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EXECUTIVE SUMMARY 

Transportation infrastructure is essential to support the economic and social activities of 

communities. Considering the significant increase in intensity and frequency of natural hazards, 

evaluating and monitoring the factors specific to transportation resilience is important for 

effective planning. A comprehensive evaluation of the transportation system’s resilience requires 

measuring and monitoring a broad range of factors ranging from technical to socioeconomic and 

environmental. The FSU team has proposed a composite index to quantitatively measure and 

monitor various aspects of regional transportation infrastructure’s resilience and guide 

transportation resilience planning. 

To provide a comprehensive understanding of the proposed resilience index (RI) approach, this 

report consists of four phases.  Key findings from each of these phases follow. 

Phase I: Resilience Factor Identification for Ground Transportation (Chapter II) 

The team engaged in a multistep process to identify appropriate resilience indicators. Key 

insights, findings, and/or results include:  

• Based on an extensive literature review, few states are measuring resilience across 

multiple dimensions (including but not limited to socioeconomics, technology, and the 

environment). Florida is at the forefront of this effort.  

• The majority of the 289 resilience factors identified by researchers are technical (70%), 

followed by socioeconomic (20%), and environmental (10%). The predominance of 

technical factors reveals the prevailing planning focus on the built environment/physical 

infrastructure and suggests a need to balance resilience planning with inputs related to the 

other two dimensions    

• Regarding resilience aspects (i.e., robustness vs. rapidity), 66% of the identified factors are 

related to robustness, 27% to rapidity, and 7% relate to both. As with the dimensions above, 

the predominance of aspects related to robustness suggests a focus on the ability of existing 

systems to withstand natural disaster impacts, rather than their functionality during and 

after a disaster. While it is essential to build robust systems to ensure loss cost reduction, 

those systems must also function to serve the needs of users during and after a disaster in 

order to reduce the risk of failure and be considered resilient. 

 

Phase II: Robustness Assessment of Transportation Networks at an FDOT District Level (Chapter 

III) 

Robustness is defined as the system’s capacity to absorb disruptions without losing functionality. 

Unlike other resilience factors, network robustness is not directly available as public data. As 

such, this chapter introduces different robustness measures based on graph (network) theory and 

recommends representative measures to be considered for the development of the RI. Further, 

the robustness of FDOT District 5 surface transportation networks against wind- and water-

related hazards is assessed in this chapter. Key takeaways include: 
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• Over the study period (2014-2019), the FDOT District 5 road network has been expanded 

to serve travelers over a larger area (i.e., by constructing new roads to connect to new 

areas). This network growth pattern has reduced the overall redundancy of the network as 

the new roads do not have alternative routes to provide connectivity for travelers in case 

of their failure.  

• Network redundancy and robustness slightly improved in recent years (2018-2019) while 

the road network has been expanded. 

   

Phase III: Development of a Resilience Index for Florida Transportation Systems (Chapter IV) 

In this phase, the FSU research team developed the RI framework that enables continuous and 

quantitative monitoring and measurement of the resilience of transportation networks. Key 

takeaways include: 

• The proposed composite index enables aggregating 34 resilience factors via statistical 

analysis (i.e., factor analysis) in order to develop the resilience indexes at different 

planning levels (i.e., resilience aspect, hazard, and infrastructure levels).  

• The proposed index allows decision-makers to monitor trends in the resilience of 

transportation systems and identify and analyze the root causes of changes in 

transportation resilience.  

• The overall resilience of road and rail transportation infrastructure improved during the 

study period (i.e., from 2014 to 2019). Specifically, the resilience of rail infrastructure to 

wind-related hazards follows an overall increasing trend, while the resilience of rail 

infrastructure to water-related hazards fluctuates over time. On the other hand, the 

resilience of road infrastructure to both wind- and water-related hazards has constantly 

improved over the study period. The relatively higher vulnerability to rail systems may be 

attributed to the more limited and static nature of their location. As such, FDOT likely 

has more control over road infrastructure and resilience to wind and water-related 

hazards. New roads can be built away from known hazards, and existing roads can 

benefit from roadbed elevation or drainage improvements to reduce flood risks. On the 

contrary, it is much more difficult to relocate rail lines away from water-based hazards 

due to a range of economic and logistical factors.  

 

Phase IV: Demonstration of the Framework of a Transportation Resilience Index (Chapter V) 

In this phase, the FSU research team tested the RI framework with planning professionals and 

designed scenarios to test how it could be used in planning practice. Key takeaways include: 

• The framework was tested on December 6th in DeLand, FL, with 16 members of the 

community of practice, including some who contributed to helping the project team in 

factor selection, completing a circle of participatory planning which was employed to 

help make this project as relevant as possible to planners from the study area. 

• Practitioners understood the value that a framework could play in transportation planning, 

citing project prioritization as an example. Planners from all levels of government 
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identified ways in which the framework could be used to integrate a better understanding 

of resilience into transportation planning. 

• While practitioners understood the value of the RI to support decision making, they felt 

that the current conceptual framework, as developed for this research project, was 

challenging to use. To increase its utility, the development of a user-friendly graphical 

user interface or “dashboard” should be explored in the future.  

In summation, the proposed resilience index framework enables transportation planners to capture 

the multi-dimensional nature of transportation resilience with a composite index. To be more 

specific, the developed resilience index allows transportation planners to monitor and evaluate 

regional transportation assets’ resilience needs from a holistic perspective (i.e., across technical, 

socioeconomic, and environmental aspects) and prioritize resilience investments over a multi-year 

period.  
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1 CHAPTER I: INTRODUCTION 

Transportation systems are vital components of urban communities. Every day, a substantial 

portion of goods is transported through various transportation modes, such as rail, road, air, or a 

combination of them. Natural events can cause severe impacts on transportation infrastructure 

and communities, and the disruption of transportation services can incur substantial economic 

losses and human casualties. Meanwhile, the frequency of disaster events has increased by a 

factor of five over the past 50 years (WMO 2021) and is expected to continue increasing in both 

frequency and severity in light of climate change and changes in weather patterns (Babbitt, 

2019). Therefore, it is becoming increasingly critical to protect such vital infrastructure and 

develop plans to improve its resilience to disasters. The Florida Department of Transportation 

(FDOT) set a 50-year vision as well as a 25-year set of policies to ensure state resources will be 

strategically used to achieve various goals, including infrastructure resilience. To achieve this 

goal and accommodate the planning need, FDOT will plan and implement multi-year 

transportation projects to enhance regional transportation assets and mitigate the consequences of 

any service disruption in the event of a disastrous occurrence. In anticipation of the increasing 

frequency and intensity of coastal hazards, FDOT needs to quantitatively measure and monitor 

regional transportation assets’ resilience to effectively prioritize candidate investments for 

resilience enhancement over a multi-year period. 

 

Resilience can be defined as infrastructure’s ability to absorb the impact and return to its normal 

condition after being exposed to a human-made or natural disruptive event, including, but not 

limited to, hurricanes, earthquakes, terrorist attacks, and tornados (Bruneau et al., 2003; Henry & 

Emmanuel Ramirez-Marquez, 2012; Koliou et al., 2020). As its definition suggests, resilience is 

not a single parameter but involves different aspects. The two main aspects of resilience 

employed in this study are robustness and rapidity. Robustness is defined as the system’s 

capacity to absorb disruptions without losing functionality, while rapidity is the system’s 

recovery rate after being exposed to a disruptive event. Several technical, socioeconomic, and 

environmental factors contribute to system robustness and rapidity (Berkeley et al. 2010; 

Bruneau et al. 2003; Wan et al. 2018). It is critical to consider all resilience aspects when 

planning for transportation resilience because considering a single aspect will not provide a 

comprehensive evaluation and might lead to ineffective policies and investments. For instance, if 

only the physical condition of infrastructure is considered for infrastructure resilience 

measurement, transportation infrastructure that is in good condition structurally, but not 

functionally, and supports post-disaster communities’ economic and social activities may be 

mistakenly evaluated to be resilient. Therefore, measuring transportation resilience is a 

multifaceted and complex process due to many relevant multidimensional regional factors (i.e., 

ranging from demographic features to technical, economic, and environmental ones). 

 

Despite the multidimensional nature of resilience, current FDOT resilience evaluation efforts to 

date have not considered these broader aspects of resilience. For example, the Florida 

Transportation Plan Policy Element (Florida Department of Transportation, 2020) concentrates 

mostly on the physical conditions of infrastructure assets (i.e., technical aspect) to evaluate 

transportation system resilience. Pavement condition, airport pavement condition, seaport 

infrastructure condition, and vulnerability to flooding or storm surge are examples of indicators 

introduced in the Florida Transportation Plan to monitor the progress toward achieving FDOT’s 
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resilience goals. Moreover, similar projects did not consider the various aspects of resilience 

evaluation simultaneously (i.e., generally, focusing on one aspect). For instance, the South 

Florida Climate Change Vulnerability Assessment and Adaptation Pilot Project (Parsons 

Brinckerhoff Inc., 2015) evaluated the sensitivity and exposure (i.e., only environmental aspects) 

of roadway and passenger rail facilities against three main climate stressors: sea-level rise 

inundation, storm surge flooding, and heavy precipitation induced flooding. Similarly, another 

project, titled “Risk assessment on strategic intermodal system (SIS) facilities (Smith, 2018),” 

was carried out to analyze the exposure (i.e., environmental aspect) of SIS highway network to 

several natural hazards and rank the facilities according to their exposure level and traffic 

volume. Moreover, a regional risk analysis project, titled "Tier 1 risk assessment," aimed to 

identify areas that were vulnerable to high risk of coastal flood events (Vasudevan, 2021). 

Although these projects provide valuable information regarding vulnerable infrastructure 

components that require attention, they did not fully consider diverse resilience aspects (e.g., 

technical, social, and economic) for resilience measurement. To develop inclusive resilience-

related policies and programs, resilience measures that capture various aspects of transportation 

resilience are required. As such, there is a need for a more comprehensive and quantitative 

approach to guide transportation resilience planning in anticipation of various disruptive events. 

 

To capture a holistic view of transportation system resilience, this project developed a 

framework of a resilience index to quantitatively evaluate the resilience of the Florida surface 

transportation system to natural hazards (i.e., wind-related hazards and water-related hazards). 

The proposed framework integrates resilience factors from various technical, socioeconomic, and 

environmental aspects of transportation resilience to develop a composite resilience index for the 

Florida transportation system. The resilience index enables transportation planners to capture the 

multidimensional nature of transportation resilience. Through the proposed index, FDOT will be 

able to quantitatively monitor and evaluate the status of transportation resilience and understand 

diverse capacity needs (i.e., the regional demographic, economic, and environmental aspects) to 

achieve a desired level of resilience. The objectives of the project can be summarized as follows: 

 

• Objective 1: Identify and track technical, social, economic, and environmental resilience 

factors 

• Objective 2: Understand the impact of the diverse regional factors on transportation 

resilience 

• Objective 3: Quantitatively evaluate the resilience of a network of transportation assets 

• Objective 4: Demonstrate how the proposed index can inform the planning of multiyear 

transportation projects/programs through guidance and an eventual development of a 

dashboard for policy makers.  

 

To achieve these objectives, four major steps are defined: 

• Step 01: Identification of multidimensional resilience factors.  

• Step 02: Robustness assessment of transportation networks 

• Step 03: Development of a framework of a composite index 

• Step 04: Demonstration of the framework of a transportation resilience index 
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The first step involves reviewing the research literature related to identifying and evaluating 

diverse factors and their impact on transportation resilience to different types of disruptive events 

(i.e., water- [sea-level rises and floods] and wind-related hazards [hurricanes and tornadoes]). A 

detailed search of the literature on (i) the identification of resilience factors across various 

domains (i.e., including demographic, economic, and environmental features) influencing 

robustness and rapidity of a surface transportation system (e.g., road transportation and rail 

transportation) in a post-disaster situation, and (ii) the resilience metrics used by various 

government agencies (i.e., including state DOTs, MPOs, and local and federal government 

agencies) for planning is conducted in this step. The knowledge gathered from the literature 

review provides the list of demographics, economic, and environmental factors contributing to 

transportation resilience (i.e., in terms of robustness and rapidity). The local-, state-, and 

national-level transportation experts from different sectors (e.g., industry, education, and 

government) are engaged to augment the findings. This cadre of experts is surveyed/interviewed 

to augment the understanding of the regional multidimensional factors and rank the identified 

resilience factors. The short-listed factors are used to evaluate the two aspects of transportation 

resilience (i.e., robustness and rapidity).  

 

The second step employs the factors selected in the previous step to evaluate the robustness 

aspect of transportation systems. Although robustness (i.e., the ability to withstand impacts 

without substantial degradation or losses) is influenced by various regional factors, it is largely 

determined by technical aspects of a transportation system (e.g., redundancy of a transportation 

network). As such, the evaluation of transportation networks’ robustness requires an additional 

analysis (i.e., graph theory). In this regard, transportation networks are developed to model the 

surface transportation system. Through simulation of disruptive events (i.e., wind-related hazard 

events and water-related hazard events), the performance of the network is measured by 

calculating the proportion of the connected pairs of nodes. The robustness of the network is 

calculated as the reciprocal of the reduction in the network performance. 

 

In the third step, a framework of a composite index is developed by integrating the resilience 

factors identified in the first and second steps. Statistical analysis approaches are employed to 

aggregate information and construct the composite index. The composite index framework 

quantitatively evaluates the resilience of a transportation system and facilitates the development 

of resilience projects at multiple planning levels. At a regional level, tracking the downward and 

upward trends of individual regional resilience factors is useful to understand vulnerable 

conditions and thus guide the development of micro-level transportation projects. Meanwhile, at 

the district level, decision-makers need to evaluate diverse resilience aspects to develop 

resilience strategic plans or policies (e.g., multi-year budget planning). Therefore, abundant 

information derived from various regional factors across different districts and cities should be 

processed to understand the resilience of transportation systems. The proposed composite index 

framework streamlines the abundant information and facilitates making informed decisions. 

 

In the fourth step, district-level and state-level transportation decision-makers are engaged to 

demonstrate the implementation of the developed framework via a workshop. Through the 

interaction with decision-makers, the team illustrated how the proposed resilience index 

facilitates developing transportation projects to meet their long-term resilience goals. 
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2 CHAPTER II: RESILIENCE FACTORS IDENTIFICATION FOR 

GROUND TRANSPORTATION SYSTEMS  

As the first step toward developing the resilience index, resilience indicators across various 

aspects of transportation resilience should be identified. In this regard, an extensive literature 

review on the resilience of surface transportation assets, including the road network and rail 

system, was conducted to find which metrics have been used to measure the resilience of the 

transportation systems. 

The main challenge in this regard was to effectively find the most relevant academic papers that 

cover the critical resilience factors. To address such a challenge, we adopted a systematic 

literature review method, which has been widely used in various transportation- and resilience-

related studies (e.g., planning methods for transportation resilience (Mattsson & Jenelius, 2015; 

Sun et al., 2020) and resilience analysis methods for general engineering systems (Hosseini et al., 

2016). The literature review aimed to answer the following question: 

 

• What factors are related to the resilience of surface transportation infrastructure assets 

(i.e., road and railway infrastructure) to water- and/or wind-related hazards? 

 

To address this question, we examined peer-reviewed journal papers and conference papers. 

Moreover, we queried online databases and search engines such as TRID, EI Compendex, TRIS, 

Inspect, NTIS, ScienceDirect, Google Scholar, Springer Nature, and the Wiley Online Library. 

The targeted journals cover various topics related to transportation resilience ranging from 

engineering to geography and urban planning. Several keywords were used to cover a broad 

range of resilience factors. These keywords included but were not limited to transportation 

resilience, transportation robustness, transportation vulnerability, transportation risk analysis, 

transportation reliability, resilience factors, and resilience index. During this analysis, we 

selected and reviewed a total of 56 research papers: 49 peer-reviewed journal papers and 7 

conference papers. 

 

We developed a review protocol to categorize the information extracted from each paper into the 

following categories: (i) the description of factors, (ii) the contribution to the resilience of the 

transportation system (i.e., either robustness or rapidity), (iii) the type of the relevant 

transportation assets (i.e., road systems or the railway systems1), and (iii) the relevant hazard 

type. Following this protocol, we captured various resilience factors from each scholarly work. 

 

In addition to academic literature, state DOT plans were reviewed. In this regard, ten states that 

are taking steps to incorporate resilience as a key component of their long-range transportation 

plans (LRTPs) and processes were selected. California, Colorado, Connecticut, Delaware, 

Georgia, Indiana, Iowa, New York, North Carolina, and Texas were the ten chosen states. In 

addition to these ten states, Florida’s current context was analyzed in-depth to review how the 

state is already committing to resilience in transportation; this helped to establish a baseline for 

 
1 According to the 2019 FDOT Transportation Asset Management Plan, the state mostly monitors the condition of 
and the risk of road systems (i.e., consisting of pavements and bridges). The proposed classification for the asset 
type covers these types of transportation assets and, in addition, considers railway systems for asset management 
planning. 



5 

 

research. Like the review of academic literature, emphasis was placed on pinpointing 

vulnerabilities in road and rail networks and the impacts of such vulnerabilities on the rapidity 

and robustness of a system to identify these resilience metrics. 

 

The research team reviewed each state’s LRTP to identify the factors used to evaluate and 

monitor the resilience of transportation infrastructure and understand how these factors could 

impact the transportation system. This preliminary review provided the resilience factors 

discussed in the following sections. However, the research team found that while many states 

recognize the importance of resilience planning, very few LRTPs explicitly identify the factors 

they use to inform their resilience planning decisions. Since the purpose of an LRTP is to 

broadly guide a state’s transportation planning efforts, few discuss the specifics of their 

resilience evaluation processes. For example, the Connecticut Statewide LRTP identified the 

development of a resilient transportation system as one of the state’s core goals yet did not 

specify the factors used to measure the success of their resilience efforts. 

 

Consequently, the research team expanded the plan review to include a broader range of state 

plans that address resilience specifically. In particular, the team reviewed each state’s hazard 

mitigation plan. It was easy to find different factors within a hazard mitigation plan that could 

impact the vulnerability of the transportation system, especially with regard to weather-related 

incidents. In addition, the review was expanded to include regional and local plans that provided 

a more comprehensive evaluation of the factors that make a transportation system vulnerable. As 

seen in Table 2-1, local governments’ and metropolitan planning organizations’ (MPOs) LRTPs 

were selectively included in the plan review to include agencies that are leading the way in 

resilience planning. 

 

Table 2-1: States and plans analyzed for the literature review 

State Plans Analyzed 

California 

California Transportation Plan 2040 

California Sustainable Freight Action Plan 

City of Berkeley Resilience Strategy 

Resilient San Francisco 

Resilient Oakland 

Colorado 

CDOT Statewide Transportation Plan 2040 

CDOT Action Plan 

Colorado Resilience Playbook 

Colorado Climate Plan 

Colorado Natural Hazard Mitigation Plan 

Connecticut 

Connecticut Statewide Long-Range Transportation Plan 2018–2050 

Connecticut Climate Change Preparedness Plan 2011 

State Natural Hazard Mitigation Plan 
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Table 2-1: States and Plans Analyzed for the Literature Review “continued” 

State Plans Analyzed 

Delaware 

DelDOT Long-Range Transportation Plan 

Strategic Implementation Plan for Climate Change, Sustainability, and 

Resilience in Transportation 

Climate Framework for Delaware 

Georgia 

2040 Statewide Transportation Plan/2015 Statewide Strategic Transportation 

Plan 

Georgia DOT and System Resilience: Learning from Past Experiences 

State Hazard Mitigation Plan 

Indiana Long-Range Transportation Plan 

Iowa 
Iowa in Motion 2045 

Iowa City Climate Action and Adaptation Plan 

North 

Carolina 

North Carolina Statewide Transportation Plan 2040 

State Hazard Mitigation Plan 

New York 

New York State’s Transportation Master Plan for 2030 

One New York City Livable Climate 

One New York City Efficient Mobility 

One New York City 2050 Inclusive Economy 

One New York City 2050 Modern Infrastructure 

Texas 

Statewide Long-Range Transportation Plan 2035 

Texas Coastal Resilience Master Plan 

Statewide Freight Resilience Plan 

Florida 

Florida Transportation Plan 

South Florida Climate Change Vulnerability Assessment and Adaptation Pilot 

Project 

State Hazard Mitigation Plan 

FDOT Transportation Asset Management Plan 

Resilience Quick Guide: Incorporating Resilience in the Metropolitan Planning 

Organization’s Long-Range Transportation Plan 

 

In the following subsections, technical, socioeconomic, and environmental factors are identified 

and categorized with respect to infrastructure (i.e., rail or road) and hazard type (i.e., water or 

wind). 
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2.1 Identification of Resilience Factors 

This project employs the definition of resilience presented by the United Nations Office for 

Disaster Risk Reduction (UNISDR 2009). According to UNISDR, resilience is the ability of a 

system to resist, absorb, adapt to, and recover from the effects of a hazard in a timely and 

efficient manner (UNISDR 2009). This definition covers two essential aspects of resilience: 

robustness and rapidity. Robustness is defined as the ability of a system to withstand or absorb 

disturbances and remain intact when exposed to disruptions (Faturechi & Miller-Hooks, 2015). 

Rapidity is defined as the speed or rate at which a system could return to its original state or at 

least an acceptable level of functionality after the occurrence of disruption (Hosseini et al., 

2016).  

 

We categorized the resilience factors into three groups (i.e., technical, socioeconomic, and 

environmental factors) based on their relevant domain. The technical factors are mostly related to 

the physical performance and characteristics of the system. Examples of technical factors include 

network connectivity, network accessibility, and centrality. Socioeconomic factors are mainly 

related to communities, users, and the regional economy. Network mobility factors, safety, and 

network demand are the common socioeconomic resilience factors for the surface transportation 

infrastructure. Environmental factors include the geographical aspects of transportation assets as 

well as proximity to the sea and the elevation of a road network. 

 

In summary, 156 factors were identified from the academic literature, 69 from state plans, and 

seven from the initial informants. In total, the initial list of 289 factors included 157 technical, 77 

socioeconomic, 51 environmental factors (Table 2-2). Among them, four factors were mixed, 

aligning with / multiple categories. 

 

Table 2-2: Summary of literature review 

 Academic 

Literature 

State Plans Initial 

Informants 

Technical 109 48  

Socioeconomic 28 49  

Environmental 15 29 7 

Mixed 4   

Total 156 126 7 

 

2.2 Selection and Prioritization of Resilience Factors 

This section outlines the data collection and expert engagement considerations required to 

measure and monitor the resilience of regional transportation assets. The five-step process 

outlined below captures the steps employed to develop a mechanism to prioritize the identified 

resilience factors, as follows: 

• Step 1: Factor Consolidation 

• Step 2: Preliminary Survey Consultations 

• Step 3: Final Survey Dissemination 

• Step 4: Guided Group Survey 
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• Step 5: Factor prioritization 
 

2.2.1.1 Step 01. Factor Consolidation 

The research team recognized that analyzing 289 separate factors would neither provide a 

manageable set of conclusions nor support an efficient modeling process. To reduce the number 

of factors to be used in the model, it is important to apply a consistent methodology for factor 

consolidation and rationalization. The FSU team developed a standard Excel-based reporting 

tool to record their research findings. The tool included columns classifying factor categories, 

groups of factors within these categories, and individual factors. For each factor, a data source 

was provided. The team also included columns to assess each factor based on four parameters: 

data availability, ease of availability, reporting frequency, and comprehensiveness. The team 

then carefully examined the list of factors to identify and eliminate those for which source data 

for metrics was not readily available.  

This consolidation step resulted in a preliminary list of 27 factors from the following categories: 

13 technical, 11 socioeconomic, and 3 environmental factors (Table 2-3). 

 

Table 2-3: Reduced list of factors, based on factor consolidation 

Technical Factors Socioeconomic Factors Environmental Factors 

Network Connectivity 

Degree of Nodes 

Betweenness Centrality 

Recoverability 

Maintenance Level 

Available Modes 

Link Capacity 

Reliability 

Network Accessibility 

Context-Sensitive Design 

Utilities and Drainage 

Age of Infrastructure 

Available Resources 

Population 

Fuel and Energy Access 

Multi-modal Mobility 

Network Demand 

Traveler Perception 

Transport Cost/Freight Cost 

Emergency Response 

Tourism 

Economic Growth 

Social Vulnerability/Equity 

Travel Safety 

Physical Elevation 

Exposure 

Proximity 

 

 

 

2.2.1.2 Step 02: Preliminary Survey Consultation  

The next step required a further reduction of the 34 factors down to a more manageable number 

for inclusion in the study process. To this end, the FSU team engaged a small group of planning 

professionals to assist with experimental design. These expert practitioners were members of 

the Resilience Sub-committee of East Central Florida Regional Planning Council (ECFRPC).  

