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EXECUTIVE SUMMARY

The objective of this research was to evaluate the implementation of proposed Adaptive Signal
Control Technologies (ASCT) traffic operations at eight arterial corridors in Florida, before and
after the installation of specific ASCT (InSync and Synchro Green), document the effectiveness
of these systems, their advantages and disadvantages, and provide recommendations for state-
wide implementation of ASCT.

A literature review was first conducted to document the state of the industry and best practices
for adaptive systems. Next, the impact of ASCT was evaluated by comparing traffic operational
measures and crash statistics before and after their implementation at the eight corridors.
Table 1 shows the detailed information on the corridor characteristics and data collection
times.

Table 1 Data Collection Sites and Description

. Cross Length #Signalized #Unsignalized Sp.ee.d Data Collection Time Periods
Site Route Section (mile) Int. per Int. per mile AADT Limit
mile -p (mph) AM Peak | Off Peak | PM Peak
Gai 0 Newberry 6-Lane 145 83 13.8 45750 35 7am-— lpm-3 4pm -
atnesviiie Road Divided ) ) ) 9am pm 6pm
Deland | us17/02 | 5" | 228 2.2 6.6 31500 | 20/ | 7am- | tem=3 [ 4pm-
elan Divided ) ) ) 45 9am pm 6pm
.Panama Beach 4/.6-.Lane 85 11 56 28750 55 7am-— lpm-3 4pm —
City Beach | Parkway | Divided 9am pm 6pm
Sarasota University | 4/6-Lane 40/ 7am lpm-3 4pm
and oo y | 78 23 3.1 49110 | a5/ [ 2 P g
Manatee arkway ivide 50 am pm pm
Panama 23rd Street 4-lane ) 45 6.5 46875 45 7am-— llam-1 4pm —
City r@ ST Undivided ) ) 9am pm 6pm
. 6-Lane 7am-— lpm-3 4pm —
Pinellas | 66th Street . 5 24 8 35585 45
Divided 9am pm 6pm
Manat SR70 Slane 4, 24 1.7 sp185 | 40/ [ 7am- [ 10am- ] 4pm-
anatee Divided ’ ' ' 50 9am 12pm 6pm
E.Van Fleet
Bartow Drive & N. 6.-I_.ane 11 45 18 41180 45/ 7am-— 9.30am— 4pm —
Broadway | Divided 35 9am 11.30am 6pm
Ave.

The staff at Traffic Management Centers (TMCs) and other agencies responsible for the
installation and maintenance of the ASCT at these corridors were interviewed in order to obtain
their perspective on the effectiveness of these systems. Based on the quantitative and
gualitative information collected, the research team conducted a benefit-cost analysis, and
developed recommendations and guidance for further implementation of ASCT.



Traffic Operations

To evaluate the impact of ASCT on traffic operations, two critical intersections and three critical
time periods (AM, PM and Off Peak) were identified for each corridor. Five performance
measures were obtained for the before and after study periods: Link/Route Travel Time, Delay
at Intersections, Queue Length (at critical intersections), Queue to Lane Storage Ratio (at critical
intersections), and Passenger Car Equivalent (PCE) flows (at critical intersections). For each
performance measure, a comparison between the before and after data was conducted.

It was found that the implementation of ASCT led to an average overall reduction in travel time
of 9.36%. All corridors show travel time reduction in at least one direction of travel and four
corridors show reduction in both directions. US 17 in Deland and 66™ Street in Pinellas showed
the most improvement, whereas Newberry Road in Gainesville was adversely affected by the
ASCT installation and the system was removed.

The ASCT generally helped increase major street throughput (6.96%) and reduce major street
queues (15.57%). The minor street queues increased (16.98%) while the throughput remained
almost the same (0.69%), i.e., ASCT is able to maintain the same levels of side street flows
despite an increase in minor street queues.

Regression analysis showed that lower AADT, lower intersection density (signalized and
unsignalized), and lower initial operating speed (before implementation of ASCT) resulted in
higher traffic operational improvement. The sites that showed consistent improvements had
minimal detection or construction issues, low-volume side streets, and simpler geometry (for
example, no left turns as part of the main corridor).

Safety

The crash data along six of the eight corridors were obtained from the Signal Four Analytics
System in order to evaluate the impact of ASCT on safety. Safety analysis was not conducted for
the other two sites due to a lack of data for the “after” period. The data extracted from the
Signal Four Analytics System was for the period January 2013 — November 2017.

The research team examined changes in total crashes, and changes in crashes by severity (fatal
and injury crashes), crash type (such as rear end, intersection related), and time of day (Peak,
Off Peak, Weekend). Estimates of traffic volume for the entire corridor (mainline) were
obtained and these were used to compare annual crash rates. All crash data were collected
over a period of 59 months (2013 to 2017). Depending on the date of ASCT implementation, the
sites had varying data ranges for “before” and “after” crash data. We call this comparison as
“long term”. To have uniformity in comparison a 14 month window was used (7 before
implementation and 7 after) for all sites. We call this comparison is as “short term”.

US17 in Deland, 23rd Street in Panama City, and East Van fleet Drive in Bartow, showed
reduction in crashes in both short and long term. University Parkway in Sarasota showed only
short term improvement. Regarding the two corridors that showed an increase in crashes, SR
693 in Pinellas had a short “after” period for data collection. Beach Parkway in Panama City has
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had increasing tourist-related demand, which has led to higher seasonal traffic. This increase is
potentially offsetting any safety benefits of signal coordination.

Interviews and Benefit-Cost (B/C)

The data collected from traffic engineering and safety analyses were used to compute the
benefits for each site, while costs were obtained during interviews with operating agencies.

The interviews were conducted either through an on-site meeting or through video calls when
in-person interviews could not be arranged. A questionnaire was developed and provided to
the agency in advance of the interview, and it consisted of five sections and approximately 40
guestions which focused on previous traffic control technologies used by the agency, their
experience with ASCT, cost components, and institutional issues.

Based on the interviews, the level of staff satisfaction correlated with objective measurements
such as travel time and queue improvement. Some of the key components for successful ASCT
implementation identified through these interviews are:

e Regular maintenance and checks of the detection system and cameras

e ASCT software needs regular updating, and it is important to include maintenance funding
e Extensive training of 5 days or more is required, with providing additional staff for ASCT

e Sites where vendors installed the system and did the initial fine tuning performed better

e ASCT proved to be effective during the Off Peak periods at all sites and during Peak hours in
some sites.

