00 4.50 7.50 1.00 63.16 

LS5 12.00 4.50 7.50 1.00 99.46 

LS6 16.00 4.50 7.50 1.00 134.57 

LS7 8.00 4.50 7.50 0.54 63.16 

LS8 12.00 4.50 7.50 0.54 99.46 

LS9 16.00 4.50 7.50 0.54 134.57 

LS10 8.00 2.25 7.50 1.53 63.16 

LS11 12.00 2.25 7.50 1.53 99.46 

LS12 16.00 2.25 7.50 1.53 134.57 

LS13 8.00 2.25 7.50 1.00 63.16 

LS14 12.00 2.25 7.50 1.00 99.46 

LS15 16.00 2.25 7.50 1.00 134.57 

LS16 8.00 2.25 7.50 0.54 63.16 

LS17 12.00 2.25 7.50 0.54 99.46 

LS18 16.00 2.25 7.50 0.54 134.57 

LS19 8.00 9.00 15.00 1.53 81.70 

LS20 12.00 9.00 15.00 1.53 135.45 

LS21 16.00 9.00 15.00 1.53 186.32 

LS22 8.00 9.00 15.00 1.00 81.70 

LS23 12.00 9.00 15.00 1.00 135.45 

LS24 16.00 9.00 15.00 1.00 186.32 

LS25 8.00 9.00 15.00 0.54 81.70 

LS26 12.00 9.00 15.00 0.54 135.45 

LS27 16.00 9.00 15.00 0.54 186.32 

LS28 8.00 4.50 15.00 1.53 81.70 

LS29 12.00 4.50 15.00 1.53 135.45 

LS30 16.00 4.50 15.00 1.53 186.32 

LS31 8.00 4.50 15.00 1.00 81.70 

LS32 12.00 4.50 15.00 1.00 135.45 

LS33 16.00 4.50 15.00 1.00 186.32 

LS34 8.00 4.50 15.00 0.54 81.70 

LS35 12.00 4.50 15.00 0.54 135.45 

LS36 16.00 4.50 15.00 0.54 186.32 
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Table 2-2: Small-Scale Test Matrix 

Run Number T (s) H (cm) L (m) D (m) d (m) 

SS1 3.5 12.0 6.79 1.0 0.40 

SS2 3.5 8.6 6.79 1.0 0.40 

SS3 3.5 4.9 6.79 1.0 0.40 

SS4 2.0 8.2 3.70 1.0 0.40 

SS5 3.5 2.5 6.79 1.0 0.40 

SS6 3.5 5.7 6.79 1.0 0.40 

SS7 3.5 6.4 6.79 0.54 0.40 

SS8 3.5 6.9 6.79 0.54 0.40 

SS9 3.5 6.9 6.79 0.54 0.40 

SS10 3.5 6.9 6.79 0.54 0.40 

SS11 3.5 6.4 6.79 0.54 0.40 

SS12 3.5 5.6 6.79 0.54 0.40 

SS13 3.5 12.0 6.79 1.53 0.40 

SS14 3.5 8.7 6.79 1.53 0.40 

SS15 3.5 6.9 6.79 1.53 0.40 

SS16 3.5 6.4 6.79 1.53 0.40 

 

 

2.2.2 Geometries and Meshing  

Generally, models consisted of vertical piles protruding into hyper-rectangular flow domains. Pile 

dimensions were dictated by Table 2-1 and Table 2-2. Hyper-rectangular width and length were 

defined as functions of wavelength, L, and pile diameter, D, respectively. Hyper-rectangular 

length, X, was specified as 5 wavelengths; heights, Z, were specified as 2.5 water depths; and 

widths, Y, were specified as 4 pile diameters + 5 wave heights. Similarly, cell sizes were also 

specified as functions of wave parameters. First, cell size in the z-direction near the free surface, 

dz, was specified as a function of water depth:  

 

 𝑑𝑧 =
𝑑

37.5
 (2-42) 

 

This scale factor of 37.5 was found after some trial-and-error so that a reasonable number of cells 

(relative to available computational resources) would be generated and results would be relatively 

accurate. Then, an aspect ratio between dz and x- and y-resolution (i.e., dx and dy) was chosen. As 

discussed in communications with Siemens, aspect ratios between 2 and 4 are recommended for 

most wave models. Investigators chose an aspect ratio of 3: 

 

 𝑑𝑥 = 𝑑𝑦 = 3𝑑𝑧 (2-43) 

 

In the air and far away from the free surface, cells were isotropic whereby their width, length, and 

height were given by the result from Eq. 2-43. Two wave heights up from the free surface in the 

z-direction, Equation 2-42 was used for dz, and dx and dy were scaled using Eq. 2-43. Two wave 

heights down from the free surface, two times Eq. 2-42 was used for dz; and once again, Eq. 2-43 

was used to scale dx and dy. In addition, in all mesh regions, a prism layer was added to improve 

near-wall resolution. Each prism layer was 6 cells in height, with a minimum cell size of 33% of 
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that region’s base cell-size in the z-direction. A schematic of a representative geometry is presented 

below in Figure 2-2 while representative mesh cross-sections are shown in Figure 2-3 and Figure 

2-4.  

 

 
Figure 2-2. Schematic cross-section of flow domain in the x-z direction  

 

 
Figure 2-3. Mesh cross-section in x-z direction 
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Figure 2-4. Top-down view of the mesh showing bottom of flow domain in x-y direction 

2.2.3 Boundary Conditions  

Investigators attempted several different combinations of boundary conditions. While numerical 

results were similar most of the time for most boundary condition combinations, sometimes 

upscaling led to numerical instability for several boundary configurations. Ultimately, the 

boundary conditions illustrated below in Figure 2-5 and Figure 2-6 produced the best, numerically 

stable, and accurate results:  

 

 
Figure 2-5. Boundary conditions top view (waves propagate from left-to-right) 
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Figure 2-6. Boundary condition side view (waves propagate from left-to-right) 

As shown, the piles and bottoms of the flow domains were assumed to be walls. The upstream 

domain face and lateral domain faces were assumed to consist of velocity inlets. Pressure was 

released from the models from its downstream edge using a pressure outlet. Details about each of 

these boundary conditions is presented below:  

 

