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EXECUTIVE SUMMARY 

Traditional data collection techniques at intersections are known to be time consuming 
and costly while handling the complexity associated with the heavy traffic volume and travel 
demand on today’s roadways. Therefore, transportation agencies have been searching for more 
innovative, safer, and cheaper data collection solutions to have a faster and lower cost collection 
and analysis of traffic data to obtain traffic volume, speeds, queues, turning movements and 
conflict points (e.g., vehicle to vehicle, vehicle to pedestrian or bicycle, etc.) at intersections. 
One innovative solution is using drones in combination with computer vision applications. 
However, there is still a wide gap in the literature with respect to the efficiency and feasibility of 
using drones for intersection data collection purposes, especially for longer periods of time 
during peak hours. To this end, there has not been a study on using the drones for real-time daily 
traffic collection and processing, and a study related to how this can benefit vehicles, 
pedestrians, and bicyclists. A significant challenge in evaluating the feasibility of using drones 
for daily traffic data collection is related to the evaluation of appropriate tools with the rationale 
and priority for each alternative to be used, developing options and recommendations, and 
conducting a pilot test at selected intersections. Although drones have been used for a variety of 
purposes such as bridge inspections by other states, the objectives of traffic data collection are 
totally different inherently. 

The overall goal of this project was to provide a feasibility analysis on the utilization of 
drones and computer vision applications to extract microscopic traffic data at intersections. 
Findings are expected to help the Florida Department of Transportation (FDOT) in integrating 
new technologies into their day-to-day data collection operations. Consistent with this goal, the 
following tasks have been completed as part of the project: (a) perform a literature review and 
analyze state-of the-practice to provide guidance and recommendations on legally and safely 
using drones with video and image processing techniques for the uniform traffic studies; (b) 
generate a statewide crosswalk inventory using aerial images and artificial intelligence (AI2); (c) 
investigate the fatal pedestrian-involved crashes that occur at locations other than intersections in 
Florida and analyze their detailed crash reports; (d) design and conduct exercises with tethered 
drones to collect intersection data in the cities of Tallahassee and Jacksonville, Florida; and (e) 
perform a cost analysis comparing traditional methods with different drone-based traffic data 
collection techniques. Meeting these objectives led to appropriate guidelines and 
recommendations to FDOT in terms of evaluating and justifying the feasibility of using drones as 
safer and cheaper data collection alternatives while significantly improving intersection safety 
and operations. Results and recommendations of this research will also be used by the FDOT 
consultants who already perform traffic data collection on Florida’s roadways. 
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 INTRODUCTION 

Traditional data collection techniques at intersections are known to be time consuming 
and costly while handling the complexity associated with the heavy traffic volume and travel 
demand on today’s roadways. Therefore, transportation agencies have been searching for more 
innovative, safer, and cheaper data collection solutions to have a faster and lower cost collection 
and analysis of traffic data to obtain traffic volume, speeds, queues, turning movements and 
conflict points (e.g., vehicle to vehicle, vehicle to pedestrian or bicycle, etc.) at intersections. 
One such innovative solution is using unmanned aerial systems (UASs), also known as drones. 
Several states such as Michigan and Ohio have already implemented the use of drones for their 
daily operations, including traffic monitoring and management as well as incident scene data 
collection, and have reported satisfactory results with their implementation programs 
(Massachusetts DOT, 2016). Their experiences have shown that utilizing drones for data 
collection has demonstrated significant cost savings and offers substantial safety advantages 
while reducing accidents and mitigating congestion. The American Association of State 
Highway and Transportation Officials (AASHTO) conducted a survey in 2018. This survey 
revealed that drone-based data collection is four times faster compared to traditional methods, 
and it increases the productivity by three times (AASHTO, 2018b). Similarly, AASHTO’s 2019 
survey report indicated that UAS-based data collection for a bridge inspection was 
approximately four times less costly compared to manual data collection, without even 
considering the user delay cost associated with the manual collection process (AASHTO, 2019). 
However, there is still a wide gap in the literature with respect to the efficiency and feasibility of 
using drones for intersection data collection purposes, especially for longer periods of time 
during peak hours. To this end, there has not been a study on using the drones for real-time daily 
traffic collection and processing nor a study related to how this can benefit vehicles, pedestrians, 
and bicyclists.  

Therefore, a significant challenge in evaluating the feasibility of using drones for daily 
traffic data collection is related to the evaluation of appropriate tools with the rationale and 
priority for each alternative to be used, developing options and recommendations, and 
conducting a pilot test at an intersection. Although drones have been used for a variety of 
purposes such as bridge inspections by other states, the objectives of traffic data collection are 
totally different inherently. As such, there is a need to conduct an extensive review of the 
literature and practice to (a) extract the vast amount of knowledge with respect to the drone 
implementations video/image processing techniques and other related data collection equipment 
and identify the operational barriers, (b) analyze the results of this search to identify best 
implementations, practices, and strategies, and (c) conduct a field exercise through a pilot drone 
study at selected intersections in Florida. 

 Study Objectives 

The objectives of the study are as follows: (a) perform a literature review and analyze 
state-of the-practice to provide guidance and recommendations on legally and safely using 
drones with video/image processing techniques for the uniform traffic studies; (b) generate 
statewide crosswalk inventory using AI2 (i.e., aerial images and artificial intelligence); (c) 
investigate the fatal pedestrian-involved crashes that occur at locations other than intersections in 
Florida and analyze their detailed crash reports; (d) design and conduct exercises with tethered 
drones to collect intersection data in the cities of Tallahassee and Jacksonville, Florida; and (e) 
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perform a cost analysis comparing traditional methods with different drone-based traffic data 
collection techniques. 

 Report Structure 

The remainder of this report is structured in the following manner. After describing the 
research gaps based on the stated objectives in Chapter 1, Chapter 2 describes Task 1 Deliverable 
of this project, which includes the legal regulations on drone operations, state-of-the-practice, 
and literature review. Chapter 3 presents Task 2, where a statewide crosswalk inventory map was 
developed by implementing computer vision applications on high-resolution aerial images. 
Chapter 4 focuses on the drone-based video data collection and analysis as part of Task 3 and 
presents the pilot exercises conducted at selected intersections in Florida to obtain real-time 
traffic data for intersection control evaluation purposes. Describing the detailed findings of Task 
4, Chapter 5 presents data analysis results and compares traditional methods with the drone-
based traffic data collection performing a comparative cost analysis. Chapter 5 also includes a 
detailed evaluation of the fatal pedestrian-involved crashes that occur at locations that are not 
intersections. Chapter 6 presents the challenges faced and provides guidelines and 
recommendations for FDOT. 
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 TASK 1: CONDUCT A REVIEW OF LITERATURE AND PRACTICE TO 
IDENTIFY BEST IMPLEMENTATIONS, STRATEGIES AND OPERATIONAL 
BARRIERS 

Task 1 aimed to evaluate current state-of-the-practice and extract the vast amount of 
knowledge from the published work to help and guide this research project. Through an 
extensive literature review, this task evaluated the existing drone-focused traffic research, drone 
technologies, communication technologies, and video image processing software available in the 
market. This was followed by a discussion on the identification and extraction of the desired data 
that could be obtained from aerial videos to evaluate the mobility and safety performance of 
intersections. This was supported with a discussion on the up-to-date computer vision algorithms 
extracted from the literature review. This task also presented several challenges and operating 
barriers. The findings were also presented through the reviewed documentation and provided the 
preliminary steps of a framework for the pilot study, which will be conducted in Task 3 (Chapter 
4 in this document). 