 

This preliminary consultation step yielded a final list of 23 resilience factors from the following 

categories: seven technical, seven socioeconomic, and two environmental factors. Of these 

factors, 14 were specific to wind hazards, and 10 to water hazards (Table 2-4).  
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Table 2-4: List of final factors, based on preliminary survey consultations 

 Factor 
Type of Hazard 

Wind Water 

T
E

C
H

N
IC

A
L

 
Age of Infrastructure x x 

Utilities and Drainage x x 

Maintenance Level x x 

Recoverability x x 

Network Accessibility x  

Link Capacity x  

Network Connectivity  x 

S
O

C
IO

E
C

O
N

O
M

IC
 

Economic Growth x x 

Social Vulnerability/Equity x x 

Travel Safety x x 

Tourism x  
Emergency Response x x 

Network Demand x  
Traveler Perception  x 

E
N

V
IR

O
N

M
E

N
T

A
L

 

Proximity x  

Exposure x  

 

2.2.1.3 Step 03: Final Survey Dissemination 

Based on the feedback from Step 2, the final survey was developed. The survey instrument 

consisted of three main parts: an introductory section, the main section, and the self-

identification section. A description of each section is detailed below:  

 

1) The introductory section provided context for survey respondents as it explained the 

survey's purpose, relevance, and the use of survey results. This section also included 

definitions of types of factors and a description of the evaluation criterion. External links 

were also provided for the definitions and the evaluation criterion to allow respondents to 

have separate windows opened simultaneously while working on the survey.  

 

2) As with the preliminary survey, the main section of the questionnaire was broken down 

into three components: technical, socioeconomic, and environmental factors. For each 

section, respondents were asked to rank these pre-identified factors across three 

dimensions: significance, relevance, and comparability, for both wind and water hazards, 
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using a 5-point Likert scale (extremely high, high, medium, low, and extremely low). In 

an effort to avoid the potential bias inherent in survey responses, the FSU team provided 

the specific meaning of each scale for evaluating hazard/factor in terms of the three 

aspects.  

3) A section on self-identification was also included in the survey to determine the diversity 

of the professions, organizations that responded, and the geographic regions covered. The 

requested information included name, title, employer, office zip code, phone, and e-mail. 

This information is further used for follow-up phone calls with specific informants.  

 

2.2.1.4 Step 04: Guided Group Survey & Key Informants 

Despite the relatively large sample size of 256 recipients, as well as e-mail and phone call 

follow-up reminders, the response rate remained less than 8% at the end of September 2020. 

Further, several participants accessed the survey but did not fully complete it.  

 

To further boost participation, the team provided an opportunity for additional informants to 

complete the survey in a team-guided, Zoom-based environment. This Zoom session enabled the 

team to clearly present the project objectives and field questions that respondents may have had 

about the survey questions and ensure the completion of the survey. The guided group session 

was held on October 22, 2020, with 17 professionals with expertise in resilience in attendance. 

Employing a snowballing technique, based on input from these experts, the survey link was sent 

to additional key informants between November 9 -20, 2020. This added 6 additional survey 

responses (Table 2-5).  
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Table 2-5: Survey distribution process details 

Dissemination 

Process 
Date Survey Sample 

Sample 

Size 

Source of Sample List / 

Method of Dissemination 

Survey 

Launch 

Aug. 

25, 

2020 

FTP Resilience Sub-

Committee, Florida MPOs, 

FDOT District offices, and 

Florida's Rail, Ports, and 

Airport agencies, active 

TAC participants 

100 

The original sample list 

was based on a prior list 

developed and approved 

for a similar FDOT project. 

The survey link was 

distributed via e-mail. 

Expansion of 

Survey 

Sample 

Sept. 2 

- 3, 

2020 

Private planning firms from 

Florida, public transit 

agencies, city governments, 

non-profits, and academia 

156 

The expanded list was 

sourced from key 

informants from FDOT 

and East Central Florida 

Regional Planning 

Council. The survey link 

was distributed via e-mail. 

Guided Group 

Survey 

Oct.22, 

2020 

Key informants and 

Snowball Sampling 

 

 

 

17 

Meeting requests were 

forwarded to select persons 

identified by key 

informants. Participants 

also forwarded this link to 

persons in their 

organization. Out of 17 

persons that attended the 

session, 12 did not receive 

the e-mail link to the 

survey prior to this 

invitation. 

Expansion of 

Survey 

Sample 

Nov 9 

-20, 

2020 

State agencies, academic 

institutions 

 

10 

The survey link was 

distributed via e-mail 

 

The following pie chart (Figure 2-1) shows the distribution of the sample by type of institution. 

The chart shows that the survey was distributed mainly to respondents from local institutions 

(30%), followed by state (21%) and regional (18%) organizations. The private sector accounted 

for 14%, while the remaining institutions included special districts (6%) and universities (5%). 

 



12 

 

 
Figure 2-1: Distribution of resilience index survey, by type of organization 

2.2.1.5 Step 05: Survey Results and factor prioritization 

The survey was shared with a total of 278 persons, of these 44 completed the questionnaire as of 

November 28, 2020, resulting in a response rate of 15.8%. Of those that completed the 

questionnaire, 26 persons identified the type of organization they represent, as presented in Table 

2-6. 

 

Table 2-6: Type of institution associated with identified respondents 

Type of Institution No. of Respondents 

State 9 

Regional 5 

Local 4 

Special Districts 1 

Private Sector 4 

University 3 

2.2.1.5.1 Survey Sample Bias 

Because of the stepwise way in which the survey results were derived, there was an opportunity 

for certain data set peculiarities and results biases to be present. The team anticipated these 

biases and believed they would not significantly impact the study process or results. It is 

expected that these biases may result in higher standard deviations within scored survey response 

categories.  

 

Variations in input levels. The study process involved interviewing state and regional agencies, 

conducting focus groups, and targeting experts in the field of resilience planning through surveys 

and follow-up calls. These mixed methods may have more heavily weighted some experts’ input, 
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such as those who were directly interviewed or participated in more than one element of the 

study, over those completing only the final survey.  

 

Professional and organizational differences. The participant experts were drawn from a range of 

professions, including engineers, planners, public administrators, and academics. They also 

represented a range of different state, regional and local organizations, each with a different 

planning mandate. These differences may introduce bias when trying to ascertain a uniform set 

of results from such a diverse group.   

 

Geographical differences.  An expected contributor to variations in survey results came from 

including experts with jurisdiction over inland and coastal issues in a single survey. Because our 

survey methods did not allow for a stratified analysis based on location, it is expected that noted 

hazards and resilience factors with the broadest applicability to both inland and coastal areas may 

receive the highest scores, but this aggregation will drive up the standard deviations within each 

response category.  

2.2.1.5.2 Sufficiency of Sample Size 

To evaluate the statistical reliability of the collected data, the FSU team investigated whether a 

sample size of 44 adequately represented the community of resilience practitioners as a whole. 

Several landmark studies were consulted to assess minimum sample sizes. Fowler (1995) quotes 

a sample size of 15 to 35 as adequate, while Sudman (1983) recommends 20 to 50. Converse and 

Presser (1986) propose a wider range of 25 to 75. Accordingly, the sample size of 44 as used in 

this analysis seems to be sufficient. 

 

Beyond these studies, the following equation (derived from the confidence interval formula) 

(Abotaleb et al., 2019)was applied to assess the sufficiency of the overall sample size: 

Confidence Interval formula: 

             �̅� ± 𝑍
𝑠

√𝑛
 (2-1) 

  𝑛 =  
𝑧2𝑠2

𝑒2  

 

where 

− n: minimum sample size 

− z: standard normal deviation (at 95% confidence level, z = 1.96) 

− e: acceptable standard error of mean 

− s: population standard deviation 

 

This equation was applied to every survey question to obtain the minimum number of 

respondents, with the population standard deviation being estimated by the sample standard 

deviation. Table 2-7 below shows the resulting range of minimum sample size requirements. 

Note that each survey question requires a different minimum number of responses based on its 

variance and its average for different values of an acceptable standard error of the mean. 
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Table 2-7: Sample size needed to obtain the acceptable standard error of the mean 

Acceptable Standard 

Error of Mean (%) 

Minimum Number of 

Responses 
Average 

14% from 2 to 49 20 

12% from 3 to 67 27 

10% from 4 to 96 39 

8% from 6 to 149 60 

6% from 11 to 265 107 

 

As per Table 2-7, on average, a sample size of 39 yields an error of 10%, and that of 60 yields an 

error of 8%. Since our expert-based survey size is 44, it is concluded that it will maintain a 

maximum standard error between 8% and 10%.  

2.2.1.5.3 Prioritization methodology 

It is important to understand the overall ranking of each monitored hazard and resilience factor 

across all of the studied criteria (i.e., significance, relevance, and comparability). An overall 

rating of each monitored hazard and resilience factor was calculated using the geometric 

aggregation of its corresponding significance, comparability, and relevance ratings while 

assuming that each of these criteria has the same weight. As such, for each factor, Equation (2-2) 

was used to calculate its overall rating for every survey response: 

 

   𝑂𝑅 =  ∏ 𝑅𝑖
1

3⁄3
𝑖=1          (2-2) 

 

Where 𝑂𝑅 denotes the overall rating of the resilience factor studied; 𝑖 denotes the code of the 

criteria studied, then 𝑖 = {1, 2, 3} corresponding to significance, relevance, and comparability; 

and Ri denotes the 𝑖𝑡ℎ rating of the monitored hazard or resilience factor. 

 

The studied resilience factors were ranked based on their mean response ratings in each of the 

significance, relevance, and comparability criteria for both wind hazards and water hazards. To 

make it easier for decision-makers to interpret the resilience factors' rankings, ranking tiers were 

defined. Then, the resilience factors were categorized under these tiers accordingly. As such, 

with the limitation on the availability of required resources to address all identified resilience 

factors, having resilience factors divided into tiers allows state highway agencies and other 

decision-makers to identify the group of factors that would be the most significant, relevant, and 

comparable in guiding resilience planning.  

 

To divide the factors into tiers based on their ratings, a series of statistical tests were used to 

determine the number of tiers and allocate the resilience factors to those tiers. It was 

hypothesized that the mean rating of the resilience factors within the same tier is statistically 

insignificant. The methodology used can be described as follows: 

 

1. Resilience factors are ranked based on their mean ratings. 

2. Two-sample testing is conducted to compare the mean ratings between Ranks 1 and 2, 

then between Ranks 1 and 3, and so on until a comparison is performed between Ranks 1 
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and N, where N is the rank at which there is a statistically significant difference between 

the ratings of Ranks 1 and N. Thus, the first tier is comprised of factors ranked from 1 to 

N-1. 

3. Rank N is assigned to the second tier and the difference in the mean ratings between 

Ranks N and N+1 is tested. Similar testing is done until a significant difference in the 

mean rating is found between Ranks N and M. Thus, the second tier is comprised of 

factors ranked from N to M-1. 

4. The same logic is followed until all resilience factors are assigned into tiers.  

 

To determine the statistical analysis to be performed for comparing the mean ratings, the 

normality of the data was checked by conducting normality tests. Since the assumption of 

normality was not satisfied, the non-parametric Mann-Whitney U test was used to compare the 

means of independent nonnormally distributed samples. If the p-value resulting from the Mann-

Whitney U test is less than 0.05, then the difference between the mean ratings of the two tested 

factors is statistically significant at the 95% confidence level.  

2.2.1.5.4 Prioritization results 

2.2.1.5.4.1 Wind Hazards 

Emergency response and exposure were the highest concerns for both the significance and 

relevance criteria. However, for comparability, the age of infrastructure was the most significant, 

followed by emergency response. It must be noted that the high standard deviations across all 

dimensions suggest a lack of strong agreement among practitioners when determining the 

priority ranking of resilience factors. 

 

Significance 

In terms of significance, emergency response was ranked the highest, followed by exposure. 

Table 2-8 below shows the ranking of resilience factors associated with wind hazards based on 

their significance ratings, along with their assigned tiers. 
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Table 2-8: Wind hazards resilience factors ranked with respect to significance 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Emergency Response 4.26 1.16 Tier 1 Rapidity Socioeconomic 

Exposure 4.05 1.13 Tier 1 Robustness Environmental 

Age of infrastructure 3.98 1.15 Tier 2 Robustness Technical 

Maintenance level 3.86 1.00 Tier 2 Robustness Technical 

Travel Safety 3.86 1.13 Tier 2 Robustness Socioeconomic 

Recoverability 3.82 1.24 Tier 2 Rapidity Technical 

Proximity 3.76 1.19 Tier 2 Robustness Environmental 

Social Vulnerability/Equity 3.60 1.29 Tier 2 Robustness Socioeconomic 

Network Demand 3.58 1.26 Tier 2 Robustness Socioeconomic 

Utilities and Drainage 3.52 1.17 Tier 3 Robustness Technical 

Network Accessibility 3.23 1.34 Tier 3 Rapidity Technical 

Link capacity 3.09 1.34 Tier 3 Robustness Technical 

Tourism 3.07 1.22 Tier 3 Robustness Socioeconomic 

Economic Growth 3.02 1.50 Tier 3 
Robustness / 

Rapidity 
Socioeconomic 

 

Relevance 

In terms of relevance, emergency response was ranked the highest, followed by exposure. Table 

2-9 below shows the ranking of resilience factors associated with wind hazards based on their 

relevance ratings, along with their assigned tiers. 

 
Table 2-9: Wind hazards resilience factors ranked with respect to relevance 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Emergency Response 4.07 1.21 Tier 1 Rapidity Socioeconomic 

Exposure 4.03 1.05 Tier 1 Robustness Environmental 

Maintenance level 3.79 1.19 Tier 1 Robustness Technical 

Age of infrastructure 3.77 1.17 Tier 2 Robustness Technical 

Proximity 3.75 1.08 Tier 2 Robustness Environmental 

Recoverability 3.74 1.22 Tier 2 Rapidity Technical 

Travel Safety 3.61 1.22 Tier 2 Robustness Socioeconomic 

Utilities and Drainage 3.56 1.31 Tier 2 Robustness Technical 

Network Demand 3.41 1.26 Tier 2 Robustness Socioeconomic 

Social Vulnerability/Equity 3.32 1.33 Tier 2 Robustness Socioeconomic 

Network Accessibility 3.27 1.45 Tier 2 Rapidity Technical 

Link capacity 3.10 1.32 Tier 3 Robustness Technical 

Economic Growth 2.98 1.44 Tier 3 
Robustness / 

Rapidity 
Socioeconomic 

Tourism 2.76 1.11 Tier 3 Robustness Socioeconomic 



17 

 

Comparability 

The age of infrastructure was the main concern for comparability, followed by emergency 

response. Table 2-10 below shows the ranking of resilience factors associated with wind hazards 

based on their comparability ratings, along with their assigned tiers. 

 
Table 2-10: Wind hazards resilience factors ranked with respect to comparability 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Age of infrastructure 3.90 1.21 Tier 1 Robustness Technical 

Emergency Response 3.51 1.12 Tier 1 Rapidity Socioeconomic 

Maintenance level 3.49 1.16 Tier 2 Robustness Technical 

Proximity 3.45 1.03 Tier 2 Robustness Environmental 

Exposure 3.39 1.28 Tier 2 Robustness Environmental 

Network Demand 3.28 1.15 Tier 2 Robustness Socioeconomic 

Travel Safety 3.23 1.16 Tier 2 Robustness Socioeconomic 

Link capacity 3.17 1.34 Tier 2 Robustness Technical 

Utilities and Drainage 3.12 1.23 Tier 2 Robustness Technical 

Social 

Vulnerability/Equity 
3.03 1.27 Tier 2 Robustness Socioeconomic 

Economic Growth 2.97 1.27 Tier 2 
Robustness / 

Rapidity 
Socioeconomic 

Network Accessibility 2.95 1.30 Tier 2 Rapidity Technical 

Recoverability 2.93 1.20 Tier 3 Rapidity Technical 

Tourism 2.69 1.03 Tier 3 Robustness Socioeconomic 

 

Overall Ranking 

Emergency response, age of infrastructure, and exposure were classified as Tier 1 resilience 

factors. Table 2-11 below shows the ranking of resilience factors associated with wind hazards 

based on their calculated overall ratings, along with their assigned tiers. 
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Table 2-11: Wind hazards resilience factors overall ranking 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Emergency Response 3.89 1.05 Tier 1 Rapidity Socioeconomic 

Age of infrastructure 3.77 0.93 Tier 1 Robustness Technical 

Exposure 3.66 0.99 Tier 1 Robustness Environmental 

Maintenance level 3.62 0.94 Tier 2 Robustness Technical 

Proximity 3.58 0.93 Tier 2 Robustness Environmental 

Travel Safety 3.49 1.10 Tier 2 Robustness Socioeconomic 

Recoverability 3.36 1.03 Tier 2 Rapidity Technical 

Network Demand 3.29 1.12 Tier 2 Robustness Socioeconomic 

Utilities and Drainage 3.28 1.06 Tier 2 Robustness Technical 

Social Vulnerability/Equity 3.17 1.05 Tier 2 Robustness Socioeconomic 

Network Accessibility 3.02 1.28 Tier 2 Rapidity Technical 

Link capacity 2.98 1.08 Tier 3 Robustness Technical 

Economic Growth 2.89 1.23 Tier 3 
Robustness / 

Rapidity 
Socioeconomic 

Tourism 2.68 0.90 Tier 3 Robustness Socioeconomic 

 

When analyzing the overall ranking of factors with respect to wind, emergency response, age of 

infrastructure, and exposure rank among the top hazards, while link capacity, economic growth, 

and tourism rank at the bottom.  

 

The identification of emergency response as a top selection across dimensions underscores how 

important emergency response is to ensure long-term disaster recovery and community 

resilience. The age of infrastructure and exposure factors also rank high. Both relate to the 

vulnerability of infrastructure components and underscore the problems of legacy development. 

Systems components that have a high degree of disaster exposure are also often older. 

Differences in respondents' geographic locations would be less likely to influence the perception 

of any of these three factors. 

 

Of the lower scoring factors, it is interesting to note that link capacity ranked low with respect to 

resilience. Outside of emergency evacuations, the added capacity of a specific link may not 

necessarily imply system-wide resilience, which may be reflected in this response. The 

remaining two factors, economic growth and tourism, relate to the economy. When considering 

resilience, their lower scores may relate to a heightened focus on physical infrastructures. 

2.2.1.5.4.2 Water Hazards 

The same resilience factors were categorized as Tier 1 across all three dimensions: utilities and 

drainage, recoverability, emergency response, and age of infrastructure. Three of these four 

factors belonged to the technical group. 
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Significance 

In terms of significance, utilities and drainage, recoverability, emergency response and age of 

infrastructure were identified as Tier 1 resilience factors. Table 2-12 below shows the ranking of 

resilience factors associated with water hazards based on their significance ratings, along with 

their assigned tiers. 
 

Table 2-12: Water hazards resilience factors ranked with respect to significance 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Utilities and Drainage 4.57 0.76 Tier 1 Robustness Technical 

Recoverability 4.48 0.82 Tier 1 Rapidity Technical 

Emergency Response 4.44 0.96 Tier 1 Rapidity Socioeconomic 

Age of infrastructure 4.27 1.06 Tier 1 Robustness Technical 

Maintenance level 4.16 0.96 Tier 2 Robustness Technical 

Network Connectivity 4.05 0.90 Tier 2 Robustness Technical 

Social Vulnerability/Equity 3.95 1.15 Tier 2 Robustness Socioeconomic 

Travel Safety 3.93 1.12 Tier 2 Robustness Socioeconomic 

Economic Growth 3.65 1.29 Tier 2 
Robustness / 

Rapidity 
Socioeconomic 

Traveler Perception 3.52 1.35 Tier 3 
Rapidity / 

Robustness 
Socioeconomic 

 

Relevance  

In terms of relevance, utilities and drainage, recoverability, emergency response, and age of 

infrastructure were identified as Tier 1 resilience factors. Table 2-13 below shows the ranking of 

resilience factors associated with water hazards based on their relevance ratings, along with their 

assigned tiers. 
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Table 2-13: Water hazards resilience factors ranked with respect to relevance 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Utilities and Drainage 4.42 0.79 Tier 1 Robustness Technical 

Recoverability 4.35 0.92 Tier 1 Rapidity Technical 

Emergency Response 4.32 1.04 Tier 1 Rapidity Socioeconomic 

Age of infrastructure 4.19 1.12 Tier 1 Robustness Technical 

Maintenance level 4.02 0.99 Tier 2 Robustness Technical 

Network Connectivity 3.81 1.04 Tier 2 Robustness Technical 

Travel Safety 3.76 1.22 Tier 2 Robustness Socioeconomic 

Economic Growth 3.54 1.32 Tier 2 
Robustness / 

Rapidity 
Socioeconomic 

Social Vulnerability/Equity 3.54 1.16 Tier 2 Robustness Socioeconomic 

Traveler Perception 3.20 1.20 Tier 3 
Rapidity / 

Robustness 
Socioeconomic 

 

Comparability 

Age of infrastructure, emergency response, and utilities and drainage were among the top factors 

ranked in terms of comparability. Table 2-14 below shows the ranking of resilience factors 

associated with water hazards based on their comparability ratings, along with their assigned 

tiers. 

 

Table 2-14: Water hazards resilience factors ranked with respect to comparability 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Age of infrastructure 3.98 1.16 Tier 1 Robustness Technical 

Emergency Response 3.79 1.00 Tier 1 Rapidity Socioeconomic 

Utilities and Drainage 3.67 1.12 Tier 1 Robustness Technical 

Recoverability 3.52 1.21 Tier 2 Rapidity Technical 

Network Connectivity 3.51 1.05 Tier 2 Robustness Technical 

Economic Growth 3.44 1.05 Tier 2 Robustness / 

Rapidity 

Socioeconomic 

Travel Safety 3.44 1.17 Tier 2 Robustness Socioeconomic 

Maintenance level 3.37 1.09 Tier 2 Robustness Technical 

Social Vulnerability/Equity 3.36 1.09 Tier 2 Robustness Socioeconomic 

Traveler Perception 2.66 1.17 Tier 3 Rapidity / 

Robustness 

Socioeconomic 
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Overall Ranking 

Of the five Tier 1 resilience factors, four are technical: utilities and drainage, age of 

infrastructure, recoverability, and maintenance level. Table 2-15 below shows the ranking of 

resilience factors associated with water hazards based on their calculated overall ratings, along 

with their assigned tiers. 

 

Table 2-15: Water hazards resilience factors overall ranking 

Factor Mean SD Tier 
Robustness / 

Rapidity 
Factor Type 

Utilities and Drainage 4.14 0.76 Tier 1 Robustness Technical 

Emergency Response 4.13 0.88 Tier 1 Rapidity Socioeconomic 

Age of infrastructure 4.08 0.97 Tier 1 Robustness Technical 

Recoverability 4.01 0.85 Tier 1 Rapidity Technical 

Maintenance level 3.79 0.87 Tier 1 Robustness Technical 

Network Connectivity 3.70 0.84 Tier 2 Robustness Technical 

Travel Safety 3.60 1.06 Tier 2 Robustness Socioeconomic 

Social Vulnerability/Equity 3.49 0.93 Tier 2 Robustness Socioeconomic 

Economic Growth 3.45 0.97 Tier 2 
Robustness / 

Rapidity 
Socioeconomic 

Traveler Perception 3.01 1.05 Tier 3 
Rapidity / 

Robustness 
Socioeconomic 

 

 

When analyzing the overall ranking of factors with respect to water, utilities, and drainage, 

emergency response and age of infrastructure ranked highest, while social vulnerability/equity, 

economic growth, and traveler perception ranked at the bottom. 

 

Like with wind hazards, emergency response and the age of infrastructure rise to the top. For a 

system to be resilient, the actions taken immediately following a hazard event must be effective, 

comprehensive, long-term, and sustainable. Adequate emergency response helps ensure these 

outcomes.  Likewise, system resilience is predicated upon the viability of baseline elements. The 

older a system is, the less likely that its viability can be assured. This explains why, as with wind 

hazards, age of infrastructure scores highly for water hazards as well. The third factor, utilities 

and drainage, is a highly ranked water-related resilience factor. This finding further suggests the 

importance placed on physical infrastructure components and the role that drainage and utilities 

play in keeping other system components viable in water-related incidents. 