The benefit-cost analysis revealed overall net positive monetized benefits (12.8 considering
safety, 5.4 without safety). The ASCT perform well for most of the corridors and for the overall
program. The benefits are mainly attributed to reduced travel time along the corridors. The
crashes are classified into five categories labeled KABCO: killed (K), incapacitating (A), non-
incapacitating (B), possible injury (C), and property damage only (O). Since KABCO values weigh
the fatalities heavily, safety benefits are extremely variable and could swing from net negative
to net positive due to a single fatality.

Overall, the research team has concluded that ASCT generally yield better performance and a
higher return on investment when implemented on corridors with lower intersection density,
low-volume side streets, and high demand but not oversaturated traffic conditions. Based on
interviews conducted, ASCT is not a “set it and forget it” system. Maintenance (especially
detectors and cameras), training (at least 5 days), and appropriate staffing are some of the key
factors contributing to their success.
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1. INTRODUCTION

Adaptive Signal Control Technologies (ASCT) conduct real-time optimization of traffic control
using a variety of sensors and algorithms. The primary objective of implementing ASCT is to
minimize travel time and decrease the number of stops through arterial corridors. Such systems
are known to reduce traffic delays, crashes, and may result in fewer periodic re-timings of
traffic signals.

1.1 Background and Objectives

The Florida Department of Transportation (FDOT) has been interested in evaluating the
effectiveness of ASCT under various conditions, in order to develop guidelines for state-wide
deployment. Previous implementations and evaluations of these technologies have found that
ASCT may not be effective or warranted for all types of corridors and traffic conditions.

The main objectives of this project were to evaluate the effectiveness of ASCT at several arterial
corridors in Florida, compare traffic operations and safety before and after their installation,
and provide recommendations for state-wide implementation of ASCT. This evaluation is based
on a quantitative and qualitative analysis, including equipment and personnel cost, and it
concludes with a benefit-cost analysis for each corridor. A total of eight corridors are studied in
this project.

1.2 Project Overview

The Florida Department of Transportation (FDOT) commissioned this project in May 2014 to
evaluate the effectiveness of ASCT across Florida. InSync and Sychro Green are the two
adaptive systems deployed at the eight corridors studied (Figure 1.1). Table 1.1 provides an
overview of these corridors, including geometry features, speed limits, intersection density, and
annual average daily traffic (AADT).

All corridors studied have similar cross-sections, but their total length varies from 1.1 t0 9.2
miles. Most of the corridors have a relatively low density of signalized and unsignalized
intersections (less than 0.5 and 1.6 intersections/mile, respectively), although, Newberry Rd
(Gainesville) has by far the highest density for both types of intersections (5.7 and 9.5
intersections/mile). The AADT along these corridors are 41,000 veh/day on average, with the SR
70 corridor having the highest (52185 veh/day) and Panama City Beach Pkwy having the lowest
(28750 veh/day).



Figure 1.1 Locations Of The Study Corridors



Table 1.1 Data Collection Sites and Description

Gainesvill Panama Cit Sarasota
Deland ¥ and Panama City Pinellas Manatee Bartow
e Beach
Manatee
Newberr Universit E.Van Fleet
Route y USs 17/92 Beach Parkway y 23rd Street 66th Street SR70 Drive & N.
Road Parkway
Broadway Ave.
. 6-Lane 6-Lane 4/6-Lane 4/6-Lane 4-Lane 6-Lane 6-Lane L
Cross Section Divided Divided Divided Divided Undivided Divided Divided 6-Lane Divided
Length (mile) 1.45 2.28 8.5 7.8 2.0 5.0 9.2 1.1
#Signalized
Intersections per 8.3 2.2 1.1 2.3 4.5 2.4 2.4 4.5
mile
#Unsignalized
Intersections per 13.8 6.6 5.6 3.1 6.5 8 1.7 1.8
mile
Pec{estnan No No No No No No No No
Signals
AADT 45750 31500 28750 49110 46875 35585 52185 41180
Speed Limit
35 50/ 45 55 40/45/50 45 45 40/50 45/ 35
(mph)
AM
7am —9am 7am —9am 7am —9am 7am —9am 7am —9am 7am —9am 7am —9am 7am —9am
Data Peak
Collection | Off 10am — 9.30am —
Time Peak lpm -3 pm lpm -3 pm 1pm -3 pm lpm -3 pm llam-1pm 1pm -3 pm 12pm 11.30am
Periods PM
! Peak 4pm — 6pm dpm —6pm 4dpm —6pm 4pm —6pm 4dpm —6pm 4pm — 6pm 4pm — 6pm 4dpm —6pm




Prior to the data collection, the research team conducted a thorough literature review
(Appendix A). The literature review focuses on traffic signal optimization approaches and
provides an overview of existing products, their computational capability and functionality, and
their approach to signal control optimization, along with their perceived advantages and
disadvantages. It also includes an overview of industry best practices with regard to
implementing ASCT, and the experience of other agencies. It also identifies pertinent
performance measures that should be collected before and after installation of ASCT. These
measures include arterial travel time, delay at each signal, turning movements, queue length,
and quality of existing signal control and coordination.

The following chapters report the data, analyses, and results from this project. Chapter 2
provides an overview of the traffic engineering analysis conducted which considers travel time
savings, reduction in queues, and other operational performance measures. The results of
safety analysis are reported in Chapter 3. Chapter 4 summarizes the results from a series of
discussions and interviews with local agencies responsible for installing the ASCT at each
corridor. Chapter 5 provides the results of the benefit/cost analysis, which considers travel
time savings, safety effects, and operational and maintenance costs of ASCT. The last chapter
of this report provides recommendations and guidelines for implementation of ASCT.



2. LITERATURE REVIEW

The objective of this project is to evaluate the implementation of Advanced Signal Control
Technologies (ASCT) for several corridors across Florida. This document summarizes the work
conducted under Task 1 which reviewed and assessed existing ASCT, their computational
capability and functionality and their approach to signal control optimization, along with their
perceived advantages and disadvantages identified to-date.

