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EXECUTIVE SUMMARY 
 

Transportation management centers (TMCs) serve as the hub of most freeway systems. A total of 

eleven regional TMCs (RTMCs) and two satellite TMCs are currently operational in the state of 

Florida. In November 2015, a new RTMC became operational in Jacksonville, Florida. This new 

facility replaced the old RTMC that was housed in the Florida Department of Transportation (FDOT) 

District 2 Urban Office building. The new facility has FDOT staff, TMC operators, local agency 

traffic signal operators, traffic monitoring consultants, Florida Fish and Wildlife Conservation 

(FWC), and the Florida Highway Patrol (FHP) personnel under one roof. The presence of these 

incident management stakeholders under one roof is expected to improve traffic incident management 

(TIM) on the interstate system. As such, this research had two main goals:  

 

1. evaluate the performance of the new RTMC in Jacksonville, FL; and  

2. quantify the impact of incidents on the operational and safety performance of the freeway 

network.  

 

The project had three specific objectives:  

 

• compare the performance of the new RTMC in Jacksonville where multiple response 

agencies are physically co-located in the RTMC building with the performance of the old 

RTMC where most of the incident response agencies were housed at their respective agency 

locations;  

• estimate the delays caused by incidents on freeways and determine the factors affecting 

these delays; and   

• develop a reliable approach to identify secondary crashes (SCs) and determine the risk 

factors associated with SCs.  

 

To achieve the study goals and objectives, the following five performance measures of the RTMC 

were investigated: incident verification duration, incident response duration, incident impact 

duration, incident-related delays, and SCs.   

 

Incident Verification Duration 

 

Incident verification duration is the time between an incident being reported and the incident being 

confirmed by the TMC. In this study, the performance of the new RTMC where multiple response 

agencies are physically co-located in the RTMC building was evaluated by analyzing incident 

verification durations before and after co-location of response agencies. In general, descriptive 

statistics indicated shorter average incident verification durations after co-location than before. 

Crashes were verified more quickly after co-location than before. Incidents that occurred during 

peak hours after co-location showed shorter verification durations than incidents before co-

location. The factors affecting the incident verification duration both before and after co-location 

of response agencies were identified using hazard-based models. The model results suggested that 

the following eight variables significantly affect incident verification duration both before and after 

co-location of response agencies: incident type, percent of lane closure, incident severity, roadway, 

traffic volume, time of the day, day of week, and detection method.   

 

Incident Response Duration 

 

Incident response duration is measured from the time incident response team is notified of an 

incident to when they arrive at the incident scene. Response time includes dispatch duration and 

travel time to the incident scene. In general, crashes had longer average response duration than 

other types of incidents. The factors affecting the incident response duration were identified using 



vii 

 

hazard-based models. The model results suggested that the following six variables significantly 

affect incident response duration both before and after co-location: incident type, percent of lane 

closure, roadway, day of week, detection method, and traffic volume. In addition to these variables, 

ramp involvement was significant in the before-period, while incident severity was significant in 

the after-period.  

 

Incident Impact Duration 

 

Incident impact duration includes the total time the traffic is impacted by an incident. In other 

words, it includes the time taken since the incident occurred to when the affected operational 

characteristics (i.e., speed and travel time) of a roadway segment return to normal. The study 

proposed a technique that uses historical traffic speed data to estimate the incident impact duration. 

The method uses the speed data reported by the BlueToad® devices to create a bandwidth of mean 

speed profiles, within one standard deviation, for the times when there were no incidents. In the 

event of an incident, the algorithm checks if the speeds drop below the lower bound (i.e., one 

standard deviation below the historical mean) and tracks the traffic flow speed until it returns to 

within the one standard deviation bandwidth. The incident impact duration is computed as the time 

elapsed from the speed dropping below the bandwidth to the time it returns to normal. The factors 

affecting the incident impact duration were identified using hazard-based models. The model 

results suggested that the following five variables significantly affect incident impact duration: 

incident type, incident severity, percent of lane closure, time of the day, and co-location of response 

agencies.  

 

Incident-related Delays 

 

This study estimated incident-related delays on freeways using real-time traffic flow data and also 

evaluated the impact of incident characteristics, traffic conditions, and roadway geometric 

conditions on the extent of the incident-related delays. Incident-related delays were estimated from 

the incident impact duration and the prevailing traffic volumes at the time of the incident. Next, the 

factors affecting these delays were investigated using hazard-based models. The results indicated 

that the following eight variables had significant influence on the incident-related delays at the 95% 

confidence interval: incident type, incident severity, time of the day, day of week, median width, 

vertical curvature, Emergency Medical Services (EMS) involvement, and detection method.  

 

Secondary Crashes 

 

SCs were identified using both the static and the dynamic methods. SCs were identified using a 2-

mile-2-hour spatiotemporal threshold. Dynamic approach based on speed profile data was also used 

to identify SCs. Descriptive statistics of the SCs identified using the dynamic method indicated that 

87% of the SCs occurred within two hours after the occurrence of primary incidents (PIs). Spatially, 

73% of the SCs occurred within two miles from the PI. Overall, 66% of SCs occurred within two 

hours of the onset of a PI and within two miles upstream of the PI. About 34% of SCs occurred 

beyond the most commonly used 2-mile-2-hour spatiotemporal threshold. These statistics confirm 

that the proposed dynamic approach identified more SCs than the traditional static method.  

 

A Bayesian random effect complementary log-log model was used to link the probability of SC 

occurrence with the real-time traffic flow variables, PI characteristics, environmental, and 

geometric characteristics. The results indicated that several PI characteristics and real-time traffic 

variables influence the occurrence of SCs. The following seven variables were found to be 

significant at the 95% Bayesian credible interval (BCI): average detector occupancy, primary 

incident severity, percent of lane closure, primary incident type, primary incident clearance 

duration, primary incident impact duration, and primary incident occurrence time.    
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background  

 

A transportation management center (TMC) is the hub of most freeway management systems. 

TMC staff collect and process the data about the freeway system, combine with other 

operational and control data, synthesize the information, and distribute to stakeholders such as 

the media, other agencies, and the traveling public. This information is used to monitor the 

freeway operations, and to coordinate agencies’ responses to traffic situations and incidents 

(FHWA, 2017). 

 

With the ever-increasing deployment of Intelligent Transportation System (ITS) infrastructures 

across the road network, TMCs have begun to play an increasingly critical role in ensuring that 

these deployments are well managed and are successful in achieving their intended goals and 

objectives. As can be observed from Figure 1-1, a total of eleven regional TMCs (RTMCs) and 

two satellite TMCs are currently operational in the state of Florida.  

 

 
Figure 1-1: Map of Regional and Satellite TMCs in Florida  (FDOT, 2017) 
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One of the key functions of TMCs in general, and RTMCs in particular, is traffic incident 

management (TIM) on the interstate system. By definition, TIM is a planned and coordinated 

program to detect and remove incidents and restore traffic capacity as safely and as quickly as 

possible (Amer et al., 2015; Carson, 2010). Table 1-1 lists the TIM program objectives and the 

related performance measures.   

 

Table 1-1: TIM Program-level Performance Measures (Owens et al., 2010) 
  TIM Program Objective Related Performance Measure 

T
ra

ff
ic

 I
n
ci

d
en

t 

T
im

el
in

e 

Reduce roadway 

clearance time  

Time between first recordable awareness of incident by a 

responsible agency and first confirmation that all lanes are available 

for traffic flow. 

Reduce incident 

clearance time  

Time between first recordable awareness of incident by a 

responsible agency and time at which the last responder has left the 

scene. 

Reduce the number of 

secondary crashes 

Number of unplanned incidents beginning with the time of 

detection of the primary incident where a collision occurs either a) 

within the incident scene or b) within the queue, including the 

opposite direction, resulting from the original incident. 

 

A typical incident timeline, as shown in Figure 1-2, has the detection, verification, response, 

clearance, and recovery durations (Amer et al., 2015). In general, the timeline starts when an 

incident occurs, identifies key interim activities, and ends with traffic returning to normal. The 

specific traffic incident elements include: 

 

• Incident detection time:  the time it takes for the RTMC staff to detect an incident 

(i.e., T0 – T1 in Figure 1-2). 

• Incident verification time:  the time it takes for the RTMC staff to verify an incident 

(i.e., T1 – T2 in Figure 1-2). 

• Incident response time:  the time it takes for the agencies to respond to an incident 

(i.e., T2 – T4 in Figure 1-2). 

• Roadway clearance time:  the time between first recordable awareness of incident 

by a responsible agency and first confirmation that all 

lanes are available for traffic flow (i.e., T1 – T5 in Figure 

1-2). 

• Incident clearance time:  the time between first recordable awareness of incident 

by a responsible agency and the time at which the last 

responder has left the scene (i.e., T1 – T6 in Figure 1-2). 

• Incident impact duration: the total time the traffic is impacted by an incident (i.e., 

T0 – T7 in Figure 1-2).  
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Figure 1-2: Timeline of Traffic Incident Elements  (Amer et al., 2015)  

 

Of the aforementioned incident duration elements, some elements (e.g., verification and 

response durations) are critical to the entire incident management process even though they are 

not long. Verification duration is important in determining accurate and detailed information 

which enables the dispatch of the most appropriate personnel and resources to the scene 

(USDOT-ITS, 2000). Response duration is also important since it helps save lives by ensuring 

rapid deployment of appropriate personnel and resources to the incident scene before the traffic 

backup becomes lengthy (Carson, 2010).  

 

In addition to the verification and response durations, the incident impact duration, defined as 

the time taken for the traffic to return back to normal after the occurrence of the primary 

incident, is also critical since it affects the overall operational and safety performance of the 

freeway. For example, the total delay as a result of incidents is affected by the total incident 

impact duration (Hojati et al., 2014).  

 

One of the strategies to reduce incident impact duration is to have better interagency 

coordination, which has the potential to improve incident detection and response times 

(USDOT-ITS, 2000). In fact, one of the Transportation Management Systems (TMS) strategies 

in Florida is to encourage co-location of Florida Department of Transportation (FDOT) TMC 

and law enforcement dispatch centers (PB Farradyne, 2006). As such, a new RTMC facility 

recently became operational in Jacksonville, FL, replacing the old RTMC that was housed in 

the FDOT District 2 Urban Office building. The old facility housed only FDOT and traffic 

monitoring consultant staff while other incident response agencies were located at their 

respective agency locations. The new facility that became operational in November 2015 has 

FDOT staff, TMC operators, local agency traffic signal operators, traffic monitoring 

consultants, and the Florida Highway Patrol (FHP) personnel under one roof. This strategy 

relies primarily on improving communication between agencies by providing the necessary 

details for optimum response which depends on accurate and rapid verification (USDOT-ITS, 

2000).  

 

Considering that incident response can be controlled by incident management teams (Lee and 

Fazio, 2005), co-location of incident response agencies is expected to improve incident 

management procedures, and hence, the overall performance of freeways. However, the actual 

impact of this strategy has not yet been quantified. As such, this research focuses on evaluating 
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the performance of the new RTMC using the following five performance measures: incident 

verification duration, incident response duration, incident impact duration, incident-related delays, 

and secondary crashes.  

 

1.2 Research Goals and Objectives 

 

This research has two main goals:  

 

1. evaluate the performance of the new RTMC in Jacksonville, FL; and  

 

2. quantify the impact of incidents on the operational and safety performance of the 

freeway network.  

 

The specific objectives include: 

   

• compare the performance of the new RTMC in Jacksonville where multiple response 

agencies are physically co-located in the RTMC building with the performance of the 

old RTMC where most of the incident response agencies were housed at their respective 

agency locations; 

 

• estimate the delays caused by incidents on freeways, and determine the factors affecting 

these delays; and   

 

• develop a reliable approach to identify secondary crashes, and determine the factors 

that could potentially lead to secondary crashes.  

 

1.3 Report Organization 

 

The rest of this report is organized as follows: 

 

• Chapter 2 discusses the incident verification and response durations. It discusses the 

incident verification and response durations before and after co-location of response 

agencies. It also presents the factors that influence the verification and response 

durations before and after co-location of response agencies.   

 

• Chapter 3 focuses on incident impact duration. It presents a data-driven methodology 

to estimate the incident impact duration. It also discusses the factors that affect the 

incident impact durations. 

 

• Chapter 4 discusses the delays caused by incidents on freeways. A data-driven 

methodology for estimating the incident-related delays is provided in this chapter. It 

further includes a discussion on the factors that affect these delays.  

 

• Chapter 5 presents the analysis of secondary crashes. It discusses the static and the 

dynamic approaches used to identify SCs. It also presents the factors contributing to 

SCs.   

 

• Chapter 6 provides a summary of this research effort and the relevant findings, 

conclusions, and recommendations. 
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CHAPTER 2 

INCIDENT VERIFICATION AND RESPONSE DURATION 

 

This chapter focuses on evaluating the impact of co-locating response agencies under one roof, 

i.e., RTMC facility, on the operational performance of the RTMC. Since co-location 

effectiveness relies on improving communication between agencies by providing the necessary 

details for optimum response which depends on accurate and rapid verification (USDOT-ITS, 

2000), the effectiveness of co-location of response agencies was quantified using incident 

response and verification durations. This chapter also discusses the factors that influence the 

verification and response durations of incidents.  

 

2.1 Existing Studies 

 

2.1.1 Incident Verification and Response Duration Definitions 

 

Incident verification is the process of determining the precise location and nature of the incident 

(USDOT-ITS, 2000). Incident verification duration is the time between an incident being 

reported and the incident being verified (Amer et al., 2015). During verification, response 

agencies confirm the occurrence of an incident, determine its exact location, and obtain all 

relevant details about the incident (Amer et al., 2015). 

 

On the other hand, incident response duration is measured from the time an incident response 

team was notified of an incident to when they arrived at the incident scene (Nam and 

Mannering, 2000). Response time includes dispatch duration and travel time to the incident 

scene (Nam and Mannering, 2000). The optimum response is sending the right equipment to 

the incident scene quickly to avoid deploying either too few or too many resources which could 

potentially increase the cost and adversely impact the effectiveness of the response (USDOT-

ITS, 2000).  

 

2.1.2 Factors Affecting Incident Duration 

 

Incident duration is a function of various factors. For example, a Michigan study (Ghosh et al., 

2014) that analyzed factors that affect clearance time suggested that the following factors affect 

the incident clearance time: time of the day, season, location of incident (i.e., at ramp, or on 

freeway mainline), and number of vehicles involved in the incident. It was observed that 

clearance times were 12% shorter at night than during daytime, and 21% quicker during 

weekends compared to weekdays. Winter and absence of exit ramps were associated with 

longer incident clearance duration. In addition, single vehicle incidents were cleared 37% 

sooner than multi-vehicle incidents, incidents on the right shoulder were cleared 31% quicker 

while incidents on a single lane were cleared 28% faster than incidents on multiple lanes. 

 

Another study that evaluated incidents caused by disabled and abandoned vehicles (Chimba et 

al., 2014) identified number of lanes, the percentage of lanes closed, presence of work zone, 

and truck involvement as significant factors that affect incident duration. In addition, the 

authors suggested that incident duration can be influenced by the incident notification agency; 

incidents that were assisted by Highway Emergency Local Patrol (HELP), synonymous to the 

Florida Road Ranger Service Patrol, had shorter durations compared to the incidents that were 

assisted by law enforcement agencies and the general public.  
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Furthermore, a study by Zhang et al. (2012) analyzed large-scale incidents which were 

characterized by having an incident duration of more than 2 hours. Results of the study 

indicated that crashes, vehicle fire, number of vehicles involved in an incident, rain, and peak 

hours were associated with longer incident durations for non-large-scale incidents. However, 

large-scale incidents had longer durations when an incident occurred within a work zone, on a 

curved roadway segment, and during morning peak hours. On the other hand, incidents 

occurring in the afternoon peak hours tend to have shorter durations. The large-scale incident 

duration was found to be 15% longer on curved roadway segments than on straight segments 

and 13% longer when the incident resulted in a secondary crash compared to when it did not 

result in a secondary crash. 

 

In summary, the existing studies have shown that incident duration is affected by several factors 

including spatial factors such as presence of a work zone, involvement of a ramp; roadway 

characteristics such as shoulder type, lane width, number of lanes; temporal factors such as 

time of the day, weather conditions; and incident related attributes such as incident notification 

agency and number of involved vehicles. In addition to these factors, the analysis in this study 

considered other attributes such as the detection method, incident severity, and number of 

response agencies. 

 

2.2 Data 

 

Traffic incident data were required to evaluate the incident verification and response durations. 

These data were retrieved from the District 2 SunGuide® database. SunGuide® is an Advanced 

Traffic Management System (ATMS) software used for incident management to process and 

archive incident data on freeways. For this study, the following information was retrieved from 

the SunGuide® database for the years 2015-2017. 

  

• Event ID 

• Roadway, i.e., I-95, I-295, I-10, etc. 

• Latitude and longitude of the event location 

• Incident notification time 

• Incident clearance duration 

• Event type, i.e., crash, flooding, disabled vehicle, debris on roadway, etc. 

• Time of event 

• Number and categories of response agencies 

• Lane closure information  

• Incident severity 

• Incident detection method 

 

All the aforementioned variables are easy to understand except event type and detection 

method, and these are discussed below.  

  

The SunGuide® database has numerous categories describing the type of an incident that 

occurred on a freeway. The categories include: crash, disabled vehicles, debris on roadway, 

emergency vehicles, police activity, vehicle fire, flooding, pedestrian, abandoned vehicles, 

construction, and other. For this study, traffic incidents were categorized into three groups: 

crashes, vehicle problems, and hazards. Crashes are self-explanatory. Vehicle problems 

included all events that are not crashes but are vehicle-related, e.g., disabled vehicles, 



7 

 

abandoned vehicles, etc. Hazards included all objects on the roadway with the potential of 

causing crashes, e.g., debris on roadway, flooding, wildlife, etc.  

 

The database has various detection methods that are used in identifying incidents. Some of the 

detection methods in the database are Road Rangers, Florida Highway Patrol (FHP), 511 Probe, 

closed circuit televisions (CCTVs), County Police, Jacksonville Sheriff’s Office (JSO), 

WAZE, and motorists. In this study, the incident detection methods were grouped into two 

categories: off-site detection methods and on-site detection methods. Off-site detection 

methods included methods that detect incidents remotely, i.e., from the TMCs through CCTVs, 

motorists’ phone calls, or WAZE (a mobile-based software application which utilizes 

information provided by road users). The on-site detection methods involved detecting 

incidents by highway patrol services such as District 2 Road Rangers, FHP, and JSO, who are 

at the incident scene. 

  

2.3 Methodology  

 

Hazard-based models are suitable for analyzing time-dependent variables and facilitating the 

interpretation of data using a sequence of probabilities (Li, 2017). This study intended to 

analyze the incident verification and response durations. Hazard-based models are suitable for 

analyzing incident verification and response durations since these are time-dependent 

variables. Hazard-based models provide the probabilities that change over time (Washington 

et al., 2003) and allow the explicit study of the relationship between incident durations and the 

explanatory variables (Chung, 2010). These models enable the determination of the likelihood 

of duration to end in the next short time period given it has lasted for as long as it has (Nam 

and Mannering, 2000).  

 

Hazard-based models were developed to describe the conditional likelihood of an incident 

ending at some time t+δt given that the duration has continued until time t. These models 

consider T as a random variable time and t as a specific time. The cumulative density function 

and the density function are represented in Equations 2-1 and 2-2, respectively. In Equation 2-

1, P represents the probability of the incident duration to end before time t. The hazard function 

is described by Equation 2-3 that shows the conditional probability for an event to occur at 

time t+δt given that it has not occurred until time t. The denominator in Equation 2-3 represents 

the survivor function which shows the probability of a duration being equal to or greater than 

some specified time t (Washington et al., 2003).  

 

𝐹(𝑡) = 𝑃(𝑇 < 𝑡) (2-1) 

  

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 (2-2) 

  

ℎ(𝑡) =
𝑓(𝑡)

[1 − 𝐹(𝑡)]
 (2-3) 

     

The first derivative of the hazard function with respect to time shows the probability of the 

duration ending soon after it has lasted for as long as it has. If (dh(t))/dt > 0 for all values of t, 

then the hazard is monotonically increasing, which means the probability that the incident will 

end soon increases as the incident duration increases. If (dh(t))/dt < 0 for all values of t, then 

the hazard is monotonically decreasing, which means the probability that the incident will end 

soon decreases as the incident duration increases. If (dh(t))/dt < 0 for some values of t and 
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(dh(t))/dt > 0 for other values of t, then hazard is non-monotonically decreasing, which means 

the probability that the incident will end soon decreases or increases depending on how long 

the incident has lasted. Finally, if (dh(t))/dt = 0 for all values of t, then the probability that the 

incident will end soon does not depend on how long it has lasted (Nam and Mannering, 2000; 

Washington et al., 2003).  

 

For the hazard-based models to take account of the covariates, the accelerated failure time 

model, shown in Equation 2-4, is used. This model type assumes that covariates rescale time 

directly in the survivor function. The ho(t) denotes the baseline hazard function, X is a covariate 

vector, and β is a vector of estimable parameters (Washington et al., 2003). For the applied 

accelerated failure time model, there is a need to assume a particular shape for the hazard rate. 

In this study, three shapes, Weibull, log-logistic, and lognormal distributions, were examined. 

 

ℎ(𝑡|𝑋) = ℎ𝑜[𝑡𝐸𝑋𝑃(𝛽𝑋)]𝐸𝑋𝑃(𝛽𝑋)  (2-4) 

 

The Weibull distribution allows for monotonically increasing, monotonically decreasing, and 

independent hazard. The hazard is monotonically increasing in duration if the Weibull 

distribution parameter p > 1; if p < 1, the hazard is monotonically decreasing in duration; 

finally, if p = 1, the hazard is constant in duration. The log-logistic distribution allows for non-

monotonic hazard functions such that the hazard is monotonically decreasing in duration for a 

log-logistic distribution with p < 1. If p > 1 then the hazard increases in duration from zero to 

an inflection point and decreases towards zero after that but if p = 1 then the hazard is 

monotonically decreasing in duration from parameter λ of the log-logistic distribution 

(Washington et al., 2003). 

 

The AFT model is a fully parametric model that has various distribution alternatives, e.g., 

Weibull and lognormal distributions. Selection of the best fit parametric distribution is 

achieved through comparison of the likelihood ratio statistics of the candidate distributions. 

The likelihood ratio statistic is chi-squared distributed with degrees of freedom equal to the 

number of parameters analyzed in the model. Equation 2-5 shows the formula of likelihood 

ratio statistics where LL (0) is the initial log likelihood when all parameters are equal to zero 

and LL (β) is log likelihood at convergence. 

 

𝑋2 = −2(LL(0) –  LL(𝛽𝐶))   (2-5) 

 

Determination of changes in incident response and verification durations after incident 

response agencies were co-located under the same roof was achieved by comparing the 95% 

confidence interval of the model coefficients in the respective study periods (i.e., before and 

after co-location). This comparison was performed for coefficients that were observed to be 

significant in the before- and after-periods. The coefficients whose 95% confidence interval 

did not overlap showed a significant change in the variable. 

 

2.4 Results  

 

2.4.1 Incident Verification Duration  

 

The new RTMC in Jacksonville was opened in November 2015 with the intention of improving 

incident management procedures by co-locating multiple incident response agencies. A before-

and-after analysis was conducted to gain insights on the impact of co-location of incident 

management agencies (i.e., FDOT, FHP, etc.) on incident verification duration. At the time of 
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this research, incident data were available till June 2017. Hence, the after-period included 18 

months of data from January 2016 to June 2017. To be consistent, the before-period also 

included 18 months of data from January 2014 to June 2015.  

 

The incident data for the before-period (January 2014 – June 2015) and the after-period 

(January 2016 – June 2017) for freeways in Duval County comprised 41,378 and 43,086 

incidents, respectively. About 36,594 incidents in the before-period and 36,654 incidents in the 

after-period contained verification duration information. Some incidents were not analyzed 

because the verification duration was negative, which could be attributed to data input errors. 
 
Table 2-1 provides the summary statistics of incident verification durations in the before- and 

after-periods. For some of the incident categories, shorter average incident verification 

durations were observed after co-location than before. For example, the average verification 

duration for hazards was 8 minutes before co-location and 7 minutes after co-location. The 

average verification duration for incidents on weekends was 18 minutes before co-location 

compared to 17 minutes after co-location. Also, the average verification duration for incidents 

detected by FHP was 17 minutes before co-location and 15 minutes after co-location. 
 
As expected, crashes were found to take longer to be verified compared to vehicle problems, 

Table 2-1 shows that the average verification duration for vehicle problems both before and 

after co-location was 3 minutes while the average verification duration for crashes was 15 

minutes. Incidents that resulted in less than 25% of lane closure had the average verification 

duration of 7 and 8 minutes before and after co-location, respectively. In this study, the 

percentage of lane closure is computed by comparing the number of lanes closed against the 

total number of travel lanes, e.g., for a four-lane freeway, closing one lane is considered as 

25% lane closure. The average verification duration for incidents that occurred in off-peak 

hours (8 and 9 minutes before and after co-location, respectively) were found to be longer than 

the average verification duration during peak hours (6 and 7 minutes before and after co-

location, respectively). Moreover, the average verification duration for incidents that were 

verified by the on-site detection methods (i.e., District 2 Road Rangers, JSO, FHP, etc.) was 7 

and 8 minutes before and after co-location, respectively. Off-site detection methods led to 

relatively shorter average verification duration (3 and 4 minutes before and after co-location, 

respectively) compared to the average verification duration for incidents detected using on-site 

detection methods. It is worth noting that the partnership with WAZE has sometimes led to 

slightly longer verification times due to location mapping issues and has potentially impacted 

incident verification durations. The incident verification durations with respect to incident, 

spatiotemporal, and agency operations attributes before and after the opening of the new 

RTMC are discussed below.  

