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1 Introduction

Managing traffic incidents is one of the crucial activities for any traffic management center. These

incidents are non-recurrent, may be caused due to different reasons like traffic accidents, vehicle

breakdowns, debris, etc., and cause congestion. It is worth noting that not all accidents (e.g., a fender-

bender) result in interruptions. From a traffic management perspective, it is thus more important to

detect interruptions rather than accidents. Further, this should be done in real time so that preemptive

actions can be used for mitigation. Broadly, we define an interruption to be any time period where the

amount of traffic is significantly lower than normal traffic for a significant period of time. There has been

significant related work in incident detection using social media data (e.g., Waze) and probe-based

systems (e.g., GPS or Bluetooth tracking data). While direct and manual traffic management center

(TMC) monitoring has been adequate in previous years, many TMCs have had limited operational use

of automatic incident detection techniques. This is due to these techniques’ high rates of false alarms,

complex calibration, and low detection rates. In fact, many automatic incident detection algorithms

perform poorly in the real world, compared to simulated traffic environments (Parkany and Xie, 2005)

(see Chapter 2 for more details). Our goal in this work was to use loop detector and other traffic-related

data to detect traffic interruptions. Loop detector data are now widely available to traffic management

personnel. Additionally, with new systems, such data are available at high frequency (10 Hz) with

low latency. Hence, the utilization of these data for determining traffic interruptions can have wide

applicability and can be used in conjunction with other systems based on human reporting or probe-

based systems. In this study, we focus on the following datasets:

1. High resolution (10 Hz) detector data

2. Signal timing information

3. HERE.com average speeds for road segments

4. Accident reports from Signal 4.

The focus of this work was on development of data mining and machine learning techniques that

use historical and real-time data for fusion of information and detection of incidents and accidents on

arterial networks. Given the lack of information availability of actual interruptions, one key goal of this

work was to design algorithms to detect traffic interruptions in a relatively unsupervised fashion. The

key contributions of our work are as follows:

1. Literature Survey: We performed a comprehensive survey of related work in this area (Chap-

ter 2). Previous work using loop detector data was generally limited to simulation or small

datasets. As a major differentiator, we utilized six months of real data for 300 intersections (each

with an average of 10 detectors) to demonstrate the usefulness of our method. This dataset is

roughly 700 GB in size. We believe that this is the first study that uses fine grain (10 Hz) data for

a large geographical region and over a long duration of time.

1



Traffic-event Unification System 1 INTRODUCTION

2. Data Processing and Fusion: The first step is to analyze and preprocess raw data gathered from

fixed point sensors or detectors (Section 3). Traffic data are full of noise due to various known

and unknown factors. Cleaning and verifying the data to prepare them for analytics is a difficult

and expensive task. Datasets must be parsed, and any missing data or inaccurate data have to

be addressed. Data reduction and fusion techniques match, aggregate, and consolidate several

heterogeneous data sets into representations that can then be used for data mining and machine

learning. This is an important step in using inputs from multiple data streams, in particular for

datasets that contain spatial and temporal information that has to be used in the fusion process.

A crucial step in data fusion is extraction, transformation, and loading (ETL) of the data. The

ETL process generally converts the source format into a relational model that can be queried.

We have developed a time series-based analysis system for processing this information using

Elixir and Postgres. The former allows use of multicore processing in parallel, while the latter

allows for specialized processing of time series data.

3. Defining Interruptions: Labeling data is a major challenge for big data applications. Ground truth

for when an interruption has occurred is not available or humanly possible. We provide a rigorous

definition and mechanism for automatically labeling interruptions or events of interest (EOIs,

i.e., large traffic reductions for long periods) from historical data (Section 4). We define traffic

interruption as a significant, contextual, and non-periodic change observed in a combination of

the following parameters: the amount of deviation of traffic volumes from predicted volumes and

the duration for which actual traffic volume deviated from predicted volume.

4. Predicting Interruptions: We have developed algorithms for predicting the labeled interruptions

(Section 5) assuming that the data were available in real time with as low a latency as practical.

Our approach uses traffic information from recent time periods as well as historical data (from

similar time periods on a previous day or week) to predict if an event of interest has occurred (i.e.,

traffic interruption will last for a long time). A key parameter of interest is the duration of time to

wait after some reduction in traffic to declare whether an EOI has occurred at a single detector.

This has an impact on the overall accuracy (in terms of false positives and false negatives). In

particular, we find that waiting 60 to 90 seconds after a significant reduction in traffic is sufficient

to determine EOIs with high accuracy.

5. Spatiotemporal Analysis of Traffic Interruptions: We perform a spatiotemporal analysis of all

EOIs to determine if there are hotspots (i.e., intersections with a large number of EOIs con-

sistently at a monthly basis) and spatial relationships (two EOIs occur at nearby intersections

within a small time frame). This analysis is done to determine if (1) there are subsets of intersec-

tions where traffic interruptions are occurring regularly and (2) if an interruption at a intersection

causes interruption at any nearby intersection.

6. Spatiotemporal Analysis of Accidents and Relationship to Traffic Interruptions: Signal Four Ana-

lytics (SFA) is a statewide, interactive, Web-based, geospatial crash analytical tool developed by

and hosted at the University of Florida, Geoplan Center. SFA contains all traffic crashes reported

2
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in the state of Florida since 2006. For this study, we extract the crashes for Seminole County for

the months of Nov. 2018 to Apr. 2019. These reports have the following important attributes:

location of crash (geocoordinates), time of crash, and severity of crash. For each crash, we

obtained nearby intersections which could have been possibly affected by the crash based on

spatial proximity (intersections within 600 m of the crash). We analyzed the interruptions caused

by these accidents. A key finding is that many of these reported accidents do not lead to sizeable

interruptions (in terms of amount of traffic reduction and duration) as observed in detector data

(Section 8).

3
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2 Background

Automated incident detection (AID) is of significant interest in modern transportation networks because

traffic incidents and congestion can impede commercial activities and hurt the economic growth of a

region. By detecting incidents quickly, the incident-response times can be reduced, along with the

negative impacts of the resultant congestion and secondary incidents.

While direct and manual traffic management center (TMC) monitoring has been adequate in previous

years, many TMCs have had limited operational use of automatic incident detection techniques. This

is due to these techniques’ high rates of false alarms, complex calibration, and low detection rates.

In fact, many automatic incident detection algorithms perform poorly in the real world, compared to

simulated traffic environments (Parkany and Xie, 2005). However, the steady growth and development

of transportation networks has motivated a need to discover highly reliable automated methods for

detecting incidents on urban transportation networks.

AID algorithms using computational statistics or machine learning have been the research community’s

most recent offering on this subject. Significant efforts have been made to apply techniques such as

genetic algorithms (Roy and Abdulhai, 2003), Bayes classifiers (Liu et al., 2014), support vector

machines (Chen et al., 2009; Liang, 2015; Xiao and Liu, 2012), neural networks (Dia and Rose,

1997; Cheu and Ritchie, 1995; Cheu et al., 2004), deep learning (Zhang and Ni, 2018; El Hatri and

Boumhidi, 2018) , fuzzy logic (El Hatri and Boumhidi, 2018; Hawas, 2007), wavelet transformation

(Samant and Adeli, 2000; Jeong et al., 2011; Teng and Qi, 2003) and other artificial intelligence

techniques (D’Andrea and Marcelloni, 2017) for incident detection. These modern techniques are

data-centric, using historic and real-time data to detect various types of traffic incidents. Consequently,

these advanced solutions are only as good as the data they are built on.

Arterial roads have different characteristics from freeways because arteries feature more dynamic

traffic due to the influence of several factors: closely-spaced traffic signals and intersections, dynamic

queues at the intersections, pedestrian crossings and jaywalking, roadside parking, exit/entry into/from

collector lanes, public transport bus stops, arterial road work, etc. These factors of the physical envi-

ronment make incident detection on arteries potentially more difficult. At the same time, to account for

these factors, software solutions for arterial roads must consider data from heterogeneous sources. In

this survey, existing machine learning algorithms for incident detection in traffic control were reviewed

and evaluated. While data from FDOT detectors, probe cars, Twitter, and human reporting or event

verification systems each have a different impact on the accuracy of incident detection, modern data

fusion techniques can enhance the overall quality of combined traffic information. We summarize the

successful techniques in this area along with the corresponding performance criteria, and we docu-

ment possible new approaches.

A traffic incident is a non-recurring and unexpected event that has a noticeable, undesirable effect

which could temporarily disrupt traffic on some segment of the transportation network (Sethi et al.,

1995). An incident detection, on the other hand, corresponds to generation of an incident report (Sethi
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et al., 1995). Examples of traffic incidents are traffic crashes, non-recurrent congestion, abandoned

or stalled vehicles, spillage of oil or debris, structural fires, etc. Timely incident detection is important

because it allows emergency responders to address the incident promptly and enables TMCs to redis-

tribute and reroute the oncoming traffic into alternate lanes in the transportation network. This reduces

the impact of the primary incident and avoids creating secondary incidents or follow-on congestion.

Incident detection solutions may be manual or automatic. While manual solutions are based on human

reporting systems, automatic incident detection (AID) algorithms attempt to automatically give an alarm

using anomaly detection techniques with respect to traffic conditions. The following list (Parkany and

Xie, 2005) shows the developments in AID algorithms research with respect to statistics and pattern

recognition:

1. Standard normal deviate algorithm (Dudek et al., 1974)

2. California family of algorithms (Payne, 1975; Payne and Tignor, 1978)

3. Bayesian algorithms (Levin and Krause, 1978; Tsai and Case, 1979)

4. Time series algorithms [ (Ahmed and Cook, 1980)]

5. Smoothing/filtering algorithms (Cook and Cleveland, 1974; Stephanedes et al., 1992)

6. Traffic modeling algorithms [ (Willsky et al., 1980)]

7. McMaster catastrophe theory-based algorithm (Gall and Hall, 1989)

8. Image processing algorithms (Michalopoulos, 1991; Michalopoulos et al., 1993)

9. MIT algorithms (Michalopoulos et al., 1993)

10. ADVANCE algorithms (Sethi et al., 1995; Sermons and Koppelman, 1996)

11. TTI algorithms (Sermons and Koppelman, 1996)

12. UCB algorithms (Petty et al., 1997)

13. TRANSMIT algorithms (Mouskos et al., 1999; Niver et al., 2000)

14. Waterloo algorithms (Hellinga and Knapp, 2000)

In the last two decades, data-centric algorithms based on computational statistics and machine learn-

ing have been developed to produce advanced incident detection algorithms. These advanced algo-

rithms are superior in terms of their performance, as measured by the standard performance metrics.

Three performance criteria for incident detection are as follows:

1. Detection rate (DR): Fraction of actual incidents that are correctly categorized as incidents
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Figure 1: Traffic data sources and their respective data of interest

2. False alarm rate (FAR): Fraction of actual incidents that are incorrectly categorized as incidents.

FAR corresponds to the fraction of non-incident periods that the algorithm incorrectly categorizes

as incidents (Sethi et al., 1995).

3. Mean time to detection (MTTD): Average response time of the algorithm.

There is usually a trade-off, as well as a compromise, between the above performance factors. While

Ren et al. (Ren et al., 2012) demonstrate trade-offs between FAR and MTTD, several TMCs ac-

knowledge that early detection is more important than a better detection rate. Lastly, the algorithm’s

ease of calibration is another important factor taken into consideration by TMCs when adopting an AID

solution.