 

 Drone Types and Terminology 

The use of drones dates back more than a century. The first pilotless flight, recorded in 
1918, was performed to deliver explosive materials. This first unmanned aircraft was called 
“Kattering Bug”, and it was an early version of today’s cruise missiles (Kwasniak & Kerezman, 
2017). After a long-term restricted use for military purposes only, drone technologies have 
become more available and affordable over the last two decades. Drones have been used for a 
variety of civil applications as well as for recreational purposes, with the advantages of 
maneuverability, flexibility, and large field-of-view. Being a fast-growing market with various 
new opportunities, there are several acronyms and abbreviations associated with describing 
drones, which are shown in Table 2-1. In this study, we will use the terms drones and Unmanned 
Aerial Systems (UASs) interchangeably. Also, note that tUAS abbreviation is used for tethered 
drones.  

Table 2-1: Common acronyms for drones 

 

 

 

 

 

 

 

Although there are many different designs, UASs can be categorized into fixed wing 
drones and multi-rotor drones. Figure 2-1 depicts the commonly used drone designs. Please note 
that tethered drones are multi-rotor drones mounted to a ground unit. An automated crane in the 
ground unit keeps the tether cable taut during the flight. Although it limits the maneuverability, 
tether cable also provides power. Therefore, tethered drones can provide persistent and long 

UAS: Unmanned Aerial Systems, Unmanned Aircraft Systems 

UAV: Unmanned Aerial Vehicles, Unmanned Aircraft Vehicles 

RPAS: Remotely Piloted Aircraft Systems 

UA: Unmanned Aircrafts 

sUAS: Small Unmanned Aerial Vehicles 

tUAS: Tethered Drones 
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duration surveillance. Table 2-2 presents the advantages and disadvantages of different designs 
as well as preferred area of applications for each type of drone design. The following section 
discusses the legislation rules needed to legally operate UASs in the U.S. 

 

 

Figure 2-1: Commonly used UAS platforms 

 

Table 2-2: Application Characteristics of different UAS designs 

 

 

 

 Fixed Wing Rotorcraft Tethered 

Major Advantages 

 Longer flight 
endurance 

 Higher speed 
 Larger area of 

coverage 

 Vertical take-
off/landing 

 Hovering 
 Maneuverability 

 Longer flight endurance 
 Vertical take-off/landing 
 Hovering 
 No risk for flaw away 

Major Challenges 
 Requires additional 

efforts for launching 
 Limited flight 

endurance 
 Limited Maneuverability 

Preferred Areas of 
Interest 

 Area Surveys 
 Long distance 

operations 

 Structural 
Inspection 

 Confined Space 

 Traffic Monitoring 

Examples of 
Application 

 Roadside mapping  
 Rail inspection 

 Bridge 
inspection 

 Light pole 
inspection 

 Intersection Analysis 
 Incident Monitoring 
 Back-up ITS element 



5 

 

 Legislative Rules 

Federal Aviation Administration (FAA) regulates the operations and certifications of 
small UAS in the U.S. with Part 107 of 14 Code of Federal Regulations (CFR), which was 
released on August 29, 2016. This regulation fully covers only sUAS which weigh less than 55 
lbs. (25 kg.) and more than 0.55 lbs. (1 g.). Part 107 still applies for other drone operations, but 
this is not sufficient. Every drone should also be registered in FAA databases and only sUAS can 
be registered online. 

After receiving many questions about the use and operation of tethered UAS, FAA made 
a clear statement in the rules of Part 107 as follows: “…the FAA notes that the definition of small 
UAS in this rule includes tethered powered small UAS.” (p. 93). Therefore, tUAS operations are 
also regulated under FAA Part 107 as long as the sum of the total weights of flying platform and 
tether connection is less than 55 lbs. Drones heavier than 55 lbs. should be registered through a 
paper system and they may require additional licenses to operate.  

Recently, regulations are updated by FAA with an additional remote identification 
requirement to assign a “digital license plate” for UAS. This has been incorporated to improve 
safety and security issues for the National Airspace System towards allowing more complex 
UAS operations. Based on these requirements, all drones must broadcast signals to all other 
aircrafts in the broadcasting distance. This signal includes information on the altitude, speed, and 
position of the UAS in addition to the UAS Remote Identification. Personal information is 
secured from the public by FAA; however, it may be shared with national and federal authorities 
if asked. 

Other than recreational purposes, UASs cannot be operated without a remote pilot 
certificate/license. To get the license, each candidate should pass FAA’s aeronautical knowledge 
exam at one of available the test centers. Every two years, the license must be renewed by 
passing the current aeronautical knowledge exam. The exam costs $150 as of December 2019. 
The regulation also clearly states that a sUAS must weigh less than 55 lbs. (25 kg) including its 
attached systems such as payload, tethered connection, or cargo package. sUAS should be 
registered on the FAA website (FAA, 2019b). Other than the weight limitations, the rules allow 
only day-light operations with the maximum altitude of 400 ft. (120 m). Also, visual line-of sight 
must be kept during the flight and the drone should not be allowed to fly above people. The 
regulation allows UAS operations over people when they are covered in buildings or stationary 
vehicles; however, operations over moving vehicles are not allowed since the UASs can distract 
drivers and lead to a serious traffic incident (Hurwitz et al., 2018).  

UAS flights are not allowed near airports or over stadiums during major events. Although 
location limitations have been specified in the rules Part 107, the app “B4UFly” has been created 
by FAA. This app guides drone operators for airspace authorization before flying the drone. In 
February 2019, FAA announced that “B4UFly” will not be updated anymore so that the current 
version will continue to serve. Instead, FAA has partnered with Kittyhawk to provide real time 
authorization for drone users and active UASs tracking for the air traffic controllers through Low 
Altitude Authorization and Notification Capability (LAANC) (FAA & Kittyhawk, 2019; LAANC 
Kittyhawk, 2019). Once the user pins the flight location on the interactive map, the app creates a 
list of restrictions for a possible drone operation. Please refer to the following website for more 
information: knowbeforeyoufly.org (FAA, 2019a). This website is a great source for drone 
operators of any purpose. Figure 2-2 depicts a part of the Florida DOT UAS Brochure which 
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clearly summarizes the aforementioned FAA rules (Florida DOT, 2019). Some applications may 
specifically require operations over people or flights beyond the vision line of sight. In such 
cases, FAA may waive some rules by providing the Certificate of Authorization (COA) for those 
who can justify the waiver request. FAA has also conducted a waiver trend analysis since they 
have received numerous amounts of requests for such operations over people and beyond the 
vision line of sight. Figure 2-4 indicates the results for the waiver trend analysis. For more 
information about UAS regulations, please refer to the following FAA website: 
www.faa.gov/uas/ (FAA, 2019b).  

