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EXECUTIVE SUMMARY 

Significant improvements in automated and connected vehicle technologies are expected to create 
a revolution in how we move and move things. Automated vehicles can operate using a variety of 
sensors such as GPS, lidar, radar, and smart cameras, as well as terrain information, and they have 
the ability to communicate with infrastructure as well as surrounding vehicles. It is highly likely 
that in the not too distant future, connected and autonomous vehicle will be operating side by side 
in large numbers, along with conventional vehicles. The objectives of this research were to 
develop, test, and deploy an intelligent real-time intersection traffic control system in order to 
optimize simultaneously signal control and automated vehicle trajectories, considering the 
presence of autonomous, connected, and conventional vehicles in the traffic stream.  

The system developed was first simulated in MATLAB. A total of 3,000 scenarios was tested to 
consider varying demand levels, communication ranges, automated vehicle percentage, and 
saturation headways.  The results showed that for lower saturation headways, the average travel 
time decreases as the automated vehicle percentage increases because since these vehicles can 
more easily follow shorter headways.  On average, lower effective greens are allocated to higher 
demand levels. In these cases, there are more requests from conflicting movements to switch the 
right of way as the demand increases, while the signal can be extended without any interruption 
for the low demand scenarios. The same pattern can be seen for varying communication ranges: 
the higher the communication range, the better the ability to design a platoon of trajectories ahead 
of time, which can assign longer green intervals with fewer interruptions. 

The system was then implemented and tested at the Traffic Engineering Research Laboratory 
(TERL) facility. This report provides an overview of the hardware and software developed for the 
project, including a local server, DSRC (dedicated short range communications) receiver for the 
server, interface to the signal controller, sensor fusion system, radio communication software, and 
hardware for vehicle to infrastructure communications. Testing at the TERL was conducted under 
various scenarios. The outputs and video footage (http://avian.essie.ufl.edu/gallery/) showed that 
the system is capable of providing optimal trajectories to automated vehicles in order to reduce 
delays.    

Future work should expand the algorithm to consider congested conditions, lane changing, and the 
presence of pedestrians and bicycles.   
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1 Introduction 

1.1 Background 

Significant improvements in autonomous and other advanced vehicle technologies as well as their 
connectivity and interaction with future generation traffic systems may significantly affect traffic 
safety and mobility. Autonomous vehicles are those that have the ability to operate on their own and 
do not require a human driver.  Such vehicles are able to navigate the highway system through a variety 
of sensors, such as GPS, lidar, radar, and smart cameras, as well as terrain information.  Connected 
vehicles are those that can communicate with infrastructure as well as surrounding vehicles through 
DSRC (dedicated short range communications), wifi, or cellular networks.  The USDOT connected 
vehicle research program aims to enable wireless communications among vehicles, infrastructure, and 
personal communications devices (http://www.its.dot.gov/pilots/). The program focuses on pilot 
deployments in order to implement existing research concepts and encourage further innovation.  
Connected vehicle technology seeks to warn drivers of impending dangers while the vehicle is still 
controlled by a human driver. Automated vehicles are those that combine autonomy with connectivity.   

It is highly likely that in the not too distant future, both connected and automated vehicles will be 
operating side-by-side in large numbers on our nation’s highways, along with conventional vehicles. 
This creates many opportunities for improving surface transportation efficiency and safety. For 
example, the USDOT Multimodal Intelligent Traffic Signal Systems (MMITSS) initiative aims “to 
provide a comprehensive traffic information framework to service all modes of transportation, 
including general vehicles, transit, emergency vehicles, freight fleets, and pedestrians and bicyclists in 
a connected vehicle environment”1.  

According to the National Transportation Operations Coalition  (NTOC, 2012), delays at traffic signals 
are estimated to be 5% to 10% of all traffic delay on major roadways and contribute an estimated 25% 
to the increase in total highway traffic delays during the past 20 years. Improvements in traffic signal 
timing have the potential to significantly benefit the transportation system. One source of delay at 
signals is inefficient green time utilization in response to fluctuating demand.  Another source is driver 
reaction-related delays, including start-up delay.  The use of autonomous and connected vehicle 
technology has the potential to reduce the impact of these two factors, through the use of its 
communication capability as well as the potential to fully control autonomous vehicle trajectories. 
Initiatives such as the MMITSS seek to optimize signal control in a connected vehicle environment 
and do not consider the potential of controlling automated vehicle trajectories.  However, delay can be 
significantly reduced if the signal controller can develop optimal trajectories for automated vehicles 
and direct them to accelerate early (up to a maximum speed) or to modify their trajectory such that 
intersection capacity is fully utilized.  

 

                                                 
1 https://www.its.dot.gov/research_archives/dma/bundle/mmitss_plan.htm first paragraph 
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1.2 Project Objectives 

The main objective of this project is to enhance and expand a previously developed optimization 
algorithm (Li et al. 2014), and assemble, produce, and test the necessary software and hardware for 
enhancing traffic signal control operations simultaneously with vehicle trajectories, when the traffic 
stream consists of connected vehicles, autonomous vehicles, and conventional vehicles (i.e., those with 
no operating connectivity or automation.)  The algorithm is capable of optimizing simultaneously 
vehicle trajectories of automated vehicles together with the signal control patterns at the intersection.  
The research team implemented the optimization algorithm at FDOT’s Traffic Engineering Research 
Lab (TERL) which includes a signalized intersection in a closed course environment. A schematic 
overview of the proposed concept is shown in Figure 1-1. 
 
 
 

 
Figure 1-1 Overview of proposed concept 

 
 
1.3 Organization 

The next chapter provides an overview of the algorithm and its implementation at the TERL, while the 
third chapter discusses the equipment used. The fourth chapter describes the equipment used and the 
testing conducted at the TERL, along with the results and evaluation of the process. The fifth chapter 
summarizes the research conclusions and recommendations.  
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2 Optimization Algorithm Overview 

The objective of the proposed algorithm is to maximize the intersection’s throughput by jointly 
optimizing the automated vehicles’ trajectories and the signalization pattern (phasing and timing). The 
algorithm is based on obtaining vehicle arrival information at a sufficient distance from the intersection 
(this is termed the available communications distance) so that optimal signal timings and autonomous 
vehicle trajectories can be obtained and transmitted back to the vehicles through the communications 
infrastructure. 

A previous version of the optimization (developed by D. Zhuofei Li, a Ph.D. graduate of UF) was 
expanded to consider both automated and conventional vehicles.  The algorithm was also revised to 
produce conventional signal timings that would be implementable in the field, rather than providing a 
reservation system that would be useable only by autonomous vehicles, which was the premise for the 
previously developed algorithm.  Optimization is conducted to obtain both optimal signal timings and 
vehicle trajectories simultaneously.  The algorithm developed was tested through simulation, and then 
implemented at the TERL. 

A literature review was conducted early during this project to identify related research work and inform 
the development of this project. A summary of this literature review is provided in Appendix A.  

 

2.1 Optimization Algorithm Input and Outputs 

The algorithm inputs include the available communications range, the number of approaches and 
allowable phases, as well as minimum and maximum phase durations. Vehicle information obtained 
through Dedicated Short Range Communications (DSRC) includes the location and speed of the 
vehicle, as well as its entering lane.  The algorithm produces optimal signal timings which are 
communicated to the signal controller, and optimized vehicle trajectories which are transmitted to each 
autonomous vehicle.  The recommended trajectory for each vehicle is an ordered list containing pairs 
of location and time to be followed by the vehicle.  

The following assumptions were used to develop and simulate the algorithm: 

 The algorithm calculations and communication to the autonomous vehicles occur 
instantaneously, i.e., the calculation and communication time is negligible.  This assumption 
was evaluated during the field test at the TERL. 

 The conventional vehicle movement is simulated using the Gipps (1981) car-following model.   

 No lane changing occurs once a vehicle arrival is detected.  

 No pedestrians are present in the vicinity of the intersection, and no pedestrian phases are 
included in the algorithm.  

 Demands are assumed to be below capacity and there are no oversaturated cycles.  

 For simulation purposes, it is assumed that there is no data loss due to communication 
malfunctions.    
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 The intersection is located on level terrain with both left-turn and right-turn movements 
available to all vehicles. 

 The algorithm uses a safe speed recommendation inside the communication area, however 
there might be cases the speed of individual vehicles is slightly higher at various points 
throughout the intersection communication area. 

The algorithm described here was customized for the signalized intersection at the TERL, however it 
can be easily customized and used at other signalized intersections.  It considers the presence of both 
automated and conventional vehicles, and it is currently simulated in MATLAB. 

The algorithm is designed to be used as part of the intelligent intersection control system illustrated in 
Figure 1-1. The main purpose of the system is to use vehicle arrival information in advance to enhance 
the performance of an isolated intersection. In order to serve this purpose, vehicle arrival information 
is obtained at a certain communication distance.  This arrival information is obtained from automated 
vehicles through DSRC communication, and from conventional vehicles through radar and/or video.  
The arrival information from different sources is fused so that the algorithm receives a unified set of 
arrival inputs.  Then, the algorithm can generate the signal control decision and automated vehicles’ 
trajectories. Finally, the required instructions are sent in a readable format to the automated vehicles 
and the procedure is continuously repeated. 

 

2.2 Rolling Horizon Scheme 

One of the important considerations in the algorithm development is the need to be able to obtain 
vehicle information early enough in order to be able to calculate and provide a meaningful trajectory 
to the stop bar.  The allowable lag time (tLag) between when optimal signal control is obtained from 
the algorithm and when it will be implemented can be estimated based on the communications distance 
and the prevailing speeds.  Based on this estimated lag time, a rolling horizon scheme is applied such 
that vehicle arrival data are obtained over an interval ΔtArr, optimal trajectories and signal control are 
estimated at the end of that interval, and they are implemented through the subsequent interval ΔtOpt. 
Figure 2-1 illustrates the rolling horizon concept used in the algorithm implementation for one 
incoming lane (communication range is dComm.)  The calculated signal timings are displayed after tLag 
time.  Vehicle trajectories are communicated to the vehicles and implemented starting as soon as the 
calculations are complete.  
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Figure 2-1 The rolling horizon scheme 

 

A low value for tLag can result in insufficient time to provide full trajectories for all automated vehicles 
arriving during ΔtArr.  An appropriate estimation of the lag time can be obtained as a function of the 
communication range, the initial speed of vehicle, the maximum allowable speed, the vehicle 
acceleration/deceleration capability, and the crossing speed.  

 

Example - tLag computation: Consider a four-leg intersection with six incoming lanes, and assume 
the communication ranges of 1000 feet and the maximum allowable speed of 40 mph on all lanes. 
Suppose vehicles’ initial speed for all lanes follow the triangular distribution with a minimum of 34 
mph and a vehicle is capable of maximum acceleration rate of 3 ft/sଶ and maximum deceleration rate 
of -5 ft/sଶ to adjust its speed. 

According to the definition of tLag, it can be computed using a mathematical program (discussed later 
in this chapter):  

ݐ ൌ maximize
݈ ∈ ሼ1,2, … ,6ሽ

minimize
ሺ ଶܸ, ܽଵ, ܽଷሻ

1,000

ଶܸ

ቀ34 ∗

5,280
3,600 െ ଶܸቁ

ଶ

2ܽଵ ଶܸ
െ
ቀ ଶܸ െ 40 ∗ 5,2803,600ቁ

ଶ

2ܽଷ ଶܸ
 

	:ݐ	ݐ݆ܾܿ݁ݑݏ

0  ଶܸ  40 ∗
5,280
3,600

 

െ5  ܽଵ  3 

െ5  ܽଷ  3 

Using the solution method discussed in Appendix B, ݐ for each lane is equal to 17.26 seconds. The 
slow vehicle detected at a 1000 feet distance from the stop bar needs 2.93 sec to accelerate from 34 
mph to 40 mph. Next, the vehicle keeps the maximum speed all the way to the stop bar. In conclusion, 
the signal decision can be made about 17.26 sec earlier to guarantee that even the slowest first vehicle 
can reach the stop bar without any portion of the green interval be unutilized. 
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2.3 Optimization Frequency  

Another issue addressed in the algorithm development relates to the frequency with which optimization 
is conducted.  This is also equal to the duration of the interval over which vehicles are being detected, 
ΔtArr, and optimal signal timings are estimated, ΔtOpt, as well as the timing of optimal vehicle trajectory 
transmission. As shown in Figure 2-1, the first vehicle within the interval ΔtArr will have traveled some 
distance until the interval ends and optimal trajectories and signal timings are estimated and 
transmitted.  If ΔtArr is too long, the early vehicles will have already traveled a significant distance and 
would be too close to the intersection to make any meaningful trajectory adjustments.  On the other 
hand, in order to optimize signal timings, we need ΔtArr to be as large as possible so we can obtain 
several vehicle arrivals from all approaches and lanes before setting the signal timings.  