2.1 Data Sources

The performance of the algorithms depends on the quality of the traffic data collected. Reliable sensor

technologies and data feeds provide data with high accuracy, granularity, and wide spatiotemporal

coverage. There are three major sources of data used for automatic incident detection:

1. Traditional signal systems (roadway-based fixed point/section)

2. Probe-based (floating car)

3. Human reporting systems, event verification, driver based

2.2 Traditional Signal Systems

Traditional signal systems sensors are fixed and measure traffic at a single point or section of a road-

way. These systems exist in all urban areas and most suburban areas, but are limited in rural areas.

These include inductive loop detectors (ILD), loop emulators, sensors (microwave, radar, infrared, ul-

trasonic, acoustic), pneumatic tubes, cameras, and video image processors. Data collected include

traffic volume, occupancy, spot speed, vehicle passage or presence, queue length, turning ratios, ve-

hicle classification, travel speed, travel time, etc. AID algorithms using signal systems roadway data

rely heavily on adjacent fixed detectors. Apart from an incident possibly reducing traffic flow at nearby

detectors, the basic assumption is that an incident would cause a substantial increase in occupancy at
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the upstream detector, while producing a corresponding decrease in occupancy at the adjacent down-

stream detectors (Payne, 1976; Lin and Daganzo, 1997; Thancanamootoo and Bell, 1988; Han and

May, 1989; Lee and Taylor, 1999; Chen and Chang, 1993). Existing works compare the space-time

occupancy to a particular threshold value. However, selection of different threshold values produces

very unique results. The California algorithm (Payne, 1976) estimates this threshold value using his-

torical traffic data and detects incidents by taking into account the absolute difference in occupancy of

adjacent detectors as well as the relative difference with respect to the upstream or downstream detec-

tor. Fluctuations in occupancy can occur due to loop detector errors and statistical variations. Hence,

a range of values can be defined in order to identify the start (out of range) or the termination (back

in range) of an incident (Lin and Daganzo, 1997). Older methods for estimating the threshold, such

as smoothed averages and exponential smoothing, will mostly be effective for incidents that occurred

close to a detector (Thancanamootoo and Bell, 1988), (Han and May, 1989). Kalman filtering was an-

other popular technique to estimate traffic flow, speed, and occupancy (Lee and Taylor, 1999), (Chen

and Chang, 1993), but it would produce algorithms whose calibration was quite complex. There was

a need for new approaches to accurately estimate the occupancy threshold value. While conventional

solutions, which apply fixed threshold values for traffic occupancy, speed, and volume, suffer from high

false alarm rates, modern solutions (Jeong et al., 2011; Teng and Qi, 2003; Asare et al., 2013), adapt

their threshold values based on real-time traffic data. The multiresolution property of wavelet trans-

forms can be used to vary the threshold values for incident detection (Jeong et al., 2011; Teng and Qi,

2003). Discrete wavelet transforms would be used to decompose traffic data into different resolution

time elements in order to extract occupancy and speed data. This would produce threshold values

that fluctuate in relation to the traffic measurements. The threshold can also be based on the level of

demand on a roadway segment. Asare et al. (Asare et al., 2013) used the Hilbert-Huang transform to

decompose traffic data, exploiting empirical mode decomposition (EMD) and Hilbert spectral analysis

(HSA) to adaptively change the threshold to correspond to the current demand level. Both wavelet

transforms and Hilbert-Huang transforms produce algorithms with the highest detection rate, lowest

false alarm rate, and shortest mean time to detection, compared to existing fixed point solutions. Fixed

point detectors are restricted to providing traffic data from limited fixed points in the roadway. Hence, it

is difficult to use these data to realistically model the traffic conditions that are spatially continuous.

2.3 Probe-Based Systems

Probe-based sensors are usually mounted on individual vehicles that are mobile, and they provide

data for a single point, pair of points, and sections. The reliability of probe data depends on the

penetration rate, but it can measure a wider area of a roadway compared to fixed sensors. Floating

cars can provide traffic measurements in real time with good spatial and temporal coverage at a very

inexpensive cost. Probe data are provided by several third parties like Here.com, TrafficCast, etc.

These sensors include GPS receivers, Bluetooth readers, toll transponders, e-tag readers, on-board

units, smartphones, and any other in-vehicle telematics. Data collected include origin-destination data,

timestamp, location, speed, direction, density, queue length, turning ratios, route preferences, mode

sharing, etc.
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The main assumption behind using probe car data is that probe vehicles that pass an incident would

have a relatively higher total time, coefficient of speed variation, and travel time (Sermons and Kop-

pelman, 1996; Balke et al., 1996; Mouskos et al., 1999). The travel time during an incident is very high

when compared to non-incident conditions from comparable times of day and days of the week (Balke

et al., 1996; Mouskos et al., 1999; Hellinga and Knapp, 2000; Li and McDonald, 2005). Furthermore,

it has been shown that the travel time for a road section increases more quickly due to the capac-

ity decrease caused by an incident as compared to increased demand (Hellinga and Knapp, 2000).

Hence, it is believed that travel times before and after an incident should be viewed as belonging to

two different populations. Probe car data comprising traffic measurements for a link are very useful if

the incident occurs downstream from that same link, but not upstream (Sethi et al., 1995), and AID

algorithms perform better when these probe car data measurements are more detailed (Sermons and

Koppelman, 1996).

A high penetration rate is crucial for probe-data–based algorithms, which may perform worse than

fixed-detector–based algorithms when the penetration rate is low [ (Balke et al., 1996), (Mouskos

et al., 1999)]. If the algorithm is based on mean travel time, then a 50% penetration is required for

good performance (Cheu et al., 2002). Petty et al. (Petty et al., 1997) provide a model that can be

useful in estimating an upper bound for the detection rate for probe vehicle density in a defined cell.

They claim that only a single probe vehicle is required in a defined cell in order to detect the incident

occurrence within that cell.

Probe data cover longer sections of the urban roadway than fixed detectors and are especially useful

for detecting secondary incidents or non-recurrent congestion, which are likely to occur away from the

primary incident (Yang et al., 2017), (Park and Haghani, 2016).

2.4 Human Reporting Systems

Human reporting systems provide anecdotal information from incident reports made directly by drivers,

road crews, patrol units, and other travelers on the road. This type of incident detection is manual rather

than automated, but it provides a very rich source of information because the incident can be described

very clearly with regard to its location, time, type, and severity (Skabardonis et al., 1998; Walters et al.,

1999). Driver-based reports over the cellular phone are usually the fastest mode of incident detection

and require much less investment for operation and maintenance. However, these reports are difficult

to process and could contain false reports due to mistakes or malice. (Mussa and Upchurch, 1999;

Mussa and Upchurch, 2000) showed that an incident detection system using cell phone calls (or tag-

based digital messaging) from drivers could have lower detection times and higher detection rates.

However, they do not completely consider malicious incident reports. Sources include Twitter tweets,

wireless or cellular phone reports, roadside call boxes, patrol crew, road crew, Waze, etc.

Twitter is a very inexpensive method for incident detection. However, it is very brittle due to dependence

on the social media organization allowing access to the data. (Gu et al., 2016) presented methods to

classify tweets. Tweets can be acquired in real time using Twitter’s streaming REST API and using a
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set of important keywords that could imply traffic incidents. They used this information to classify each

tweet as an incident or non-incident and then categorized them by location. They claimed that there

is more incident information on Twitter during the weekends and during the daytime. Between 60%

and 70% is posted by influential users, and the tweets are usually about incidents that are close to the

center of a city. Studies have been performed to determine the value of tweets in incident detection

(Zhang and Ni, 2018) where selected features were used to extract both the individual and paired

token features from Twitter’s social media site. Gu et al. address several issues for detecting incidents

from tweets, such as the language customs that Twitter users would frequently use to describe a traffic

incident, the time, location, and user influence bias.

2.5 Incident Detection Algorithms

2.5.1 Threshold-Based Systems

Conventional incident detection algorithms use threshold values to determine if an incident has oc-

curred. A system that uses overly precise threshold values cannot consistently classify incident vs.

non-incident conditions in an accurate manner. This is due to the lack of quality (loss or approximation

of information) in the available traffic data or even an overlapping membership in multiple sets, such as

an incident spread spatiotemporally over multiple links (Yang et al., 2017). As a result, this ambiguity

may cause lower detection rates and higher false alarm rates. Fuzzy logic can minimize error due to

uncertainty in parameters by providing approximate reasoning instead of precise reasoning. It pro-

vides membership functions, with a range between 0 and 1, that represent the odds of membership in

a particular set. After all calculations and computations are completed, if the cumulative membership

value is greater than some threshold, the membership in that particular set holds true.

AID solutions using fuzzy logic are simpler to calibrate, maintain, and debug when compared to other

AID algorithms (Lee et al., 1998; Chang and Wang, 1994; Hawas, 2007). In machine learning solutions

(El Hatri and Boumhidi, 2018), fuzzy logic can be used to reduce errors, speed up convergence,

and control the parameters or learning rate of the model in order to avoid overshooting during the

training period. Chang and Wang (Chang and Wang, 1994) stress the necessity of automated learning

techniques in incident detection. Hence, marrying machine learning with fuzzy logic would undoubtedly

benefit AID algorithms by minimizing error due to uncertainty in data points.

2.5.2 Neural Networks

Artificial neural networks (ANNs) are computing systems that learn to make decisions in the absence

of specific rules by considering examples instead. With respect to incident detection, Cheu and Ritchie

(Cheu and Ritchie, 1995) found that multilayer feed-forward neural networks performed better than self-

organizing feature maps (SOFM) and adaptive resonance theory model 2 (ART2). Neural networks

(NN) have been used to estimate traffic volumes (Lingras and Adamo, 1996) and incident detection

(Ivan and Sethi, 1998). However, constructive probabilistic neural networks (CPNN) can use a smaller

network to achieve the same results (Jin et al., 2002). (Ivan and Sethi, 1998) focused on identifying
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the factors that would predict the occurrence of traffic incidents. They showed that by adjusting the

algorithm’s inputs to avoid false alarms, neural networks can perform better than discriminant analysis

models. Furthermore, their results indicated that additional inputs, like historical input-output data

of the algorithm, along with conditions of adjacent links, would further improve detection rates and

false alarms. Hence, they trained and connected three more neural networks providing these data.

They found significant performance improvement with the addition of each extra type of input data,

with the full network demonstrating the best performance. Their results suggest that a time series

is beneficial to the solution. The performance of neural networks can also be improved by careful

selection of parameters. For example, (Roy and Abdulhai, 2003) use genetic algorithms to optimize

the selection of parameters in a probabilistic neural network (PNN) and achieve lower detection rates

while experiencing fewer false alarms. Similarly, fuzzy logic (El Hatri and Boumhidi, 2018) has also

been used for controlling the parameters in neural networks. Dia and Rose (Dia and Rose, 1997) used

a multilayer perceptron neural network to detect incidents. The authors also evaluated the relevance

of data quality with respect to the model’s performance. For detecting traffic incidents or even arterial

operational problems, neural networks generally perform better than other types of classifiers (Ivan

and Sethi, 1998; Khan and Ritchie, 1998) except possibly support vector machines(SVM).