2.2.3.1 Walls  

A wall boundary represents an impermeable surface where wall shear stress, 𝜏𝑤 may be computed 

via Eq. 2-44: 

 

 𝜏𝑤 = 𝜌𝑢𝜏
2 (

𝑣̂𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑎𝑙

|𝑣̂𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑎𝑙|
) (2-44) 

 

where ^ indicates a RANS or LES filtered value. 𝜇𝜏 is the wall friction velocity given by: 

 

 𝜇𝜏 =
𝑢∗

𝑢+
|𝑣̂𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑎𝑙| (2-45) 

 

in which 𝑢∗ is the velocity scale; and 𝑢+ is the non-dimensional wall-tangential velocity 

component of the velocity vector. Both 𝑢∗ and 𝑢+ are approximated using blended wall functions 

given in Eqs. 2-46 and 2-47: 

 

 𝑢∗ =
𝛾𝜇|𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑎𝑙|

𝜌𝑦
+ (1 − 𝛾)𝐶𝜇

0.25𝑘0.5 (2-46) 

 

 𝑢+ =
1

𝜅
ln(1 + 𝜅𝑦+) + 𝐶(1 − exp (−

𝑦+

𝑦𝑚
+) −

𝑦+

𝑦𝑚
+ exp(−𝑏𝑦

+) (2-47) 

 

in which  

 

 𝐶 =
1

𝜅
ln (

𝐸

𝜅
) (2-48) 

 

 𝑏 =
1

2
(𝑦𝑚

+ 𝜅

𝐶
+

1

𝑦𝑚
+) (2-49) 

 

 𝑦𝑚
+ = max(3,267(2.64 − 3.9𝜅)𝐸′0.0125) − 0.987 (2-50) 
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 𝐸′ =
𝐸

𝑓
 (2-51)  

 

E is the log law offset; and f is the roughness function: 

 

 𝑓 = {

1

[
𝐵(𝑅𝑒+−𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ

+ )

𝑅𝑒𝑟𝑜𝑢𝑔ℎ
+ −𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ

+ + 𝐶𝑅+]
𝑎

𝑏 + 𝐶𝑅+

 

𝑅𝑒+ ≤ 𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ
+

𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ
+ < 𝑅𝑒+ < 𝑅𝑒𝑟𝑜𝑢𝑔ℎ

+

𝑅𝑒+ > 𝑅𝑒𝑟𝑜𝑢𝑔ℎ
+

 (2-52)  

 

where B, C, 𝑅𝑠𝑚𝑜𝑜𝑡ℎ
+  and 𝑅𝑟𝑜𝑢𝑔ℎ

+  are model coefficients and a is defined by: 

 

 𝑎 = sin [
𝜋

2
⁡

𝑙𝑜𝑔⁡(𝑅𝑒+ 𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ
+⁄ )⁡

𝑙𝑜𝑔(𝑅𝑒𝑟𝑜𝑢𝑔ℎ
+ 𝑅𝑒𝑠𝑚𝑜𝑜𝑡ℎ

+ )⁡⁄
] (2-53) 

 

In other words, because of blending, no assumptions are made about viscous sublayer 

location/resolution, and there is no need for an explicit blending function between the viscous 

sublayer and the logarithmic region near the wall as shown below in Figure 2-7.  

 

 
Figure 2-7. Diagram showing blending function near wall (adapted from Siemens, 2020) 

2.2.3.2 Velocity Inlets  

The velocity inlet boundary was used as an inflow/outflow condition where the velocity (vspec), 

direction of flow (𝜽𝑠𝑝𝑒𝑐), and fluid properties are known within a reference frame. At an inflow 

boundary, the known conditions are used to calculate the inlet velocity flux as well as the 

momentum and energy fluxes. The inflow velocity is then determined through these specified 

variables: 
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 𝐯 = vspec ∙ 𝜽𝑠𝑝𝑒𝑐 (2-54) 

 

2.2.3.3 Pressure Outlet  

At a pressure outlet, the boundary velocity is extrapolated from interior domain cells represented 

as: 

 

 𝐯 = 𝐯ext (2-55) 

 

The static pressure at the boundary is calculated as: 

 

 𝑃𝑠 = {
𝑃𝑠𝑝𝑒𝑐⁡⁡⁡⁡⁡For⁡subsonic⁡flow⁡

𝑃𝑠
𝑒𝑥𝑡⁡⁡⁡For⁡supersonic⁡flow

⁡ (2-56) 

 

Where 𝑃𝑠𝑝𝑒𝑐⁡represents the difference between the absolute and reference pressure relative to the 

reference pressure.  

 

2.3 Run Conditions  

Star-CCM+’s implicit unsteady solver was used throughout all computations. Like the meshes, 

implicit timesteps were also computed relative to wave conditions by setting the Courant Number, 

C, to 0.2. The Courant Number is defined as:  

 

 𝐶 = 𝑢𝑤𝑎𝑣𝑒
Δ𝑡

Δ𝑥
 (2-57) 

 

Therefore, if C = 0.2:  

 

 Δ𝑥 = 𝑢𝑤𝑎𝑣𝑒
Δ𝑡

0.2
 (2-58) 

 

 

In which 𝑢𝑤𝑎𝑣𝑒 is the wave celerity (i.e, 𝜆/𝑇); and Δ𝑡  is the implicit time step. Each time step 

was solved used 10 iterations. As will be shown below in Chapter 3, this appeared to produce 

relatively accurate results when compared with experimental results and appeared to produce 

relatively low residuals after 10 iterations. During each run, several wavelengths (usually 10 waves 

or when not 10 waves, enough for repeatable conditions to develop) were computed.  

 

Data were monitored using two methods. Stress data from Sumer and Fredsoe consisted of 

undisturbed (i.e., upstream) measurements. As such, a point probe was installed one wavelength 

upstream from the piles along the bed so that undisturbed shear stress could be measured. In 

addition, investigators assumed that maximum stress would occur near the pile. As such, a bottom 

stress monitor was setup whereby maximum bottom stress was tracked as a function of time.  
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CHAPTER 3 

RESULTS  

3.1 Small-Scale Results – Matching the Data   

Raw upstream wave data from the smooth-bottom results are presented below from Figure 3-1 

through Figure 3-16 where stress magnitude at a point one wavelength upstream from the pile is 

shown. These data were used to match experimental results from Sumer and Fredsoe.  