 

All three lowest ranking factors, social vulnerability/equity, economic growth, and traveler 

perception, fall outside of the set of factors tied directly to physical infrastructure. Further, while 

the highly ranked emergency response is programmatic, these three factors also fall somewhat 

outside of the purview of what any particular government initiative is charged with managing 

and may be seen as being more outside of planners' control. Like with all lower-scoring factors, 
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it provides insight into the need to ensure that the important issues these factors represent are not 

overlooked.  

 

2.3 Summary 

Table 2-16 summarizes the statistical analysis results in terms of the three criteria (i.e., 

significance, relevance, and comparability). This table includes the number and the percentage of 

various factor types in each tier. For example, four robustness factors, or 13 % of the robustness 

factors, are included in tier 1 of the wind-related hazards in terms of significance, relevance, and 

comparability criteria. Similarly, three rapidity factors were included in tier 1 of wind-related 

hazards, which corresponds to 33% of the rapidity factors for wind-related hazards. Based on the 

results for the wind-related hazards, transportation experts are equally concerned about technical, 

socioeconomic, and environmental factors because almost the same number of factors from each 

group are included in tier 1. On the other hand, in water-related hazards, transportation experts 

are mostly focused on technical factors. In fact, emergency response is the only socioeconomic 

factor included in tier 1 for water-related hazards. Moreover, no environmental factor was 

included in the survey for water-related hazards. Finally, the results show that transportation 

experts included approximately the same number of robustness factors as rapidity factors in tier 1 

for both hazard types, thereby suggesting equal importance of both aspects of transportation 

resilience.  

 

Table 2-16: Summary of survey results with respect to the factor categories 

  
Robustness Rapidity 

Robustness / 

Rapidity 
Technical Socioeconomic Environmental 

  # % # % # % # % # % # % 

Wind-

related 

hazard 

Tier 1 4 0.13 3 0.33 0 0.00 2 0.11 3 0.17 2 0.33 

Tier 2 20 0.67 4 0.44 1 0.33 11 0.61 10 0.56 4 0.67 

Tier 3 6 0.20 2 0.22 2 0.67 5 0.28 5 0.28 0 0.00 

Sum 30 1 9 1 3 1 18 1 18 1 6 1 

Water-

related 

hazard 

Tier 1 6 0.33 5 0.83 0 0.00 8 0.53 3 0.20 0 0.00 

Tier 2 12 0.67 1 0.17 3 0.50 7 0.47 9 0.60 0 0.00 

Tier 3 0 0.00 0 0.00 3 0.50 0 0.00 3 0.20 0 0.00 

Sum 18 1 6 1 6 1 15 1 15 1 0 0.00 

 

As previously noted, 16 unique factors were analyzed for wind and water events.  In the 

following paragraphs, the summary of the results for each resilience factor is presented, along 

with an interpretation of the results. Table 2-17 summarizes survey results for each resilience 

factor. This table includes type, overall ranking, and an average value of responses with respect 

to both hazard types. Moreover, this table provides the important remarks for each factor and 

highlights tier 01 factors for wind- and water-related hazards. 
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Table 2-17: Summary of survey results for each resilience factor 

Factor Name 
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Remarks 

Network 

Connectivity 
T Rs   

2 

(3.7) 

Network connectivity is a less critical factor in water-related hazards as it is 

categorized under tier 02. 

Recoverability T Rp 
2 

(3.36) 

1 

(4.01) 

Recoverability is more critical for water-related hazards than for wind-

related hazards. It is not one of the most commonly collected and used by 

different planning agencies as it received a lower comparability tier. 

Maintenance 

level 
T Rs 

2 

(3.62) 

1 

(3.79) 

Maintenance level is one of the critical resilience factors for water-related 

hazards. As a tier 01 factor for the relevance criterion, this factor can capture 

improvements or deterioration in transportation resilience to wind-related 

hazards resulting from planning decisions and actions. 

Link capacity T Rs 
3 

(2.98) 
  

Link capacity is not one of the critical resilience factors as it was classified 

as a tier 03 factor. 

Network 

Accessibility 
T Rp 

2 

(3.02) 
  

Although accessibility is not classified as a tier 01 factor, measuring it helps 

understand the effect of planning decisions on system resilience since it was 

grouped as tier 02 for relevance. 

Utilities and 

Drainage 
T Rs 

2 

(3.28) 

1 

(4.14) 

Improving utilities and drainage systems is essential for enhancing 

transportation systems' resilience against water-related hazards. 

Age of 

Infrastructure 
T Rs 

1 

(3.77) 

1 

(4.08) 

Age of infrastructures is one of the most important factors in determining 

the overall resilience of transportation systems as it was classified as tier 01 

for both types of natural hazards 

Network 

Demand 
S Rs 

2 

(3.29) 
  

Although network demand is not classified as a tier 01 factor, measuring it 

helps evaluate transportation network robustness as it was ranked as a tier 

02 factor in terms of all of the three criteria 

Traveler 

Perception 
S RR   

3 

(3.01) 

Travelers perception is not one of the critical resilience factors as it was 

classified as a tier 03 factor 

Emergency 

Response 
S Rp 

1 

(3.89) 

1 

(4.13) 

It is essential to put great emphasis on improving emergency response to 

enhance the overall resilience of transportation systems since this factor was 

ranked as tier 01 factor for both wind and water-related hazards 

Social 

Vulnerability/ 

Equity 

S Rs 
2 

(3.17) 

2 

(3.49) 

Social vulnerability is ranked as a tier 02 factor for all criteria for both 

hazard types. Thus, it is a relatively important factor in evaluating 

transportation network resilience, but not one of the critical factors. 

Economic 

Growth 
S RR 

3 

(2.89) 

2 

(3.45) 

Economic growth is not classified as a tier 01 factor. It is more important to 

consider it for evaluating system resilience against water-related hazards 

comparing to wind-related hazards. 

Tourism S Rs 
3 

(2.68) 
  

Tourism is not one of the critical resilience factors as it was classified as a 

tier 03 factor. 

Travel Safety S Rs 
2 

(3.49) 

2 

(3.6) 

Traveler safety is a relatively important factor in evaluating transportation 

network resilience, as it is ranked as a tier 02 factor in terms of all criteria 

for both hazard types. 

Exposure E Rs 
1 

(3.66) 
  

Transportation network resilience to wind-related hazards is highly 

impacted by the extent to which it is exposed to the hazard as exposure was 

ranked as a tier 01 factor 

Proximity E Rs 
2 

(3.58) 
  

Proximity to hazard sources is a relatively important factor in evaluating 

transportation network resilience as it is ranked as a tier 02 factor in terms of 

all of the criteria for wind-related hazards. 
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Table 2-17: Summary of survey results for each resilience factor 

Factor Name 
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Remarks 

* T: Technical, S: Socioeconomic, E: Economic, 

** Rs: Robustness, Rp: Rapidity, RR: Robustness/Rapidity 

*** The numbers outside parenthesis show the tier number and the numbers inside parenthesis show the mean 

value of the importance of survey responses. Example: 2 (3,7): tier 2 with a mean response rate of 3.7 out of 5.  

 

Connectivity: Connectivity is a technical factor that measures how well different parts of a 

system are connected. Connectivity is measured by calculating the minimum number of nodes or 

edges needed to be removed to disconnect the remaining nodes from each other. It is an essential 

measure of network robustness. Connectivity corresponds to a greater redundancy of a 

transportation network since network nodes become less isolated and more accessible as the 

number of interconnection paths between two nodes increases. The expert consultation process 

resulted in categorizing this factor as a water-related factor rather than a wind-related factor. 

Data analysis results revealed that transportation experts ranked this factor as a tier 2 factor for 

all three criteria (i.e., significance, relevance, and comparability), suggesting that network 

connectivity is a less critical factor in water-related hazards. Overall, connectivity got a score of 

3.7 (tier 2) factor among all water-related resilience factors.  

 

Recoverability: Recoverability is a technical factor. It is defined as the ability of a system to 

regain normal conditions after any disruption. Recoverability represents the ability to restore 

rapidly and with minimal outside assistance after a disruptive event occurs. Therefore, it is 

related to the rapidity aspect of resilience. Preliminary expert consultation recognized 

recoverability as an important factor for both water and wind-related hazards. With respect to the 

wind-related hazards, recoverability was ranked as a tier 2 factor for significance and relevance 

criteria while tier 3 for comparability criteria. On the other hand, for water-related hazards, 

recoverability was identified as a tier 1 factor for significance and relevance criteria while a tier 2 

factor for comparability criteria. The results suggest that transportation experts believe that 

recoverability is more critical for water-related hazards than wind-related hazards. Moreover, it 

is not one of the most commonly collected and used by different planning agencies for wind-

related hazards as it received a lower comparability tier. Overall, recoverability was ranked as a 

tier 2 factor for wind-related (score of 3.36) and a tier 1 factor for water-related hazards (score of 

4.01). 

 

Maintenance level: Maintenance level is a technical factor. Retrofit of a system improves its anti-

destructive ability and post-disaster recovery rate. A retrofitted system is expected to absorb the 

shock of the disruptive event better than a non-retrofitted one. Therefore, it is classified as a 

robustness-related factor. Expert consultation recognized this factor as an important factor for 

both water and wind-related hazards. Analysis of the survey results for wind-related factors 

revealed that this factor was scored 3.62 (tier 2) for wind-related hazards and 3.79 (tier 1) for 

water-related hazards. To be more specific, for wind-related hazards, transportation resilience 

experts ranked maintenance level as a tier 2 factor for significance and comparability while a tier 

1 factor for relevance. On the other hand, it was classified as a tier 2 factor for all three criteria 
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for water-related hazards. The results suggest that experts believe that it is one of the significant 

resilience factors, especially for water-related hazards. Moreover, it can capture the 

improvements or deterioration in transportation resilience to wind-related hazards as the result of 

planning decisions and actions. 

 

Link capacity: The capacity of a link is a technical factor. It depends mostly on the number of 

lanes and lane width. During any disaster scenario, the operation of any path can be disrupted, 

and the number of functional roads becomes critical in estimating capacity. It is determined as a 

robustness factor since its increasing enhances the network's ability to withstand disruptive 

events. Preliminary consultation with transportation experts categorized this factor as an essential 

factor for wind-related hazards. Analysis of the survey results shows that it scored 2.98 (tier 3) 

for wind-related hazards. Moreover, it was ranked as a tier 3 factor for significance and 

relevance criteria while a tier 2 factor for comparability criteria.  

 

Network Accessibility: Accessibility refers to the 'ease' of reaching opportunities for activities 

and services and can be used to assess transportation and urban system performance. Increasing 

the accessibility of a network decreases the time required by post-disaster recovery teams to 

recover the network. Therefore, it was classified as a rapidity factor. Consultation with 

transportation experts categorized this factor for wind-related hazards. Survey results revealed 

that transportation experts ranked accessibility as a tier 2 factor for relevance and comparability 

while a tier 3 factor for significance. The results suggest that this factor is not one of the most 

significant factors for transportation resilience. However, measuring it helps understand the 

effect of planning decisions on system resilience. Overall accessibility was scored 3.02 (tier 2) 

for wind-related hazards. 

 

Utilities and Drainage: Utilities and drainage systems support transportation systems against 

wind and water hazards. This factor captures the resilience of utilities and drainage systems, 

including the community's electrical and emergency messaging systems in a hazard event. This 

factor is classified as a robustness factor since its increase enhances the network capacity in 

resisting disruptive events. This factor was ranked as a tier 1 factor for all three criteria in water-

related hazards (overall score of 4.14). The results suggest the significance of enhancing utilities 

and drainage systems for improving transportation resilience against water-related hazards. On 

the other hand, transportation experts place less emphasis on this factor for wind-related hazards 

(overall score of 3.28). To be more specific, this factor was ranked as a tier 3 factor for 

significance criteria while being ranked as a tier 2 factor for relevance and comparability criteria. 

In other words, despite its less importance in improving transportation resilience against wind-

related hazards, different planning agencies consider this factor as a good measure to reflect the 

effectiveness of the planning decisions.  

 

Age of Infrastructure: Age of infrastructures is a technical factor that reflects how old a 

community's transportation infrastructure is. As the age of transportation infrastructures 

increases, it becomes more vulnerable to hazards. Therefore, it is classified as a robustness 

factor. Consultation with transportation experts at the preliminary survey stage resulted in 

categorizing this factor for both wind and water-related hazards. According to the results, the age 

of infrastructures is one of the most important factors in determining the overall resilience of 

transportation systems. It was ranked as one of the tier 1 factors for both water-related hazards 
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(score 4.08) and wind-related hazards (score 3.77). With regard to wind-related hazards, it was 

ranked as a tier 2 factor for significance and relevance criteria and tier 1 for comparability. On 

the other hand, it was ranked as a tier 1 factor for all three criteria for water-related hazards.  

 

Network Demand: Network demand is a socioeconomic factor that refers to the number of users 

who rely on transport assets. Network demand implies the capacity of a network. It is more 

critical for the system with higher demands to remain operational after an event. Thus, it is an 

indicator of the importance of network robustness. According to the preliminary survey results, 

this factor was selected for wind-related hazards. Analysis of the survey results revealed that this 

factor was ranked as one of the tier 2 factors for wind-related hazards (score 3.29). Moreover, the 

transportation experts classified this factor as tier 2 for all three criteria. The results suggest that 

transportation experts believe that network demand is not a critical factor impacting 

transportation systems' resilience despite its overall importance. 

 

Traveler Perception: Traveler perception is a socioeconomic factor that covers users' experience 

in using a transportation system. Traveler perception impacts users' mode choice. Transportation 

users' decisions regarding using alternative transportation modes throughout a network are 

defined as users' mode choices. Average delay and average speed are used as two indicators for 

users' mode choice. The users will choose to travel using modes that have a less average delay 

and higher speed. These two factors imply that different parts of the network can be reached 

faster, and thus they are indicators of rapidity. Moreover, these indicators are impacted by 

network demand. Therefore, it is also related to system robustness. According to the consultant 

with expert panel, traveler perception is recognized for water-related hazards. This factor was 

ranked as tier 3 for all three criteria for water-related hazards (overall score of 3.01). 

 

Emergency Response: The emergency response represents the ability of a region to mobilize 

response efforts without other areas' help. It is a socioeconomic factor. This factor is evaluated 

based on the time needed for first responders to react to an event. Emergency response is 

categorized as a rapidity-related factor as it is related to expediting post-disaster recovery 

activities. Transportation experts recognized emergency response as one of the most significant 

factors impacting transportation systems' resilience against both water and wind-related hazards. 

To be more specific, this factor was ranked as one of the tier 1 factors for all three criteria for 

both water and wind-related factors. The results suggest that transportation agencies should place 

great emphasis on emergency response resources to improve the overall resilience of 

transportation systems.  

 

Social Vulnerability/Equity: As a socioeconomic factor, this factor captures people and 

communities' ability to withstand the adverse impacts of hazard events. It comprises the age, 

income, unemployment, minority status, vehicle access, and housing of a community's 

population. By decreasing social vulnerability, the users of a transportation system become more 

tolerant of disruptive events; thus, this factor is categorized as a robustness factor. Survey results 

indicate that transportation experts recognized this factor as a tier 2 factor for all three criteria for 

both water and wind-related hazards. In other words, the experts who responded to the survey 

believe that the social vulnerability factor is relatively important in determining transportation 

resilience irrespective of the hazard type. The overall score of this factor is 3.17 for wind-related 

hazards and 3.49 for water-related hazards. 
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Economic growth: This factor refers to the growth rate of the economy of a community. 

Communities with higher growth can develop more redundant systems and thus be more robust 

to external hazards. Moreover, they can allocate more resources to recover faster after an event, 

which is an indicator of rapidity. Therefore, it is classified as a robustness/rapidity factor. Survey 

results show that transportation experts gave slightly higher importance to this factor for water-

related hazards compared to wind-related hazards. In this regard, this factor was ranked as a tier 

2 factor for all three criteria for water-related hazards. On the other hand, it is classified as a tier 

3 factor for significance and relevance criteria and tier 2 for comparability for wind-related 

hazards. Overall, this factor received a score of 2.89 (tier 3) for wind-related hazards and 3.45 

(tier 2) for water-related hazards. 

 

Tourism: Tourism is a socioeconomic factor. It refers to the number of tourists visiting the 

community. Like network demand, higher tourism implies a higher capacity of the system to 

handle higher demands. Thus, it is an indicator of the robustness aspect of resilience. Survey 

results indicate that transportation experts ranked this factor as a tier 3 factor for all three criteria 

for wind-related hazards. Moreover, this factor is unranked for water-related hazards. Overall, 

this factor received a score of 2.69 (tier 3) for wind-related hazards. 

 

Travel Safety: Travel safety is a socioeconomic factor. It captures whether community members 

can travel around the community with relative safety. As the network becomes more prone to 

crashes, it would be more challenging to maintain an acceptable performance level during a 

disaster condition. Therefore, this factor was classified as a robustness factor. Survey results 

reveal that transportation experts rank travel safety as a tier 2 factor for all three criteria for both 

water and wind-related hazards. In other words, the results suggest the relative importance of this 

factor in increasing transportation resilience irrespective of hazard type. Overall, this factor 

received a score of 3.49 for wind-related hazards and 3.6 for water-related hazards.  

 

Exposure: Exposure is one of the environmental factors. It measures the extent to which a system 

is exposed to significant climatic variations and proximity to coastal areas or the degree to which 

a system is exposed to significant climatic changes. An increase in this factor increases the decay 

rate of transportation facilities, making them more vulnerable to disruptive events. Therefore, 

this factor is classified as a robustness factor. Analysis of the survey results shows that the 

exposure factor is ranked as a tier 1 factor for significance and relevance criteria while a tier 2 

factor for comparability criteria. This factor is unranked for the water-related hazards since 

preliminary consultation sessions identified this factor as more associated with wind-related 

hazards. Overall, this factor received a score of 3.66 (tier 1) for wind-related hazards.  

 

Proximity: Proximity is one of the environmental factors. It is defined as how closely an element 

of transportation infrastructure is located relative to the noted hazard. Through the expert 

consultation process, it was ranked as being more closely tied to threats related to the wind rather 

than water. Relative to wind hazards, the factor ranked as a tier 2 for relevance, significance, and 

comparability. It was identified as being associated with the robustness of the system more than 

the rapidity of its service restoration. This is because the concentration and exposure of assets in 

proximity to the threat, for example, high winds, relate to a system's ability to withstand the 

overall impacts of a hazard event. Its overall score across all dimensions of consideration was 
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3.58 (tier 2) for wind perils and was unranked for water. This suggests that while identified as 

important, the proximity of a specific element of the transportation system to a hazard was less 

of a consideration to its overall resilience than might have been expected. 
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3 CHAPTER III: ROBUSTNESS ASSESSMENT OF 

TRANSPORTATION NETWORKS 

Robustness assessment can be conducted at various levels, such as individual segments and 

network levels. Evaluating the robustness of individual road segments requires considering 

various information such as physical conditions, structural components, and exposure to hazards 

(Rahman Bhuiyan & Alam, 2012). On the other hand, robustness analysis at the network level is 

focused on how well the network can remain connected against different hazards. Considering 

the nature of transportation services (i.e., enabling people to move), it is essential for a 

transportation network to remain connected and functional during a disaster event. Network 

robustness analysis evaluates the connectivity of a network during disruptions. In this chapter, 

the network-related robustness indicators that require further processing of publicly available 

data are evaluated. Further, the robustness of FDOT District 5 surface transportation networks to 

wind and water-related hazards is assessed.  

A common approach to measure network robustness is graph theory, which is applicable to all 

networked civil infrastructure such as water, sewer, road networks, telecommunications, and 

power (Matisziw et al., 2009). Graph theory reduces the surface transportation network to a 

mathematical matrix, in which vertices (nodes) represent network intersections and edges 

represent network segments. The planar nature of the surface transportation networks makes 

them ideal candidates to be represented as graphs. Graph theory facilitates accessibility and 

connectivity analysis within the network. This method can be used to assess the robustness of the 

network by studying different topological measures such as nodal degree, betweenness, and 

clustering coefficients. Graph theory has been used to evaluate the robustness of various 

infrastructure networks including metro networks (X. Wang et al., 2017), road networks 

(Abdulla et al., 2020), communication networks (Çetinkaya et al., 2015), public transit networks 

(King & Shalaby, 2016), etc. The topology of most infrastructure networks is intrinsically 

dynamic, especially during disaster events. However, the mathematical model of transportation 

networks developed using graph theory does not consider the dynamic nature of the disruptive 

events to measure the performance of the network. This renders the vulnerability measures based 

on a single static graph less useful in assessing the temporal performance of the networks under 

disruptions (Abdulla & Birgisson, 2021). The need for a deeper analysis was achieved through 

the percolation approach. 

The percolation approach, introduced by Callaway et al. (2000), is a term used to describe a 

continuous phase transition in physics. There are two types of percolation: site and bond 

(Stauffer & Aharony, 2018). The probability ‘p’ is used to model the existence of a particular site 

or bond between sites. Specifically, p = 1 means all of the sites (or bonds) are present or 

functional, while p = 0 means none of the sites (or bonds) are present or functional (Stauffer & 

Aharony, 2018). In the context of networks, these two percolation types correspond to network 

node and edge percolation. In other words, the dynamic changes in the network topology due to a 

disruptive event could be simulated by assigning a set of probabilities to the network nodes 

where p = 1 means the highest chance of node failure. In contrast, p = 0 means the lowest failure 

probability against disruptive events. The network nodes may have different failure probabilities 

since they have different exposure to hazard sources. A simulation-based framework can model 

failure propagation within the network using assigned probabilities. This approach includes 

removing a fraction of a network’s nodes and corresponding links and re-evaluating the 
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functionality of the network (Iyer et al., 2013). Using this method, a performance profile of the 

network under the impact of disruptive events can be developed. The percolation approach 

describes the evolution of the network structure under different patterns of node or link failures 

(Gao et al., 2011, 2012). A combination of graph and percolation theory can be used to gain 

strategic insight into a complex network (Galpern et al., 2011) where there is a need for proper 

management planning and metrics to keep it running smoothly.  

The indicators used to study the robustness of transportation networks can be categorized into 

two groups: theoretical and numerical factors. Researchers use theoretical factors to evaluate 

network robustness entirely based on network topology using graph theory without considering 

the impact of disruptive events. In other words, theoretical measures are focused on redundancy 

within the network and do not simulate the failure sequence of network components. Examples 

of theoretical factors include the clustering coefficient (measuring the connectivity of 

neighboring nodes), connectivity (measuring the overall redundancy within the network), 

average degree (measuring the average number of connections in the network), and average 

efficiency (measuring the average number of shortest paths among network nodes). For example, 

Wang et al. (2017) employed graph theory and quantified the robustness of various metro 

networks using theoretical indicators. They compared the robustness of 33 metro networks and 

concluded that increasing alternative paths by creating transfer stations is essential for enhancing 

network robustness.  

However, numerical indicators are used to develop the performance profile of the network 

against a particular disruptive event by simulating its impact. Researchers simulate the effects of 

disruptive events by defining a failure sequence in which network elements are removed in a 

series of steps. In this approach, the network components (nodes or edges) are either removed 

randomly or based on pre-defined probabilities (i.e., using the percolation approach). One of the 

major numerical indicators used in the literature is the size of the giant connected component 

(GCC). The GCC measures the largest number of network nodes that remain connected after a 

specific portion of nodes are removed. GCC is considered a proxy measure for network 

robustness since the networked system cannot function properly and provide the expected service 

if the size of the GCC is sufficiently small relative to the original size of the network (Iyer et al., 

2013). Using numerical indicators is common among researchers to evaluate network robustness 

against natural hazards such as flooding (Abdulla & Birgisson, 2021), and targeted human man 

disruptions (Yadav et al., 2020). In this chapter, both theoretical and numerical indicators are 

used to measure the robustness of transportation networks.  

3.1 Robustness Analysis 

The workflow for analyzing the robustness of surface transportation networks is presented in 

Figure 3-1. As shown in the figure, defining a network model is the first step toward analyzing 

the robustness of transportation networks. Network theory is used to develop a mathematical 

model of the network, in which network intersections are considered as nodes, and road 

segments and rail tracks are modeled as undirected edges. Available GIS maps of transportation 

networks are utilized to develop a computer model of the network. The NetworkX Python 

software package was used to create network models and analyze network performance. This 

package develops network models based on the geographic information of the point and line 

features of the GIS shapefiles. After generating the network model, two types of indicators were 

employed to analyze transportation network robustness: theoretical and numerical. As explained 
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in the previous section, theoretical measures analyze the connectivity and redundancy of the 

network without considering disruptive events; alternatively, numerical robustness indicators 

measure a transportation network’s performance concerning simulated disruptive events. The 

details of analyzing network robustness using these indicators will be described in the following 

subsections.  