The term Adaptive Signal Control Technology (ASCT) describes any system that collects data,
evaluates traffic signal performance on the basis of one or more of the system’s functional
objectives and then updates signal timing in response to that evaluation [1]. These systems are
expensive and take considerable time for deployment. Hence, it is necessary to evaluate the
benefits and appropriateness of such a system for various corridor designs and demand
conditions. Each ASCT varies in the extent and type of detection required, equipment
deployed, as well as in the definition and algorithmic use of split, cycle, offsets and phase
sequences.

SCOOT and SCATS are two of the first such systems and they have been the most popular
(Figure 2.1). SCOOT was developed in the United Kingdom, while SCATS was developed in
Australia. In an attempt to introduce this technology in the US, RHODES and OPAC were
developed as part of the RT-TRACS program by the Federal Highway Administration (FHWA).
The Los Angeles Department of Transportation (LA-DOT) independently developed its own
ASCT system [2] while ACS-Lite was initially developed by the US DOT in partnership with
Siemens, Purdue University, and the University of Arizona [3]. InSync and SynchroGreen are the
latest adaptive signal control systems and these are being installed in several corridors across
Florida and will be evaluated in this study.
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Figure 2.1 Market share of Adaptive Signal Systems in 2010 [4]



The next sections detail the ASCT methods and algorithms used in InSync and SynchroGreen
followed by an overview of other ASCT that have been implemented elsewhere. The fourth
section summarizes industry experiences with these systems as documented in the literature.
The last section provides the conclusions of this task.

2.1 Insync Adaptive Traffic Signal Control System
2.1.1 Background

The InSync adaptive traffic control system is invented by Dr. Reggie Chandra, P.E., PTOE. The
system is developed by Rhythm Engineering and was launched in 2008 after three years of
research and development [5]. The company has been granted 4 patents for its unique design
[6]. According to the company’s website [6], this adaptive traffic signal control system has
been deployed at more than 1,000 intersections all across the United States. The system is
currently deployed at 22 states: Arizona, Arkansas, California, Colorado, Florida, Georgia, lowa,
Kansas, Kentucky, Michigan, Missouri, New Mexico, Oklahoma, Oregon, Pennsylvania, South
Carolina, Tennessee, Texas, Vermont, Virginia, West Virginia and Wisconsin. There are
scheduled deployments of the InSync adaptive signal control system in numerous sites for
Idaho, lllinois, Florida, Ohio and South Dakota locations [6].

2.1.2 System Architecture & Hardware
Detection Methods

The InSync adaptive signal control is a distributed system of processors that need to be installed
at each intersection that is part of the adaptive signal controlled corridor [5]. According to the
company’s website [6], the processor can work with any signal controller that the local agency
has decided to implement, implying that there should not be any additional costs for controller
upgrades. Furthermore, it is stated that InSync’s processor is compatible with any signal control
cabinet [6], and thus there is no need for upgrading the pre-installed ones to ensure
functionality. Rhythm Engineering provides three options for detection: 1) implement their
detection method, which consists of InSync cameras; 2) keep the agencies’ detection devices,
which could include inductive loop detectors, cameras, microwave techniques and radars; or 3)
integrate all available devices and InSync cameras, an option that yields most accurate results
[6]. Each of these three options is discussed in the following paragraphs

InSync Cameras

The InSync detection method consists of Samsung SNZ-5200 IP cameras with detection
technology [6]. At each intersection up to 4 of those cameras can be installed, one for each
approach, and there are options for installing additional cameras if needed. Those cameras
have remote aim and focus and are used to monitor the intersection by detecting and
measuring traffic demand at all intersection’s approaches every second. The datasets that are
acquired from this detection system include vehicles in queues. Figure 2.2 illustrates the queue
detection through the InSync cameras. Each approach camera categorizes each lane as a
detection lane; each detection lane is subdivided by vertical zones based on the average length
of a car. Monitoring the intersection through these cameras can be done online from any web
browser [6].



Figure 2.2 InSync cameras detection through image processing [6]

Using Existing Detection: InSync Tesla

For this detection option, the agency can keep their detection and monitoring devices, saving
the InSync cameras installation costs. This way, if the corridor’s agency has invested in installing
their own detection method, they can still take advantage of it and and yet have the benefits of
the adaptive traffic signal control that InSync yields [6]. The “Tesla system” is reported to
accept most third party cameras, detectors and radars; in this system, stop bar detection is
required for all lanes of the monitored intersection.

Using InSync and Existing Detection: InSync Fusion

This InSync detection option can be used to combine the benefits from installing InSync
cameras and at the same time use other available detection methods. This way, the accuracy of
the detection is increased since data sets are used from multiple sources.

InSync processor

In order for the system to be successfully deployed the company recommends that one InSync
processor is located at every signal cabinet of each intersection adaptively controlled. Ethernet
connections are required for every signal cabinet [5]. The processor weights approximately 7
Ibs and works as follows: it gathers data from each intersection and vehicles monitoring sensor,
pre-installed or newly installed, such as vehicle loop detectors, cameras and/or radars. The
processor analyzes the datasets received and communicates with the upstream and
downstream intersections to ensure data validity in corridor analysis [5] [6]. At every second
the processor determines the traffic movement priority (additional information on phasing and



traffic movement options is provided below). The processor communicates the results of the
optimization to the controller and the changes appear on the network immediately.

Equipment panel

This panel is essentially the power supply channel and the Ethernet switch for the processor
and the InSync cameras [6].

Detector card
This card supports the integration of the video detection and the traffic controller [6].

User’s software

CentralSync is the software used for the initial and ongoing configuration of the system. The
deployment of the ‘traffic management variables and strategies’ is conducted through this
interface. This software is Windows-based, which might be an issue for any agency that has a
different operating system. An advantageous option is that plans and strategies can be
uploaded or downloaded remotely [6].