 

 
Figure 3-1. Raw upstream wave data from Run SS1 showing bottom stress vs. time 

 
Figure 3-2. Raw upstream wave data from Run SS2 showing bottom stress vs. time 
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Figure 3-3. Raw upstream wave data from Run SS3 showing bottom stress vs. time 

 
Figure 3-4. Raw upstream wave data from Run SS4 showing bottom stress vs. time 
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Figure 3-5. Raw upstream wave data from Run SS5 showing bottom stress vs. time 

 
Figure 3-6. Raw upstream wave data from Run SS6 showing bottom stress vs. time 
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Figure 3-7. Raw upstream wave data from Run SS7 showing bottom stress vs. time 

 
Figure 3-8. Raw upstream wave data from Run SS8 showing bottom stress vs. time 
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Figure 3-9. Raw upstream wave data from Run SS9 showing bottom stress vs. time 

 
Figure 3-10. Raw upstream wave data from Run SS10 showing bottom stress vs. time 
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Figure 3-11. Raw upstream wave data from Run SS11 showing bottom stress vs. time 

 
Figure 3-12. Raw upstream wave data from Run SS12 showing bottom stress vs. time 
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Figure 3-13. Raw upstream wave data from Run SS13 showing bottom stress vs. time 

 
Figure 3-14. Raw upstream wave data from Run SS14 showing bottom stress vs. time 
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Figure 3-15. Raw upstream wave data from Run SS15 showing bottom stress vs. time 

 
Figure 3-16. Raw upstream wave data from Run SS16 showing bottom stress vs. time 

 

As shown in these figures, upstream wave signals were very stable during each of these runs.  

 

3.2 Small-Scale Data Match Analysis   

Maximum stress results from the last five waves crests in each wave train were averaged and 

plotted against experimental data. A best-fit regression line of the form y=mx+b was fit to these 

data. Results are shown below in Figure 3-17:  
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Figure 3-17. Modeled results as a function of experimental results  

As shown in Figure 3-17, data were reproduced very accurately with a slope deviation of 

approximately 0.3% and a stress deviation of negative 0.02 pascals. However, the 

predicted/modeled stress was consistently lower than the measured stress values. Investigators ran 

a series of models where roughness coefficients were used along the bottom boundary in an attempt 

to improve this shift in data. Several roughness values were tried. Previous work from Crowley et 

al. (2014b) indicated that roughness height should be equal to 1.47 times the mean sediment 

diameter. Sumer and Fredsoe utilized 0.2 mm sand throughout their experiments. As such, a 

roughness height of approximately 0.3 mm was first used. Results from this set of runs is shown 

below in Fig. 3-18:  

 

 
Figure 3-18. Modeled results as a function of experimental results using a roughness height of 

0.3 mm 

As shown in Fig. 3-18, results were very similar to smooth-walled results. Next, investigators 

doubled the roughness height to 0.6 mm. Results are presented below in Fig. 3-19:   
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Figure 3-19. Modeled results as a function of experimental results using a roughness height of 

0.6 mm 

As shown, results were again, almost identical to smooth-walled results – the slope deviation was 

0.6% and the stress deviation was approximately 0.02 pascals.  

 

3.3 Sensitivity Analysis  

Based upon results investigators concluded that to exactly match the y=x line between 

experimental and modeled data, it was likely that the model would need to be remeshed and that 

roughness had little effect on results. However, further analysis of the mechanics associated with 

erosion function testing indicate that such a reanalysis is not necessary from a practical perspective.  

Consider a typical RETA dataset – the Jewfish Creek data for example – presented below in Fig. 

3-20: 
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Figure 3-20. RETA-generated erosion functions from Jewfish Creek; from Bloomquist et al. 

(2012b) 

As shown, the slope between the erosion rate/shear stress best-fit line varies between 0.03 

mm/year-Pa and 0.14 mm/year-Pa. If one examines the worst-case erosion function from the above 

(the top-left erosion function with a slope of 0.144 mm/year-Pa), its best-fit regression line is: 

 

 𝐸 = 0.14438𝜏 − 5.4724 (3-1) 

 

where E is erosion and 𝜏 is shear stress. Substituting an uncertainty of ±0.02⁡𝑃𝑎 yields: 

 

 𝐸 = 0.14438(±0.02) − 5.4724 = ±0.003 mm/year (3-2) 

 

This 0.003 mm/year of deviation would appear to be relatively insignificant from a design 

perspective. Results are even more encouraging for SERF implementation. As Crowley et al. 

(2014b) showed, there is significant stress variability on a specimen during a SERF test as shown 

below in Fig. 3-21 and Fig. 3-22:  
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Figure 3-21. Modeled top view of bottom stress on the surface of a SERF specimen for varying 

roughnesses using a representative worst-case 5 m/s velocity; from Crowley et al. 

(2014b) 

 

 
Figure 3-22. Cross-sectional view of velocity through the center of typical SERF specimens 

using a representative worst-case 5 m/s flow velocity (from Crowley et al. 2012) 

As shown in Figure 3-21 and Figure 3-22, when rough specimens (on the order of 0.25 mm mean 

diameter sediments or greater) are tested in the SERF, shear stress across the specimen surface 

may vary by as much as 100%. Taking the 0.25 mm roughness specimen, for example, Figure 3-

21 and Figure 3-22 show that stress may be as low as ~25 Pa near the upstream edge of the 

specimen. As one moves downstream, this stress may approach 100 Pa or greater. This variability 

explains why SERF specimens never erode uniformly and their downstream edges tend to erode 

faster than their upstream portions.  
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The implication of these tests is that cohesive specimens, whose surfaces also become very rough 

as they erode, behave similarly. Over time during a SERF test, this issue tends to continually 

worsen as specimens become increasingly rough due to differential erosion. As such, the concept 

of an average shear stress during a SERF test is relatively meaningless. Due to this stress 

variability, the best practice during SERF testing is to obtain very conservative results by ensuring 

that the back edge of an eroding specimen is approximately level with the bottom of the flume. Of 

course, this causes the front edge of the specimen to protrude into the flume where it is subjected 

to normal flow stresses. Thus, SERF results are very conservative. In this context, an 

underestimation of 0.02 Pa associated with the parametric data fits above would appear to be 

relatively unimportant and indicated that the smooth-walled data should be sufficient for analysis.  