 

 

Figure 2-2 Optimal trajectories obtained at time B 

 

Considering the vehicle keeps the entering speed as long as no trajectory is assigned, the traveled 
distance can be computed as: 

∆݀ ൌ ܸ	∆ݐ Equation 1

where: 

∆݀ distance travelled without any trajectory assigned to the vehicle (Uncontrolled portion of 
trajectory). 

ܸ initial speed at which vehicle speed and arrival time is collected 

 

With the assumption that no queue is formed, the remaining distance to the stop bar should be adequate 
for the vehicle to safety decelerate to the recommended crossing speed. The following equation 
provides the lower bound on the communication range in order to achieve this: 
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݀  ܸ	∆ݐ 
ܸ
ଶ െ ܸ

ଶ

2ܽௗ
 Equation 2

where: 

ܸ is the recommended maximum crossing speed at the stop bar. 

The remaining variables are as defined before. 

For instance, in order to safely decelerate a vehicle capable of -5 ft/s2 deceleration rate to 15 mph if it 
enters the communication range at 40 mph, and its optimal trajectory is assigned after a second, at least 
200 ft. of communication range is required.  As the initial speed and ΔtArr increase, the required 
communication range increases.  This relationship is illustrated in Figure 2-3.  

 

 

Figure 2-3 Feasible communication range region based on ΔtArr and initial speed (adec = -5 
ft/s2,Vc = 40 mph) 

 

2.4 Vehicle Trajectories Representation 

The trajectory of each vehicle is represented by a set including pairs of time and the corresponding 
centerline distance to the stop bar as follows: 

ܶ ൌ ሼሺݐ, ݀ሻ|	݈݄݁ܿ݅݁ݒ	݆	݉ݎ݂	݈݁݊ܽ	݅	݈݈݅ݓ	ܾ݁	ݐܽ	݁ܿ݊ܽݐݏ݅݀	݈ܽݑݍ݁	ݐ	݀	݂݉ݎ	ݎܾܽݐݏ	ݐܽ	݁݉݅ݐ	ݐሽ 

where: 

݅	the lane index which belongs to the set of all inflow lanes	ܫ	
݆	the vehicle index which represents the order of vehicles in lane	݅	belongs to	ܬሺ݅ሻ	
݇ the index of trajectory points for vehicle	݆	on lane ݅ which belongs to	ܭሺ݅, ݆ሻ 
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Using the denoted representation, the computed trajectory can be digitized as shown in Figure 2-4. In 
this fashion, detailed information describing the movement of vehicles is obtainable while numerical 
techniques for different derivatives can be used to extract speed, acceleration, or even jerk information. 
This approach can give enough flexibility to capture any sophisticated trajectory that no analytical 
function will fit well. This format is also compatible to the car-following models’ output, which unifies 
the trajectory representation among all vehicle types.  

 

  

Figure 2-4 Trajectory representation as a set of scheduled time-distance pairs 

 

 

2.5 Description of Traffic Engineering Research Lab (TERL) site 

The TERL has a four-leg intersection with six inflow lanes and four discharge lanes. According to the 
intersection geometry shown in Figure 2-5, two approaches have exclusive left turn lanes. All the 
possible phases at the intersection are enumerated in Table 2-1. The objective of the proposed 
simulation is to determine the signal timing for these phases in a way that maximizes the throughput 
of the intersection. 
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Figure 2-5 TERL intersection (inflow lanes are labeled as represented in the simulation) 

 

2.6 Signalization 

The algorithm uses pre-calculated yellow and all-red intervals and determines the green duration for 
each phase using predefined minimum green values. A minimum green interval of 5 seconds is 
assumed for all movements. These values can be modified as needed. 

Table 2-1 includes all allowable phases, with each as a set of non-conflicting movements specifically 
for the TERL intersection. Of the six feasible phases, four phases are used in our algorithm (1, 2, 4, 
and 5).  In the future, the algorithm can be extended to select a phase from all six feasible phases.  

 

 

 

 

 

1 

2 
3 

6 
5 

4 
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Table 2-1 Allowable phases and their corresponding non-conflicting movements for the TERL 
intersection 

Phase No. Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 

Lane(s) 1 4 2 and 5 2 and 3 5 and 6 3 and 6 

 

Movements 
within the phase 

 

 

 

 
 

 

 

 

 

 

Assuming a mixed-traffic stream at the intersection, yellow and all-red intervals are required. For the 
purposes of simulation and testing, we assume 1.5 seconds of yellow and 1.5 seconds of all-red per 
phase.  Figure 2-6 represents the association of each arrival interval and the corresponding 
implemented signal decision for a few consecutive phases.  The left side of the figure shows the set of 
phases and the sequence they are implemented for this cycle. The decision on whether to extend a 
phase or switch to another phase is made as the vehicles’ arrival is continuously monitored.  The 
minimum green is used to prevent rapid switches. Each time interval there are new vehicle arrivals, 
these are communicated to the algorithm, and the optimal signalization pattern is determined. If the 
earliest arriving vehicle can be served within the projected phase (i.e., when the vehicle is projected to 
be arriving at the stop bar), the phase is allowed to be extended, up to the maximum green. Otherwise, 
the projected phase is terminated and a new phase, which serves the earliest arriving vehicles, is 
allocated minimum green. While this control is very similar to fully actuated signal control logic, the 
real-time information is obtained differently, and there is an opportunity to adjust the autonomous 
vehicle trajectories accordingly.  The simulation results, which are provided later in this deliverable, 
show the functionality of the algorithm. As a result of the proposed process, no vehicle is forced to 
come to complete standstill and a smooth operation is anticipated. 

 

 

Figure 2-6 Illustrative signal control plan for a four-phase, four-leg intersection 
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2.7 Trajectory Optimization and Estimation Process for Each Lane  

The algorithm developed considers both autonomous and conventional vehicles.  The arrival 
information for autonomous vehicles is obtained through the vehicles themselves, while the 
comparable information for conventional vehicles is obtained via radar (the equipment as well as the 
fusion of information from the two sources of data is described in the next chapter).  Since conventional 
vehicles are not expected to follow a pre-specified trajectory, our simulation predicts their movement 
using a car-following model.  We selected the Gipps (1981) car-following model, which has been 
implemented extensively, including in the commercially available microsimulator AIMSUN.  The 
following subsections discuss each type of trajectory and its estimation in the simulation as well as in 
the algorithm used in the field.  

 

2.8 Lead Vehicle Trajectory Optimization for Automated Vehicles 

A lead automated vehicle is not constrained by other vehicles in front of it.  Therefore, assuming no 
pedestrian presence or incident, the movement of the lead vehicle is guided by its desired speed and 
the signalization. Consequently, as proposed by Li et al. (2014), lead vehicles in all lanes can 
experience three trajectory components. The trajectory optimizer algorithm aims to design an adequate 
number of trajectory components to achieve the least travel time under the given signalization. 

During the first component, the lead vehicle may need to accelerate/decelerate from its initial speed. 
During the next component, the vehicle may keep the appropriate speed for a given interval before the 
last component. During the third component, the vehicle may need to change speed to the maximum 
allowable crossing speed. Depending on its initial speed, the available distance to the stop bar, the 
maximum allowable crossing speed, and the time the green interval starts, any one of these three 
components may be eliminated to achieve the minimum possible travel time. 

For the calculated trajectory to be feasible, components should be connected and no component should 
recommend any speed or acceleration/deceleration which exceeds the vehicle’s capabilities or 
maximum allowable speed. 

With the assumptions stated above, a mathematical program was formulated to minimize the total 
travel time of each vehicle. The travel time through each component can be computed using motion 
equations under either constant acceleration or constant speed as shown below: 

ଵሺݐ ଶܸ, ܽଵሻ ൌ
ଶܸ െ ܸ

ܽଵ
 Equation 3 

ଶሺݐ ଶܸ, ܽଵ, ܽଷሻ ൌ ቆ݀ െ
ଶܸ
ଶ െ ܸ

ଶ

2ܽଵ
െ ଷܸ

ଶ െ ଶܸ
ଶ

2ܽଷ
ቇ / ଶܸ  Equation 4 

ଷሺݐ ଶܸ, ܽଷሻ ൌ
ଷܸ െ ଶܸ

ܽଷ
  Equation 5 

where: 

݀ is the distance to the stop bar measured from the location the vehicle is first detected. 
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ܸ is the initial speed of the vehicle. 

 . is the time the vehicle is first detectedݐ

ܽଵ is the acceleration/deceleration rate each vehicle uses to change speed during the first trajectory 
component. 

ଶܸ is the speed during the second trajectory component. 

ଷܸ is the final speed at the stop bar (assumed to be equal to the maximum crossing speed ܸ). 

ܽଷ is the acceleration/deceleration rate vehicle use to change speed in third component. 

 

Summing all travel times for all components of the lead vehicle, after some mathematical 
manipulations, the total travel time from detection point to the stop bar can be represented by the 
following equation: 

ܶሺ ଶܸ, ܽଵ, ܽଷሻ ൌ
݀
ଶܸ

ሺ ܸ െ ଶܸሻଶ

2ܽଵ ଶܸ
െ
ሺ ଶܸ െ ଷܸሻଶ

2ܽଷ ଶܸ
 Equation 6 

On that foundation, the Lead Vehicle Trajectory Optimization (ܱܶܮ) program can be formulated to 
minimize the lead vehicle’s travel time. The ܱܶܮ objective is to minimize the lead vehicle’s total travel 
time subject to the available green time, speed, and acceleration/deceleration constraints. The set of 
variables needed to be determined by solving ܱܶܮ includes the acceleration/deceleration rate through 
the first and third components and the speed during the second trajectory component. The ܱܶܮ 
program is as follows: 

minimize
ሺ ଶܸ, ܽଵ, ܽଷሻ

ܶሺ ଶܸ, ܽଵ, ܽଷሻ ܱܶܮ 

0  ܶሺܸ2, ܽ1, ܽ3ሻ െ ݅ܩݐ   ݐ  

0  ଶܸ  ܸ௫   

ܽ  ܽଵ  ܽ௫   

ܽ  ܽଷ  ܽ௫   

where: 

݅  represents phase ∈ ሼ1,… , ݊ሽ where ݊ is the total number of phases; this phase is the one scheduled 
to serve the subject vehicle 

 . is the time when the green interval for phase ݅ beginsீݐ

 .݅  is the duration of green for phaseݐ

ܸ௫ is the maximum allowable speed within the communication range. 

ܽ is the maximum deceleration rate of the subject vehicle. 

ܽ௫ is the maximum acceleration rate of the subject vehicle. 

All other parameters and variables are as defined before. 
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The only drawback in using the mathematical program ܱܶܮ is that the optimization belongs to a non-
convex class which can be sophisticated to solve even with very few variables and equations. However, 
another representation of the problem can approximate it into a single variable constrained 
optimization problem which can be solved very efficiently (Appendix B). 