SVM is suitable for finding the global best solution when dealing with small sample data and non-

linear but high-dimensional problems and has been found to be a good machine learning technique for

detecting traffic incidents (Yuan and Cheu, 2003). SVM for incident detection has a higher detection

rate, lower false alarm rate, and shorter average detection time than multilayer feed-forward neural

networks (Hawas, 2007). The Ant Colony Algorithm (ACA) has been used for parameter selection

that is crucial for its learning accuracy and generalization ability (Liang, 2015; Ivan and Sethi, 1998).

(Chen et al., 2009) combined an ensemble of SVM classifiers for traffic incident detection, and in doing

so, they improved on the basic SVM and overcame the crucial task of SVM parameter selection.

2.5.3 Unsupervised Learning

Unsupervised learning is proving useful to detect incidents that are not well defined, such as arterial

operational problems (Han and May, 1989), and secondary crashes or congestion (Anbaroglu et al.,

2014). (Yang et al., 2017) used probe car data to identify secondary crashes or non-recurrent con-

gestion. They reduced duplicate reports, or false alarms, by using unsupervised learning via fuzzy

C-means clustering (i.e., K-means clustering with fuzzy logic) to detect the impact area of a primary

incident. Finally, they use meta-heuristics optimization (genetic algorithms or ant colony optimization)

to minimize the boundary of an impact area that could contain secondary crashes or non-recurrent

congestion. (Anbaroglu et al., 2014) use spatiotemporal clustering to identify significantly large link-

journey times across single or adjacent links. Clustering of spatiotemporally overlapping episodes can

be used to detect non-recurrent congestion that spans multiple links. The cumulative sum (CUSUM)

algorithm detects incidents in arterial roads by applying the CUSUM chart in order to identify incident-

based changes in traffic measurements that tend to linger for some time under incident-free conditions.

This is an early form of unsupervised learning-based anomaly detection for traffic incidents.

10



Traffic-event Unification System 2 BACKGROUND

Modern forms of unsupervised anomaly detection (Kinoshita et al., 2014; Zhu et al., 2009) of incidents

use probe car data. (Kinoshita et al., 2014) claimed that traffic congestion may be a chronic condition

in some roadways and may not always be due to incidents. Therefore, they attempted to distinguish

between incidents and transient congestion in the transportation network by using a probability model

with maximum-likelihood parameters and an expectation maximization algorithm. (Zhu et al., 2009)

applied a distance-based outlier mining method in order to identify incidents in arterial roads. They

used fluctuations in the travel speed and chose speed differences in nearby sections and adjacent

intervals for spatiotemporal analysis.

Arterial operational problems provide yet another form of incident (Han and May, 1989; Khan and

Ritchie, 1998). Operational problems include detector malfunctioning, signal malfunctioning, lane-

blocking incidents, etc. Due to the lack of a well-defined training set for these types of problems,

unsupervised learning or other innovative schemes must be used. (Khan and Ritchie, 1998) used

neural network classifiers in a modular architecture.

Lastly, Ren et al. (Ren et al., 2012) attempted to improve AID by enhancing the feature representation

of incidents via an unsupervised feature-learning algorithm which produced higher level features to

describe incidents. This allowed the use of unlabeled data or a reduced amount of required labeled

data in case of a semi-supervised approach.

2.6 Secondary Incidents and Non-Recurrent Congestion

Primary incidents are usually assumed to cause secondary incidents. Hence, detection of an incident

could necessitate detection of such incidents (Yang et al., 2017; Park and Haghani, 2016). (Anbaroglu

et al., 2014) presented a non-recurrent congestion (NRC) event detection method using spatiotemporal

clustering to detect excessive link-journey times across single or multiple-adjacent link(s). Adjacent

links with non-recurrent congestion are clustered together in one episode if they contain at least one

common time interval in their duration. A spatiotemporal clustering using overlapping episodes can be

used to detect secondary incidents that span multiple links. The frequency of secondary incidents is

directly related to the length of primary incidents (Park and Haghani, 2016). (Park and Haghani, 2016)

used GPS probe car data to infer the existence of secondary incidents and then utilized a Gaussian

mixture model (GMM) to determine the reference speed for classification of such events.

2.7 Data Fusion Techniques

Data fusion is an interdisciplinary method that provides techniques to combine data from several

sources in order to achieve synergy with respect to the resultant information derived. The JDL model

developed by the U.S. Department of Defense is the most popular work on data fusion in general, pro-

viding five levels for processing system-level information. In Intelligent Transportation Systems (ITS),

each data source brings with it a new challenge. Fixed detectors have low area coverage and accu-

racy, while probe cars have a low penetration rate, and driver reports are very sparse. However, each

new data source also provides us with a new advantage. Since the advancement of road and vehicle
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telematics, multiple sources of data provide multiple views into traffic conditions. This helps reduce the

vagueness and incompleteness characteristic of individual data sources and, thereby allows us to use

data fusion in order to augment our interpretation of observed traffic measurements. It is hypothesized

that this fusion would result in performance improvement of the incident detection system.

Existing data fusion techniques (El Faouzi and Klein, 2016) for ITS applications are listed here:

1. Bayesian inference

2. Dempster-Shafer evidential theory

3. Artificial neural networks

4. Fuzzy logic

5. Knowledge-based expert systems

6. Particle filtering and Kalman or Extended-Kalman filtering

7. Monte Carlo techniques

The earliest works on data fusion for ITS each proposed data fusion frameworks to solve issues in

traffic or transportation using travel time estimation (Sethi et al., 1995) or incident detection (El Faouzi

and Lesort, 1995). In the case of incomplete data, which is insufficient for automatic incident detection,

it is recommended to fuse the sensor data or fuse the outputs from incident detection algorithms

(Mahmassani et al., 2014).

Sethi et al. (Sethi et al., 1995) proposed using fixed detector data and probe car data separately

in two different algorithms, as part of the ADVANCE ITS, and then using discriminant analysis to

estimate incidents. They intended to study how each type of data could complement the other, and

they concluded that traffic measurements at a particular location were useful for detecting incidents

that occurred downstream. They inferred that the fixed detector algorithm performed better than the

probe vehicle algorithm and further observed that the benefit from fixed detector data was dependent

on the number of instrumented links in the transportation network, while the benefits of probe car

data were limited by reporting rate. Subsequently, Ivan (Ivan et al., 1995) combined the outputs

of the two algorithms into a fusion algorithm and developed an AID using surveillance data. Neural

networks were used in two ways: (1) algorithm output fusion, which uses a neural network to fuse

the separate incident-likelihood scores that were output from the fixed detector algorithm and probe

vehicle algorithm (Figure 2) and (2) integrated fusion, which fuses the raw data from both sources and

determines the occurrence of an incident. It accomplishes this by combining the functions of fusion

and single-source algorithms into a single feed-forward neural network. In effect, this integrated fusion

attempts to detect incidents by using both data sources simultaneously, but not separately. The raw

data consists of (1) volume and occupancy (from fixed detectors) and (2) travel time (from probe cars).

The authors show that using data from both sources improved the AID compared to using data from any
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single source alone. Consequently, (Ivan, 1997) experimented with this idea on the algorithm output

fusion module and demonstrated considerable improvements in incident detection. Lastly, (Ivan and

Sethi, 1998) compared the performance of automatic incident detection on signalized arterial streets

by fusing data via discriminant analysis and neural networks. Although Ivan conceded to using driver-

based reports as an anecdotal data source for manual manipulation of the algorithm, he concluded

that neural networks performed better than discriminant analysis.

With respect to the ADVANCE ITS, (Bhandari et al., 1995) also proposed an automatic incident detec-

tion system for arterial streets, leveraging three separate sources: fixed detector data, probe vehicle

data, and anecdotal reports. They used three independent modules to preprocess the data from each

source separately. Their fusion process first uses discriminant analysis to fuse the pre-processed re-

sults of fixed detector data and probe car data. Next, the process fuses the resulting output with the

output of the anecdotal algorithm. (Thomas and Dia, 2005; Dia and Thomas, 2011) used neural net-

works to combine simulated loop detector data and simulated probe car data for incident detection on

arterials. They compared several neural network architectures by varying probe vehicle penetration

rates and detector configurations. A multilayer feed-forward neural network allowed inclusion of histor-

ical data, which further improved the results, as did the addition of speed data. (Yin et al., 2006) used

toll data for automatic incident detection.

Dempster-Shafer evidential theory is used for data fusion in order to detect incidents as well as other

traffic and transportation events (Klein, 2000; Klein et al., 2002). (Byun et al., 1999) attempted

to solve traffic congestion problems in links having limited capacity by assigning weights to incident

reports, thereby identifying true incidents and false incidents, i.e., possible false alarms. They ran

an incident detection algorithm on three data sources separately: loop detectors, CCD cameras, and

probe vehicles. Dempster-Shafer’s algorithm was used to fuse the three results and increase the accu-

racy of traffic-condition reports. (Klein, 2000; Klein et al., 2002) used the Dempster-Shafer algorithm

to combine data from three different sources in order to detect and verify incidents and other traf-

fic events, especially when the individual data sources cannot determine the occurrence of an event

with full confidence. The author provided an example where all available data are combined using

Dempster-Shafer’s rule, allowing them to distinguish the most probable event. (Zeng et al., 2008)

claimed that raw data from individual sources may be corrupted with unexpected missing values. They

demonstrate creating an SVM classifier for each of three different sources of traffic data: loop induc-

tive detector, AVI (automated vehicle identification) observation, and floating car data (FCD). They use

Dempster-Shafer’s evidential theory to combine the multiple SVM classifiers.

Bayesian inference has been used to detect incidents via a multiple attributes decision-making view.

(Thomas, 1996) combined occupancies and volumes reported by induction loop detectors along with

probe car data. Observations showed that algorithms based on fixed-detector data performed well.

While probe car data alone suffered from an excess of overlaps in class distributions, they comple-

mented fixed-detector data quite well. Next, (Thomas, 1998) proposed an incident detection approach

based on two characteristics: (1) the ability to classify arterial traffic into several states based on the

type of sensor (fixed detectors or probe-cars) and (2) use of a multivariable vector (as opposed to a
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scalar) as the discrimination criterion for an incident. The algorithm was tested using data from a mod-

ified INTRAS simulation. The types of data included probe car travel time, number of probe reports,

lane-specific detector occupancies, and vehicle counts. This approach uses multivariate classifiers to

distinguish multiple traffic states on arterials.

Cohen [76] used three schemes to fuse the output of multiple incident detection algorithms. He used

logical aggregation, neural network fusion, and a veto procedure. His validation step used real-world

data and demonstrated that the logical aggregation and veto procedure resulted in considerable per-

formance improvement when compared to any single-source detection algorithm alone. (Westerman

et al., 1996) performed incident detection and estimates travel time by allowing a loop detector al-

gorithm and a probe data algorithm to operate separately, while simultaneously complementing each

other.

The two stages of the algorithms (Westerman et al., 1996) is as follows:

1. a trigger stage which suggests the occurrence of an incident

2. a verification stage that automatically verifies the occurrence.