 

• Incident Type: Crashes had the highest percentage of incidents that were verified during 

both the before-period (Jan 2014 - June 2015) and the after-period (Jan 2016 - June 

2017). Figure 2-1(a) shows that the proportion of crashes in the after-period (74%) was 

greater than the proportion of crashes in the before-period (67%). This increase in 

crashes could be attributed to the increasing crash rate being observed nationwide in 

recent years (NHTSA, 2017). Conversely, the proportion of hazards (9%) and vehicle 

problems (61%) in the before-period were found to be higher than the proportion of 

hazards (7%) and vehicle problems (54%) in the after-period. This observed decrease 

in the frequency of verified hazards and vehicle problems could be attributed to the 

improved on-road help services which have ensured that most of the hazards and 

vehicle problems were dealt with as soon as detected.  
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According to Figure 2-1(b), verification of crashes was slightly quicker after co-

location than before. For example, 81% of crashes were verified within 30 minutes in 

the after-period, while 78% of crashes were verified within 30 minutes in the before- 

period. Figures 2-1(c) and 2-1(d) show a similar trend in the verification duration of 

vehicle problems and hazards. For instance, approximately 88% of vehicle problems 

were verified within 30 minutes in the before-period, while about 89% of vehicle 

problems were verified within 30 minutes in the after-period. Similarly, 85% of hazards 

were verified within 30 minutes before co-location while 89% were verified within 30 

minutes after co-location. 

 

• Time of the Day: Incidents were verified quicker after co-location than before during 

both peak and off-peak hours. For example, Figure 2-2(a) shows that 40%, 65%, and 

81% of the incidents in the after-period during off-peak hours were verified within 10, 

20, and 30 minutes, respectively. On the other hand, 31%, 59%, and 78% of the 

incidents in the before-period were verified within 10, 20, and 30 minutes, respectively. 

Figure 2-2(b) shows that during peak hours, 43%, 69%, and 85% of the incidents in the 

after-period were verified within 10, 20, and 30 minutes, respectively. Conversely, 

37%, 67%, and 84% of the incidents were verified within similar durations in the 

before-period.   

 

• Day of Week: As can be observed from Figures 2-2(c) and 2-2(d), the incident 

verification durations were found to be longer in the before-period compared to the 

after-period for incidents that occurred on both weekdays and weekends. For example, 

on weekdays, 35% of the incidents were observed to be verified within 10 minutes 

before co-location, while 43% of the incidents were verified within 10 minutes after 

co-location. Conversely, 29% of the incidents were verified within 10 minutes on 

weekends before co-location, while 34% of the incidents were verified within 10 

minutes on weekends after co-location. 

 

• Detection Method: District 2 (D2) Road Rangers and FHP detected most of the 

incidents. These methods account for the detection of approximately 89% and 90% of 

the incidents that were detected before and after co-location of response agencies, 

respectively. Figure 2-3 shows that D2 Road Rangers detected most of the incidents 

that were verified before co-location while FHP detected most of the incidents that were 

verified after co-location.  
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Table 2-1: Summary of Incident Verification Duration with Respect to Various Attributes 

  Before Period 

Jan 2014 - June 2015 

After Period 

Jan 2016 - June 2017 

Variable Categories Frequency 
Average 

(min.) 

Standard 

Deviation 

(min.) 

 

Minimum 

(min.) 

Maximum 

(min.) 
Frequency 

Average 

(min.) 

Standard 

Deviation 

(min.) 

Minimum 

(min.) 

Maximum 

(min.) 

Incident attributes           

Incident type Hazards 5,182 8 13.2 1 189 5,064 7 11.7 1 130 
 Crashes 13,720 15 20.6 1 279 18,034 15 19.6 1 286 
 Vehicle problems 22,476 3 7.2 1 156 19,988 3 7.4 1 118 

Lane closure ≤ 25% 35,899 7 14.9 1 279 37,904 8 15.5 1 286 
 > 25% 3,431 6 10.6 1 186 4,003 6 10.7 1 268 

Ramp involvement No 40,217 7 14.5 1 279 42,010 8 15.0 1 286 
 Yes 1,161 5 9.8 1 131 1,076 6 8.1 1 61 

Severity Minor 39,166 7 14.5 1 279 40,136 8 15.2 1 286 
 Moderate 1,608 7 12.2 1 97 1,940 6 11.2 1 268 
 Severe 509 6 12.0 1 186 1,010 6 10.5 1 130 

Spatiotemporal attributes           

Time of the day Peak hour 22,242 6 12.7 1 178 22,063 7 14.1 1 268 
 Off-peak 19,136 8 16.2 1 279 21,023 9 15.7 1 286 

Roadway I-10 5,113 10 16.8 1 279 5,601 10 16.8 1 238 
 I-95 12,112 7 13.9 1 214 14,121 7 14.2 1 258 
 I-295 17,955 5 13.0 1 226 16,873 6 13.6 1 286 
 SR 202 3,402 7 15.0 1 189 3,091 6 13.4 1 177 
 I-75 2,796 17 16.9 1 148 3,404 17 19.5 1 221 

Day of week Weekends 3,816 18 22.2 1 214 4,510 17 21.3 1 286 

 Weekdays 37,562 6 13.1 1 279 38,577 7 13.7 1 263 

Agency operations attributes           

Detection method Off-site 3,460 3 6.9 1 156 3,639 4 8.9 1 150 
 On-site 37,821 7 14.8 1 279 39,359 8 15.3 1 286 
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Figure 2-1: Distribution of Incident Verification Duration with Respect to Incident Type 
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Figure 2-2: Distribution of Incident Verification Duration with Respect to Various Temporal Attributes  
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Figure 2-3: Distribution of Incident Verification Duration with Respect to Detection 

Method  

 

2.4.2 Factors Affecting Incident Verification Duration 
 
Table 2-2 presents the model results. It can be inferred from that table that incident type, percent 

of lane closure, incident severity, roadway, detection method, time of the day, day of week, 

and traffic volume were significant factors during both before- and after-periods. These factors 

are discussed below. Only the incident verification duration of incidents on I-95 showed a 

significant difference before and after co-location at the 95% level of confidence.  
 

• Incident Type: Crashes had verification durations that are longer than hazards both before 

and after co-location. The verification durations for vehicle problems were shorter than the 

verification durations for hazards. Verification of crashes is expected to take longer because 

of the need for accurate information in selection and dispatch of appropriate response 

personnel.  
 

Table 2-2 shows that the verification duration of crashes was 188% and 220% longer than 

the verification of hazards before and after co-location, respectively. However, the 

difference between the verification duration of crashes before and after co-location of 

response agencies was not significant. Verification duration of vehicle problems was 39% 

and 37% quicker than verification of hazards both before and after co-location, 

respectively. This could be attributed to the effectiveness of on-road help services (i.e., 

Road Rangers) in detecting and verifying vehicle problems. The differences between the 

average verification durations for vehicle problems before and after co-location was not 

significant at 95% confidence interval. 
 

• Lane Closure: Higher percentage of lane closure led to a decrease in the verification 

duration both before and after co-location. The verification duration of incidents associated 

with lane closure of more than 25% was 29% and 28% quicker than the verification 

duration of incidents that caused lane closure of less than 25% during before- and after-

periods, respectively. A higher percentage of lane closure can cause unexpected traffic 

congestion, potentially leading to quicker detection by the TMC personnel through CCTV 

cameras. RTMC staff detect severe incidents using the roadway congestion maps. The 

effectiveness of CCTV cameras and roadway congestion maps was improved by having 

response agencies under one roof, sharing similar video feed of incidents and 

communicating directly while making decisions. 
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• Incident Severity: Severe and moderate incidents had quicker verification durations than 

minor incidents both before and after co-location. The verification duration of severe 

incidents was 21% and 26% quicker than the verification duration of minor incidents for 

before- and after-periods, respectively. The verification duration of moderate incidents was 

26% and 19% quicker than the verification duration of minor incidents for before- and 

after-periods, respectively. However, the average verification durations for both severe and 

moderate incidents that occurred in before- and after-periods were not statistically different 

at 95% confidence interval. 
 

• Roadway: Incidents that occurred on both I-95 and I-295 had shorter verification durations 

compared to incidents that occurred on I-10 both before and after co-location. Moreover, 

the average verification durations of incidents that occurred before and after co-location on 

I-295 were significantly different at 95% confidence interval. The relatively longer incident 

verification durations on I-10 could at least in part be due to limited ITS coverage along 

the I-10 corridor.  
 

• Time of the Day: Incidents that occurred during peak hours had shorter verification 

durations than incidents during the off-peak hours in the period before co-location of 

response agencies. It is assumed that due to the expectation of incidents during the peak 

hours, RTMC operators handle incidents that occur during peak hours quicker compared to 

incidents that occur during off-peak hours. Also, off-peak hours include nighttime when 

the response agencies are short staffed. However, the average verification durations of 

incidents during peak hours was not significantly quicker than during off-peak hours after 

co-location of response agencies.  
 

• Day of Week: Incidents that occurred on weekends had longer verification durations 

compared to incidents that occurred on weekdays both before and after co-location. 

Incidents that occurred on weekends had 88% longer verification durations than incidents 

that occurred during weekdays in the before-period. Incidents that occurred on weekends 

had 73% longer verification durations than incidents that occurred during weekdays in the 

after-period. Incidents were verified quicker during the weekdays because of the 

availability of response personnel. For example, within the study area, Road Rangers do 

not work during weekends.  
 

• Traffic Volume (AADT): Incidents that occurred on corridors with higher AADT were 

associated with quicker verification durations. Increase in the AADT led to 8% shorter 

verification durations in the period before co-location of response agencies. Similarly, 

increase in the AADT was associated with 9% quicker verification durations in the period 

after co-location of response agencies. 
 

• Detection Method: Incidents that were detected by off-site detection methods had shorter 

verification durations than incidents detected by on-site detection methods both before and 

after co-location. The verification duration of incidents by off-site detection methods was 

32% quicker than on-site detection methods both before and after co-location. However, 

the difference between the average verification durations before and after co-location of 

response agencies was not significant at 95% confidence interval.  
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Table 2-2: Factors Affecting Incident Verification Duration before and after Co-location of Response Agencies 

    

Before Period 

Jan 2014 – June 2015 

After Period 

Jan 2016 – June 2017 

Variable Categories Estimates p-value 

%  

Change 

CI of the 

Coefficient Estimates p-value 

% 

Change 

CI of the 

Coefficient 

Incident attributes          

Incident type Hazards                 
 Crashes 1.058 0.000 188 0.987 - 1.129 1.163 0.000 220 1.089 - 1.237 
 Vehicle problems -0.495 0.000 -39 (-0.556) - (-0.434) -0.464 0.000 -37 (-0.532) - (-0.395) 

Lane closure ≤ 25%         

 > 25% -0.349 0.000 -29 (-0.421) - (-0.277) -0.331 0.000 -28 (-0.400) - (-0.262) 

Ramp involvement Absent         

 Present -0.110 0.130 -10 -- -0.200 0.071 -18 -- 

Severity Minor         

 Moderate -0.303 0.000 -26 (-0.415) - (-0.191) -0.213 0.000 -19 (-0.313) - (-0.113) 
 Severe -0.234 0.001 -21 (-0.433) - (-0.035) -0.302 0.000 -26 (-0.457) - (-0.148) 

Spatiotemporal attributes         

Roadway  I-10         

 I-95 -0.201 0.000 -18 (-0.258) - (-0.145) -0.107 0.000 -10 (-0.163) - (-0.051) 
 I-295 -0.238 0.000 -21 (-0.291) - (-0.184) -0.130 0.000 -12 (-0.184) - (-0.075) 
 SR 202 -0.212 0.000 -19 (-0.281) - (-0.142) -0.152 0.000 -14 (-0.225) - (-0.078) 
 I-75 0.399 0.000 49 0.303 - 0.495 0.347 0.000 41 0.254 - 0.440 

Time of the day Off-peak         

 Peak hour -0.043 0.000 -4 (-0.073) - (-0.012) -0.022 0.044 -2 (-0.055) – (0.010) 

Day of week Weekday         

 Weekend 0.631 0.000 88 0.557 - 0.705 0.551 0.000 73 0.483 - 0.618 

AADT  -0.081 0.000 -8 (-0.116) - (-0.046) -0.099 0.000 -9 (-0.135) - (-0.064) 

Agency operations attributes         

Detection method 
On-site         

Off-site -0.385 0.000 -32 (-0.439) - (-0.330) -0.427 0.000 -35 (-0.484) - (-0.371) 

Note: Bold values represent significant estimates at 95% confidence interval; “CI” means confidence interval.
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2.4.3 Incident Response Duration 

 

Incident response duration is the time from the verification of an incident by the RTMC 

operator to the time the first responder arrives at the incident location (Amer et al., 2015). It 

includes the time required to determine appropriate equipment and response personnel, the time 

to communicate between related agencies, and the travel time to the incident site (Nam and 

Mannering, 2000). In this study, the incident response duration is defined, as described by 

FHWA and SunGuide®, as the time between incident verification and the arrival of the first 

responder at the incident scene. It includes the dispatch duration and responders’ travel time to 

the incident scene. The responders include but are not limited to FHP, Fire Department, D2 

Road Rangers, JSO, Florida Fish and Wildlife Conservation (FWC), and Emergency Medical 

Services (EMS). 

 

A before-and-after analysis was conducted to gain insights on the impact of co-location of 

incident management agencies (i.e., FDOT, FHP, etc.) on incident response duration. As 

discussed earlier, January 2014 to June 2015 was considered as the before-period, while 

January 2016 to June 2017 was considered as the after-period. The analysis was based on 

approximately 36,594 incidents that occurred in the before-period and 36,654 incidents that 

occurred in the after-period. Some incidents were not analyzed because the response duration 

was negative, which could be attributed to data input errors.  
 

Table 2-3 provides the summary statistics of incident response durations in before- and after-

periods. For some variables, shorter average response durations were observed in the after-

period compared to the before-period. For example, the average response duration for severe 

incidents was 6 minutes in the before-period and 5 minutes in the after-period.   
 

Crashes had longer average response durations compared to vehicle problems. Table 2-3 shows 

that in the before-period, the average response duration for vehicle problems was 2 minutes 

while the average response duration for crashes was 6 minutes. In the after-period, the average 

response duration of vehicle problems and crashes was 3 minutes and 7 minutes, respectively. 

The incident response durations with respect to incident, spatiotemporal, and agency operations 

attributes before and after the opening of the new RTMC are discussed below.  

 

• Incident Type: Figure 2-4(a) shows the distribution of incidents analyzed in the study 

with respect to the incident type. An 8% increase in crashes was observed in the after-

period compared to the before-period. This increase could be attributed to the increasing 

crash rate being observed nationwide in recent years (NHTSA, 2017). On the contrary, 

the proportion of hazards and vehicle problems in the before-period were found to be 

higher than the proportion of hazards and vehicle problems in the after-period. This 

observed decrease could be attributed to the improved on-road help services which have 

ensured that most of the hazards and vehicle problems were dealt with as soon as 

detected.  

 

Figures 2-4(b), 2-4(c), and 2-4(d) show the distributions of the incident response 

durations before and after co-location for crashes, vehicle problems, and hazards, 

respectively. These figures show similar distributions between before- and after-

periods. However, all these figures show that the highest percentage of incidents 

(approximately 90%) are responded within 30 minutes.   
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Table 2-3: Summary of Incident Response Duration with Respect to Various Attributes 

    

Before Period 

January 2014 – June 2015 

After Period 

January 2016 – June 2017 

Variable Categories Frequency 
Average 

(min.) 

Standard 

Deviation 

(min.) 

Minimum 

(min.) 

Maximum 

(min.) 
Frequency 

Average 

(min.) 

Standard 

Deviation 

(min.) 

Minimum 

(min.) 

Maximum 

(min.) 

Incident attributes           

Incident type Hazards 5,182 3 7.2 1 148 5,064 3 8.5 1 152 

  Crashes 13,720 6 12.8 1 206 18,034 7 12.0 1 187 

  
Vehicle 

problems 
22,476 2 6.3 1 162 19,988 3 6.7 1 172 

Lane closure ≤ 25% 35,899 3 7.8 1 206 37,904 4 8.6 1 187 

  > 25% 3,431 5 9.6 1 162 4,003 6 10.4 1 175 

Ramp 

involvement 
No 40,217 3 8.1 1 206 42,010 4 8.9 1 187 

  Yes 1,161 5 11.2 1 188 1,076 5 7.3 1 55 

Severity Minor 39,166 3 7.9 1 206 26,909 4 8.6 1 187 

  Moderate 1,608 6 11.9 1 188 1,524 7 10.4 1 130 

  Severe 509 6 14.1 1 148 633 5 10.5 1 131 

Spatiotemporal attributes           

Time of the day Peak hour 22,242 3 8.5 1 206 22,063 4 8.6 1 175 

  Off-peak 19,136 3 7.7 1 188 21,023 4 9.1 1 187 

Roadway I-10 5,113 4 9.6 1 179 5,601 4 7.9 1 152 

  I-95 12,112 4 9.2 1 178 14,121 4 9.3 1 150 

  I-295 17,955 3 7.4 1 206 16,873 4 8.9 1 187 

  SR 202 3,402 2 6.3 1 206 3,091 2 5.7 1 107 

  I-75 2,796 6 13.1 1 108 3,404 5 13.2 1 172 

Day of week Weekend 3,816 9 17.3 1 162 4,510 9 15.2 1 187 

  Weekday 37,562 3 7.7 1 206 38,577 4 8.3 1 175 

Agency operations attributes           

Detection method On-site  37,828 2 6.7 1 188 39,359 3 7.9 1 187 

  Off-site 3,460 10 14.7 1 206 3,639 10 13 1 172 
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• Day of Week: Figure 2-5(a) shows the distribution of response duration for the incidents 

that occurred on weekdays. Almost 80% of the incidents were responded to within 20 

minutes before and after co-location. Figure 2-5(b) shows the distribution of the 

response duration of incidents that occurred on weekends. Approximately 80% of the 

incidents were responded to within 20 minutes. The distributions of incidents before 

and after co-location showed only a slight difference. For example, 54%, 72%, and 84% 

of the incidents in the before-period were responded to within 10, 20, and 30 minutes, 

respectively. Approximately 51%, 74%, and 88% of the incidents in the after-period 

were responded to within 10, 20, and 30 minutes, respectively.  

 

• Time of the Day: Figure 2-5(c) shows the distribution of the response duration for 

incidents that occurred during off-peak hours. Approximately, 80% of the incidents that 

occurred during off-peak hours were responded to within 20 minutes. Similarly, Figure 

2-5 (d) shows that almost 80% of the incidents that occurred during peak hours were 

responded to within 20 minutes. The response duration for incidents that occurred 

during off-peak hours and peak hours exhibited similar distributions before and after 

co-location, respectively. For example, for both before- and after-periods, 

approximately 55%, 80%, and 90% of the incidents were responded to within 10, 20, 

and 30 minutes, respectively. For both before- and after-periods, almost 60%, 80%, and 

90% of the incidents were responded to within 10, 20, and 30 minutes, respectively. 
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Figure 2-4: Distribution of Incident Response Duration with Respect to Incident Type 
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Figure 2-5: Distribution of Incident Response Duration with Respect to Various Temporal Attributes  
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2.4.4 Factors Affecting Response Duration 

 

Table 2-4 presents the model results. Incident type, percent of lane closure, roadway, day of 

week, traffic volume, and detection method were found to be significant during both before- 

and after-periods, and are discussed below.  

 

• Incident Type: Crashes had 111% and 126% longer response durations than hazards 

before and after co-location, respectively. Vehicle problems had 4% and 8% shorter 

response durations than hazards before and after co-location, respectively. The response 

for hazards was quicker compared to crashes because most of the hazards were detected 

by on-road help services. Note that on-road help services verify and respond to hazards 

at the same time. Moreover, the difference between the average response durations for 

vehicle problems before and after co-location of response agencies was not significant at 

95% confidence level.  

 

• Lane Closure: Over 25% of lane closure was associated with 21% and 16% increase in 

the response duration before and after co-location, respectively. Longer response 

durations for incidents with a high percentage of lane closure were observed because most 

of these incidents were crashes. The difference between the average response durations 

for incidents that caused a lane closure >25% before and after co-location was not 

significant at 95% confidence interval.   

 

• Roadway: Incidents that occurred on I-95 had significantly longer response durations 

than incidents on I-10 in the after-period. The difference in the average response duration 

on I-295 before and after co-location was significant at 95% confidence interval. The 

response durations before co-location for incidents on I-295 and SR-202 were shorter 

than on I-10 both before and after co-location.  

 

• Day of Week: The average response duration of incidents on weekends was significantly 

longer than on weekdays. Fewer operating personnel are usually available on weekends 

in most of the response agencies. The difference between the average response duration 

for incidents that occurred on weekends before and after co-location was significant at 

95% confidence level. 

 

•  Traffic Volume (AADT): An increase in the AADT led to incidents with 4% and 7% 

increase in incident response durations both before and after co-location. The difference 

in response durations before and after co-location was not significant at 95% confidence 

interval.  

 

• Detection Method: Incidents that were detected by off-site detection methods had longer 

response durations than incidents that were detected by on-site detection methods. 

Detection of incidents using off-site methods can take longer depending on the incident 

location and traffic condition at the time of the incident. The difference between the 

average response duration for the incidents detected by off-site detection methods and 

on-site detection methods before and after co-location of response agencies was 

significant at 95% confidence interval. 
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Table 2-4: Factors Affecting Incident Response Duration before and after Co-location of Response Agencies 

    
Before Period 

January 2014 – June 2015 

After Period 

January 2016 – June 2017 

Variable Categories Estimates p-value 

% 

Change 

CI of the 

Coefficient Estimates p-value % Change 

CI of the  

Coefficient 

Incident attributes           

Incident type Hazards         

  Crashes 0.745 0.000 111 0.663 - 0.827 0.813 0.000 126 0.716 - 0.911 

  Vehicle problems -0.036 0.146 -4 -- -0.079 0.013 -8 -- 

Lane closure ≤ 25%         

  > 25% 0.191 0.000 21 0.104 - 0.277 0.149 0.000 16 0.065 - 0.234 

Ramp involvement No         

  Yes -0.162 0.047 -15 -- -0.271 0.051 -24 -- 

Severity Minor         

  Moderate 0.002 0.959 0 -- 0.146 0.000 16 -- 

  Severe 0.011 0.915 1 -- 0.101 0.189 11 -- 

Spatiotemporal attributes         

Roadway I-10         

  I-95 -0.002 0.942 0 -- 0.098 0.000 10 -- 

  I-295 -0.154 0.000 -14 (-0.222) - (-0.086) 0.167 0.000 18 0.094 - 0.239 

  SR 202 -0.377 0.000 -31 (-0.465) - (-0.289) -0.309 0.000 -27 (-0.405) - (-0.212) 

  I-75 0.196 0.004 22 (-0.008) - (0.400) -0.087 0.157 -8 -- 

Time of the day Off-peak         

  Peak hour 0.025 0.061 3 -- 0.018 0.218 2 -- 

Day of week Weekday         

  Weekend 0.938 0.000 156 0.814 - 1.062 0.704 0.000 102 0.597 - 0.811 

AADT   0.037 0.012 4 0.007 – 0.067 0.065 0.000 7 0.020 - 0.109 

Agency operations attributes         

Detection method On-site    --    -- 

  Off-site 1.671 0.000 432 1.604 - 1.738 1.364 0.000 291 1.291 - 1.496 

Note: Bold values represent significant estimates at 95% confidence interval; “CI” means confidence interval. 
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In addition to the above-discussed variables, ramp involvement was also found to be significant 

in the before-period. Incidents that occurred in close proximity to the ramps had 15% quicker 

response duration compared to those that occurred outside the vicinity of the ramps. Similarly, 

incident severity was also found to be significant in the after-period. Moderate incidents had 

longer incident response durations than minor incidents after co-location of response agencies.  

 

2.5 Summary 

 

This chapter compared the performance of the new RTMC in Jacksonville where multiple 

response agencies are physically co-located in the RTMC building with the performance of the 

old RTMC where most of the incident response agencies were housed at their respective agency 

locations. The comparison was based on the incident verification and response durations before 

and after the new RTMC became operational. The new RTMC became operational in 

November 2015. The before-period included 36,594 incidents that occurred from January 2014 

to June 2015. The after-period included 36,654 incidents that occurred between January 2016 

and June 2017.  

 

2.5.1 Incident Verification Duration 

 

Incident verification duration is the time between an incident being reported and the incident 

being confirmed by the TMC. In general, shorter average incident verification durations were 

observed in the after-period than in the before-period. The proportion of crashes in the incidents 

was 39% in the after-period and 30% in the before-period. Vehicle problems constituted 61% 

and 54% of the incidents that were verified before and after co-location, respectively. Crashes 

were found to be verified quicker in the after-period than in the before-period. Incidents that 

occurred during peak hours in the after-period were found to have shorter verification durations 

than incidents in the before-period. 

 

Results suggested that incident type, percent of lane closure, incident severity, roadway, traffic 

volume, time of the day, day of week, and detection method significantly affect incident 

verification durations both before and after co-location. Incident verification duration was 

longer for crashes compared to hazards both before and after co-location. Verification of 

incidents both before and after co-location was quicker when the lane closure was more than 

25%. Incidents that occurred on I-95 were found to have shorter verification durations 

compared to incidents that occurred on I-10 both before and after co-location. Incidents that 

occurred during peak hours were found to have shorter verification durations compared to 

incidents during the off-peak hours in the before-period. Moreover, incidents that occurred on 

weekends were found to have longer verification durations compared to incidents that occurred 

on weekdays. Incidents that were detected by on-site detection methods were found to have 

longer verification durations than incidents detected by off-site detection methods both before 

and after co-location.    

 

2.5.2 Incident Response Duration 

 

Incident response duration is measured from the time incident response team was notified of 

an incident to when they arrived at the incident scene. Response time includes dispatch duration 

and travel time to the incident scene. Crashes had longer average response duration than vehicle 

problems. In the after-period, the average response duration of vehicle problems and crashes 

was 3 minutes and 7 minutes, respectively. 
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Results showed that incident type, percent of lane closure, roadway, day of week, traffic 

volume, and detection methods significantly affect incident response durations both before and 

after co-location. Crashes had longer response durations than hazards both before and after co-

location. A high percentage of lane closure (> 25%) was associated with longer response 

durations before and after co-location. Incidents that occurred on I-95 were found to have 

longer response durations compared to incidents on I-10 in the after-period. Incidents that were 

detected by off-site detection methods were found to have longer response durations than 

incidents that were detected by off-site methods. The average response duration of incidents 

during weekends was significantly longer than during weekdays. In addition to the afore-

mentioned variables, ramp involvement was found to be significant in the before-period, while 

incident severity was found to be significant in the after-period.  