2.1.3 Signal Control Optimization Framework

According to Federal Highway’s Administration report [7], adaptive signal control systems
continuously adjust daily signal schedules to accommodate traffic accumulation, react promptly
to changed traffic patterns and progressively improve travel time reliability along the
implementation’s corridor. The so-called real time adaptive signal control characteristics are
usually listed as: effectively utilizing traffic flow models to predict vehicle arrivals and effectively
adapt the signal timing in order to accommodate the progression of the vehicles in the corridor
globally, and minimize delays locally (intersection level) [8]. The manufacturer of InSync
indicates that the system is completely digital and operates without being restricted to the
analog sequencing, splits, offsets and cycles. Instead, InSync introduces the concept of states:
each state is a phase or a pair of phases that occur simultaneously without conflict [6]. The
InSync adaptive signal control system achieves dynamic adaptation by altering signaling states,
sequences or the green time so as to accommodate the current state of traffic. The state
machine/processor can pick from any state or sequence that is allowable (these are pre-
defined) in order to serve the current demand more efficiently. Figure 2.3 provides a series of 8
states and 16 sequences as an example of states and sequences that the digital model can
choose from and implement in real-time [9]. InSync eliminates signal cycles and transition
periods.
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Figure 2.3 States and Sequences digitally called in InSync [6]

After gathering all available detection data, the logic of the “greedy” algorithm is implemented
on the “local” intersection level in order to minimize delay. This algorithm works as follows:
tokens are distributed to vehicles arriving at the intersection on red. Every 5 seconds that the
vehicle is waiting on the intersection it gets a token (Figure 2.5); the algorithm aims to minimize
the delay for the intersection’s approaches by minimizing the number of tokens handed out.
The process is described as fully-actuated and the signal timing is optimized according to the
number of cars waiting and the duration of their waiting time (delay).

Apart from optimizing traffic signal times locally, the InSync system’s objective is to
progressively ensure the minimization of delay along the corridor [9]. This is achieved by
creating speed lines through the corridor. Over time, speed lines are generated across the
corridors so that a car travelling at the desired speed goes through the corridor without
stopping. Note that not only though movements can be coordinated; any state including left
turns can be part of the adaptive coordination [5]. The global optimizer guarantees progression
of platoons of vehicles along the corridor; then control is turned over to the local optimizer at
the intersection level and the optimal phase combination is served in order to satisfy the
current demand [10]. The process doesn’t require deterministic cycle lengths or timing plans
[10].



Figure 2.4 Token distribution at the intersection level [6]

2.1.4 Development Process

Rhythm Engineering provides the service of implementation to the sites; installation teams are
sent to the corridor’s location in order to proceed with the hardware installation and the
cabinets’ wiring [6]. According to the company’s website, before integrating the system, the
following information is needed: traffic counts, phases, SYNCHRO files and information on the
controllers, the detection systems and the signal cabinets currently in use.

The system’s company also provides complete documentation including manuals and guides for
installation, operation, and maintenance. Training support is also included in the installation
package, incorporating classroom sessions and hands-on training in the field. Technical support
is provided during the operation process [5].

2.1.5 Monitoring

In addition to the CentralSync software that needs to be installed in the agency’s computers,
there is a web-user interface where information can be accessed online. The WebUI interface
allows for monitoring and can also be used to re-conFigure Bameras and adjust detection areas
[6]. Real-time information is provided at any time, following InSync’s operation and showing
statistics and diagnostics by calling the processor. The web-based user environment can also
generate statistical reports or csv files for download after specifying the type of data needed to
be exported.
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2.1.6 Case Studies

The InSync adaptive signal control has been implemented in various corridor sites since its
introduction in 2008. TJKM Transportation Consultants report the benefits of InSync’s
implementation along a 1.24 mile corridor in the city of Salinas, CA [11]. The results indicated
that travel time along the corridor after the InSync deployment was reduced by 42%, the
average speed increased by 69% and fuel savings were reported up to 33%. Kittelson and
Associates, Inc. presented the results of an InSync implementation along a 1.7-mile corridor in
Hillsboro, OR [12]. The consultants reported that the InSync system metered traffic along
corridor entrances in order to facilitate the platoons’ progressive movements. Average daily
travel time was reduced by a range of 4-24% but average intersection delay was not improved.
This report also brings into light small issues with the monitoring and detecting processes that
were eventually addressed [12]. Kimley-Horn and Associates, Inc. conducted a study analyzing
before and after deployment data at a 2.3-mile long corridor, in Pinellas County, Florida [13].
The results of the benefit cost analysis indicated benefits for the motorists from reduced travel
times and fuel consumption [13]. HDR Engineering, Inc. reported improved travel times after
the implementation of InSync along a 6 signalized intersection corridor at the Town of Mt.
Pleasant, SC [14]. Atkins evaluated the implementation of InSync along a 4-mile corridor with
11 signalized intersections at the City of Greeley, CO [15]. Findings indicated that the
implementation resulted in reducing average travel times along the corridor and led to higher
average speeds. Also, they reported that there was overall reduction of the average delay along
the corridor and fewer stops per vehicle that resulted in better level of service of the facility
[15]. Missouri DOT reports on an adaptive traffic signal system installed in 2010 along a 12-
signal and 2.5-mile arterial, located in Lee’s Summit, MO [16]. The deployment results indicted
savings in travel time ranging from 0-39%. However, the implementation yielded a slight
increase in delay for minor street traffic [16].

2.2 Synchrogreen Adaptive Traffic Signal Control System
2.2.1 Introduction

SynchroGreen is a real-time Adaptive Signal Control Technology (ASCT) solution developed by
Trafficware. It considers side-street, pedestrian traffic and mainline traffic in providing an
adaptive solution to the varying traffic dynamics. Trafficware claims the following features for
SynchroGreen [17]:

e “Adjusts traffic signal timing in real time based on traffic demand.”

o “Utilizes three optimization engines to allocate green time and promote better traffic
flow.”

e “Compatible with existing traffic control infrastructure, including many common traffic
controllers and various forms of detection.”

e “Allows user selection of various strategies to facilitate balanced traffic flow,
progression bandwidth, and critical movements.”

e “Adaptive traffic control seamlessly integrates with Synchro and SimTraffic for modelling
and evaluating different system settings before deployment.”
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2.2.2 System Compoents

SynchroGreen consists of three key components: the management system (server), local traffic
controllers and the vehicle detection units [17]. According to Trafficware, the management
system is also called the Signal System Master (SSM) with the SynchroGreen Central Server
Software installed on the Window PC Server. The local traffic controllers are called Signal
System Locals (SSLs). The SSM is responsible for processing and calculating the updated signal
timing plans while the purpose of SSLs is to gather detector data and execute the commands
from SSM. When in operation, communication between SSM and SSLs occurs every several
seconds to guarantee the accuracy of the signal timing.