 

2.9 Lead Vehicle Trajectory Estimation for Conventional Vehicles 

Unlike the lead automated vehicle, a lead conventional vehicle behaves according to the driver, 
environment, and the vehicle’s capabilities. Therefore, the trajectory optimization approach cannot 
provide an optimal movement.  In our simulations we assume that the lead conventional vehicle would 
desire to maintain its speed as recorded when entering the communication range.  

 

2.10 Follower Vehicle Trajectory Optimization for Automated Vehicles 

Automated vehicle trajectories are optimized so that they arrive during the green interval at the 
maximum possible speed (crossing speed) and with the minimum headway at the stop bar. Assuming 
no congestion and queue at the intersection, the full trajectory can be communicated to the vehicle as 
indicated earlier. 

The concept developed by Li et al. (2014) was enhanced and used here.  First, the optimal hypothetical 
trajectory to assure the vehicle crosses the intersection with a minimum headway and maximum 
allowable discharge speed is constructed. Next, the algorithm searches for a safe possible adjustment 
of the vehicle’s entering speed in order to match the hypothetical trajectory estimated. If any feasible 
speed change is found, the vehicle’s trajectory will be the combination of an adjustment component, 
augmented by the remaining portion of the best hypothetical trajectory. This way the vehicle can arrive 
at the stop bar at the minimum headway and maximum discharge headway possible.  If a feasible speed 
adjustment cannot be determined, the algorithm estimates the vehicle’s movement independent from 
the lead vehicle. Then the earliest arrival at maximum discharge speed will be scheduled as suggested 
for the lead vehicle trajectory. 

 

2.11 Follower Vehicle Trajectory Estimation for Conventional Vehicles 

During the field implementation, a radar-based device is used to obtain the lane, location and speed of 
conventional vehicles once they get inside the communication boundary. Estimating and anticipating 
the follower vehicle’s trajectory is important because it not only affects the signal decision, but the 
vehicle can be the lead vehicle to another conventional or automated vehicle behind them. If a 
conventional vehicle is leading another conventional vehicle, the follower will be assumed to operate 
according to the car-following model. If the conventional vehicle is leading an automated vehicle, its 
movement can directly affect the estimation of the automated vehicle’s optimal trajectory. 
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Therefore, the behavior of conventional vehicles must be estimated in the simulation as they affect the 
decisions for automated vehicles’ trajectories and signalization. The conventional follower vehicle is 
restricted by both the vehicles in front of it and the upcoming signal. 

 

2.12 Simulation Process 

To simulate our algorithm and evaluate it prior to field implementation, we replicated the TERL 
intersection in the computer, and assumed that traffic arrives upstream of each of the lanes at the 
communication range entry point. The inter-arrival distribution used in simulation for each lane 
follows the exponential distribution with its parameter equal to the lane’s average headway. The initial 
speed of vehicles is assumed to follow the triangular distribution. The vehicle type is a binary 
parameter assigning each vehicle as conventional or automated, and it uses a user-specified percentage 
for each type.  Other generic constants used are reported in Table 2-2. 

The algorithm is coded in MATLAB to implement the flowchart shown in Figure 2-7.  The algorithm 
starts with generating traffic for all lanes. As shown, signal control is determined jointly with the 
trajectory optimization.  The trajectory optimization process is detailed in the bottom part of the graph. 
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Table 2-2 Simulation parameters 

Parameters Value Note 

Traffic generation duration 15 minutes The simulation terminates when all the 
generated vehicles are served. 

Communication range Varies in each scenario starting from 
500 feet to 3000 feet. 

For real-world testing the range is 
determined based on available 
communication technology. 

Connected/Automated vehicles 
percentage 

Varies over different scenarios. 

Ranging from 30% to 100%. 

The rest of the traffic stream is 
composed of conventional vehicles. 

 

Average headway at the 
communication range in each lane 

 

Varies over different scenarios. 

Ranging from 8 sec to 60 sec. 

 

 

 

Assuming arrival times follow Poisson 
distribution, the inter-arrivals are 
randomly generated from negative 
exponential. 

Saturation headway 2, 1.5, 1 sec Corresponding to 450, 600, 900 
veh/hr/ln thresholds for low-demand 
levels. 

Arriving speed at the communication 
range in each lane 

Follows triangular distribution with 
following parameters: 

Minimum  = 0.85 * 40  = 34 mph 

Peak           =                       40 mph 

Maximum  =  1.10 * 40 = 44 mph 

 

Maximum allowable speed within 
the communication range 

40 mph  

 

Crossing speed at the stop bar 

Depending on the movement: 

40 mph for through movements 

30 mph for right or left turns 

 

Length of vehicle 15 feet  

Maximum acceleration rate 10 ft/s2 (about g/3)  

Maximum deceleration rate -15 ft/s2  

Desired speed for Gipps car-
following model 

40 mph It is set same as the maximum allowable 
speed of automated vehicles. 

Minimum green time for each phase 4.6 sec Values are set to be consistent to the 
saturation headway of 1800 veh/hr. 

Yellow time for each phase 1.5 sec 

All-red time for each phase 1.5 sec 

Trajectory points’ time difference 1 sec This gives the resolution of computed 
trajectories.  
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Figure 2-7 Simulation process for intersection control algorithm 
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2.13 Simulation Results 

This section presents the results of the simulation process using the TERL intersection layout.  A 
variety of scenarios exploring the effect of communication range, connected/automated vehicles’ 
percentage in traffic stream, and demand level was examined.  The values tested were selected 
considering the possible scenarios to be tested at the TERL.  

Figure 2-8 displays trajectories of incoming vehicles and the respective signalization after 60 seconds 
of simulation, by lane.  As shown, lanes 2 and 3 or lanes 5 and 6 have the same signalization, as they 
are assigned to the same phase. The blue vertical line indicates the time in the simulation when the 
trajectories of new incoming vehicles are computed, therefore, as expected, each figure demonstrates 
the future optimal plan in every lane.  

Figure 2-9 shows the arrival and departure curves for each lane. The time difference between the arrival 
and departure curves represents the total travel time of the vehicle from the communication range to 
the stop bar. Vehicles may arrive at any time; however, they may depart only when their phase is 
assigned the right of way. The vertical distance between arrivals and departures indicates the number 
of vehicles within the communication range.  

Figure 2-10 provides the same information (i.e., arrivals and departures) for the entire 15 minutes of 
simulation to illustrate how the optimization is able to handle the demand for the entire simulation 
period. 

Figure 2-11 illustrates the travel time distribution by lane, measured from the time a vehicle enters the 
communication range until it crosses the stop bar.  Similarly, Figure 2-12 indicates the delay 
distribution for each lane at the end of a 15-minute simulation. Delay for a single vehicle is computed 
as the free flow travel time of the vehicle subtracted from its actual travel time once it crosses the stop 
bar.   
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Figure 2-8 Trajectories and signalization after 60 seconds of simulation in each lane 
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Figure 2-9 Departure/throughput curves from time = 60 sec to time = 180 sec during simulation, by phase, p(i) 
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Figure 2-10 Departure/throughput curves for 15 minutes of simulation 
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Figure 2-11 Travel time distribution for each lane for 15 minutes of simulation 

Max:   50.5 sec
Min:   13.4 sec 
Mean:   29.5 sec/veh 
Std. dev:  7.9 sec/veh 

Max:  43.2 sec 
Min:   13.0 sec 
Mean:   27.2 sec/veh 
Std. dev:  8.1 sec/veh 

Max:  45.5 sec
Min:   13.4 sec 
Mean:   29.1 sec/veh 
Std. dev:  8.2 sec/veh 

Max:   48.2 sec 
Min:   13.9 sec 
Mean:   27.7 sec/veh 
Std. dev:  8.1 sec/veh 

Max:   42.9 sec 
Min:   13.1 sec 
Mean:   29.0 sec/veh 
Std. dev:  8.6 sec/veh 

Max:   49.0 sec 
Min:   14.9 sec 
Mean:   30.0 sec/veh 
Std. dev:  8.7 sec/veh 
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Figure 2-12 Delay distribution for each lane for 15 minutes of simulation

Max:   33.5 sec 
Min:   0.00 sec 
Mean:   12.4 sec/veh 
Std. dev:  7.8 sec/veh 

Max:   26.0 sec 
Min:   0.00 sec 
Mean:   10.3 sec/veh 
Std. dev:  7.7 sec/veh 

Max:   28.4 sec 
Min:   0.00 sec 
Mean:   12.1 sec/veh 
Std. dev:  8.0 sec/veh 

Max:   31.1 sec 
Min:   0.00 sec 
Mean:   10.7 sec/veh 
Std. dev:  7.8 sec/veh 

Max:   25.7 sec 
Min:   0.00 sec 
Mean:   12.1 sec/veh 
Std. dev:  8.3 sec/veh 

Max:   31.9 sec 
Min:   0.00 sec 
Mean:   13.0 sec/veh 
Std. dev:  8.5 sec/veh 
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Several scenarios were tested to investigate the amount of improvement based on different control 
variables. The following list of control variables are generated to examine a variety of situations: 

Average flow rate The average time headway is used, assuming a negative exponential 
distribution, to generate the traffic. 

The average flow rate, in veh/hr/ln, can be computed as the inverse of 
the average time headway and indicates the demand level by lane. 

dComm The average communication range, in feet, from the stop bar.  This 
indicates the location where vehicles are first detected and trajectories 
are computed. 

AV % The percentage of connected/automated vehicles in the traffic stream. 
The remaining portion of traffic consists of conventional vehicles. 

Saturation headway The minimum time headway at which vehicles can cross the stop bar. 
This parameter affects only the automated vehicles’ movement as 
conventional vehicles follow the Gipps car following model’s 
trajectory. 

To study the effect on the performance of the intersection, three outcome variables were used: 

Average travel time The average travel time, in seconds, considering all vehicles from all 
approaches. 

The travel time for a vehicle is measured from the time it is detected to 
the time it crosses the stop bar in its lane. 

Average travel time delay The average travel time delay, in seconds/vehicle, measured by 
subtracting the free flow travel time from the actual recorded travel 
time of each vehicle. 

Average effective green The average effective green interval, in seconds, is the average of 
actual green intervals plus the yellow interval allocated to a particular 
phase within the simulation period.  

A total of 3000 scenarios were tested (ten cases of the demand level, the communication range, and 
the automated vehicle percentage, and three cases of saturation headways.) The evaluation of all 
scenarios is illustrated in Figure 2-13, 14, and 15. 

Figure 2-13 demonstrates the effect of all four control variables on the average travel time. The most 
noticeable trend is the sharp increase in the average travel time for the higher demand rates. As the 
travel time for each vehicle is measured from the communication range to the stop bar, travel time 
increases as the communication range increases. For lower saturation headways, the average travel 
time decreases as the AV percentage increases, since AVs can more easily follow shorter headways.  

Because of the strong correlation between average travel time and the average travel time delay, the 
same sensitivity to the control variables is evident in Figure 2-14. However, the average delay does 
not vary as much as travel time within each demand scenario, because the effect of the communication 
range on the travel time is removed. The same abrupt increase in delay, as for travel time, is observed 
for higher demand rates. 
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Figure 2-15 indicates the average length of effective green assigned to all phases after each simulation 
experiment. On average, lower effective greens are allocated to higher demand levels. In these cases, 
there are more requests from conflicting movements to switch the right of way as the demand increases, 
while the signal can be extended without any interruption for the low demand scenarios. The same 
pattern can be seen for varying communication ranges: the higher the communication range, the better 
the ability to design a platoon of trajectories ahead of time, which can assign longer green intervals 
with fewer interruptions. 