 

The comparison of 95% confidence interval of the model estimates showed the differences 

between the verification and response durations before and after co-location of response 

agencies. Results indicated slight improvements in the verification of incidents with respect to 

various incident attributes such as incident type, incident severity, and lane closure. Similar 

results were observed for the comparison of incidents response durations before and after co-

location of response agencies. For example, the response durations for incidents that occurred 

on weekends were 156% and 102% longer than incidents that occurred on weekdays before 

and after co-location, respectively. These improvements could be attributed to co-location of 

response agencies within the new RTMC facility.      
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CHAPTER 3 

INCIDENT IMPACT DURATION 

 

This chapter focuses on establishing a framework for estimating the incident impact duration 

and identifying factors affecting the impact duration on freeways. A brief background on 

incident impact duration is first provided. The next section discusses the data and methodology 

used to estimate and quantify factors affecting incident impact duration. The analysis results 

and discussion are then presented.  

 

3.1 Background 

 

Precise and accurate estimation of incident duration assists incident management agencies in: 

(1) providing accurate information to road users, (2) applying the most suitable incident 

management measures, and (3) assessing the effectiveness of incident management strategies 

(Margiotta et al., 2012). Consequently, it is important for incident management agencies to 

have reliable information on the incident timeline. While most agencies use incident clearance 

duration, as a performance measure, it does not incorporate the duration after which traffic 

returns to normal. Understandably, as much as it is important to clear the incident scene, it is 

equally important to return the traffic condition back to normal after the incident occurs. For 

instance, road users will be more interested on when the congestion will end and not only when 

the incident will be cleared to be able to better plan their trip, e.g., use alternate routes, shift 

the time for starting a trip, etc. In this study, the time taken since the incident occurred to when 

the affected operational characteristics (i.e., speed and travel time) of a roadway segment return 

to normal is referred to as the incident impact duration. Figure 3-1 illustrates this concept.  

 

 
Figure 3-1: Simplified Incident Timeline 

 

As indicated in Figure 3-1, incident impact duration includes incident clearance duration and 

incident recovery duration. The incident clearance duration can be easily derived from incident 

reports because they usually record the time that the incident occurs – as recorded by the 

incident management agencies – until the time the responders depart the incident scene. On the 

other hand, the time taken from incident clearance until traffic return to normal, conventionally 

referred to as the recovery time (Ghosh et al., 2014; Hojati et al., 2014; Garib et al., 1997), is 

not included in the incident reports.  

 

Incident recovery time and incident detection time are incident timeline elements that are 

difficult to measure. Although some studies have reported analyzing incident detection time 

(Kaabi, 2013; Nam and Mannering, 2000), there are limitations in deducing the exact time 

when an incident occurred (Nam and Mannering, 2000). For example, it is not feasible for 

incident management agencies to record the exact time when the incident occurred. On the 

other hand, estimation of recovery time is unpredictable due to its dependency on traffic 
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conditions, i.e., speed and travel time. Therefore, estimating the recovery time requires 

cumbersome and unconventional methodologies that utilizes the traffic parameters on the 

roadway when an incident has occurred and when there is no incident.  

 

One of the objectives of this research was to estimate and analyze incident-related delays. In 

this case, incident impact duration is required to quantify delays caused by incidents. Since the 

recovery time is not recorded in the SunGuide® system, this study first developed an approach 

to estimate the incident impact duration for each incident, and then evaluated factors affecting 

the incident impact duration. Previous studies (Hojati et al., 2014; Chung 2010; Smith and 

Smith 2001) described recovery time as the period after the recorded clearance duration. 

However, as shown in Figure 3-1, there are instances where traffic operations return to normal 

before the incident is cleared such as incidents involving abandoned vehicles. As such, incident 

impact duration can be either longer or shorter than the incident clearance duration depending 

on the incident characteristics. 

 

3.2 Data  

 

Traffic incident and real-time traffic data were required to estimate the incident impact 

durations. Incident data were retrieved from the SunGuide® database, which is discussed in 

Section 2.2. Real-time traffic speed data were retrieved from the BlueToad® database. 

 

BlueToad® devices are Bluetooth signal receivers which read the media access control (MAC) 

addresses of active Bluetooth devices in vehicles passing through their area of influence. These 

devices act in pairs or network (i.e., BlueToad® pairs) by recording the time when a vehicle 

passes both devices. This information is used to deduce the travel time of the vehicle between 

a pair of devices. The speed is calculated from the obtained travel time and a known path 

distance (not Euclidean distance) between the devices. Figure 3-2 shows the network of 

BlueToad® devices in Jacksonville, Florida. For this research, the following information was 

retrieved from the BlueToad® database for the years 2015-2017. 

 

• Traffic speed 

• Date and time  

• BlueToad® device location (i.e., latitude and longitude) 

• Distance between devices 
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Figure 3-2: Network of BlueToad® Devices in Jacksonville, Florida 

 

3.3 Methodology  

 

3.3.1 Estimation of Incident Impact Duration 

 

A major step would be to compute the time it takes for traffic to return to normal after the 

incident occurs. With the availability of traffic flow data from BlueToad® devices, data-driven 

techniques were used to estimate the time at which the traffic flow of the roadway affected by 

incident returns to normal. Figure 3-3 shows the flowchart for estimation of incident impact 

duration. The following are the specific steps used to estimate the incident impact duration. 

 

• Extract Speed Data: Speed data aggregated in 15-min intervals were collected from all 

the BlueToad® pairs in the study network for the years 2015-2017. The data were 

aggregated in 15-min intervals following the works of Guo et al., (2018) which 

observed lack of stability in traffic flow data for short time intervals, and Smith and 

Ulmer (2003) which suggested 15 minutes as a measurement interval to obtain stable 

traffic flow rates. 

 

• Establish the Normal Speed Profile: The speed data aggregated at 15-min intervals 

were used to establish the recurrent speed profile of each BlueToad® pair for each day 

of week. The 95% confidence interval of the average speed was calculated to define the 

upper and lower bounds of the recurrent speed profile. This 95% confidence interval 
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accounted for the variation in speeds on a roadway segment. For each BlueToad® pair, 

a total of seven traffic speed profiles were generated, one for each day of week. Figure 

3-4 shows a typical speed profile and the speeds on the roadway segment during an 

incident. 

 

 
Figure 3-3: Process to Estimate Incident Impact Duration 

 

• Prepare the Incident Data: Each incident was matched to a BlueToad® pair at the 

incident location based on geographical coordinates (i.e., latitude and longitude). The 

date, day, and reported time of the incident were extracted and used for extraction of 

speed data from the BlueToad® pair. 

 

• Extract Traffic Speeds During an Incident: The traffic speed data of the BlueToad® pair 

affected by the incident were extracted. The traffic speed was compared to the normal 

traffic speed profile. An incident is considered to affect the traffic characteristics of the 

segment when the average speed along the segment was found to be less than the lower 

speed profile boundary. The same procedure was repeated for all the upstream 

BlueToad® devices affected by the incident.  

 

• Establish the Incident Impact Duration: The time from when the incident occurred to 

the time when the speed during an incident returned to normal traffic speed was 

recorded. The longest duration from the affected BlueToad® pairs was recorded as the 

incident impact duration. 
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Figure 3-4: Estimation of the Incident Impact Duration from Speed Profile 

 

 

3.3.2 Factors Affecting Incident Impact Duration 

 

Similar methodology that was used to analyze the incident verification and response durations, 

which is discussed in Section 2.3, was used to identify the factors affecting incident impact 

duration. The methodology involved developing hazard-based models using the elements of 

incident timeline as the dependent variable, and all the investigated factors as the independent 

variables. The independent variables included incident type, incident severity, detection 

method, shoulder blockage, lane closure, time of the day, lighting condition, day of week, 

detection method, co-location of agencies, number of response agencies, EMS and involvement 

of towing services. The variable co-location of agencies was categorized into with and without 

co-location. The new RTMC where the FDOT, FHP, and Road Rangers began to manage 

incidents from the same TMC building became operational in November 2015. January 2014 

to June 2015 was considered as the period without co-location, and January 2016 to June 2017 

was considered as the period with co-location. Finally, the EMS and towing involvement 

variables were categorized into two groups each, i.e., when the EMS or towing services were 

or were not one of the response agencies.  

 

3.4 Results and Discussion 

 

3.4.1 Estimation of the Incident Impact Duration 

 

The algorithm provided in Figure 3-3 was used to estimate the incident impact duration 

(including recovery time) for a total of 8,248 incidents that occurred from 2015-2017. Note 

that some BlueToad® devices were inactive along the study corridors and within the analysis 

period, and all the incidents along these corridors were excluded from the analysis. 

Furthermore, incidents with missing geographical coordinates in the incidents database were 

also not included in the analysis. Some of the incidents had no speed data from the BlueToad® 

database during the time of the incident, and were excluded. Also, incidents with incomplete 

incident duration data were excluded from the analysis.  
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Finally, the estimation of the incident impact duration was successful for only 1,793 incidents, 

and this subset of data was used for statistical modeling. The incident impact duration 

extraction process was observed to produce a small sample of incidents, a challenge that was 

also observed in the study by Hojati et al. (2014). Table 3-1 shows the summary of the incident 

impact duration estimated using the methodology described in Section 3.3.1.  

 

Table 3-1: Summary of the Estimated Incident Impact Duration and Clearance Duration 

Variables Categories Frequency 
Percentage 

(%) 

Average 

impact 

duration 

(mins) 

Average  

clearance 

duration 

 (mins) 

Incidents attributes       
Incident type Crash 664 37% 115 72 

  Vehicle problems 1,047 58% 90 21 

  Hazards 82 5% 109 20 

Shoulder blocked No 841 47% 100 35 

  Yes 952 53% 99 44 

Lane closure ≤ 25% 1,562 56% 95 35 

 > 25% 231 12% 136 71 

Incident severity Minor 1,663 93% 96 36 
 Moderate 101 6% 140 77 

  Severe 23 1% 182 158 

Temporal attributes       
Time of the day Peak hour 1,520 85% 95 39 

  Off-peak 273 15% 129 41 

Lighting condition Day 1,716 96% 99 38 

  Night 77 4% 122 86 

Day of week Weekday 1,441 80% 99 38 

  Weekend 352 20% 106 46 

Agency operations attributes     
Detection method On-site 1,595 89% 99 38 

  Off-site 198 11% 111 51 

Co-location of agencies Without co-location  750 42% 116 39 

With co-location 1,043 58% 89 40 

Number of response 

agencies* 
--- --- --- --- --- 

EMS  

  

Present 111 6% 141 82 

Absent 1,682 94% 97 37 

Towing involved No 1,553 87% 98 35 

  Yes 240 13% 114 73 

Note: * Continuous variable; “---” is Not Applicable. 

 

The table also provides a summary of the recorded incident clearance duration; this provides a 

comparison between the incident clearance duration and the incident impact duration, and can 

be used to analyze the performance of incident management strategies. 

 

Crashes constituted 37% of all incidents, and had the mean impact and clearance duration of 

115 and 72 minutes, respectively. As shown in Table 3-1, disabled and abandoned vehicles 

constituted a majority of incidents (58%) while hazards constituted only 5% of total incidents.  

The mean incident impact duration of crashes (115 minutes) was longer than the mean 

clearance duration (72 minutes). Also, Table 3-1 shows that the mean incident impact duration 

of hazards was 109 minutes while the mean incident clearance duration was 20 minutes. The 

mean incident impact duration for incidents that were detected by the on-road help services (99 

minutes) was shorter that the incident impact duration of incidents detected by off-site detection 

approach. Table 3-1 shows that the average incident impact duration of incidents detected after 
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and before co-location of response agencies in the RTMC was 89 minutes and 116 minutes, 

respectively. The difference between average incident clearance duration before and after co-

location of response agencies was not significant.  

 

It is evident from Figure 3-5(a) that incidents had longer impact durations (including recovery 

time) before co-location of response agencies. Also, Figure 3-5(b) suggests that the incident 

clearance durations before co-location of response agencies was not significantly different from 

the clearance durations after co-location of response agencies. 

 

 

 
(a) Incident Impact Duration  (b) Incident Clearance Duration 

 

Figure 3-5: Distribution of the Incident Impact and Clearance Durations before and 

after Co-location of Response Agencies  

 

3.4.2 Factors Affecting Incident Impact and Clearance Duration 

 

The analysis was based on 2015 and 2016 incident data for I-95 section in Duval County in 

Jacksonville, Florida. The dataset included 8,248 incidents with critical incident information 

such as detection duration, response duration, and spatiotemporal attributes of the incident. All 

types of incidents were included in the dataset: crashes, vehicle problems (e.g., disabled or 

abandoned vehicles, etc.), and hazards (e.g., flooding, debris is on roadway, etc.). All variables 

were categorical except the variable for number of response agencies. The variable co-location 

of agencies was categorized into with and without co-location. The new RTMC where the 

FDOT, FHP, and Road Rangers began to manage incidents from the same TMC building 

became operational in November 2015. January 2014 to June 2015 was considered as the 

period without co-location, and January 2016 to June 2017 was considered as the period with 

co-location. 

 

The methodology described in Section 2.3 involves selection of the model with the best 

parametric fit to the applied distribution. The log-logistic distribution was observed to provide 

the best fit compared to Weibull and log-normal distributions for both the response variables 

(i.e., incident impact and clearance duration). Table 3-2 provides a summary of the log-logistic 

distribution models for the two response variables, incident impact duration and incident 

clearance duration.  
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For each model, the first column of the results shows the fitted model coefficients based on 

Equation 2-4. This study adopted a 95% confidence level to test the significance of the effects 

of model variables on incident duration. Therefore, a p-value of 0.05 is a threshold for the 

significance level. The column that depicts the percentage (%) change shows the difference in 

the percentage of the incident duration of a corresponding factor-level compared to the base 

factor-level. For example, for incident type factor, hazards is the base level. A -18% change 

shown in Table 3-2 for vehicle problems factor is the difference in incident impact duration 

between vehicle problems and hazards. A more detailed discussion of the significant results 

presented in Table 3-2 is provided below. 

 

• Incident Type: Compared to hazards, the model results presented in Table 3-2 show an 

increase of 21% and 303% in incident impact duration and incident clearance duration 

for crashes, respectively. Incident management procedures for crashes require a longer 

time for the police investigation and for emergency treatment to the injured parties in 

case of severe crashes. Additionally, crashes lead to longer recovery time due to their 

type of management strategies, which sometimes involve lane closures and route 

diversion. 

 

• Incident Severity: Severe incidents had 69% longer incident impact duration and 130% 

longer incident clearance duration than minor incidents. Moderate incidents had 42% 

longer incident impact duration than minor incidents. Moderate and severe incidents 

can lead to longer recovery duration because of longer clearance procedures, which 

greatly affect the traffic conditions upstream of the incident.  

 

• Shoulder Blockage: Shoulder blockage led to longer incident duration (4% and 33% for 

impact and clearance duration, respectively) than when there is no blockage. However, 

shoulder blockage was not a significant factor affecting incident impact duration. The 

analysis did not include shoulder offset (i.e., inside or outside shoulder) because of the 

high correlation between shoulder offset and shoulder blockage. It would be interesting 

to use this distinction in the analysis to determine whether the inside shoulder blockage 

leads to significantly longer durations than the outside shoulder blockage. Anecdotal 

observations suggest that greater impact is expected for the left shoulder blockage 

compared to the right shoulder blockage.  

 

• Lane Closure: The percentage of lane closure greater than 25% led to longer incident 

impact durations. To illustrate the definition of percentage of lane closure, for a four-

lane freeway, closing one lane is considered as 25% lane closure. As expected, the 

incident impact duration increases with the increase in the percentage of the lane closure 

because the effect of closed lanes extends much further upstream of the incident scene, 

thus increasing the incident recovery time. Contrary to expectations, the results suggest 

a decrease in incident clearance duration with an increase in the percentage of lane 

closure. However, the results on the incident clearance duration were not significant at 

95% confidence interval.  It is possible that incidents that result in more lane closures 

are given preference in dispatching first responders. This observation deserves further 

investigation to decipher if there are any confounding factors that were not considered 

in the model. 

 

• Time of the Day: Incidents that occurred during peak hours had 26% shorter impact 

duration than incidents during off-peak hours. Previous studies by Li et al. (2017) and 

Zhou and Tian (2012) observed shorter incident durations during peak hours, and 
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attributed the finding to the conscious efforts of management agencies in dealing with 

incidents that occur during peak hours. For example, because of the known threat of 

incidents during peak hours, extra attention is usually given to the incidents and 

response agencies are located closer to crash hotspots. Moreover, during peak hours, it 

does not take long for vehicle speeds to return to normal. This is because normal speeds 

during this period are usually low as a result of recurrent traffic congestion. 

 

• Lighting Condition: Incidents had longer impact and clearance durations at night. 

However, lighting condition had a significant impact on only incident clearance 

duration (and not on incident impact duration). This finding is consistent with the 

results from Nam and Mannering (2000). A possible explanation can be, at night, 

drivers are able to spot responders on the scene from a distance and thus reduce speeds 

to those below one standard deviation of the normal traffic condition. Also, nighttime 

crashes tend to be more severe, hence involving more responders and become complex 

to execute. It is also possible that fewer responders are on duty at night, resulting in 

dispatch delays. 

  

• Detection Method: Incidents detected using off-site detection methods had longer 

incident impact duration (4%) and clearance duration (42%) than incidents that were 

detected by on-site detection methods. Note that off-site detection method had a 

significant impact on incident clearance duration (and not on incident impact duration). 

It is possible that because the on-site detection methods include on-road help services 

who are already on the scene, their response to incidents is quicker. The longer 

durations for incidents detected off-site might be attributed to the delay in information 

dissemination, response dispatch delays, and difficulty in getting to the incident scene 

due to deteriorated traffic conditions caused by the incident.  

 

• Co-location of Agencies: The results indicate that incident impact duration and incident 

clearance duration decreased because of co-location of response agencies. Incidents 

with co-location of response agencies were associated with a significant 14% and 13% 

decrease in incident impact and clearance durations, respectively. Co-location involved 

having FDOT staff, TMC operators, local agency traffic signal operators, traffic 

monitoring consultants, and the FHP personnel under one roof. The shorter incident 

impact durations with co-location of response agencies may be attributed to quicker 

detection, verification, and dispatch due to seamless information dissemination 

amongst personnel of all incident management stakeholders. 

 

• Number of Response Agencies: An increase in the number of response agencies at the 

incident scene was associated with an insignificant 2% decrease (at 95% confidence 

interval) in the impact duration. However, more response agencies on the scene were 

associated with a significant 50% longer incident clearance duration. Clearance 

procedures become complex when many response agencies are at the scene, and as a 

result, could result in longer incident clearance durations. It is somewhat surprising that 

the impact duration did not significantly increase with the number of response agencies. 

Further research is needed to evaluate the influence of the number of response agencies 

on the incident impact duration. 

 

• EMS Involvement: Contrary to the expectations, the presence of EMS resulted in a 

significant 57% decrease in the incident clearance duration. EMS are usually deployed 

when the incidents result in injuries. It is possible that responders are dispatched quicker 
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when injuries are involved than for non-critical incidents. For example, it is common 

for an abandoned vehicle to stay longer on a blocked shoulder than for a severe crash 

on a blocked lane.  

 

• Towing Involvement: Incidents that required towing had longer clearance durations than 

incidents that did not involve towing. Incidents that required towing led to a significant 

34% longer incident clearance duration compared to the incidents that were cleared 

without involving towing services. These results are comparable to Chimba et al. (2014) 

and Khattak et al. (1995).  

 

Table 3-2: Factors Influencing the Incident Impact and Clearance Duration 

    Incident Impact Duration Incident Clearance Duration 

 
Categories Estimates p-value 

% 

Change Estimates p-value 

% 

Change 

Incidents attributes        

Incident type Hazards       

 Crashes 0.195 0.024 21 1.393 0.000 303 

 Vehicle problems -0.062 0.467 -18 0.194 0.101 21 

Incident severity Minor       

 Moderate 0.353 0.000 42 0.156 0.198 17 

 Severe 0.522 0.001 69 0.831 0.000 130 

Shoulder blockage No       

 Yes 0.037 0.315 4 0.288 0.000 33 

Lane closure ≤ 25%    
   

 > 25% 0.208 0.003 23 -0.166 0.074 -15 

Temporal attributes       
Time of the day Off-peak       

 Peak hour -0.296 0.000 -26 0.110 0.083 12 

Lighting condition Day       

 Night 0.122 0.166 13 0.668 0.000 95 

Day of week Weekday       

  Weekend -0.063 0.143 -6 -0.113 0.051 -11 

Agency operations attributes      
Detection method On-site       

 Off-site 0.042 0.435 4 0.349 0.000 42 

Co-location of 

agencies 

Without co-location       

With co-location -0.148 0.000 -14 -0.143 0.004 -13 

Number of response 

agencies* 
--- 

-0.017 0.549 -2 0.404 0.000 50 

EMS involved Absent       

 Present -0.021 0.867 -2 -0.849 0.000 -57 

Towing involved No       

  Yes 0.025 0.703 3 0.293 0.001 34 

Note: * Continuous variable; “---” is Not Applicable; Bold values represent significant estimates at 95% 

confidence interval. 

 

3.5 Summary 

 

Most agencies use incident clearance duration to measure how well incident management 

strategies work. At the same time, incident management agencies focus on restoring normal 

traffic conditions as quickly as possible after an incident occurs. While most previous studies 

have focused on analyzing the incident clearance duration, little has been done to examine the 

incident recovery duration. This study introduced a measure that was referred to as the incident 

impact duration, which stands for the duration from the reporting of the incident to the time 
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when traffic condition returns to normal. Depending on the type of incident and the prevailing 

traffic conditions, the incident impact duration could be shorter or longer than the incident 

clearance duration. 

 

This chapter demonstrated a method to estimate the incident impact duration, and investigate 

the effects of various factors on the incident impact and clearance durations. A new algorithm 

using historical traffic speed data was developed to estimate the incident impact duration. The 

method uses the speed data reported by the BlueToad® devices to create a bandwidth of mean 

speed profiles within one standard deviation for the times when there were no incidents (i.e., 

during recurring congestion). In the event of an incident, the algorithm checks if the speeds 

drop below the lower bound (one standard deviation below the historical mean) and tracks the 

traffic flow speed until it returns to within the one standard deviation bandwidth. The incident 

impact duration is computed as the time elapsed from the speed dropping below the bandwidth 

to the time it returns within one standard deviation of the historical mean. 

 

The factors affecting incident impact and clearance duration were identified using two hazard-

based models. Results from the statistical models underline a range of factors that influence 

the impact and clearance durations. Significant variables affecting the incident impact and 

clearance durations include: incident type, incident severity, shoulder blockage, lane closure, 

time of the day, lighting condition, co-location of response agencies, number of response 

agencies, EMS involvement, and towing involvement. These results provided an insight on 

how these variables affect the incident impact and clearance duration. 

 

Crashes had 21% longer incident impact durations than hazards while severe incidents caused 

longer incident impact and clearance durations than minor incidents. Incidents involving over 

25% of lane closure resulted in longer incident impact durations. The incident impact duration 

was observed to increase when there is a high percentage of lane closure because the closed 

lanes can affect traffic that is further upstream of the incident scene. Incidents that occurred 

during peak hours had shorter impact durations than incidents during off-peak hours. 

Moreover, incidents had longer clearance durations at night. Incidents that were detected using 

off-site detection methods had longer clearance durations than incidents detected by on-site 

detection methods. Co-location of response agencies was observed to decrease the incident 

impact and clearance durations. Contrary to towing services, involvement of EMS services was 

associated with shorter incident impact durations. 
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CHAPTER 4 

INCIDENT-RELATED DELAYS 

 

This chapter focuses on establishing a framework for estimating the delays caused by incidents 

and identifying factors affecting these delays. A brief background on incident-related delays is 

first provided. The data used to estimate delays caused by incidents on freeways were then 

discussed. The next section presents the approaches used to estimate incident-related delays 

and to investigate the factors that influence incident-related delays. Finally, the study results 

are discussed.  

 

4.1 Background 

 

Delay is one of the metrics used to measure the highway system performance. Delays have a 

direct association with economic consequences, quality of life, and perceived level of service 

(Weisbrod et al., 2002). It is important to note that incident-induced delays can result from 

either recurrent or non-recurrent incidents. Recurrent incidents include special events such as 

game days for roadways near stadiums. Non-recurrent events include all unplanned roadway 

events, e.g., crashes, vehicle breakdowns, etc. Figure 4-1 shows a crash that led to traffic 

congestion (and, as a result, increased delay) on I-95 northbound. 

 

 
Figure 4-1: Non-recurrent Congestion Due to a Traffic Crash 

 

Understanding the delays caused by incidents and the factors affecting the extent of these 

delays is critical for transportation agencies. This information enables agencies to device 

effective strategies to reduce the impacts of incidents and assess the performance of their 

incident management strategies. Despite its significance, estimation of incident-related delays 

remains a challenge. This is because of the stochastic and dynamic nature of incidents and 

traffic conditions. For example, the traffic demand on a roadway segment during the first few 

minutes after the occurrence of an incident may vary from the demand after an incident remains 

uncleared for a while. Therefore, many studies have focused on different methods to accurately 

estimate incident-induced delays. 
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Dynamic queuing and shockwave analysis are the most common methods to estimate incident-

related delays. Some studies (e.g., Khattak et al., 2012; and Morales, 1987) have used a simple 

deterministic queuing model to estimate delays. Other studies including Sullivan (1997) have 

used a conventional cumulative arrival-departure curve method, which assumes that all delays 

from incidents are an outcome of demand flow exceeding capacity due to temporary capacity 

reduction. This approach has limitations since it assumes known arrival and departure rates 

after the incidents and do not reflect the dynamic conditions on the transportation network 

(Zeng and Songchitruksa, 2010). 