 

3.4 Small-Scale Amplified Stress Data  

Amplified maximum stress magnitude data from small-scale runs are shown below from Fig. 3-23 

through Fig. 3-38: 

 
Figure 3-23. Amplified stress data from Run SS1 
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Figure 3-24. Amplified stress data from Run SS2 

 
Figure 3-25. Amplified stress data from Run SS3 
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Figure 3-26. Amplified stress data from Run SS4 

 
Figure 3-27. Amplified stress data from Run SS5 
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Figure 3-28. Amplified stress data from Run SS6 

 
Figure 3-29. Amplified stress data from Run SS7 
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Figure 3-30. Amplified stress data from Run SS8 

 
Figure 3-31. Amplified stress data from Run SS9 
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Figure 3-32. Amplified stress data from Run SS10 

 
Figure 3-33. Amplified stress data from Run SS11 
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Figure 3-34. Amplified stress data from Run SS12 

 
Figure 3-35. Amplified stress data from Run SS13 
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Figure 3-36. Amplified stress data from Run SS14 

 
Figure 3-37. Amplified stress data from Run SS15 
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Figure 3-38. Amplified stress data from Run SS16 

3.5 Large-Scale Results  

Amplified stress data from the large-scale simulations are presented below in Figure 3-39 

through Figure 3-74:  

 

 
Figure 3-39. Large-scale amplified stress data from Run LS1 
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Figure 3-40. Large-scale amplified stress data from Run LS2 

 
Figure 3-41. Large-scale amplified stress data from Run LS3 
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Figure 3-42. Large-scale amplified stress data from Run LS4 

 
Figure 3-43. Large-scale amplified stress data from Run LS5 
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Figure 3-44. Large-scale amplified stress data from Run LS6 

 
Figure 3-45. Large-scale amplified stress data from Run LS7 
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Figure 3-46. Large-scale amplified stress data from Run LS8 

 
Figure 3-47. Large-scale amplified stress data from Run LS9 
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Figure 3-48. Large-scale amplified stress data from Run LS10 

 
Figure 3-49. Large-scale amplified stress data from Run LS11 
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Figure 3-50. Large-scale amplified stress data from Run LS12 

 
Figure 3-51. Large-scale amplified stress data from Run LS13 
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Figure 3-52. Large-scale amplified stress data from Run LS14 

 
Figure 3-53. Large-scale amplified stress data from Run LS15 
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Figure 3-54. Large-scale amplified stress data from Run LS16 

 
Figure 3-55. Large-scale amplified stress data from Run LS17 
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Figure 3-56. Large-scale amplified stress data from Run LS18 

 
Figure 3-57. Large-scale amplified stress data from Run LS19 
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Figure 3-58. Large-scale amplified stress data from Run LS20 

 
Figure 3-59. Large-scale amplified stress data from Run LS21 
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Figure 3-60. Large-scale amplified stress data from Run LS22 

 
Figure 3-61. Large-scale amplified stress data from Run LS23 
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Figure 3-62. Large-scale amplified stress data from Run LS24 

 
Figure 3-63. Large-scale amplified stress data from Run LS25 
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Figure 3-64. Large-scale amplified stress data from Run LS26 

 
Figure 3-65. Large-scale amplified stress data from Run LS27 
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Figure 3-66. Large-scale amplified stress data from Run LS28 

 
Figure 3-67. Large-scale amplified stress data from Run LS29 
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Figure 3-68. Large-scale amplified stress data from Run LS30 

 
Figure 3-69. Large-scale amplified stress data from Run LS31 
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Figure 3-70. Large-scale amplified stress data from Run LS32 

 
Figure 3-71. Large-scale amplified stress data from Run LS33 
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Figure 3-72. Large-scale amplified stress data from Run LS34 

 
Figure 3-73. Large-scale amplified stress data from Run LS35 
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Figure 3-74. Large-scale amplified stress data from Run LS36 

As shown in these figures, maximum stress values from wavelength to wavelength appear to be 

very stable.   
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CHAPTER 4 

DATA ANALYSIS AND DEVELOPMENT OF PARAMETRIC MODEL 

4.1 Location and Timing of Maximum Bottom Stress 

Figure 4-1 below shows the location and timing associated with the maximum bottom stress. As 

shown, the maximum stress appeared to occur when the wave crests interacted with the pile. Its 

locus was at approximately the wake’s separation point. This result was consistent from run to run. 

Maximum stress data from this time/location were extracted from each raw dataset presented in 

Chapter 3. These data were used to fit two parametric models – a simple model that physically 

appeared to be correct, and an apparently more accurate model that was more empirically based.  

 

 
Figure 4-1. Example of moment when maximum bottom stress occurred (Run LS1 shown) 

 

4.2 The Simple Parametric Model  

4.2.1 Dimensional Analysis  

Preliminary dimensional analysis indicated that maximum bottom shear stress during wave attack 

on a circular pile should be governed by the following nondimensional groups:   

 

• The Keuligan Carpenter Number, KC (Equation 1-1).  

• The Reynolds Number, Re 

 𝑅𝑒 =
𝑈𝑚𝐷

𝜈
 (4-2) 
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• The ratio between D and L.  

Overall, then:  

 𝜏𝑚𝑎𝑥 = 𝑓 (𝐾𝐶, 𝑅𝑒,
𝐷

𝐿
) (4-3) 

𝑈𝑚 may be approximated using the linear wave equation at the bed (i.e., 𝑧 = −ℎ where ℎ is the 

water depth):  

 

 𝑈𝑚 =
𝑔𝐻𝑘

2𝜔
 (4-4) 

 

where k is solved by inverting Equation 2-34:  

 

 

 𝑘 =
2𝜋

𝐿
 (4-5) 

 

and 𝜔 is solved by inverting Equation 2-33:  

  𝜔 =
2𝜋

𝑇
 (4-6) 

4.2.2 Unification with Steady Flow Equation  

In addition, as discussed in Chapter 1, the maximum bottom stress around a pile under steady flow 

conditions is known and was presented in Equation 1-6. As noted in Chapter 1, steady flow implies 

that KC and L approach infinity because an infinite wavelength corresponds to an infinite wave 

period. As such, any nondimensional parametric design equation for bed stress due to waves 

should also approach Equation 1-6 when KC and L approach infinity.  