 

 

Figure 3-1: The workflow of robustness analysis of surface transportation networks using theoretical and 

numerical metrics 

3.1.1 Robustness Analysis Using Theoretical Metrics 

Figure 3-2 shows the flowchart for analyzing network robustness using theoretical measures. As 

shown in the figure, after developing the network model, the topological characteristics of the 

network are evaluated and recorded. The same process is repeated using transportation network 

models in different time frames to assess changes in the network robustness. 
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Figure 3-2: Robustness analysis using theoretical metrics 

In this project, four types of theoretical indicators are used: 

(1) Average degree: The average degree of all network nodes is a robustness indicator as it 

implies the average number of connections for each node. The robustness of the network 

improves as the average degree of the network increases because the network nodes have 

higher connectivity. The average degree is calculated using Equation 3-1. In this equation, 

‘𝑑𝑖’ is the degree of node i, and ‘N’ is the number of network nodes.  

          Average Degree =  
∑ 𝑑𝑖

𝑁
𝑖=1

𝑁
 (3-1) 

(2) Connectivity: The traditional connectivity indicators (i.e., α, β, and γ indexes) were used to 

evaluate the network connectivity. These indexes are commonly used to evaluate the 

connectivity of transportation networks. These indicators are calculated using the following 

equations. In these equations, ‘N’ is the number of network nodes, and ‘E’ is the number of 

network edges. 

          𝛼 =  
E−N+1

2N −5
 (3-2) 

              β =  
𝐸

𝑁
 (3-3) 

            𝛾 =  
𝐸

3𝑁−6
 (3-4) 
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(3) Clustering coefficient: The clustering coefficient assesses how the neighbors of a node are 

connected (Snelder et al., 2012). In other words, it assesses the connection density of each 

node. A complete graph where all nodes are connected has the maximum clustering 

coefficient. We used the average clustering coefficient in this project, which is calculated 

using Equation (3-5). In this equation, 𝑦𝑖 is the number of links connecting neighbors of node 

i, ‘𝑑𝑖’ is the degree of node i, and ‘N’ is the number of network nodes.  

        𝐶𝐶𝐺 =  
1

𝑁
∑

2𝑦𝑖

𝑑𝑖(𝑑𝑖−1)

𝑁
𝑖=1  (3-5) 

(4) Network efficiency: Network efficiency demonstrates the average closeness of every node 

in the network. The higher the closeness, the shorter the distance between nodes, and the 

higher the efficiency. The network efficiency is defined as: 

         𝐸 =  
1

𝑁(𝑁−1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐼  (3-6) 

In Equations 3-6, ‘N’ is the number of nodes in the network, and ‘dij’ denotes the length of the 

shortest path between node i and node j. The efficiency of a network decreases as the network 

becomes more disconnected since the average shortest path among network nodes increases.  

3.1.2 Robustness Analysis for Numerical Metrics 

Figure 3-3 elaborates on the process of analyzing the robustness of transportation networks using 

numerical indicators. Network topology and hazard information are the two categories of 

information required to analyze network robustness using numerical indicators. In the next step, 

the exposure of each link to the hazard source is evaluated to define the failure sequence of 

network edges due to the disruptive event. The impact of wind-related hazards on surface 

transportation networks is simulated as random failures. As for the water-related hazards, the 

failure sequence is defined according to the returning period of the hazard (i.e., inland flooding 

and storm surge) to which the link is exposed. The performance of the network is monitored 

during the failure sequence. The details regarding monitoring network performance will be 

explained in the following sections. To reduce the possible impact of sampling in the network 

link selection procedure, we took an average of 100 simulations to evaluate the robustness of the 

network to natural hazards. Finally, the same analysis will be conducted on various snapshots of 

the networks from different years to assess the changes in the robustness of the road network due 

to network growth during the past decade. 
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Figure 3-3: Robustness analysis using numerical metrics 

3.1.2.1 Simulating disruptive events and monitoring network performance  

In this step, the network model disintegrates in a sequence of steps in which network links are 

removed one by one according to their closure probabilities to simulate the impact of disruptive 

events. At each iteration, the size of the giant connected component of the network is evaluated 

as a proxy measure of network robustness. Removing network segments continues until the 

network is completely fragmented. Finally, the network robustness is evaluated using the 

robustness indicator (R). 

The robustness indicator (R) measures network robustness by taking the average of the ratio of 

the giant connected components compared to the network size ‘N.’ The robustness indicator is 

calculated using Equation 3-7, where ‘𝜎𝑖’ is the size of the giant connected component and ‘N’ is 

the number of network nodes. 

          R =  
1

N
∑ σi

N⁄N
i=1  (3-7) 
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The minimum value of R is 1 𝑁⁄  is in a star graph, and its maximum value is 
1

2
(1 − 1

𝑁⁄ ) in a 

complete graph. Therefore, for any network 0 ≤ 𝑅 ≤ 0.5. Iyer et al. (2013) defined another 

indicator as a complementary quantity to R, indicating network vulnerability ‘V.’ This indicator 

is calculated as follows: 

    V =  
1

2
− R (3-8) 

The value of the vulnerability indicator ranges between 0 and 0.5. Higher values of the 

vulnerability value indicate higher vulnerability of the network. Representing the network's 

vulnerability using a single number facilitates the comparison of vulnerabilities among networks 

at different times.  

3.2 Analysis of FDOT District 5 Surface Transportation Networks 

The surface transportation networks of FDOT District 5 are selected as the case study to examine 

their robustness against two types of natural hazards (i.e., wind and water-related hazards).  

3.2.1 Data Collection and Cleaning 

As explained in Figure 3-3, transportation system network data and natural hazard information 

are two types of required information for the robustness analysis. The transportation network 

information is needed to develop the network model of the system using graph theory, and the 

natural hazard information is necessary to simulate the impact of the disruptive event.  

3.2.1.1 Natural Hazards information 

Table 3-1 displays the collected data along with their sources for each type of natural hazard. 

The flood plain map and MOM map data were collected to evaluate the exposure of the network 

against inland flooding and storm surge, respectively. The SLOSH model maps are provided at 

the national level, while the floodplain maps are available at the state and county levels. In the 

data cleaning process, the geographical boundaries of both maps were restricted to FDOT 

District 5 counties. As the historical data for these maps was not available, only a single map for 

each hazard was collected. 

Table 3-1: Collated data for natural hazards 

Data Data Type Source Data Frequency 

Flood plains GIS shapefiles FEMA Single data point 

MOM maps GIS shapefiles SLOSH Model Single data point 

3.2.1.2 Transportation networks information 

Table 3-2 displays the collected data for the road and rail transportation networks and their 

corresponding sources. The network data for both transportation systems were collected at the 

state level, and their geographical boundaries were restricted to FDOT District 5 counties during 

the data cleaning process. Figure 3-4 depicts the 2020 road and rail network data for FDOT 

District 5.  
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Table 3-2: Collected data for transportation systems 

Data Data Type Source Data Frequency 

Road Network  GIS Shapefiles 
GeoPlan Center – 

RCI Database 
Annual data 

Rail Network GIS Shapefile FDOT Annual data 

 

 

Figure 3-4: 2020 road (a) and rail network; (b) maps for FDOT District 5 

3.2.2 Results of the Robustness Analysis 

In this section, the results of the robustness analysis for road and rail transportation networks are 

presented. The analysis results based on theoretical and numerical indicators are presented in two 

parts for each system, respectively.  

3.2.2.1 Road network  

3.2.2.1.1 Theoretical factors 

Figure 3-5 shows the results of the robustness analysis for the road network based on theoretical 

indicators. According to the figure, all robustness indicators show decreasing trends. The average 

nodal degree of the road network has decreased by about 10% (Figure 3-5a), which implies an 

increase in the number of low-degree nodes (e.g., degree 1 and degree 2). All three connectivity 

indexes (i.e., α, β, and γ indexes) have also been declining (Figure 3-5b – 3-5d), which is not 

surprising as these indexes are a function of average degree (Casali & Heinimann, 2019). 

Decreasing trends in these indexes imply diminishing redundancy of the network as the network 
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nodes are less connected. Moreover, the clustering coefficient values of the road network (Figure 

3-5e) show a ~60% reduction, which indicates that the reduction in average connectivity of the 

network is mostly due to the connectivity loss among neighborhood nodes. The analysis results 

also show a 25% decrease in the average efficiency of the network, which also implies reduced 

connectivity of the network since the average shortest path among network nodes increases 

(Figure 3-5f). 

 

Figure 3-5: Robustness analysis of road network using theoretical measures for the time period from 2010 

to 2020 

3.2.2.1.2 Numerical factors 

Wind-related hazards:  

Figure 3-6a shows the performance profile of the 2020 road network under 100 simulations of a 

disruptive wind-related event (i.e., random failure). The figure shows changes in the giant 

connected component of the network as the network nodes are removed randomly. According to 

the results, the size of the giant connected component of the network decreases sharply and 

nonlinearly when the removal percentage is between 10% and 40%. The downward trend slows 

down once the removal percentage reaches beyond 40%. Finally, the network becomes nearly 

fragmented after about 50% of the network nodes are removed. The network has average 

robustness of about 0.144. The robustness indicator ranges between 0 and 0.5. Closer values to 

0.5 indicate higher robustness of the network. The robustness indicator enables transportation 

planners to compare the robustness of the transportation networks at different times.  Figure 3-6b 

shows the time history of the average robustness of the road network against wind-related events 

in the past decade. According to the figure, the average robustness of the network has decreased 

by about 14%. 
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Figure 3-6: (a) The performance profile of the 2020 road network under 100 simulations of a wind-related 

disruptive event; (b) Road network robustness against wind-related events for the time period from 2010 

to 2020  

Water-related hazards: 

Inland flooding:  

Road network robustness under inland flooding conditions was evaluated using the probability-

based percolation approach proposed in the previous section. According to the results (Figure 3-

7a), the reduction pattern in the size of the giant component in the road network performance 

profile was similar to the wind-related event scenario (i.e., random failure). In this regard, a 

sharp and nonlinear decrease in the size of GCC was detected when the network link removal 

percentage reached 10% to 50%. Moreover, after about 70% removal of the network links, the 

network becomes nearly fragmented. The network has average robustness of about 0.214 against 

inland flooding. The time history of network robustness (Figure 3-7b) shows a decreasing trend 

of network robustness against inland flooding. According to the figure, the robustness of the 

network has decreased by about 28%.  
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Figure 3-7: (a) The performance profile of the 2020 road network under 100 simulations of an inland 

flooding disruptive event; (b) Road network robustness against water-related events (inland flooding) for 

the time period from 2010 to 2020 

Storm surge: 

Figure 3-8 shows the simulation results for the robustness analysis of the 2020 road network 

under storm surge disruption. In this scenario, a sharp and nonlinear drop in the network 

performance profile is detected when the fraction of removed edges is between 20% and 40% 

(Figure 3-8a). The decreasing rate slows down while between 40% and 60% of road segments 

are removed. Finally, the network becomes nearly completely fragmented once 60% of network 

segments have failed. The network has average robustness of 0.304 under storm surge, which is 

lower than other hazard types. According to Figure 3-8b, the average robustness of the road 

network against storm surge hazards has decreased by about 24% in the past decade. 
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Figure 3-8: (a) The performance profile of the 2020 road network under 100 simulations of storm surge 

disruptive events; (b) Road network robustness against water-related events (storm surge) for the time 

period from 2010 to 2020 

3.2.2.1.3 Summary 

Comparing the road network robustness to different natural hazards shows that the road network 

is least robust to wind-related hazards while it is most robust to storm surges. As shown in Figure 

3-9, the road network is least exposed to storm surges than the other two hazard types. Therefore, 

higher robustness is expected for the road network.  
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Figure 3-9: Comparing road network robustness to natural hazards 

The robustness analysis of the FDOT District 5 road network shows that the road transportation 

network has become less robust and more vulnerable according to the analyses with both the 

theoretical and numerical indicators. This is because the roadway network has grown to provide 

services for larger areas (i.e., the increase in the number of network nodes), thereby resulting in a 

decrease in the level of redundancy (e.g., 10% reduction in average nodal degree). These newly 

developed roads (i.e., links) are primary paths for newly connected communities (i.e., nodes), 

and there are no alternative paths within the existing network (i.e., the lack of redundancy). 

Many researchers have reported similar findings when studying changes in the network 

topological indicators as the result of network expansion. For example, Wang et al. (2019) 

analyzed road networks’ evolution and growth pattern in a developing city in China. The authors 

collected historical network data of the city and developed a network model using graph theory. 

In their case study, the number of network nodes and edges has increased by over four times in 

forty years. The authors reported that topological indicators such as clustering coefficient and 

network efficiency have decreased in the past decades. Similarly, Abdulla and Birgisson (2021) 

analyzed the robustness of networks with different sizes using the numerical robustness 

indicators (R indicator). The authors examined the performance of the networks under random 

disruptions. They concluded that despite the network size (the number of nodes) increasing by 

over six times, the values of the R indicator have slightly decreased. 

Despite the overall decrease in the robustness of road networks in FDOT District 5 during the 

study period, a slight improvement in the network robustness can be observed in recent years. 

According to Figure 3 – 9, a slight improvement in network robustness can be seen after 2018. 
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Moreover, as shown in Figure 3-5(f), the road network efficiency started to improve in the last 

year of the analysis, which indicates that the length of the shortest path among nodes has reduced 

and the network has become more connected.  

3.2.2.2 Rail network 

3.2.2.2.1 Theoretical factors 

Figure 3-10 shows the results of the robustness analysis for the rail network based on theoretical 

factors. The theoretical factors evaluate the connectivity of network elements (i.e., nodes and 

edges) without considering the impact of external disruptive events. An increasing trend in 

theoretical factors indicates that newly added elements have provided redundancy within the 

network and improved its average connectivity. According to the results, very small changes 

happen in the theoretical factors, which are expected considering the minor changes in the rail 

network structure. For example, as the rail maps for 2014 to 2019 are identical, no change is 

detected in theoretical factors during this period. Overall, the change in theoretical factors is less 

than 1%.  

 

Figure 3-10: Robustness analysis of rail network using theoretical measures for the time period from 2013 

to 2020 for (a) Beta connectivity; (b) Average clustering coefficient; (c) Average degree; (d) Alpha 

connectivity; (e) Gamma connectivity; and (f) Average efficiency. 

3.2.2.2.2 Numerical factors 

Wind-related hazards  

In contrast to theoretical measures, numerical indicators evaluate the robustness of the network 

with respect to a particular hazard (a wind-related hazard in this case). Numerical indicators 

evaluate the network performance by measuring the number of connected nodes during 

disruption simulation. Figure 3-11a shows the performance profile of the 2020 rail network 

under 100 simulations of a wind-related event. According to the results, the network becomes 

nearly fragmented after about 70% of the network nodes have failed. The size of the giant 
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connected component (i.e., the number of connected nodes) reduces sharply and nonlinearly 

when the fraction of the removed link is between 0 and 10%. The network has average 

robustness of about 0.047. Figure 3-11b shows the time history of the average robustness of the 

rail network against wind-related events in the past decade. Moreover, according to Figure 3-

11b, the average robustness of the network is reduced by 2% from 2013 to 2020.  

 

Figure 3-11: The performance profile of the 2020 rail network under 100 simulations of a wind-related 

event; (b) Rail network robustness against wind-related events for the time period from 2013 to 2020 

Water-related hazards 

Inland flood 

Figure 3-12a shows the performance profile of the 2020 rail network against inland flooding 

events. According to the results, the network becomes nearly fragmented after about 70% of the 

network nodes are removed. The size of the giant connected component reduces sharply and 

nonlinearly when the fraction of the removed link is between 0 and 10%. The network has 

average robustness of about 0.048. Similar to the wind-related event scenario, the robustness of 

the rail network to the inland flooding has reduced by about 1% in the period of 2013 to 2020. 

(Figure 3-12b) 

 

Figure 3-12: (a) The performance profile of the 2020 rail network under 100 simulations of inland 

flooding; (b) Rail network robustness against water-related events (inland flooding) for the time period 

from 2013 to 2020 
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Storm surge 

Figure 3-13a shows the simulation results for robustness analysis of 2020 rail network data under 

storm surge disruption. Results show that at the beginning of the simulation (i.e., the fraction of 

the removed links is less than 10%), the size of the giant connected component does not change 

significantly. This might be explained by considering the exposure of the rail tracks to storm 

surge. The eastern rail track is exposed to the storm surge, whereas the central and western rail 

tracks are outside the storm surge impacted area. Thus, the eastern rail tracks have a significantly 

higher removal probability than the central and western rail tracks. Therefore, at the beginning of 

the analysis, the rail tracks from the eastern track constituted the majority of the removed rail 

tracks. Since the eastern track is not within the largest connected component, the size of the 

largest connected component does not significantly change at the beginning of the simulation 

process. The network performance sharply drops beyond 10% until reaching 30% of link 

removal. The decreasing rate slows down between 30% and 70% of road segment removal. 

Finally, the network becomes nearly completely fragmented once 70% of network segments 

have failed. The network has average robustness of 0.115 under storm surge, lower than other 

hazard types. Reviewing trends of network robustness for the past eight years (Figure 3-13b) 

shows that the network robustness has improved by ~1.3% during 2013 to 2020. 

 

Figure 3-13: (a) The performance profile of the 2020 rail network under 100 simulations of storm surge; 

(b) Rail network robustness against water-related events (storm surge) for the time period from 2013 to 

2020 

3.2.2.2.3 Summary 

The results of the robustness analysis for the rail transportation network can be summarized as 

follows: 

1. The FDOT District 5 rail transportation network structure has not experienced 

considerable changes in the past decade (Figure 3-14). In particular, the average 

robustness of the rail network has reduced by 2% and 1 % to wind-related hazards and 

inland flooding events during 2013 to 2020.  Moreover, network robustness has improved 

by 1.3% against storm surge events.   
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2. The robustness analysis results indicate that the rail transportation network is equally 

robust to wind-related hazards and inland flooding water-related hazards. However, the 

network is more robust to storm surges by a factor of 2.3.  

In this study, the rail network data was available annually from 2013 to 2016. Increasing the 

frequency of available data allows transportation planners to investigate how the robustness 

of rail transportation network has changed each year. Moreover, due to the interconnected 

nature of transportation networks, any disruption in one of the networks may have cascading 

effects on other networks. Therefore, analyzing the robustness of the railway network along 

with its interconnected networks (e.g., roadway network) provides valuable information 

regarding how the integrated transportation network would perform against natural disasters.  

 

Figure 3-14: Comparing rail network robustness to natural hazards: (a) Rail network robustness to three 

hazards; (b) magnified figure for wind-related and water-related (inland flooding) hazards 
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3.3 Planning Implications 

3.3.1 Network Robustness 

The results of the analysis provide insights for transportation planners to better understand the 

factors that influenced changes in the robustness of the transportation network to the analyzed 

hazards in FDOT District 5. While these results are specific to the district, the framework used to 

determine robustness can be adapted statewide. Also, a road/rail network has grown as a result of 

planning and development decisions over a multi-year period. Since the proposed robustness 

assessment enables identifying (i) which roads are important from the network perspective and 

(ii) which portion of a network is vulnerable to network disruption, decision makers can make 

choices to prioritize planning activities and spending decisions that promote specific vulnerable 

and/or critical locations within a transportation network. As such, the findings have implications 

for both long-term policy planning and shorter-term project planning and scheduling at state, 

regional, and local levels.   

As discussed in the previous section, there has been an observable decrease in the robustness of 

the roadway network over time (see Figure 3-9). As seen in the figure, each of the hazard groups 

presented a different initial level of robustness. The two measures for rising water impact both 

present initially at a higher level of robustness, with Inland Flooding at R = 0.40 and Storm 

Surge at R = 0.30. However, at the lower end, at the robustness of approximately R = 0.1, are 

wind-related events. This initial distribution is not surprising based on the foundational data used 

to estimate exposure to these threats; much more of the study area and hence the transportation 

network would have the potential to be exposed to wind forces than inland flooding. Likewise, a 

much smaller land area would be expected to be exposed to storm surges.   

Over time, as shown in the figure, the robustness of the road network to all three hazard 

measures decreased. While the robustness to wind-related hazards decreased gradually, there was 

a marked drop between the study years 2013-2016 for the two flood-related hazards (Figure 3-9). 

A jump in the number of network nodes and network links can be seen during the same period. 

Retrospectively, it can be concluded that there was an overall expansion in roadway projects to 

new and suburban areas (network expansion) versus an increase within already developed areas 

(network connectivity). Likewise, this expansion occurred more acutely, or in a greater 

proportion, fairly equally in or through areas that were subject to inland flooding or storm surge. 

From a planning perspective, this analysis ties project decisions directly to decreases in 
robustness. While it will be further emphasized in the next subsection, from the standpoint of 
network configuration, building new roads in or through undeveloped or low-density areas 
and/or connecting disparate areas of concentrated development reduces robustness while 
focusing on building connections within an existing network increases robustness. Clearly, 
projects in the former category must be built, but this analysis shows that balancing projects 
based on their level of connectivity may moderate robustness decrease. The analysis also 
demonstrates the changes in network robustness by hazard type.  At a policy level, if increasing 
robustness in the coastal high hazard area projects should be prioritized that build connectivity, 
which will enhance the functional redundancy of the roadway network in these known 
vulnerable areas. 
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3.3.2 Hot Spot Analysis 

Another analytical method that can be useful in understanding the trend in changing robustness 

in the study area is the hot spot analysis. The hot spot analysis shows where groups of high-

degree nodes (or hot spots) or of low-degree nodes (or cold spots) are statistically located. Figure 

3-15 is a map series that shows a gradual decrease in hot spots (red dots) over time increments 

from 2014 through 2016. In the same period, the cold spots (blue dots) show a gradual increase. 

However, comparing the 2020 hot spot analysis results with 2018 and 2016 results shows that 

some insignificant areas (yellow dots) have been changed to hot spots (red dots), indicating a 

trend toward increasing the average nodal degree in these areas. The results imply that the road 

construction plans in the early 2010s were focused on expanding the network to access new 

areas. These road constructions have created new nodes with low degrees, decreasing the 

network’s overall redundancy. However, more recent road construction plans have been trending 

toward increasing the network’s connectivity, which has slightly enhanced the network 

redundancy. 
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Figure 3-15: Changes in hot spots and cold spots in the road network during the past decade 

This analysis is particularly useful from a planning perspective, especially at the district level, 

because it helps visualize the physical locations trending upward in network vulnerability. It 

further underscores the need for policy plans to take into account not just the proximity of new 

infrastructure to hazard exposure but the extent to which infrastructure expansion can, if 

possible, build network redundancy.  

It is understood that the planning and construction of new roadway facilities is a lengthy, 

involved, and expensive process that requires planners and engineers to balance technical inputs 
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and the needs and priorities of a broad range of stakeholders. One such competing interest relates 

to improving access to vulnerable areas to facilitate emergency evacuation and response 

activities versus ceasing all new development – and therefore any additional financial exposure - 

in those same areas.  By helping planners visualize the physical locations trending upward in 

network vulnerability, this analysis provides a technical underpinning to priority setting related 

to vulnerability reduction and resilience. Relying on these findings, moving forward 

transportation policy plans should consider the impact of proximity of new infrastructure to 

hazard exposure, as well as the extent to which that infrastructure expansion can, if possible, 

build network redundancy, into their priorities.        

Transportation plans and planners may need to focus on increasing network redundancy in areas 

with low connectivity to improve the robustness of the network. A strategy to improve network 

redundancy might include constructing new road segments in areas with low nodal degree (i.e., 

cold spots). Another method would be creating alternative paths between nodes that would 

otherwise be split upon the failure of a hub. In that case, if two nodes are connected by a single 

road, it is likely that they will become disconnected once the single road fails. Building 

alternative paths would improve redundancy and enhance network robustness. Priority 

investment and new construction should take place in areas that are considered vulnerable due to 

their probability of failure.  

3.3.3 Targeting intervention  

While the hot spot analysis creates a link between robustness and the geographic location or 

placement of infrastructure, an analysis of nodal degree, the magnitude by which nodes are tied 

to other nodes, as well as the extent of nodal clustering, provide insight into areas in which the 

failure of a node might have the highest impact on the overall robustness of the network.   