 

More recently, microscopic simulation models have been used to estimate incident-related 

delays based on incident durations. The simulation-based methods include a wide range of 

scenarios. For instance, Zhang et al. (2012) developed a simulation model to assess the 

influence of traffic composition (i.e., truck ratio) on delays resulting from traffic incidents. 

Rompis et al. (2014) developed a methodology for modeling incidents in microscopic 

simulation environment and analyzed queue length due to an incident blocking one or both 

lanes on the two-lane freeway. The main drawback of simulation-based method is the 

calibration and validation of numerous incident scenarios (Habtemichael et al., 2015). 

Simulation-based estimation of the incident delays requires a well-calibrated and validated 

model for both incident and incident-free scenarios. Furthermore, calibration and validation of 

a simulation model for incident scenarios is cumbersome and time consuming (Hadi and Zhan, 

2006). 

 

In order to overcome the limitations of the aforementioned methods, some studies have 

estimated delays by applying data-driven techniques which use ground-truth data and do not 

require many assumptions or rigorous model calibrations (Snelder et al., 2013; Zeng and 

Songchitruksa, 2010). For example, Habtemichael et al. (2015) proposed a method for 

establishing reference profile of traffic characteristics (e.g., travel time, traffic volume, etc.) on 

a freeway from which incident-induced delays can be deduced. The method estimated the 

incident-induced delay as the excess duration between incident-influenced travel-time profile 

and the reference (i.e., non-incident) travel-time profile. Likewise, other studies have estimated 

delays by comparing the existing traffic condition during an incident (i.e., incident-influenced 

profile) to the historical normal traffic condition (i.e., reference profile). The main difference 

between these studies is the metric used in the analysis (i.e., speed, traffic volume, etc.) and the 

extent of the analysis (i.e., freeway segment or network). Wang et al. (2008) used profile based 

on traffic volume while Hallenbeck et al. (2003) used lane occupancy profile both downstream 

and upstream of the incident location. Both Zeng and Songchitruksa (2010) and Snelder et al. 

(2013) used extra travel time as a parameter in estimating incident-induced delays, but Snelder 

et al. (2013) extended the analysis to the opposite approach to estimate the delay caused as a 

result of rubbernecking. 

 

One of the objectives of this research was to estimate and evaluate incident-related delays on 

freeways. This objective was achieved by: (1) developing an enhanced algorithm to estimate 

incident-related delays using real-time BlueToad® travel speed data and Regional Integrated 

Transportation Information System (RITIS) traffic volume data; and (2) examining the 

relationship between the numerous factors associated with incidents and the incident-related 

delays. The incident-related delays were estimated using the extra travel time and the traffic 

volume during incidents. Hazard-based models were applied to evaluate the factors that 

influence these delays.  
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4.2 Data 

 

Traffic incident and real-time traffic data were required to estimate the incident-related delays. 

Incident data were retrieved from the SunGuide® database; real-time traffic speed data were 

retrieved from the BlueToad® database; and real-time traffic volume data were obtained from 

the RITIS database. In addition to the aforementioned data, roadway characteristics data were 

used to evaluate factors affecting incident-related delays. Detailed roadway characteristics 

information was extracted from the 2016 FDOT’s Roadway Characteristics Inventory (RCI) 

database. Since the SunGuide® database and the BlueToad® database are already discussed in 

Section 2.2 and Section 3.2, respectively, only RITIS and RCI databases are discussed in the 

following sections.  

 

4.2.1 RITIS Database 

 

RITIS is an automated data sharing, dissemination, and archiving system that includes real-

time data feeds and archive data analysis tools such as probe, detector, and transit data 

analytics. These tools assist agencies to gain situational awareness, measure performance, and 

communicate information between agencies and to the public. The following information was 

retrieved from the RITIS database. Figure 4-2 shows the network of RITIS devices in 

Jacksonville, Florida. 

 

• Traffic volume data at 15-min intervals 

• Date and time  

• Detector location (i.e., latitude and longitude) 

 

 
Figure 4-2: Network of RITIS Devices in Jacksonville, Florida 
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4.2.2 RCI Database 

 

Detailed roadway characteristics information was extracted from the 2016 FDOT-RCI 

database. Of over 200 variables that are available in the RCI database, only the following 

variables that could potentially affect delays when an incident occurs were extracted:  

 

• AADT,  

• number of lanes,   

• median type, 

• median width,  

• shoulder type, 

• speed limit, 

• presence of horizontal curvature, 

• presence of vertical curvature, and 

• surface width. 

 

Lane width was derived from surface width and total number of lanes information. Lane width, 

median width, and shoulder width were rounded per the Highway Safety Manual (HSM) 

guidelines (AASHTO, 2010). Segmentation was performed per the guidelines provided in the 

HSM, i.e., a new segment starts whenever there is a slight change in any of the aforementioned 

variables (AASHTO, 2010). 

 

4.3 Methodology 

 

The incident-related delays were calculated from the increase in travel time for traffic upstream 

of the incident location and the number of vehicles affected by the incident. The process 

involved estimating the extra travel time due to incidents and the real-time traffic volume 

upstream of the incident location. Once the incident-related delays were estimated, duration-

based models were used to identify the factors affecting these delays. The following sections 

provide more details on the methodology adopted to estimate the incident-related delays on 

freeways, and to investigate the factors influencing these delays. 

 

4.3.1 Establish the Normal Travel Time Profile 

 

Freeway traffic congestion is classified into recurrent and non-recurrent congestion (Chung, 

2011). Recurrent congestion is the predictable traffic delay caused by regularly occurring 

events such as the daily variation in highway traffic demand (Chung, 2011; Hallenbeck et al., 

2003). Non-recurrent congestion is the un-predictable traffic delay resulting from incidents, 

e.g., crashes, disabled vehicles, etc. (Hallenbeck et al., 2003). 

 

Incident-related delays constitute the extra delay caused to the travelers in addition to the 

regular recurrent delays. As such, the first step in estimating the incident-related delays focuses 

on determining the recurrent delays along the study corridor. Recurrent delays are estimated 

by establishing the normal travel time profile of a roadway segment, and deducing the delays 

from the normal travel time profiles. The normal travel time profile represents the typical traffic 

conditions at 15-min intervals and shows the recurrent delays along a roadway segment. Figure 

4-3 outlines the procedure adopted to establish the normal travel time profiles for roadway 

segments. The following are the specific steps used to establish the normal travel time profiles.  
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Figure 4-3: Algorithm to Establish the Normal Travel Time Profile 

 

• Extract Speed Data: Speed data aggregated in 15-min intervals were collected from all 

the BlueToad® pairs in the study network for the years 2015-2017. The data were 

aggregated in 15-min intervals following the works of Guo et al., (2018) which 

observed lack of stability in traffic flow data for short time intervals, and Smith and 

Ulmer (2003) which suggested 15 minutes as a measurement interval to obtain stable 

traffic flow rates. 

 

• Prepare Speed Data: The speed data aggregated at 15-min intervals were used to 

establish the recurrent speed profile of each BlueToad® pair for each day of week. The 

95% confidence interval of the average speed was calculated to define the upper and 

lower bounds of the recurrent speed profile. This 95% confidence interval accounted 

for the variation in speeds on a roadway segment. For each BlueToad® pair, a total of 

seven traffic speed profiles were generated, one for each day of week. 

 

• Calculate the Normal Travel Time: The distance between each BlueToad® pair devices 

were extracted from the BlueToad® database. The travel time, at 15-min interval, 

between each BlueToad® pair device was estimated using the corresponding average 

speed. The 95% confidence interval was calculated to account for the variations in 

travel time. Seven travel-time traffic profiles, one for each day of week, were generated 

for each BlueToad® pair.  
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Example of the Estimated Travel Time Profile 

 

Figure 4-4 shows the estimated travel time profile on a Wednesday for a location on I-95 SB 

between two BlueToad® devices which are 1.49 miles apart. Longer travel times were observed 

between 4 PM and 7 PM. It can be inferred from the figure that the average travel time at 6 PM 

was approximately 140 seconds while the average travel time during most hours of the day was 

within 80 seconds. 

 

 
Figure 4-4: Travel Time Profile and its Corresponding Location of BlueToad® Pair  

 

4.3.2 Estimate the Extra Travel Time Due to Incident 

 

Estimation of the incident-related delays requires two inputs: extra travel time because of an 

incident, and the traffic volume affected by the incident. The extra travel time is the increase 

in duration for traveling from one point to another because of the congestion as a result of an 

incident. The increase in duration (i.e., the extra travel time) is calculated by comparing the 

normal travel time and the travel time during an incident. Figure 4-5 outlines the procedure 

adopted to estimate the extra travel time. The following are the specific steps used to estimate 

the extra travel time profiles.  

 

• Prepare the Incident Data: Each incident was matched to a BlueToad® pair at the 

incident location based on geographical coordinates (i.e., latitude and longitude). The 

date, day, and reported time of the incident were extracted and used for extraction of 

speed data from the BlueToad® pair. 

 

• Estimate Travel Time During an Incident: The traffic speed data of the BlueToad® pair 

where an incident occurred and the distance between BlueToad® pair devices were used 

to estimate the travel time during an incident.  

 

• Calculate the Extra Travel Time: The estimated travel time was compared to the 

corresponding normal travel time. Travel time longer than the upper boundary of the 
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travel time profile suggested that the BlueToad® pair was affected by the incident. The 

extra travel time for each 15-min interval was recorded and the procedure was repeated 

for every BlueToad® pair upstream of the incident location that was affected by the 

incident. Figure 4-6 shows an example of the travel time profile and the estimated extra 

travel time at a BlueToad® pair. 

 

 
Figure 4-5: Algorithm to Estimate Extra Travel Time Due to an Incident 
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Figure 4-6: Travel Time during an Incident as Compared to Normal Travel Time 

 

4.3.3 Calculate the Incident-related Delays 

 

Incident-related delays were calculated based on the extra travel time due to an incident and 

the traffic volume extracted from RITIS devices. RITIS devices associated with the affected 

BlueToad® pairs were first identified, and the corresponding traffic volume data affected by 

the incidents were extracted. The traffic volume data were aggregated in 15-min intervals to be 

consistent with the travel time and speed data from BlueToad® pairs. Figure 4-7 describes the 

process of estimating the traffic volume affected by an incident and calculating the incident-

related delays. The following are specific steps for calculating the incident-related delays.  

 

• Identify RITIS Devices Corresponding to BlueToad® Pairs: For each BlueToad® pair 

segment, only the RITIS devices on the mainline were used. Note that the RITIS 

devices that collect traffic volume data on exit and entry ramps were not used. Figure 

4-8 shows a typical example of the location of RITIS devices and BlueToad® pairs 

along a roadway section on I-95. 

 

• Extract Real-time Traffic Volume Data: Traffic volume data for the entire duration of 

the incident were extracted from the RITIS devices. For each BlueToad® pair, the 

retrieved traffic volume data were recorded at 15-min intervals. The process was 

repeated for all the BlueToad® pairs affected by the incident. 

 

• Calculate the Incident-related Delays: The recorded traffic volume was multiplied by 

the extra travel time to obtain the incident-related delay for each BlueToad® pair for 

each 15-min interval of the incident duration. This delay was calculated and summed 

for all the affected BlueToad® pairs and recorded as the total incident-related delay. 
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Figure 4-7: Algorithm to Estimate Delays Caused by Incidents 

 

 
(a) BlueToad® Pair   (b) RITIS Devices 

Figure 4-8: Location of BlueToad® Pair and RITIS Devices along a Section on I-95  
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4.3.4 Evaluate Factors Affecting Incident-related Delays 

 

Hazard-based models are suitable for time-dependent variables. Moreover, these models 

facilitate the interpretation of data using a sequence of probabilities (Li, 2017). Since incidents 

are cleared with time (Chung, 2011), hazard-based models are suitable for the analysis of 

incident-related delays and causative factors. The hazard-based model formulation is similar 

to the one described in the Section 2.3.   

 

4.4 Results and Discussion  

 

The analysis was based on three years of traffic incident data (2015-2017) retrieved from 

SunGuide® database. Incident-related delays were estimated using the methodology discussed 

in Sections 4.3.1 through 4.3.3. The methodology utilized data retrieved from three sources, 

SunGuide®, BlueToad®, and RITIS. The speed data were obtained from the BlueToad® devices 

while the traffic volume data were retrieved from the RITIS database. The duration-based 

models were developed to investigate the influence of various incident attributes on the 

estimated incident-related delays. Attributes related to the incident location, e.g., median type 

and median width at the incident location, were obtained from the RCI database. The following 

sections discuss the study location, the estimated incident-related delays, and the factors 

affecting incident-related delays.  

 

4.4.1 Study Location  

 

The study area includes a 35-mile section on I-95, a 21-mile section on I-10, a 61-mile section 

on I-295, and a 13-mile section on SR-202 located in Jacksonville, Florida. In summary, the 

total study area covers 130 miles. Figure 4-9 shows the study corridors. 

 

  
Figure 4-9: Study Area 

 

4.4.2 Data Description  

 

A total of 73,430 incidents that occurred from 2015-2017 along the study corridors (I-95, I-

295, I-10, and SR-202) were extracted from the SunGuide® database. However, due to the 

absence of BlueToad® devices, 6,675 incidents that occurred on SR-202 were excluded from 

further analysis. A total of 15,730 incidents that occurred on ramps were also excluded. 

Furthermore, 47,642 incidents were excluded for several other reasons such as at locations with 

inactive BlueToad® devices, at work zones, etc. Finally, a total of 3,383 incidents (i.e., 5.1%) 

were included in this analysis.  
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Table 4-1 shows the summary of the estimated incident-related delays, along with the summary 

description of the various attributes used in the analysis. Table 4-1 shows that the frequency of 

hazards, vehicle problems, and crashes in the analyzed data was 313 (9%), 1,323 (39%), and 

1,747 (52%), respectively. Minor incidents (96%) were more frequent than moderate (3%) and 

severe (1%) incidents. Other incident attributes included time of the day, day of week (weekend 

or weekday), median type, median width, speed limit, and presence of horizontal or vertical 

curve. The time of the day variable was divided into morning peak hours (6:30 AM – 10:00 

AM), evening peak hours (3:30 PM – 7:00 PM), and off-peak hours (all other hours not in peak 

hours). Almost 31% (1,054) of the incidents occurred during morning peak hours, 22% (761) 

during evening peak hours, and 46% (1,568) during off-peak hours. 

 

Table 4-1: Estimated Incident-related Delays  

 Variables Categories Frequency 
Average 

(veh-hrs) 

S.D. 

(veh-hrs) 

Minimum 

(veh-hrs) 

Maximum 

(veh-hrs) 

Incident attributes        
Incident type Hazards 313 4 5 0.010 21 

  Crashes 1,323 62 81 0.005 343 

  Vehicle problems 1,747 11 17 0.007 83 

Incident severity Minor 3,242 28 56 0.005 343 

  Moderate 119 77 86 0.067 340 

  Severe 22 65 69 0.120 268 

Temporal and roadway geometric attributes      
Time of the day Off-peak hours 1,568 17 41 0.005 337 

  Morning peak hours 1,054 40 67 0.013 343 

  Evening peak hours 761 42 68 0.023 342 

Day of week Weekday 3,138 30 58 0.005 343 

  Weekend 245 29 58 0.011 337 

Median type Paved 492 41 71 0.011 332 

  Vegetation 2,891 28 55 0.005 343 

Median width* ---  --- --- --- --- --- 

Speed limit 40-60 mph 572 41 70 0.011 343 

  65-70 mph 2,811 28 55 0.005 342 

Horizontal curve No 2,328 31 59 0.008 342 

  Yes 1,055 28 55 0.005 343 

Vertical curve No 3,040 30 59 0.005 343 

  Yes 343 28 54 0.013 319 

Agency operations attributes        
Towing involved No 3,024 27 55 0.005 343 

  Yes 359 58 76 0.052 342 

EMS involved No 3,216 27 55 0.005 343 

  Yes 167 85 89 0.067 340 

Fire Department 

involved 

No 3,207 27 55 0.005 343 

Yes 176 83 85 0.067 340 

Detection method Off-site 327 62 78 0.030 342 

  On-site 3,056 27 55 0.005 343 

Note: * Continuous variable; “---” is Not Applicable. 

 

The median at the incident location was categorized into two groups: paved medians (15%, 

492) and medians with vegetation (85%, 2,891). Median width was the only continuous 

variable in the study. Speed limit was categorized into two groups, 40-60 mph (17%), and 65-

70 mph (83%). Horizontal and vertical curve variables had two groups each, representing 

presence (Yes) or absence of horizontal (or vertical) curves (No). The attributes for towing 

services, the EMS and the Fire Department had two categories each, identifying the 

involvement of the service during the incident clearance time. It can be inferred from Table 4-

1 that 3,024 (89%) incidents did not require towing services; 3,216 (95%) incidents did not 
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involve the EMS; and 3,207 (95%) incidents did not involve the Fire Department. A total of 

3,056 (90%) incidents were detected using on-site detection methods while the remaining 327 

(10%) were detected through off-site detection techniques. 

 

4.4.3 Estimation of Incident-related Delays 

 

Table 4-1 shows the incident-related delays estimated using the methodology discussed in 

Sections 4.3.1 through 4.3.3. The average delay due to hazards, crashes, and vehicle problems 

was 4 vehicle-hours, 62 vehicle-hours, and 11 vehicle-hours, respectively. The average delay for 

incidents that occurred during morning peak hours (40 vehicle-hours) and evening peak hours 

(42 vehicle-hours) was higher compared to the average delay during off-peak hours (17 vehicle-

hours). Severe incidents resulted in an average delay of 65 vehicle-hours, while moderate and 

minor incidents resulted in an average delay of 77 vehicle-hours and 28 vehicle-hours, 

respectively. A more detailed discussion of the results presented in Table 4-1 is provided below: 

 

• Incident Type: Figure 4-10(a) shows the distribution of incident-related delays with 

respect to incident type. Almost 100% of the hazards caused delays shorter than 20 

vehicle-hours. Vehicle problems caused 82% of the incident-related delays shorter than 

20 vehicle-hours, 10% of the incident-related delays were between 20 and 40 vehicle-

hours, and 5% of the incident-related delays were between 40 and 60 vehicle-hours. 

Crashes led to more varying delays than other incident types, with only 48% causing 

delays shorter than 20 vehicle-hours, and 20% resulting in incident-related delays 

longer than 120 vehicle-hours. 
 

• Incident Severity: Figure 4-10(b) shows that 72% of minor incidents caused incident-

related delays shorter than 20 vehicle-hours; while 7% of minor incidents led to 

incident-related delays longer than 120 vehicle-hours. It was surprising to observe that 

a greater proportion of severe incidents than moderate incidents resulted in delays 

shorter than 20 vehicle-hours. Similarly, 24% of moderate incidents resulted in 

incident-related delays longer than 120 vehicle-delays, while only 14% of severe 

incidents resulted in incident-related delays longer than 120 vehicle-hours. 

 

• Time of the Day: Figure 4-10(c) shows that 80% of the incidents during off-peak hours 

led to delays shorter than 20 vehicle-hours. Only 3% of the incidents during off-peak 

hours had incident-related delays longer than 120 vehicle-hours. The morning peak hours 

had 62% of incident-related delays shorter than 20 vehicle-hours and 11% of incident-

related delays longer than 120 vehicle-hours. The evening peak hours had 60% of 

incident-related delays shorter than 20 vehicle-hours and 12% of incident-related delays 

longer than 120 vehicle-hours. As expected, the distributions of incident-related delays 

during the morning peak hours and the evening peak hours were found to be similar. 
 

• Day of week: Figure 4-10(d) shows that 70% of the incidents that occurred on weekdays 

had incident-related delays shorter than 20 vehicle-hours. About 9% of the incidents 

that occurred on weekdays had incident-related delays between 20 and 40 vehicle-

hours, and 8% had incident-related delays longer than 120 vehicle-hours. About 75% 

of the incidents that occurred on weekends had incident-related delays shorter than 20 

vehicle-hours, while 9% of the incidents on weekends caused incident-related delays 

longer than 120 vehicle-hours. 
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• Agency Involvement: Figure 4-11(a) shows that 73% of the incidents where towing 

services were not involved had incident-related delays shorter than 20 vehicle-hours. 

Only 7% of the incidents that did not involve towing service had incident-related delays 

longer than 120 vehicle-hours. However, 48% of the incidents that required towing 

services led to incident-related delays shorter than 20 vehicle-hours. About 17% of the 

incidents that involved towing operations resulted in incident-related delays longer than 

120 vehicle-hours. 
 

Figure 4-11(b) shows that 72% of the incidents that did not involve EMS led to incident-

related delays shorter than 20 vehicle-hours. About 7% of the incidents that involved 

EMS led to incident-related delays longer than 120 vehicle-hours. Only 31% of the 

incidents that required the EMS had incident-related delays shorter than 20 vehicle 

hours. As expected, 25% of the incidents that involved EMS led to incident-related 

delays longer than 120 vehicle-hours. 
 

• Detection Method: Figure 4-11(c) shows that almost 75% of the incidents that were 

detected on-site led to delays shorter than 20 vehicle-hours. Only 6% of the incidents 

that were detected on-site caused incident-related delays longer than 120 vehicle-hours. 

About 45% of the incidents that were detected off-site led to incident-related delays 

shorter than 20 vehicle-hours. About 18% of the incidents that were detected off-site 

resulted in incident-related delays longer than 120 vehicle-hours. 
 

• Speed Limit: Figure 4-11(d) shows 72% of incidents that occurred along segments with 

the speed limit of 40-60 mph led to incident-related delays shorter than 20 vehicle-

hours. Only 7% of incidents that occurred along roadway sections with the speed limit 

of 40-60 mph caused incident-related delays longer than 120 vehicle-hours. Figure 4-

11(d) suggests that 63% of incidents that occurred along sections with the speed limit 

of 65-70 mph led to incident-related delays shorter than 20 vehicle-hours. Moreover, 

13% of the traffic incidents along segments with the speed limit of 65-70 mph caused 

incident-related delays longer than 120 vehicle-hours.   
 

• Median Type: Figure 4-12(a) shows that 65% of the incidents that occurred at locations 

with paved medians resulted in incident-related delays shorter than 20 vehicle-hours. 

About 13% of the incidents at locations with a paved median led to incident-related 

delays longer than 120 vehicle-hours. About 71% of the incidents that occurred at 

locations with vegetation on median led to incident-related delays shorter than 20 

vehicle-hours. Only 7% of the incidents that occurred at locations with vegetation on 

median resulted in incident-related delays longer than 120 vehicle-hours.  
 

• Horizontal and Vertical Curves: Figure 4-12(b) shows that 71% of the incidents that 

occurred on straight segments led to incident-related delays shorter than 20 vehicle-

hours. Only 8% of the incidents that occurred on straight segments led to incident-

related delays longer than 120 vehicle-hours. Figure 4-12(b) suggests that 70% of the 

incidents that occurred on horizontal curves caused incident-related delays shorter than 

20 vehicle-hours. About, 6% of the incidents that occurred on horizontal curves led to 

incident-delays longer than 120 vehicle-hours.  
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(a) Incident Type 

 
 (b) Incident Severity 

 
(c) Time of the Day 

 
(d) Day of Week 

Figure 4-10: Distributions of Incident-related Delays with Respect to Various Attributes  
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(a) Towing Services 

 
 (b) EMS Involvement 

 
(c) Detection Method 

 
(d) Speed Limit 

 

Figure 4-11: Distributions of Incident-related Delays with Respect to Various Attributes 
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Figure 4-12: Distributions of Incident-related Delays with Respect to Various Geometric Attributes 
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Figure 4-12(c) shows that 71% of the incidents that did not occur on vertical curves caused 

incident-related delays shorter than 20 vehicle-hours, while 8% of the incidents that did not occur 

on vertical curves led to incident-related delays longer than 120 vehicle hours. About 69% of the 

incidents that occurred on vertical curves led to incident-related delays shorter than 20 vehicle-

hours, while 7% of the incidents that occurred on vertical curves resulted in incident-related 

delays longer than 120 vehicle-hours. 

 

4.4.4 Factors Affecting Incident-related Delays  

 

The Accelerated Failure Time (AFT) models were developed to determine the relationship 

between incident characteristics, traffic conditions, roadway geometric conditions, and the 

estimated incident-related delays. Likelihood ratio statistic was used to select the best fit model. 

A model with a higher value of likelihood ratio statistic indicates improved statistical fit as 

compared to other models (Washington et al., 2003). The AFT model with a Weibull 

distribution (1,280) was selected as the best fit model compared to log-logistic (1,131), and 

lognormal (1,032). Table 4-2 provides the results of the AFT model with Weibull distribution. 

The last column (% change) in Table 4-2 shows the percent increase (or decrease) in the 

incident-related delays due to a change in a categorical variable from the base category or a 

unit change in the continuous variable. 
 

Table 4-2: Factors Influencing Incident-related Delays 

  AFT model (Weibull distribution) 

Variables Categories Estimates Std. Error z-value p-value % change 

Incident attributes       
 

Incident type Hazards     
 

  Crashes 2.374 0.106 22.30 0.000 974 

  Vehicle problems 0.779 0.101 7.73 0.000 118 

Incident severity Minor     
 

  Moderate 0.493 0.170 2.89 0.004 64 

  Severe 0.140 0.370 0.37 0.705 15 

Temporal and roadway geometric attributes    
 

Time of the day Off-peak     
 

  Morning peak 0.639 0.067 9.59 0.000 90 

  Evening peak 0.766 0.073 10.50 0.000 115 

Day of week Weekday     
 

  Weekend -0.562 0.113 -4.99 0.000 -43 

Median type Paved     
 

  Vegetation -0.121 0.193 -0.62 0.531 -11 

Median width* Not applicable  -0.011 0.002 -5.00 0.000 -1 

Speed limit (mph) 40-60 mph     
 

  65-70 mph -0.063 0.186 -0.33 0.738 -6 

Horizontal curve No     
 

  Yes -0.075 0.061 -1.21 0.224 -7 

Vertical curve No     
 

  Yes 0.201 0.096 2.07 0.037 22 

Agency operations attributes      
 

Towing involved No     
 

  Yes 0.124 0.103 1.20 0.227 13 

EMS involved No     
 

  Yes 0.519 0.242 2.14 0.032 68 

Fire Department involved No     
 

  Yes -0.009 0.245 -0.03 0.970 -1 

Detection method Off-site      
  On-site -0.322 0.098 -3.29 0.001 -28 

Note: * Continuous variable; Bold values represent significant estimates at 95% confidence interval. 
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Out of the 13 variables, the following eight variables were significant at 95% confidence 

interval.  