2.2.3 Signal Control Optimization frameworks

The primary goal of the SynchroGreen algorithm is to minimize the network delay while
providing reasonable mainline progression bandwidth [17]. SynchroGreen also provides three
different adaptive control modes to cater to potential needs. The Balanced Mode provides for
an equitable distribution of green time with reasonable mainline bandwidth. The Progression
mode gives priority to mainline progression. The Critical Movement Mode weights more heavily
the identified critical movements. In summary, SynchroGreen follows a more traditional
approach to signal control optimization, and utilizes the current traffic conditions to optimize
the phase allocation (splits), period (cycle length) as well as start time (offsets) in real time.

Phase Allocation

Phase allocation determines the amount of green time each phase should receive. A targeted
phase allocation time is initially calculated based on the green utilization, which is the duration
of time that the current movement is served assuming saturation flow levels. The estimation of
green utilization utilizes the stop-bar detectors after being calibrated considering their sizes,
positions and the prevailing vehicle speed. However, the targeted phase allocation is not
necessarily the final phase allocation that is sent to the controllers. The actual phase allocation
will rely on the targeted period (or cycle length) of the intersections.

Period

Period is the adaptive counterpart of cycle length in a traditional coordination system. After the
targeted phase allocation is determined, SynchroGreen establishes the targeted period of each
intersection by constructing the respective ring-and-barrier diagrams. The intersection with the
highest targeted period will serve as the critical intersection. This period of the critical
intersection is assigned to all other intersections, and the actual phase allocation is enlarged
proportionally to the previously targeted phase allocation.

Start Time

Start time consists of lag time and travel path. The lag time is similar to the concept of offset in
traditional signal coordination. In SynchroGreen, lag time is dynamically modified based on
detected traffic conditions, the determination of which often considers the existence of
gueuing and platoon arrival distribution which is extracted from advance detectors. The travel
path is selected based on the predominant travel direction. It can vary by time-of-day and
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determines when each SSL should receive the updated timing plan. This maintains coordination
in the order in which the platoon is expected to arrive at downstream intersections.

2.2.4 System Requirements

SynchroGreen can operate using existing infrastructure. SynchroGreen software supports 2070
and ATC-type traffic controllers and will operate on traffic controllers from various vendors.
SynchroGreen requires advance detection on the mainline and stop-bar detection for each lane
in order to better monitor and predict the traffic conditions. However, it supports any common
detection technology such as loops, video and advance radar, and also allows for multiple
detection methods to be used at the same time at an intersection.

2.2.5 Software Packages

Based on the software capability and the number of adaptive intersections that need to be
served, SynchroGreen is available for three different levels [18].

SynchroGreen Lean — “includes the Local Intersection Software and Central Server Software,
and provides a web-based interface for monitoring and controlling the system. This option is an
economical way for a city to experience the benefits of adaptive traffic control.” This package is
used in the Newberry Road study corridor.

SynchroGreen Premium — “includes the local intersection software and enhanced central server
software, and operates up to 150 intersections. It provides agencies with the ability to analyze
real-time system performance, create detailed reports, log system calculations, and much
more. This solution is designed to be easily integrated as part of federally-funded adaptive
traffic control projects.”

SynchroGreen Enterprise — “integrates directly with your ATMS.now central management
system and also qualifies for federal funding. It allows agencies to operate up to 150 adaptive
intersections and 9,999 total intersections.”

2.2.6 Case Studies

Since the introduction of SynchroGreen, several field implementations have been conducted.
According to Cheek et al. [19] , SynchroGreen was deployed along a 1.7 mile arterial in
Seminole County, Florida in 2012. The corridor consists of 12 signals and features large
fluctuation of day-to-day traffic flow. An over 35% reduction of delay on the arterial was
observed after installing SynchroGreen; side-street traffic also benefited by an average of 19%
delay reduction. Another SynchroGreen system was recently deployed at nine intersections
along Glades Rd. in Boca Raton, Florida [20]. Results indicated that SynchoGreen efficiently
handled the flow variation both at hourly and daily levels. Travel time was reduced by a range
of 2.4% to 8.6% in three of the four study segments. However, not many of the improvements
were found statistically significant.

2.3 Other Advanced Signal Control Technologies

This section introduces and discusses other adaptive signal control methods found in use in the
United States.
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2.3.1 Split Cycle Offset Optimization Technique (SCOOT)

SCOOT is an adaptive traffic control system originally developed by the Transport Research
Laboratory (TRL) [21]. Its algorithm is based on the TRANSYT optimization program (TRANSYT 7F
is its US version.) SCOOQOT is installed in a central computer and has three optimizers that
compute the best signal plan for the network based on detected traffic demand on all
approaches to the system intersections. The optimizers are used to continuously adapt these
parameters for all intersections in the SCOOT controlled area, aiming to minimize wasted green
time at intersections as well as to reduce stops and delays by synchronizing adjacent sets of
signals.

The operation of the SCOOT model is summarized in Figure 2.5. SCOOT obtains information on
traffic flows from detectors, which are typically required on every link. Their location is
important and they are usually positioned at the upstream end of the approach link. Inductive
loops are used most often, but other methods are also feasible.

SCOOQT receives traffic information and converts the data into its internal units and uses them
to construct "Cyclic flow profiles" for each link as shown in the top left of Figure 2.5. The data
from the model are then used by SCOOT in the three optimizers which are continuously
adapting three key traffic control parameters - the cycle time, the splits, and the offsets. The
cycle time optimizer computes an optimum cycle length for the critical intersection in the
network. The split optimizer then assigns green splits for each intersection based on this cycle
length and the offset optimizer calculates offsets. Phase sequence is also optimized.
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Figure 2.5 SCOOT Operation Procedure [22]

SCOOT was originally designed to control dense urban networks, such as large towns and cities.
It has also been successful in small networks, especially for areas where traffic patterns are
unpredictable. It is used extensively throughout the United Kingdom (England, Ireland, and
Wales) as well as in other countries (including USA, China, Canada, Brazil, Thailand, Chile, etc.).
In the US, SCOOT has been implemented in Ann Arbor, MI, Minneapolis, MN, Arlington, VA,
Orange County, FL, Santa Barbara, CA, San Diego, CA, Oxnard, CA and Anaheim, CA.