The probabilities of the incident’s occurrence from each algorithm are combined using a weight-

averaging fusion method in order to reach a final classification decision in the verification stage. The

weight of each component is determined by the number of verification steps that were executed. Dub-

STAR (Daly et al., 2013)] merges the traditional data sources, like loop detectors and traffic cameras,

with social media and SMS messages in order to provide insights into real-time traffic conditions and

incidents.

2.8 Summary

We have leveraged the following observations from the literature analysis in our work:

1. Minimizing the boundary of the region possibly containing the incident before executing the de-

tection algorithm could reduce performance time and may increase accuracy. It could also re-

duce false alarms (Yang et al., 2017; Kamran and Haas, 2007).

2. Spatiotemporal analysis, i.e., considering space and time dimensions, could lower false alarm

rates (FAR) in AID algorithms (Sermons and Koppelman, 1996; El Hatri and Boumhidi, 2018;

Zhu et al., 2009; Anbaroglu et al., 2014; D’Andrea and Marcelloni, 2017).

3. For anomaly detection, model a stable state for the road’s traffic before detecting anomalies

against that stable state (Kinoshita et al., 2014).

4. Selection of the machine-learning model’s parameters should be prioritized as one of the critical

steps in the design of the solution (Liang, 2015; El Hatri and Boumhidi, 2018; Jeong et al., 2011;

Chen et al., 2009).
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5. Unsupervised learning is valuable in detecting events that have no concrete definitions, such

as arterial operation problems (Han and May, 1989; Khan and Ritchie, 1998), congestion and

secondary incidents (Yang et al., 2017; Anbaroglu et al., 2014) etc.

6. No fusion method always performs better than the other. Instead, each fusion method excels

with data from a particular set of sensor types.
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3 Datasets and Preprocessing

The main objective of this section is to determine the appropriate data, acquire it, and develop methods

for preprocessing it. Based on discussion with the project managers, we decided to focus on three

datasets:

1. High resolution sensor data

2. HERE.COM

3. Signal Four Analytics (SFA)

The choice was based on three criteria: availability of large amount of data, high frequency of update

for potential use in real-time, and their potential effectiveness in predicting incidents. Traffic data are full

of noise due to various known and unknown factors. Cleaning and verifying the data were performed

and stored in a database running machine learning simulations. Based on availability of data and input

from the sponsor, we decided to focus on 329 signalized intersections from Seminole County, Florida„

in FDOT District 5 (Figure 1). The initial data ranges for dates between May 1, 2016, and Sept. 16,

2016, for high resolution sensor data and Here.com. The total storage space occupied is 400 GB and

consists of several comma-separated value files. We also received these data for the late 2018 and

early 2019 ( 700 GB).

3.1 Datasets

3.1.1 High Resolution Loop Detector Data

Automated traffic signal performance measures (ATSPM) [1] is used to process data from high reso-

lution sensor data provided at intersection signal controllers. Induction loop detectors attached to the

intersection collect data at 10 Hz, indicating whether a vehicle passed over it or not. Signal behavior

is also captured. These data allow traffic engineers to analyze the performance of traffic intersections

and improve safety and efficiency while cutting costs and congestion. The data consist of the following:

1. Raw data files

2. Intersection metadata (additional tables)

3. Data logging requirements file

Raw Data Files The raw data table has nine months of raw data ( 700 GB). This table is indexed by

signal ID and timestamp for fast retrieval. The table has 4 columns: SignalID, Timestamp,EventCode:

What event at the signal was captured and EventParam: What was the value of the event or attribute

at that timestamp. Table 1 shows sample data from the raw table. The data consist of four columns:

1. SignalID: Intersection identifier
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Table 1: Raw event logs from signal controllers. Most modern controllers generate this data at a frequency of 10 Hz.

SignalID Timestamp EventCode EventParam

1490 2018-08-01
00:00:00.000100

82 3

1490 2018-08-01
00:00:00.000300

82 8

1490 2018-08-01
00:00:00.000300

0 2

1490 2018-08-01
00:00:00.000300

0 6

1490 2018-08-01
00:00:00.000300

46 1

1490 2018-08-01
00:00:00.000300

46 2

1490 2018-08-01
00:00:00.000300

46 3

1490 2018-08-01
00:00:00.000300

46 4

1490 2018-08-01
00:00:00.000300

46 5

1490 2018-08-01
00:00:00.000300

46 6

1490 2018-08-01
00:00:00.000300

46 7

1490 2018-08-01
00:00:00.000300

46 8

2. Timestamp: Time at which event was logged (deci second resolution)

3. EventCode: What event at the signal was captured

4. EventParam: What was the value of the event or attribute at that timestamp

Intersection Metadata Intersection metadata are available in high resolution sensor data consisting

of the following tables. All the additional tables are joined into a single table that gives compact repre-

sentation of all the metadata. Table 2 shows a sample of a joined table with select attributes, obtained

after combining all the metadata tables

1. “Approaches” table describes the various approaches per signal.

2. “Signals” table gives physical coordinates of the signal.

3. Detectors” table describes individual detectors, and corresponding signals.

Data Logging Requirements File This file contains event codes and their descriptive data (Table

3). Tables explaining all the different event codes, event parameters is included in the appendix.
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Table 2: Join table with selected, key attributes after combining all the intersection metadata tables

Detector ID Approach ID Primary
Name

Signal ID Latitude Longitude

100504 8438 US17-92 1005 28.833835 -81.323649

100505 8438 US17-92 1005 28.833835 -81.323649

100510 8439 US17-92 1005 28.833835 -81.323649

100511 8439 US17-92 1005 28.833835 -81.323649

101502 8440 US17-92 1015 28.811685 -81.273174

101507 8441 US17-92 1015 28.811685 -81.273174

101508 8441 US17-92 1015 28.811685 -81.273174

102002 8442 US17-92 1020 28.809877 -81.273161

102003 8442 US17-92 1020 28.809877 -81.273161

102008 8443 US17-92 1020 28.809877 -81.273161

Table 3: Sample data-logging requirements table

Code Explanation Parameter Code

Phase On Phase # (1-16) 0

Phase Begin Green Phase # (1-16) 1

Phase Check Phase # (1-16) 2

Phase Gap Out Phase # (1-16) 4

Phase Max Out Phase # (1-16) 5

Detector Off Det Channel # (1-64) 81

Detector On Det Channel # (1-64) 82

3.1.2 HERE.COM

HERE.com [2] is a company based in Europe that provides mapping and location services for road

traffic. HERE.com captures both static content such as road networks as well as dynamic content

such as traffic flows. HERE.com collects average speed of a part of the road network (called TMC,

based on OpenStreetMap designations of road portions) by using streaming data from vehicles using

HERE.com GPS and routing services. By aggregating this data from various vehicles, it can calculate

an average speed for that link at a one-minute resolution. The HERE.com dataset consists of data for

Seminole County, Greater Orlando Metropolitan Area, and tracks 1,009 TMCs. Data since 2016 are

available and can be queried for, by a Web API. The dataset consists of:

TMC Identification File This file has details about the various TMCs, including their OpenStreetMap

identification code and their start and end positions. This file helps in identifying the location of the

TMC.

Seminole County Data File This file contains the actual data. For every TMC, at a one-minute

resolution, the average reported speed is recorded. The reference speed is the desired speed that

should be expected at the link (and not the maximum speed). Travel time indicates how long the

vehicles took to cross the link. Confidence indicates the quality of data collection.
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Table 4: Sample HERE.COM raw data table which has speed, reference speed, and travel time for a particular link

Timestamp speed reference
_speed

travel_time confidence tmc_code

2018-08-01
00:00:00

67.5 55.0 83.235 0.765 102+04807

2018-08-01
00:02:00

66.0 55.0 85.120 0.740 102+04807

2018-08-01
00:04:00

66.0 55.0 85.120 0.730 102+04807

2018-08-01
00:06:00

65.0 55.0 86.430 0.750 102+04807

2018-08-01
00:08:00

65.0 55.0 86.430 0.730 102+04807

2018-08-01
00:10:00

68.0 55.0 82.690 0.835 102+04807

2018-08-01
00:12:00

74.5 55.0 75.415 0.870 102+04807

2018-08-01
00:14:00

71.0 55.0 79.190 0.855 102+04807

2018-08-01
00:16:00

68.0 55.0 82.620 0.845 102+04807

2018-08-01
00:18:00

61.0 55.0 92.100 0.885 102+04807

3.1.3 Signal Four Analytics

The data on crashes are collected from digitized police crash reports which are housed at Signal

Four Analytics (SFA), which contains all traffic crashes reported in the state of Florida since 2006.

For this study, we extract the crashes for Seminole County for the months of Nov. 2018 to Apr. 2019.

Figure 2 shows a table which has a sample of crash reports. These reports have the following important

attributes: location of crash (geocoordinates), time of crash, and severity of crash.

3.2 Processing and Storage Requirements

The high resolution sensor dataset and HERE.com dataset contain data at one decisecond and one-

minute resolutions, respectively. This leads to a very large dataset. While the technology allowed

for the collection and storage of such high-resolution data, such resolution is not required for our

project. Hence, it is important to resample the data at useful timescales. Python multiprocessing

packages and Pandas Python data processing library are used to process data for several intersections

simultaneously in a multicore machine. Time requirement is approximately 5 min for one week of data,

300 intersections on a machine with 54 cores, and 256-GB memory. We use the following libraries and

software for data processing:

• Numpy: NumPy is a library for the Python programming language, adding support for large,

multidimensional arrays and matrices, along with a large collection of high level mathematical

functions to operate on these arrays.

• Pandas: Pandas is an open source, BSD-licensed library providing high performance, easy-to-
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Figure 2: SFA crash reports showing selected key attributes

use data structures and data analysis tools for the Python programming language.

• Postgres: PostgreSQL, also known as Postgres, is a free and open source relational database

management system (RDBMS) emphasizing extensibility and technical standards compliance.

It is designed to handle a range of workloads, from single machines to data warehouses or Web

services with many concurrent users.

• Python Multiprocessing: This package supports spawning processes using an API similar to

a threading module. We use this package to make use of each core in a multicore machine to

process data for an intersection.

• Tensorflow, Keras: These packages are open source neural network libraries written in Python.

These provide high level APIs for building deep learning models.

• Scikit-Learn: This is a Python library used for data mining and data analysis.

We cleaned the dataset by

1. Removing intervals of data where detectors are broken or not reporting any data for a significant

amount of time on some days

2. Removing intervals of data where cycle length is less than a second

The high resolution sensor dataset was resampled at fixed buckets or based on cycle length. For 8 am

to 8 pm, the intervals correspond to a cycle or a fixed size interval. For 8 pm to 8 am, the interval size

is fixed to the median of cycle lengths from 8 am to 8 pm (because cycle lengths during the overnight

period are significantly large and erratic). There are multiple phases in each cycle. The duration of

each phase as well as the cycle vary slightly from one cycle to the next. We expect a cycle-based

approach to be more predictive as it maintains the consistency of phases over time. The HERE.com
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Table 5: Processed representation of the raw data from Figure 1. We compute arrival volumes using Algorithm 1. Different
attributes include (a)Timestamp: start of green time, (b) Count: number of arrivals in each cycle, (c) CL: cycle length in
seconds, (d) AR: arrival rate, (e) D-ID: detector ID, (f) S-ID: signal, ID, and (g) Ph: phase.