 

• Incident Type: As shown in Table 4-2, when compared to hazards, crashes led to 

approximately 10 times longer delays. This was expected because crashes are 

associated with longer incident clearance durations (Zhang et al., 2012), implying that 

the traffic upstream of a crash takes longer to dissipate compared to hazards. Also, it 

can be presumed that crashes affect traffic characteristics, e.g., travel speeds, more than 

hazards. Vehicle problems (e.g., disabled vehicles, abandoned vehicles, etc.) led to 

incident-related delays that were 118% longer than hazards. The incident-related delays 

due to vehicle problems were not as high compared to the incident-related delays caused 

by crashes because of the difference in the magnitude of impacts on traffic flow 

characteristics (e.g., the percentage of lane closure) that are associated with the two 

incident types. Figure 4-13(a) shows the impact of incident type on the estimated 

incident-related delays. Crashes have higher probabilities of having longer delays 

compared to hazards and vehicle problems. For example, the probability of having 

incident-related delays longer than 10 vehicle-hours was approximately 0.2, 0.1, and 

0.05 for crashes, vehicle problems, and hazards, respectively. 

 

• Incident Severity: Both moderate and severe incidents were associated with longer 

delays than minor incidents. Results in Table 4-2 suggest that moderate incidents 

caused 64% longer incident-related delays than minor incidents. Moderate incidents 

include those involving a high percentage of lane closure while minor incidents might 

only involve shoulder blockage, if at all. Note that the traffic upstream of the incident 

is directly affected by the extent and duration of the lane closure at the incident location. 

Figure 4-13(b) shows the impact of incident severity on the estimated incident-related 

delays. The likelihood of minor and moderate incidents to cause incident-related delays 

longer than 10 vehicle-hours was approximately 0.06 and 0.1, respectively. The effect 

of severe incidents was not significant at the 95% confidence interval, and this 

observation requires further investigation.  

 

• Time of the Day: The positive estimates on the time of the day categories in Table 4-2 

suggest longer incident-related delays during peak hours (morning peak and evening 

peak) than off-peak hours. There was a 90% increase in the incident-related delays 

during morning peak hours than off-peak hours. Likewise, the evening peak hours had 

110% longer incident-related delays compared to off-peak hours. This was expected as 

there is more traffic on the highways during peak hours than off-peak hours (Angel et 

al., 2014). However, Table 4-2 shows that the difference in the increase in incident-

related delays during the evening peak hours was higher than the increase in incident-

related delays during the morning peak hours. Figure 4-13(c) suggests that incidents 

during evening peak hours had slightly higher probabilities of causing longer delays 

than incidents during morning peak hours. This could be attributed to the fact that the 

traffic pattern during evening peak hours is more volatile than during morning peak 

hours and off-peak hours. Moreover, Nam and Mannering (2000) observed longer 

incident response times during evening peak hours than morning peak hours. 

 

• Day of Week: Table 4-2 shows that incidents that occurred on weekends had 43% 

shorter incident-related delays than incidents on weekdays. Figure 4-13(d) shows that 

the probabilities of longer incident-related delays were higher during weekdays than 

weekends. For example, the probability of having incident-related delays longer than 
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10 vehicle-hours was approximately 0.05 on weekdays and 0.03 on weekends. An 

intuitive reason could be less traffic volume on the roadways during weekends 

compared to weekdays. Although weekends are associated with longer clearance 

durations, the traffic volume affected by the incident could be low to cause significant 

traffic delays on weekends. 

 

• Median Width: It can be inferred from Table 4-2 that a unit increase in the median width 

led to a significant 1% decrease in incident-related delays. Wider medians provide a 

clear area away from the traffic lanes for incident-responding agencies to station and 

operate. Moreover, wider medians allow responders to quickly clear (i.e., move) the 

vehicles involved in an incident from the roadway and ensure normal traffic flow while 

attending to the incident on the median. 

 

• Vertical Curves: Compared to level sections, presence of vertical curves on segments 

resulted in longer incident-related delays. Table 4-2 shows that there was a 22% 

increase in incident-related delays on segments with vertical curves, compared to the 

level sections. In Florida, which is predominantly a level terrain, vertical curves are 

usually found in the vicinity of bridges. Since bridges have very little right-of-way, it 

takes longer to clear incidents on bridges, increasing the delays associated with these 

incidents. 

 

• EMS Involvement: Table 4-2 shows that incidents that involved EMS were associated 

with 68% longer incident-related delays than incidents that did not involve EMS. The 

EMS are commonly associated with severe incidents involving injuries or fatalities. 

These are obviously expected to have a higher impact on the traffic flow and, hence, 

longer delays. Figure 4-13(e) shows that the likelihood of having longer incident-

related delays was greater when EMS was involved as compared to when EMS was not 

involved. 

 

• Detection Method: Detection of incidents on-site led to shorter incident-related delays 

compared to off-site detection. Figure 4-13(f) shows that the probabilities of having 

longer incident-related delays were higher when incidents were detected using the off-

site method than the on-site method. Because the on-site detection directly involves 

some of the response agencies, e.g., Road Rangers, the management of an incident 

scene starts immediately after detection. Quick response to an incident and prompt 

management of the incident can avoid traffic bottlenecks. Moreover, most of the 

hazards and disabled vehicles were detected by the on-site services, e.g., Road Rangers, 

FHP, etc., and were observed to cause shorter delays. 
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Figure 4-13: Impact of Various Attributes on Incident-related Delays 
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4.5 Summary  

 

This chapter focused on estimating and analyzing incident-related delays on freeways using a 

data-driven approach. The analysis was based on 3,383 incidents that occurred along I-95, I-

295, and I-10 in Jacksonville, Florida, from 2015-2017. A data-driven methodology was first 

developed and applied to estimate the incident-related delays. The approach took advantage of 

the vast network of traffic sensors along the freeway corridors. The analysis used data extracted 

from both the BlueToad® and RITIS devices. These devices enabled the identification of the 

dynamic spatial and temporal extent of the incidents. The developed approach used real-time 

traffic flow characteristics, e.g., speed, travel time, and volume, to estimate the actual delays 

caused by traffic incidents. 

 

Results indicated that approximately 100%, 82%, and 48% of hazards, vehicle problems and 

crashes, respectively, had incident-related delays shorter than 20 vehicle-hours. Only 7%, 24%, 

and 14% of minor, moderate, and severe incidents, respectively, led to incident-related delays 

longer than 120 vehicle-hours. The distribution of incident-related delays during morning- and 

evening-peak hours showed a similar trend, where both had lower percentage (approximately 

61%) of incident-related delays shorter than 20 vehicle-hours than incidents during off-peak 

hours (81%). Moreover, 70% of incident-related delays on weekdays and 75% of the incident-

related delays on weekends were shorter than 20 vehicle-hours. About 48% of the incidents 

that involved towing services caused incident-related delays shorter than 20 vehicle hours. 

Only 6% of the incidents detected using on-site detection methods led to incident-related delays 

longer than 120 vehicle-hours while 18% of the incidents detected using off-site detection 

methods caused incident-related delays longer than 120 vehicle-hours. 

 

Once the incident-related delays were estimated, the factors affecting these delays were 

investigated using hazard-based models. Since delays dissipate after a certain time, hazard-

based models were suitable because of their duration dependence properties. Both the 

parametric and the semi-parametric hazard models were estimated, and the best fit model was 

selected by using the likelihood ratio statistics. The AFT model with Weibull distribution was 

selected as the best fit model.  

 

Results indicated that the following eight variables had significant influence on the incident-

related delays at the 95% confidence interval:  

 

• incident type (i.e., crashes, vehicle problems, and hazards),  

• incident severity (i.e., minor, moderate, and severe), 

• time of the day (i.e., off-peak hours, morning peak hours, and evening peak hours),  

• day of week,  

• median width,  

• vertical curvature (i.e., presence or absence),  

• EMS involvement (i.e., involved or not involved), and  

• detection method (i.e., on-site detection and off-site detection).  

 

Crashes, vehicle problems, moderate incident severity, presence of vertical curves, EMS 

involvement, and off-site detection methods were found to cause longer incident-related delays. 

As suggested in the study findings, incident-related delays were longer when an incident was 

a crash. Enhancements to crash response and dissemination of crash information to the traffic 

upstream of the crash has the potential to reduce the delays caused by crashes. Further 

investigation is required to identify factors contributing to longer incident-related delays during 
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evening peak hours than morning peak hours. Presence of vertical curves was associated with 

bridges, and was found to have significant longer incident-related delays. There is a need for 

special incident management procedures for such locations to minimize the incident-related 

delays. A spatial analysis of incident-related delays can identify the areas with the likelihood 

of having longer delays and help incident response agencies develop plans to cater to these 

locations. 
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CHAPTER 5 

SECONDARY CRASHES  

 

Traffic incidents have a greater propensity to result in additional incidents, commonly called 

secondary crashes (SCs). As such, minimizing the occurrence of SCs is one of the major focus 

areas for transportation agencies, in particular TMCs. This chapter focuses on identifying SCs 

and analyzing the risk factors influencing the occurrence of these crashes.  

 

5.1 Secondary Crash Definition 

 

Traffic incidents frequently affect traffic operations, accounting for more than a half of all 

urban traffic delays and almost all rural traffic delays (Baykal-Gürsoy et al., 2009). 

Furthermore, traffic incidents expose other vehicles to the risk of becoming involved in a SC 

(Owens et al., 2010). SCs are generally considered to occur at the boundaries or within the 

congested spatiotemporal region that builds up as a result of a prior incident, commonly 

referred to as a primary incident (PI). While most studies (Zhan et al., 2008; Moore et al., 2004) 

have identified SCs upstream of the direction of travel similar to the vehicles in PI, it is possible 

for SCs to occur in the opposite direction of the PI as a result of the rubbernecking phenomenon 

(Yang et al., 2014a). Figure 5-1 explains SCs using a hypothetical example.  

 

 
Figure 5-1: Definition of a Secondary Crash 

 

In this example, a prior traffic incident (crash) occurred on NB lanes at 8:33 AM. This crash, 

categorized as a primary crash, resulted in a queue backup upstream of the crash location. Two 

crashes, one near the primary crash location and the other upstream of the primary crash 
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location, occurred at 8:35 AM and 8:38 AM, respectively. Another crash also occurred in the 

opposite direction (i.e., on SB lanes) at 8:55 AM. While the first crash that occurred at 8:33 

AM is considered as the PI, the remaining three crashes are considered as SCs which occurred 

as a result of the PI. In summary, a traffic incident is considered as a SC if it occurs: (a) at the 

scene of the PI (Zhang and Khattak, 2010); or (b) within the queue upstream of the PI (Owens 

et al., 2010; Zhang and Khattak, 2010; Zhan et al., 2008; Moore et al., 2004); or (c) within the 

queue in the opposite direction of the PI caused due to driver distraction (i.e., rubbernecking 

effect) (Yang et al., 2014a).  

 

SCs have increasingly been recognized as a major problem leading to reduced capacity, 

additional traffic delays, and increased fuel consumption and emissions. SCs are non-recurring 

in nature; not only do they affect the traffic operations, but they also impose risk on safety of 

road users. Statistics indicate that up to 15% of reported crashes are partly or entirely due to 

PIs (Raub, 1997). In a more recent study, Owens et al. (2010) determined that SCs account for 

20% of all crashes and 18% of all fatalities on freeways. Further, compared to PIs, SCs have 

significant impact on traffic management resource allocation (Vlahogianni et al., 2012; 

Karlaftis et al., 1999). For these reasons, prevention of SCs has been highlighted as a high 

priority task for traffic incident managers (NCHRP 2014; O’Laughlin and Smith, 2002). In 

fact, FHWA uses the reduction of SCs as one of the performance measures for state incident 

management systems (Owens et al., 2010). As such, several state agencies, including Florida, 

are considering SC identification and mitigation strategies in allocating funding for on-road 

help services (e.g., Road Rangers) and the development of TIM programs (NCHRP 2014). 

Consequently, minimizing the occurrence of SCs is one of the major focus areas for 

transportation agencies, in particular TMCs (Owens et al., 2010). Nonetheless, the limited 

knowledge on the nature and characteristics of SCs has largely impeded their mitigation 

strategies. The main objectives of this study include: 

 

1. Developing an enhanced algorithm to identify SCs using real-time BlueToad pairs 

travel speed data.  

2. Examining the relationship between the PI and its respective SC.  

3. Developing a reliable SC risk prediction model using real-time traffic flow variables. 

 

5.2 Literature Synthesis 

 

Existing literature on SCs has mainly focused on three aspects: methods to identify SCs; 

characteristics of SCs; and factors that influence the occurrence of SCs. This section is 

therefore divided into three subsections based on the aforementioned three topics.  

 

5.2.1 Existing Methods to Identify SCs 

 

As mentioned earlier, SCs are traffic incidents that occur within the spatial and temporal impact 

range of the PIs. Unlike other traffic incidents which are easily identified by incident 

responders, detection of SCs is not a straightforward procedure since the definition itself is 

subjective. Even incident responders on-site or the TMC personnel, who observe traffic 

through the CCTV, cannot accurately identify SCs. This is because the process of identifying 

SCs varies depending on the spatial and temporal influence area of the PI.  It is difficult to 

determine visually, either directly at the crash site or through the CCTV camera, if the crash is 

a result of the backup caused by another incident. Thus, accurate detection of SCs depends on 

the reliability of the spatial and temporal information of the prior incident. With that, the first 
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step in identifying SCs is to define the impact area of the prior incident, i.e., its spatiotemporal 

boundaries.  

 

Three major approaches have been used to define the spatiotemporal thresholds of PIs: (1) 

manual method where personnel visually identify SCs; (2) static method that uses predefined 

spatiotemporal thresholds; and (3) dynamic approach that uses varying spatiotemporal 

thresholds based on PI characteristics and prevailing traffic flow conditions. An extensive 

review of literature indicated that tremendous efforts have been conducted to identify SCs. 

Comprehensive reviews of the static and dynamic methods can be found in Yang et al. (2018). 

The following subsections provide more details about these three methods.  

 

Manual Method 

 

As the name “manual” indicates, in this method, SCs are manually identified by either TMC 

personnel or incident responders. Identifying SCs on a CCTV camera is considered an off-site 

approach; while identifying SCs at the incident scene by the incident responders including 

police, Road Rangers, etc., is considered an on-site approach. In Florida, SCs are recorded at 

the incident scene via a check box in the electronic crash form shown in Figure 5-2. The TMC 

operations personnel also often link a secondary event to a primary event and note it as being 

secondary to the first (i.e., primary) event in the SunGuide® database.   

 

 
Figure 5-2: Traffic Incident Management Performance Data Elements on the FHP 

Electronic Crash Form  (NCHRP 2014) 

 

The manual method has traditionally been used by agencies to identify SCs. It is simple and 

does not require any data processing. However, despite being the most commonly used method, 

it is subjective, unreliable, inconsistent, and random.  

 

Static Method 

 

The static method identifies SCs based on some fixed spatial and temporal criteria. Crashes 

that occurred within the spatial and temporal impact range of a PI are identified as SCs. For 

SCs occurring upstream of the PI, the spatial and temporal thresholds employed by previous 

studies range from 1 to 2 miles and 15 minutes to 2 hours, respectively (Zhan et al., 2008; 

Moore et al., 2004; Karlaftis et al., 1999; Raub, 1997). On the other hand, SCs occurring in the 
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opposite direction of the PI were identified using different thresholds. Table 5-1 summarizes 

some of studies that used the static method to identify SCs. For example, Chang and Rochon 

(2011) identified SCs using 30-minutes-0.5-mile threshold in the opposite direction of the PI. 

In the current study, the temporal and spatial thresholds of 2 hours and 2 miles were adopted 

while identifying SCs on the upstream direction; while, SCs in the opposite direction were 

identified using a spatial threshold of 0.5 miles and temporal threshold of incident clearance 

duration of the PI.  

 

Table 5-1: Summary of Literature on Static Secondary Crash Identification Methods 

Study Data Fixed Spatiotemporal Criteria Used 

Raub (1997) and  

Karlaftis et al. (1999) 
Incident data 

Clearance time + 15 minutes 

1 mile 

Latoski et al. (1999) Incident data 
Clearance time + 15 minutes 

3 miles upstream 

Zhan et al. (2008) Incident data 
Clearance time + 15 minutes 

2 miles upstream, lane closure 

Hirunyanitiwattana and Mattingly 

(2006) 
Crash data  

2 hours 

2 miles 

Khattak et al. (2009) Incident data 
actual duration 

1 mile upstream 

Moore et al. (2004); 

Kopitch and Saphores (2011) 
Incident data 

2 hours 

2 miles (both directions) 

Chang and Rochon (2011) Incident data 
2 hours, 2 miles;  

0.5 hours, 0.5 miles (opposite direction) 

Green et al. (2012) Crash data  
80 minutes 

6,000 ft; 1,000 ft (opposite direction) 

  

Unlike the manual method, static method is more reliable simply because it is a function of 

predefined spatiotemporal parameters. This approach can be more efficient by automating it 

using Visual Basic for Application (VBA), or similar applications. However, the fixed 

spatiotemporal thresholds used in the static method are subjective and arbitrary. The method 

incorrectly assumes that all incident types that occur at different traffic conditions such as 

congested and free-flow states, have the same impacts on the upstream traffic flow. In fact, 

incidents occurring during free-flow conditions might not have a long lasting and far reaching 

effect compared to the incidents occurring during congested conditions. In addition, severe 

incidents tend to lead to longer incident response and clearance times compared to minor 

incidents. To accurately identify SCs, both spatial and temporal thresholds should vary based 

on traffic conditions, geometric characteristics, and certainly incident characteristics. 

 

Dynamic Method 

 

To overcome the limitations associated with the static approach, recent studies have focused 

on detecting SCs based on traffic flow conditions. In this case, spatiotemporal thresholds are 

flexibly selected based on the impact of the PI on traffic flow parameters hence the name 

dynamic methods. Sun and Chilukuri (2006) proposed the use of an incident progression curve, 

a method that uses incident duration to estimate the queue length and hence identify SCs that 

occurred within the queue. The incident progression curve method indicated a 30% 

improvement in the SC identification accuracy compared to the static method. Nonetheless, 

queuing model-based approaches are limited in the establishment of the reliable queuing 

model. In other words, different roadway segments are subject to different queuing formation 

processes because of their unique traffic, geometry, and incident characteristics.  
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Several researchers have estimated flexible spatiotemporal thresholds based on the PI influence 

area using other dynamic methods such as speed contour, automatic tracking of moving jams, 

vehicle probe data, shock wave principles, etc. (Park and Haghani 2016; Wang et al., 2016a; 

Yang et al., 2014a; Mishra et al., 2016). These approaches take the advantage of the traffic data 

retrieved from infrastructure-based traffic sensors. Use of traffic sensor data enables capturing 

the effects of traffic characteristics (e.g., flow, speed, and density) that change over time and 

space, and affect the queue formation as a result of the PI. Table 5-2 summarizes some of the 

studies that used the dynamic approaches to identify SCs.  

 

Table 5-2: Summary of Literature on Dynamic Secondary Crash Identification Methods 

Study Data Method Used  

Zhan et al. (2009) Incident data Maximum queuing model 

Sun and Chilukuri (2006, 2010) Incident data Incident progression curves 

Zhang and Khattak (2010) Incident data Deterministic queuing model 

Haghani et al. (2006) and  

Chou and Miller-Hooks (2010) 

Incident and simulated traffic 

data 
Simulated speed contour map 

Vlahogianni et al. (2010, 2012)  
Incident, monitor and sensor 

data 
Automatic Staudynamikanalyse model 

Yang et al. (2013, 2014b, 2014c) Crash and sensor data Speed contour map 

Imprialou et al. (2013) Detectors data 
Automatic Staudynamikanalyse model 

and the cumulative plots method 

Park and Haghani (2016) Probe data Speed contour map 

Sarker et al. (2015, 2017) and 

Mishra et al. (2016) 
Detector data Queuing shockwave-based model 

 

The results from these studies indicate that the proposed dynamic methods provide better 

accuracy in identifying SCs than conventional static methods. Compared to static or manual 

method, dynamic method is a more advanced and reliable method since it identifies SCs based 

on traffic flow characteristics. However, the implementation of the current approach depends 

on the availability of real-time traffic data. The detectors for capturing real-time traffic flow 

data are mostly available on limited access facilities, and hence, the use of dynamic method is 

limited to only these locations. Moreover, this method is resource and data intensive. 

 

5.2.2 Secondary Crash Characteristics 

 

Carrick et al. (2015) compared roadway, environmental, and vehicle characteristics of 

secondary and normal crashes. SCs were observed to be more likely to occur on freeways and 

in rainy weather conditions. Another study by Zhang et al. (2015) used a microscopic 

simulation tool to study the queuing delays associated with SCs. SCs were found to result in 

longer incident impact duration than normal incidents. Further, the time gap and distance 

between a PI and its SC were observed to significantly affect the total delays. Mishra et al. 

(2016) concluded that SCs on freeways are more likely to occur during the morning and 

evening peaks, while the SCs on arterials are more common during the evening peak.  

 

A number of studies have also been conducted to investigate the relationship between the 

likelihood of SCs and various contributing factors including PI characteristics, weather 

conditions, geometric conditions, traffic volumes, and roadway functional classification (Wang 

et al., 2016a; Wang et al., 2016b; Yang et al., 2013; Khattak, et al., 2012; Zhang and Khattak, 

2010; Khattak, et al., 2009). In general, factors contributing to SCs were observed to be: 

number of vehicles involved in PIs, PI impact duration, number of lanes blocked, traffic 

volume, and posted speed limit (Wang et al., 2016a; Wang et al., 2016b; Xu et al., 2016; 

Chimba et al., 2014; Khattak et al., 2012; 2009). Traffic incidents that occurred during the off-
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peak hours and on weekends are less likely to induce SCs (Khattak et al., 2009; 2012; Yang et 

al., 2014a).  

 

Further, adverse weather conditions such as rain and snow were found to significantly increase 

the risks of SCs (Wang et al., 2016a; Wang et al., 2016b; Khattak et al., 2012). One common 

theme among most SCs studies is that they all associate the occurrence of SCs with the PI 

impact duration. Thus, examining the PI impact duration is crucial in developing SC occurrence 

prediction models. 

 

5.2.3 Secondary Crash Risk Prediction Models  

 

As discussed in earlier sections, identifying SCs is the first and the most critical step. The next 

important step is calculating the probability of SCs. Only a few studies have examined risk 

factors that influence the occurrence of SCs. Table 5-3 presents some of the previous studies 

that have identified SC risk factors. Most of these studies have analyzed the likelihood of SCs 

using either non-parametric or parametric models. Several non-parametric models such as 

neural networks and decision trees have been used to model SC risk. Vlahogianni et al. (2010) 

developed a Bayesian network for the probabilistic estimation of different influence areas for 

SCs with respect to various incident and traffic characteristics. Traffic conditions at the time 

of an incident and incident clearance duration were observed to be the most significant 

determinants in defining the upstream influence of a crash. Later, Vlahogianni et al. (2012) 

developed a neural network model with enhanced explanatory power. The study reported that 

traffic speed, duration of the PI, hourly volume, rainfall intensity, and number of vehicles 

involved in the primary crash as the most significant determinants associated with SC 

likelihood.  

 

Other studies developed decision tree models to explore contributing factors based on the 

prediction results of artificial neural networks algorithm. For example, by identifying SCs 

based on the binary speed contour plot map using probe vehicles data, Park and Haghani (2016) 

predicted the likelihood of SCs using Bayesian neural networks model and extracted rules to 

generate gradient-based decision trees. In turn, the main determinants that influence the 

occurrence of SCs were shown based on the decision tree. Apart from directly modeling the 

SC occurrence risk, Wang et al. (2018) used two machine learning algorithms (back-

propagation neural network and a least square support vector machine) to model the spatial and 

temporal gaps between the primary and secondary incidents. It was reported that both 

algorithms failed to predict the spatial threshold while the back-propagation neural network 

algorithm outperformed the least square support vector machine algorithm in temporal 

threshold prediction. 

 

Most of the studies that developed parametric models used either logit or probit models to 

analyze the likelihood of SCs (Mishra et al., 2016; Wang et al., 2016a; Wang et al., 2016b; 

Yang et al., 2013; Khattak et al., 2012; 2009; Zhan et al., 2009). Both logit and probit models 

are symmetrical in nature, i.e., the likelihood of SC occurrence is presumed to rise up to a 

probability of 0.5, then decrease toward the asymptote at one (1). In other words, in SC 

likelihood prediction, symmetric models such as logit or probit models are applicable only 

when the proportion of normal incidents (~50%) is equal to the proportion of PIs (~50%). 

However, SCs account for less than 20% (Owens et al., 2010) of total incidents, meaning that 

the proportion of PIs is much less than the proportion of normal incidents (i.e., the PI and the 

normal incidents are asymmetrically distributed). Thus, a model which is asymmetrical around 

the inflection point is considered to be more reliable in predicting the likelihood of SCs. With 
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this situation at hand, a complementary log-log model (cloglog), which is used as an alternative 

prediction model over the conventional logit and probit models would be a better model. 

 

Table 5-3: Summary of Literature on Secondary Crash Risk Factors 

Study 
Models and 

Statistical Tests 

Explanatory 

Variables 
Findings 

Junhua et al. 