As previously discussed, nodes with a high degree are critical since they provide connectivity to 

multiple network links. Similarly, nodes with high clustering are critical as they often serve as 

hubs. Therefore, to increase network robustness, prioritization for network maintenance or 

protection from hazard events should be directed to these ‘hot spot” nodes. In general, 

investments that put more population and economic activities at risk do not enhance public safety 

and should be avoided.  However, prioritizing targeted nodes within hazard areas or in 

designated floodplains for the purposes of supporting emergency evacuations, expediting reentry 

and shortening disaster recovery time aligns with the FDOT’s  “Vital Few” priorities for projects 

that enhance public safety. When needed investments, such as maintenance or limited new 

construction are planned within known hazard areas, prioritizing these “hot spot” nodes can 

enhance network resilience within these hazard areas. To implement these measures, local 

governments that have hazard loss-reduction land use planning techniques due to their 

vulnerability to sea-level rise or other hazards, such as the establishment of Adaptation Action 

Areas (AAA),  may also consider integrating network robustness characteristics into their 

infrastructure planning and prioritization processes.  

Figure 3-16 shows high degree nodes with respect to floodplains and SLOSH maps. As 

illustrated in the figures, 4% of high degree noes are within floodplains, while 15% are within 

SLOSH zones. As noted, understanding the distribution and location of hot spots both in and out 

of these hazard areas is a useful planning tool. Florida has a successful, decades-long policy of 

directing infrastructure investments away from coastal high hazard areas.  Limiting growth 
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within the areas subject to high hazard vulnerability is a valuable growth management technique 

for risk reduction.  It is understood, however, that these limits are not absolute.  There is 

typically some limited new roadway state or local even I these areas, often related to previously 

approved or vested projects.  Roadway maintenance, sometimes with options for mitigation 

improvements, also continues in these areas.  When these limited investments are made in high 

hazard areas, protecting and reinforcing nodes in areas of high vulnerability will enhance overall 

network resilience.  
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Figure 3-16: (a) All high degree nodes, (b) high degree nodes within floodplains;(c) high degree nodes 

within SLOSH 

Similarly, Figure 3-17 illustrates how the high clustering nodes (i.e., hub nodes) are exposed to 

inland flooding and storm surge hazards. While 7% of high-clustering nodes are within 

floodplains, 15% of them are within SLOSH zones. Transportation planners may find these 

figures helpful in identifying the most critical nodes and facilitating decision-making regarding 

allocating and prioritizing available resources to protect and maintain these nodes.  
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Figure 3-17: (a) All high clustering nodes; (b) high clustering nodes within floodplains; (c) high 

clustering nodes within SLOSH. 

3.3.4 Assumptions and Limitations:  

In this project, we assumed that the failure probability of the network elements is proportional to 

their exposure to the hazard. We referred to FEMA floodplain maps and SLOSH maps to 

evaluate the exposure of the road and rail segments to water-related hazards while assuming 

equal exposure for all of the road segments for wind-related hazards. Although this assumption is 

common among researchers (Kermanshah & Derrible, 2017; Testa et al., 2015; Yadav et al., 

2020), multiple other factors may also contribute to the failure probability. For example, 

technical aspects of individual network segments, such as their maintenance records, may affect 

their robustness against disruptions. For example, a properly maintained road segment with clean 

culverts can handle flooding water more efficiently than a poorly maintained one. The failure 

probability of network segments also depends on the robustness of other urban elements which 

may not be part of the transportation network. For example, road segments may become blocked 

by broken trees, damaged power lines, or collapsed buildings. Considering the effects of all 
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factors in determining failure probabilities of network elements may not be practical for research 

purposes. However, the accuracy of the final results may improve by incorporating more factors 

into the analysis.  

The exposure of transportation assets to water-related hazards was analyzed by overlaying flood 

area maps on transportation network maps. In other words, we did not consider the elevation of 

transportation assets to evaluate their exposure to water-related hazards. The elevation of 

network elements determines how the water flows in the network. Moreover, elevated elements 

such as bridges might not become inundated during flooding events. Therefore, the elevation of 

the facilities may impact their failure sequence. To evaluate the validity of our assumption, we 

used exposure analysis results from the sea level scenario sketch planning tool. The Sketch 

planning tool visualizes the exposure of transportation assets to current flood risks, including 

100-year and 500-years floodplains and hurricane storm surges. This tool considers the elevation 

of transportation assets to evaluate their exposure to hazards. Moreover, it performs corrections 

to account for the elevation of bridge decks to examine their inundation. We received the Sketch 

planning tool data for 2016 and 2020 road networks from the GeoPlan Center and evaluated the 

robustness of the network according to the robustness analysis framework (Figure 3-3). Figure 3-

18 compares the robustness analysis results using two approaches. In the first case, the elevation 

of transportation assets is considered in determining their exposure to water-related hazards (i.e., 

using the Sketch planning tool). In contrast, the second method does not consider the elevation of 

roadway assets. The figure shows that both approaches result in relatively similar outcomes, 

which supports our assumption.  

 

Figure 3-18: Robustness analysis results using the Sketch planning tool 

In this project, we used FDOT-RCI road network data for robustness analysis. This database 

includes the state highway system, county roads, and city streets of interest to FDOT. While this 

database contains major roadways, it does not include local access roads, which may impact 

overall network robustness. Such local roadways may improve network robustness if they 
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increase the overall connectivity of the network. The impact of local roadways on network 

robustness can be evaluated in future studies.  

The robustness analysis is also limited by the available network data. The team detected some 

inconsistencies within the road network data. As a result of adding the dual carriageway 

roadways to the network maps in recent years, the number of network nodes and edges has 

increased considerably. Such inconsistencies made it challenging to perform comparative 

robustness analysis among different years to investigate changes in the network robustness. In an 

effort to resolve this problem, the team consulted with FDOT planners and decided to remove all 

of the dual carriageway roadways from the network data. Although this revision considerably 

improved the consistency among network data, it may not result in the most accurate and most 

precise network data for the analysis. Therefore, the team suggests FDOT establish consistent 

network data with stable standards to improve the accuracy of such comparative analysis.  
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4 CHAPTER IV: DEVELOPMENT OF A RESILIENCE INDEX FOR 

THE FLORIDA TRANSPORTATION SYSTEM 

In this chapter, the research team develops the composite Resilience Index (RI) to continuously 

monitor and measure the resilience of FDOT District 5 ground transportation networks (i.e., rail 

and road). Specifically, a wide range of resilience factors identified in Chapter II is aggregated 

through the composite index development framework. This section begins by elaborating on the 

methodology that the research team adopted to construct the resilience index. The composite 

index results at different planning levels follow the methodology. 

4.1 Methodology 

4.1.1 Composite Index Development Framework 

In this chapter, the FSU team employed the methodology explained in the Handbook of 

Composite Index Development (OECD & European Commission, 2008) proposed by the 

Organization for Economic Co-operation and Development (OECD) to develop the RI. As 

shown in Figure 4-1, the proposed methodology is composed of seven steps. In the first step, the 

data for each resilience factor is collected and stored in a dataset. During the data cleaning 

process, data imputation and disaggregation techniques are performed to unify the reporting 

frequency of the factors (i.e., converting annual data to quarterly data). The third step performs 

statistical analysis on resilience factors to discover resilience dimensions. The composite index is 

then developed in Steps 4 through 6. In this regard, first, the data for resilience factors are 

normalized to unify their scale. In the next step, the resilience factors are weighted according to 

their statistical significance as well as experts’ customized preferences. Finally, the weighted 

factors are aggregated to construct the composite index. The sensitivity of the composite index to 

changing data imputation approaches, as well as normalization methodologies, is evaluated in the 

seventh step. Details regarding each step will be explained in the following sections.  

 

Figure 4-1: Step-by-step methodology for developing the composite index 

Figure 4-2 demonstrates the RI hierarchical structure used for the Florida surface transportation 

system. This hierarchy facilitates supporting resilience-based planning and decision-making at 
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different levels. That is, this structure helps planners with decision-making by focusing on 

particular resilience aspects (i.e., either robustness or rapidity; α level), hazard types (i.e., water- 

or wind-related hazards; β level), infrastructure (i.e., either road or rail; γ level), and district (i.e., 

δ level). In order to capture various aspects of transportation resilience, a total of 34 resilience 

factors (35% technical, 59% socioeconomic, and 6% environmental) were used at the bottom 

level of the hierarchical structure (α level), which were aggregated at each planning level using a 

statistical analysis method (i.e., factor analysis) to construct the RI for Florida surface 

transportation system.  

The RI hierarchical structure has eight branches at the resilience aspect level (i.e., α level): 

rapidity-water, robustness-water, rapidity-wind, and robustness-wind for road and rail each. 

Resilience factors within each branch are aggregated to create the dimension index level. 

Dimension level indexes are then aggregated to create the resilience aspect level (i.e., α level), 

which contains eight indexes (e.g., road water robustness index). The aggregation of resilience 

aspect-level indexes results in hazard type (i.e., β level) indexes (i.e., four indexes such as rail 

water index). Hazard type indexes are aggregated to create two infrastructure level (i.e., γ level) 

indexes (i.e., rail and road indexes), which are used to develop the Florida resilience index (i.e., δ 

level). 

 

Figure 4-2: The structure of a resilience index for the Florida Surface Transportation System 

4.1.2 Data Collection 

The first step toward constructing the composite index is collecting the required data for each 

resilience factor. As shown in Figure 4-3, resilience factor data are either publicly available or 

obtained from relevant agencies or calculated with publicly available data. For the former, the 

FSU team directly acquired the data from the factors’ sources (See Appendix A) and stored them 

in an Excel Spreadsheet. For example, many of the demographic and socioeconomic factors such 
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as employment and income rate were available from the U.S. Census Bureau. Moreover, 

infrastructure maintenance indicators and safety are examples of indicators collected by 

contacting FDOT. As previously stated, if data for a resilience indicator does not exist, the team 

used relevant publicly available data to calculate the resilience indicator. For example, the team 

collected road and rail network data and employed graph theory to calculate connectivity 

resilience factors. Similarly, hazard risk maps (e.g., 100-year floodplains) were used to calculate 

the proximity and exposure of road and rail infrastructure systems to wind and water-related 

hazards. Details regarding the definition of each indicator, sources, reporting frequency, and 

calculation methodology used for each indicator are documented and provided in Appendix A.  

 

Figure 4-3: Data collection procedure 

4.1.3 Data Conversion  

Reporting frequencies vary across factors. As such, data conversion methods are needed to 

ensure that the same number of data points are available for all resilience factors over the 

analysis period. Because the composite index will be developed using quarterly data, annually 

reported data must be transformed into quarterly values. Table 4-1 presents the conversion 

methods used for converting yearly data into quarterly. Data conversion methods are categorized 

into two groups based on their type. The first type (i.e., interpolation) is used for factors reported 

in the form of average, percentage, and rate. For example, annual income data is reported as an 

average of the income level of the people in a community. Quarterly data for this factor can be 

obtained by interpolating annual values. Linear interpolation and cubic spline interpolation are 

the two interpolation approaches used in this project to obtain quarterly data. Assume that there 

is one income observation at the end of 2009 while another observation is available at the end of 

2010. To estimate the income at the end of the second quarter of 2010, the linear interpolation 

approach (Figure 4-4) assumes that the income rate changes linearly throughout the year. 

Alternatively, the cubic spline interpolation considers nonlinear cubic polynomial variation. 

Clearly, such data imputing methods may introduce inaccuracies; however, this is arguably the 

only viable way to derive quarterly data with no further information.  
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Figure 4-4: Linear interpolation method 

The second data conversion method (i.e., disaggregation) is suitable for factors reported as an 

aggregated measurement for an entire year. For example, the GDP of a county is annual data and 

the sum of GDP in four consecutive quarters. Therefore, the annual data should be disaggregated 

to derive quarterly values. Two approaches are used for disaggregating annual data: (1) division 

and (2) the Denton method. The division method divides annual values by four to calculate 

quarterly values. The Denton method disaggregates annual observations into quarterly values 

based on quadratic minimization. Specifically, it minimizes squared absolute or relative 

deviations from a (differenced) indicator series. Example factors for each case are also shown in 

Table 4-1.  

Table 4-1: Data conversion methods 

Direction 
Conversion 

Methods 
Explanations Example 

Disaggregation 

Equal Division 
To divide the annual number 

equally by four.  

GDP/population 

Denton 

To minimize the squared 

absolute or relative deviations 

from a (differenced) indicator 

series 

Interpolation 

Linear 

Interpolation 

The missing values between two 

annual values are filled with 

linearly interpolated values 
Income/ 

maintenance rate 
Spline 

interpolation 

The missing values between two 

annual values are filled and 

interpolated using spline 

polynomial 

 

By using the conversion methods mentioned above, resilience factor data is prepared on a 

quarterly basis. 
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4.1.4 Normalization of the Resilience Factors 

Normalization was performed to unify the scale of the data because each resilience factor is 

measured in different units. Two normalization techniques were employed: standardization and 

min-max normalization approaches. The standardization approach converts resilience factors into 

a common scale with a mean of zero and unit variance. Equation (4-1) displays the normalization 

process formula, where 𝑋𝑡 is the resilience factor’s value at each time interval, while µ and 𝜎 are 

the averages and standard deviations of the data for the factors, respectively.  

The min-max normalization method is another widely used approach to scale resilience factors 

(Equation 4-2). The min-max method scales each factor range in [0,1]. 

4.1.5 Factor Analysis 

Factor analysis (FA) is a statistical approach that utilizes a smaller number of variables (i.e., 

latent factors) to characterize variability among observed, correlated variables. FA searches for 

joint variations among observed variables and uses the information gained from such joint 

variations to detect unobserved variables and reduce the set of observed variables. For example, 

consider a scenario where ten resilience factors are selected for factor analysis. FA might 

discover two or three unobserved variables that can potentially explain the variation of these ten 

factors.  

4.1.5.1 Resilience factor selection for factor analysis 

The number of observed variables for FA is limited by their data availability. In other words, 

more observed variables can enter FA if more data points are available for all variables. Various 

criteria are suggested to determine the minimum number of data points for performing factor 

analysis (Barrett & Kline, 1981; Beavers et al., 2013; Draycott & Kline, 1994; Ferguson & Cox, 

1993; Gie Yong & Pearce, 2013; Gorsuch, 1990; MacCallum et al., 1999; Pearson, 2008; 

Schönrock-Adema et al., 2009; Watson, 2017). One popular rule of thumb in determining the 

minimum number of data points is the 3:1 ratio. In this rule, the case to variable ratio should be 

no lower than 3 (OECD & European Commission, 2008). For example, for ten resilience factors, 

at least 30 quarterly data points are required. In this project, the biggest mutual time frame of 

resilience factors is selected for performing FA to maximize the number of resilience factors 

entering factor analysis. However, in some cases, the 3:1 criterion for the minimum number of 

data points was not met. In such cases, a three-step procedure was designed to narrow down the 

number of resilience factors.  

Figure 4-5 demonstrates the three-step factor selection process. In the first step, a correlation 

filter was applied. The correlation filter conducts a cross-correlation analysis among resilience 

factors to determine their correlation and drops highly correlated variables (i.e., factors with 

correlations higher than a chosen threshold). In the second step, if further reduction is required, 

the diversity criterion is applied. The diversity criterion drops resilience factors in a way that 

keeps the maximum diversity among selected resilience factors for the analysis (i.e., the third 

step). 

                                                               XScaled
t =

Xt−µ

σ
                                           Equation 4-1 

                                                    XScaled
t =

Xt−min(Xt)

max(𝑋𝑡)−min(𝑋𝑡)
                                        Equation 4-2 
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Figure 4-5: Three criteria for resilience factor “selection” 

4.1.5.2 Factor analysis model 

The FA model can be interpreted as a set of regression equations between the original variables, 

unobserved variables, and a set of error terms. The FA model is given by 

                   𝑋1 = 𝛼11𝐹1 + 𝛼12𝐹2 + ⋯ +  𝛼1𝑚𝐹𝑚 +  𝑒1 

 

                    𝑋2 = 𝛼21𝐹1 + 𝛼22𝐹2 + ⋯ + 𝛼2𝑚𝐹𝑚 +  𝑒2 

                        … 

                      𝑋𝑄 = 𝛼𝑄1𝐹1 + 𝛼𝑄2𝐹2 + ⋯ +  𝛼𝑄𝑚𝐹𝑚 +  𝑒𝑄 

  

Equation 4-3 
 

where Xi (i=1, …, Q) represents the original variables that are normalized, Fj (j=1, …, m) stands 

for the corresponding latent factors, and 𝛼𝑖𝑗((𝑖 = 1, … , 𝑄), (𝑗 = 1, … , 𝑚)) is the factor loading 

related to each variable. The latent factors are uncorrelated common factors, and each of them 

describes a portion of the variation of the original data. Furthermore, ei is the error factor that is 

independently and identically distributed with zero mean. Based on these factor models, (1) the 

number of latent variables (i.e., resilience dimensions), (2) categorization of observed variables 

under each latent variable, and (3) weights for observed variables and latent variables will be 

determined.  

Several approaches for determining the number of latent components have been proposed 

(OECD & European Commission, 2008). One proposed criterion is the explained variance. This 

criterion preserves enough latent components to account for at least 90% of the variation. The 

Kaiser criterion is another technique that removes all latent variables with eigenvalues less than 

1.0. Latent components could also be chosen based on how much variance they explain 

individually. In this case, all factors that account for 10% of the change individually will be 

considered. In this project, the Kaiser criterion was used to determine the number of latent 

variables.  

The observed variables are categorized under each latent variable based on factor loadings. The 

squared factor loading determines the portion of the variance in observed variables described by 

each latent factor. Each observed variable is grouped under the latent variable with the highest 

factor loading (i.e., the latent variable that describes most of its variance). As a result of 
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categorizing observed variables under each identified latent variable, the factor model structure 

is developed. Researchers provide an operational definition for each latent variable based on 

observed variables categorized under the latent factor. The operational definition summarizes the 

group of observed variables and provides an interpretation of their collective meaning.  

The weights for resilience factors and latent variables are also determined based on factor 

loadings. The sum of each latent factor’s squared factor loading equals the total variance 

explained by that latent factor. The proportional variance explained by each latent factor is then 

calculated by dividing the total variance explained by the number of observed variables. Note 

that the total variance is equal to the number of variables since the observed variables are 

standardized to have a zero mean and unit variance. The proportional variances are used to 

determine the weights. Details regarding weighting mechanisms will be described in the next 

subsection.  

In order to provide a structure in which each observed variable is solely loaded on one of the 

latent factors, factor rotation was used. Factor rotation is a technique to clarify how observed 

variables are explained by each latent factor. As a result, rotation facilitates interpretation of the 

results by revealing which observed variables dominate each latent factor. Researchers have 

proposed various rotation strategies. The varimax and promax rotation methods are two common 

types of rotation strategies. Varimax rotation rotates the factor loading matrix to maximize the 

sum of the variance of squared loadings while preserving the orthogonality of the loading matrix. 

The promax rotation is used for oblique rotation. This rotation method builds upon varimax 

rotation but ultimately allows factors to become correlated. 

4.1.6 Weighting 

To account for the impact of resilience factors as well as decision-maker preferences, a five-layer 

weighing mechanism is considered. The weighting categories that can be applied to the different 

levels of the composite index are shown in Figure 4-6. While two of the weighting sets (green 

circles) are determined based on the importance of factors in explaining variance, the other three 

weighting sets (blue circles) are specified by decision-makers.  

Weighting set 01 with reference to Figure 4-6. At the base level of the composite index, a single 

set of weights is applied to the resilience factors. These weights are calculated for each resilience 

factor based on the results of the FA. The loading of each resilience factor on each latent variable 

is calculated using FA. The factor loading represents the extent to which each resilience factor 

represents the latent variable. According to the guidebook on generating the composite index, the 

squared factor loading value determines the weight for each resilience factor. In other words, 

factors that better represent the latent variable will get higher weights (OECD & European 

Commission, 2008).  

Weighting set 02 with reference to Figure 4-6. This weighting set represents the importance of 

the latent variable (dimension) in explaining the variance of the data. The proportional explained 

variance for latent variables is used as the weight for each latent variable. As explained 

previously, the proportional explained variance is determined by dividing the total explained 

variance of each latent variable by the number of observed variables. 

Weighting set 03 with reference to Figure 4-6. The importance of each dimension in different 

policy- and decision-making contexts might vary. The second set of weights at the dimension 
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level is designed to satisfy these diverse decision-making needs by reflecting decision-makers’ 

inputs. In this sense, decision-makers in charge of planning a single transportation system might 

assign varying weights to each dimension according to their planning preferences.  

Weighting set 04 with reference to Figure 4-6. Decision-makers specify the single set of 

weights at the hazard level according to their decision-making problem. For example, 

transportation planners who are making plans relevant to transportation resilience against inland 

flooding may customize the composite index accordingly (i.e., by assigning higher weights to 

water-related hazards than wind-related hazards). 

 

Figure 4-6: Weighting sets in the resilience index 

Weighting set 05 with reference to Figure 4-6. Decision-makers again control the final 

weighting set designed for the top level of the composite index. Using this weighting set, 

planners can weigh different transportation systems based on their focus areas. 

4.1.7 Aggregation of the Resilience Factors 

The resilience factors from various levels will be combined in the aggregation phase to construct 

the composite indexes at each level. As shown in Figure 4-6, the base level of the RI (i.e., α 

level) includes selected resilience factors. Factor analysis is used to summarize resilience factors 

into several resilience dimensions at the dimension index level. At the next level, resilience 

dimensions are aggregated to construct resilience aspect indices (i.e., either rapidity or 

robustness). The β level consists of infrastructure resilience indices for wind and water-related 

hazards, which are constructed by aggregating their resilience aspect dimensions. Aggregating 
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hazard indices results in infrastructure resilience indices at the γ level. Finally, integrating 

infrastructure resilience indices creates the Florida resilience index (δ level).  

The two most common types of aggregation strategies used in the literature are additive 

aggregation and geometric aggregation methods. To create a meaningful composite index, 

choosing the right aggregation method is essential. The quality of the underlying individual 

indicators and their units of measurement determine which aggregation approach to use (OECD 

& European Commission, 2008). 

Specifically, additive aggregation approaches are preferable when the underlying variables are 

preferentially independent (Gan et al., 2017). In other words, where there is no synergy or 

conflict among various indicators, the contribution of the two indications can be linearly added 

to provide a total value. Furthermore, additive aggregation methods are considered fully 

compensatory, implying that a loss with one criterion can be countered by a benefit with another 

(Gan et al., 2017). The additive aggregation method could not be applied to transportation 

dimensions or infrastructure indices since they could be ranked differently across various 

scenarios. 

Geometric aggregation approaches, on the other hand, can reduce compensability among the 

dimensions. As a result, the resilience index will be built using the geometric aggregation 

method. Equation (4-4) shows the formula for the weighted geometric aggregation strategy 

where Xi represents underlying indicators and wi corresponding weights. 

                          𝐶𝐼 =  (∏ 𝑋𝑖
𝑤𝑖𝑛

𝑖=1 )
1

∑ 𝑤𝑖
𝑛
𝑖=1

⁄
 

Equation 4-4 

 

 

As explained in the previous section, five sets of weights are used to construct the composite 

index across four levels (Figure 4-6). In the case where two sets of weights are applied to the 

indices (i.e., the dimension level), the two sets of weights are multiplied and scaled to unity for 

weighting purposes. This process is demonstrated in Table 4-2. 

 
Table 4-2: Example for the aggregation of weights at the same level 

Dimension 

Weights calculated 

based on explained 

variance 

Weights 

introduced by the 

decision-maker 

Preliminary 

weight 
Scaled weight 

LF1 W1 W3 W1*W3 = W5 W5/(W5+W6) 

LF2 W2 W4 W2*W4=W6 W6/(W5+W6) 

 

4.1.8 Robustness Analysis 

Generally, through the RI development process, each step described in the methodology section 

can be conducted by adopting various methods, which leads to different results for the 

constructed RI. Figure 4-7 demonstrates the methods employed for the RI construction process. 

As shown in the figure and mentioned previously, the missing value imputation can be 
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conducted by four different methods. Similarly, the normalization process can be conducted by 

two different approaches. Choosing appropriate techniques for the RI development procedure 

might introduce subjectivity, which is why researchers and practitioners usually measure the 

degree to which the constructed RI is robust to the adopted methodology. While prior studies 

have proposed various methods to assess the robustness of composite index approaches, the two 

most widely used ones are sensitivity analysis and uncertainty analysis (Miller et al., 2017; 

OECD & European Commission, 2008). Uncertainty analysis measures how the calculated 

values of the composite index have been impacted by the uncertainty associated with input sub-

indicators. On the other hand, sensitivity analysis accounts for the amount of output variance for 

which each uncertainty source is responsible (Cherchye et al., 2008; Foster et al., 2009; Gnaldi & 

Ranalli, 2016; Greco et al., 2019; Permanyer, 2011). 