Some of the advantages of SCOOT are that the cyclic flow profiles are created on-line and are
updated every four seconds. It optimizes phase sequence, and estimates queue lengths based
on flow-occupancy profiles from upstream detectors. It uses the profiles to determine splits and
offsets for the next cycles as well. SCOOT has interfaces for CORSIM, S-Paramics, VISSIM, and
Aimsun.

One of the drawbacks of SCOOT is its inability to handle closely-spaced signals. Due to its
particular detection configuration requirements, it requires some time to detect vehicles and
estimate arrivals from the upstream detectors. It is primarily designed to react to long-term,
slow variations in traffic demand, and not to short-term random fluctuations.

2.3.2 Sydney Coordinated Adaptive Traffic System (SCATS)

SCATS is an intelligent transportation signal control strategy that automatically selects signal
control plans from a background library in response to the detected traffic demands. Its
objective is to achieve maximum throughput while minimizing stops and delay. It has been
successfully deployed on arterial roads, downtown grid networks, and at small groups of
intersections [4] [23] [24]. SCATS was developed by the Roads and Traffic Authority (RTA) of
New South Wales, Australia (the former constituents of the Roads and Maritime Services) in the
late 1970s. It is maintained by Roads and Maritime Services.

The input data for SCATS are collected by a system of traffic detectors. Two basic measures
from detectors are used to adjust signal timings: degree of saturation and traffic flows. The
system uses sensors at each traffic signal to detect vehicle presence in each lane and
pedestrians waiting to cross at the local site. Sensors may be inductive loop detectors
embedded in the pavement or video image devices mounted overhead on the signal strain
poles. Pedestrian sensors are generally push buttons. SCATS is designed to automatically
calibrate itself, and it is a cycle-by-cycle system that optimizes cycle length, split, and offset.

SCATS has been implemented in 27 countries worldwide, including Australia, Bangladesh, Brazil,
Brunei, Chile, China, Ecuador, Fiji, Indonesia, Iran, Ireland, Jordan, Laos, Malaysia, Mexico, New
Zealand, Pakistan, Philippines, Poland, Qatar, Saudi Arabia, Singapore, South Africa, Thailand,
USA and Vietnam. In the US it has been implemented in Oakland County, Ml and Newark, DE.

SCATS supports automatic reconfiguration of the subsystems based on predefined criteria. The
developers indicate that SCATS replaces the manual collection of data which are required for
road planning and provides a greater volume of original data with good accuracy level. It can
interface with S-Paramics, VISSIM, and Aimsun.
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Some of the limitations of SCATS are that it relies upon plan selection with some local
adaptation. The cycle time and split are updated each cycle. It does not provide arrival
prediction, queue estimation and phase sequence optimization so the system acts only
reactively to an identified traffic pattern.

2.3.3 Los Angeles Adaptive Traffic Control System (LA-ATCS)

LA-ATCS is a computer-based traffic signal control system which provides fully automated traffic
responsive signal control based on prevailing real-time traffic conditions [25]. LA-ATCS was first
deployed as part of the Automated Traffic Surveillance and Control (ATSAC) Center in 1984 for
the Los Angeles Olympic Games. The PC window-based system was completed in 1999. It has
been implemented in over 3,000 intersections in the city of Los Angeles.

There are three operation modes in LA-ATCS: adaptive, time-of-day and operator control. In the
adaptive mode it requires current flow conditions as input to determine a common section
cycle time, splits, and offsets. In the time-of-day mode it operates on fixed-time plans as
determined by the engineer. In the operator control mode it is used to handle traffic in special
cases.

The input data (primarily flows) are collected by the detectors upstream of the stop bar for
each system intersection. LA-ATCS automatically selects the intersection with the highest level
of traffic, and the minimum and maximum cycle length and splits are determined by the
engineers. Offset is also optimized at the end of the optimization process.

An advantage of this system is that cycle lengths can be different for each intersection. Any of
its three optimized measures (cycle length, split and offset) can be disabled for selected links in
a section. Also, it can interface with CORSIM (offline post-processing interface) and applies a set
of logics to handle oversaturated traffic conditions in its network.

Its limitations are that it updates the cycle time and split each cycle which can lead to frequent
transitions, and that it does not provide phase sequence optimization.

2.3.4 Real Time Hierarchical Optimized Distributed Effective System (RHODES)

RHODES is an adaptive traffic control system developed in the 1990s with FHWA support at the
University of Arizona. The system is now managed by Siemens traffic solutions. RHODES uses
input sensor data from detectors, AVLs, transponders, and so on. It produces real-time
predictions of traffic flow and “optimally” controls the flow through the transportation
network, using phase timing [26]. A schematic of the RHODES operation is shown in Figure 2.6.
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Figure 2.6 A simplified diagram of RHODES operation [26]

RHODES employs “proactive” traffic-adaptive signal control architecture, which decomposes
the traffic control problem into sub-problems that are interconnected hierarchically (dynamic
programming). Then, it predicts traffic flow at appropriate resolution levels (individual vehicles,
platoons, transit vehicles, emergency response units, and trains) to enable proactive control.
RHODES uses a data structure and computation and communication approaches that allow fast
solution to solve those sub problems.

RHODES uses a three-level hierarchy for characterizing and managing traffic. It explicitly
predicts traffic at these levels utilizing detector and other sensor information. It requires lane
traffic data (e.g., through detectors- both stop line and upstream), real-time communication
to/from processors, and PC-level computational capability.

The highest level in the hierarchy is a “Dynamic network loading” model which captures the
slow-varying characteristics pertaining to the network geometry and the typical route selection
of travelers.

Based on the traffic load on each particular link, RHODES allocates green time for each demand
pattern and each phase. These decisions are made at the middle level of the hierarchy, referred
to as “Network flow control.”

Given the approximate green times, the “Intersection control” at the third level selects the
appropriate phase change epochs based on observed and predicted arrivals of individual
vehicles at each intersection as shown in Figure 2.7.