Timestamp Count CL AR D-ID S-ID A-ID Ph

2018-08-01 00:00:00 5.0 210.0 0.0238 149016 1490 8612 6

2018-08-01 00:00:00 6.0 210.0 0.0285 149006 1490 8611 2

2018-08-01 00:00:00 4.0 210.0 0.0190 149007 1490 8611 2

2018-08-01 00:00:00 6.0 210.0 0.0285 149008 1490 8611 2

2018-08-01 00:00:00 7.0 210.0 0.0333 149018 1490 8612 6

2018-08-01 00:00:00 8.0 210.0 0.0380 149017 1490 8612 6

2018-08-01 00:00:00 6.0 210.0 0.0285 149009 1490 8611 2

2018-08-01 00:03:30 9.0 210.0 0.0428 149018 1490 8612 6

2018-08-01 00:03:30 9.0 210.0 0.0428 149006 1490 8611 2

2018-08-01 00:03:30 2.0 210.0 0.0095 149016 1490 8612 6

2018-08-01 00:03:30 5.0 210.0 0.0238 149017 1490 8612 6

dataset was resampled at 1-min and 2-min buckets. The controller log data are used to construct

arrival volume time series aggregated over each cycle. Flow counts per lane were calculated for every

approach direction of the intersection. Along with arrival volumes, a time series of cycle lengths for

every approach direction of the intersection is calculated. Data are stored for intervals that are of fixed

duration or based on cycles. For HERE.com data, travel times and average speed over 2-min bins are

calculated. Congestion ratio is also calculated, which is the ratio of recorded speed to the reference

speed for a link. A link with congestion ratio of 0.70 or below was deemed to be congested. The

processed data are written out and stored on the MySQL database for further use. We use these time

series data to label the data to find potential incident intervals.

Algorithm 1 Construct time series of arrival volumes
1: function CONSTRUCTTIMESERIES(rawdata , I, ph, time)
2: Require: rawdata - High resolution controller logs of the intersections being studied.
3: I - Intersection ID ph -phase time - time interval
4: for every intersection in I do
5: Fetch high resolution sensor data from database for I, time, ph
6: Filter Event Code 81,82,2 and get the corresponding time stamps
7: Aggregate volumes between two successive timestamps where EventCode==2.
8: Push arrival volumes time series to the database.
9: end for

10: end function

Algorithm 1 presents our approach for constructing arrival volume time series from controller logs.

Table 5 shows a sample of a processed time series data with the following attributes: Timestamp

(timing pattern start time), Count (number of arrivals in this cycle), and CL (cycle length in seconds).

Figure 8 shows a plot of arrival volume time series for five days and highlights the periodic nature of

the data.

Parallel and Distributed Data Processing System "Elixir is a dynamic, functional language de-

signed for building scalable and maintainable applications". Elixir builds on the the Erlang VM, which
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Figure 3: Time series plot of vehicle arrival volumes for 5 days, computed using Algorithm 1. Note the
periodic nature of the data.

Figure 4: Overall architecture for processing controller logs in a parallel and distributed manner
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Table 6: Observed performance for different applications observed on a 50-core machine, varying the
number of intersections

Number of inter-
sections

Time duration of
data

MOE calculations Classification Incident detection

20 1 week (10,000
min)

1.5 min <1 min <2 min

300 1 week (10,000
min)

25 min <15 min <15 min

is known for three key reasons: low-latency execution, distributed computing, and fault-tolerant com-

puting. The Erlang VM (and Elixir) is efficient for applications in particular domains and has been

widely used in mission-critical networking equipment, but it doesn’t perform well for operations like

data processing and computation-intensive processes. Python, on the other hand, has a rich set of

packages for tackling data processing. The Erlang VM allows interoperability with other programming

languages using the Erlang port protocol. Hence, we use a combination of Python and Elixir to build

our distributed and fault-tolerant computation architecture, which is shown in Figure 4.

3.3 Data Fusion

3.3.1 Linking Sensor Data and HERE.com Dataset

The key difference between the two datasets is that the high resolution sensor dataset captures read-

ings from the point of view of an intersection, whereas the HERE.com dataset captures readings from

the point of view of unidirectional road segments. They use different naming and ordering schemes.

However, both datasets contain geolocation coordinates (latitude and longitude): high resolution sen-

sor data contain the lat-long for the center point of the intersection, whereas the HERE.com data

contain start and end lat-long coordinates (with traffic flowing from start to end). We used this fact to

link the two datasets together.

We start by filtering out road segments that are too small (e.g., below 0.25 miles) in the HERE.com

data. Then for the remaining, we find intersection coordinates that are the closest to the start points.

Similarly, we find intersection coordinates that are the closest to the end points. We also keep a

track of the distance errors, as the start and end points of the segments may not lie directly on the

intersections. We then remove all segments that have a large error (e.g., above 0.2 miles). In this

manner, we have an approximate but usable linking of datasets. Using this approach, we can obtain

an adjacency matrix for the intersections, with the names of the road links that are connected to each

other. We apply the same algorithms for road links. Further, we can also build a derivable adjacency

list in which we determine which road links could be a part of a coherent vehicle path, without any

U-turns.
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Table 7: Mapping of TMC link ID of HERE.COM link to start and end intersection IDs of ground sensor data. Different
attributes include (a) tmc: TMC link ID of HERE.COM, (b) start_Nearest: intersection at start point of the road segment,
and (c) end_Nearest: intersection at end point of the road segment.

tmc start_Coord end_Coord start_Nearest end_Nearest

102+21238 POINT
(28.7797 -
81.29693)

POINT
(28.7708 -
81.2832)

2730 1065

102+11013 POINT
(28.7564 -
81.3220)

POINT
(28.78642
-81.3181)

2055 1985

102+21122 POINT
(28.81171
-81.3225)

POINT
(28.82829
-81.3228)

1685 2700

102+21121 POINT
(28.80391
-81.32272)

POINT
(28.81145
-81.3227)

2835 1685

102+21120 POINT
(28.7870 -
81.3164)

POINT
(28.80391
-81.3227)

1985 2835

102-21119 POINT
(28.8039 -
81.3227)

POINT
(28.78709
-81.3164)

2835 1985

102-21121 POINT
(28.8282 -
81.3228)

POINT
(28.81171
-81.3227)

2700 1685

102-21120 POINT
(28.8114 -
81.3227)

POINT
(28.80391
-81.3227)

1685 2835

102-11012 POINT
(28.7864 -
81.3181)

POINT
(28.7564 -
81.3220)

1985 2055

102+10992 POINT
(28.6978 -
81.3462)

POINT
(28.70085
-81.3463)

1295 1925
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Figure 5: Figure showing location of crash along with locations of derived nearby intersections. Red
marker: location of crash; Blue marker: location of nearby intersections.

3.3.2 Linking Sensor Data with Signal Four Analytics Crash Data

Crash reports from Signal Four Analytics (SFA) does not provide any information of nearby intersec-

tions at which a crash has occurred. We use the following attributes from these reports to link crashes

to intersection metadata of ground sensor data, i.e., (a) Location of the crash (S4_Decimal_Degree_Latitude,

S4_Decimal_Degree_Longitude) and (b) Crash_Street – Street name where the crash was reported.

For every crash, we calculate distance from location of crash to all the intersections and obtain four

nearby intersections. We can further filter this to only get intersections within some distance of the

location of crash. Table 8 shows this mapping for some of the crashes where we get intersections only

within 600 m of the crash. Figure 5 shows an example of location of crash and locations of derived

nearby intersections.

In some cases, as shown in Figure 6, a crash can happen on a side street, which may not affect the

traffic on nearby intersections (even though the intersections are close by) and therby not impact the

traffic significantly. So we use the street name from the SFA reports and intersection metadata to filter

these types of crashes. The two key challenges we need to address is that the street names from

these two data sources differ, and determining minor streets on major streets is not straightforward.

Figure 7 shows a brief outline of heuristic approach we use for getting crashes that happen on major

streets. For each crash, we compare the street name with all the unique street names from intersection

metadata of high resolution controller logs and get the street name with which it shares the longest

common substring. Table 9 shows mappings of street names from crash reports to high resolution

sensor data street names when length of maximum common substring is greater than 5.

3.4 Data Visualization

We visualize the parsed data by using Matplotlib [7] Python library. Matplotlib is a Python 2D plotting

library that supports a variety of hardcopy formats and interactive environments. The aggregated

vehicle count from high resolution sensor data data is visualized as a time series as shown in Figure

8. We developed a plotting tool which plots all the arrivals on one detector (or a subset of detectors)
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Table 8: Table showing mapping of each crash to the nearby intersections. Different attributes include (a) HSMV_No:
unique identifier of crash from SFA reports, (b) location: location of the crash, (c) C_Date: crash date, (d) C_Time: crash
time, (e) Crash_Severity: severity level of crash, and (f) near_sig: intersections within 600 m of crash.

HSMV_No location C_Date C_Time C_Severity near_sig

88801272 POINT (-
81.20929
28.65256)

01/30/2019 10:34 AM Property
Damage Only

[1395, 1400,
2627]

88801271 POINT (-
81.17972
28.65801)

01/29/2019 02:52 PM Property
Damage Only

[1870]

88801270 POINT (-
81.17932
28.65346)

01/29/2019 12:24 PM Property
Damage Only

[1870]

88958477 POINT (-
81.32735
28.69639)

02/11/2019 02:15 PM Injury [1130, 1127]

87773274 POINT (-
81.35851
28.71469)

02/08/2019 05:43 PM Injury [1285]

88702737 POINT (-
81.36583
28.64555)

02/08/2019 03:20 PM Injury [1555]

88614479 POINT (-
81.32808
28.65128)

01/07/2019 09:15 AM Property
Damage Only

[1595, 1600]

88907150 POINT (-
81.33461
28.75636)

01/08/2019 05:45 PM Property
Damage Only

[2065, 2125]

88907146 POINT (-
81.34737
28.77745)

01/07/2019 06:45 PM Injury [2180, 1995,
2000]

Figure 6: Location of crash on side street along with locations of derived nearby intersections. Red
marker: location of crash; Blue marker: location of nearby intersections.
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Table 9: Mapping of street names from crash reports to ATSPM street names when length of maximum common substring
is greater than 5. This table has the following attributes: (a) HSMV_No: HSMV_Report_Number from crash reports, (b)
C_Date: crash date, (c) C_Time: crash time, (d) C_Street: crash street reported in SFA, (e) S_name: mapped street name
from ATSPM, and (f) LCS: longest common substring shared by crash street and street name from ATSPM.