 

4.2.3 Simple Parametric Model Development Procedure  

To develop the parametric model, investigators isolated the maximum bed stresses from each of 

the raw datasets presented in Chapter 3. These maximum stresses were nondimensionalized:  

 

 𝜏∗ =
𝜏𝑚𝑎𝑥

𝜌𝑈𝑚
2  (4-7) 

 

Next, the corresponding values for Re and D/L were computed. To ensure that the parametric 

model approached the steady flow expression, Equation 1-6 was rearranged, its correction 

coefficients were dropped, and 𝑈𝑚 was substituted for V:  

 

  
𝜏

0.094𝜌𝑈𝑚
2 =

1

log(𝑅𝑒)
−

1

10
 (4-8) 

 

 

Finally, a multidimensional curve fitting tool, nDCurveMaster, was used to develop a best-fit 

regression expression among 𝜏∗ and KC, L/D, and the right-hand side of Equation 4-8. This process 

involved significant trial-and-error to ensure that the resultant parametric model was correct 
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physically in the sense that an infinite KC or L should cause the wave component terms to cancel. 

Likewise, investigators also ensured that a zero-flow condition would lead to a zero-stress 

condition. The resultant model from this process that appeared to fit the data the best was:  

 

 
𝜏𝑚𝑎𝑥

𝜌𝑈𝑚
2 = 𝑎1 (

𝐷

𝐿
) + 𝑎2 (

1

log10 𝑅𝑒
−

1

10
) + 𝑎3 (

𝐷

𝐿
) (

1

log10 𝑅𝑒⁡
−

1

10
) + 𝑎4𝐾𝐶

−1⁡ (4-9) 

 

where   

 

• 𝑎1 = −0.4528 

• 𝑎2 = 0.1072 

• 𝑎3 = 5.1325 

• 𝑎4 = 0.00781 

 

Results showing data predicted by Equation 4-9 and raw data are presented below in Figure 4-2:  

 

 
Figure 4-2. Results showing modeled results from Equation 4-9 as a function of raw data 

As shown in Figure 4-2, Equation 4-9 is capable of reproducing CFD results with approximately 

95% accuracy and an associated 𝑅2 value of approximately 0.95. Further analysis of Equation 4-

9 also appears to indicate that the model behaves correctly physically for both the infinite KC 

condition and the zero-flow condition. When flow equals zero, the 𝑈𝑚 term on the left-hand side 

of Equation 4-9 causes 𝜏𝑚𝑎𝑥 to also equal zero. When KC and L approach infinity, the 𝑎1, 𝑎3, and 

𝑎4 terms from Equation 2-9 will approach zero leaving only the steady-flow equation for 

maximum bottom stress. Meanwhile, it is also interesting to note that the 𝑎2 coefficient of 0.11 is 

very close to the reported value from Equation 1-6 (Equation 1-6 shows a coefficient of 0.094). 

Thus, this model appears to function correctly and appears to unify steady-flow bottom stress and 

associated scour with wave-induced bottom stress and associated scour.  

 

4.4.4 Simple Parametric Model Example Problem 

To illustrate how one might implement this parametric model for scour design, consider the 

following example: A 2-foot diameter pile is subjected to water wave attack. The wave period is 

15 seconds, the water depth is 5 feet, and the expected maximum wave height is 10 feet under 
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hurricane conditions. Find the maximum bottom stress around the pile under these conditions. The 

solution is:  

 

1. Use the linear dispersion relationship to solve for the wave number, k. The dispersion 

relationship is:  

 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ) (4-10) 

Substituting:  

 
2𝜋

(15⁡𝑠)2
= (

32.2𝑓𝑡

𝑠2
) 𝑘 tanh[(5𝑓𝑡)(𝑘)] (4-11) 

This is an implicit equation that must be solved using a numerical solver (i.e., Excel, 

MATLAB, etc.). Solving, one finds:  

 𝑘 = 0.033𝑓𝑡−1 (4-12) 

2. Using k from Step 1, determine the wavelength, L:  

 𝐿 =
2𝜋

𝑘
=

2𝜋

0.033𝑓𝑡−1
= 189⁡𝑓𝑡 (4-13) 

3. Compute 𝑈𝑚 

 𝑈𝑚 =
𝑔𝐻𝑘

2𝜎
=

(32.2
𝑓𝑡

𝑠2
)(10⁡𝑓𝑡)(189𝑓𝑡−1)

[2(
2𝜋

15𝑠
)]

= 12.75
𝑓𝑡

𝑠
 (4-14) 

4. Compute Re and KC:  

 𝑅𝑒 =
𝑈𝑚𝐷

𝜈
=

(25.5
𝑓𝑡

𝑠
)(2⁡𝑓𝑡)

(1.08
𝑓𝑡2

𝑠
)

= 2.37 × 106 (4-15) 

 𝐾𝐶 =
𝑈𝑚𝑇

𝐷
=

(25.5
𝑓𝑡

𝑠
)(15⁡𝑠)

2⁡𝑓𝑡
= 95.6 (4-16) 

5. Substitute into Equation 4-9 to get maximum stress:  

𝜏𝑚𝑎𝑥 = 𝜌𝑈𝑚
2 [𝑎1 (

𝐷

𝐿
) + 𝑎2 (

1

log10 𝑅𝑒
−

1

10
) + 𝑎3 (

𝐷

𝐿
) (

1

log10 𝑅𝑒⁡
−

1

10
) + 𝑎4𝐾𝐶

−1] (4-17)  

= (1.94
𝑠𝑙𝑢𝑔𝑠

𝑓𝑡3
) (12.75

𝑓𝑡

𝑠
)
2

{−0.4528 (
2𝑓𝑡

189𝑓𝑡
) + 0.1072 [

1

log10(2.37 × 106)
−

1

10
]

+ 5.1325 (
2𝑓𝑡

189𝑓𝑡
) [

1

log10(2.37 × 106)
−

1

10
] +

0.00781

95.6
} = 1.41⁡𝑝𝑠𝑓 

6. If necessary, convert from English units to SI (scour design is usually conducted in SI):  
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 1.41⁡𝑝𝑠𝑓 (
47.88𝑃𝑎

𝑝𝑠𝑓
) = 67.58⁡𝑃𝑎 (4-18) 

4.4.5 Parametric Design Equation Automation 

Equations 4-10 through 4-18 can be automated using a computer program. Calculators were 

prepared using the parametric model in both MATLAB and Microsoft Excel. These calculators 

are submitted with this report.  