17



Metwork flow control subsystem

Platoon
Apres-Ner arrivals ——= Reareann

i and queuss

Intersection control subsystem

Vehicle Y -
PreDicT L = amivals ——=|  Control algorithms

1 and queues P —

Tum ratios }

. 4 e e
Travel timas P et T e

Discharge ' P

rates

}

Sensors

Figure 2.7 Middle and lower levels of RHODES architecture [26]

RHODES has been employed in the following locations in the US: Seattle, Santa Clara County
(CA), Pinellas County (FL) and two locations in Arizona. Before and after studies conducted in
the Pinellas County application showed a 14% improvement in travel times.

According to Mirchandani and Wang [26], the strengths of the RHODES system are automated
setup, amenable to lab testing and consistency with traffic response objectives. RHODES is
suitable for use in undersaturated arterials and widely-spaced grids. It can be applied as a signal
control strategy for diamond interchanges.

2.3.5 Optimized Policies for Adaptive Control (OPAC)

The “Optimized Policies for Adaptive Control” (OPAC) strategy is implemented within the real-
time adaptive control system (RT-TRACS), achieving the dual notion of “individual intersection
control and coordinated control of intersection in a network” [27]. The University of
Massachusetts at Lowell developed this strategy in the mid 1980’s [28], aiming at introducing
the first demand-responsive signal control. OPAC is designed for implementation on single
intersections as well as arterials and networks. The OPAC strategy is essentially minimizing the
objective function of the total intersections’ delay and stops by adjusting the traffic signal
timing through a dynamic optimization algorithm, over a pre-specified horizon [27].

According to the developers, the important advantages of the strategy is that it provides better
results compared to the implementation of the TOD, off-line strategies and that it is truly
demand-responsive, adapting to the real traffic conditions [29]. Four versions of OPAC strategy
have been developed with each one minimizing intersections’ performance measures, and
constrained only by the minimum and maximum phase lengths. OPAC-1 (developed in 1979)
introduced dynamic programming techniques for signal timing. However, this approach was
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not implemented in real time because processing real time data was not achievable at that
point [28]. OPAC-2 (1980) applied an “optimal sequential constrained search methodology” in
order to exhaustively search all the possible combinations of valid switching times and achieve
OPAC objectives [29]. In OPAC-3 (1981), traffic patterns are projected based on upstream data,
and the optimal switching times are optimized for the whole horizon. This new approach
introduced the dynamic revision of decisions based on the most recent data [29]. OPAC-4
(1995) incorporates the signal coordination synchronization factor and was introduced within
the RT-TRACS. Thus, the optimization control provided within this framework is continuous and
on-line [29]. The fourth OPAC version developed flow profiles for each phase using a pre-
specified horizon length with data from online upstream link detectors and projected data from
smoothed volume counts [30]. These flow profiles are evaluated for each control setting and
the decision is made in real time to extent the phase by 1-2 seconds or terminate it. This
strategy allows for flexibility in the cycle length based on the virtual fixed cycle concept, a
feature that is absent from adaptive systems with a fixed cycle length. The OPAC strategy can
optimize up to eight phases within the dual ring configuration and all combinations of left turn
lag/lead phasing [30].

The strategy was evaluated through a before-and-after study implemented by ITT Systems in
the Reston Parkway test bed in Northern Virginia in 1997 and 1998 [29]. Results suggest that
this type of control showed improvement on the order of 5% to 6% in average delays and stops
compared to the time of day control used previously [27]. The implementation also revealed
the effectiveness of the strategy during instances of loss of communication to the central
monitoring system/control as well as instances when there is no communication between
adjacent signals [27].

The OPAC strategy is capable of handling individual intersections as well as coordinated
controlled arterials and networks. It allows prioritization of preemption control over OPAC,
considering the movement of transit and emergency vehicles, recovering from preemption
control immediately [30].

2.3.6 Adaptive Control Software Lite (ACS-Lite)

The “Adaptive Control Software Lite” is an initiative developed and funded by the FHWA in
order to address the need to have widely-deployable, low-installation and operational cost
adaptive control systems in the United States [31]. This “on-street” software is mainly used for
monitoring traffic signal performance and adjusting signal timing for linear arterials [32]. The
ACS-Lite software can control up to 16 consecutive intersections in a loop. The system is
constantly updated with field data from upstream and approach detection, providing
information on each intersection’s performance. The main goal of the software is to be
adaptive to the changes of the traffic but, at the same time, maintain the time-of-day (TOD)
schedules that have been specified, complying with all the traffic engineering principles that
have been set [32]. The software is successfully integrated with CORSIM simulation for testing
purposes and adheres to the NTCIP communication protocol, incorporating the concepts of
interoperability and interchangeability [29]. It operates in a closed-loop control system, as
sensors monitor the system’s outputs and feed the data into the controller in order to adjust
the operation, if necessary. ACS-Lite deployment requires a low-cost upgrading to local
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intersection controllers, and agencies can retain the advantage of the familiarity with the
controller software they currently use. ACS-Lite is flexible with the controller firmware update
as well as the type of detectors used in the field. ACS-Lite needs stop line detectors for each
phase to be installed in the field [32].

The adaptation logic of the ACS-Lite is based on making incremental adjustments to splits and
offsets as often as every 5 to 10 minutes (which is the optimization step.) More specifically,
during each phase, split adjustments are made based on the measure of utilization (v/c ratio)
of each phase [31]. The same cycle length is maintained based on the time-of-day scheduler
and the traffic engineer’s judgement. Fully actuated gap-out and coordination logic are used by
the controllers’ software together with ACS-Lite during every cycle, so as to manage the
duration of each split. Phase status data are obtained once per minute from the NTCIP detector
(which can be loop or other point detection). The software detects the occupancy of each
detector on coordinated approaches during the green and red intervals of each phase and the
software determines whether traffic is using all the phases’ split time. Optimization algorithms
reallocate split times from phases that do not use their entire split time to phases where more
split time is needed, attempting to balance the v/c ratio for all the phases [32]. This
optimization is constrained by minimum and maximum green times and pedestrian intervals.
With respect to the offset adjustment logic, the changes to the offset time values are quite
small per cycle (from 2 to 5 seconds earlier or later). This type of adjustment is based on cycle
flow profiles which are compiled by the monitoring of advance loops on progression
approaches [31]. ACS-Lite develops a statistical flow profile using the data collected from the
detectors and optimizes the offset, implementing it at the coordinated phase [33]. The
frequency of the adjustments can also be controlled by the traffic engineer supervising the
control process each time.