HSMV_No C_Date C_Time C_Street S_name LCS

88801272 01/30/2019 10:34 AM ALAFAYATRL alafayawoods alafaya

88801271 01/29/2019 02:52 PM LOCKWOODBLVD lockwoodadt lockwood

88801270 01/29/2019 12:24 PM LOCKWOODBLVD lockwoodadt lockwood

88801282 02/06/2019 08:26 AM LOCKWOODBLVD lockwoodadt lockwood

88702663 01/25/2019 06:55 PM MAITLANDBLVD maitlandave maitland

88614466 01/01/2019 02:28 PM LAURAST laurastadt laurast

87773274 02/08/2019 05:43 PM LAKEEMMARD lkemmard emmard

88702737 02/08/2019 03:20 PM NMAITLANDAVE maitlandave maitlandave

88927573 02/12/2019 02:28 PM RINEHARTRD rinehartrd rinehartrd

88614610 02/08/2019 06:45 PM OXFORDRDN oxford oxford

88770185 02/12/2019 11:12 AM REDBUGLAKERD redbuglkrd redbugl

88770133 02/08/2019 12:58 AM SSYLVANLAKEDR lakedradt lakedr

88927352 01/02/2019 08:59 AM COUNTRYCLUBRD countryclub countryclub

88927348 01/01/2019 03:58 PM WSEMINOLEBLVD seminol
ablvdadt

seminol

87291537 01/07/2019 06:50 AM US1792 us1792 us1792

87291536 01/06/2019 09:45 AM WTOWNPKWY west town
pkwyadt

townpkwy

Figure 7: Brief outline of the heuristic approach for filtering crashes that happened on major streets

27



Traffic-event Unification System 3 DATASETS AND PREPROCESSING

Figure 8: Arrival volumes visualized as time series

for an intersection for a given time interval. This tool helps us to visualize arrival volumes before and

after a potential incident point (Figure 9).
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Figure 9: Plot of arrivals on phase 2 of Signal 1490 from 19:20 to 19:40 on Aug. 21, 2018
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4 Labeling Interruptions

In order to be able to reliably predict events of interest, we first need a method for labeling such events,

and furthermore, the labeling mechanism should be separate from the event prediction algorithm. We

now describe the labelling mechanism.

Traffic interruptions are registered in the controller logs—as long as we know where to look. But, not

every interruption is a major one. A large traffic interruption—and to be clear, we are not interested in

small interruptions—is defined based on two parameters:

1. The magnitude of deviation (percentage reduction) of observed traffic volumes from predicted

volumes. This is measured in terms of the percentage dip of the actual traffic volume vs. the

predicted value. Common sense dictates that the greater the deviation, the larger the interrup-

tion.

2. The duration (in seconds) for which the actual traffic volume is less than a baseline predicted

volume. Again, a big duration heralds a large interruption.

Let Y denote the percentage reduction of volume and T denote the time (in seconds) of the interruption.

Events are therefore characterized in this two-dimensional summarization space.

Recall that we need a baseline prediction method that gives us normal expected volumes of traffic. To

achieve this, we merely look at the differences between arrival volumes (in recent cycles) and historical

arrival volumes from similar time periods from previous days and/or weeks. The baseline predictor uses

a simple method to generate traffic interruptions based on the time series data generated from arrival

volumes. We found that a simple baseline predictor works well in practice and that our approach is

not terribly sensitive to the choice of method. In other words, any common sense approach that yields

large traffic interruptions will work in this setup.

We use a variation of non-local means as the baseline predictor. Since arrival volumes at any given

time are highly dependent on cycle length and immediately preceding traffic volumes, we use the

arrivals rate rather than arrival volumes in the predictor. Let Vi and Ti correspond to the number of

arrivals and the duration of cycle i, respectively. Then the arrival rate, Xi, is defined as Xi =
Vi
Ti

. The

prediction algorithm finds a (linear) function that computes the arrival rate for the current cycle using

previous cycles from the same day and historically relevant cycles from previous periods. Our model

for f is

Xt = f (Xt−1,Xt−2, . . . ,Xt−k,Yt−k, . . . ,Yt+k),

where Xi and Yi corresponds to arrival rates from the current day and historical data respectively.

Expected arrival volumes (baseline) can now be computed using the arrival rate multiplied by cycle

length.

Figure 10 shows that predicted volumes are in line with actual traffic volumes. Figure 11 shows exam-

ple of an event where there is a significant deviation of traffic volumes from predicted volumes (amount
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Figure 10: Actual and predicted volumes vs. time for a period of 24 hours on a single detector shows
that predicted volumes are largely consistent with actual traffic patterns.

Figure 11: Example of an event of interest which shows significant deviation of traffic volumes from
predicted volumes (amount and duration)

and duration). In the figure 11 we can see that actual traffic volume deviated from predicted volume

for a long period of time. We are interested in interruptions where the mean dip and length of dip are

significant, as shown in Figure 11.

It is worth noting that we are only interested (in this paper) in periods when the volume in the cycle

is less than the baseline, with such events henceforth referred to as dips. Each dip, as mentioned

previously, is parameterized by its amount (Y ) and duration (T ). The scatterplot of these dips is a

2D event space whose probability distribution can be estimated from a simple 2D histogram. We

generated all the traffic interruptions using the algorithm in Algorithm 2 to compute this two-dimensional

histogram.

The matrix in Figure 12 shows frequencies for different dips based on average reduction in volume

(along the rows) and duration (along the columns). We are not interested in events where there are

no significant interruptions. The distribution of dips suggests a tripartite distinction, which we adopt:

central (green), borderline (yellow), and discards (red), as shown in Figure 12. The 2D histogram also
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Algorithm 2 Label interruptions

1: function GENERATE EVENT(arrivalvols , predf)
2: Require: arrivalvols - Time series of arrival volumes .
3: predf - predictor function
4: listo f events = []
5: while c< total no of cycles do
6: predvol = predf(Xc−1, ..Xc−k,Yc−k, ..Yc+k).
7: differences = []
8: Set starttime equal to the cycle time
9: while cycle volume is < the predvol do

10: reduction = predvol−c.Vol
predvol *100

11: append reduction to differences
12: increment c
13: predvol =
14: predf(Xc−1, .Xc−k,Yc−k, .Yc+k).
15: end while
16: Set endtime equal to the cycle time
17: generate event Y = average(differences),
18: T = endtime-starttime
19: append event to listo f events
20: end while
21: Return listo f events
22: end function

Figure 12: Frequencies for different dips based on average reduction in volume percentage (along
the rows) and duration in seconds (along the columns) showing the number of events in each bin: (a)
Events of interest – these are events with long interruptions with significant reductions in traffic volume;
(b) Border events – these are events that are not desirable but acceptable to catch; (c) Events that are
not of interest.
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suggests natural thresholds on volume reduction and duration which can be adopted to discard normal

behavior while only keeping the central and borderline behaviors.

In the remainder of the report, we use thresholds of 70% for volume reduction and 500 seconds for

duration, with these choices vetted by traffic engineers as being reasonable for this study. These result

in traffic interruptions of reasonably long duration while being relatively infrequent but severe enough

to require addressing. Clearly, such thresholds can be fine-tuned by traffic engineers based on their

requirements.

In the next section, we present our methodology to predict events of interest (EOIs) with the goal of the

predictive algorithm being to capture most of the events within the bounding box and perhaps some

borderline events while ignoring most, if not all, the non-events outside the borders.
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5 Predicting Events of Interest

In this study, we assume that the data are being streamed in real time for all the detectors on each

intersection. The preprocessing algorithm described in Section 3 is used to compute per-cycle volumes

in real time. This information and previous cycles (and historical data) are then used to determine if an

EOI has occurred. Clearly, for the approach to be useful, this determination has to be done as soon as

possible while minimizing the false positives and false negatives. There is a trade-off between latency

of this determination and the false positive and false negative rates.

We present a brief outline of the approach. Since arrival volumes in cycles considerably vary, we

use cumulative volumes instead. Then cumulative volumes from the present cycle are compared to

previous and historically relevant cumulatives. The comparison in turn leads to a decision criterion

which is scored in terms of true and false positives (using the ’central’ and ’borderline’ labels from the

previous section). The first step of this process is to only consider a cycle if the current volume is

smaller than the predicted volume. If this condition is met, we say that a trigger has happened, and we

construct the following cumulative arrival curves.

• Curve 1 (in red) starting from start of previous cycle Figure 14).

• Curve 2 (in blue) corresponds to recent normal cycles.

• Curves 3, 4, and 5 (in green) are cumulative arrival curves for the same time interval as curve 1

from cycles based on historical data from the same time of the day and day of the week.

The goal is to compare the current cumulative curve from normal cumulative curves for that particular

time interval(constructed based on recent and past history). For example, in Figure 13a for an event

of interest, the current cumulative curve is different from those of normal cumulative curves. Whereas,

for an event not of interest, the current cumulative curve is similar to some normal cumulative curves

Figure 13b. Based on our analysis of many of such cases, we found that the following features are

highly predictive of an EOI:

• Feature 1: Slope of current cumulative curve(m1) Slope of the current curve from crossover

point. Crossover point as shown in Figure 14 is the point where curve 1 and curve 2 intersect (the

point from where the current cumulative curve starts deviating from normal cumulative curves

for that time interval).

• Feature 2: Angle between current cumulative curve and historical curves(m2) This is taken

as second max (to eliminate a potentially extreme case) of angle between curve 1 and curves 2,

3, 4, and 5 (from the vertex at the crossover point).

In order to determine these two features, the duration of the curves to be considered after the trigger is

also an important parameter. As seen in Figure 14, after the crossover point, the degree of dissimilarity

between current cumulative curve and normal cumulative curves increases with time for an event of

interest. So with increase in wait time after the trigger, the slope of current cumulative curve decreases
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Figure 13: This figure shows the difference between an event of interest and event not of interest. We
plot cumulative arrival volumes vs. time.

Figure 14: Cumulative curves of arrival volumes vs. time. We use these curves to construct our
feature set.

while the angle between current cumulative and normal curves increases, thus making an EOI easier

to detect.

Arrival volumes per unit time are variable across all the detectors so we divide the detectors into three

sets: high volume detectors, medium volume detectors, and low volume detectors. The thresholds for

capturing events of interest will be different for each set because the magnitude of a feature depends

on arrival rates. For each detector, we compute arrivals per unit time during daytime for 30 days and we

divide the detectors based on this ratio. We perform the following experiments to see the distribution of

events by using different thresholds for feature 1, feature 2, and wait time. For each set of detectors, we

compute the distribution of events captured using different thresholds for feature 1 and feature 2 and

for different wait times after the trigger. This way, we try to find thresholds for the features to capture

events of interest.

Figure 15 shows the distribution of events captured for different thresholds and wait times: 60 sec, 90
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Figure 15: Distribution of events captured for different thresholds (high volume detectors) 60 sec, 90
sec, and 120 sec after the trigger. This justifies that by waiting more time after the trigger, we capture
fewer events that are not of interest.
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Algorithm 3 Detection algorithm
function DETECTION ALGORITHM(volume reduction, time)
Require: volume reduction – percentage reduction of arrival volume in the cycle. Detector ID – detector at
which interruption happened. ph – phase time – Time at which reduction happened

for different wait times after the trigger do
Construct cumulative arrival curves based using current arrivals, history
Construct feature 1, feature 2 from cumulative

arrivals for the wait time as described.
Decision = thresholds(feature1, feature2, wait time)

end for
Return Decision

end function

sec, and 120 sec after the trigger for high volume detectors. We can see that the number of captured

events that are not of interest decreases with an increase in wait time for the same set of thresholds.

This suggests that by waiting more time after the trigger, we capture fewer events that are not of

interest. Also, the number of events captured that are not of interest decreases with increase in m2

and decrease in m1, but the trade-off is that we miss some of the events of interest.

Figure 16 shows a comparison of the overall distribution of events vs. events captured when feature 1

(m1) < 0.09 and feature 2 (m2) > 0.7 for wait times 90 sec after the trigger for high volume detectors.