 

 

Figure 2-2: FDOT UAS brochure 

http://www.faa.gov/uas/
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(a)  
Figure 2-3: FAA waiver trend analysis for operations over (a) people, and (b) beyond the visual line of sight. Continued…  
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Figure 2-4: FAA waiver trend analysis for operations over (a) people, and (b) beyond the visual line of sight. 

(b) 
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 State-of-the-Practice and Literature Review 

This section evaluates the drone state of the practice used by state and federal traffic 
agencies. This will be supported with a discussion of the existing AASHTO surveys on UAS 
utilization among state DOTs. Published work in the literature will also be presented in order to 
discover relevant information that can help inform, shape, or guide to conduct this research 
project. 

 State-of-the-Practice of UAS Utilization in Traffic Agencies 

National Cooperative Highway Research Program (NCHRP) commissioned Scan 17-01 
in order to provide a knowledge base for beneficial innovation and information sharing among 
state and other transportation agencies (Snyder et al., 2018).Their report revealed the successful 
approaches for UAS implementations among different state DOTs. According to the report, 
successful programs of UAS implementations among nation’s traffic agencies showed the 
following benefits: 

 Increased safety or reduced liability 

 Increased efficiency and productivity or reduced impact on the public 

 Cost savings 

 Environmental protection 

 Higher quality end products 

Federal Highway Administration (FHWA) organized a peer exchange to learn how 
certain state DOTs are utilizing UAS (FHWA, 2018). Several DOTs have presented their current 
UAS employment and use cases as part of this peer exchange. Figure 2-5 illustrates examples of 
such use cases from states of North Carolina and Ohio.  

 

Figure 2-5: Sections from (a) North Carolina and (b) Ohio presentations in the FHWA peer 
exchange (FHWA, 2018) 

 

Furthermore, a UAS Integration Pilot Program has been established according to an 
October 2017 presidential memorandum for the Secretary of Transportation directing the 
following: “… the Secretary of Transportation, in consultation with the Administrator of the 

(a) 
(b) 
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FAA, [to] establish a UAS Integration Pilot Program to test the further integration of UASs into 
the NAS in a select number of states, local, and tribal jurisdictions”. Published in the Federal 
Register on 8 November 2017 and consistent with the presidential memorandum, the U.S. DOT 
and FAA announced the formation of the UAS Integration Pilot Program (Snyder et al., 2018). 
Current leader participants are:  

 Choctaw Nation of Oklahoma, Durant, OK 

 City of San Diego, CA 

 Innovation and Entrepreneurship Investment Authority, Herndon, VA 

 Kansas Department of Transportation, Topeka, KS 

 Memphis-Shelby County Airport Authority, Memphis, TN 

 North Carolina Department of Transportation, Raleigh, NC 

 North Dakota Department of Transportation, Bismarck, ND 

 The City of Reno, NV 

 University of Alaska-Fairbanks, Fairbanks, AK 

 2016 Survey Findings (AASHTO, 2016) 

 33 state DOTs are either already using or considering aerial drones for a range of 

possible cost-and time-saving tasks, including bridge inspections, and even helping 

allocate assets to clear vehicle crashes. 

 17 state DOTs have researched drones. 

 16 state DOTs are considering UAVs for certain tasks such as traffic incidents. 

 2018 Survey Findings (AASHTO, 2018b) 

 35 State DOTs are deploying drones to save lives, time, and money. 

 35 of 44 responding state departments of transportation (80%) are using unmanned 

aircraft systems (UAS), or drones, for a wide range of purposes. 

 20 state DOTs have incorporated drones into their daily operations (44%). 

 Another 15 state DOTs are in the research phase - testing drones to determine how 

they can be utilized. 

 All 20 of the state DOTs operating drones on a daily basis, are deploying them to 

gather photos and videos of highway construction projects. 

 14 state DOTs also reported that the use drones for surveying. 

Please note that AASHTO 2018 survey was the only survey that provided details on the 
UAS use cases of state DOTs. Figure 2-6 summarizes UAS activities found in this 2018 
AASHTO survey.  
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Figure 2-6: AASHTO 2018 survey results on UAS use cases by state DOTs 

 

 2019 Survey Findings (AASHTO, 2019) 

 AASHTO finds that 49 of 50 states are using Unmanned Aerial Systems (UAS) or 

drone technologies for a variety of missions such as disaster and emergency response, 

infrastructure inspections, and avalanche control. 

 Among those state DOTs, seven out of 10 have hired specialized staff, including 

highly skilled personnel to manage drone operations. 

 36 state DOTs reported having 279 FAA certified drone pilots on staff or 

approximately eight pilots per state. 

 36 out of 50 state DOTs or 72% are now funding centers or programs to operate 

drones. Note that this was 20 out of 44 state DOTs or 45% in AASHTO’s 2018 

survey. 

 10 state DOTs have teamed up with academic organizations for training purposes. 

 24 state DOTs are conducting research in collaboration with an academic institution. 

 3 state DOTs are gathering real-world data through their participation in the FAA’s 

Integration Pilot Program, which allows them to fly drones beyond visual line of sight, 

at night, and over people – three things drone operators cannot do at this time without 

a special FAA waiver. 

 29 DOTs say drones help save money. 
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Figure 2-7 and Figure 2-8 compare the UAS utilization of state DOTs according to 
AASHTO surveys between 2016 and 2019. Figure 2-7 shows how the opinion of traffic agencies 
on utilizing drones changed in this 3-year span. Figure 2-8 indicates the number of state DOTs 
that have hired specified personnel for drone operations. According to the 2019 survey, there are 
279 certified drone pilots hired by 36 state DOTs. Note that in 2016 there was no single 
personnel specified for UAS operations for all 50 state DOTs. 

 

 

Figure 2-7: UAS utilization of state DOTs from 2016 to 2019 

 

 

Figure 2-8: Number of state DOTs who hired people specifically for UAS operations 
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 Example Use Cases among DOTs 

 State of Michigan 

In the State of Michigan, Michigan DOT (MDOT) conducted a two-phase study to utilize 
drones for traffic monitoring purposes. In Phase 1, they used a tethered blimp to record an aerial 
video. Figure 2-9 indicates their demonstration at the ITS World Congress in Detroit, MI 
between September 2 and 11, 2014 (Brooks et al., 2014).  