 

4.4.5.1 Simple Model Excel Maximum Stress Calculator  

The automated parametric model calculator in Excel is presented here:  

 

Table 4-1. Excel Maximum Stress Calculator 

 
 

To use this calculator, first enter the wave period, T and water depth, h. Then, click the CLICK 

HERE button shown on the second line. This will run a Goal Seek macro that will solve the 

dispersion relationship for k. The dispersion relationship was given previously in Equation 2-35 

as a function of L. As a function of k, the dispersion relationship is:  

T = 15.00 s

h = 5.00 ft

H = 10.00 ft

D = 2.00 ft

g = 32.20 ft/s
2

n= 1.08E-05 ft
2
/s

r= 1.94 slug/ft
3

s= 0.42 s
-1

k = 0.03 ft
-1

Dispersion Check  = 0.00

L = 189.38 ft

Um = 12.75 ft/s

KC = 95.64

Re = 2.37E+06

a1 = -0.45

a2 = 0.11

a3 = 5.13

a4 = 0.01

Re* = 0.06

Max Stress = 1.41 psf

Max Stress = 67.61 Pa

In
p

u
ts

C
o

m
p

u
ta

ti
o

n
s

CLICK HERE
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 (
2𝜋

𝑇
)
2
= 𝑔𝑘⁡tanh⁡(𝑘ℎ) (4-19) 

 

If cell C12 approaches zero (cell labeled Dispersion Check), the user should have confidence that 

the macro functioned as designed. After this, continue entering data including wave height, H and 

pile diameter, D. The acceleration due to gravity, g should remain the same as should the kinematic 

viscosity and water density, 𝜈 and 𝜌 respectively. Computations for 𝜎 =
2𝜋

𝑇
, 𝐿 =

2𝜋

𝑘
, and 𝑈𝑚 =

𝑔𝐻𝑘

2𝜎
; 𝐾𝐶 =

𝑈𝑚𝑇

𝐷
; and 𝑅𝑒 =

𝑈𝑚𝐷

𝜈
 should not be changed nor should the fit coefficients, 𝑎1, 𝑎2, 𝑎3, 

and 𝑎4. The resultant output should be maximum bed stress near the pile in either psf or Pa.  

 

4.4.5.2 Simple Model MATLAB Maximum Stress Calculator  

The automated parametric model calculator in MATLAB is presented below. To use this model, 

simply enter values for T, h, H, D, g, nu (i.e., 𝜈), and rho (i.e., 𝜌). Set the variable “answer_flag” 

to zero for output in Pascals or any other number for output in psf. Then, run the script. The 

advantage to the MATLAB calculator is that a separate button press is not required to initiate its 

numerical solver. The output will be maximum bed shear stress near the pile in either Pascals or 

psf.  
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clc; clear; close all; 
%% ------------------------------------------------------------------------ 
% wavestress_calc.m  
% Maximum shear stress calculator for circular vertical pile under wave 
% attack 
%  
% Version 1.1 
%  
% Prepared by: University of North Florida 
%  
% Prepared for: Florida Department of Transportation  
% 
% Inputs 
% T - wave period (in seconds) 
% h - water depth (in feet) 
% H - wave height (crest-to-trough distance; in feet) 
% D - pile diameter (in feet) 
% g - acceleration due to gravity (in feet/second^2) 
% nu - kinematic viscosity of water (in feet^2/second) 
% rho - density of water (in slug/ft^3) 
% answer_flag - set to 1 for English output or any other number for SI 
% output 
%  
% Outputs 
% tau_max - maximum bed stress in Pascals or psf 
% 
%-------------------------------------------------------------------------- 
%% Inputs go here 
T = 15;             % Wave period (in seconds) 
h = 5;              % Water depth (in feet) 
H = 10;             % Wave height (in feet) 
D = 2;              % Pile diameter (in feet)  
g = 32.2;           % Acceleration due to gravity (in feet/second^2) 
nu = 1.07639e-5;    % Kinematic viscosity of water (in feet^2/second) 
rho = 1.94;         % Density of water (in slug/ft^3)    
answer_flag = 0;    % Answer flag - set == 1 for English units or any other 

number for Pascals 
%% Computations  
sigma = 2*pi/T; 
syms x 
k = vpasolve(sigma^2 == g*x*tanh(x*h),x,0.5); k = eval(k);  
L = 2*pi/k;  
Um = g*H*k/(2*sigma);  
KC = Um*T/D;  
Re = Um*D/nu;  
a1 = -4.5281e-1; 
a2 = 0.10715109; 
a3 = 5.13247395; 
a4 = 0.00780855; 
briaudRE = 1/log10(Re)-1/10;  
tau_model = rho*Um^2*(a1*D./L + a2*briaudRE + a3*D./L.*briaudRE + a4*KC.^-1);  
%% Outputs 
if answer_flag == 1 
    disp(['The maximum stress = ',num2str(tau_model),' psf']) 
else  
    tau_model = tau_model*47.8803;  
    disp(['The maximum stress = ',num2str(tau_model),' Pa']) 
end  
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4.3 The More Sophisticated Parametric Model  

While results from the Simple Parametric Model were promising in the sense that data fitting 

appeared to unify steady flow and wave stresses, and the R-squared values associated with the 

model were relatively high, some inaccuracies were observed in Figure 4-2 – particularly for low 

and high nondimensionalized stress values. As such, investigators sought to improve the model. 