(2016) 

Logistic 

Regression 

Model 

Crash severity, 

Violation category, 

Weather, Tow away 

indicator, Road 

surface, Lighting, 

Traffic volume, 

Duration, Shock 

waves 

• Crash processing duration was found to 

significantly affect SC occurrence. 

• Unsafe speed of the PC was found to 

negatively affect SC occurrence. 

• Decrease in speed and increase in lane 

volume were found to lead to an increase 

in the probability of SC occurrence.  

Xu et al. (2016) 

Bayesian 

Random Effect 

Logit Model 

(BLM) 

Crash severity, 

Sideswipe, Day of 

week, Road surface, 

Lane, AADT, 

Average speed, 

Detector occupancy, 

Difference in traffic 

volume between 

adjacent lanes 

• Likelihood of SC was found to be higher 

on weekends, roadways with fewer lanes, 

and during morning peak periods. 

• Compared to several different crash types, 

sideswipe PC were found to be less likely 

to cause SC. 

• Difference in traffic volume between 

adjacent lanes was found to have 

significant risk effect on SC. 

Zheng et al. (2015) 

Pearson’s Chi-

square Test (SC 

and other 

general crashes) 

Day of week, Month 

of the year, and 

Hour of the day 

• SC were significantly different from PC 

with respect to month of the year and hour 

of the day. 

• SC were found to occur mostly from 6 to 

11 PM. 

Park and Haghani 

(2016) 

Bayesian Neural 

Network (BNN) 

Different stages of 

clearance time 

• Likelihood of secondary incidents was 

found to be higher when clearance time of 

PIs was 10 - 20 minutes, or > 75 minutes. 

Sarker et al. (2017) 

Generalized 

Ordered 

Response Probit 

(GORP) model 

Speed limit, Number 

of lanes, Land use, 

Median type, Ramp, 

High Occupancy 

Vehicle indicator, 

AADT, Right 

shoulder 

• About 10% increase in AADT was found 

to increase SC occurrences by 34.24%. 

• Two-lane roads were found to cause 73% 

more SCs compared to roads with 3 or 

more lanes. 

• Locations with raised median were found 

to have 267% more SCs compared to the 

sections without raised medians.    

Xie et al. (2016) 

Structural 

Equation Model 

(SEM) 

Driver, Vehicle, 

Roadway 

characteristics, and 

Environmental 

condition  

• 13 explanatory variables were found to 

contribute to the occurrence of SCs: 

alcohol, drugs, inattention, inexperience, 

sleep, control disregarded, speeding, 

fatigue, defective brake, pedestrian 

involved, defective pavement, limited 

view, and rain.  

• 16 variables were expected to increase the 

risk of severe injuries: presence of 

secondary crash, alcohol, drugs, 

inattention, yield, illness, control 

disregarded, speeding, fatigue, cell phone, 

defective brake, motorcycle involved, bike 

involved, pedestrian involved, defective 

pavement, and at intersection. 

• Likelihood of the occurrence of SCs and 

severe injuries was found to be higher at 

nighttime compared to daytime conditions. 

Table 5-3 (Cont'd): Summary of Literature on Secondary Crash Risk Factors 
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Study 
Models and 

Statistical Tests 

Explanatory 

Variables 
Findings 

Vlahogianni et al. 

(2012) 

Neural Network 

Model (NN), 

Gompit Model, 

Probit Model 

Duration, Collision 

type, Number of 

lanes, Number of 

vehicles involved, 

Heavy vehicle, 

Average speed, 

Hourly volume, 

Rainfall, Road 

alignment, 

Upstream and 

downstream 

geometry 

• Traffic speed, PC duration, hourly volume, 

rainfall intensity, and number of vehicles 

involved in PC were found to be the top 

five factors associated with SC likelihood. 

• Changes in traffic speed and volume, 

number of vehicles involved, blocked 

lanes, percentage of trucks, and upstream 

geometry were found to significantly 

influence the probability of having a 

secondary incident.  

Mishra et al. 

(2016) 

Multinomial 

Logit Model 

(MLM) 

AADT, Roadway 

functional class, 

Number of vehicle 

involved, Stream 

flow, Incident type, 

Weather 

• Majority of SC were found to be 

associated with higher upstream traffic 

flow. 

• PC with rear-end collision type was found 

to be the predominant factor that 

contributed to SC. 

Zhan et al. (2008) 

Binary Logistic 

Regression 

Model (BLM) 

Number of vehicle 

involved, Number of 

lanes, PI duration, 

Rollover, Midday 

(9:00 to 16:00), 

Morning peak (6:00 

to 9:00) 

• Five factors that were found to have 

significant effect on the likelihood of 

secondary incident occurrence are: number 

of vehicles involved in the PI, number of 

lanes at the PI location, the PI duration, 

time of the day of incident occurrence, and 

if vehicle rollover occurred during the PI. 

• Incident visibility and lane blockage 

durations of the PIs were found to be the 

significant contributing factors for 

determining the severity of SC. 

Khattak et al. 

(2012) 

Binary Logistic 

Regression 

Model (BLM) 

Time of the day, 

Weather, Crash 

location, AADT, 

Detection source, 

Number of vehicles 

involved, Incident 

type, Lanes closed, 

EMS, Right and left 

shoulder, Ramp, 

Predicted incident 

duration 

• A positive significant correlation was 

found between SC occurrences and longer 

PI duration, higher AADT, PIs that 

occurred during peak hours.  

Hirunyanitiwattana 

and Mattingly 

(2006) 

Proportional 

Test 

Area type, Time of 

the day, Crash 

severity, Collision 

type and factor, 

Roadway 

functional  class 

• Speeding was found to be the major 

collision factor of SC compared to PC. 

• PDO crashes were found to be more 

frequent in both PC and SC. 

• Risk for SC was found to be higher in 

urban areas compared to rural districts. 

Tian et al. (2016) t-test 

Crash severity, 

Crash type, No 

improper action, 

Careless driving 

• Careless driving was found to be the 

leading factor which accounts for more 

than 50% of the total PIs, followed by 

exceeding safety limit (8.13%), and no 

improper driving/action (4.07%). 

• Rear-end collision type was found to be 

predominant in SC. 

 

Unlike the logit and probit models, the cloglog model is asymmetrical with a fat tail as it departs 

from zero (0) and sharply approaches one (1) (Kitali et al., 2017; Martin and Wu, 2017). In 
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modeling SCs, most of the previous studies have used general roadway characteristics such as 

AADT and speed limit as some of the model variables (Mishra et al., 2016; Chimba et al., 

2014; Khattak et al., 2012; Zhang and Khattak, 2010). These variables limit the reliability of 

the study findings simply because they are averages and do not reflect real traffic conditions at 

the time of an incident. Relatively few studies have predicted the likelihood of SCs using real-

time data considering the effect of dynamic traffic flow conditions (Park and Haghani, 2016; 

Xu et al., 2016; Vlahogianni et al., 2012).  

 

5.3 Data  

 

The analysis was based on four years (2014-2017). As discussed in previous chapters, the study 

area includes a 35-mile section on I-95, a 21-mile section on I-10, a 61-mile section on I-295, 

and a 13-mile section on SR-202 located in Jacksonville, Florida. In summary, the total study 

area covers 130 miles. The following sub-sections discuss the data preparation efforts for 

identifying SCs and analyzing SCs risk factors. Notably, in-depth discussion of data sources 

used to implement the objectives of this study are discussed in the previous chapters, i.e., 

SunGuide® database in Section 2.2, BlueToad® in Section 2.3, RITIS in Section 4.2.1, and RCI 

in Section 4.2.2. 

 

5.3.1 Data Requirements for Static Method 

 

Along the study corridors, the SunGuide® database included a total of 97,106 incidents for the 

years 2014-2017. After excluding incidents on ramps (22,746) and incidents with missing 

coordinates (330), the remaining data consisted of a total of 74,030 incidents. Note that the 

incidents that occurred near or at ramps were not included in the analysis. Compared to 

mainline segments, ramps have a complex geometry that significantly affects the traffic 

transition states, i.e., from free-flow to breakdown, to congested, recovery and eventually back 

to free-flow again. For this reason, incidents occurring near or on ramps require a separate 

analysis approach. In addition to incident data, Interstate and State Roads polyline shapefiles 

were extracted from the FDOT Transportation Data and Analytics Office website. The data 

from these shapefiles were used to assign mileposts to the incidents.  

 

To identify SCs using the static method, the spatial and temporal characteristics of each 

individual incident were identified. The Incident-First-Notified Time was used to estimate the 

temporal threshold, while the milepost for each incident was used to calculate the distance 

between the PI and the potential SCs. This approach was taken to ensure that roadway 

alignment characteristics, especially on curved segments, do not affect the accurate 

computation of the spatial relationship between a PI and a SC.  

 

5.3.2 Data Requirements for Dynamic Method  

 

Speed data from BlueToad® pairs and incident data from the SunGuide® database were used to 

detect SCs using the proposed dynamic approach. Since BlueToad® pairs have not yet been 

extensively deployed, the study area includes only the corridors with these devices. SR-202 

does not have BlueToad® pairs, and was therefore excluded from the analysis. Further, the 

analysis included data from 2015-2017 because very few BlueToad® pairs were operational 

along the study corridors in 2014. The study location has 72 BlueToad® pairs devices placed 

approximately every 1.8 miles on the mainline. The posted speed limit on the entire section 

ranges between 55 mph and 70 mph. This study used raw data collected by each BlueToad® 

pair. Table 5-4 provides more information about the study corridors. 



68 

 

 

Table 5-4: Distribution of BlueToad® Pairs along the Study Corridors 

Roadway 
Number of BlueToad® Pairs Length of corridor 

(miles) 

Speed limit 

(mph) East/North West/South Total 

I-10 3 3 6 21 55 

I-295 18 21 39 61 65 

I-95 14 13 27 35 55-70 

 

Along these study corridors, the SunGuide® database included a total of 66,756 incidents from 

2015-2017. Table 5-5 provides more information about the incidents analyzed in the dynamic 

method.  

 

Table 5-5: Incidents Analyzed in the Dynamic Method 

Criteria I-10 I-295 I-95 Total 

Total incidents from 2015-2017 8,545 35,719 22,492 66,756 

Incidents on ramps 1,927 7,862 5,941 15,730 

Incidents with missing coordinates 105 0 78 183 

Incidents with no matched BlueToad® pairs 3,475 6,964 551 10,990 

Incidents along the section without BlueToad® pairs 2,740 17,806 12,442 32,988 

Total incidents included in the analysis  298 3,087 3,480 6,865 

 

5.3.3 Data Requirements for Modeling the Risks Associated with SCs  

 

The objective of this study was implemented using a 35-mile corridor in I-95. The following 

data for the years 2015-2017 were used: speed data from BlueToad® pairs, 3,480 incidents data 

from SunGuide® database (Table 5-5), and real-time traffic data from RITIS. To capture the 

conditions of traffic prior to incident occurrence, traffic data such as speed, volume, and 

occupancy, were extracted from 375 RITIS (183 on NB and 192 on SB directions) detector 

stations along the study corridor. The average spacing between detectors is approximately half 

a mile. The spatiotemporal thresholds of 30-min and 1-mile radius are used to capture traffic 

conditions before the occurrence of the incident.  

 

In addition to these data, geometric characteristics including median width, type of roadside 

barrier, and presence of horizontal curve, were extracted from the 2015 FDOT-RCI database, 

and included in the analysis (FDOT, 2015). The following paragraph discusses the approach 

employed to identify incidents affected by the horizontal curve. 

 

All incidents that occur on horizontal curves may not necessarily cause queue-visibility 

problem leading to SCs. For example, the red line in Figure 5-3 shows a horizontal curve on I-

95. Incidents A and B occurred on I-95 northbound (NB); while incidents C and D occurred on 

I-95 southbound (SB). Since Incident A occurred at the beginning of the horizontal curve on I-

95 NB, it does not cause queue-visibility problem leading to a SC. On the other hand, Incident 

B on I-95 NB lanes occurred at the end of the horizontal curve, and may cause queue-visibility 

problem leading to a SC.  
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Figure 5-3: Identification of Incidents Affected by the Presence of Horizontal Curve  

 

Similarly, on I-95 SB lanes, Incident D does not cause queue-visibility problem while Incident 

C may cause queue-visibility problem. Incidents on horizontal curves were identified using this 

approach. Tables 5-6 and 5-7 provide the descriptive statistics of the categorical and continuous 

variables considered in this study, respectively. 

 

Table 5-6: Descriptive Statistics of Categorical Variables 

Parameter Factor Count Percent (%) 

Roadway alignment 
Straight 1,857 75.61 

Curved 599 24.39 

Incident occurrence time 
Off-peak 1,196 48.70 

Peak 1,260 51.30 

Incident type 

Hazards 130 5.29 

Vehicle-related 1,280 52.12 

Crash 1,046 42.59 

EMS involved 
No 2,266 92.26 

Yes 190 7.74 

Towing involved 
No 2,077 84.57 

Yes 379 15.43 

Number of responding agencies 

1 1,208 49.19 

2-3 965 39.29 

> 3 283 11.52 

Percent lane closed (%) 
≤ 25 2,098 85.42 

> 25 358 14.58 

Shoulder blocked 
No 1,052 42.83 

Yes 1,404 57.17 

PI severity 
Minor 2,424 98.70 

Moderate/severe 32 1.30 

Detection methoda 
On-site 2,121 86.36 

Off-site 335 13.64 

Roadside barrier 
Guard rail 1,238 50.41 

Barrier wall 1,218 49.59 

Lighting condition 
Daytime 2,274 92.59 

Nighttime 182 7.41 

Note: a Identifying SCs on a CCTV camera at a TMC is considered an off-site approach; while 

identifying SCs on site by the incident responders including police, road rangers, etc. is considered an 

on-site approach. 
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Table 5-7: Descriptive Statistics of Continuous Variables 

Variable Minimum Mean Median SD Maximum 

PI impact duration (min)1 30 97 75 87 855 

Incident clearance duration (min) 0 44 27 46 417 

Average vehicle speed (mph) 5 56 61 15 78 

SD of vehicle speed (mph) 0 9 7 6 35 

Average EHV (veh/hour) 0 38 32 39 624 

SD of EHV (veh/hour) 0 17 11 36 465 

Average detector occupancy (%) 0 10 7 7 47 

SD of detector occupancy (%) 0 5 3 3 20 

Median width (ft) 16 39 40 28 150 

Note: SD = standard deviation, EHV = Equivalent hourly volume, 1Time taken for the traffic to return 

back to normal after the occurrence of the PI. 

 

5.4 Methodology 

 

5.4.1 Static Model to Identify SCs 

 

Static method uses fixed spatiotemporal thresholds to identify SCs. ArcGIS, a mainstream 

Geographical Information System (GIS) software, was used to assign mileposts to all incidents. 

Next, the process of detecting SCs using static method was automated by implementing the 

algorithm in the VBA programming language. As mentioned earlier, SCs can occur either in 

the upstream direction of the PI or in the opposite direction of the PI. In this study, using the 

static method, SCs in the upstream and opposite direction were identified separately.  

 

Identification of Upstream Secondary Crashes  

 

Figure 5-4 shows SCs that occurred in the upstream direction of the PI. Figure 5-5 summarizes 

the steps followed in the VBA script to identify SCs upstream of the PI.  

 

 
Figure 5-4: SCs in the Upstream Direction 
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• Step 1 - Assign Mileposts to Incidents: Traffic incidents are mapped in GIS using the 

corresponding coordinates (latitude and longitude) in the dataset. Next, mileposts are 

assigned to each individual traffic incident using a linear referencing tool in ArcGIS. This 

process is implemented using the Interstate and State Roads polyline shapefiles retrieved 

from FDOT Transportation Data and Analytics Office website. 

 

• Step 2 - Identify Potential Secondary Incidents that are Crashes: While the primary event 

could be any incident and not necessarily a crash, this method focuses on identifying only 

SCs (and not secondary incidents). Thus, as one of the initial steps, the potential secondary 

incidents are checked to make sure they are in fact crashes. 

 

 
Figure 5-5: Algorithm to Identify Upstream SCs Using Static Method 

 

• Step 3 - Identify Upstream Potential SCs: The occurrence of a PI is expected to result in a 

queue backup in the upstream direction (and not in the downstream direction). Therefore, 

SCs that occurred only in the direction and upstream of the PI are identified by comparing 

the milepost of the PI with the milepost of the potential SCs.  
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• Step 4 - Calculate Distance (Spatial Threshold): The mileposts of the PI and the potential 

SCs are used to compute the distance between the two.  

 

• Step 5 - Calculate Time Difference (Temporal Threshold): The time difference between the 

PI and the potential SC is calculated.  

 

• Step 6 - Extract PI-SC Pair: Following the identification of the spatiotemporal relationship 

between the PI and the potential SC (in Steps 4 and 5), the respective PI-SC pairs are 

extracted based on the set spatiotemporal criteria.  

 

• Step 7 - Store the Identified Secondary Crash: The extracted SCs are stored, and the process 

is repeated for the rest of the incidents in the SunGuide® database. It is worth noting that 

one PI can result in more than one SC. Further, an identified SC can also result in another 

crash, commonly referred to as tertiary crashes.  

 

Identification of Secondary Crashes in the Opposite Direction 

 

Figure 5-6 identifies SCs that occurred in the opposite direction of the PI. Half a mile was used 

as the spatial threshold, while incident clearance duration of the PI was used as the temporal 

threshold to identify SCs in the opposite direction.  

 

 
Figure 5-6: Secondary Crashes in the Opposite Direction 

 

Steps one through seven with the exception of Step 3 that were used to identify the upstream 

SCs are repeated. Note that SCs in the opposite direction can occur both on the upstream and 

downstream of the PI. Figure 5-7 summarizes the steps followed to identify SCs in the opposite 

direction of the PI.  
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Figure 5-7: Algorithm to Identify Secondary Crashes in the Opposite Direction Using 

Static Method 

 

An Example Illustrating Static Method 

 

This section explains the static approach using an example. In this example the PI is a crash 

that blocked one left lane on I-95 SB in Jacksonville, Florida. This incident was recorded on 

November 21, 2016, at 5:52 AM. This PI resulted in one SC; 0.59-mile upstream of the primary 

crash and 41 minutes after the primary crash was reported. Figure 5-8 illustrates this example. 
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Figure 5-8: An Example Illustrating Static Method  

 

5.4.2 Dynamic Model to Identify SCs 

 

The dynamic method adopted in this study focuses on identifying the impact range of the PI 

using speed data archived by the BlueToad® pairs and identifying SCs occurring within the 

impact range of the PI. This method aims to better capture the effects of traffic flow 

characteristics, such as speed, that change over space and time and affect the queue formation 

as a result of a PI. The following discussion summarizes the steps followed to identify SCs 

using BlueToad® pairs speed data. 

 

• Step 1 - Prepare Speed Data: The speed data from BlueToad® pairs are extracted and 

aggregated in 15-min intervals. The summary statistics for the speed data are computed for 

each corresponding BlueToad® pair.  

 

• Step 2 - Prepare Incident Data: Each incident is first matched to a specific BlueToad® pair 

located along the roadway segment based on geographic coordinates (i.e., latitude and 

longitude). The speed data at the time of each incident are retrieved from the matched 

BlueToad® pair. Historical speed data for the BlueToad® pairs with matched incidents are 

used to establish recurrent speed profile of the section under normal traffic conditions. 

Average speed in 15-min intervals is used to establish the speed profiles. Additionally, a 
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CI of one standard deviation is established to define the upper and lower bounds of the 

speed profile (i.e., speed bandwidth) to account for recurrent speed variations. 
 

• Step 3 - Compute Incident Impact Duration: The incident impact duration is computed for 

incidents that are successfully matched to the devices. This process is achieved by tracking 

the BlueToad® pair reported speeds at the segment of the incident occurrence from the time 

of the incident detection to the time when the traffic flow returned to normal. In-depth 

discussion of the procedure used to estimate the incident impact duration is discussed in 

Chapter 3.  

 

 
Figure 5-9: Algorithm to Identify Secondary Crashes Using Speed Data 

 

• Step 4 - Identify Incident Subset: Following the establishment of recurrent speed profile for 

each of the incident-related BlueToad® pairs, speed data from the time of the incident 

occurrence are collected and aggregated in 15-min intervals to identify other BlueToad® 

pairs affected by the incident. For each of the incident subsets, the retrieved vehicle speeds 

since the incident reported time are compared with the recurrent speeds of the respective 
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pairs (Figure 5-9). The incident subset in Figure 5-9 refers to a set of incidents that occurred 

within a similar BlueToad® pairs. This process is implemented both on the upstream 

direction and the opposite direction of the prior incident to identify BlueToad® pairs 

affected by the occurrence of the incident. 

 

• Step 5 - Identify Secondary Crashes: A BlueToad® pair is considered to be affected by an 

incident when the speeds from the incident reporting time are lower than the earlier 

identified boundary of recurrent speeds. Once all the BlueToad® pairs affected by the 

incident subset (on both directions) are identified, the BlueToad® pairs are then checked to 

identify whether there was another incident occurring within the affected BlueToad® pairs. 

All incidents identified within the affected BlueToad® pairs are checked to determine 

whether they occurred within the time that the current speed drops below the average speed 

of the respective BlueToad® pair. Next, all identified incidents within the incident duration 

of the prior incident are checked and all incidents that are crashes are considered as SCs 

and are retrieved. A crash is identified as “secondary” if it occurred within the spatial and 

temporal impact area of the PI. This applies to crashes occurring both on the upstream and 

the opposite direction of the PI. This procedure was implemented in the open source 

statistical software “R”. 

 

An Example Illustrating Dynamic Method 

  

Figure 5-10 describes the example of incidents that occurred on Monday, August 29th, 2016, 

along I-95 NB in 15-min speed intervals. On this particular day, ten incidents that occurred 

along the study corridor resulted in significant congestion, i.e., average speeds dropped below 

the recurring speeds along this corridor. Three of these ten incidents were identified as SCs. 

The first SC (S1) occurred within the incident impact duration of the first primary incident 

(P1). This primary incident (P1) occurred at 2:51 PM and affected eight BlueToad® pairs on 

the upstream direction (8.5 miles). It can be observed that the speed along the BlueToad® pair 

#6 came back to normal much earlier than the rest of the pairs. Due to congestion caused by 

the primary incident (P1), drivers might have detoured to other parallel routes (e.g., I-295). 

BlueToad® pair #6 is the only pair with an exit in the middle of two Bluetooth devices. A SC 

(S1) occurred 16 minutes later and 7.8 miles upstream of the primary incident. The SC, S1, 

resulted in a significant drop in speeds on the pair that it occurred (#5) plus two other pairs (#3 

and #4) on its upstream direction.  

 

Thirty-six minutes later, the same primary incident (P1) resulted in another SC (S3) at about 

7.01 miles upstream of P1. This incident resulted in a significant non-recurring congestion on 

the pair that it occurred (#4) and three other pairs on the upstream direction (#1, #2, and #3). 

Incident S1 turned out to be a tertiary crash, meaning that it is a SC that became a primary 

incident (P2) to another SC (S2), representing cascading events. Incident P2, which occurred 

at 3:07 PM along BlueToad® pair #3 affected one additional pair #2, on the upstream direction. 

Secondary crash S2 occurred on the same pair (#5) as its primary incident 85 minutes later and 

affected one pair in the upstream direction (#4). It can be inferred from this observation that 

apart from resulting in non-recurring congestion, SCs can also lead to additional crashes, herein 

referred to as tertiary crashes. Six of the incidents in Figure 5-10 are normal incidents, meaning 

that they did not result in SCs. For example, the normal incident N1, occurred at 7:57 PM on 

pair #8 and resulted in a significant drop in speed along two additional pairs (#6 and #7) on the 

upstream direction. 
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Figure 5-10: Detection of Secondary Crashes Using BlueToad® Pair Speed Data
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5.4.3 SC Risk Prediction Model  

 

A SC risk prediction model was developed based on real-time traffic flow conditions. Potential 

SCs were first identified using real-time speed data from BlueToad® pairs. Most important 

variables contributing to SCs were next screened using Random Forests (RFs) approach. Finally, 

the Bayesian random effect cloglog model was used to predict the probability of SCs. The 

following sections discuss the study methodology in detail.  

 

Random Forests Approach to Select Important Variables  

 

The Random Forests (RF) model is a non-parametric statistical method that is based on decision-

trees (Breiman, 2001). More recently, traffic safety researchers are increasingly using the RF 

approach to select the important variables before applying other statistical models (Theofilatos, 

2017; Haleem et al., 2015; Ahmed et al., 2012b; Abdel-Aty and Haleem, 2011). Unlike the 

classification and regression tree models, RF models can provide unbiased error estimates and 

does not require a cross-validation test (Breiman, 2001). During the tree-growing process, one-

third of the training cases are left out and not used in the growing of the tree, conventionally 

referred to as out-of-bag (OOB) data. In this study, the RF algorithm is used to estimate prediction 

performance and quantify variable importance based on the OOB error.  

 

RF use OOB samples to measure the prediction strength of each variable by constructing a 

different variable-importance measure. These values are in turn used to generate the accuracy plot 

that test to see how worse the model would perform without each variable. The use of OOB 

randomization to compute the variable importance using mean decrease accuracy plot tends to 

spread the importance more uniformly (Hastie et al., 2008). Note that several other studies have 

employed similar plots to identify important variables (Theofilatos, 2017; Yu and Abdel-Aty, 

2014). Thus, the mean decrease accuracy (MDA) plot provided by the R package “randomForest” 

was used to select the important variables (Liaw and Wiener, 2015). A higher accuracy value 

represents a higher variable importance.  

 

Bayesian Framework to Model SCs 

 

The Bayesian random-effect cloglog model was used to predict the probability of SCs. 

Specifically, this model was used to develop a SC risk prediction model, in which the likelihood 

of SCs was linked with real-time traffic variables, PI characteristics, environmental conditions, 

and geometric characteristics. It is worth noting that, unlike previous studies which used the 

conventional logit and probit model (symmetrical models), this study uses the cloglog model to 

account for the asymmetric distribution of the response variable (only 8.0% of all crashes are SCs). 