 

Figure 2-9: MDOT traffic monitoring demonstration through tethered blimp at the ITS World 
Congress in September 2014 

In the second phase of the study, they used actual drones and created a semi-automatic 
traffic monitoring software using C++ and wxWidget Libraries in a Graphical User Interface 
(GUI). Figure 2-10 indicates the interface of their software (Brooks et al., 2018). They utilized 
Open Computer Vision (OpenCV) libraries for non-parametric algorithms to detect vehicles and 
roadways in a UAS video within 6 steps. At first, landmark annotation allowed the software 
convert pixels into coordinates. Second step required road annotation to specify the region of 
interest where vehicles would be detected. Third step, on the other hand, was related to the 
vehicle annotations and the training data for the machine learning and this is what makes the 
algorithm semi-automated. Next, the software generated the annotations for each frame and 
extracted outputs for the final step of traffic analysis and visualization. Although the software 
requires some manual labeling, their algorithm could overcome the UAS vibration issues. 
Besides, their documentation on extracting vehicle trajectories was very useful as they shared 
their code as an appendix. Figure 2-11 indicates the time space diagram generated in their 
software from the UAS obtained video.  
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Figure 2-10: MDOT traffic monitoring software to analyze UAS-obtained traffic surveillance 

 

 

Figure 2-11: Time space diagram is generated from the UAS-extracted trajectories 

 State of Texas 

Researchers from Texas A&M University conducted a two-phase study to demonstrate 
the real-time capabilities of UAS utilization for incident management. After providing an overall 
information about UAS utilization in traffic engineering, which constituted as the first step 
(Stevens, 2017), they utilized tethered drones and provided a real-time video footage 
demonstration of the selected highway in Houston, TX at the traffic management center (Stevens 
& Blackstock, 2017). Figure 2-12 indicates their demonstration in the Houston Metro area with a 
live video stream from a tethered drone capturing a simulated tow.  
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Figure 2-12: Tethered drone-captured live video streaming of a towing drill for the Houston 
metro area. Adapted from (Stevens & Blackstock, 2017) 

 State of New Jersey 

New Jersey DOT (NJDOT) has applied for and won three FHWA grants to generate a 
fully operational UAS program to invest in new equipment and train employees (FHWA, 2018). 
For NJDOT to be selected for a UAS-involved project, the criteria is that the project must meet 
at least one of the following conditions: i) increase safety, ii) increase efficiency, iii) save time, 
and iv) save money. Their well know application is the high mast light pole inspection. They 
have inspected total 250 poles with drones more quickly and less expensive than other methods. 

 State of Ohio 

Ohio DOT is currently conducting research for 11 critical UAS-involved missions with 
the University of Cincinnati. One of the missions in this project is traffic monitoring with 
tethered drones. The PI of the project, presented their progressive report in Ohio Transportation 
Engineering Conference on October 29-30, 2019 (Helmicki, 2019). The research team conducted 
a 400+ vendors market analysis and they bought 10 different UASs. For tethered drones, they 
have decided to buy a Hoverfly Power Tether and Yuneec Typhoon H drone with a 4 k. 12 MP. 
camera. Figure 2-13 indicates their equipment with which they conducted a test flight. Initial 
market search indicates that ground unit was approximately $5,000. They found out that off-the-
shelf software did not present real-time drone video solutions, or it was just prohibitive. 
Therefore, this analysis requires a critical algorithm that detects and tracts vehicles with a real-
time video feed. 
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Figure 2-13: Ohio DOT investigating tethered drones for traffic monitoring 

 

 State of Utah 

In Salt Lake City, Utah, a tUAS was utilized to analyze different signal phases on a 
diverging diamond interchange (Hainen et al., 2015). The study measured the vehicle arrivals on 
green with the event-based data and demonstrated these arrivals with signal state graphics on the 
videos recorded by a tethered drone. Figure 2-14, with the attached QR code that was linked to the 
video, are copied from the study to show their tUAS obtained video. Unfortunately, other than the 
maximum flight altitude (100 ft.), the details for the flight characteristics were not explained in 
detail within the study. The authors also did not clarify how they extracted data from tUAS-
obtained video and technical details of tUASs. However, a 15-min section of recorded video for 
this study along with signal state graphics were published in Purdue University Research 
Repository (Hainen et al., 2014).  
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Figure 2-14: Salt Lake City, Utah, diverging diamond intersection observation with tethered 
drone 

 State of Oregon 

Oregon DOT conducted a simulation-based study to evaluate the driver distraction due to 
drones. By using driving simulations, they tracked the eyes of the participants at the time when 
they saw a drone during the simulation. They found unsafe glances (>2 sec) at all three lateral 
offsets of the drone, 0 ft., 25 ft., and 50 ft., respectively (Hurwitz et al., 2018). Figure 2-15 
indicates their simulation environment in two different lateral offset scenarios. 
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Figure 2-15: Oregon DOT driving simulation environment for testing driver distraction due to 
drones 

 

These are all the relevant DOT applications with regards to traffic data collection with 
drones. The following section presents a detailed literature review. 

 

 Literature Review 

As the previous section indicates, UASs utilization has become a prominent need for 
DOTs over the last few years and there is a certain need to use UASs for intersection 
performance evaluations. This section presents and elaborates on the published UAS-focused 
traffic engineering studies. 

Several researchers have summarized the current research directions for the UASs-based 
traffic analyses around the world (Barmpounakis et al., 2016; Kanistras et al., 2015; Khan et al., 
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2017a; Puri, 2005). They stated that processing and analyzing the visual traffic data was one of 
the critical challenges associated with UASs. According to the literature, vision-based traffic 
analysis consists of two basic steps. The first step detects and tracks the vehicles towards 
providing data such as position, speeds, or classes of vehicles. The second step, on the other 
hand, analyzes the interaction between vehicles to perform tasks like turning movements, 
behavior prediction, conflict analysis, or gap acceptance by utilizing the outputs of the first step 
(Datondji et al., 2016). When it comes to the aerial vision, another step is required for vehicle 
detection because the movement is related to both camera and interest object itself. A study 
(Rodríguez-Canosa et al., 2012) calculated the movement of vehicles and the camera separately 
with four major modules: feature extraction, image registration, vehicle shape detection, and 
vehicle tracking. This was conducted in order to calculate vehicle trajectories and speeds. Some 
studies focused only on the roadway detection so that background can be extracted and the 
problem can be solved with basic optical flow algorithms (Z. Kim, 2005; Lin & Saripalli, 2012; 
Zhou et al., 2015). For example, a novel real-time approach was proposed in Kim (2005) for 
roadway detection learning from a single image. Although additional features such as ramps and 
overpasses decreased the accuracy of roadway detection, this study could be successfully applied 
to aerial vision-based navigation (Ke et al., 2017a; Z. Kim, 2005). 

Although unmanned aircrafts have been used for high mobility to cover large areas, most 
of the studies utilized them just for “eye-in-the-sky” logic (Barmpounakis et al., 2016; Kanistras 
et al., 2015). Therefore, stabilization of the camera is more beneficial than the mobility for some 
tasks such as intersection performance evaluation and speed, volume, and position extraction on 
a roadway segment (Aguilar & Angulo, 2014; Knoppers et al., 2012). In this regard, 3-axis 
gimbals, and hovering flights (i.e., no vibration or drifting) have been employed by many recent 
studies in order to stabilize the background. A study (E. J. Kim et al., 2019) extracted vehicle 
trajectories on congested traffic conditions by incorporating a machine learning-based computer 
vision algorithm and hovering ability of new generation drones. A four-step algorithm was 
implemented in (Ke et al., 2017a) for stable and unstable UAS videos in order to estimate the 
bidirectional flow characteristics such as speed and volume in real-time. The study reached a 
96% accuracy for speed and 87% accuracy for the vehicle counts, regardless of the UAS 
movements. 