For this particular set of thresholds (m1, m2, wait time), 92% of the events of interest, 35% of border

events, and a very small percentage of events not of interest were captured.

Figure 17 shows comparison of overall distribution of events vs. events captured when feature 1

(m1) < 0.07 and feature 2 (m2) > 0.5 for wait time 90 sec after the trigger for medium volume detectors

(average reduction in volume percentage (along the rows) and duration in seconds (along the columns)

). For this particular set of m1, m2, and wait time, 99% of events of interest were captured along with

8% border events and less than 1% percentage of events not of interest.
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Figure 16: Distribution of events captured for m1 < 0.09 and m2 > 0.7 for wait time 90 sec after
the trigger (average reduction in volume percentage (along the rows); duration in seconds (along
the columns). Ninety-two percent of the events of interest, 35% of border events, and a very small
percentage of events not of interest were captured (high volume detectors).
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Figure 17: Events captured for m1 < 0.07 and m2 > 0.5 for wait time 90 sec after the trigger (medium
volume detectors) (average reduction in volume percentage (along the rows), and duration in seconds
(along the columns) ). 99% of events of interest were captured with 8% border events and less than
1% of events not of interest

39



Traffic-event Unification System 5 PREDICTING EVENTS OF INTEREST

Figure 18: Events captured for m1 < 0.09 and m2 > 0.4 for wait time 90 sec after the trigger (low
volume detectors). Seventy-five percent of events of interest were captured.
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6 Discriminator for Detecting EOI

We design a discriminator for detecting Events of Interest (EOI), i.e., a two-class classifier separating

Event of Interest from all other events. We have defined the problem as a binary time series clas-

sification task. Time series classification is one of more challenging problems in machine learning.

The problem can be stated as training a model which when fed with a series of data points indexed

in temporal order, outputs the probability distribution over different classes. We use a neural network

with one hidden layer as our model for the classification. Input to our classifier is the current cumula-

tive curve of length L concatenated with an historic ("normal") cumulative curve of the same length L.

The output is a prediction about the current cumulative curve belonging to EOI or not, one hot label

encoding (either 1 or 0). It is well known that neural networks in the training phase converge faster

and that the network learns better if the input features are not correlated. Therefore, we transform the

input time series to a low dimensional subspace where most of the variability of the data is captured.

Also, given that we have relatively few training examples for the positive class (EOI), dimensionality

reduction helps in reducing the size of the network to a large extent, thereby reducing the number of

parameters that need to be learned. This makes the model more robust and less likely to over-fit. We

use principal component analysis as our tool for dimensionality reduction. (Section 6.2).

6.1 Neural Networks

Fundamentally, all neural networks consist of an input layer, hidden layers, and an output layer. The

basic unit of a neural network is called a neuron (very loosely related to biological neurons). The

following is some of the terminology used:

Figure 19: Single neuron with input and output

• Input Layer. This layer takes the input in the required shape and passes it to the hidden layer.

No computations are done here.

• Activation Function. The output of each neuron is a function of its input. This function is called

activation function of a neuron. Some activation functions that are commonly used in practice
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Figure 20: Example of a neural network with one input layer, one hidden layer, and one output layer

are Sigmoid, ReLu, Tanh.

• Hidden Layer. They receive input from the previous layers, perform computations and then

transfer their output to the succeeding layer. The first hidden layer receives it’s input from the

"input" layer and the last hidden layer transfers it’s output to the "output" layer.

• Output Layer. With the use of specific activation functions, this layer is used to map output to

the desired format.

• Connections. Output of each neuron is transferred to a neuron in the succeeding layer with a

connection. A weight is associated with each connection. If output of i is connected to input of

j, then corresponding weight is Wi j

Figure 19 shows a single neuron and the input, output mechanism. It takes two inputs X1, X2 and they

are connected with weights W1, W2. So, the input to the neuron becomes W1.X1 + W2.X2. Output of

this neuron is a function of this input that is fed to it. These functions are called activation functions.

This is important because it allows the model to learn non-linear relations between input and output.

Figure 20 shows a three layer network with all the labelling. The inputs X1, X2,...Xn when fed to the

network outputs probability over different classes Y1, Y2...Yn.

6.2 Principal Component Analysis

Principal Component Analysis(PCA) is a well known technique for dimensionality reduction - reduce the

dimensionality of data while modeling and preserving as much variability as possible. PCA finds new

variables that are linear functions of the original variables, that successively maximize variance and are

linearly independent with each other. Finding new variables (principal components) essentially reduces
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Figure 21: Example architecture of the classifier

to solving for eigenvectors/eigenvalues of the covariance matrix of the original data. The eigenvectors

are ranked according to the variance of data along them (decreasing order of eigenvalues). The

axis along top eigenvector (eigenvector with max eigenvalue) tries to capture as much information as

possible from the data, then the maximum possible remaining information is captured in the second

component and so on. The original data(in D dimensional space) is projected onto top d eigen vectors

(which act as a basis for the transformed space) to get d dimensional representation of the original

data. The value of d is chosen such that most of the variance in the data is captured. The steps for

projecting D dimensional data to a d dimensional space are as follows:

• Compute covariance matrix of the data points (Input dimension D).

• Compute eigenvectors and corresponding eigenvalues. Rank eigenvectors in decreasing order

of eigenvalues.

• Choose top n eigen vectors as new basis for the projected space.

• Construct projection matrix W from the choosen eigen vectors

• Use projection matrix to transform original data in D dimensional space to new d dimensional

subspace.

Transform the original D dimensional data points to this new d dimensional space.

Let {~xi} be a set of N column vectors of dimension D. Define the covariance matrix Sx of the original

data as

Sx =
N

∑
i=1

(~xi−~µx)(~xi−~µx)
T
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where~µx is the mean of the data

~µx =
1
N

N

∑
i=1

~xi

The d largest principle components are the eigenvectors ~wi corresponding to the d largest eigenvalues.

d can be chosen to have a value d < D, such that most of the variance in the data is captured. The

eigenvectors of S can usually be found by using singular value decomposition.

The dominant eigenvectors describe the main directions of variation of the data.

The d eigenvectors can also be used to project the data into a d dimensional space. Define

W = [~µ1,~µ2, . . . ,~µd]

The projection of vector~x is~y = WT~x. The corresponding scatter matrix Sy of the vectors {~yi} is:

Sy = WT SxW

The matrix W maximizes the determinant of Sy for a given d. Another important aspect is how many

principal components(cardinality of new space) to choose for the new space. One useful measure is

explained variance - how much variance is captured by each principal component. By looking at the

cumulative of explained variance with respect to number of components, we can make a decision on

how many components to choose. Figure 22 shows example of a two dimensional data which we

intend to project on to a 1 dimensional space. One could select that single dimension in many possible

ways. Suppose we select the line y = 0 as in Figure 22(a) or the magenta line as in Figure 22(a) and

project the 2 dimensional data on to this line, the red dots shows the projection in 1 dimensional space.

We can clearly see that the red dots in Figure 22(b) are more widely spread out than Figure 22(a).

The axis along magenta line is direction of the most dominant eigenvector (eigenvector with highest

eigenvalue). The original 2 dimensional data is most spread along this direction and projecting onto

this line results in least reconstruction error or most explained variance.

Figure 23 shows plot of cumulative explained variance vs no of components when PCA is applied to

the input time series. This plot suggests that taking top 20 components captures 99% of the variance of

the data. So we can project 194 dimensional input vector on to 20 dimensional PCA space. Figure 21

shows the architecture of the neural network. One hidden layer with four neurons and an output node

with sigmoid activation is used. This neural network is trained with cumulative curves transformed into

PCA space as input features and binary cross entropy as the loss function. Adam optimizer is used for

back propagation of error and updating the weights of network. Figure 24 shows the confusion matrix

for a hold out test set. Figure 25 shows the plot of log of model loss versus number of epochs for

training and validation sets.
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Figure 22: Example of two-dimensional data projected onto a one-dimensional space

Figure 23: Plot of cumulative explained variance vs. no. of components. This plot suggests that
taking the top 20 components captures 99% of the variance of the data.

Figure 24: Confusion matrix for the binary classification task
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Figure 25: Plot of logarithm of model loss vs. number of epochs for training and validation sets
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7 Spatiotemporal Analysis of Events

We also analyze the events of interest with the aim of finding spatial or temporal patterns. This is done

to highlight

• Temporal patterns: To see if there is any particular intersection where traffic interruptions are

occurring regularly

• Spatial patterns: To see if interruption at a intersection causes interruption at any nearby inter-

section.

Figure 26 shows a plot of locations of all the events of interest. Each red marker on the map indicates

the location of an intersection where an event occurred. From the plot, we can see that events are

occurring more frequently at some intersections.

7.1 Temporal Patterns

The onus is on temporal pattern discovery to determine coherent activities at intersections over the

period of a month. This requires the visualization of locations of EOIs separately for each month. In

these plots, the size of the marker is directly proportional to the number of events occurring at that

particular intersection. We can see from Figure 27 that at some intersections, EOIs occur consistently

every month. Figure 28 shows an example of an intersection where the EOIs are occurring consis-

tently over the months of January, February, March, and April. Figure 29 shows another example of

an intersection where the events are occurring consistently over the months of December, January,

February, March, and April. The payoff from temporal pattern discovery is the highlighting of problem-

atic intersections in this manner.

Table 10 shows a set of intersections where interruptions are occurring consistently every month. At

these intersections, the total number of EOIs occurred is greater than 20, and an EOI occurred at least

5 out of 6 months.

Table 10: Table showing list of intersections where total number of EOIs > 20 and an EOI occurred at least 5 out of 6
months. Attributes include (a) signalid: signal ID, (b) c_nov: no. of EOIs in Nov. (similarly for other months), (c) total: total
no. of EOIs, and (d) N_months: no. of months in which at least one EOI occurred.

signalid c_nov c_dec c_jan c_feb c_mar c_apr total N_months

2220 2 8 9 7 7 3 36 6

2615 2 6 11 1 6 7 33 6

1925 1 10 2 4 1 7 33 6

1235 2 0 6 21 22 18 69 5

1470 12 51 1 1 1 0 66 5

2145 0 6 12 8 9 6 41 5

1115 0 1 5 5 7 3 21 5
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Figure 26: Locations of all the events of interest generated from Nov. 2018 to Apr. 2019. This plot
shows that events occur more frequently at some intersections when compared to others (the number
of events at any particular intersection is proportional to number of red markers).

Figure 27: Locations of all the events of interest generated for each month separately from Nov. 2018
to Apr. 2019. This plot shows temporal consistency of some intersections.
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Figure 28: Intersection where the EOIs are occurring consistently (at least 5 events occurring each
month) over the months of January, February, March, and April

Figure 29: Intersection where the EOIs are occurring consistently over the months of December,
January, February, March, and April

Figure 30: Histogram of number of EOI based on time of day. More EOI are occurring at times 9-10
AM and 5-6 PM
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Figure 31: Co-occurrence of EOIs at some intersections within a 10-min window. This shows spatial
correlation at some of the intersections.

7.2 Spatial Patterns

Spatial pattern discovery complements the earlier case of temporal patterns. Here, we seek to de-

termine the impact of EOIs at one intersection on a nearby one. The first step in this process is to

derive the network topology. For each intersection, we derived set of intersections which are nearby

based on spatial proximity. The second step is to analyze co-occurrence of interruptions in the nearby

intersections (or secondary interruptions).