 

 

 



Final Report – Optimized AV/CV Trajectories 

25 

 

 

Figure 2-13 Average travel time as the simulation result for varying demand rate, communication range, and connected/automated 
vehicle's percentage 
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Figure 2-14 Average travel time delay as the simulation result for varying demand rate, communication range, and 
connected/automated vehicle's percentage 
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Figure 2-15 Average effective green as the simulation result for varying demand rate, communication range, and connected/automated 
vehicle's percentage 
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3 Development of Equipment Needs and Procurement 

This chapter describes the equipment obtained and assembled for conducting field tests at the TERL.  
The following two (V2I) communication structures are used in the research: 

 Vehicle to optimization algorithm: Each vehicle provides lane, speed, location (coordinates), 
destination (left, though, or right), vehicle length, acceleration/deceleration capabilities.  

 Optimization algorithm to vehicle: Automated vehicles’ trajectories are broadcasted back to 
each vehicle near instantaneously. The specific signal timing plan for the lane an automated 
vehicle is located is also be transmitted.  

The following components were procured and assembled for testing of the complete system at the 
TERL: 

1. Computer hardware needed to run the signal timing and trajectory optimization algorithms 

2. Hardware needed to interface to the signal controller 

3. Radar sensors used to identify conventional vehicles at the intersection 

4. Radio hardware needed for communication between the connected and autonomous vehicles 
and the intersection computer 

5. Hardware required for the connected vehicles to obtain their location and to interface with the 
driver 

6. Hardware needed for the UF autonomous vehicle so that it can communicate with the system. 

These components are depicted in Figure 3-1. 

 

 

Figure 3-1 System components 
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Components 1 to 3 are roadside units (RSU), while items 4 to 7 are related to vehicles and the 
equipment installed on them, referred as on-board unit (OBU). The remainder of this chapter discusses 
the detailed specifications and development of RSU and OBU components, as well as the connectivity 
among them. 

 

3.1 Road Side Unit Components (RSU) – Infrastructure Elements 

3.1.1 Intersection Computer Hardware 

A desktop computer was assembled (Figure 3-2) to perform the 
optimization calculations and interface with the intersection 
controller and the DSRC Cohda radio. One of the Cohda radios 
was inserted into the external drive bay.  Dual storage drives were 
used to allow fast read/write with the use of the solid state drive 
(SSD) and large storage space for log files on the hard disk drive 
(HDD)  

 

 

 

 Motherboard 
Supermicro Server Motherboard Dual LGA 2011 
Model#: MBD-X10DRL-I-O 

 CPU 
Intel Xeon E5-2620 v3 Haswell 2.4 GHz 
Model#: BX80644E52620V3 

 CPU Heatsink 
Dynatron, Heatsink and Fan 
Model#: R17 

 RAM 
16GB (2x 8 GB Crucial PC4-17000 DDR4-2133MHz 
ECC)  
Model#: CT8G4RFS4213.18FA2 

 Power Supply 
750 W Thermaltake Toughpower 
Model#: PS-TPG-0750DPCGUS-1 

 Hard drives 
Intel 730 Series 2.5" 480GB SATA 6Gb/s Internal SSD 
Model#: SSDSC2BP480G4R5 

 HDD 
1TB Western Digital Black HDD 
Model#: WD1003FZEX 

 Case 
Cooler Master HAF XB EVO 
Model#: RC-902XB-KKN2 

 Monitor 
Dell Black 23" 
Model#: P2314H 

 

Figure 3-2 Desktop computer
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The algorithm and the signal controller interface, discussed in the next section, were installed and run 
on this desktop computer. 

 

3.1.2 Interface Hardware to the Signal Controller 

The team has developed an interface to remotely control the actuated signal controller (ASC) from the 
computer. This interface receives the optimal signalization schema from the optimization algorithm 
and translates it into signal phasing and timing (SPaT) which is legible by the ASC. Through SNMP 
communication under NTCIP 1202 protocol, we establish the communication between the desktop and 
the ASC and with the maximum flexibility and accuracy, we access the Object Identifiers (OIDs) in 
the ASC and control the SPaT. 

This actuated signal controller used in this research is National Electrical Manufacturers Association 
(NEMA) TS2 type 2 Econolite Cobalt ASC, donated to UF by Econolite. Cobalt is designed for the 
mobile computing environment. It fully meets the industry’s ATC standard 5.2b and proposed standard 
6.10. It is also designed to provide a combination of ATC controller open architecture functionality 
with the latest handheld technology and applications. The Linux-based operating system of this ASC 
makes programming and access to functions quite easy. The procedure starts with installing the 
controller inside a NEMA TS2 compatible cabinet with connector panel, conflict management units 
(CMU), switches and other 
standard components in a signal 
cabinet (Figure 3-3). Preliminary 
tests for connectivity were initially 
conducted at the UFTI’s Signal 
Control Laboratory. 

Generally, the communication 
between the SPaT device and the 
traffic signal controller (TSC) 
conforms to applicable NTCIP 
standards. However, in order to 
meet the requirements of the SPaT 
system, additional Simple Network 
Management Protocol (SNMP) 
objects have been added to the 
NTCIP 1202 Management 
Information Base (MIB). The Open 
System Interconnection (OSI) 
protocol stack describing the 
interconnection between the SPaT 
system and the TSC is listed as 
follows:  

 Application NTCIP data objects  
 Presentation  ASN.1 
 Session Sockets 

Figure 3-3 Signal Controller Inside Cabinet 
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 Transport UDP 
 Network IPv4, port 6053 
 Data Link 802.3 Ethernet 
 Physical 10BASE-T 

 
 

The interface between the SPaT system and the TSC makes use of SNMP data objects as well as a 
UDP/IP unicast message for the real-time SPaT status data. Each data element has on Object Identifier 
(OID) that corresponds to its physical location within the global naming tree. NTCIP OIDs are based 
on the root OID for the NEMA data objects. The OID for each data element in the SPaT system 
interface is prefixed by the NEMA object identifier as shown in Figure 3-4. 

 

Figure 3-4 Root NEMA object identifier 

 

The interface between the SPaT Interface Device or SOI and TSC makes use of the standard NTCIP 
1202 objects along with the extended data objects. A snapshot of such OIDs are presented in Table 
3-1. To manage the inherent complexities of the Cobalt controllers during the early Connected Vehicle 
research projects and pilot deployments, Econolite suggested to limit the scope of operations to the 
following commands: 

General NTCIP Operation 
 Fixed Time Vehicle Only 
 Fixed Time with Ped 
 Actuated Free 
 Actuated Free with Ped 

Coordinated 
 Floating Force-Off/Fixed 
 Transition Dwell/Smooth/Add 
 Pattern Recalls Min/Max/Ped 

Overlaps 
 Included 
 Lag Green, Yellow, Red 
 Modifier (aka Not Included) 

 

Table 3-1 NTCIP 1202 Interface SNMP Data Objects 

This 
set of  

 

 

 

Data Object OID NTCIP 1202 
Parag.

Get Individual 
OID

Get Group of 
OIDs 

phaseStatusGroupPedClears NEMA.4.2.1.1.4.1.6.x 2.2.4.6 Yes Yes 
phaseStatusGroupWalks NEMA.4.2.1.1.4.1.7.x 2.2.4.7 Yes Yes 
preemptControlTable NEMA.4.2.1.6.3 2.7.3   
preemptControlEntry NEMA.4.2.1.6.3.1 2.7.3   
preemptControlState NEMA.4.2.1.6.3.1.2.x 2.7.3.2 Yes  
maxOverlaps NEMA.4.2.1.9.1.0 2.10.1 Yes  
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These commands will suffice to provide us the flexibility that we seek in order to control the operations 
of ASC from the server. Therefore, after we set the controller to send the push packet to a particular IP 
address (UDP Unicast) and when the communication has established to enable the SPaT unicast message 
in the controllers, we set the specific objects to enable sending and receiving data between the controller 
and the server. We make sure that every time we command an updated SPaT, the overlap systems are not 
violated and the controller avoids unnecessary all-red or flashing phases. All software is developed with 
Python in the Linux Ubuntu 14 platform. 

 

3.1.3 Detection Sensors for Conventional Vehicles 

As discussed earlier, conventional vehicles are detected through radar technology. The intelligent 
intersection control system’s optimization component relies on the availability of vehicle arrival 
information to best serve the incoming traffic. Thus, we use a radar sensor to detect and classify all 
approaching vehicles. Only autonomous and connected vehicles are able to communicate directly with the 
intersection through DSRC radio communication. While this provides the arrival information for these two 
classes of vehicles, the controller will need to rely on the radar sensor to emulate the necessary information 
from conventional vehicles that are not equipped with a radio transmitter. 

The radar sensor generates a basic safety message (BSM) for each vehicle, including location and speed of 
the vehicle. The BSM data obtained from the radar sensor are then fused with the DSRC radio BSMs that 
the intersection receives from autonomous and connected vehicles. We developed a discriminative 
algorithm informed by the fused data to classify incoming traffic as being from the conventional, 
connected, or autonomous vehicle classes. This algorithm is further discussed in the next chapter. 

The radar sensor is able to initially detect vehicles at a distance of up to 600 feet. Upon detection, it provides 
the controller with the vehicle’s speed and distance from the stop bar within the lane it is traveling in. Due 
to natural factors such as occlusion, weather, and range limitations, the speed and location data obtained 
from this sensor may be slightly inaccurate. This is a Doppler-based radar that relies on motion to detect 
objects; hence, detecting and tracking stopped or slow-moving vehicles will also provide a challenge for 
the radar sensor. However, as conventional vehicles approach the intersection, the accuracy at which the 
radar sensor can track these vehicles will improve; characterizing this change in uncertainty will be 
investigated in future work. For this project, our goal is to use the radar for the detection of conventional 
vehicles to provide the optimization algorithm with sufficient information to carry out trajectory 
optimization for the autonomous vehicles. We evaluate the performance of the radar sensor with the initial 
detection information and its impact on the uncertainty of location and speed of detected vehicles. 

The development and testing of the radar sensor is being handled by Image Sensing Systems (ISS), a 
company that specializes in developing intelligent traffic sensors. ISS has field tested the radar to 
characterize its performance on many operational conditions with different congestion levels. 

In summary, we procured a desktop computer which is equipped with communication hardware and 
software to enable sending and receiving data to/from the signal controller and radar. This computer 
enables us to communicate efficiently with the OBU equipment.  The computer collects conventional 
vehicle data through radar, SPaT from signal controller, and messages through DSRC from connected and 
autonomous vehicles, processes them and sends feedback to OBU and the signal controller.  
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3.2 Road Side Unit Components (RSU)—Vehicle Elements 

3.2.1 Communication Hardware 

Every connected vehicle has a Cohda MK5 radio, as seen in Figure 3-5, in order to be able to transmit 
and receive DSRC messages. The intersection has a radio mounted inside the computer running the 
control optimization algorithm.  It is able to receive the connected safety message (CSM) sent by the 
vehicles and forward it to the optimizer. The intersection radio then receives an intersection approach 
message (IAM) from the optimizer and forwards it to a designated connected vehicle. This section 
describes the message structure of the CSM and IAM.  