As vehicles can be detected and tracked in a sequence of frames obtained by UASs, the 
performance of intersection operations can also be evaluated by calculating the key measures 
such as delay (Pan et al., 2019), green arrival rate (Hainen et al., 2015), queue detection (Khan, 
Ectors, Bellemans, Janssens, et al., 2018), and origin-destination matrices (Braut et al., 2012; 
Coifman et al., 2006). These applications may require special time indexing for the frames and 
detection for stopped or reaccelerating vehicles. The dwelling time for each vehicle can be 
calculated with the time information of the frames at which a vehicle stopped and started to 
accelerate. 

To sum up, UAS-based traffic monitoring requires a preprocessing step for background 
subtraction and geo-referencing to extract accurate vehicle trajectories and traffic flow 
parameters such as speed and volume. Nevertheless, there is a chicken-and-egg problem in 
accuracy calculations due to the lack of validation data. Some studies validated their results with 
randomly selected sample frames from the same UAS-recorded video that had been used for the 
actual analysis (Ke et al., 2017b; Niu et al., 2018). Some other studies used simulation results for 
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validating their UASs-based traffic analysis (Pan et al., 2019). After the validation, UASs 
acquired georeferenced images can be used for several tasks such as intersection performance 
evaluation, origin destination generation, and driver behavior observation. 

Regarding tethered drone applications, researchers from Texas A&M Transportation 
Institute conducted a study for evaluating tUASs as a traffic incident management tool (Stevens 
& Blackstock, 2017). They have used tethered drones to broadcast live traffic video to the traffic 
management center. With two different demonstrations, researchers were able to show that tUAS 
could provide real-time traffic video streams to the traffic management center building in 
Houston, TX.  

Figure 2-15 indicates the meta-data of the published work. Figure 2-15a indicates number 
of studies per data of interest, Figure 2-15b groups the studies by their year, Figure 2-15c 
demonstrates the drone types used in these published work, and Figure 2-15d depicts the 
performance of the video image processing algorithm used in the studies. Note that “applicable 
for real time” in Figure 2-16d indicates that the algorithm executes faster than 25 frame-per-
second, which is the average recording speed by UAS-mouthed cameras. 

 

 

 

(a) 

6

4
5

1

4
3

1 1 1 1 1

3

1
2

0
1
2
3
4
5
6
7

C
o

u
n

t 
o

f 
St

u
d

ie
s

Data

Number of Studies per Data of Interest



21 

 

 

 

 

 

 

 

 

(b) 

0

1

2

3

4

5

6

7

2006 2012 2014 2015 2016 2017 2018 2019

C
o

u
n

t 
o

f 
St

u
d

ie
s

Year

Number of Studies per Year

(c) 

0

2

4

6

8

10

12

14

16

18

20

Multirotor Tethered

C
o

u
n

t 
o

f 
St

u
d

ie
s

Drone Type

Number of Studies Per Drone Type



22 

 

 

Figure 2-16: Metadata of published work: Number of studies (a) per data interest, (b) per year, 
(c) per drone type, and (d) per data gathering speed 

 

 Desired Data Based on Manual on Uniform Traffic Control Devices (MUTCD) and 
Manual on Transportation Traffic Studies (MUTS) 

Federal Highway Administration (FHWA) and the United States Department of 
Transportation (U.S. DOT) issued the Manual on Uniform Traffic Control Devices (MUTCD) to 
specify the standards by which traffic signs, pavement markings and signals are designed, 
installed and used (FHWA et al., 2009). Although MUTCD provides top-down details for traffic 
control devices, it recommends the use of engineering judgement to conduct engineering studies 
to decide whether there is a need for an installment or a treatment of a traffic control device at a 
particular location. Subsequently, Manual on Transportation Traffic Studies (MUTS) provides 
minimum standards for conducting traffic engineering studies on the roadways under the 
jurisdiction of FDOT. MUTS was prepared by FDOT in 1978 through a grant from Governor’s 
Highway Safety Commission under the provisions of Federal Highway Safety Standards. The 
Manual has been updated periodically and currently serves as a guideline for compiling and 
analyzing data collected for traffic engineering study activities (FDOT Traffic Engineering & 
Operations Office, 2016). The desired data output is selected based on MUTS guidelines. 

MUTS categorizes the basic areas of concern at intersections as vehicle problems, 
vulnerable user problems, and crashes. It should be noted that the problem under consideration 
might be related with multiple areas of concern. MUTS also provides guidance on data to be 
collected to determine the extent of these problems. Table 2-3 indicates the basic areas of 
concerns and the data set that may help to identify and analyze the problems at intersections.  
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Table 2-3: Basic areas of concern at intersections and suggested data sets. Source: MUTS 
(FDOT Traffic Engineering & Operations Office, 2016) 

 Basic Areas of Concern at Intersections 

 Vehicle Problems Vulnerable User Problems Crashes 

S
u

g
ge

st
ed

 D
at

a 
S

et
s 

 Volume  Volume 
 Collision Diagram, 

Geometric Design, Sight 
Distances 

 Progressive Move  Gap Study  Conflict Analysis 

 Travel time and Delay  Distance to the Crosswalk  Speed 

  Demographics Related with 
Walking speed 

 Vulnerable User Volume 

            Can be obtained with UAS 

           Requires additional sources  Historical Data 

 

Suggested data sets of Table 2-3 can be categorized as the first order data, dynamic data, 
and volume data so that more deterministic decisions can be made regarding the basic areas of 
concern. Figure 2-16 indicates the proposed flow chart of collecting these data sets in this 
project. The following sections explain each data product of the study with regards to MUTS 
guidelines. 
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Figure 2-17: Project flow chart and desired outputs 

 

 Roadway User Trajectories: 𝑼𝒊,𝒙,𝒕 

This data set constitutes as the main output of the flight operations. It specifies the 
position (x) of user i at time t. Based on the literature, trajectory data is found to be the best 
option to obtain UAS-based real-time traffic data. Also, it is promising for vision-based non-
video traffic data. The main challenge is detecting objects with significantly different sizes such 
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as pedestrians and vehicles within the live stream video. However, for traffic analysis purposes, 
0.1 second can be accepted as high-resolution data although 10 frame-per-second refers to a 
relatively high computational cost in image processing even with the advanced deep learning 
algorithms. In this regard, by sacrificing the computational speed of the standard image 
processing algorithm, a more sensitive algorithm can be built.  

 User Classification 

This data set identifies the roadway users such as vehicles, pedestrians, bicyclists, 
motorcyclists, trucks, and buses. This data set can be obtained at the detection phase and should 
be included in the trajectory data set. 