 

Figure 4-7: Alternative methods for performing robustness analysis 

The FSU team constructed the composite index using cubic spline interpolation and the Denton 

method for missing value imputation, standardization for normalization, and statistical weights 

for weighting. The sensitivity of the developed index was evaluated by varying the adopted 

methodologies in each step. In this regard, different combinations of approaches were selected to 

evaluate how the selection of different input methods affects the index values. Since no 

practitioner’s weights were available, sensitivity analysis was applied only to missing value 

imputation and normalization steps.  

4.2 Results 

Based on the approach described in the methodology section (i.e., Section 4.1), the RI was 

developed to measure the resilience of transportation infrastructure in FDOT District 5, the 

results of which are presented in the following sections. 

4.2.1 Data Collection and Cleaning 

Table 4-3 summarizes the data collection efforts for all resilience factors for both rail and road 

transportation systems of FDOT District 5. The analysis time frame was set from 2010 to 2020 to 

evaluate changes to infrastructure resilience (i.e., improvement or deterioration) over the past 

decade. The team then collected the relevant data accordingly. For some of the resilience factors, 

data were available for a shorter time frame (e.g., 2014 to 2019), while no data was available for 

some other resilience factors (See Table 4-3). These resilience factors are dropped from the 

factor list to construct the RI. Note that such factors can be considered within the proposed 

framework once more data becomes available.  
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Table 4-3: Data collection summary 

Factor 

type 

Factor 

Category 

Resilience 

factors 
Infrastructure 

Wi/ 

Wa 

RO/ 

RP 

Frequency Time Frame 
Data 

type 

Conversion 

type RA RD RA RD 

Technical 

Connectivity 

Alpha 

Connectivity 
RA/ RD Wa RO A Q 

2013 - 

2020 

2010 -

2019 
P I 

Beta Connectivity RA/ RD Wa RO A Q 
2013 - 

2020 

2010 -

2019 
P I 

Gamma 

Connectivity 
RA/ RD Wa RO A Q 

2013 - 

2020 

2010 -

2019 
P I 

Network 

Efficiency 
RA/ RD Wa RO A Q 

2013 - 

2020 

2010 -

2019 
P I  

Clustering 

Coefficient 
RA/ RD Wa RO A Q 

2013 - 

2020 

2010 -

2019 
P I 

-- Recoverability RA/ RD 
Wa/ 

Wi 
RP × × × × × × 

-- Road Capacity RD Wi RO -- Q -- 
2010 - 

2020 
C -- 

Maintenance 

Operating 

Expenses by 

Agency of 

Service for 

Vehicle 

Maintenance 

RA 
Wa/ 

Wi 
RO A -- 

2014 - 

2019 
-- C D 

Operating 

Expenses by 

Agency for Non-

Vehicle 

Maintenance 

RA 
Wa/ 

Wi 
RO A -- 

2014 - 

2019 
-- C D 

Vehicle 

Maintenance - 

Vehicle Failure 

RA 
Wa/ 

Wi 
RO A -- 

2014 - 

2019 
-- C D 
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Table 4-3: Continued 

 

 Road 

Maintenance 
RD 

Wa/ 

Wi 
RO -- Q -- 

2010 -

2019 
C -- 

-- Accessibility RA/ RD Wi RP × × × × × × 

-- 
Age of 

Infrastructures 
RA/ RD 

Wa/ 

Wi 
RO -- A -- 

2010 -

2020 
C I 

-- 

Utilities and 

Drainage 

Maintenance 

RA/ RD 
Wa/ 

Wi 
RO -- A -- 

2012 - 

2019 
C D 

Socioeconomi

c 

Network 

Demand 

Rail Passenger 

Demand 
RA Wi RO A -- 

2014 - 

2019 
-- C D 

Vehicle Revenue 

Miles 
RA Wi RO A 

 

-- 

2014 - 

2019 
-- C I 

Vehicle miles 

traveled (Daily) 
RD Wi RO -- A -- 

2014 - 

2019 
C I 

Vehicle miles 

traveled (Peak 

Hour) 

RD Wi RO -- A -- 
2014 - 

2019 
C I 

Traveler 

Perception 

Rail On Time 

Performance 
RA Wa 

RO 

/RP 
Q -- 

2010 - 

2020 
-- C -- 

Rail Delay RA Wa 
RO 

/RP 
Q -- 

2010 - 

2020 
-- C -- 

Customer Service 

Satisfaction 
RA Wa 

RO/

RP 
Q -- 

2010 - 

2020 
-- C -- 

Vehicle hours of 

delay (daily) 
RA Wa 

RO/

RP 
-- A -- 

2014 - 

2019 
C I 

Person Hours of 

Delay (Daily) 
RA Wa 

RO/

RP 
-- A -- 

2014 - 

2019 
C I 

-- 
Emergency 

Response 
RA/ RD 

Wa/ 

Wi 
RP × × × × × × 

Factor 

type 

Factor 

Category 

Resilience 

factors 
Infrastructure 

Wi/ 

Wa 

RO/ 

RP 

Frequency Time Frame Data 

type 

Conversion 

type RA RD RA RD 
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Table 4-3: Data collection summary “continued” 

Factor 

type 

Factor 

Category 

Resilience 

Factor 
Infrastructure 

Wi/

Wa 

RO/

RP 

Frequency Time Frame Data 

Type 

Conversion 

Type RA RD RA RD 
 

Social 

Vulnerability 

Age RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Median Income RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Mean Income RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Unemployment RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Minority Status RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Vehicle Access RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Housing RA/ RD 
Wa/ 

Wi 
RO A A 

2010 -

2019 

2010 -

2019 
C I 

Economic 

growth 

Real GDP RA/ RD 
Wa/ 

Wi 

RO/

RP 
A A 

2010 -

2019 

2010 -

2019 
C D 

Current GDP RA/ RD 
Wa/ 

Wi 

RO/

RP 
A A 

2010 -

2019 

2010 -

2019 
C D 

-- Tourism RA/ RD Wi RO × × × × × × 

Safety 

Fatalities RA/ RD 
Wa/ 

Wi 
RO A A 

2011-

2020 

2010 -

2019 
C D 

Injuries RA/ RD 
Wa/ 

Wi 
RO A A 

2011-

2020 

2010 -

2019 
C D 

Environmental 

-- Exposure RA/ RD 
Wa/ 

Wi 
RO A A 

2013 -

2020 

2010 -

2020 
P I 

-- Proximity RA/ RD Wa RO A A 
2013 -

2020 

2010 -

2020 
P I 

RA: Rail, RD: Road, RP: Rapidity, RO: Robustness, P: Processed, C: Collected from external sources, A: Annual, Q: Quarterly, I: 

Interpolation, D: Disaggregation, ×: Data not available, Wi: Wind, Wa: Water, and --: Not applicable 
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4.2.2 Selecting Resilience Indicators 

In Chapter II, a comprehensive list of resilience factors was identified across different 

dimensions (i.e., technical, socioeconomic, and environmental), which was then narrowed down 

for the development of the RI based on the input from resilience experts. Tables 4-4 and 4-5 

present the selected resilience factors for rail and road infrastructure.  

Table 4-4: List of resilience factors of the rail dataset 

Factor type Factor Category Resilience factor 

Technical 

Connectivity 

Alpha Connectivity 

Beta Connectivity 

Gamma Connectivity 

Network Efficiency 

Clustering Coefficient 

Maintenance 

Operating Expenses by Agency of 

Service for Vehicle Maintenance 

Operating Expenses by Agency for 

Non-Vehicle Maintenance 

Vehicle Maintenance - Vehicle Failure 

Socioeconomic 

Network Demand 
Rail Passenger Demand 

Vehicle Revenue Miles 

Traveler Perception 

Rail On-Time Performance 

Rail Delay 

Customer Service Satisfaction 

Social Vulnerability 

Age 

Median Income 

Mean Income 

Unemployment 

Minority Status 

Vehicle Access 

Housing 

Economic Growth 
Real GDP 

Current GDP 

Safety Injuries 

Environmental 
Exposure Exposure 

Proximity Proximity 
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Table 4-5: List of resilience factors of road dataset 

Factor type Factor Category Resilience factor 

Technical 

Connectivity 

Alpha Connectivity 

Beta Connectivity 

Gamma Connectivity 

Network Efficiency 

Clustering Coefficient 

Maintenance Road Maintenance Level 

Road Capacity Road Capacity 

Age of Infrastructure Age of Infrastructure 

Utilities and Drainage 
Utilities and Drainage 

Maintenance 

Socioeconomic 

Network Demand 

Vehicle Miles Traveled 

(Daily) 

Vehicle Miles Traveled (Peak 

Hour) 

Traveler Perception 

Vehicle Hours of Delay 

(Daily) 

Person Hours of Delay 

(Daily) 

Social Vulnerability 

Age 

Median Income 

Mean Income 

Unemployment 

Minority Status 

Vehicle Access 

Housing 

Economic Growth 
Real GDP 

Current GDP 

Safety 
Fatalities 

Total Crashes 

Environmental 
Exposure Exposure 

Proximity Proximity 

 

As explained in the methodology section (i.e., Section 4.1.5.1), performing factor analysis on 

observed variables (i.e., resilience factors) requires a minimum number of data observations (i.e., 

at least three times the number of resilience factors). However, considering the amount of the 

data available for each factor within the time frame (i.e., quarterly data for the past decade), it is 

impossible to use and integrate all factors to construct the RI; the amount of available data is not 

enough to get statistically significant results from factor analysis. As such, the number of 

resilience factors was reduced to fulfill the factor analysis requirement (i.e., at least a 3:1 ratio) 

between data points and the number of resilience factors. Based on the three-step proposed 

approach, the number of resilience factors in each RI branch was reduced to meet FA 
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requirements. Tables 4-6 to 4-13 list the final set of resilience factors within each FA branch 

entering FA. 

Table 4-6: Selected factors for the rail-water-rapidity branch 

Factor Type Factor Category factor 

Socioeconomic 
Traveler Perception 

Rail On-Time Performance 

Rail Delay 

Customer Service 

Satisfaction 

Economic Growth Current GDP 

 

Table 4-7: Selected factors for the rail-wind-rapidity branch 

Factor Type Factor Category factor 

Socioeconomic Economic Growth Current GDP 

 

Table 4-8: Selected factors for the road-water-rapidity branch 

Factor Type Factor Category factor 

Socioeconomic 
Traveler Perception 

Vehicle hours of Delay 

(Daily) 

Economic Growth Current GDP 

 

Table 4-9: Selected factors for the road-wind-rapidity branch 

Factor Type Factor Category factor 

Socioeconomic Economic Growth  Current GDP 

 

Table 4-10: Selected factors for the rail-water-robustness branch 

Factor Type Factor Category Factor 

Technical Connectivity Clustering Coefficient 

Socioeconomic 

Traveler Perception 
Rail On-Time Performance 

Rail Delay 

Social Vulnerability 
Mean Income 

Unemployment 

Economic Growth Current GDP 

Safety Injuries 

Environmental 
Exposure Exposure 

Proximity Proximity 
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Table 4-11: Selected factors for the rail-wind-robustness branch 

Factor Type Factor Category Factor 

Technical Maintenance 

Maintenance (Operating 

Expenses by Agency for 

Non-Vehicle Maintenance) 

Socioeconomic 

Network Demand Rail Passenger Demand 

Social Vulnerability 

Mean Income 

Unemployment 

Housing 

Economic Growth Current GDP 

Safety Injuries 

Environmental Exposure Exposure 

 

Table 4-12: Selected factors for the road-water-robustness branch 

Factor Type Factor Category Factor 

Technical 

Connectivity Clustering Coefficient 

Maintenance Road Maintenance level 

Age of Infrastructure Age of Infrastructure 

Utilities and Drainage 
Utilities and Drainage 

Maintenance 

Socioeconomic 

Social Vulnerability 

Mean Income 

Unemployment 

Housing 

Economic Growth Current GDP 

Safety Fatalities 

Environmental 
Exposure Exposure 

Proximity Proximity 

 

Table 4-13: Selected factors for the road-wind-robustness branch 

Factor Type Factor Category Factor 

Technical 

Maintenance Road Maintenance level 

Link Capacity Road capacity 

Utilities and Drainage 
Utilities and Drainage 

Maintenance 

Age of Infrastructure Age of Infrastructure 

Socioeconomic 

Social Vulnerability 

Mean Income 

Unemployment 

Housing 

Economic Growth Current GDP 

Safety Fatalities 

Environmental Exposure Exposure 
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4.2.3 Factor Analysis Results 

In this section, factor analysis results are provided. 

4.2.3.1 Road Index 

In this section, the factor analysis results of the resilience factors in the road dataset are presented 

at two levels of the RI hierarchy (i.e., hazard type and resilience aspect).   

4.2.3.1.1 Wind-related hazards 

4.2.3.1.1.1 Robustness index 

Table 4-14 shows factor loadings resulting from the factor analysis. As shown in the table, the 

factor analysis identifies two latent factors. Factor loadings (i.e., the extent to which each factor is 

associated with each latent variable) are also provided in the table. The absolute values of these 

factor loadings were used to categorize the factors under each latent variable.  

Table 4-14: Factor loadings of road-wind-robustness branch 

Resilience Factor Latent Factor 1 Latent Factor 2 

Road Maintenance level 0.700 -0.489 

Road capacity -0.053 0.628 

Utilities and Drainage 0.281 -0.806 

Age of Infrastructure -0.844 0.530 

Mean Income -0.639 0.759 

Unemployment 0.844 -0.460 

Housing 0.379 -0.039 

Current GDP -0.739 0.671 

Fatalities -0.751 0.549 

Exposure (Wind) 0.909 -0.116 

 

Table 4-15 presents the latent factors along with their interpretations for the road-wind-robustness 

branch. In total, two latent factors were discovered as a result of the factor analysis. The first latent 

factor was associated with infrastructure capacity. To be more specific, the road capacity factor 

included in this dimension is directly related to infrastructure capacity. As the width of the paved 

surface of a road (i.e., the number of lanes) increases, the number of vehicles that can travel on the 

road (i.e., road capacity) also increases (Chandra and Kumar, 2003). Moreover, regular 

maintenance of drainage systems and removing debris ensures that the infrastructure can provide 

service at its full capacity (Burningham & Stankevich, 2005). Two socioeconomic factors included 

in this latent factor represent the community's economic conditions. The economic growth 

indicates higher tax revenue for the community that can be spent on building new infrastructure 

and improving its capacity (Ángeles Castro & Ramírez Camarillo, 2014). Therefore, these factors 

are indirectly related to infrastructure capacity. In other words, communities with higher 
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infrastructure capacity (i.e., higher lane miles of roadway) are more likely to have a higher mean 

income and GDP.  

The second latent factor is interpreted as infrastructure quality. Among factors associated with 

this latent factor, road maintenance level and age of infrastructure are directly related to 

infrastructure quality. Neglecting maintenance increases road defects, making it more difficult to 

use (Burningham & Stankevich, 2005). Therefore, lower infrastructure quality is associated with 

lower maintenance levels. Moreover, poor maintenance increases repair and rehabilitation costs, 

especially as roads age. Thus, as road infrastructure becomes closer to the end of its life 

expectancy, closer attention and proper maintenance are critical to maintaining its service quality 

(Gerold, 2006). In addition to maintenance and age of infrastructure, higher crashes and fatalities 

may be associated with lower infrastructure quality. Lack of sufficient traffic signs, roadside 

barriers, and traffic lights increase the crash probability in road networks (Afolabi & Gbadamosi, 

2017). Similar to the previous latent factor, housing and unemployment factors are 

socioeconomic factors representing the economic conditions of the community. Improving 

infrastructure quality attracts investments, provides job opportunities and reduces poverty (Ali & 

Pernia, 2006) while being an indicator of economically wealthy communities (i.e., low 

unemployment and high housing occupancy; (Gibson & Rioja, 2017)). Therefore, these 

socioeconomic factors are indirectly associated with infrastructure quality.  

 
Table 4-15: Factor analysis results for road-wind-robustness branch 

Latent Factor Factors Name 

1 

Utilities and Drainage Maintenance 

Infrastructure 

Capacity 

Mean Income 

Current GDP 

Road Capacity 

2 

Road Maintenance Level 

Infrastructure quality 

Age of Infrastructure 

Housing 

Unemployment 

Exposure 

Fatalities 

4.2.3.1.1.2 Rapidity index 

We have only one resilience factor for the rapidity index (Table 4-16). As such, no further 

interpretation is needed, and it can be directly used as a representative of rapidity.  

Table 4-16: Factor analysis results for road-wind-rapidity branch 

Latent Factor Factors Name 

1 Current GDP Rapidity 
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4.2.3.1.2 Water-related hazards 

4.2.3.1.2.1 Robustness index 

As shown in Table 4-17, two latent variables are used for the road-water-robustness branch. The 

first latent variable was interpreted as infrastructure service. Among factors included in this 

latent variable, the number of fatalities is associated with poor infrastructure service. Low-

quality road surfaces, poor accessibility to rescue facilities, and lack of traffic signs and traffic 

lights increase vehicle crash probability (Afolabi & Gbadamosi, 2017). Alternatively, proper 

maintenance of utility and drainage infrastructure improves their serviceability. Repairing the 

utility system, replacing damaged parts, cleaning debris from culverts, and routinely checking 

the drainage system ensures that the utility and drainage system can provide expected service, 

especially during excessive demand conditions (Burningham & Stankevich, 2005). Finally, 

communities with higher mean income and GDP have higher financial resources in the form of 

tax revenues to invest in and improve their infrastructure serviceability (Ángeles Castro & 

Ramírez Camarillo, 2014). In other words, the economic wealth of communities can contribute 

to the robustness of transportation infrastructure. Therefore, understanding the social and 

economic impacts of transportation projects on neighboring communities (e.g., providing better 

access to economically active major cities) is also important from the resilience planning 

perspective. 

The second latent variable is interpreted as technical vulnerability because the factors 

categorized under this latent variable represent different attributes of technical vulnerability. As 

shown in robustness analysis (Chapter III), the vulnerability of transportation infrastructures is 

directly related to the connectivity and redundancy of network links. A more redundant network 

has more alternative paths to replace failed network segments. Thus, the clustering coefficient 

(i.e., connectivity factor) is directly related to road vulnerability (Hui and Yang 2019). Moreover, 

road infrastructure systems that receive poor maintenance attention are more vulnerable to 

disruptive events. Maintenance efforts preserve the functionality of the roads that are required to 

absorb disruptive shocks (Espinet et al., 2016). Similarly, road assets (e.g., bridges, highways, 

etc.) that are geographically closer and more exposed to hazard sources are more vulnerable. For 

example, road infrastructure in coastal areas is close to hazards such as sea-level rise. Frequent 

inundation accelerates the deterioration of transportation facilities and infrastructure and causes 

disruptions in these networks (de Almeida & Mostafavi, 2016). Furthermore, as explained in 

previous sections, the socioeconomic factors (i.e., housing and unemployment) are indirectly 

associated with infrastructure quality. In other words, communities with better economic 

conditions (i.e., lower unemployment and higher homeownership rates) have higher financial 

resources to invest in and improve their infrastructure quality. Meanwhile, improving 

infrastructure quality reduces its vulnerability to external hazards as it provides the required 

functionality to withstand disruptive events.  
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Table 4-17: Factor Analysis results for Road-Water-Robustness branch 

Latent Factor Factors Name 

1 

Utilities and Drainage Maintenance 

Infrastructure 

Service 

Mean Income 

Current GDP 

Fatalities 

2 

Clustering Coefficient 

Technical 

Vulnerability 

Road Maintenance Level 

Age of Infrastructure 

Housing 

Unemployment 

Exposure 

Proximity 
 

4.2.3.1.2.2 Rapidity index 

Table 4-18 shows the single latent variable for the road-water-rapidity branch of the composite 

index. As such, these two factors are directly used as the representative of rapidity.  

Table 4-18: Factor Analysis results for Road-Water-Rapidity branch 

Latent Factor Factors Name 

1 
Current GDP 

Rapidity 
Vehicle Hours of Delay (Daily) 

4.2.3.2 Rail Index 

4.2.3.2.1 Wind-related hazards 

4.2.3.2.1.1 Robustness index 

The two latent variables in the rail-wind-robustness branch of the composite index are 

interpreted as social susceptibility and technical vulnerability (Table 4-19). The first latent 

variable consists of two social factors (i.e., housing and injuries) and one environmental variable 

(i.e., exposure). The first socioeconomic factor (i.e., injuries) shows the number of injured 

individuals in car crashes in normal conditions. The transportation system users are more 

susceptible to natural hazards if the infrastructure system does not perform well in normal 

conditions (Weilant et al., 2019). In other words, if a high rate of crashes and injuries is observed 

in normal conditions, it is unrealistic to expect desirable performance under disruptive events. 

The other socioeconomic factor (i.e., housing) represents the economic conditions of the 

community. Communities with better economic conditions are less susceptible to natural hazards 

since they have more resources to spend on resilience (Cutter & Finch, 2008). Finally, 

communities closer to the sources of natural hazards experience more frequent natural events; 

thus, they are more likely to become impacted (de Almeida & Mostafavi, 2016).  

The factors categorized under the second latent variable can be summarized as technical 

vulnerability. The first factor under this latent variable (i.e., maintenance) represents the efforts 
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to preserve infrastructure components in good condition and ensure they provide the expected 

functionality and service during disruptive events. Infrastructure systems, which are poorly 

maintained, are more likely to fail during disruptive events. Therefore, poor maintenance of rail 

infrastructures is associated with higher technical vulnerability (Neves et al., 2021). The 

remaining factors are socioeconomic variables showing the financial resources that a community 

generates to support building new infrastructure and improving existing ones (Ángeles Castro & 

Ramírez Camarillo, 2014). Communities with higher financial resources have more opportunities 

to build new infrastructure, increase redundancy, and improve their transportation infrastructure 

robustness. Therefore, these factors are indirectly related to the technical vulnerability of rail 

systems.  

Table 4-19: Factor Analysis results for Rail-Wind-Robustness branch 

Latent Factor Factors Name 

1 

Housing 
Social 

Susceptibility 
Exposure 

Injuries 

2 

Maintenance (Operating Expenses by Agency for Non-

Vehicle Maintenance) 

Technical 

Vulnerability 

Rail Passenger Demand 

Mean Income 

Unemployment 

Current GDP 

 

4.2.3.2.1.2 Rapidity index 

Since the rail-wind-rapidity branch involves only one factor, which is the current GDP, it is not 

possible to apply factor analysis, and as a result, no factor loadings have been calculated. Instead, 

current GDP, as the only factor involved in this branch, will be aggregated with other branches 

after normalization. 

4.2.3.2.2 Water-related hazards 

4.2.3.2.2.1 Robustness index 

Table 4-20 shows latent variables discovered by the factor analysis for the rail-water-robustness 

branch of the composite index. The first latent variable (i.e., infrastructure vulnerability) consists 

of three factors. The clustering coefficient shows the connectivity and redundancy of rail 

infrastructures. A more connected network is less vulnerable to disruptive events since the higher 

redundancy of the network allows it to absorb disruptions. The other two factors (i.e., exposure 

and proximity) are environmental factors that indicate how close and exposed the rail 

infrastructure is to the sources of natural hazards. The frequency and likelihood of disruptive 

events increase as the rail assets are geographically near to hazard sources, making them more 

vulnerable (de Almeida & Mostafavi, 2016).  

The second latent variable is interpreted as social robustness. The robustness of a community 

increases as their economic conditions (income, employment rate, GDP) improve since they have 

more resources to prepare for disruptive events and to enhance their wellness and security. Delay 
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and on-time performance are mobility performance measures indicating rail travelers’ 

perception. These factors show the delay travelers experience because of network disruptions 

(Freckleton et al., 2012). During major disruptive events, transportation networks will be easily 

congested since they are not able to cope with the increased travel demand from users as a result 

of, for example, evacuation. Thus, transportation systems that do not perform well in normal 

conditions are less robust against disruptive events as a result of their inherent performance 

issues under normal conditions.  

 
Table 4-20: Factor Analysis results for Rail-Water-Robustness branch 

Latent Factor Factors Name 

1 

Clustering Coefficient 

Infrastructure Vulnerability Exposure 

Proximity 

2 

Rail On-Time Performance 

Social Robustness 

Rail Delay 

Mean Income 

Unemployment 

Current GDP 

Injuries 

4.2.3.2.2.2 Rapidity index 

Similar to the previous rapidity indicators, a single latent factor was found, thereby requiring no 

further interpretation. The four factors are used directly as the indicator of rapidity (Table 4-21).  