 

 
Figure 3-5 Cohda MK5 located in the (a) intersection computer hardware, (b) autonomous 

vehicle 

 

3.2.2 Connected Safety Message (CSM) 

The CSM is sent out every 10 Hz by connected vehicle radio. Its first data element is its message ID 
number followed by  the vehicle ID,  the time that the message was sent, GPS coordinates, and 
direction/heading. Additional information in the message includes the vehicle's current speed, length, 
and its max acceleration and deceleration capabilities. It also sends a single byte that tells the optimizer 
what lane it is approaching in along with what direction it intends to follow as the vehicle  passes 
through the intersection. The last byte tells the optimizer that it received the IAM sent by the 
intersection radio, at which point the connected vehicle will cease transmitting the CSM (Figure 3-6). 
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Figure 3-6 Connected safety message ASN. 1 representation 

 

3.2.3 Intersection Approach Message (IAM) 

The IAM is populated by the traffic optimizer located at the intersection. Along with its message ID 
number, it contains the fixed intersection ID number followed by the time the message is sent and the 
vehicle ID number that the message is meant for.  It then lists a set of trajectory points (in terms of 2D 
GPS coordinates) along with a time for each point for the autonomous vehicle to follow. In the message 
structure there is also a data element representing the color of the light for the lane that the connected 
vehicle is approaching. The order of each of the elements comprising the IAM can be seen in the 
ASN.1 representation in Figure 3-7.  
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Figure 3-7 Intersection approach message ASN.1 representation 

 

3.3  Connected Vehicle Hardware 

The hardware for the non-autonomous connected vehicle comprises a heavy duty pelican case (Figure 
3-8, item 1) that houses the electronic equipment. The NUC (Figure 3-8, item 3) is a fully functional 
computer, running Ubuntu 15.04, which allows the user to load and change applications on the radio. 
It also displays the messages the MK5 (2) sends and receives in real time for quick verification of 
communication.  The MK5 and NUC are powered by a 12V battery (not shown in Figure 3-8) which 
can be charged via an inlet mounted on the side of the case. Also mounted on the side of the case are 
antenna mounts (7) allowing communication to take place even if the lid to the suitcase is closed. 
Toggles switches (8) are used to control the power to the NUC, radio or battery. A voltmeter (9) is 
used to display the current voltage of the battery when it is powering the NUC and MK5. 
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Figure 3-8 Connected vehicle suitcase 

 

3.4 Autonomous Vehicle System 

Figure 3-9 depicts the six components that comprise the autonomous system.  The first five 
components existed prior to this project start, although several modifications were needed to update 
the system.  The last item in the figure represents the new work that is being done so that the 
autonomous system can communicate with the traffic control system and execute appropriate 
commands. 

The vehicle is a hybrid Toyota Highlander, shown in Figure 3-10. This system was originally 
developed for participation in the DARPA Urban Challenge competition.  Actuators were added to 
control the steering and shifting.  The brakes and accelerator are drive-by-wire systems and these were 
reversed engineered so that emulated signals are generated by UF computers and sent to the Toyota 
control computer.  
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Figure 3-9 Components of autonomous 
vehicle 

 

Figure 3-10 Autonomous vehicle 

3.4.1  System Architecture 

Figure 3-11 provides an overview of the system architecture.  The lower blue box shows GPS and 
IMU sensors used for vehicle localization as well as vision and ladar sensors that are used for obstacle 
detection and terrain mapping. 

The Intelligence Element box shows several Situation Assessment Specialist components that report 
findings.  For example, one component continuously reports true or false as to whether the current 
travel lane is free of obstacles and obstructions for the next 20 meters.  Behavior Specialists use the 
findings information to generate a score as to whether its associated behavior was appropriate at each 
instant.  In the DARPA Urban Challenge competition, there were six possible vehicle behaviors and 
thus six Behavior Specialists.  The six behaviors were: 1) Lane Following, 2) Change Lane, 3) Re-
plan and Reverse Direction, 4) Parking Lot Maneuvering, 5) Parking, and 6) Intersection Behavior.  In 
most instances, the Lane Following behavior is most appropriate.  When the lane is detected as 
blocked, the Change Lane or Reverse Direction behaviors may be most appropriate.  When in the 
vicinity of an intersection, the Intersection Behavior is scored highest and is selected. 

The resulting selected behavior is implemented by the Smart Arbiter component which provides input 
to the Control Element, which ultimately controls the vehicle steering, throttle, and braking actuators. 

 

3.4.2 Localization Sensors 

Accurate position and orientation information are very important for autonomous navigation.  Systems 
are available that can determine vehicle position to an RMS accuracy ranging from 2 cm to 3 m.  Cost 
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and convenience increase significantly as the position error is reduced. For this project, an accuracy of 
approximately 10 cm is desired. To achieve this, a typical GPS unit must operate in a differential mode 
where corrective signals are received from ground-based sensors at known points. Commercial 
vendors are providing this service at an annual cost. 

 

 

Figure 3-11 System architecture 

 

A GPS combined with an Inertial Measurement Unit (IMU) can achieve accurate position and 
orientation data at high data rates.  The addition of the IMU also allows for somewhat accurate 
positioning during times when the GPS signal is lost such as when going under a bridge.  Typical error 
drift is on the order of 5 m when GPS is lost for 60 seconds.  This can be accommodated by the 
autonomous vehicle since lane markings and terrain sensors can maintain the vehicle in its travel lane 
during these brief periods. 

One update to the vehicle that is being done in this project is to replace the prior GPS system with a 
much lower cost system.  A Novatel GPS was used during the DARPA Urban Challenge.  This unit 
costs several thousands of dollars and requires an annual $1500 payment for subscription to corrective 
signals that are broadcast from base stations throughout the country.  The new system developed uses 
a low-cost GPS sensor (~$125).  GPS correction signals are received at no cost over the internet via 
the Florida DOT Florida Permanent Reference Network (FPRN).  Centimeter level accuracy is 
expected from the final system. 
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3.4.3 Obstacle Avoidance and Mapping Sensors 

In the DARPA Urban Challenge project, UF researchers were able to identify lane markings and 
obstacles using a combination of vision and ladar sensors.  Six SickLMS 290 lidar sensors are mounted 
to the vehicle.  Two additional long-range lidar sensors are mounted on the front quarter panels.  These 
are augmented by two monocular vision sensors mounted at the top corners of the vehicle which map 
the location of lane markings.  This information is particularly important during the lane following 
behavior. 

 

3.4.4 User Interface 

The development of an effective user interface is very important for this project.  The interface must 
make it easy for the operator to set up and run a demonstration as well as be able to demonstrate to 
observers the abilities of each sensor type and how behaviors are decided upon by the vehicle.  The in-
vehicle user interface is being updated. The tablet that was used for this purpose is being replaced by 
a new computer and touch screen.  This will allow the user to initialize the vehicle so it can be driven 
manually or placed in autonomous mode. 

 

3.4.5 Hardware Modifications 

The bulk of the work done on the autonomous vehicle so far has been to replace a custom hardware 
component that was responsible for the electrical interface between the autonomy and the Toyota 
Highlander Hybrid (THH). Figure 3-12 represents an additional component in the hardware interface 
that is responsible for steering and shifting. The hardware component measured vehicle sensor values 
related to the operation of the vehicle, i.e., the sensors of the brake and accelerator pedals, output 
sensor values to the ECUs to control braking and accelerating, and controlled various digital I/O for 
the vehicle (such as the turn signals). 

 

Figure 3-12 Vehicle-Autonomy hardware interface 
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The hardware component was replaced with a NI myRIO-1900 
which can be seen in Error! Reference source not found.. The 
myRIO was selected because it is a convenient OTS component 
that is easy to replace if it fails. Because of hardware differences 
between the original component and the myRIO, there were 
extensive changes that were needed to be made for it to be 
compatible with the THH. Signal Conditioners were needed to 
allow the myRIO to read digital voltages higher than allowable. 
Similarly, Opto-isolated relays were added to allow the myRIO to 
“output” voltages higher than allowable. 

Additional hardware components that were replaced or added: 

 12 V batteries 

 Cover plate for the center console 

 Power cutoff switches 

 Signal conditioners 

 Various wiring. 

 

Figure 3-14 to 15 show the configuration of the components on the vehicle. Figure 3-14 shows the 
completed replacement of the hardware component in the cockpit. Almost everything modified lies 
between the two front seats. Under the cover, solid state relays, OI relay SPDT, terminal block, 
regulator and conditioner are installed (Figure 3-15.) A detailed top view of the area between the two 
seats is shown in Figure 3-16. On the left, a top view of the cover plate with the box containing the NI 
myRIO device is shown.  Figure 3 16- (right) provides a view of the bottom of the box where the 
cables connect to the box. This connector is for all relevant sensors.   The functionality of the main 

components was discussed in previous sections. Along with the hardware changes, new code was 
created to give the myRIO the same capabilities as the original hardware component. 

Figure 3-13 National Instruments 
(NI) myRIO-1900 to replace the 

previous hardware 
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Figure 3-14 Completing the replacement of the hardware component 

 

 

 

Figure 3-15 The underside of the cover plate 
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Figure 3-16 (Left) Top view of the cover plate. (Right) View of the bottom of the box 

 

3.4.6 V2I Communications and System Interoperability 

The original autonomy did not have the capability of perceiving a signalized intersection as anything 
more than a four-way stop. So a new behavior was added to allow the vehicle to react accordingly 
when approaching a signalized intersection. Along with the behavior, additional Situation Assessment 
Specialists and Behavior Specialist were created.  

At least two Situation Assessment Specialists must be created: one to know the vehicle is approaching 
a signalized intersection and one to know if the vehicle has received a DSRC communication from the 
intersection. The new Behavior Specialist monitors these additional specialists and other previous ones 
to determine if it is appropriate to begin using the signalized intersection behavior. The signalized 
intersection behavior will be able to receive a trajectory sent from the intersection and use this 
trajectory to create the vehicle’s path and desired speed.  
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4 Testing and Evaluation at TERL 

The tests conducted at the TERL consisted of several human-driven vehicles, connected vehicles 
configured to emulate a level 2 autonomous vehicle, and vehicles equipped to emulate fully 
autonomous level 4 vehicles.  

This chapter provides an overview of the testing, the testing scenarios, and summarizes our findings 
regarding the overall performance of the signal control optimization process, the trajectory 
optimization, and the equipment performance, including sensor fusion process and functionality.  

 

4.1 Overview of Testing Effort 

The main testing effort took place on Thursday, May 25th and Friday, May 26th, 2017. Additional 
testing took place on October 19th and 20th, 
2017, to further refine the functionality of the 
autonomous vehicle, which malfunctioned 
during the initial testing (faulty brakes).   The 
four-leg intersection at the TERL (Figure 4-1) 
has six approaching lanes and four departing 
lanes and is located on level terrain. Turning 
lanes were not be utilized throughout the 
testing to simplify the phasing patterns.  There 
was no lane-changing occurring once a 
vehicle arrival is detected and no pedestrians 
were assumed to be present in the vicinity of 
the intersection.  A total of six vehicles were 
used  

 

 
 
Vehicle trajectories were monitored using a GPS system in each vehicle, a Cohda MK5 radio to 
transmit and receive DSRC messages in each connected vehicle, localization sensors in the 
autonomous vehicle, one radar, and two cameras at the intersection. The minimum communication 
distance was assumed to be 150 ft. A drone was used to record video of the testing (see 
http://avian.essie.ufl.edu/gallery/). 
 

 

 

 

Figure 4-1 TERL intersection
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4.2 Test Scenarios  

Figure 4-2 shows an aerial photo of the TERL and the test signalized intersection. Scenarios vary in 
the types of vehicles used (conventional, CV, AV) and vehicle inter-arrival times (i.e., level of 
demand.)  Each testing scenario includes approximately 15 minutes of set up time and 15 minutes of 
a continuous testing run with vehicles traveling along a predetermined path. The maximum speed for 
all scenarios and vehicles is 15 mph. The scenarios start from as simple as 2 CVs, up to a mixed traffic 
of 4 AV and 2 conventional vehicles.  

 

 

 
Figure 4-2 TERL intersection, testing route, and phasing 

 

During the initial TERL tests, we used 4 simulated autonomy vehicles.  Cars instrumented with DSRC 
acted as AVs by having a passenger using an application with a user-friendly GUI that received 
simplified trajectory messages and displayed recommended speeds for the driver for each approach.  