 Geometric and Spatial Characteristics 

This data set includes local characteristics about the intersection. These characteristics 
could be the type of intersection and type of control device used in the intersection as well as 
some of the signal warrant study inputs such as an approximation of the surrounding population, 
schools, and railroads in the proximity of the intersection. Also, distance to adjacent intersections 
can help identify progressive movement at the intersection. Beyond these critical local 
characteristics, a frame of the video obtained from the UAS that shows the intersection on top 
view can be used to determine number of lanes on each approach, exclusive left and right turning 
lanes, median width, shoulder width, and lane width. This one frame image can also provide 
intersection skewness and number of bus stops in the proximity of the intersection. Such data can 
be used to identify the crash modification factors as described in MUTS Chapter 5 Data 
collection for Safety Studies. Finally, this one frame can be used as a condition diagram as 
described in MUTS Chapter 6. 

 Speed 

With the accurate trajectory data, speed can be calculated at each time step by using the 
current position and the position at one-time step before. By selecting certain positions, vehicle 
spot speed can also be collected without sampling as described in MUTS Chapter 12. 

 Acceleration and Deceleration 

Similar to the speed, acceleration or deceleration can be calculated with the position 
differences at consecutive time steps.  

 Approach Volume 

Approach volume simply indicates the number of vehicles approaching to intersection 
from a particular direction. It can be used in the warrant study if turning movements are too low. 
However, according to MUTS, turning movement counts may not be enough to determine the 
volume of the intersection because the vehicle can wait more than one cycle to leave the 
intersection on a saturated flow. In this regard, approaching volume should be collected for the 
vehicles stopping at the queue. As speed can easily be obtained from trajectory data set, those 
vehicles that stopped before reaching the intersection can be determined. Approach volume can 
also be used for estimating the Annual Average Daily Traffic (AADT), which is one of the key 
factors on crash frequency predictions. 

One setback on extracting approach volumes with drone-based videos can be the 
limitation of field-of-view (FOV). If the queue extends the FOV, drone camera cannot capture 
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where the queue starts. Therefore, approaching volume cannot be calculated. This indicates that 
drone-based traffic analysis relies heavily on selected camera and the looking angle as well as 
the flying height. Tethered drones with a larger field-of-view can help solve this problem. 

 Vehicle Turning Movements 

Turning movement counts refer to the amounts of vehicles passing the stop bar on each 
approach and can be used for making decisions regarding geometric design, sign and signal 
installation, signal timing, pavement marking, traffic circulation patterns, capacity analysis, 
parking and loading zones, and vehicle classification (FDOT Traffic Engineering & Operations 
Office, 2016). 

Turning movement counts can be identified with relative changes on the x and y 
coordinates of the vehicles in the trajectories data set. Entry and exit gates can virtually be drawn 
on the video and turning movement data set can be automatically extracted from a recorded 
video. Turning movement counts should be extracted by populating the digital version of 
“Summary of Turning Movement Counts” form (FORM – 750 – 020 – 02) given in MUTS, 
2016.  

MUTS suggests manual and automated counting methods for counting the turning 
movements. Manual methods can be done in the field with tally sheets or laptops by directly 
populating the digital version of the form as well as watching a video recorded at the 
intersection. However, depending on the observation period and type of the intersection, manual 
counting may require significant manpower. Also, counting the turning movements at 
roundabouts, superstreets (R-CUTs), and Michigan U-Turn intersections require path-based 
counting and manual methods are limited with the human ability. License plate matching and 
origin-destination matrix sampling methods are also recommended in MUTS for path-based 
counts. However, those methods may also lead to high error and require extensive lab work.  

In that sense, tethered drone-based traffic monitoring can easily be utilized to collect the 
turning movement counts by tracking the path of vehicles from their entry to exit on those 
intersections. MUTS also suggests embedded detectors for automated turning counts. Those 
detectors provide continuous data and are very useful for different purposes such as queue 
detection, embedded detectors cannot provide turning counts, and vulnerable user counts. MUTS 
also briefly discusses using image-video processing algorithms for automated turning movement 
counts at intersections. However, this requires more details. Based on the identified advantages 
and challenges of this feasibility analysis, the methods section of MUTS Chapter 4 Turning 
Movement Counts can be updated. 

 Vulnerable User Turning Movements 

Similar to vehicle turning movements, crossing pedestrians and bicycles can be extracted 
from aerial video-based trajectories. Manual counting methods may also help collect 
demographic data such as age, sex or disability. These factors can help analyze pedestrian 
behavior; however, movement tracks cannot be acquired with a manual observation. Drone-
obtained roadway user trajectories will allow the use of confliction analysis between vehicles to 
vehicles, vehicles to bicycles, and vehicles to pedestrians. A study recently identified surrogate 
safety measurements such as time-to-collision and post-encroachment time between right turning 
vehicles and pedestrians (P. Chen et al., 2017). Pedestrian tracking data can also be used on cross 
bar use and pedestrian speed analyses. Vulnerable user moving counts can be extracted by 
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populating the populated digital version of “Summary of Pedestrian and Bicycle Movements” 
form (FORM – 750 – 020 – 10) given in MUTS, 2016.  

 Gap Acceptance 

Gap refers to the time difference between the rear end and the front bumper of two 
consecutive vehicles passing the same point in same direction. Critical gap indicates the 
minimum gap between two consecutive major street vehicles or a side street vehicle, or a 
pedestrian or group of pedestrians that cross the street.  

Gap studies become more critical at the roundabout intersections since the capacity can 
be calculated using the gaps. Additional to the critical gap, follow up time is also another time 
value that indicates the time between two consecutive vehicles entering the circulating traffic in 
the same gap. These values can be extracted from drone obtained vehicle trajectories (Khan, 
Ectors, Bellemans, Ruichek, et al., 2018). 

MUTS Chapter 8 examines the gap studies for critical gap analysis at two-way stop-
controlled intersections. The chapter also provides insight for pedestrian-related critical gaps; 
however, no details were presented for roundabout gap studies. Drones can certainly be a good 
alternative for analyzing the capacity on roundabouts. Based on the results, gap studies part of 
MUTS can be updated. Further, a complete section can be dedicated for roundabout studies since 
MUTS does not specifically cover roundabouts. 