The normal random effect parameter was included to account for the heterogeneity caused by the 

unobserved factors such as work zones, design features, and pavement conditions, among other 

factors. Failure to account for the unobserved variation in the data may lead to inconsistent and 

biased parameter estimates (Xu et al., 2016).  

 

In this study, the response variable is binary in nature, i.e., 𝑦𝑖 represents the SC indicator (1 

indicates a SC is induced by a PI (𝑖), and 0 indicates that no SC crash occurred). πn denotes the 

probability of a SC induced by a PI; 𝐗 denotes the vector of explanatory variables used in the 
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study, 𝛃 is the coefficients vector for explanatory variables 𝐗. 𝜀𝑖 is the normal random effect 

variable representing the incident level random error in the model. The random-effect cloglog 

model can be presented using Equations 5-1 and 5-2. 

 

yi~Binomial(πi) (5-1) 

  

cloglog(πi) = log(−log (1 − πi)) = 𝛃𝐗 + εi (5-2) 

 

The Bayesian inference for cloglog regression follows the usual procedure for all Bayesian 

analysis. In Bayesian inference, a prior distribution for all unknown parameters has to be defined. 

Normally, two categories of priors are used in the Bayesian approach; informative and non-

informative priors. Informative priors are based on the literature, expert knowledge, or information 

retrieved explicitly from a previous data analysis (Ahmed et al., 2012a). On the other hand, non-

informative priors, also called “vague” priors, are often used in the absence of reliable prior 

information regarding model parameters (Huang et al., 2008; Kitali et al., 2017). For this study, 

there is no prior knowledge of the expected effect; hence, non-informative priors are used. The 

most commonly used priors are normal distributions with a zero mean, expressing the prior doubt 

of the relationship between the predictor variable and the response variable, and large variance. 

Thus, the coefficients of the predictor variables were set up with non-informative priors following 

normal distributions with a zero mean and a variance of one, i.e., Normal (mean = 0, SD = 1) for 

predictor parameters, intercept, and random parameter. The first 10,000 iterations were discarded 

as burn-in sample and 4 chains of 20,000 iterations were set up. The specification of the priors is 

then followed by estimation of the likelihood function. The likelihood function for the cloglog 

regression can be expressed using Equation 5-3. 

 

Likelihood = ∏ [π(xi)
yi(1 − π(xi))

(1−yi)
]

𝑛

𝑖=1

 (5-3) 

 

where π(xi)
yi is the probability of the event for the ith incident, which has covariate vector 𝑿.  

 

The priors and the likelihood function are then used to estimate the posterior distribution of the 

study parameters (Equation 5-4). The Bayes theorem is normally applied while estimating the 

posterior distribution of all parameters.  

 

Posterior =  Prior × Likelihood (5-4) 

 

The proposed model was implemented through Rstanarm, an open source “R” package. The ratios 

of the Monte Carlo (MC) errors relative to standard deviations of the estimates, trace, density, and 

autocorrelation plots were monitored to achieve parameter estimation convergence. As a rule of 

thumb, the MC error was maintained at less than 5% of the posterior standard deviation for a 

parameter to converge (Huang et al., 2008). The 95% Bayesian Credible Interval (BCI) was used 

to determine the significance of the predictor variables, which provides probability interpretations 

with normality assumptions that the true parameter is inside the region with measured probability 

(Huang et al., 2008). 
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5.5 Results from Static and Dynamic Methods  

 

5.5.1 Static Method Results  

 

Static method was used to identify SCs for the years 2014-2017. A spatiotemporal window of 2-

miles-2-hours was chosen as it is the most common threshold used in previous studies (Chang and 

Rochon, 2011; Kopitch and Saphores, 2011; Moore et al., 2004). Out of 74,030 incidents in the 

study area, 3,400 incidents were identified as SCs (5%). Figure 5-11 summarizes the proportion 

of SCs identified along the four study corridors. As can be observed from the figure, I-95 

experienced the highest proportion of SCs (8%) and an overall increasing trend in the proportion 

of SCs.  

 

 
Figure 5-11: Proportion of Secondary Crashes Identified Using Static Method 

 

SCs that occurred in the upstream direction constituted 88% of the total detected SCs, while the 

remaining 12% occurred in the opposite direction. Table 5-8 summarizes the number of upstream 

and opposite SCs identified using the static method. 

 

Table 5-8: Upstream and Opposite Secondary Crashes Identified Using Static Method 

Roadway 
Upstream SCs Opposite SCs Total SCs  Grand 

Total 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 

I-10 28 41 39 91 2 4 2 9 30 45 41 100 216 

I-295 276 204 323 368 37 28 52 56 313 232 375 424 1,344 

I-95 274 316 428 400 35 45 52 43 309 361 480 443 1,593 

SR-202 48 75 56 37 3 9 9 10 51 84 65 47 247 
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5.5.2 Dynamic Method Results  

 

Dynamic method was used to identify SCs for the years 2015-2017. This approach used traffic 

incident data from the SunGuide® database and real-time speed data from the BlueToad® pairs. 

Unlike the static method, SCs using dynamic method could be identified only along the corridors 

with BlueToad® pairs. SR-202 does not have BlueToad® pairs, and was therefore excluded from 

the analysis. Overall, 518 SCs were identified from 425 PIs. The identified SCs account for 8% of 

the 6,865 incidents used in the analysis. Figure 5-12 summarizes the distribution of SCs identified 

using the dynamic method. The 425 PIs that induced SCs represented 7% of all normal incidents 

(6,865 – 425 = 6,440). These results indicate that approximately one in every twelve normal 

incidents was associated with a SC. Each PI caused an average of 1.2 SCs. Out of 518 incidents 

that were identified as SCs, 47 crashes resulting in additional crashes (40 resulted in an additional 

SC, and 7 resulted to multiple additional crashes).  

 

 
Figure 5-12: Proportion of Secondary Crashes Identified Using Dynamic Method 

 

SCs that occurred in the upstream direction constituted 87% of the total SCs, while the remaining 

13% occurred in the opposite direction. Table 5-9 summarizes the number of upstream and 

opposite SCs identified using the dynamic method.  

 

Table 5-9: Upstream and Opposite Secondary Crashes Identified Using Dynamic Method 

Roadway 
Upstream SCs Opposite SCs Total SCs Grand 

Total 2015 2016 2017 2015 2016 2017 2015 2016 2017 

I-10 0 10 24 0 0 0 0 10 24 34 

I-295 5 81 91 0 5 9 5 86 100 191 

I-95 40 113 101 0 21 18 40 134 119 293 
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5.5.3 Comparison of Results from Static and Dynamic Methods Using Descriptive Statistics  

 

Applying the same dataset used in the dynamic method, which has 6,865 traffic incidents, SCs 

were also identified using the static method for comparison purpose. Figure 5-13 provides a Venn 

diagram that compares the SCs identified using static and dynamic methods. 

  

 
(a) I-10 

 
(b) I-295 

 
(c) I-95 

 
(d) All corridors combined 

  

Figure 5-13: Venn Diagrams Comparing Results from Static and Dynamic Methods  

 

Using the 2-mile-2-hour spatiotemporal threshold, a total of 386 SCs were identified from 341 PIs. 

On the other hand, the dynamic approach identified 518 SCs. The number of SCs identified using 

the static method is about half of the number of SCs identified using the dynamic method. In other 

words, the static method was found to underestimate the number of SCs compared to the dynamic 

method. It can be inferred from Figure 5-13(d) that 266 SCs were identified using both the static 

and the dynamic methods. I-10 was found to have the fewest number of SCs, essentially because 

it is the shortest segment compared the other corridors and also had the fewest number of 

BlueToad® pairs.  

 

5.5.4 Comparison of Results from Static and Dynamic Methods Using Sensitivity Analysis  

 

Using the static method, sensitivity of spatiotemporal thresholds was also conducted to determine 

the extent of under/overestimation of SCs when compared to the dynamic method. Since 90% of 

SCs detected by the dynamic method were found to occur within 2.5-hour and 5-mile 

spatiotemporal thresholds, these thresholds were adopted to detect SCs on the upstream direction 

of the PI. More specifically, 15-minute temporal thresholds (i.e., 15, 30, … 150-min) were used 

along with the 0.5-mile spatial thresholds (i.e., 0.5, 1, …, 5-mile). Meanwhile, SCs on the opposite 
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direction were identified based on 0.5-mile spatial threshold and PI clearance duration as the 

temporal threshold. Figure 5-14(a) depicts the frequency of SCs identified using the static method. 

Based on the adopted spatiotemporal thresholds, 554 SCs were identified using the static method. 

As expected, the number of SCs increase with the increase in spatial and temporal thresholds. It 

can be inferred from Figure 5-14(a) that the static method begins to overestimate the SCs beyond 

the 4.5-mile and 150-min thresholds, when compared to the dynamic method that identified 518 

SCs. Further, the rate of change of frequency of SCs is sparser within the 2.5-mile threshold and 

denser beyond the 2.5-mile threshold.  

 

 
(a) SCs identified using static method 

 
(b) Proportion of SCs identified using static 

method that were matched with the SCs 

identified using dynamic method 

Figure 5-14: SCs Identified Using Static Method 

 

Notably, the use of longer thresholds does not necessarily mean that all the detected SCs are 

accurately identified (i.e., there are no false positives). This scenario is further explained in Figure 

5-14(b) where the proportion of SCs identified by the static method and the dynamic method 

decrease with the increase in the spatiotemporal thresholds. In Figure 5-14(b), SCs detected within 

1-mile have an overall highest proportion of matched SCs (76%) compared to the rest of the spatial 

thresholds. Meanwhile, SCs detected using a 5-mile spatial threshold had the least proportion of 

matched SC-frequencies (69%). Further, the proportion of SCs detected using a spatial threshold 

of 0.5-mile significantly dropped beyond 60-min. The highest proportion of PIs (17%) was 

observed at 7:00, while the highest proportion of SCs (15%) occurred one hour later, i.e., at 8:00 

AM. The other peak times for the PIs (12%) and SCs (13%) were found to be at 4:00 PM and 5:00 

PM, respectively. The corresponding normal incidents were also at their highest during these 

particular hours, resulting in 60% of all normal incidents. 
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In summary, more than three-quarter of detected SCs (78%) occurred during congested traffic state 

(Table 5-10). This could be attributed to the fact that congested traffic is characterized with smaller 

gaps between vehicles providing drivers with lesser maneuvering room to avoid a crash. Similarly, 

60% of normal incidents occurred during congested traffic state. During traffic congestion, SCs 

were found to occur within 1.4-1.7 miles and 50.7-51.3 minutes. Meanwhile, under free-flow 

traffic conditions, SCs occurred within 1.5-2.6 miles and 64.5-84.0 minutes.  

 

Table 5-10: Impact of Prevailing Traffic Condition on Incident Occurrence 

Incident Category 

Prevailing Traffic Condition 

Congested Free-flow 

6:00 - 9:00 15:00 - 18:00 9:01 - 14:59 18:01 - 05:59 

Normal Incidents (%) 30 30 32 8 

Primary Incidents (%) 38 37 17 8 

Secondary Crashes (%) 38 40 14 8 

Distance (mile) 1.4 1.7 1.5 2.6 

Time (min) 50.7 51.3 64.5 84.0 

 

Figure 5-15 shows the impact areas for PIs that resulted in SCs within a spatiotemporal threshold 

of 1-mile and 60-min. These impact areas refer to incidents that occurred when the prevailing 

traffic condition is under congested state and when it is under free-flow state. There is a significant 

dispersion with respect to the impact areas during congested and free-flow traffic flow conditions. 

It could be inferred from Figure 5-15 that prevailing traffic conditions is one of the major factors 

that influence the spatial and temporal locations of SCs. In other words, prevailing traffic flow 

characteristics were found to affect the manner in which the disturbance caused by the PI propagate 

on the upstream direction.  

 

 
Figure 5-15: Spatiotemporal Extent of SCs from Their Respective PIs 
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Considering the influence of prevailing traffic conditions on the occurrence of SCs, the number of 

SCs identified using the static method were also compared to the number of SCs identified using 

the dynamic method based on traffic flow characteristics, i.e., during free-flow (off-peak hours) 

and congested (peak hours) conditions. Figures 5-16 (a) and (b) show the proportion of SCs 

identified by both the static and dynamic methods during congested and free-flow conditions, 

respectively. There is a clear demarcation between the proportion of matched SCs that occurred 

within 2-mile and beyond 2-mile during congested traffic conditions. Compared to free-flow traffic 

conditions, there is a higher match of SCs occurring on congested traffic within 0.5-mile from the 

PI. While the greatest match of SCs on congested traffic is within 1-mile (83%), the greatest match 

during free-flow traffic conditions is within 2-mile (78%). These results indicate that there is a 

distinct difference in the PI impact area under free-flow and congested traffic conditions. 

Therefore, using fixed spatiotemporal thresholds to detect SCs during congested and free-flow 

conditions could result in inaccurate results. 

 

 
(a) In congested traffic 

 
(b)  In free-flow traffic 

Figure 5-16: Proportion of SCs Identified Using Static Method That Were Matched with 

the SCs Identified Using Dynamic Method in Congested and Free-Flow Traffic Conditions 

 

5.6 In-depth Descriptive Analysis of SCs  

 

The following subsections examine the critical characteristics of SCs identified using the dynamic 

method. 
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Spatiotemporal Distribution  

 

Figure 5-17 shows the temporal and spatial characteristics of SCs in relation to PIs. Temporally, 

approximately 87% of the SCs were found to occur within two hours after the occurrence of PIs. 

Spatially, 73% of the SCs were found to occur within two miles from the PI. Overall, 66% of SCs 

occurred within two hours of the onset of a PI and within two miles upstream of the PI. About 34% 

of SCs occurred beyond the most commonly used 2-mile-2-hour spatiotemporal threshold. These 

statistics confirm that the proposed dynamic approach identified more SCs than the traditional 

static method.  

 

 
Figure 5-17: Spatiotemporal Distribution of SCs in Relation to Primary Incidents 
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Time of the Day and Day of Week Distribution  

 

Figure 5-18 shows the distribution of the 518 SCs, 425 PIs, and 6,347 normal incidents by different 

periods. It can be deduced from the plot that only 1% of SCs occurred between 0:00 and 5:00 

whereas 80% occurred during peak hours, i.e., morning peak, 6:00 AM to 9:00 AM and evening 

peak, 3:00 PM and 6:00 PM. Specifically, 38% of SCs occurred during morning peak while the 

remaining 42% occurred during evening peak.  

 

 
Figure 5-18: Dynamic Traffic Incidents Distribution by Time of the Day 

 

The highest proportion of PIs (17%) was observed at 7:00 AM, while the highest proportion of 

SCs (15%) occurred two hours after the PI, i.e., at 9:00 AM. The other peak times for the PIs (12%) 

and SCs (18%) were found to be at 4:00 PM and 6:00 PM, respectively. The corresponding normal 

incidents were also at their highest during these particular hours, resulting in 61% of all normal 

incidents. As can be observed from Table 5-11, half of normal incidents occurred during peak 

hours while the remaining half occurred during off-peak hours.  

 

Table 5-11: Incident Distribution by Time of the Day 

Incident 

Characteristic 
Category 

Incident Category (%) 

Normal Incidents Primary Incident Secondary Crashes 

Time of the Day  
Peak hours 50 65 66 

Off-peak hours 50 35 34 
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About 65% of PIs and eventually 66% of SCs occurred during peak hours. Compared to off-peak 

hours, peak-hour traffic flow characteristics were found to contribute more to the occurrence of 

SCs. Congested traffic is characterized with smaller gaps between vehicles providing drivers with 

lesser maneuvering room to avoid a crash. 

 

Figure 5-19 presents the distribution of incidents by day of week. It can be inferred from the figure 

that the number of normal incidents and SCs is much higher on weekdays than on weekends. While 

SCs were found to frequently occur on Mondays and Fridays, normal incidents were found to 

frequently occur on weekdays (i.e., Monday through Friday).  

 

 
Figure 5-19: Distribution of Normal Incidents and Secondary Crashes by Day of Week 

 

Incident Characteristics  

 

Figure 5-20 provides the distribution of the incident clearance duration for towing-involved and 

no-towing involved incidents. Table 5-20 summarizes the incident responders’ characteristics for 

normal incidents, PIs, and SCs. From the figure, it can be inferred that 90% of traffic incidents that 

did not involve towing were cleared within 90 minutes while only 66% of traffic incidents that 

involved towing were cleared within 90 minutes. As expected, towing involved incidents resulted 

in longer incident durations as they tend to require more time to be cleared. As indicated in 

previous studies, the likelihood of SCs increases with increase in incident clearance duration. This 

is evident from the data as 25% of PIs required towing, while only 13% of normal incidents 

required towing. Similarly, higher percentage of incidents involving emergency service resulted 

in SCs (16%). Further, while 46% of normal incidents involved more than one responding agency, 

61% of PIs and 68% of SCs involved more than one responding agency. These statistics suggest 
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that incidents involving more number of responding agencies increase the likelihood of the 

occurrence of SCs. 

 

 
Figure 5-20: Distribution of Incident Clearance Duration for Towing-Involved and No-

Towing Involved Incidents 

 

Table 5-12: Incident Distribution Based on Responders’ Characteristics  

Incident Characteristics Category 
Incident Category (%) 

Normal Incidents Primary Incidents Secondary Crashes 

Towing Involved 
No 87 75 84 

Yes 13 25 16 

Emergency Involved 
No 95 84 89 

Yes 5 16 11 

Number of Responding 

Agencies 

1 54 32 39 

2 30 27 32 

3 8 15 13 

4 3 8 7 

5 2 8 5 

6 2 6 3 

7 1 3 2 

8 0 0 1 

 

As can be observed from Table 5-13, 88% of normal incidents did not result in lane closure, while 

33% of PIs resulted in lane closure. The percent of lanes closed is an indicator of the severity of 

the PI as severe incidents tend to result in an increased number of lanes closed. About 18% of PIs 

were moderate/severe while only 5% of normal incidents were moderate/severe. Only 34% of 

normal incidents were crashes, while 74% of PIs were crashes. In other words, the probability of 

SCs was found to be higher when PIs were crashes.   
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Table 5-13: Incident Characteristics 

Incident 

Characteristics 
Category 

Incident Category (%) 

Normal Incidents Primary Incidents Secondary Crashes 

Percentage of Lanes 

Closed 

0 88 67 78 

25 2 4 2 

33 7 19 13 

50 2 4 3 

67 1 5 3 

75 0 1 0 

100 0 1 1 

Incident Severity 

Minor 95 82 90 

Moderate 4 12 7 

Severe 1 6 3 

Incident Type 

Crash 34 74 

Not Applicable 

Debris on Roadway 10 2 

Disabled Vehicle 54 22 

Emergency Vehicles 1 1 

Flooding 0 1 

Other 0 0 

Police Activity 0 0 

Vehicle Fire 0 0 

 

Figure 5-21 shows the distribution of the incident clearance duration for normal incidents and the 

identified PIs. Overall, normal incidents were cleared more quickly than PIs; approximately 89% 

of the normal incidents were cleared within 90 minutes, while only 68% of the PIs were cleared 

within 90 minutes. The longer clearance time of the PIs could be considered as one of the factors 

that may have contributed to the occurrence of SCs.  

 

 
Figure 5-21: Distribution of Incident Clearance Duration for Normal and Primary 

Incidents 
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Figure 5-22 presents the distribution of the incident clearance duration for the identified PIs and 

SCs. The figure shows that, overall, SCs were cleared more quickly than PIs. For instance, 

approximately 75% of the SCs were cleared within 90 minutes, while only approximately 68% of 

the PIs were cleared within 90 minutes. The shorter clearance duration of SCs could be attributed 

to the fact that SCs are often less severe.  

 

 
Figure 5-22: Distribution of Incident Clearance Duration for Primary Incidents and 

Secondary Crashes 

 

5.7 Factors Influencing the Occurrence of SCs 

 

5.7.1 Variable Importance 

 

RF algorithm was used to estimate the importance of each of the predictor variable by monitoring 

the change in the prediction error when OOB data for the respective variables are permuted while 

all other remaining variables are left unchanged (Liaw and Wiener, 2015). Forests were grown 

using 1,200 trees and by randomly selecting six predictor variables at each node for splitting, since 

these combinations yield stable results with minimum OOB error rate of 0.025. Figure 5-23 shows 

the final results of the variable importance ranking where the MDA was used as the selection 

criterion. The cut-off value of 10 for the MDA was chosen to identify the important variables that 

yield meaningful parameter estimates. The following 16 variables were identified as important, 

and were included in the model: incident impact duration, incident clearance time, standard 

deviation of EHV, mean of occupancy, incident type, standard deviation of occupancy, mean of 

EHV, mean of speed, standard deviation of speed, number of responding agencies, incident 

severity, towing involved, median width, percent lane closed, EMS involved, and incident time. 

 

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

C
u
m

u
la

ti
v
e 

p
er

ce
n

ta
g
e 

(%
)

Incident Clearance Duration (min)

Primary Incidents Secondary Crashes



92 

 

 
Figure 5-23: Variable Importance Ranking Using Random Forests Technique  

 

5.7.2 Variable Correlation  

 

At least some of the variables (e.g., traffic-related variables) identified by the RF technique are 

considered to be correlated. Using Pearson correlation, a correlation matrix was built to identify 

and exclude highly correlated variables. A correlation threshold of 0.5 was used to identify highly 

correlated variables (Dissanayake and Roy, 2013; Kobelo et al., 2008). The standard deviation of 

occupancy variable was dropped from the analysis since it is highly correlated with two variables, 

mean of occupancy (0.8) and mean of speed (-0.7). Furthermore, the mean of EHV was also 

removed from further analysis since it is also correlated with the standard deviation of EHV 

variable (0.9) and mean of occupancy (0.4). Finally, the following 13 variables were used as input 

variables in modeling the SC likelihood: incident impact duration, incident clearance time, 

standard deviation of EHV, mean of occupancy, incident type, standard deviation of speed, number 

of responding agencies, incident severity, towing involved, median width, percent lane closed, 

EMS involved, and incident time. 
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5.7.3 SC Risk Prediction Model Results  

 

Table 5-14 summarizes the findings of the final Bayesian cloglog model with a random parameter. 

Of the 13 variables, seven variables were significant at the 95% BCI. Note that the predictor 

variable in the model is considered to be significant at the 95% BCI when the values of the 2.5% 

and 97.5% percentiles do not include zero (0), i.e., they are both either negative or positive. The 

significant variables include average occupancy, incident severity, percent of lanes closed, incident 

type, incident clearance duration, incident impact duration, and incident occurrence time.  

 

Table 5-14: Posterior Estimates of Bayesian cloglog Regression Model  

Parameter Factor Mean Median SD 
BCI (%) 

2.5 97.5 

Intercept   -7.432 -7.324 1.205 -10.070 -5.367 

Geometric characteristics       

Median width (ft)   -0.002 -0.002 0.003 -0.009 0.004 

Traffic flow characteristics       

Occupancy mean   0.084 0.083 0.017 0.054 0.121 

EHV SD (veh/hr)   -0.007 -0.007 0.005 -0.020 0.001 

Speed SD (mph)   -0.025 -0.025 0.015 -0.055 0.003 

Primary/normal incident characteristics       

Incident severity 
Minor           

Moderate/severe 1.099 1.076 0.552 0.092 2.257 

Percent lane closed (%) 
0-25           

>25 1.133 1.119 0.282 0.615 1.727 

Number of responding agencies 

1           

2-3 -0.067 -0.067 0.232 -0.518 0.395 

>3 -0.117 -0.113 0.426 -0.983 0.711 

Towing involved 
No           

Yes 0.180 0.179 0.265 -0.328 0.713 

Emergency Medical Services (EMS) involved 
No           

Yes -0.616 -0.612 0.366 -1.353 0.088 

Incident type  

Hazard           

Vehicle related 0.870 0.818 0.805 -0.529 2.613 

Crash 2.461 2.398 0.807 1.079 4.241 

Incident clearance duration (min)   0.007 0.007 0.002 0.003 0.011 

Incident occurrence time 
Off-peak           

Peak 0.639 0.630 0.209 0.252 1.074 

Incident impact duration (min)   0.008 0.008 0.001 0.005 0.011 

Note: variables in bold are significant, EHV = Equivalent hourly volume, SD = Standard Deviation, BCI = Bayesian 

Credible Interval. 

 

As shown in Table 5-14, compared to incidents that occurred during off-peak hours, incidents that 

occurred during peak hours are observed to have a higher likelihood of resulting in SCs (mean = 
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0.639, 95% BCI (0.252, 1.074)). This observation implies that incidents occurring during 

congested time periods are more likely to induce traffic. Similar findings were also found by 

(Mishra et al., 2016; Hirunyanitiwattana and Mattingly, 2006). Congested traffic is characterized 

with smaller gaps between vehicles providing drivers with lesser space for maneuvering to avoid 

a crash. Accordingly, similar to the travel time messages posted on Dynamic Message Signs 

(DMSs), safety messages about the risk of SCs can also be posted based on different levels of 

prevailing traffic congestion, especially during peak hours. This scenario is also supported by the 

positive parameter of the average occupancy represented by occupancy mean parameter (mean = 

0.084, 95% BCI (0.054, 0.121)). Increase in average occupancy represents an increase in traffic 

density, traffic volatility, and queue formation. The disturbances induced by the PIs are easier to 

propagate in this queuing traffic conditions, leading to a higher risk of SCs. According to the data 

shown in Table 5-14, the more the segments upstream of the prior incident is occupied, the longer 

it will take for the traffic flow to return back to normal. In this case, occupancy can also be used 

as one of the input parameters used to display the real-time information about the risk of SCs on 

DMSs and on connected vehicles. This situation is further explained by the positive parameter of 

time taken for speed to return back to normal, represented by the PI impact duration, (mean = 

0.005, 95% BCI (0.003, 0.007)), which indicates that the risk of having a SC increases with PI 

impact duration.  