The ACS-Lite software has been independently evaluated in a simulation environment and in
field studies. Using CORSIM, the controller was adjusted in order to handle multiple
intersections’ coordination. Results in this simulation test case indicate savings up to 4% in
control delay and traffic travel time compared to suboptimal offset values. Compared to
suboptimal split values, travel time ranged from 4.9% shorter to 6.8% longer [31]. Initial field
tests were conducted evaluating the system’s operation with different signal controller
manufacturers. Test beds were deployed in 2006 at Gahanna, Ohio; Houston, Texas; Bradenton
Florida, and El Cajon, California [31]. These tests indicated travel time savings up to 11%, as well
as delay time reductions up to 35%, and fuel consumption reductions and cost benefits [31].
The Bradenton, FL location is unique in that it is an L-shaped corridor with two adjoined,
perpendicular arterials. At this location, an 11% decrease in travel time and a 28% decrease in
number of stops were found after implementation.

The ACS-Lite software was designed specifically to minimiize procurement, operations and
maintenance costs. ACS-Lite can also respond to unexpected incidents and accommodate
changes regarding the signal time monitoring scheme [31].
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2.4 Best Practices in ASCT

Adaptive signal systems have been applied in many areas of the US, including Florida. Some of
the implementations and the experiences reported are discussed below, followed by an
overview of lessons learned and best practices observed in these studies.

2.4.1 Pinellas County, Florida (RHODES and OPAC)

Pinellas County, Florida has experience in multiple adaptive signal control systems. The
RHODES system was implemented on a 17-intersection corridor with average intersection
spacing of % to % mile. According to an evaluation of the system [34], the RHODES
configuration parameters had to be modified via text files and were found to be difficult to use
for operators. Also the vendor support from University of Arizona was found to be inconsistent
and the system was discontinued.

Pinellas County additionally tested OPAC on an 11-intersection corridor with average
intersection spacing of 1 mile. ‘Major’ cycle and offset adjustments made by OPAC resulted in
skipping of phases and there was a VME communication failure between the OPAC single board
processor and the 2070 controller CPU. Eventually the system was upgraded to Econolite
Centracts Adaptive (no specifics have been found in the literature on this approach).

In both cases, training of the operators and maintenance of detectors were found to be vital
factors in achieving success with the system. The county currently uses In-sync, Econolite
Centracts Adaptive and ACS-Lite.

2.4.2 City of Irvine, California (SWARM/OPAC)

A systematic evaluation of the performance and effectiveness of a Field Operational Test (FOT)
of an integrated corridor-level adaptive control system was attempted from fall 1994 through
spring 1999 in the City of Irvine, California. This test included OPAC as well as other new
technologies for ramp metering, ITS and new 2070 ATCs. This study began developing software
prior to the purchase of the new test controllers, and noted that basing the software on
hardware that was still in development complicated the software porting tasks. The study
concluded that lack of consistent communication and training prevented the arterial consultant
from effectively deploying the test technology. [35]

2.4.3 VDOT Pilot Implementation (InSync)

The Virginia Department of Transportation (VDOT) employed the InSync system along thirteen
corridors in Virginia between years 2011 to 2015 [36]. Corridors were selected on the basis on
criteria like variability in traffic patterns, heavy side street flows, conflicts with other modes and
support from local authorities.

Floating car probes, blue tooth and INRIX data were used. Travel times, speeds and number of
stops were considered as the performance measures. A statistically significant 17% reduction in
total intersection crashes and 71.8% reduction in total stops were found. About 70% of the
corridors showed statistically significant reduction in travel time. The system generally showed
improvement in the mainline performance but it was not significant when intersections were
oversaturated and/or when the existing system (Time of Day) already performed well. Although
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corridors were retimed 3-5 years ago, no significant development occurred in the immediate
vicinity of them, hence researchers assumed that it is safe to attribute the improvements to
ASCT.

Widely-spaced intersections had problems with platoons breaking up and a break in
communications was found to affect performance significantly. Side street delays generally
increase (commonly between 5 to 10 s) when ASCT is deployed, although there is usually a net
reduction in overall corridor delay. In quantifying improvements in operations, the agency
reported that off-peak and queue data were found to be useful. INRIX data showed 15% to 20%
improvement in travel time reliability.

The report noted that the public expectation was too high when the system was announced,
and therefore advised to lower public expectations in urban areas, as the advantages of
adaptive control are not aimed at the most highly congested time periods.

2.4.4 Park City, Utah (SCATS)

UDOT implemented ATCS in Park City as a pilot project on a 12=intersection corridor [37]. The
following suggestions were made in the report after the evaluation of the project:

e There was no evaluation plan in advance of implementation and therefore the agency
had to use existing limited “before” data. For such cases, the report recommends
limiting such evaluations to comparing only individual intersections as opposed to
comparisons of the performance of the entire system before and after SCATS is
installed.

e The report recommended conducting a “with/without” evaluation instead of a
“before/after” approach — this approach depends on the political decision to turn SCATS
off for few weeks.

A VISSIM network simulation was developed and calibrated to get a larger data set in order to
evaluate alternative geometric configurations. It also gave UDOT the opportunity to explore
various traffic signal scenarios and future expansions of the system (not only in Park City, but on
any other network), such as: “before/after” approach, system expansion and “freak” events.

2.4.5 City of Surrey, Canada (MAC)

The City of Surrey implemented their pilot ATSC project using “Multi-criteria Adaptive Control”
system for 7 closely-spaced intersections on a single corridor [38]. Some of the important
lessons that were reported are:

e To maximize the benefits of deploying ASCT, arterial corridors and signalized
intersections with more highly variable and/or unpredictable traffic volumes should be
selected as preferred locations.

e The length of the arterial corridor must be long enough to appreciate the travel time
variations.

e Techniques to further fine-tune the configuration data and/or enhance the ASCT
algorithms to improve the duration of the transition periods should be investigated. As a
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minimum, the local traffic signal controllers should always be configured to use the
“short-way” offset transition method, which shortens the cycle in order to make offset
corrections.

e Robust and reliable communications between the Central Server and all MAC Adaptors
in the field is a key consideration in the deployment of the ASCT system (as the ASCT
algorithms cannot run until all the MAC Adaptors have reported data for the last
completed cycle).

2.5 Summary of Best Practices and Lessons Learned
The following i