 

4.3.1 Additional Dimensional Analysis and a More Sophisticated Model  

Initially, investigators had assumed that wave height, H, was considered in their model via KC, 

which is computed using 𝑈𝑚 that is a function of H. However, wave steepness (i.e., H/L) was not 

explicitly included in the original model. If one adds steepness to the dimensional analysis 

presented in Section 4.2: 

 

 
𝜏

(𝜌𝑈𝑚
2 )
= 𝑓 (𝐾𝐶, 𝑅𝑒,

𝐷

𝐿
,
𝐻

𝐿
) (4-20) 

 

The addition of the 
𝐻

𝐿
 nondimensional group led to a parametric model of the following form:  

 

 
𝜏

𝜌𝑈𝑚
2 = 𝑎0 + 𝑎1 (

𝐻

𝐿
)
1.05

+ 𝑎2 (
𝐷

𝐿
)
0.99

+ 𝑎3𝐾𝐶
−0.65 + 𝑎4 exp(log10 ⁡ (𝑅𝑒))

3
+ 𝑎5 (

𝐻𝐷

𝐿2
)
1.2

+

𝑎6 (
𝐻

𝐿
)
3.15

𝐾𝐶−1.3 + 𝑎7 (
𝐻

𝐿
)
0.95

(log10(𝑅𝑒))
2 + 𝑎8 (

𝐷

𝐿
)
1.55

𝐾𝐶1.05 + 𝑎9 (
𝐷

𝐿
)
1.05

(log10 𝑅𝑒)
0.72 +

𝑎10𝐾𝐶
1

15(log10 𝑅𝑒)
0.125 + 𝑎11 (

𝐻

𝐿
)
2.1

(
𝐷

𝐿
)
1.05

ln(𝐾𝐶) + 𝑎12 (
𝐷

𝐿
)
1.4

𝐾𝐶−0.9(log10 𝑅𝑒)
−2.6 +

𝑎13 (ln (
𝐻

𝐿
))

5
(
𝐷

𝐿
)
1.05

𝐾𝐶0.81(log10(𝑅𝑒))
2  (4-21) 

 

where  

 

• 𝑎0 = −0.045678  

• 𝑎1 = 0.08110917  

• 𝑎2 = −4.2112  

• 𝑎3 = 0.15463676  

• 𝑎4 = −12883  

• 𝑎5 = 1.2790872  

• 𝑎6 = −0.025252  

• 𝑎7 = −0.0031414  

• 𝑎8 = 0.5468853  

• 𝑎9 = 0.87930766  

• 𝑎10 = 0.0367309  

• 𝑎11 = −0.031927  

• 𝑎12 = −11.107  

• 𝑎13 = −0.017212  
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4.3.2 More Sophisticated Model Analysis 

The advantage to this more sophisticated model is that it was able to reproduce the data much more 

accurately than the relatively simple model. As shown below in Figure 4-3, data were reproduced 

with 99% accuracy:  

 

 
Figure 4-3. Results showing modeled results from Equation 4-20 as a function of raw data 

Also as shown in Figure 4-3, the relatively large errors associated with smaller relative stresses 

and larger relative stresses are eliminated when this new model is used. However, the disadvantage 

of this model is that it does not converge toward the steady flow solution (i.e., Equation 4-8) for 

very large values of KC. Rather, as KC approaches infinity, Equation 4-20 also approaches infinity 

as shown below in Figure 4-4: 

 

 
Figure 4-4. Behavior of Equation 4-20 as a function of KC 

Physically, this is incorrect. Figure 1-1 shows that as KC approaches infinity, maximum scour 

depth (and by extension, maximum near-pile shear stress) should approach a steady value for a 
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given 𝑈𝑚. However, at the same time, Equation 4-20 reproduces modeled data almost perfectly. 

In the context of scour design, it is believed that Equation 4-20 should give more accurate results 

than the simpler model even though physically, this equation does not behave as it should. In future 

work, one could model higher frequency waves and examine their bottom stresses to improve 

Equation 4-20 so it performs as it should under steady flow conditions. In the interim, however, 

Equation 4-20 appears to accurately reproduce stress data in typical design ranges associated with 

field-scale and small-scale waves. Please note however that Equation 4-20 should only be 

considered valid for wave heights, water depths, and wavelengths within the ranges discussed 

throughout this report.  

 

4.3.3 More Sophisticated Model Calculators  

Implementation of Equation 4-21 would be difficult by hand since there are many variables, 

exponents, terms, and places where one could make a typographical or calculation error. As such, 

an example problem will not be presented here. However, implementation is almost the same as 

the simple example problem previously presented in the sense that Equations 4-10 through 4-16 

are used to compute nondimensional parameters. Then, the nondimensional parameters are used 

as inputs for Equation 4-20. The MATLAB and Microsoft Excel calculators were updated to reflect 

the new model and are presented below. In addition, these calculators were submitted with this 

report.  

 

Similar to the simple calculator presented in Section 4.4.5.1, the more sophisticated Excel 

calculator requires the user to enter the wave period and water depth. Then, the CLICK HERE 

button must be pressed to solve the dispersion relationship for the wave number. If cell E12 

approaches zero, the user may be confident that the Goal Seek macro functioned as designed. Then, 

the user may enter data for the wave height and pile diameter. Since the more sophisticated model 

contained so many fit coefficients, these are hidden in Column A and should not be touched. 

Similarly, g, 𝜈, 𝜌 and all of the computation cells should also not be modified. The output should 

be maximum stress in Pascals or psf.  

 

The more sophisticated MATLAB calculator works similarly to the calculator presented in Section 

4.4.5.2 in the sense that once the inputs are defined, the numerical solver is automated, and output 

should immediately follow after running the script. These calculators are presented below.  