Algorithm 4 Spatial analysis
function FIND SPATIAL PATTERNS(events, spatial info)
Require: events – list of events with signal IDs and time of occurrence . spatial info – Geo-coordinates for
each intersection

for each signal, time in event do
Obtain nearby intersections for signal using spatial info
Search for events for in the nearby intersections occurred in a 10 min window
Store pairs of co occurred events

end for
end function

Algorithm 4 describes steps to find pairs of co-occurring EOIs given a list of events and geocoordinates

for intersections. With this analysis, we find that 52 out of 900 events were coincident with, and thus

possibly caused, an interruption in nearby intersections. Figure 31 shows some examples where

events co-occurred at nearby intersections within a 10-min window.
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8 Accident Analysis

The data on crashes are collected from digitized police crash reports which are housed at Signal Four

Analytics (SFA), which contains all traffic crashes reported in the state of Florida since 2006. For

this study, we extract the crashes for Seminole County for the months of Nov. 2018 to Apr. 2019.

Figure 32 shows a table which has a sample of crash reports. These reports have the following

important attributes: location of crash (geocoordinates), time of crash, and severity of crash. For each

crash, we obtained nearby intersections which could have been possibly affected by the crash based

on spatial proximity (intersections within 600 m of the crash). Table 11 shows a table which has the

mappings of crashes to nearby intersections.

8.1 Distribution of Approach-Based Events

We define an approach-based event using the following parameters (X,T): At least X% average reduc-

tion in volume on each detector (for an approach) and at least T sec interruption on each detector (for

an approach). Figure 33 shows the distribution of approach-based events for different X and T.

8.2 Analyzing Interruptions Caused by Crashes

For analyzing interruptions caused by accidents or crashes, we divide crashes based on severity level.

The data from SFA has the following severity levels: property damage only (level 0 ), injury (level 1),

and fatality (level 2). We analyze interruptions caused by these accidents on single-lane approaches,

two-lane approaches, and three-lane approaches separately.

For each crash, we check if there is any event generated at the nearby intersections (Table 11) thus

obtaining approach-based events that happen to occur within a 5-min interval of the crash time. Figure

34 shows a comparison of the overall distribution of single-lane events vs. the approach-based events

that happen to occur within a 5-min interval of crash time. This is done for different levels of crash

severity. Similarly, Figure 35, 36 shows the comparison for two-lane and three-lane approaches.

8.3 Analyzing Traffic Volumes at Nearby Intersections

Some of the crashes happen to occur on minor streets or small streets near an intersection. We

assume that these crashes won’t affect the arrivals on major streets and exclude these from our anal-

ysis (we only have detector-to-phase mappings for major streets). For this, we make use of street

names from SFA reports and high resolution sensor dataset additional tables. As street names from

the sources differ, determining whether a crash happened on a major or minor street is not straightfor-

ward. For each street name in the SFA reports, we compare it with all the unique street names from

the high resolution sensor data (Additional Tables) and get the street name with which it shares the

longest common substring. Table 12 also shows a table which compares the length of longest common

substring with the number of accidents. Table 13 shows mappings of street names from crash reports

to high resolution sensor data street names when the length of the maximum common substring is
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Figure 32: SFA crash reports showing selected, key attributes.

Table 11: Table showing mapping of each crash to the nearby intersections. Attributes include (a) HSMV_No: unique
identifier of crash from SFA reports, (b) location: location of the crash, (c) C_Date: crash date, (d) C_Time: crash time, (e)
Crash_Severity: severity level of crash, and (f) near_sig: intersections within 600 m of crash.

HSMV_No location C_Date C_Time C_Severity near_sig

88801272 POINT (-
81.20929
28.65256)

01/30/2019 10:34 AM Property Dam-
age Only

[1395, 1400,
2627]

88801271 POINT (-
81.17972
28.65801)

01/29/2019 02:52 PM Property Dam-
age Only

[1870]

88801270 POINT (-
81.17932
28.65346)

01/29/2019 12:24 PM Property Dam-
age Only

[1870]

88958477 POINT (-
81.32735
28.69639)

02/11/2019 02:15 PM Injury [1130, 1127]

87773274 POINT (-
81.35851
28.71469)

02/08/2019 05:43 PM Injury [1285]

88702737 POINT (-
81.36583
28.64555)

02/08/2019 03:20 PM Injury [1555]

88614479 POINT (-
81.32808
28.65128)

01/07/2019 09:15 AM Property Dam-
age Only

[1595, 1600]

88907150 POINT (-
81.33461
28.75636)

01/08/2019 05:45 PM Property Dam-
age Only

[2065, 2125]

88907146 POINT (-
81.34737
28.77745)

01/07/2019 06:45 PM Injury [2180, 1995,
2000]
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Figure 33: Frequencies for different dips based on at least X% average reduction in volume on each
detector and at least a T-second interruption on each detector (for an approach)

Figure 34: Comparing the overall distribution of single-lane events with distribution of events that may
have been caused due to crashes (X: at least X% average reduction in volume on each detector for an
approach; T: at least a T-sec interruption on each detector for an approach): (a) overall distribution of
approach-based events for single-lane approaches; (b) distribution of approach-based events based
for level 0 accidents; (c) distribution of approach-based events for level 1 accidents; (d) distribution of
approach-based events for level 2 accidents.
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Figure 35: Comparing the overall distribution of two-lane events with distribution of events that may
have been caused by crashes (X: at least X% average reduction in volume on each detector for an
approach; T: at least a T-sec interruption on each detector for an approach): (a) overall distribution of
approach-based events for two-lane approaches; (b) distribution of approach-based events for level 0
accidents; (c) distribution of approach-based events for level 1 accidents; (d) distribution of approach-
based events for level 2 accidents.

Figure 36: Comparing the overall distribution of three-lane events with distribution of events that may
have caused due to crashes (X: at least X% average reduction in volume on each detector for an
approach; T: at least a T-sec interruption on each detector for an approach): (a) overall distribution
of approach-based events for three-lane approaches; (b) distribution of approach-based events based
for level 0 accidents; (c) distribution of approach-based events for level 1 accidents; (d) distribution of
approach-based events for level 2 accidents.
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Table 12: Length of common maximum substring (between street names in crash reports and high resolution sensor data
street names) with number of accidents: (a) L_LCS_Crash_high resolution sensor data: length of common substring; (b)
Number of accidents: filtered number of accidents

L_LCS_Crash_high resolution
sensor data

Number of accidents

>3 5768 out of 6708

>4 4359 out of 6708

>5 2904 out of 6708

>6 2036 out of 6708

>7 1597 out of 6708

>8 940 out of 6708

Figure 37: Crash location along with locations of derived nearby intersections. Also, arrivals on each
detector for first- and second-nearest intersections 20 min before and 20 min after the crash time are
shown.

greater than five. We plot arrivals on each detector for first- and second-nearest intersections 20 min-

utes before and 20 minutes after the crash time to see if an accident has caused an interruption at any

nearby intersection. From Figures 37, 38,39,40, and 41, we can see that accidents didn’t cause any

interruption in arrivals at nearby intersections.

Based on our analysis presented in subsection 8.2 and subsection 8.3, we see that most of the acci-

dents are not causing major interruptions in traffic.
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Table 13: Mappings of street names from crash reports to high resolution sensor data street names when length of max-
imum common substring is greater than 5. This table has the following attributes: (a) HSMV_No: HSMV_report_number
from crash reports, (b) C_Date: crash date, (c) C_Time: crash time, (d) C_Street: crash street reported in SFA, and (e)
S_name: mapped street name from high resolution sensor data, (f) LCS: longest common substring of crash street, street
name from high resolution sensor data.

HSMV_No C_Date C_Time C_Street S_name LCS

88801272 01/30/2019 10:34 AM ALAFAYATRL alafayawoods alafaya

88801271 01/29/2019 02:52 PM LOCKWOODBLVD lockwoodadt lockwood

88801270 01/29/2019 12:24 PM LOCKWOODBLVD lockwoodadt lockwood

88801282 02/06/2019 08:26 AM LOCKWOODBLVD lockwoodadt lockwood

88702663 01/25/2019 06:55 PM MAITLANDBLVD maitlandave maitland

88614466 01/01/2019 02:28 PM LAURAST laurastadt laurast

87773274 02/08/2019 05:43 PM LAKEEMMARD lkemmard emmard

88702737 02/08/2019 03:20 PM NMAITLANDAVE maitlandave maitlandave

88927573 02/12/2019 02:28 PM RINEHARTRD rinehartrd rinehartrd

88614610 02/08/2019 06:45 PM OXFORDRDN oxford oxford

88770185 02/12/2019 11:12 AM REDBUGLAKERD redbuglkrd redbugl

88770133 02/08/2019 12:58 AM SSYLVANLAKEDR lakedradt lakedr

88927352 01/02/2019 08:59 AM COUNTRYCLUBRD countryclub countryclub

88927348 01/01/2019 03:58 PM WSEMINOLEBLVD seminol
ablvdadt

seminol

87291537 01/07/2019 06:50 AM US1792 us1792 us1792

87291536 01/06/2019 09:45 AM WTOWNPKWY west town
pkwyadt

townpkwy

Figure 38: Crash location along with locations of derived nearby intersections. Also, arrivals on each
detector for first- and second-nearest intersections 20 min before and 20 min after the crash time are
shown.
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Figure 39: Crash location along with locations of derived nearby intersections. Also, arrivals on each
detector for first- and second-nearest intersections 20 min before and 20 min after the crash time are
shown.

Figure 40: Crash location along with locations of derived nearby intersections. Also, arrivals on each
detector for first- and second-nearest intersections 20 min before and 20 min after the crash time are
shown.
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Figure 41: Crash location along with locations of derived nearby intersections. Also, arrivals on each
detector for first- and second-nearest intersections 20 min before and 20 min after the crash time are
shown.
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9 Conclusion
The focus of this work is on the detection and prediction of traffic interruptions without the need for

labeled data (from police reports and the like). After first defining events of interest corresponding to

traffic interruptions using large deviations of traffic volumes and the build-up of significant delays, we

constructed an event prediction approach to discover these interruptions from signalized intersection

datasets. The approach—using time series analysis—examined (cumulative) approach volumes at in-

tersections and at specific time points and compared them to historical (cumulative) approach volumes

at similar time points (hour of the day and/or day of the week). This proved capable of predicting the

occurrence of events of interest (EOIs) with high accuracy. We also performed a spatiotemporal anal-

ysis of the EOIs to find recurrent patterns in the said events in order to obtain human-understandable

summarizations of traffic interruptions. Finally, we analyzed traffic crash reports from SFA to see if ac-

cidents cause interruptions at nearby intersections. Based on our analysis presented in subsection 8.2

and subsection 8.3, we see that most of the accidents are not causing major interruptions in traffic.

Overall, we were able to

1. Establish a problem-solving platform based on multiple, new data streams.

2. Establish a data-cleansing and data-fusing platform to prepare data sets

3. Utilize new data sources and techniques to solve currently solvable, observable, and verifiable

problems, allowing us to evaluate the effectiveness of the innovative solution.

4. Establish confidence in a data-centric, problem-solving platform on which to solve future prob-

lems that cannot be easily observed or verified.
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