 
Table 4-21: Factor Analysis results for Rail-Water-Rapidity branch 

Latent Factor Factors Name 

1 

Rail On-Time Performance 

Rapidity 
Rail Delay 

Customer Service Satisfaction 

Current GDP 

 

4.2.4 Weighting Results 

In this section, weighting results are provided. According to Section 4.1.6, resilience factors 

within each RI branch are associated with FA-based weights. For instance, Table 4-22 shows the 

weights of resilience factors of the rail-water-robustness branch. It should be noted that no 

weights were calculated for the Rail-Wind-Robustness, as no factor analysis was performed on 

this branch. Moreover, Table 4-23 presents the weights associated with identified latent factors 

within each branch. 
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Table 4-22: Weights of the indicators involved in the Rail-Water-Robustness branch 

Resilience Factor Weights 

Clustering Coefficient 0.14 

Rail On-Time Performance 0.06 

Rail Delay 0.03 

Mean Income 0.12 

Unemployment 0.13 

Current GDP 0.14 

Injuries 0.08  

Exposure (Water) 0.15  

Proximity 0.14 

 

Table 4-23: Weights of latent factors involved in RI development branches 

Branch Latent factors Weights 

Rail – Water – Robustness 
1 0.52 

2 0.48 

Rail – Water – Rapidity 1 1.00 

Rail – Wind – Robustness 
1 0.75 

2 0.25 

Rail – Wind – Rapidity - - 

Road – Water – Robustness 
1 0.51 

2 0.49 

Road – Water – Rapidity 1 1.00 

Road – Wind Robustness 
1 0.59 

2 0.41 

Road – Wind – Rapidity 1 1.00 

   
 

4.2.5 Composite Index Results 

In this section, the results of the factor aggregation are presented and discussed. Before 

aggregation, the relationship between factors and resilience should be considered. The objective 

is to ensure that increasing values in all resilience factors implies enhancement in system 

resilience while decreasing values in all resilience factors means a reduction in system resilience. 

Therefore, if an increase in a factor’s values results in resilience reduction, its associated value is 

reversed. Otherwise, factors are used without further modification (Table 4-24).  
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Table 4-24: Impact of factors on the resilience of transportation infrastructure 

Factor Impact 

Clustering Coefficient Normal 

Operating Expenses by Agency for Non-Vehicle Maintenance Normal 

Rail Passenger Demand Normal 

Mean Income Normal 

Unemployment Reverse 

Housing Normal 

Current GDP Normal 

Fatalities Reverse 

Injuries Reverse 

Total Crashes Reverse 

Exposure Reverse 

Proximity Normal 

Road capacity Normal 

Rail On Time Performance Normal 

Rail Delay Reverse 

Customer Service Satisfaction Normal 

Vehicle hours of delay (Daily) Reverse 

Vehicle miles traveled (Daily) Normal 

Road Maintenance level Normal 

Age of Infrastructure Reverse 

Utilities and Drainage Maintenance Normal 
 

As shown in Figure 4-8, the trend in the Florida index level (δ level) has been increasing since 

2014, implying that the resilience of transportation infrastructure in FDOT District 5 has been 

improving during the time window for which all factors have available data (i.e., 2014 to 2019). 

To be more specific, the resilience of both road and rail infrastructure (i.e., at the γ level) 

increases over time, while some declines are observed in specific time stamps. A complete list of 

developed indexes is provided in Appendix B.
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Figure 4-8: Aggregation results of the Florida transportation resilience index 

 



 

81 

 

4.2.5.1 Road transportation composite index 

Figure 4-9 presents the aggregation results for the road index, consisting of resilience factors at 

the resilience aspect (i.e., 𝛽 level) and hazard levels (i.e., 𝛼 level). While the resilience of the 

road infrastructure has mainly increased over time, there have been several decreases in the past; 

the most recent drop was observed in 2018 (red box at the γ level). This drop can be tracked 

down to lower levels to find their major causes. In this case, by looking at the hazard level (i.e., β 

level), it can be observed that both road wind and road water indexes show a decrease in the 

same year (red boxes at the β level). Moreover, further tracing down the road water index to the 

α level can help find out which resilience aspect is responsible for the drop in the road 

infrastructure. By considering the resilience aspect level (i.e., 𝛼 level), it was found that the road 

water rapidity, road water robustness, and road wind robustness indexes (red boxes at the α level) 

are attributed to the decrease during that time period. Based on the results, planners may pay 

more attention to improving the rapidity and robustness aspects of road infrastructure to water-

related hazards as well as the robustness aspect to wind-related hazards.  

 

4.2.5.2 Rail transportation composite index 

Figure 4-10 represents the aggregation results for the rail index. Similar to the road index, the 

resilience declines in the rail index can be traced down to hazard and resilience aspect levels to 

find out the major roots responsible for such decline. The most recent resilience reduction in the 

rail index happened in the last quarter of 2019 (red box at the γ level). At the hazard level (i.e., β 

level), the rail water index reveals the same decreasing pattern at a similar time (red boxes at the 

β level). Moreover, at the resilience aspect level (i.e., α level), both the robustness and rapidity of 

rail infrastructure's resilience against water-related hazards experienced a decrease around the 

last quarter of 2019 (red boxes at the α level). Consequently, the 2019 resilience reduction in the 

rail infrastructure at FDOT District 5 is primarily caused by the robustness and rapidity aspect of 

the rail infrastructure’s resilience to water-related hazards. Like the road infrastructure, FDOT 

can address the rail infrastructure’s resilience decline by investing more in projects that 

contribute to improving the rail infrastructure's resilience to water-related hazards. 
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Figure 4-9: Road index at different planning levels 
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Figure 4-10: Rail index at different planning levels
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4.2.6 Robustness Analysis 

In this section, the sensitivity of the RI by the selection of different data imputation and 

normalization techniques is examined. In this regard, different versions of RI were developed by 

varying combinations of data imputation and normalization techniques. Figure 4-11 shows the 

robustness analysis results. The FSU team concludes that, regardless of adopted methods for 

missing value imputation and normalization, the resilience of the transportation system has 

increased during the time interval of this study (i.e., 2014 to 2019). In other words, if other 

approaches for missing value imputation and normalization had been selected, the final 

composite index would still follow an increasing trend. Moreover, as shown in the figure, 

changing the adopted methodology causes small variations in the final results, implying that the 

constructed RI is not sensitive to the set of chosen methodologies. 

 

Figure 4-11: Robustness analysis results 

4.3 Summary 

A composite index framework is developed to quantitatively monitor and evaluate a broad range 

of resilience factors to guide various resilience-related planning focusing on: 

- specific resilience aspects [either rapidity or robustness; 𝛼 level],  

- hazard types [either wind or water; 𝛽 level] 

- infrastructure [either road or rail; 𝛾 level], and  

- FDOT District [𝛿 level] for the FDOT District 5 surface transportation system.  

The RI allows planners to evaluate the status of transportation resilience by keeping track of 

upward or downward trends at these different levels, thereby informing resilience planning. For 

example, the results of the trend analyses of the RI indicate that the Florida surface transportation 

index (𝛿 level) and the rail and road indexes (𝛾 level) became more resilient during the period 

from 2014 to 2019. Furthermore, the road index shows an increasing trend of resilience against 
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water- and wind-related hazards. At the same time, however, the resilience of the rail 

infrastructure increased only against wind-related hazards. Based on such trend assessments, 

planners can better understand which aspects of ground transportation resilience require more 

investment for improvement, thereby serving as a resilience planning guideline. Moreover, the 

RI can also be used to predict the transportation infrastructure resilience in the future, which 

helps planners with decision-making to anticipate and accordingly address resilience drops in 

advance. 
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5 CHAPTER V: DEMONSTRATION OF THE FRAMEWORK OF 

A TRANSPORTATION RESILIENCE INDEX 

5.1 Purpose of Workshop 

The workshop's purpose was to develop a proof-of-concept for how planners and other experts in 

the study area could understand and utilize the developed framework. The FSU team created 

workshop activities and inputs that were easily understandable and digestible for professionals 

with diverse mathematical and technical backgrounds. Resilience factors in the environmental, 

socioeconomic, and technical categories were selected and developed into three comparable 

hypothetical scenarios for the professionals at the workshop to interact with. District-level and 

state-level transportation decision-makers were engaged in demonstrating the implementation of 

the developed framework. The FSU team requested that the decision-makers share information 

about past, ongoing, and future transportation projects while asking them to provide input to 

determine the optimal levels of resilience (i.e., reference points to determine downward or 

upward trajectories of regional resilience factors) for their jurisdictions. Through the interactions 

with the district- and state-level decision-makers and the created workshop activities, the team 

was able to demonstrate how the proposed resilience index facilitates developing transportation 

projects to meet long-term resilience goals. 

 

5.1.1 Workshop Planning 

It was the intent of the organizers to have a broad representation of planners involved in 

transportation and resilience planning learn about and react to the resilience framework. The 

following steps were taken to ensure representation from state, regional and local government 

planners and to maximize attendance: 

1.     Invitation list developed in concert with FDOT 

2.     Invitation sent from FSU with a calendar link to the event for RSVPs on November 2, 2021. 

3.     Additionally, invitees were sent an email invitation on November 6, 2021. 

4.     Reminder sent by FSU on November 11, 2021, and by FDOT on November 16, 2021. 

5.     Weekly reminders were then sent to invitees that had not yet RSVP’d 

6.     Phone calls were made to individuals that had not yet RSVP’d from November 29-December 

3, 2021. 

7.     The final agenda was sent by email on December 3, 2021. 

Of the 32 invitees, 16 attended the session. Note that an additional four people who were not on 

the invitation list attended. The workshop was held on December 6, 2021, in Deland, Florida, at 

the FDOT District Office. It was attended by 16 participants consisting of local decision-makers 

in East Central Florida FDOT District 5, including planners, emergency managers, project 

managers, program administrators, professional engineers, and other professionals in the field. 

Attendees represented several organizations and cities, including the State Department of 

Transportation, Volusia County, the Lake Sumter Metropolitan Planning Organization, the 
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Ocala-Marion Transportation Planning Organization, Brevard County, Orange County, Seminole 

County, the East Central Florida Regional Planning Council, and the River to Sea Transportation 

Planning Organization. 

The workshop began with introductions from all the attendees, an overview of the complete 

project scope of work, and a presentation highlighting findings from the four prior chapters. The 

interactive part of the workshop had attendees randomly assigned to four groups, each led by a 

graduate research assistant who had previously been involved in the project. The facilitators 

walked each group through two activities. After the activities, all groups came together to share 

their findings and provide feedback. 

Finally, all attendees were sent a digital survey via Google forms to solicit their feedback on the 

workshop content; this form had a completion rate of 17%. 

5.2  Summary of Activities 

The workshop featured two interactive activities for participants to complete. The first activity, 

Nodal Degree, allowed workshop participants to consider different styles of networks and how 

their configurations impact network robustness. In this activity, participants were presented with 

two networks: an integrated and expansive network. They were then taught how to calculate the 

nodal degree of each network and informed how the average nodal degree could indicate the 

resilience and connectedness of a network.   

The second activity, Scenario Planning, allowed participants to consider real-world planning 

scenarios and demonstrate potential planning challenges. Participants were provided with a 

variety of resilience factors and encouraged to consider how they impact overall resilience in 

each of the provided scenarios. In this activity, each group was presented with a short scenario 

that demonstrated potential planning challenges. While Activity 1 focused on the technical 

aspects of network resilience, the purpose of Activity 2 was to engage participants with a wide 

variety of resilience factors and encourage them to think about how they impact overall 

resilience. These multidimensional factors include technical, socioeconomic, and environmental 

factors. Each group was also given a series of decision factors and asked to score the impact of 

each factor on resilience in their given scenario. The scale for scoring was -1 (negative), 0 

(neutral), and +1 (positive). The scores for individual factors were then totaled to get an overall 

unweighted score of influence on resilience for the scenario. Activity 2 was successful in 

demonstrating that various factors influence resilience and showed that it was possible to 

quantify that influence. Many agreed that this was a strategy they thought they could employ in 

their planning practices. Participants also underscored the value of considering other factors in 

addition to those presented in this workshop. 

5.3 Workshop Feedback 

Feedback was collected at the end of the workshop, as well as collected digitally in a post-

workshop survey that was shared with all attendees. 

 

5.3.1 In-Person Feedback 

In the open conversation at the end of the workshop, participants shared that the workshop and 

activities were effective in demonstrating the value of a resilience index, while also 
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acknowledging the importance of other factors. A common theme was that the tool was complex 

and took some time to understand. Practitioners felt that while the tool was valuable, it could be 

more user-friendly and have simpler language. Many also appreciated the idea of creating a 

dashboard where they could look at resilience trends and personalize it to the needs and 

challenges of their communities. Participants brainstormed as a group on what planning contexts 

the framework could be used in. On the local level, they felt it could be used in the initial 

application process and in corridor maintenance and improvement. On the regional level, they 

thought a GIS dashboard would be valuable, as well as the creation of a heat map. Additionally, 

they also thought the tool could be valuable in constructing new roads and in vulnerability 

assessments. On the State level, they thought the tool would be useful in a design context, as well 

as in looking at other areas of resilience such as environmental resilience. 

5.3.2 Survey Feedback 

In the event feedback survey, respondents felt that presenters effectively conveyed the need to 

look at a variety of factors when analyzing resilience while also explaining the impact of 

network configuration. They felt both activities were effective in helping participants understand 

the importance of the configuration of a network on resilience. The survey also asked in what 

additional planning contexts one could see these resilience principles applied. Responses 

included roadway planning and design, and for community resilience across different levels. 
 

5.4 Findings and Recommendations 

Improving the resilience of state transportation systems to natural hazards is an expressed goal of 

the federal government and the State of Florida. With our State’s ever-increasing vulnerability to 

natural hazards, a well-protected roadway network that can serve communities under both “blue 

skies” and natural hazard events is essential for maintaining public safety and ensuring economic 

sustainability. Florida is a leader in promoting resilience at all levels of planning. Through their 

establishment of a resilience subcommittee to address ongoing issues and projects related to 

resilience and to inform updates to the Florida Transportation Plan, FDOT has been able to  

integrate resilience-related concepts into its statewide visions and goals.  An important next step 

in that process, and one the FDOT is making strides to accomplish through this research project, 

is determining how best to create a process for measuring resilience. Creating a framework or 

tool to quantitatively assess resilience will help to promote:  

1.     Concept Integration: An effective, implementable framework will ensure that the concept of 

resilience is included among considerations used to evaluate and prioritize infrastructure 

projects at all levels of government and within any plan that includes project prioritization 

processes. 

2.     Standardization: The development of the framework establishes a uniform, replicable process 

for selecting resilience factors and streamlining data collection and interpretation to allow a 

comparison of resilience levels and trends overtime both within and between regions. 

3.     Accountability: Both at the state and regional/district level, it is important for planners to 

have a method to assess whether stated resilience goals translate into policies which in turn 

drive projects that build resilience. 
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4.     Financial Management: Applying the framework to budgeting decisions will help maximize 

the allocation of limited resources to projects that improve resilience, hence improving the 

efficiency of investment outcomes. 

5.     Risk Reduction: Over time, basing investments in a manner that quantitatively preserves or 

enhances surface transportation system resilience will enhance public safety and community 

resilience. 

Based on feedback garnered from the community of practice during the development of the 

framework, as well through the subset of practitioners who participated in the workshop, 

planning implications have been categorized into three broad areas; benefits, applications, and 

expansion; as summarized below. 

Benefits of Establishing a Resilience Evaluation Framework 

      Utility of Data: The development of the framework involved identifying factors and 

collecting the data required to measure each selected resilience factor. This process resulted 

in the creation of a database that could be used to establish a baseline “metric” for 

community resilience and to understand the 10-year trend in changes in resilience in the 

study area. By identifying resilience factors, metrics, and data sources, the project provides 

planners with a starting point for establishing agency-specific protocols for expanding the 

collection of these data over time.  

      Comparative Assessment: Understanding the effectiveness of specific investment decisions 

in reducing vulnerability over time will help decision makers compare alternative investment 

strategies and set planning priorities. This framework supports comparative decision making 

and provides a basis for establishing levels of resilience and changes over time.  

      Scalability / Comparability: The framework was designed for FDOT District 5, but the 

process for selecting factors, identifying metrics, and collecting and analyzing data is 

standardized. The entire process could be repeated for other FDOT Districts or even sub-

regional areas, allowing for an expansion to other districts. The scalability of the framework 

can promote the comparison of levels of resilience, and by inference, the effectiveness of 

resilience measures, within an FDOT district or region. 

Application to Transportation and Other Resilience-Related Planning Efforts 

State 

      Program Evaluation: The ability to assign a baseline resilience score to a region and to 

understand changes in resilience over time will help FDOT evaluate whether high-level, 

statewide goals and policies promoting resilience, including but not limited to those included 

the FTP, are being met. 

      Vertical Integration of Resilience Goals: Standardizing the process for understanding the 

quantitative impact of network maintenance and expansion decisions on regional resilience 

will better rationalize replicating and integrating specific resilience goals horizontally into 

other state level plans as well as vertically into related regional and local plans. This 

alignment of cross-agency goals can help build synergies between the actions of agencies 

while helping to reduce unintended consequences that agency-specific goals may have on 

resilience. 
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      Shared Assessment: As more plans at different levels of geographic coverage align resilience 

goals, the standardized framework promotes a unified approach for assessing resilience. The 

ability to evaluate the effectiveness of resilience at the regional or sub-regional layer by 

FDOT’s partners using a standard approach provides FDOT with an opportunity to have a 

more cooperative, devolved system for evaluating resilience statewide. 

    Enhancing Resilience Outcomes in Existing Plans: A number of different state transportation 

plans including Florida’s, include policies, specific projects, or programs for directing 

resources to maintenance and operations. Maintenance activities, not just new construction, 

can enhance resilience.  The framework can be used to help evaluate and prioritize different 

maintenance projects based on their impact on promoting resilience 
 

 

Regional 

      Funding and Technical Support: The resilience index framework can be used to differentiate 

between the levels of resilience between different FDOT Districts, or the source data could 

be adjusted to different geographies, such as at the MPO/TPO level. This understanding can 

help FDOT Central Office in its allocation of special funding or technical support to areas of 

concern.  

      Goal Setting, Project Prioritization, and Resilience Monitoring: As holds for the State, 

regional entities support planning processes in which goals are set, alternatives are evaluated, 

and projects are prioritized. Examples include the district-level Five-Year Work Program 

plans, the MPO/TPO Long Range Transportation Plans, and others. The framework will help 

in the creation, implementation and monitoring of regional resilience goals and measures. 

      Supporting Associated Plans: There are non-FDOT related regional and multijurisdictional 

plans that address resilience in part or whole. These include plans like Southeast Florida’s 

Regional Climate Action Plan and the State’s 67 County-based Local Mitigation Strategies. 

The framework can be used as a tool to support consistency in vulnerability assessment and 

in the evaluation of the hazard mitigation/adaptation initiatives planned in those and other 

documents. 

Local 

      Comprehensive Planning: While developed to be effective at a regional level, local 

governments can also apply the framework in their communities to help develop resiliency-

related planning goals and objectives as well as procedures for evaluating outcomes in their 

Comprehensive Land Use Plan. The most relevant elements that would benefit from the 

application of this framework would be transportation/mobility, future land use and capital 

improvements. 

      Development Review: As the approval of development orders is a local government 

responsibility, the framework can be used as a tool to, possibly in conjunction with 

developers, to help approve project alternatives that enhance resilience and to avoid those 

that reduce resilience at the local level.  
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      Workflow Prioritization: In Florida, hazard threats are ubiquitous and all local governments 

by statute (including, but not limited to Section 27P-22.004, F.A.C.) engage in some form of 

collaborative, intergovernmental hazard loss reduction planning. Maintenance of the existing 

local surface transportation network and the development of new projects requires the 

scheduling of human and financial resources over time. The resilience framework tool can be 

used to help local Public Works departments understand which projects should be prioritized 

within a work program as an example, prior to hurricane season) to maximize resiliency 

returns on investment. 

 

Future Development and Expansion 

To make the framework operational several steps need to be undertaken as outlined below. 

Overall, further data analysis and a formalized data collection process would allow the tool to be 

made more uniform and allow for fair comparison across different regions. Additionally, 

disseminating the published research to workshop participants and other professionals would 

allow for follow-up feedback and using local experts to inform the inclusion of other factors or 

data that practitioners would like to see included. Finally, elaborated on below, this framework 

could eventually be programmed into a graphical user interface (GUI) tool which practitioners 

could use to visualize the factors, with settings for weighing and inclusion of specific factors 

based on the practitioner’s jurisdiction. Expansion on these ideas and additional next steps are 

listed below: 

      Replication: With the demonstration of a workable framework that was determined to have 

utility in planning and project implementation at multiple levels of government, a case has 

been made for replicating the project in each of Florida’s regions and the Turnpike Office. 

Such an expansion would allow the comparison of relative levels of resilience using like 

measures across different regions of the state. 

      Customization: While the demonstration framework has a set number of factors that were 

analyzed and it is recommended that some core group of factors be present across each 

district, certain areas, due to unique regional geographic or socioeconomic conditions, may 

benefit from the inclusion of additional factors. The selection and evaluation of additional 

factors can be undertaken using the same methods used in this study and practitioners can 

provide feedback and input on additional factors considered for inclusion. 

      Sector Expansion: The surface transportation network was the subject of this evaluation. The 

framework could be expanded to include additional sub sectors within transportation, such as 

ports and airports, or even additional related sectors, such as stormwater, to create a more 

complete, multi-sectoral picture of regional resilience. 

      Visualization: While the framework developed in this project was both relevant and 

applicable to planners at various levels of government, the tool would be much more 

accessible if it was embedded in or accessed through a user-friendly graphical user interface 

or dashboard. The dashboard would allow for adjusting the weight assigned to each factor 

and testing different scenarios on the fly to customize the analysis to a specific user or 

community. Reports could include such applications as a resilience heat map and other 

applications designed to help monitor and visualize trends. 
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CHAPTER VI: CONCLUSION 

Transportation resilience is multidimensional, encompassing technology, socioeconomics, and 

the environment.  To get a holistic picture of resilience, it should be measured across these 

dimensions. Robustness (i.e., a system’s capacity to continue functioning after a disruptive 

event) and rapidity (i.e., how fast the system can recover after a disruptive event), which are the 

two aspects of resilience investigated in this study, were measured with a broad range of such 

multi-dimensional factors. The FSU research team developed a framework for establishing 

resilience indicators in order to  

• measure and monitor the robustness and rapidity of transportation infrastructure 

resilience in a region (i.e., at the FDOT District level),  

• understand the region’s level of and changes in resilience over time, and 

• promote the development of resilience-related planning projects.  

The stepwise process for developing the RIs is detailed below: 

Step 1: Literature Review. A review of academic articles and plans identified commonly used 

factors for evaluating transportation resilience. This list became the starting point for establishing 

the factors to be used in this study. 

Step 2: Factor Ranking. The identified factors were ranked using practitioner-based input elicited 

through expert interviews, group meetings, and surveys. In reviewing the general trend among 

the three dimensions of resilience for wind hazards, practitioners consistently ranked emergency 

response, age of infrastructure, and exposure as Tier 1 factors. Moreover, looking at similar 

aggregated results for water hazards, utilities and drainage, emergency response, and age of 

infrastructure were ranked as Tier 1 factors.  

Step 3: Robustness analysis. The robustness-related factors were employed to analyze the 

robustness of the road and rail transportation networks in the FDOT District 5. The results 

indicated that overall network robustness changes are associated with network growth patterns. 

Network expansion (constructing new links to or through less developed areas and connecting 

remote areas of concentrated development) decreases network robustness. On the other hand, 

network integration (increasing connections within an existing network) increases robustness. 

According to the results, from a network configuration perspective, the robustness of the 

roadway network in FDOT District 5 has decreased over time. However, more recent projects 

have slightly enhanced network redundancy and robustness.   

 

Step 4: Development of a Composite Index. In the fourth step, the FSU research team developed 

a composite index framework to quantitatively monitor and evaluate a broad range of resilience 

factors identified in previous factors to guide various resilience-related planning. The RI allows 

planners to evaluate the status of transportation resilience by gauging upward or downward 

trends at these different levels, thereby informing resilience planning. For example, the results of 

the trend analyses of the RI indicate that the Florida surface transportation index (δ level) and the 

rail and road indexes (γ level) became more resilient during the period from 2014 to 2019. 

Furthermore, the road index shows an increasing trend of resilience against water- and wind-

related hazards. At the same time, however, the resilience of the rail infrastructure increased only 

against wind-related hazards. Based on such trend assessments, planners can better understand 
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which aspects of ground transportation resilience require more investment for improvement, 

thereby serving as a resilience planning guideline. Furthermore, the RI can also be used to 

predict the transportation infrastructure resilience in the future, which helps planners to 

anticipate and address decreases in resilience in advance.  