 

Similarly, the positive parameter of the incident clearance duration indicates that the risks of SCs 

increase with an increase in incident clearance time (mean = 0.008, 95% BCI (0.005, 0.011)). As 

expected, the percentage of lanes closed is also identified as one of the significant predictor 

variables that influence the risk of SCs. More specifically, incidents resulting in more than 25% of 

lane closure have a higher likelihood of resulting in SCs (mean = 1.133, 95% BCI (0.615, 1.727)) 

compared to incidents involving less than 25% of lane closure. Note that the percentage of lanes 

closed was used instead of the number of lanes closed since it is a more representative variable. 

The percent of lanes closed is an indicator of the severity of the PI as severe incidents tend to result 

in an increased number of lanes closed. This fact is proven by the positive value of the PI severity 

coefficient (mean = 1.099, 95% BCI (0.092, 2.257)). Incident type is also a statistically significant 

predictor of the likelihood of the occurrence of SCs; incidents that are crashes have a higher 

likelihood of resulting in SCs (mean = 2.461, 95% BCI (1.079, 1.727)) compared to those 

involving hazards such as debris on roadway.  

 

5.8 Summary 

 

Proper identification of SCs is pivotal to accurate reporting of the effectiveness of the programs 

deployed to mitigate SCs. Nonetheless, the limited knowledge on the nature and characteristics of 

SCs has largely impeded their mitigation strategies. This study focused on identifying SCs using 

static and dynamic methods, and analyzing the risk factors influencing the occurrence of these 

crashes. A dynamic method that uses speed profiles derived from BlueToad® pairs was first 

developed and applied to identify SCs. For comparison purposes, the study also developed a Visual 

Basic for Applications (VBA) script that statically identifies SCs based on fixed spatiotemporal 

threshold. Once the SCs were identified using the dynamic method, Bayesian random effect 

complementary log-log (cloglog) model was used to analyze the risk factors influencing the 

occurrence of these crashes.  
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5.8.1 Static Method Results  

 

The study area included a 35-mile section on I-95, a 21-mile section on I-10, a 61-mile section on 

I-295, and a 13-mile section on SR-202 located in Jacksonville, Florida. SCs were identified using 

a 2-mile-2-hour spatiotemporal threshold. Out of 74,030 incidents that occurred along the study 

corridors for the years 2014-2017, 3,400 incidents were marked as SCs (5%). I-95 experienced the 

highest proportion of SCs (8%) and an overall annual increasing trend in the proportion of SCs. 

SCs that occurred in the upstream direction constituted 88% of the total detected SCs, while the 

remaining 12% occurred in the opposite direction. 

 

5.8.2 Dynamic Method Results  

 

Dynamic approach based on speed profile data was used to identify SCs. Unlike the static method, 

SCs using dynamic method could be identified only along the corridors with BlueToad® pairs, i.e., 

I-10, I-95, and I-295. The analysis was based on 6,865 traffic incidents that occurred along the 

study corridors for the years 2015-2017. Overall, 518 SCs were identified from 425 PIs. The 

identified SCs account for 8% of the 6,865 incidents used in the analysis. The 425 PIs that induced 

SCs represented 7% of all normal incidents. These results indicate that approximately one in every 

twelve normal incidents resulted in a SC. Similar to the results from the static method, SCs that 

occurred in the upstream direction constituted 87% of the total SCs, while the remaining 13% 

occurred in the opposite direction of the PI.  

 

Descriptive statistics of the SCs identified using the dynamic method indicated that 87% of the 

SCs occurred within two hours after the occurrence of PIs. Spatially, 73% of the SCs occurred 

within two miles from the PI. Overall, 66% of SCs occurred within two hours of the onset of a PI 

and within two miles upstream of the PI. About 34% of SCs occurred beyond the most commonly 

used 2-mile-2-hour spatiotemporal threshold. These statistics confirm that the proposed dynamic 

approach identified more SCs than the traditional static method.  

 

The following are some of the key characteristics of the PIs and SCs identified using the dynamic 

approach: 

 

• Only 1% of SCs occurred between 12:00 AM and 5:00 PM, whereas 80% occurred during 

peak hours, i.e., morning peak, 6:00 AM to 9:00 AM and evening peak, 3:00 PM and 6:00 

PM. Specifically, 38% of SCs occurred during morning peak while the remaining 42% 

occurred during evening peak.  

 

• The highest proportion of PIs (17%) occurred at 7:00 AM, while the highest proportion of 

SCs (15%) occurred two hours after the PI, i.e., at 9:00 AM.  

 

• While SCs were found to occur on Mondays and Fridays, normal incidents were found to 

occur on weekdays (i.e., Monday through Friday). Only 5% of SCs were found to occur on 

weekends.  
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• Approximately 89% of normal incidents were cleared within 90 minutes, while only 68% 

of PIs were cleared within 90 minutes. The longer clearance time of the PIs could be 

considered as one of the factors that may have contributed to the occurrence of SCs.  

 

• Approximately 75% of SCs were cleared within 90 minutes, while only approximately 

68% of PIs were cleared within 90 minutes. The shorter clearance duration of SCs may be 

attributed to the fact that SCs are often less severe.  

 

• The severity of PIs was found to be one of the factors that influence the occurrence of SCs. 

About 18% of PIs were moderate/severe while only 5% of normal incidents were 

moderate/severe. Besides the severity of PIs, percent of lanes closed, incident type, and 

incidents required towing were also considered to be good indicators of incident severity. 

About 12% of normal incidents resulted in a lane closure, while 33% of PIs resulted in a 

lane closure. Only 34% of normal incidents were identified as crashes, while 74% of PIs 

were crashes. About 13% of normal incidents required towing, while 25% of PIs required 

towing. These statistics indicate that the severity of PIs influence the occurrence of SCs.   

 

5.8.3 SC Risk Prediction Model Results  

 

SCs are crashes that occur within the spatial and temporal impact range of a PI. This study 

investigated the effect of real-time traffic, incident, environmental, and geometric related variables 

on the likelihood of SCs. As a first step toward achieving the study objective, potential SCs were 

identified using real-time speed data from BlueToad® pairs. This method was able to identify the 

spatial and temporal impact ranges of PIs, while accounting for the effects of traffic flow 

characteristics, both on the upstream and opposite directions. Random forests technique was next 

used to screen for the important variables. Highly correlated variables were then identified and 

excluded from further analysis. Finally, Bayesian random effect complementary log-log (cloglog) 

model was used to link the probability of SC occurrence with the real-time traffic flow variables, 

PI characteristics, environmental, and geometric characteristics.  

 

The results indicated that several PI characteristics and real-time traffic variables influence the 

occurrence of SCs. The following seven variables were found to be significant at the 95% Bayesian 

credible interval (BCI): time taken for the traffic flow speed to return back to normal (incident 

impact duration), incident clearance duration, incident occurrence time, average occupancy, 

incident severity, percent of lanes closed, and incident type.  

 

As can be inferred from the study findings, prevention of SCs is a function of PI severity, how 

quickly the PI is cleared, and how quickly information about the occurrence and location of traffic 

incidents is disseminated to the upstream drivers. To prevent the risk of SC occurrence, traffic 

management strategies should be developed to accelerate the dissipation of queue upstream of the 

PI.   
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

Transportation management centers (TMCs) serve as the hub of most freeway systems. A total of 

eleven regional TMCs (RTMCs) and two satellite TMCs are currently operational in the state of 

Florida. In November 2015, a new RTMC became operational in Jacksonville, Florida. This new 

facility replaced the old RTMC that was housed in the Florida Department of Transportation 

(FDOT) District 2 Urban Office building. The new facility has FDOT staff, TMC operators, local 

agency traffic signal operators, traffic monitoring consultants, and the Florida Highway Patrol 

(FHP) personnel under one roof. The presence of these incident management stakeholders under 

one roof is expected to improve traffic incident management (TIM) on the interstate system. As 

such, this research had two main goals:  

 

1. evaluate the performance of the new RTMC in Jacksonville, FL; and  

 

2. quantify the impact of incidents on the operational and safety performance of the freeway 

network.  

 

The study goals were achieved through the following objectives:  

 

• compare the performance of the new RTMC in Jacksonville where multiple response 

agencies are physically co-located in the RTMC building with the performance of the old 

RTMC where multiple incident response agencies except the FDOT and traffic monitoring 

consultant staff were housed at their respective agency locations;  

 

• estimate the delays caused by incidents on freeways, and determine the factors affecting 

these delays; and   

 

• develop a reliable approach to identify secondary crashes (SCs), and determine the risk 

factors associated with SCs.  

 

To achieve the study goals and objectives, the following five performance measures of the RTMC 

were investigated:  

 

1. incident verification duration, 

2. incident response duration, 

3. incident impact duration, 

4. incident-related delays, and  

5. SCs.   

 

6.1 Incident Verification Duration 

 

Incident verification duration is the time between an incident being reported and the incident being 

confirmed by the TMC. Verification duration is critical to the entire incident management process; 

it helps determine accurate and detailed information which enables the dispatch of the most 

appropriate personnel and resources to the scene. In this study, a before-and-after analysis of the 
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incident verification duration was conducted to evaluate the performance of the new RTMC where 

multiple response agencies are physically co-located in the TMC building. The new RTMC 

became operational in November 2015. The before-period comprised 36,594 incidents that 

occurred from January 2014 to June 2015. The after-period included 36,654 incidents that occurred 

between January 2016 and June 2017.  

 

In general, descriptive statistics indicated shorter average incident verification durations in the 

after-period than in the before-period. Crashes were verified quicker in the after-period than in the 

before-period. Incidents that occurred during peak hours in the after-period showed shorter 

verification durations than incidents in the before-period.  

 

Hazard-based models were developed to identify the factors influencing incident verification 

duration before and after co-location of response agencies. The model results suggested that the 

following eight variables significantly affect incident verification duration both before and after 

co-location: 

 

1. Incident type:  incident verification duration was longer for crashes compared to 

hazards. However, the verification of vehicle problems was quicker 

than the verification of hazards, which include all objects on the 

roadway with the potential of causing crashes, e.g., debris on roadway, 

flooding, wildlife, etc.  

 

2. Lane closure:  incident verification duration was quicker when the lane closure was 

more than 25%. The verification duration of incidents with lane 

closure more than 25% was 29% and 28% quicker than the 

verification duration of incidents with lane closure ≤ 25% before and 

after co-location, respectively. 

 

3. Incident severity:   severe and moderate incidents had quicker verification durations than 

minor incidents. Moderate incidents had 26% and 19% quicker 

verification durations than minor incidents before and after co-

location, respectively. Similarly, severe incidents had 21% and 26% 

quicker verification durations than minor incidents before and after 

co-location, respectively.  

 

4. Roadway:  incidents that occurred on I-95, I-295, SR-202 had shorter verification 

durations compared to the incidents that occurred on I-10. Incidents 

that occurred on I-75 had longer verification durations than those that 

occurred on I-10. 

 

5. Traffic volume:  an increase in the roadway AADT was associated with shorter 

incident verification duration. An increase in the AADT was 

associated with 8% and 9% decrease in the incident verification 

duration before and after co-location, respectively. 
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6. Time of the day:  incidents that occurred during peak hours had shorter verification 

durations compared to incidents during off-peak hours. Incidents 

during peak hours were verified 4% and 2% quicker than incidents 

during off-peak hours before and after co-location, respectively. 

 

7. Day of week:  incidents that occurred on weekends had longer verification durations 

compared to incidents that occurred on weekdays. Incidents that 

occurred on weekends had 88% and 73% longer verification durations 

than incidents that occurred on weekdays before and after co-location, 

respectively. 

 

8. Detection method: incidents that were detected by off-site detection methods had shorter 

verification durations than incidents detected by on-site detection 

methods.    

 

6.2 Incident Response Duration 

 

Incident response duration is measured from the time incident response team was notified of an 

incident to when they arrived at the incident scene. Response time includes dispatch duration and 

travel time to the incident scene. In general, crashes had longer average response duration than 

other types of incidents.  

 

Hazard-based models were again developed to identify the factors influencing response durations 

before and after co-location of response agencies. The model results suggested that the following 

six variables significantly affect incident response duration both before and after co-location: 

 

1. Incident type:  crashes had 111% and 126% longer response durations than hazards 

before and after co-location, respectively. 

 

2. Lane closure:  incident response duration was longer when the lane blockage was 

more than 25% both before and after co-location. It was associated 

with 21% and 16% increase in the response duration before and after 

co-location, respectively. 

 

3. Roadway:  incidents that occurred on I-295 and SR-202 had quicker response 

durations compared to incidents that occurred on I-10 before and 

after co-location, respectively. 

 

4. Day of week:  incidents that occurred on weekends had significantly longer 

response durations compared to incidents that occurred on 

weekdays. Incidents that occurred on weekends had 156% and 

102% longer response durations than incidents that occurred on 

weekdays before and after co-location, respectively. 
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5. Detection method: incidents detected by off-site detection methods had significantly 

longer response durations than incidents detected by on-site 

detection methods both before and after co-location.    

6. Traffic volume: an increase in the AADT was associated with 4% and 7% increase 

in incident response durations both before and after co-location, 

respectively. 

 

In addition to the afore-mentioned variables, ramp involvement was significant in the before-

period, while incident severity was significant in the after-period. Prior to co-location of response 

agencies, incidents that were associated with ramps had relatively quicker response durations than 

those that were not associated with ramps. Moderate incident severity was associated with 

significantly longer incident response durations than minor incidents after co-location of response 

agencies. 

 

6.3 Incident Impact Duration 

 

Most agencies use incident clearance duration to measure the effectiveness of their incident 

management strategies. Incident clearance duration is the time between first recordable awareness 

of incident by a responsible agency and time at which the last responder has left the scene. 

However, it does not include the time it takes to restore normal traffic conditions after the incident 

is cleared, commonly known as the incident recovery duration.  

 

While most previous studies have focused on analyzing the incident clearance duration, little has 

been done to examine the incident recovery duration. This study introduced a measure, referred to 

as the incident impact duration, which includes the total time the traffic is impacted by an incident. 

In other words, it includes the time taken since the incident occurred to when the affected 

operational characteristics (i.e., speed and travel time) of a roadway segment return to normal. 

Depending on the type of incident and prevailing traffic conditions, the incident impact duration 

could be shorter or longer than the incident clearance duration. 

 

Incident impact duration, one of the most important performance measures, is challenging to 

measure at the time of the incident, especially because the time it takes for traffic to return to 

normal after an incident is difficult to record. This study developed a method to estimate the 

incident impact duration, and investigate the effects of various factors on the incident impact and 

clearance durations. The study proposed a technique that uses historical traffic speed data to 

estimate the incident impact duration. The method uses the speed data reported by the BlueToad® 

devices to create a bandwidth of mean speed profiles within one standard deviation for the times 

when there were no incidents. In the event of an incident, the algorithm checks if the speeds drop 

below the lower bound (i.e., one standard deviation below the historical mean) and tracks the traffic 

flow speed until it returns to within the one standard deviation bandwidth. The incident impact 

duration is computed as the time elapsed from the speed dropping below the bandwidth to the time 

it returns to normal (i.e., within one standard deviation from the historical mean). 

 

The factors affecting the incident impact duration were identified using hazard-based models. The 

model results suggested that the following five variables significantly affect incident impact 

duration.   
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1. Incident type: Crashes had longer incident impact durations than 

hazards. 

 

2. Incident severity: Moderate and severe incidents had longer incident 

impact durations than minor incidents. 

 

3. Lane closure: Incidents resulting in lane closure of more than 25% 

caused longer incident impact durations than those 

resulting in a lane closure of less than 25%. 

4. Time of the day: Incidents during peak hours had shorter incident 

impact durations. 

 

5. Co-location of response agencies: Operations of the TMC facility after co-location of 

response agencies led to shorter incident impact 

durations. 

 

6.4 Incident-related Delays 

 

Traffic incidents are one of the major causes of traffic delays on freeways. This study aimed at 

estimating incident-related delays on freeways using real-time traffic flow data, and also evaluated 

the impact of incident characteristics, traffic conditions, and roadway geometric conditions on the 

extent of the incident-related delays.  

 

The analysis was based on 3,383 incidents that occurred along I-95, I-295, and I-10 in Jacksonville, 

Florida, from 2015-2017. A data-driven methodology was first developed and applied to estimate 

the incident-related delays. The approach took advantage of the vast network of traffic sensors 

along the freeway corridors. The study used data extracted from both the BlueToad® and Regional 

Integrated Transportation Information System (RITIS) devices. These devices enabled the 

identification of the dynamic spatial and temporal extent of the incidents. The developed approach 

used real-time traffic flow characteristics, e.g., speed, travel time, and volume, to estimate the 

actual delays caused by traffic incidents. 

 

Results indicated that approximately 100%, 82%, and 48% of hazards, vehicle problems, and 

crashes, respectively, had incident-related delays shorter than 20 vehicle-hours. Only 7%, 24%, 

and 14% of minor, moderate, and severe incidents, respectively, led to incident-related delays 

longer than 120 vehicle-hours. The distribution of incident-related delays during morning- and 

evening-peak hours showed a similar trend, where both had lower percentage (approximately 61%) 

of incident-related delays shorter than 20 vehicle-hours than incidents during off-peak hours 

(81%). Moreover, 70% of incident-related delays on weekdays and 75% of the incident-related 

delays on weekends were shorter than 20 vehicle-hours. About 48% of incidents that involved 

towing services caused incident-related delays shorter than 20 vehicle hours. Only 6% of incidents 

detected using on-site detection methods led to incident-related delays longer than 120 vehicle-

hours while 18% of the incidents detected using off-site detection methods caused incident-related 

delays longer than 120 vehicle-hours. 
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Once the incident-related delays were estimated, the factors affecting these delays were 

investigated using hazard-based models. The results indicated that the following eight variables 

had significant influence on the incident-related delays at the 95% confidence interval:  

 

1. incident type (i.e., crashes, vehicle problems, and hazards),  

2. incident severity (i.e., minor, moderate, and severe), 

3. time of the day (i.e., off-peak hours, morning peak hours, and evening peak hours),  

4. day of week,  

5. median width,  

6. vertical curvature (i.e., presence or absence),  

7. EMS involvement (i.e., involved or not involved), and  

8. detection method (i.e., on-site detection and off-site detection).  

 

Crashes, vehicle problems, moderate incident severity, presence of vertical curves, EMS 

involvement, and off-site detection methods were found to cause longer incident-related delays. 

As suggested in the study findings, incident-related delays were longer when an incident was a 

crash. Enhancements to crash response and dissemination of crash information to the traffic 

upstream of the crash has the potential to reduce the delays caused by crashes. Further investigation 

is required to identify factors contributing to longer incident-related delays during evening peak 

hours than morning peak hours. Presence of vertical curves was associated with bridges, and was 

found to have significant longer incident-related delays. There is a need for special incident 

management procedures for such locations to minimize the incident-related delays. A spatial 

analysis of incident-related delays can identify the areas with the likelihood of having longer 

delays and help incident response agencies develop plans to cater to these locations. 

 

Despite the efforts in improving the analysis of incident-related delays, this study was limited by 

the spatial distribution of traffic sensors. For example, BlueToad® devices were not available on 

the entire freeway network, and even when available, some of the devices were inactive, or the 

devices were not closely spaced. Likewise, some locations did not have the RITIS devices to 

collect traffic volume data during incidents. Advances in the network of the traffic sensors would 

improve the analysis of incident-related delays and lead to more accurate results. 

 

6.5 Secondary Crashes 

 

Proper identification of SCs is pivotal to accurate reporting of the effectiveness of the programs 

deployed to mitigate SCs. Nonetheless, the limited knowledge on the nature and characteristics of 

SCs has largely impeded their mitigation strategies. This study focused on identifying SCs using 

static and dynamic methods, and analyzing the risk factors influencing the occurrence of these 

crashes. A dynamic method that uses speed profiles derived from BlueToad® pairs was first 

developed and applied to identify SCs. The proposed method identifies a crash as a SC if it 

occurred within the impact range of the primary incident (PI). For comparison purposes, the study 

also developed a Visual Basic for Applications (VBA) script that statically identifies SCs based 

on fixed spatiotemporal threshold. Once the SCs were identified using the dynamic method, 

Bayesian random effect complementary log-log model was used to analyze the risk factors 

influencing the occurrence of these crashes.  
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6.5.1 Identification of SCs 

 

SCs were identified using both the static and the dynamic methods. The study area for the static 

method included a 35-mile section on I-95, a 21-mile section on I-10, a 61-mile section on I-295, 

and a 13-mile section on SR-202 located in Jacksonville, Florida. SCs were identified using a 2-

mile-2-hour spatiotemporal threshold. Out of 74,030 incidents that occurred along the study 

corridors for the years 2014-2017, 3,400 incidents (5%) were identified as SCs. SCs that occurred 

in the upstream direction constituted 88% of the total detected SCs, while the remaining 12% 

occurred in the opposite direction. 

 

Dynamic approach based on speed profile data was also used to identify SCs. Unlike the static 

method, SCs using dynamic method could be identified only along the corridors with BlueToad® 

pairs, i.e., I-10, I-95, and I-295. The analysis was based on 6,865 traffic incidents that occurred 

along the study corridors for the years 2015-2017. Overall, 518 SCs were identified from 425 PIs. 

The identified SCs account for 8% of the 6,865 incidents used in the analysis. The 425 PIs that 

induced SCs represented 7% of all normal incidents. These results indicate that approximately one 

in every twelve normal incidents resulted in a SC. Similar to the results from the static method, 

SCs that occurred in the upstream direction constituted 87% of the total SCs, while the remaining 

13% occurred in the opposite direction of the PI.  

 

Descriptive statistics of the SCs identified using the dynamic method indicated that 87% of the 

SCs occurred within two hours after the occurrence of PIs. Spatially, 73% of the SCs occurred 

within two miles from the PI. Overall, 66% of SCs occurred within two hours of the onset of a PI 

and within two miles upstream of the PI. About 34% of SCs occurred beyond the most commonly 

used 2-mile-2-hour spatiotemporal threshold. These statistics confirm that the proposed dynamic 

approach identified more SCs than the traditional static method.  

 

The following are some of the key characteristics of the PIs and SCs identified using the dynamic 

approach: 

 

• Only 1% of SCs occurred between 12:00 AM and 5:00 AM, whereas 80% occurred during 

peak hours. Specifically, 38% of SCs occurred during morning peak while the remaining 

42% occurred during evening peak.  

 

• The highest proportion of PIs (17%) occurred at 7:00 AM, while the highest proportion of 

SCs (15%) occurred two hours after the PI, i.e., at 9:00 AM.  

 

• While SCs occurred on Mondays and Fridays, normal incidents occurred on weekdays (i.e., 

Monday through Friday). Only 5% of SCs occurred on weekends.  

 

• Approximately 89% of normal incidents were cleared within 90 minutes, while only 68% 

of PIs were cleared within 90 minutes. The longer clearance time of the PIs could be 

considered as one of the factors that may have contributed to the occurrence of SCs.  
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• Approximately 75% of SCs were cleared within 90 minutes, while only approximately 

68% of PIs were cleared within 90 minutes. The shorter clearance duration of SCs may be 

attributed to the fact that SCs are often less severe.  

 

• The severity of PIs was found to be one of the factors that influence the occurrence of SCs. 

About 18% of PIs were moderate/severe while only 5% of normal incidents were 

moderate/severe. Besides the severity of PIs, percent of lanes closed, incident type, and 

incidents required towing were also considered to be good indicators of incident severity. 

About 12% of normal incidents resulted in a lane closure, while 33% of PIs resulted in a 

lane closure. Only 34% of normal incidents were identified as crashes, while 74% of PIs 

were crashes. About 13% of normal incidents required towing, while 25% of PIs required 

towing. These statistics indicate that the severity of PIs influence the occurrence of SCs.   

 

6.5.2 Factors Affecting the Likelihood of SCs  

 

The effect of real-time traffic, incident, environmental, and geometric related variables on the 

likelihood of SCs was modeled. Random forests technique was first used to screen for the 

important variables. Highly correlated variables were then identified and excluded from further 

analysis. Finally, Bayesian random effect complementary log-log model was used to link the 

probability of SC occurrence with the real-time traffic flow variables, PI characteristics, 

environmental, and geometric characteristics.  

 

The results indicated that several PI characteristics and real-time traffic variables influence the 

occurrence of SCs. The following seven variables were found to be significant at the 95% Bayesian 

credible interval (BCI):  

 

1. Average detector occupancy:  the risk of SCs increased with the increase in the average 

detector occupancy.  

 

2. Incident severity:  compared to moderate or minor PIs, severe PIs were 

observed to increase the likelihood of SCs.  

 

3. Lane closure:  incidents resulting in more than 25% of lane closure were 

found to have a higher risk of resulting in SCs compared 

to incidents involving less than 25% of lane closure. 

 

4. Incident type:  crashes were found to have a higher likelihood of resulting 

in SCs compared to those involving other incident types 

such as debris on roadway.  

 

5. Incident clearance duration:  increase in incident clearance time was accompanied with 

the increase in the risk of SCs.  

 

6. Incident impact duration:  the positive parameter of time taken for speed to return 

back to normal indicates that the risk of having a SC 

increases with PI impact duration.  
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7. Incident occurrence time:  compared to incidents that occurred during off-peak hours, 

incidents that occurred during peak hours were observed 

to have a higher likelihood of resulting in SCs.  

 

As can be inferred from the study findings, prevention of SCs is a function of PI severity, how 

quickly the PI is cleared, and how quickly information about the occurrence and location of traffic 

incidents is disseminated to the upstream drivers. To prevent the risk of SC occurrence, traffic 

management strategies should be developed to accelerate the dissipation of queue upstream of the 

PI. The likelihood of a SC occurrence can be estimated using real-time traffic data in combination 

with PI characteristics. Warnings can be sent to drivers approaching a primary crash scene in real-

time through various means including DMSs, information sharing technologies such as WAZE 

application, and the emerging technologies such as connected vehicles, giving them an opportunity 

to take necessary precautions (such as detour and/or drive with caution) to avoid being involved 

in a crash. Furthermore, when the conditions associated with a high likelihood of SCs prevail, 

responding agencies such as highway patrol, EMS, towing agencies, etc. could be better prepared 

to respond to SCs, if they were to occur. These strategies will help to potentially reduce the 

frequency and severity of SCs. 
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