 

To evaluate the tested scenarios and the performance of vehicles and effectiveness of tested scenarios, 
several measures are tracked and analyzed. Data were recorded and stored on-site after each scenario 
from each vehicle GPS system, the traffic signal controller, the radar, the communications components, 
intersection cameras, and a drone. The GPS systems measure the actual trajectory of each vehicle. We 
assessed how well the AVs/CVs were able to follow the recommended trajectories. In addition, we 
evaluated the performance of our car-following model within the system by comparing the estimated 
trajectories with the actual trajectories based on data obtained from a traffic radar. Therefore, the 
performance measures for operations were: 

• Mean Travel Time (vehicle information from GPS, DSRC suitcases and intersection cameras) 

• Mean Travel Delay (vehicle information from GPS, DSRC suitcases and intersection cameras) 

• Phasing and Green Duration (signal timing data from algorithm, intersection cameras) 

• Vehicle Trajectories (actual vs. recommended trajectories by vehicle type) 

Moreover, we collected data for each component separately and assessed the performance of each one. 
In detail, we analyzed run-time, solution quality and recommended SPaT and trajectories to evaluate 



Final Report – Optimized AV/CV Trajectories 

45 

 

the entire system, the communication latency and accuracy, the signal controller and cabinet along 
with signalization interface and setup, etc. Interested readers may refer to the project webpage at 
‘avian.essie.ufl.edu’ for additional information regarding equipment and for videos of the testing.   

 

 

4.3 Performance Measurements – Hardware And Software 

The performance measures used to evaluate hardware and software include algorithm performance and 
runtime, DSRC communications reliability, vehicle operations reliability, algorithm-signal controller 
communications reliability, and radar sensing reliability.  
 
Algorithm outputs captured runtime, recommended trajectories, and recommended signal timings. 
These were used to evaluate the reliability and performance of the algorithm.  
 
Communications reliability includes transmission times, errors in data transmissions, and potential 
malfunctions of the communications components.  The reliability of communication between the 
algorithm and the signal controller was also evaluated.  
 
The performance of the radar was evaluated by comparing the actual arrivals to those detected by the 
radar. Delay in recognition and fusion of the data from the radar and the DSRC was obtained.  
  
Equipment malfunctions or communication malfunctions during a scenario were noted in the scenario 
log.  Table 4-1 summarizes the hardware and software – related performance measures obtained during 
the testing.   

It was determined that the MATLAB code runs instantaneously in simulation mode. However, this 
only includes the optimization computation time and not the communication time. Under real-time 
mode, the running time goes up to 0.1 sec per message to be processed. This is due to the addition of 
fusion, preprocessing and post processing components to the system. 
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Table 4-1 Summary of performance measurements for hardware and software 

 

 

4.4 Trajectory Optimization 

The goal of the trajectory optimization component is to assign trajectories to automated vehicles that 
allow for the most efficient flow of traffic through the intersection. The optimization must also account 
for the presence of connected and conventional vehicles, which are human-driven, and thus their exact 
behavior cannot be predicted.  During the TERL tests, we used simulated autonomy; essentially, cars 
instrumented with DSRC acted as automated vehicles by having a passenger use an application that 
received trajectory messages and displayed recommended speeds for the driver. All references to 
"automated" vehicles therefore refer to simulated automated vehicles.  In our testing, we evaluated 
how well the automated and connected vehicles were able to follow the recommended trajectories. 
Additionally, we assessed the performance of the car-following model used in our optimization to 
predict the behavior of conventional and connected vehicles.  This assessment was conducted by 
comparing our estimated trajectories with the actual trajectories observed in the field based on data 
obtained from a traffic radar. The metric we use to assess how well a vehicle followed a recommended 
trajectory is the root mean square error (RMSE). This is a measure of the absolute distance in feet 
between where the vehicle is at some point in time and where it is supposed to be at that same instant 
based on estimated trajectory.  

We tracked all automated and connected vehicles using the GPS and speed data received from the 
DSRC communication and the radar. These data can be aligned and compared with the trajectories 
computed by the optimization component of the algorithm. Table 4-22 shows the RMSE between the 
expected and actual trajectories of automated and connected vehicles averaged over a sample of 23 
trajectories.  The min RMSE is the smallest RMSE observed at any point during the trajectory and the 
max RMSE is the largest observed. We consider uncertainty of one standard deviation (95% interval). 

Table 4-2 Root Mean Square Error (RMSE) for assigned vs. actual trajectories 

Min RMSE (ft.) Max RMSE  (ft.) Mean RMSE (ft.) 
4.333 ± 3.507 64.856 ± 42.614 33.130 ± 18.587 

Performance Measure Measurement Method  
Algorithm Performance Processing time, recommended signal timings and trajectories. 
Algorithm to Vehicle 
Communication 
Malfunctions 

Communication time between algorithm and vehicle. 
Differences in trajectories between recommended and actual 
(measured through GPS, intersection cameras.) Vehicle types 
will be distinguished (connected, autonomous). 

Vehicle Malfunction Observation of vehicle operations through GPS and video.   
Signal Communication 
Malfunction 

Signal controller display observed by video, algorithm 
optimization results. 

radar Fusion Malfunction Discrepancies between vehicle arrivals and vehicle recognition 
by the radar. Discrepancies in the data fusion component. 

Total Communication 
Malfunction 

Actual vehicle trajectories, signal control. 
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It was observed that the trajectories computed by the optimization tended to be much more nonlinear 
than the observed trajectories (Figure 4-3). During our experiments we presented a recommended 
speed to the drivers of our automated vehicles with a graphical user interface (GUI) to have them 
attempt to follow the trajectory as closely as possible.  However, this does not allow for them to account 
for nonlinearities in the optimized trajectory. Further, the RMSE could be reduced by improving the 
time synchronization of our real-time system. With a clock synchronized with the DSRC 
communication, the system is able to account for the 10-20 feet that a vehicle will move during the 
time it takes for a message to be sent via DSRC from the vehicle to the intersection, and then to receive 
the trajectory. 

 

 

Figure 4-3 Comparison of actual vs. assigned trajectory for an automated/connected vehicle 

 

4.5 Conventional Vehicles 

During our testing, in almost all instances when a conventional vehicle approached the intersection, 
they were the lead vehicle in their lane. Depending on the prevailing signalization, we observed that 
our algorithm estimated two different types of trajectories. If the lane had the right-of-way (green 
signal) when the conventional vehicle arrived, the estimated trajectory would be linear. Otherwise, we 
estimated a nonlinear trajectory that would attempt to pass through the intersection at the start of the 
green time for their lane. Table 4-3 shows the RMSE for the expected vs. actual trajectories averaged 
over a sample size of 12 conventional vehicle trajectories.  We observed that our conventional vehicles 
maintained their speed consistently through the entire test (Figure 4-4); however, the car-following 
model occasionally predicted a nonlinear trajectory which did not match the actual trajectory (Figure 
4-4, right side). Due to this discrepancy, we occasionally observed a large RMSE between the expected 
and actual trajectories (max RMSE in Table 4-3).   
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Table 4-3 RMSE for expected vs actual trajectories for conventional vehicles 

Min RMSE (ft.) Max RMSE (ft.) Mean RMSE (ft.) 
0.061 ± 0 75.499 ± 53.113 32.054 ± 20.923 

 

 

 

Figure 4-4 Comparisons of expected vs. actual trajectories for conventional vehicles 

 

4.6 Overall Performance of the Optimization Algorithm 

In order to quantify the performance of the optimization algorithm, we computed the travel time delay 
for each vehicle as the time difference between the base travel time (theoretical minimum travel time 
based on prevailing free flow speed) and the computed travel time.  The base travel time is defined as 
the time required for the vehicle to travel through the intersection if there is no traffic signal.  The 
computed trajectories provide the theoretical travel time of each vehicle from detection to departure 
from the intersection stop bar.  

Table 4-4 indicates the minimum, average, and maximum of travel time delays for all vehicles that 
traveled through each of the four intersection approaches while testing at the TERL. For all approaches, 
the average delay is close to the minimum, confirming the intent of the trajectory optimization. The 
NB approach—which was equipped with the radar—shows the least average delay as more 
observations with lower delays are included in this category. 

 

Table 4-4 Travel time delay per approach estimated by the optimization algorithm 

Approach Min Delay Average Delay Max Delay Count 
SB 0.0 2.2 6.0 16 
WB 0.2 2.2 7.7 6 
NB 0.0 0.5 3.8 20 
EB 0.0 1.6 3.8 8 
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4.7 Sensor Fusion 

The goal of the proposed sensor fusion system is to fuse localization information from multiple sources 
to optimally estimate the position and speed of every vehicle approaching the intersection. This fused 
estimate can then be provided as inputs for the optimization. For such an application, it is also 
important to classify every fused track as either originating from a conventional or a DSRC-equipped 
vehicle. To do this, several challenges inherent to multi-sensor multi-target tracking systems must be 
addressed. Namely, this involves temporally aligning the incoming data, associating tracks between 
sensors, and fusing the associated tracks. After describing our sensor fusion framework, we explain 
our approach to solve each of these specific tasks. 

 

4.7.1 Sensing Modalities 

We consider a scenario where zero or more vehicles approaching an intersection are equipped with 
DSRC transceivers (OBUs). Accordingly, there is an RSU present at the intersection set up to receive 
BSMs transmitted from the OBUs on the 5.9 GHz band dedicated for ITS applications. The OBUs are 
designed to transmit a BSM at some fixed interval, e.g., every 50 or 100 ms. The accuracy and 
precision of the localization information contained in the BSM is dependent on the quality of the GPS 
available to the OBU. We use Wide Area Augmentation System (WAAS) GPS, which reduces the 
uncertainty in uncorrected GPS to about 2-3 meters in latitude and longitude.  Tests were conducted 
to roughly characterize the noise in the reported latitude and longitude by our OBUs. The GPS in our 
OBUs update at a rate of 5 Hz, or once every 200 ms. The observation oሺ݇ሻ of a vehicle’s state at time 
݇ is obtained from a BSM as:  

ሻሺܗ ൌ ሾܜ܉ۺሺሻ	ܖܗۺሺሻ	ࣂሺሻ	࢜ሺሻሿ܂       Equation 7 

In Equation 7, ߠሺ݇ሻ is the heading of the vehicle in degrees counter-clockwise from true north and 
  .ሺ݇ሻ is the speed of the vehicleݒ

In mixed traffic situations, many vehicles approaching an intersection will be conventional vehicles 
without any DSRC capabilities. One way to still successfully surveil all traffic surrounding the 
intersection is to use an advanced detection Doppler traffic radar. Advanced detection radars can track 
oncoming vehicles over 200 meters away, obtaining accurate range and speed information. We 
observed that at distances greater than 100 meters, the radar has significant difficulty identifying the 
lateral position of a vehicle within a lane. Hence, we only make use of the range and speed information 
reported by the radar. The observation oሺ݇ሻ obtained from the radar for each vehicle is: 

ሻሺܗ ൌ ሾ	࢘࢟ሺሻ	࢘࢟ሶ ሺሻ	ሿ܂        Equation 8 

where ݕሺ݇ሻ	and ݕሶሺ݇ሻ are the range and speed information respectively of the approaching vehicle 
within a 2D Cartesian coordinate frame with the radar at the origin. The detections we receive already 
account and correct for the mounting height of the radar. For the sake of simplicity, we assume a single 
Doppler radar is mounted on a mast arm directly facing oncoming traffic. Radars track vehicles based 
on reflections from a corner or side of the vehicle; however, as this reflection point is unknown and 
can vary, it is difficult to account for it when fusing position information obtained from DSRC. This 
is because the DSRC may be reporting localization information from a specific point on the vehicle, 
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e.g., the center of the front axle of the vehicle. In our system, information for all vehicles in the field-
of-view of the radar is sent to the sensor fusion system at a rate of 20 Hz. 