Some of the overarching planning considerations for the RI include: 

• Concept expansion: Transportation planners can use the methods outlined in this study to 

identify corresponding resilience factors and employ the proposed composite index 

framework to develop RIs for other districts. The testing of the RI underscores the value 

that a framework could play in transportation planning. Planners from all levels of 

government identified ways in which the framework could be used to integrate a better 

understanding of resilience into transportation planning. 

• Further, if the RI was expanded to all districts, FDOT Central Office would be able to 

better understand the different drivers of resilience across and between regions, 

supporting more informed budgeting decisions and allowing for targeted program 

intervention. Factor expansion - Transportation planners can employ the proposed RI 

development framework to add new resilience factors to the RI as more data becomes 

available. While both robustness and rapidity-related factors were used to develop the RI, 

the number of robustness-related factors employed is greater than that of rapidity-related 

factors. Some of these factors were discarded due to data availability. As a practical 

matter, increasing the number of rapidity-related factors would enable the RI to capture 

higher dimensions of system rapidity and would allow transportation planners to make 

more informed decisions. 

• Data collection protocols – As explained in this report, many resilience factors were 

removed from the list for the construction of the RI due to their limited data availability. 

The reduction in desired data points limited the number of resilience factors included in 

the statistical analyses. Therefore, as more data observations become available, more 

resilience factors can be used to construct the RI and thus capture more diverse aspects of 

transportation resilience. This also underscores the need to identify meaningful 

multidimensional indicators and establish realistic and consistent protocols for data 

collection in a shorter time frame (e.g., quarterly basis), if possible. A potential list for 

expanding FDOT data collection, as summarized in Appendix A, would include but not 

be limited to: 

 

o Technical 

▪ Recoverability of damaged physical assets (e.g., the average time taken to 

repair) 

▪ Accessibility of users to roads/railway stations 

 

o Socioeconomic 

▪ Emergency response (e.g., emergency response time) 

▪ Tourism (e.g., the number of tourist visits to the FDOT District 5) 
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APPENDIX A: RESILIENCE FACTORS DETAILS 

Technical 

1) Connectivity 

Clustering coefficient 

The clustering coefficient assesses how the neighbors of a node are connected (Snelder et al., 2012). In 

other words, it assesses the connection density of each node. A complete graph where all nodes are 

connected has the maximum clustering coefficient. We used the average clustering coefficient in this 

project, which is calculated using the following equation. In this equation, 𝑦𝑖 is the number of links 

connecting neighbors of node i, ‘𝑑𝑖’ is the degree of node i, and ‘N’ is the number of network nodes.  

𝐶𝐶𝐺 =  
1

𝑁
∑

2𝑦𝑖

𝑑𝑖(𝑑𝑖 − 1)

𝑁

𝑖=1

  

This local measure of connectivity measures how the network is connected over short path lengths.  

Road network 

Data source https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basem

ap_arcs.shp.xml 
Data coverage 

 
Quarterly 2010 - 2020 

Rail network 

Data source FDOT 

Data coverage Annual 2013 - 2020 

 

Alpha, Beta, and Gamma Connectivity 

The traditional connectivity indicators (i.e., α, β, and γ indexes) were used to evaluate the overall network 

connectivity. These indicators are calculated using the following equations. In these equations, ‘N’ is the 

number of network nodes, and ‘E’ is the number of network edges. 

𝛼 =  
E − N + 1

2N − 5
  

β =  
𝐸

𝑁
  

𝛾 =  
𝐸

3𝑁 − 6
  

 

Road network 

Data source https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml 

Data 

coverage 

 

Quarterly 2010 - 2020 

Rail network 

Data source FDOT 

https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
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Data 

coverage 
Annual 2013 - 2020 

 

Network efficiency 

Network efficiency demonstrates the average closeness of every node in the network. The higher the 

closeness, the shorter the distance between nodes, and the higher the efficiency. The network efficiency is 

defined as: 

𝐸 =  
1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐼

  

 

Road network 

Data source https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basem

ap_arcs.shp.xml 
Data coverage 

 
Quarterly 2010 - 2020 

Rail network 

Data source FDOT 

Data coverage Annual 2013 - 2020 

 

2) Recoverability 

This factor analyzes the ability to restore and repair rapidly and with minimal outside assistance after an 

event occurs.   

3) Maintenance level 

Road and rail Maintenance refers to efforts conducted to keep infrastructure assets functional, efficient, and 

safe. Maintenance of transportation infrastructure assets improves their resilience. The maintenance rating 

program data was used for that road network. The rail maintenance indicators reported in the National 

Transit Database (NTD) for the central Florida rail system were used for rail infrastructure. These indicators 

include “operating expenses by agency of service for vehicle maintenance,” “operating expenses by agency 

for non-vehicle maintenance, and “vehicle maintenance - vehicle failure.”  

Road network 

Data source https://www.fdot.gov/maintenance/maintratingprogram.shtm 

 

Data coverage 

 
Quarterly 2010 - 2020 

Rail network 

Data source https://www.transit.dot.gov/ntd/transit-agency-profiles 

Data coverage  

 

4) Link capacity 

The capacity of a link depends mostly on the number of lanes and lane width. During any disaster scenario, 

the operation on any path can be disrupted, and the number of functional roads becomes critical in 

https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
https://www.fdot.gov/maintenance/maintratingprogram.shtm
https://www.transit.dot.gov/ntd/transit-agency-profiles
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estimating capacity. The average number of road lanes was used as a proxy for link capacity in the road 

infrastructure. However, rail link capacity data was not available.  

Road network 

Data source https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basem

ap_arcs.shp.xml 
Data coverage 

 
Quarterly 2010 - 2020 

Rail network 

Data source  

Data coverage  

 

5) Accessibility 

Accessibility refers to the 'ease' of reaching opportunities by active modes for activities, goods, and services 

with the availability of alternative infrastructure that will help relief supplies. Since FDOT District 5 rail 

network is not connected, the accessibility index does not apply to this mode. Accessibility for the road 

infrastructure was also dropped since historical data (such as census block population) for this indicator 

was not available. 

6) Age of infrastructures 

Age of infrastructure refers to average the current condition of existing infrastructure may directly impact 

the resilience of a transportation system. Annual data for the age of road infrastructure was collected from 

FDOT; however, data for rail infrastructure was not available. 

Road network 

Data source FDOT 

Data coverage 

 
Yearly 2010 - 2020 

Rail network 

Data source  

Data coverage  

 

7) Utilities and drainage 

We used the total cost of utilities and drainage maintenance to represent this resilience factor in this project. 

However, utility information for rail infrastructure was not available. 

Road network 

Data source FDOT 

Data coverage 

 
Quarterly 2010 - 2020 

Rail network 

Data source  

Data coverage  

 

Socioeconomic 

https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/TRANSTAT_metadata/basemap_arcs.shp.xml
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8) Network Demand 

Network demand refers to the number of users who rely on the transport asset. Demand level is used to 

identify the most important links of the network. FDOT performance measures (i.e., vehicle miles traveled 

(VMT)) were used to capture network demand for the road system. VMT measures the amount of travel 

for all vehicles in FDOT District 5 over a given period of time. Rail passenger demand and vehicle revenue 

miles reported in the National Transit Database (NTD) for the central Florida rail system were the indicators 

used for the rail infrastructure.  Vehicle revenue miles capture the annual miles of a rail vehicle travel while 

being in active service. 

Road network 

Data source FDOT 

Data coverage 

 
Annual 2014-2019 

Rail network 

Data source https://www.transit.dot.gov/ntd/transit-agency-profiles 

 

Data coverage Annual 2014-2019 

 

9) Traveler Perception 

Travelers’ experience with transportation modes reflects the performance of the system in handling 

demand. Mobility-related factors such as average delay and average speed are suggested as two factors to 

measure travelers’ perception. Road performance measures such as vehicle hours of delay and person hours 

of delay were used to represent road travelers' perception. On the other hand, rail on-time performance, rail 

delay, and rail customer satisfaction were performance indicators employed to represent rail traveler 

perception.   

• Vehicle hours of delay represent the amount of delay that a traveler experiences as the result of 

congestion. 

• According to the FDOT source book person hours of delay is calculated using the following 

formula: 

∑(Daily or Peak Travel Time –  Travel Time at LOS B) × Vehicle Volume 

×  Average Vehicle Occupancy 

 Road network 

Data source Vehicle hour of delay 
FDOT 

Person hour of delay 

Data coverage 

 

Vehicle hour of delay 

Annual 2014-2019 Person hour of delay 

 Rail network 

Data source Rail delay https://railroads.dot.gov/passenger-

rail/amtrak/intercity-passenger-rail-service-quality-

and-performance-reports 

 

Rail on-time performance 

Customer satisfaction 

Data coverage Rail delay 

Quarterly 2010 - 2020 Rail on-time performance 

Customer satisfaction 

https://www.transit.dot.gov/ntd/transit-agency-profiles
https://railroads.dot.gov/passenger-rail/amtrak/intercity-passenger-rail-service-quality-and-performance-reports
https://railroads.dot.gov/passenger-rail/amtrak/intercity-passenger-rail-service-quality-and-performance-reports
https://railroads.dot.gov/passenger-rail/amtrak/intercity-passenger-rail-service-quality-and-performance-reports
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10) Emergency Response 

The emergency response represents the ability of a region to mobilize response efforts without the help of 

other areas. Performance indicators such as emergency response time reported by the Florida Department 

of Health can be used for this resilience factor. However, this resilience factor was dropped from the 

analysis since historical county-level data was not publicly available.  

11) Social Vulnerability 

The level of social vulnerability can influence the resilience of transportation systems in multiple ways. 

Poverty within a region or neighborhood could affect the availability of funds to improve an area or to 

engage in new infrastructure projects. Disenfranchisement also goes hand in hand with vulnerable 

populations living in poverty, making it more challenging to engage stakeholders in the planning process. 

Moreover, vulnerable populations are the ones that may be most in need after a disaster occurs. In this 

project, several indicators were used to represent social vulnerability. A brief description of these indicators 

is as follows: 

• Age: The average age of FDOT District 5 people.  

• Income: The average income earned per person in a given area in a specified year. Original data was 

found with a yearly frequency. 

• Unemployment: The unemployment rate is defined as the percentage of unemployed workers in the 

total labor force. 

• Minority status: The ratio of non-white population to white population was used for this factor.  

• Vehicle access: The ratio of people in FDOT District 5 who own a vehicle was used for this factor.  

• Housing: The homeownership rate was used for this factor, defined as the proportion of households in 

Florida that are owners. 

 Road network 

Data source Age https://data.census.gov/cedsci/table?q=age%20by%20county&ti

d=ACSST1Y2019.S0101&hidePreview=false 

 

Income https://data.census.gov/cedsci/table?q=income%20by%20county

&g=0500000US12127&tid=ACSST1Y2019.S1901&moe=false&

hidePreview=false 

 

 Unemployment https://data.census.gov/cedsci/table?q=Employment&t=Employm

ent%20and%20Labor%20Force%20Status&g=0500000US12095

&d=ACS%201-

Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.D

P03&hidePreview=true 

 

 Minority access https://data.census.gov/cedsci/table?t=Race%20and%20Ethnicit

y&g=0500000US12009,12035,12069,12083,12095,12097,12117,

12119,12127&tid=ACSDT1Y2019.B02001&hidePreview=false 

 

 Housing https://data.census.gov/cedsci/table?g=0400000US12_0500000

US12009,12069&d=ACS%205-

Year%20Estimates%20Data%20Profiles&tid=ACSDP5Y2018.D

P04&moe=false&hidePreview=true 

https://data.census.gov/cedsci/table?q=age%20by%20county&tid=ACSST1Y2019.S0101&hidePreview=false
https://data.census.gov/cedsci/table?q=age%20by%20county&tid=ACSST1Y2019.S0101&hidePreview=false
https://data.census.gov/cedsci/table?q=income%20by%20county&g=0500000US12127&tid=ACSST1Y2019.S1901&moe=false&hidePreview=false
https://data.census.gov/cedsci/table?q=income%20by%20county&g=0500000US12127&tid=ACSST1Y2019.S1901&moe=false&hidePreview=false
https://data.census.gov/cedsci/table?q=income%20by%20county&g=0500000US12127&tid=ACSST1Y2019.S1901&moe=false&hidePreview=false
https://data.census.gov/cedsci/table?q=Employment&t=Employment%20and%20Labor%20Force%20Status&g=0500000US12095&d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP03&hidePreview=true
https://data.census.gov/cedsci/table?q=Employment&t=Employment%20and%20Labor%20Force%20Status&g=0500000US12095&d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP03&hidePreview=true
https://data.census.gov/cedsci/table?q=Employment&t=Employment%20and%20Labor%20Force%20Status&g=0500000US12095&d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP03&hidePreview=true
https://data.census.gov/cedsci/table?q=Employment&t=Employment%20and%20Labor%20Force%20Status&g=0500000US12095&d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP03&hidePreview=true
https://data.census.gov/cedsci/table?q=Employment&t=Employment%20and%20Labor%20Force%20Status&g=0500000US12095&d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP03&hidePreview=true
https://data.census.gov/cedsci/table?t=Race%20and%20Ethnicity&g=0500000US12009,12035,12069,12083,12095,12097,12117,12119,12127&tid=ACSDT1Y2019.B02001&hidePreview=false
https://data.census.gov/cedsci/table?t=Race%20and%20Ethnicity&g=0500000US12009,12035,12069,12083,12095,12097,12117,12119,12127&tid=ACSDT1Y2019.B02001&hidePreview=false
https://data.census.gov/cedsci/table?t=Race%20and%20Ethnicity&g=0500000US12009,12035,12069,12083,12095,12097,12117,12119,12127&tid=ACSDT1Y2019.B02001&hidePreview=false
https://data.census.gov/cedsci/table?g=0400000US12_0500000US12009,12069&d=ACS%205-Year%20Estimates%20Data%20Profiles&tid=ACSDP5Y2018.DP04&moe=false&hidePreview=true
https://data.census.gov/cedsci/table?g=0400000US12_0500000US12009,12069&d=ACS%205-Year%20Estimates%20Data%20Profiles&tid=ACSDP5Y2018.DP04&moe=false&hidePreview=true
https://data.census.gov/cedsci/table?g=0400000US12_0500000US12009,12069&d=ACS%205-Year%20Estimates%20Data%20Profiles&tid=ACSDP5Y2018.DP04&moe=false&hidePreview=true
https://data.census.gov/cedsci/table?g=0400000US12_0500000US12009,12069&d=ACS%205-Year%20Estimates%20Data%20Profiles&tid=ACSDP5Y2018.DP04&moe=false&hidePreview=true
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Data coverage 

 

Age 

Annual 2010 - 2019 

Income 

 Unemployment 

 Minority access 

 Housing 

 

12) Economic growth 

Generally, if economic conditions improve, the corresponding transportation system has a better chance of 

enhancing its resilience. The gross domestic product (GDP) data of the FDOT District 5 counties was used 

as a representative of the economic growth of the study area.  

Road and rail network 

Data source https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1 

Data coverage 

 
Annual 2010 - 2020 

 

13) Tourism 

Tourism data is the number of tourists to FDOT District 5 from other states in the United States, Canada, 

and other countries. The data for this factor was available at the state level. However, county-level data was 

not found. Therefore, this indicator was dropped from the analysis.  

14) Safety 

Safety factors can impact the quality of the current infrastructure as well as the cost of repairs.  

Road network 

Data source https://cdan.nhtsa.gov/SASStoredProcess/guest 

https://www-fars.nhtsa.dot.gov/States/StatesCrashesAndAllVictims.aspx 

https://www.flhsmv.gov/resources/crash-citation-

reports/?utm_medium=email&utm_source=govdelivery 

 

Data coverage 

 
Annual 2011 - 2020 

Rail network 

Data source https://explore.dot.gov/views/AccidentIncidentMasterDashboard/AccidentI

ncidentDashboard?iframeSizedToWindow=true&%3Aembed=y&%3Asho

wAppBanner=false&%3Adisplay_count=no&%3AshowVizHome=no 

 

Data coverage Annual 2010-2019 

 

 

 

https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1
https://cdan.nhtsa.gov/SASStoredProcess/guest
https://www-fars.nhtsa.dot.gov/States/StatesCrashesAndAllVictims.aspx
https://www.flhsmv.gov/resources/crash-citation-reports/?utm_medium=email&utm_source=govdelivery
https://www.flhsmv.gov/resources/crash-citation-reports/?utm_medium=email&utm_source=govdelivery
https://explore.dot.gov/views/AccidentIncidentMasterDashboard/AccidentIncidentDashboard?iframeSizedToWindow=true&%3Aembed=y&%3AshowAppBanner=false&%3Adisplay_count=no&%3AshowVizHome=no
https://explore.dot.gov/views/AccidentIncidentMasterDashboard/AccidentIncidentDashboard?iframeSizedToWindow=true&%3Aembed=y&%3AshowAppBanner=false&%3Adisplay_count=no&%3AshowVizHome=no
https://explore.dot.gov/views/AccidentIncidentMasterDashboard/AccidentIncidentDashboard?iframeSizedToWindow=true&%3Aembed=y&%3AshowAppBanner=false&%3Adisplay_count=no&%3AshowVizHome=no
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Environmental 

15) Exposure 

This factor is defined as the extent to which a system is exposed to significant climatic variations. The 

exposure of infrastructure systems was evaluated against two types of natural hazards.  

• Inland flooding (water-related hazard): FEMA flood hazard zone maps were used for this analysis. 

An overlay GIS analysis was conducted to identify all network segments intersecting with 100-

year flood zones. The average miles of the network inundated by inland flooding was used to 

represent the exposure of rail and road networks to inland flooding.  

• Storm surge (water-related hazard): The MOM maps of the SLOSH model were used for this 

analysis. Similar to inland flooding, an overlay GIS analysis was conducted to identify all network 

segments intersecting with storm surge. The average miles of the network inundated by storm surge 

was used to represent the exposure of rail and road networks to storm surge. 

• Tornado (wind-related hazard): To calculate network exposure to tornado hazards, the historical 

data for tornado in FDOT District 5 was first captured from NOAA. The data includes the tornado 

touchdown locations (point features) in FDOT District 5. In the next step, the kernel density GIS 

analysis was conducted to develop the climatology of tornados in FDOT District 5 (Figure A-1). 

The figure demonstrates the density of tornado touchdowns in the region. A higher density value 

of a pixel indicates a higher frequency of tornado touchdowns in that area. In other words, darker 

areas in this figure are more exposed to tornado events. In order to calculate the exposure of the 

road and rail networks to tornado events, the tornado touchdown density value for each network 

segment was calculated. In the next step, the average kernel density value of all network segments 

was used to represent network exposure to tornado hazards. 

 Road network 

Data source FEMA maps https://www.fgdl.org/metadataexplorer/explorer.jsp 

 

MOM maps https://www.nhc.noaa.gov/nationalsurge/ 

 

 Tornado touchdowns https://www.spc.noaa.gov/gis/svrgis/ 

 

Data coverage 2010-2019 

https://www.fgdl.org/metadataexplorer/explorer.jsp
https://www.nhc.noaa.gov/nationalsurge/
https://www.spc.noaa.gov/gis/svrgis/


 

106 

 

 

Figure A-1: Tornado climatology for FDOT District 5 

Proximity 

The proximity factor is defined as the closeness of the infrastructure assets to hazard sources. The proximity 

of the road network to the sea or river can increase its vulnerability and the probability of inundation. Thus, 

it affects the robustness of infrastructure networks. The proximity of the rail and road infrastructure 

networks was evaluated against water-related hazards. 

• Inland flooding (water-related hazard): FEMA flood hazard zone maps were used for this analysis. 

The closest distance of each network segment to 100-year flood zones was calculated. The average 

distance of all network segments to 100-year flood zones was used to represent proximity to inland 

flooding.  

• Storm surge (water-related hazard): The MOM maps of the SLOSH model were used for this 

analysis. Similar to inland flooding, the distance of each network segment to storm-surge areas was 

calculated. The average distance of all network segments to storm surge zones was used to represent 

proximity to storm surge. 

 

 

 

  

 Road network 

Data source FEMA maps https://www.fgdl.org/metadataexplorer/explorer.jsp 

 

MOM maps https://www.nhc.noaa.gov/nationalsurge/ 

 

Data coverage 2010-2019 

https://www.fgdl.org/metadataexplorer/explorer.jsp
https://www.nhc.noaa.gov/nationalsurge/
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APPENDIX B: COMPOSITE INDEXES 

This section provides figures of selected indicators in the base level and developed indexes at other levels 

of the RI hierarchical structure. 

 

Figure B-1: FDOT District 5 RIs at different planning levels 
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B.1 - Resilience indexes 

B.1.1 - δ level index 

 

Figure B-2: Resilience of FDOT District 5 ground transportation systems 

 

B.1.2 - γ level indexes 

 

Figure B-3: Resilience of FDOT District 5 rail transportation system 
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Figure B-4: Resilience of FDOT District 5 road transportation system 

B.1.3 - β level indexes 

 

Figure B-5: Resilience of FDOT District 5 rail transportation system against water-related hazards 

 

Figure B-6: Resilience of FDOT District 5 rail transportation system against wind-related hazards 
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Figure B-7: Resilience of FDOT District 5 road transportation system against water-related hazards 

 

Figure B-8: Resilience of FDOT District 5 road transportation system against wind-related hazards 

B.1.4 - α level indexes 

 

Figure B-9: Robustness of FDOT District 5 rail transportation system against water-related hazards 
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Figure B-10: Rapidity of FDOT District 5 rail transportation system against water-related hazards 

 

Figure B-11: Robustness of FDOT District 5 rail transportation system against wind-related hazards 

 

Figure B-12: Rapidity of FDOT District 5 rail transportation system against wind-related hazards 
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Figure B-13: Robustness of FDOT District 5 road transportation system against water-related hazards 

 

Figure B-14: Rapidity of FDOT District 5 road transportation system against water-related hazards 

 

Figure B-15: Robustness of FDOT District 5 road transportation system against wind-related hazards 
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Figure B-16: Rapidity of FDOT District 5 road transportation system against wind-related hazards 

B.2 - Base-level resilience factors 

B.2.1 – Rail factors 

 

Figure B-17: Clustering coefficient resilience factor of FDOT District 5 rail transportation system 

 

Figure B-18: Rail Passenger demand resilience factor of FDOT District 5 rail transportation system 
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Figure B-19: Rail on-time performance resilience factor of FDOT District 5 rail transportation system 

 

Figure B-20: Rail delay resilience factor of FDOT District 5 rail transportation system 

 

Figure B-21: Proximity resilience factor of FDOT District 5 rail transportation system 
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Figure B-22: Maintenance resilience factor of FDOT District 5 rail transportation system 

 

Figure B-23: Injuries resilience factor of FDOT District 5 rail transportation system 

 

Figure B-24: Exposure to wind-related hazards  resilience factor of FDOT District 5 rail transportation 

system 
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Figure B-25: Exposure to water-related hazards resilience factor of FDOT District 5 rail transportation 

system 

 

Figure B-26: Customer service satisfaction resilience factor of FDOT District 5 rail transportation system 

B.2.2 - Road factors 

 

Figure B-27: Exposure to water-related hazards resilience factor of FDOT District 5 road transportation 

system 
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Figure B-28: Exposure to wind-related hazards resilience factor of FDOT District 5 road transportation 

system 

 

Figure B-29: Vehicle hours of delay resilience factor of FDOT District 5 road transportation system 

 

Figure B-30: Utilities and drainage resilience factor of FDOT District 5 road transportation system 
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Figure B-31: Road capacity resilience factor of FDOT District 5 road transportation system 

 

Figure B-32: Proximity resilience factor of FDOT District 5 road transportation system 

 

Figure B-33: Network accessibility resilience factor of FDOT District 5 road transportation system 
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Figure B-34: Maintenance resilience factor of FDOT District 5 road transportation system 

 

Figure B-35: Fatalities resilience factor of FDOT District 5 road transportation system 

 

Figure B-36: Clustering coefficient resilience factor of FDOT District 5 road transportation system 
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Figure B-37: Age of infrastructure resilience factor of FDOT District 5 road transportation system 

B.2.3 - Common factors 

This section provides several resilience indicators that are common between rail and road 

transportation systems. 

 

Figure B-38: Current GDP resilience factor of FDOT District 5 road and rail transportation systems 

 

Figure B-39: Housing resilience factor of FDOT District 5 road and rail transportation systems 
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Figure B-40: Mean income resilience factor of FDOT District 5 road and rail transportation systems 

 

Figure B-41: Unemployment resilience factor of FDOT District 5 road and rail transportation systems 

 

 

 