 Queue Length, Delay, and Shockwave  

These data sets are the basic performance measurements for a signalized intersection. 
Queue length and queue dissipation can be calculated from the arrival and turning movement 
counts. Also, shockwave speed can be extracted by identifying the critical points on time space 
diagram of detected vehicles. Figure 2-18 indicates an example of shockwave analysis with 
trajectories obtained from an aerial video in Belgium (Khan, Ectors, Bellemans, Janssens, et al., 
2018). Figure 2-18 also depicts the critical point identification combined with other detected 
vehicles, where accumulating waves and dissipating waves can be identified. Where these waves 
meet also leads to the queue dissipation time. 
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Figure 2-18: Shockwave and queue dissipation from drone-obtained trajectories 

 

MUTS examines intersection delays in three different ways: 

 Time in Queue Delay (TIQD) = the time difference between a vehicle stops at the 

intersection and the time it clears the intersection 

 Control Delay = TQID + deceleration and acceleration delay due to signal control 

 Travel time delay = time difference between the vehicle could have reached to a point with 

its approaching speed as if there was no control device and the actual travel time passing 

through the intersection 

Table 7-1 in MUTS 2016 indicates commonly used equipment for delay studies with 
their advantages and disadvantages. Particularly, manual, and electronic methods are counted for 
control delay study and floating car is counted for travel time delays. Although video method is 
listed as “much more labor in the office”, which is a disadvantage of electronic methods, TIQD 
and travel time delay can be extracted automatically from drone-obtained trajectories.  
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 Fundamental Diagram 

Fundamental diagrams depict the pair-wise relationship of flow (q = veh/h/lane), speed (v 
= mph), and density (k = veh/mi/lane). For a single lane approach, flow and density can be 
extracted from the time-space diagram. For example, in Figure 2-18 where we see a standardized 
time-space diagram with multi vehicles, a horizontal line crossing all the vehicles on the line can 
lead to flow, and vertical line can lead to density. Speed can be extracted directly from trajectory 
data. Fundamental diagrams are highly used for freeways.  

 Conflict Analysis 

By using the trajectories from different users, some surrogate safety measures can be 
identified. As aforementioned, a pioneer work conducted a safety analysis on an intersection in 
China by using drone-obtained trajectories (P. Chen et al., 2017). They collected trajectories for 
vehicles and pedestrians as points. At the end, they analyzed the following parameters: post-
encroachment time (PET) and relative time to collision (RTTC). PET can be defined as the time 
between a vehicle leaving the intersection and another one going in. RTTC, on the other hand, 
indicates the time between the first vehicle gets into a conflicted area and second one enters the 
same confliction area. Another reason for selecting these measures was that the authors only had 
trajectory data, which indicates that a single point represents the vehicles throughout the move. 
Instead of using time to collision, they used entry- and exit-based surrogate safety analysis. 
Figure 2-19 shows the PET and RTTC calculations. 

 

Figure 2-19: PET and RTTC calculations on XY surface and time elevation (Chen et al., 2017) 

 

The following section presents an evaluation of the computer vision algorithms in the 
context of drone-based video analysis. 
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 Computer Vision Algorithms for Drone-based Traffic Data Extraction 

UAS-based traffic data acquisition heavily relies on ‘detect-and-tract’ logic. Once 
vehicles are detected, tracking algorithm can follow the objects in the following frames as long 
as the pixels have the same coordinates in subsequent frames. Hovering flight mode can 
significantly decrease the preprocessing effort since it leads to a more stable background. Traffic 
data extraction from moving flights, on the other hand, requires an additional preprocessing stage 
for each frame and re-detection of the vehicles. This is considered as a bottleneck for real-time 
data acquisition since tracking algorithm runs much faster than the detection algorithm (Biswas 
et al., 2019). This section examines the computer vision techniques required for preprocessing, 
object detection, and tracking separately. The section also evaluates these algorithms for 
obtaining the desired traffic data for intersection studies. Figure 2-20 indicates number of studies 
with a focus on the computer vision algorithms used. Please note that ML refers to machine 
learning and DL refers to deep learning.  

 

Figure 2-20: Number of studies per computer vision algorithms (ML: Machine Learning, DL: 
Deep Learning) 

 

 Preprocessing 

Although hovering provides almost stable platforms, just a little shaking of a UAS may 
have significant influence on the vehicle trajectory extraction. Mathwork’s stabilization approach 
can be used to stabilize the video even in real-time applications. Geo-referencing, on the other 
hand, is mostly done by a Geographic Information System (GIS) software (Salvo et al., 2014). 
First, video images are turned into a mosaic raster so that 2D planar images can be calibrated into 
3D real world coordinates. Random sample consensus (RANSAC) algorithm also provides a 2D 
to 3D transformation using a homography matrix. Those algorithms are fast enough so that they 
can be utilized in real-time applications (Khan et al., 2017b).  
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For stabilizing backgrounds, Kanade-Lucas-Tomasi (KLT) point tracker can be used to 
detect the predefined points in each frame for geo processing. However, it requires initial geo-
referencing for the predefined points, and it could increase the computational cost. Structural 
Similarity Index Measurement (SSIM) is generally used to check the similarities between 
consequent frames. If the SSIM calculated is lower than the threshold value (0.5), feature-based 
image alignment (FBIA) can be used to align the frames (Biswas et al., 2019).  

Tethered UASs (tUAS), with the advantages of extra stability compared to their non-
tethered counterparts, can maintain a non-zero attitude while hovering in a constant speed 
(Nicotra et al., 2017). Therefore, tUASs can overcome the preprocessing step and fasten the 
traffic data acquisition from aerial images. 

 

 Object Detection and Tracking 

Roadway user detection is the key component of the vision-based traffic analyses and 
methods can be categorized into point detection, machine learning, and deep learning algorithms. 
Most of the point detection and tracking algorithms, such as KLT point tracking or blob analysis, 
are unsupervised algorithms and can be applied rapidly without any training data set. These 
algorithms represent early stages of computer vision utilization in transportation as they can be 
found in vehicle detection and surveillance technologies used in 2000 (Mimbela, 2000). Also, 
they are easy to cluster with simple algorithms like k-means algorithm (Ke et al., 2015). Speed 
clustering of the interest points can be used for background subtraction as well (Ke et al., 2017b). 
However, these algorithms are very sensitive to the complexity of the image such as shadows, 
roadway facilities and adjacent vehicles. Their performance especially reduces in congested 
traffic conditions.  

Most of the supervised vehicle detection algorithms come from the Viola-Jones face 
recognition algorithm (VJ) with hand crafted features (i.e., Haar, Histogram Oriented Gradients 
(HOG), or SIFT Local Binary Pattern) (Viola & Jones, 2005). Moreover, Integral Channel 
Features (ICF) (Dollár et al., 2012) and its improved version Aggregated Channel Features 
(ACF) (Appel et al., 2014) also originated from the VJ-based object detection algorithms. 
Basically, the cascade function in these algorithms needs to be trained with positive and negative 
images. Training data set consists of positive and negative images to emphasize what the interest 
object is and what is not. For example, in vehicle detection, positive images include vehicle(s) 
and negative ones include only the roadway with trees or other side features. The larger size of 
the training data set, the higher accuracy on the vehicle detection similar to the face recognition. 
When an object has all the features according to a running vehicle training set, it will be detected 
as a vehicle and a bounding box will be drawn around it (Xu et al., 2016). They can be used to 
detect vehicles in the congested traffic flow; however, there is still an overlapping problem. A 
study (E. J. Kim et al., 2019) used a 40% overlapping threshold for ACF-based vehicle detection. 
If the overlapping area is higher than 40 % of the total detected area, only the vehicle with higher 
detection score is retained. Haar like features and HOG were also used for pedestrian detection 
and tracking from UAS-obtained images (Ma et al., 2016).  