 

 

  



 

68 

4.3.3.1 Sophisticated Model Excel Calculator  

 

Table 4-2. Enhanced Parametric Model Excel Calculator 

   

T = 15.00 s

h = 32.81 ft

H = 32.81 ft

D = 3.28 ft

g = 32.20 ft/s
2

n= 1.08E-05 ft
2
/s

r= 1.94 slug/ft
3

s= 0.42 s
-1

k = 0.01 ft
-1

Dispersion Check  = 0.00

L = 471.81 ft

Um = 16.79 ft/s

KC = 76.78

Re = 5.12E+06

Max Stress = 5.084109531 psf

Max Stress = 243.43 Pa

In
p
u

ts
C

o
m

p
u
ta

ti
o
n
s

CLICK HERE
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4.3.3.2 Sophisticated Model MATLAB Maximum Stress Calculator  

clc; clear; close all; 

%% ------------------------------------------------------------------------ 

% wavestress_calc.m  

% Maximum shear stress calculator for circular vertical pile under wave 

% attack – complicated model  

% % Version 1.2 

% % Prepared by: University of North Florida 

% % Prepared for: Florida Department of Transportation  

% 

% Inputs 

% T - wave period (in seconds) 

% h - water depth (in feet) 

% H - wave height (crest-to-trough distance; in feet) 

% D - pile diameter (in feet) 

% g - acceleration due to gravity (in feet/second^2) 

% nu - kinematic viscosity of water (in feet^2/second) 

% rho - density of water (in slug/ft^3) 

% answer_flag - set to 1 for English output or any other number for SI 

% output 

%  

% Outputs 

% tau_max - maximum bed stress in Pascals or psf 

%%-------------------------------------------------------------------------- 

%% Inputs go here 

T = 15;             % Wave period (in seconds) 

h = 32.8084;           % Water depth (in feet) 

H = 32.8084;           % Wave height (in feet) 

D = 3.28084;           % Pile diameter (in feet)  

g = 32.2;           % Acceleration due to gravity (in feet/second^2) 

nu = 1.07639e-5;    % Kinematic viscosity of water (in feet^2/second) 

rho = 1.94;         % Density of water (in slug/ft^3)    

answer_flag = 0;    % Answer flag - set == 1 for English units or any other number for 

Pascals 

%% Computations  

sigma = 2*pi/T; 

syms x  

k = vpasolve(sigma^2 == g*x*tanh(x*h),x,0.5); k = eval(k);  

L = 2*pi/k;  

Um = g*H*k/(2*sigma);  

KC = Um*T/D;  

Re = Um*D/nu;  

a0=-0.04567800;a1=0.08110917;a2=-4.21120000;a3=0.15463676;a4=-12283.00000000; 

a5=1.22790872;a6=-0.02525200;a7=-0.00314140;a8=0.54688530;a9=0.87930766; 

a10=0.03673090;a11=-0.03192700;a12=-11.10700000; 

a13=-0.01721200; 

tau_model = (a0  + a1 .* (H./L).^1.05 + a2 .* (D./L).^0.99 + a3 .* KC.^-0.65 + a4 .* 

exp(log10(Re)).^-3 + a5 .* (H./L).^1.2 .* (D./L).^1.2 + a6 .* (H./L).^3.15 .* KC.^-1.3 

+ a7 .* (H./L).^0.95 .* log10(Re).^2 + a8 .* (D./L).^1.55 .* KC.^1.05 + a9 .* 

(D./L).^1.05 .* log10(Re).^0.72 + a10 .* KC.^(1/15) .* log10(Re).^(-1/8) + a11 .* 

(H./L).^2.1 .* (D./L).^1.05 .* log(KC) + a12 .* (D./L).^1.4 .* KC.^-0.9 .* 

log10(Re).^-2.6 + a13 .* (log((H./L))).^5 .* (D./L).^1.05 .* KC.^0.81 .* log10(Re).^-

2.9)*rho*Um^2; 

%% Outputs 

if answer_flag == 1 

    disp(['The maximum stress = ',num2str(tau_model),' psf']) 

else  

    tau_model = tau_model*47.8803;  

    disp(['The maximum stress = ',num2str(tau_model),' Pa']) 

end  
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDED FUTURE WORK  

5.1 Summary  

To summarize:  

 

• Several CFD models were prepared using Star-CCM+. These models were used to simulate 

small-scale piles under wave attack. Bottom stress analysis appeared to indicate that the 

models accurately reproduced experimental data.  

• Since experimental data were relatively accurately reproduced, maximum stress data were 

obtained from each of the small-scale models.  

• The small-scale models were upscaled, and maximum shear stress results were obtained.  

• Maximum shear stress data were used to create two parametric models for maximum stress 

around a single vertical pile under wave attack. The first model was relatively simple and 

behaved as it should physically in the sense that as KC approached infinity, predicted stress 

approached a steady value for a given 𝑈𝑚. Despite this, at low stresses and very high 

stresses, some inaccuracies were observed. Another parametric model was developed that 

was able to reproduce the data almost perfectly. The downside to this new model is that it 

does not behave as it should physically in the sense that as KC approaches infinity, stresses 

continually increase for a given value of 𝑈𝑚. This is likely because extreme conditions 

(i.e., very short or high frequency waves) were not modeled.   

5.2 Conclusions  

From this study, one can conclude that it should be possible to parameterize bottom stress around 

a pile under wave attack using a relatively simple model. In addition, using a more complex model, 

typical field-scale data may be recreated nearly perfectly. However, the methods developed here 

should only be used for a single pile case and may not be appropriate for more complex bridge 

pier geometries.  

 

Finally, examination of the data presented here shows that bottom stresses due to wave action may 

be extremely high. Examination of the model results and example problems presented in Chapter 

4 shows that stresses from wave action alone could lead to stresses on the order of hundreds of 

Pascals. These stress magnitudes are high enough to significantly erode sand, cohesive soils, and 

some rock (although most Florida limestone would likely erode minimally under these stress 

conditions). Note that the stresses found in this report are from wave action only. Under wave and 

current conditions, the stresses would likely be even higher than the stresses presented here.  

 

5.3 Recommendations for Future Work  

This study was meant to be a first step toward developing a universal approach for scour design 

that utilizes erosion functions. From that perspective, this project was successful in the sense that 

wave stress parametric equations were developed, and these equations may be implemented in 

conjunction with SERF and RETA testing. However, the results presented here are only for a very 
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simple bridge pier – a single pile under wave attack. In actuality, most (if not all) FDOT bridges 

use a standard pile group/pile cap/pier foundation configuration. As such, it would be beneficial 

to extend the work presented here to take these complex bridge geometries into account. Correction 

factors similar to those presented in Equation 1-9 should be developed before the scour design 

approach described in this report is fully implemented. Finally, in future work, it may be possible 

to develop a better, more sophisticated parametric model that is more accurate than the simple 

model presented here by modeling and capturing the behavior of higher frequency waves. 

However, it is important to point out that even without this, the tools that were developed during 

this project should be sufficient for design purposes for the simple one-pile case.  
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