 

4.7.2 Tracking Models 

In order to fuse the information from the radar with BSMs received over DSRC, we estimate the 
uncertainty in each sensor’s measurements with a linear Gaussian Kalman Filter (KF). Essentially, the 
system maintains tracks at the sensor level and then sends these tracks a central processing unit to 
time-align and fuse them. We carry out tracking in a global coordinate frame with the Universal 
Transverse Mercator (UTM) system; this allows us to convert GPS coordinates to a system that is 
locally Cartesian and uses interpretable units, e.g., meters. UTM preserves the shape of small areas on 
a map and the grid coordinates permit easy trigonometric. We model the dynamics of all vehicles using 
a constant velocity motion model with vehicle acceleration captured as noise. The motion model used 
for DSRC encodes the vehicle state xሺ݇ሻ at time ݇ as: 

ሻሺܠ ൌ ሾ	࢞ሺሻ	࢟ሺሻ	࢞ሶ ሺሻ	࢟ሶ ሺሻሿ܂       Equation 9 

Here, ሺݔሺ݇ሻ, ݕሺ݇ሻሻ  is the position of the vehicle in UTM Easting and Northing, converted directly 
from the raw GPS reported in the BSM. Likewise, ݔሶሺ݇ሻ and	ݕሶ ሺ݇ሻ are speeds in the UTM Easting and 
Northing directions. We compute Equation 9 from Equation 7 as follows, omitting the time parameter 
݇ for notational simplicity: 

൦

࢞
࢟
ሶ࢞
ሶ࢟ 	

൪ ൌ	  ൦

,ܜ܉ۺሺۻ܂܃܍܌ ሻܖܗۺ
,ܜ܉ۺሺۻ܂܃܍܌ ሻܖܗۺ

࢜ ࣂܛܗ܋
࢜ ࣂܖܑܛ

൪       Equation 10 

We use a standard conversion of WGS84 GPS coordinates to UTM, represented in Equation 10 by 
deg2UTM.  

For the radar tracks, the state at time ݇ is given by: 

ሻሺܠ ൌ ሾ	࢟ሺሻ	࢟ሶ 	ሺሻ	ሿ܂        Equation 11 

and is computed from Equation 8 by: 

ቂ
࢟
ሶ࢟ ቃ ൌ ቂ

࢟
 ቃ 	ቂ

ᇱࣂܛܗ܋ െ ܖܑܛ ᇱࣂ

ܖܑܛ ᇱࣂ ᇱࣂܛܗ܋
ቃ ቂ
࢘࢟
ሶ࢘࢟ 	
ቃ      Equation 12 

where ߠ′ is the orientation of the radar in degrees counter-clockwise from true north, and ݕ is the 
UTM Northing coordinate of the radar.  

Track initiation, confirmation, and deletion is managed by a finite state machine. We empirically 
determine the number of consecutive observed and missed detections that control state transitions to 
prevent prematurely adding or dropping tracks. Tracks are considered confirmed after a sensor receives 
consecutive detections for approximately 1 second. Once confirmed, our system attempts to associate 
the track with the other sensor’s set of confirmed tracks. Upon successful association, a new KF is 
created that takes as input the two associated tracks from each sensor and produces a final fused state 
estimate.    
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4.7.3 Track Alignment 

When fusing information from multiple sensors, it is convenient to time-align the incoming data. For 
example, in our scenario, the WAAS GPS data is updated at 5 Hz whereas we receive radar data at 20 
Hz. To handle this, we down-sample the radar data to 5 Hz and update all KFs at 5 Hz. Since we 
receive data asynchronously from each sensor, it is not guaranteed that the sensor timestamps from the 
radar and DSRC align; generally, this can be handled by linearly interpolating the data from each 
sensor to obtain estimates at fixed time intervals. In the next iteration of our system, we plan to up-
sample the GPS data received via DSRC to carry out tracking at a faster rate, e.g., at 10 or 20 Hz.   

 

4.7.4 Track-to-Track Association 

When there are only two sensors, the problem of track-to-track association (T2TA) can be phrased as 
follows: “Given a track from sensor A, find a track from sensor B that isn’t already associated with 
any other tracks from sensor A and that most likely originated from the same object as the track from 
sensor A, subject to the constraint that the corresponding association likelihood is greater than a 
threshold”. Concretely, let ଵܵ and ܵଶ be the two sensors, each with a list of tracks at time ݐ	represented 
by state estimates ݔො

ଵ	and  ݔො
ଶ respectively, ݅ ൌ 1	. . ଵܰ	and ݆ ൌ 1	. . ଶܰ. Here, ܰ ଵ and  ଶܰ are the number 

of tracks in each sensor’s track list. We omit the time parameter ݐ for notational simplicity.  Likewise, 
the state covariances estimated by the KFs are ܲ

ଵ and ܲ
ଶ. One can naturally frame the problem as a 

hypothesis test, where the null hypothesis ܪ is ݔො
ଵ ൌ 	 ොݔ

ଶ for track ݅ from ଵܵ and track ݆ from ܵଶ. Since 

our state estimates are produced by linear Gaussian KFs, we can define the following test-statistic ܶ 
for a Chi-squared Hypothesis test: 

ઢ ൌ ൫࢞ෝ
 െ	࢞ෝ

൯         Equation 13 

	ࢀ ൌ 	ઢ	܂	۾ઢ
ି	ઢ   Equation 14          ࢻ

Where Δ is zero-mean and ܲઢ is the covariance matrix of Δ, defined as ܲ
ଵ  	 ܲ

ଶ െ ܲ
ଵଶ െ ܲ

ଶଵ (Bar-

Shalom & Huimin Chen, 2004). The final two terms are the cross-correlation terms for the two-tracks 
between the two sensors. These are needed to account for the fact the state estimates of the two-tracks 
in question are statistically correlated under the null hypothesis that the two-tracks in question originate 
from the same object. Intuitively, the test statistic can be interpreted as the distance between the two 
track state estimates, scaled by the amount of uncertainty in each state dimension. 

The number of degrees of freedom for the Chi-squared hypothesis test is ܦ, the dimension of Δ. 
Theoretically, one can select the null acceptance threshold ߙ to correspond to a 95% or 99% confidence 
threshold. In practice, due to errors in time alignment and undetected sensor biases, one may have to 
experimentally increase ߙ to find an acceptable threshold. 

In our system, given a newly confirmed track ݅	from sensor ଵܵ, the test statistic is computed for all 
pairings of ݅  with all tracks ݆ ൌ 1… ଶܰ from sensor ܵ ଶ, also known as global nearest neighbors. If more 
than one track falls within the acceptance threshold for association, we choose the track with the 
smallest T. When a DSRC track from a connected vehicle is matched with a radar track, we can classify 
that radar track as originating from a connected vehicle, as opposed to a conventional vehicle. 
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4.7.5 Track-to-Track Fusion 

We employ the Covariance Intersection (CI) algorithm (Julier & Uhlmann, 1997) for fusing the DSRC 
and radar observations for two associated tracks. The CI algorithm is an attractive solution since it 
computes a simple convex combination of the track means and covariances from multiple sensors. The 
optimal combination parameters can be computed using a freely-available optimization package, such 
as scipy.minimize. We use the default optimizer for scipy.minimize, SLSQP, and select the combination 
parameters that minimize the determinant of the inverse of the combined covariances. 

 

4.7.6 Experimental Results at TERL 

At the TERL tests, we had at most six vehicles navigating the intersection at any given time; four were 
instrumented with DSRC, and two were conventional. Our main objectives were to (1) correctly 
classify each approaching vehicle as either connected, automated, or conventional and (2) estimate 
their position and speed. We achieved 100% classification accuracy, which means that in every test 
run, a conventional vehicle was never mistaken for an automated vehicle (easy to do) and an automated 
vehicle was never mistaken for a conventional vehicle (much harder, since we have both radar and 
DSRC information from this vehicle to fuse). Figure 4-5 summarizes the results of the evaluation. This 
type of a figure is called a confusion matrix. The color gradient on the right represents the number of 
vehicles. Each square represents the fraction of arrivals that were classified as automated/connected or 
conventional with respect to the true vehicle types. For example, when the vehicle was conventional, 
our system never classified it as automated/connected (bottom left square). 

We did not have access to ground-truth for evaluating the accuracy and precision regarding position 
and speed of each vehicle. Hence, we simply provide an example (Figure 4-6) of how the DSRC and 
radar are fused to produce an accurate estimate of the true position (and speed) of each vehicle.  The 
green line shows the fused position estimate produced by the algorithm. Based on prior 
experimentation where ground-truth was available, we know that the radar produces more accurate 
estimates of the position; hence, the sensor fusion system "trusts" the data coming from the radar more, 
and the fused estimate weights the radar's estimate more heavily. 
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Figure 4-5 Classification results for the sensor fusion (number in the box represents percent 
accuracy) 

 

 

Figure 4-6 DSRC, radar, and fused radar and DSRC vehicle trajectories for a single vehicle 
driving towards an intersection 
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5 Conclusions and Recommendations 

Significant improvements in automated and connected vehicle technologies are expected to create a 
revolution in how we move and move things. Automated vehicles can operate using a variety of sensors 
such as GPS, lidar, radar, and smart cameras, as well as terrain information, and they have the ability 
to communicate with infrastructure as well as surrounding vehicles. It is highly likely that in the not 
too distant future connected and autonomous will be operating side by side in large numbers, along 
with conventional vehicles. The objectives of this research were to develop, test, and deploy an 
intelligent real-time intersection traffic control system, designed to optimize simultaneously signal 
control and automated vehicle trajectories.  

The system developed was first simulated in MATLAB. A total of 3000 scenarios were tested to 
consider varying demand levels, communication ranges, automated vehicle percentage, and saturation 
headways.  The results showed that for lower saturation headways, the average travel time decreases 
as the automated vehicle percentage increases, since these vehicles can more easily follow shorter 
headways.  On average, lower effective greens are allocated to higher demand levels. In these cases, 
there are more requests from conflicting movements to switch the right of way as the demand increases, 
while the signal can be extended without any interruption for the low demand scenarios. The same 
pattern can be seen for varying communication ranges: the higher the communication range, the better 
the ability to design a platoon of trajectories ahead of time, which can assign longer green intervals 
with fewer interruptions. 

The system was then implemented at the TERL facility, and included various hardware and software 
components developed for the project (a local server, DSRC receiver for the server, interface to the 
signal controller, sensor fusion system, radio communication software, and hardware for vehicle to 
infrastructure communications.)  Once developed, the system was tested under various demand and 
communications scenarios. The outputs and video footage (http://avian.essie.ufl.edu/gallery/) showed 
that the system is capable of providing optimal trajectories to automated vehicles in order to reduce 
delays.    

Future work should expand the algorithm to consider congested conditions, lane changing, and the 
presence of pedestrians and bicycles.   

 

 

  



Final Report – Optimized AV/CV Trajectories 

55 

 

References 

Ahmane, M., Abbas-Turki, A., Perronnet, F., Wu, J., El Moudni, A., Buisson, J., & Zeo, R. (2013). 
Modeling and controlling an isolated urban intersection based on cooperative vehicles. 
Transportation Research Part C: Emerging Technologies, 28, 44–62. 
https://doi.org/10.1016/j.trc.2012.11.004 

Au, T.-C., Shahidi, N., & Stone, P. (2011). Enforcing Liveness in Autonomous Traffic Management. 
In Proceedings of the 25th AAAI Conference of Artificial Intelligence (pp. 1317–1322). 

Bar-Shalom, Y., & Huimin Chen. (2004). Multisensor track-to-track association for tracks with 
dependent errors. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. 
No.04CH37601) (p. 2674–2679 Vol.3). IEEE. https://doi.org/10.1109/CDC.2004.1428864 

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous intersection management. 
Journal of Artificial Intelligence Research, 31, 591–656. https://doi.org/10.1613/jair.2502 

Gipps, P. G. (1981). A behavioural car-following model for computer simulation. Transportation 
Research Part B, 15(2), 105–111. https://doi.org/10.1016/0191-2615(81)90037-0 

Goodall, N., Smith, B., & Park, B. (2013). Traffic Signal Control with Connected Vehicles. 
Transportation Research Record: Journal of the Transportation Research Board, 2381(2), 65–
72. https://doi.org/10.3141/2381-08 

Guler, S. I., Menendez, M., & Meier, L. (2014). Using connected vehicle technology to improve 
efficiency of intersections. Transportation Research Part C: Emerging Technologies, 46, 121–
131. Retrieved from http://dx.doi.org/10.1016/j.trc.2014.05.008 

Julier, S. J., & Uhlmann, J. K. (1997). A non-divergent estimation algorithm in the presence of 
unknown correlations. In Proceedings of the 1997 American Control Conference (Cat. 
No.97CH36041) (pp. 2369–2373 vol.4). IEEE. https://doi.org/10.1109/ACC.1997.609105 

Lee, J., Park, B. (Brian), & Yun, I. (2013). Cumulative Travel-Time Responsive Real-Time 
Intersection Control Algorithm in the Connected Vehicle Environment. Journal of 
Transportation Engineering, 139(10), 1020–1029. https://doi.org/10.1061/(ASCE)TE.1943-
5436.0000587 

Li, Z., Chitturi, M., Zheng, D., Bill, A., & Noyce, D. (2013). Modeling Reservation-Based 
Autonomous Intersection Control in VISSIM. Transportation Research Record: Journal of the 
Transportation Research Board, 2381, 81–90. https://doi.org/10.3141/2381-10 

Li, Z., Elefteriadou, L., & Ranka, S. (2014). Signal control optimization for automated vehicles at 
isolated signalized intersections. Transportation Research Part C: Emerging Technologies, 49, 
1–18. https://doi.org/10.1016/j.trc.2014.10.001 

National Transportation Operations Coalition (NTOC), 2012. National Traffic Signal Report Card. 
NTOC, Washington, D.C. 

Tachet, R., Santi, P., Sobolevsky, S., Reyes-Castro, L. I., Frazzoli, E., Helbing, D., & Ratti, C. (2016). 
Revisiting Street Intersections Using Slot-Based Systems. Plos One, 11(3), e0149607. 
https://doi.org/10.1371/journal.pone.0149607 

Wu, J., Abbas-Turki, A., & El Moudni, A. (2012). Cooperative driving: An ant colony system for 
autonomous intersection management. Applied Intelligence, 37(2), 207–222. 



Final Report – Optimized AV/CV Trajectories 

56 

 

https://doi.org/10.1007/s10489-011-0322-z 

Yan, F., Dridi, M., & El Moudni, A. (2008). Control of traffic lights in intersection: A new branch and 
bound approach. In 5th International Conference Service Systems and Service Management - 
Exploring Service Dynamics with Science and Innovative Technology, ICSSSM’08 (pp. 1–6). 
IEEE. https://doi.org/10.1109/ICSSSM.2008.4598496 

Zha, L., Zhang, Y., Songchitruksa, P., & Middleton, D. R. (2016). An Integrated Dilemma Zone 
Protection System Using Connected Vehicle Technology. IEEE Transactions on Intelligent 
Transportation Systems, 17(6), 1714–1723. https://doi.org/10.1109/TITS.2015.2490222 

Zohdy, I. H., & Rakha, H. (2012). Game theory algorithm for intersection-based cooperative adaptive 
cruise control (CACC) systems. In 2012 15th International IEEE Conference on Intelligent 
Transportation Systems (pp. 1097–1102). IEEE. https://doi.org/10.1109/ITSC.2012.6338644 

 

  



Final Report – Optimized AV/CV Trajectories 

57 

 

APPENDIX A – Literature Review 

This appendix provides an overview of recent studies on automated and connected vehicle operations. 
Although these studies make different assumptions regarding the vehicle to vehicle (V2V) and vehicle 
to infrastructure (V2I) communication, the majority of the articles conclude that autonomous vehicles 
will have an overall positive effect on intersection operations.  

Table A-1 summarizes the articles reviewed along with key elements and approaches used in each 
research effort.  All articles are based on simulation analysis. For simplification purposes, each 
research effort made a specific set of assumptions:  

 The vast majority of the articles did not consider pedestrian presence at the intersection.  

 The vast majority of algorithms reviewed assumed a typical four-approach intersection 
configuration, did not allow lane changing within the communication range, assumed level 
terrain, and no turning movements.  

 From the communication point of view, the process of sending and receiving data among 
vehicles and infrastructures were assumed to be with no interruptions and no delays.  

 Only a few papers considered a mix of automated and conventional vehicles rather than a 
fully automated vehicle environment.  

 Very few studies focused on prevent queue spillback. One study proposed switching priority 
to the longer queued approach regardless of possible negative effects on total intersection 
delay. 
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Table A-1 Overview of Papers Evaluating Traffic Operational Effects of Automated/Connected Vehicle Technology at Intersections 

Research Vehicle 
Type*  

Control 
Logic** 

Spillback 
Prevention 

Lane 
Changing 

Pedestrian Objective Simple 
Geometric 
Design 
with Level 
Terrain 

Turning 
Movements 

Synchronized 
Adjacent 
Intersections 

Perfect 
Communication 
Assumed 

Additional 
Consideration 

Simulation 
Platform 

Demand 
Sensitivity 
Analysis of 
Proposed 
Algorithm 

Real 
World 
Test 

(Yan et al. 
2008) 
 

A S    
Minimize The 

Evacuating 
Time 

     C Coded Script   

(Agbolosu-
Amison, Yun et 
al. 2012) 

A S    Minimizing 
Delay 

     
VISSIM Parallel 

to a C# 
Program 

  

(Goodall et al. 
2013) 

A&C S    

Minimizing 
Combination 

of Delay, 
Number of 

Stops or 
Decelerations 

     

VISSIM (A 
Parallel C# 
Program 
Extract 

Individual 
Vehicles 

Information as 
Simulation 
Continue) 

Better 
Performance 
at Low and 
Midlevel 
Demand 

 

(Lee et al. 2013) 

A&C S    

Maximizing 
Throughputs 

and Total 
Travel Time, 
Minimizing 
Emission, 

Fuel 
Consumption 

     VISSIM & 
MATLAB 

Better 
Performance 

at Higher 
Market 

Penetration 
and 

Volumes 

 

(Li et al. 2013) A S    Minimizing 
Delay 

     VISSIM 
(Emphasized)   

(Li et al. 2014) 

A S    

Minimizing 
Delay 

Deciding On 
Vehicles’ 
Trajectory 

     

MATLAB 
Coded Script 
CORSIM for 

Actuated 
Signal Control 

Better 
Performance 

at Higher 
Balanced 
Demand 

 

(Zha et al. 
2016) 

A&C S    

Dilemma 
Zone 

Protection 
Delay 

Reduction 

     VISSIM   
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Table A-1 (Continued): Overview of Papers Evaluating Traffic Operational Effects of Automated/Connected Vehicle Technology at Intersections 

Research Vehicle 
Type*  

Control 
Logic** 

Spillback 
Prevention 

Lane 
Changing 

Pedestrian Objective Simple
Geometric 

Design 
with Level 

Terrain 

Turning 
Movements 

Synchronized 
Adjacent 

Intersections 

Perfect 
Communication 

Assumed 

Additional 
Consideration 

Simulation 
Platform 

Demand 
Sensitivity 
Analysis of 
Proposed 
Algorithm 

Real 
World 
Test 

(Dresner & 
Stone, 2008) 

A U    

First-
Come-
First-

Served 
Reservation 

System 

      

Better 
Performance 

at Higher 
Market 

Penetration 
of 

Autonomous 
Vehicles 

 

(Au et al. 2011) 

A U    

Prioritizing 
Older 

Requests in 
Queue 

    Unbalanced 
Demand    

(Wu et al. 2012) 

A U    

Minimizing 
The 

Maximum 
Exit Time of 

the Last 
Vehicle 

Crossing 
the 

Intersection 

    

Buses, 
Vehicles with 
Less Pollution 

Can Be 
Prioritized 

   

(Zohdy & 
Rakha, 2012) A U    Minimizing 

delay 
     

MTALAB 
(Monte Carlo 
experiment) 

  

(Ahmane et al. 
2013) A U             

(Guler et al. 
2014) 

A&C U    

Minimizing 
total delay 

or total 
number of 

stops 

    Unbalanced 
demand 

MATLAB 
coded script 

Better 
performance 
at low and 
balanced 
demand 

(because of 
min green) 

 

(Tachet et al. 
2016) A U    Slot-Based 

System 
        

*  Vehicle Type (A: Automated; C: Conventional human-driven) 

**  Control Logic (S: Signalized; Unsignalized) 
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APPENDIX B – Lead Vehicle Trajectory Optimizer Solution 

This appendix provides the proposed nonlinear programming formulation for the lead vehicle 
trajectory optimization (LTO). Even though the problem formulation contains relatively few 
variables, it belongs to the non-convex optimization class of problems, which are difficult to 
globally optimize. Due to the need to solve the trajectory optimization for several vehicles, a very 
efficient solution method is required to conduct the calculations quickly.  

Here we note a few observations on the objective function of the LTO problem. The gradient of 
the objective function can be calculated as: 

ሺܶ ଶܸ, ܽଵ, ܽଷሻ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

ܽଷሺെ ܸ
ଶ  ଶܸ

ଶሻ  ܽଵሺെ2ܽଷ݀େ୭୫୫ െ ଶܸ
ଶ  ଷܸ

ଶሻ
2ܽଵܽଷ ଶܸ

ଶ

െ
ሺ ܸ െ ଶܸሻଶ

2ܽଵ
ଶ

ଶܸ

ሺ ଶܸ െ ଷܸሻଶ

2ܽଷ
ଶ

ଶܸ ی

ۋ
ۋ
ۋ
ۊ

 

This shows the travel time is a monotonic function with respect to acceleration or deceleration 
rates in the first and the last component of each trajectory. 

The hessian matrix is the following: 
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ۈ
ۈ
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ۈ
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ଶ െ ଷܸ

ଶ

2ܽଷ
ଶ

ଶܸ
ଶ

ܸ
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The hessian matrix is not positive-definite which makes the problem of the non-convex 
optimization type.  One way to simplify the problem is to consider the extreme acceleration/ 
deceleration rates for the first and the third component of each trajectory. By doing this, two 
continuous variables, a1 and a3, are transformed into substitute variables with values to be either 
amin or amax. 

Therefore, the original problem can be simplified into four sub-problems shown in Table B-1. 
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Table B-1 Details on the solution of trajectory optimization problem 

Optimization  ଵ࣭  ࣭ଶ ࣭ଷ ࣭ସ
Condition  ଶܸ  ܸ	ܽ݊݀	 ଷܸ  ଶܸ  ܸ  ଶܸ	ܽ݊݀ ଶܸ  ଷܸ ଶܸ  ܸ ܽ݊݀ ଶܸ  ଷܸ ܸ  ଶܸ ܽ݊݀ ଷܸ  ଶܸ

Formulation 

min ܶሺ ଶܸ, ܽ, ܽሻ  minܶሺ ଶܸ, ܽ௫, ܽ௫ሻ min ܶሺ ଶܸ, ܽ, ܽ௫ሻ min ܶሺ ଶܸ, ܽ௫, ܽሻ

ଶܸ  ܸ௫  ଶܸ  ܸ௫
ଶܸ  ܸ௫

ଶܸ  ܸ௫

Implicit limits on the 

objective function 

Implicit limits on the 

objective function 
Implicit limits on the objective function Implicit limits on the objective function 

Objective 

function first 

derivate w.r.t. 

ଶܸ 

߲ܶ൫ ଶܸ, ܽ, ܽ൯
߲ ଶܸ

ൌ 0
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ଶ െ 2ܽ݀ െ ܸ

ଶ
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ଶ
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߲ ଶܸ
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௫
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Objective 

function 

second 

derivate w.r.t. 

ଶܸ  at the 

stationary 

point 

Not needed  Not needed 
߲ଶܶ൫ ଶܸ

∗, ܽ, ܽ௫൯
߲ ଶܸ

ଶ ൌ
െ1
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From single variable optimization theory, the optimal answer on each case is either one of stationary points making derivative of objective function 
zero or on the boundary of the feasible interval. 