More recently, deep learning-based convolutional neural networks (CNN) have shown an 
outstanding performance in object detection (T. Tang et al., 2017; Vattapparamban et al., 2016; 
Xie et al., 2018; Xu et al., 2017). These algorithms have been improved with region-based CNN 
(R-CNN) (Girshick et al., 2012), Fast R-CNN (Girshick, 2015), and finally with Faster R-CNN 
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(Ren et al., 2017). CNN algorithm basically extracts region proposals as candidate locations for 
the objects followed by the computation of the CNN features. Faster R-CNN improves the 
performance by using a Region Proposal Network (RPN) additional to the object detection 
network. A recent study (E. J. Kim et al., 2019) proposed a detailed comparison on the vehicle 
detection and tracking performances of deep learning (faster R-CNN) and machine learning 
algorithms (ACF). Their findings indicated that faster R-CNN outperforms ACF. Therefore, the 
algorithm to run the analysis should be selected carefully. Depending on the purpose of the 
analysis, output of the vehicle detection and tracking algorithms can be speed, volume, or vehicle 
trajectories. Unlike point tracking algorithms, vehicle detection algorithms can classify vehicles 
as well.   

 Challenges and Operational Barriers 

Ch1. One of the biggest challenges on drone operations is the weather dependency. For example, 
rain during the work can ruin the whole data collection operation. UASs are weather dependent 
and Remote Pilot in Command (RPIC) should continuously check the weather and wind. FAA 
Part 107 regulations do not provide a threshold for the wind speed since there are a variety of 
aircraft models under these rules. Please note that tethered drones are more sensitive to the wind 
speeds since the surface exposed to the wind is much larger and it causes extra pull on the tether.   

Ch2. Aerial footage arises numerous privacy issues. In Florida and many other states, UASs 
cannot capture and fly on privately owned lands without written consent. 

Ch3. Safe and legal UAS operations are the major priority. Remote Pilot in Command (RPIC) 
must inform FAA regarding every injury crash and higher than $500 property damage crash. One 
of the biggest concerns for UAS operations is a drone’s fall on people or vehicles causing severe 
incidents. To avoid this, some of the drone companies developed parachutes. There are available 
automated altitude observing systems that enable UASs to release parachutes. Tethered drones 
have more reliable expectations in this aspect since the ground units can retrieve the UAS 
through an automated crane control. 

Ch4. Just like any emerging technology, UASs rely heavily on wireless communications. 
Although Federal Communication Commission has standardized all types of wireless 
communication to enhance safety, the biggest problem of emerging technologies is the 
cybersecurity. Researchers (Vattapparamban et al., 2016) have evaluated the impacts of drones 
on future smart cities considering cyber-attacks. They have performed UAS hacking through the 
wireless communication with off the shelf, ready to use software. Nowadays, drone 
manufacturing companies and communication technology leaders have focused on more secure 
operation of drones since secure wireless control/communication is critical. 

Ch5. Beyond general operation challenges, UAS based video-image processing has its own 
problems. Rapid advancement on computer vision technology has enhanced the power of image 
processing. Today, people trust this technology to secure their privacy like in the case of those 
new generation iPhones. In the transportation field, vision-based traffic monitoring dates back to 
1990s. However, when it comes to the aerial videos, the problem gets more challenging since 
there is a six more degree of freedom that is related to the movement of the camera.  

Ch6. Although mobility is one of the biggest advances for drones, they have been used in the 
context of eye-in-the-sky logic. In some cases, stability is more beneficial than the mobility to 
stabilize the background. There are some algorithms that can align the subsequent frames before 
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detect-and-tract algorithms; however, they increase the computational cost. It is expected that 
tethered drones will increase the performance of the gimbal and provide more stable video 
footages. 

Ch7. The performance of vision-based detection and tracing algorithms depends on the density 
of the object to be determined. Therefore, vehicle, bicycle, motorcycle, and pedestrian detection 
in congested conditions may have a lack of accuracy. Machine learning and deep learning 
algorithms can overcome this problem as they are trained with positive and negative images of 
the objects. However, this may become a bottleneck on real time data extraction. For example, 
(E. J. Kim et al., 2019) specifically focused on vehicle trajectory extraction in saturated flows by 
comparing machine learning algorithms with deep learning algorithms. They found that machine 
learning algorithms process one frame of the video in 1.15 seconds whereas deep learning 
algorithms analyzed a frame of the video within a 0.65 second speed. Real-time data extraction 
requires the algorithm to extract data in 0.04 seconds, assuming the camera records and 
broadcasts the video in 25 frames per second. 

Ch8. Another problem is the visibility disruptions due to light. As the performance of UAS-
based traffic monitoring rely heavily on a clear video footage, the study can be disrupted by 
occlusion, due to clouds or foggy weather. Although drones bring some solutions for this, they 
are still sensitive to daylight conditions. There is no study in the literature testing drones during 
night for traffic monitoring; however, a drone company named DataFromSky has published a 
video on their YouTube channel to indicate their algorithm can handle nighttime videos as well. 

Ch9. Object detection algorithms are very sensitive to the size of objects, especially when it 
comes to detection speed. This also plays an important role on the performance of object 
detection and tracking. Therefore, tracking vehicles and pedestrians at the same time is a big 
challenge since their sizes as well as their speeds vary. Beyond this variation, object detection 
algorithms struggle when it comes to the crowded or “close proximity” objects. Therefore, 
vehicle detection during congestion is a big challenge that have been tackled several times (E. J. 
Kim et al., 2019). 

Ch10. When drone services and video image processing services are provided from different 
vendors, this requires extra configuration steps between vendors so that their software and 
hardware can be compatible. 

Ch11. Another challenge will be locating the tethered drone ground unit since the operation will 
require a certain clear distance and a vertical connection should be kept taut. Elistair adopted 300 
ft. protection zone when they demonstrated the traffic monitoring ability of their tethered model 
(Elistair, 2019). Where to locate the unit is also critical since it may require additional 
permissions from the owner of the location if it is not part of the right-of-way. 

 

 Market Analysis  

This chapter presents a preliminary market analysis for drone operating and video 
analyzing vendors to be contracted for this research project. In general, the drone operating 
vendor will manage the flight and provide the live stream video for a predefined period of time at 
a predefined location. Video analyzing vendor, on the other hand, will use this live stream video 
as an input of their video image processing algorithm. The product of their analysis will be the 
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roadway user trajectories. This section of the report elaborates the performed preliminary market 
analysis separately for selecting the best providers. 

 Vendor 1: Drone Operator 

Vendor 1 will be contracted to provide a live stream video through operating their own 
tethered drone and camera equipment. Therefore, a preliminary market analysis is conducted to 
determine the potential vendors among commercial drone service providers. Vendor 1 will be 
responsible for:  

 Providing safe and legal flights with a tethered UAS for a minimum of 12 hours (given 

the day light availability, including both AM and PM peak hours as well as the mid-day 

off-peak hours). 

 Providing a live stream video that can incorporate with the video processing algorithm. 

 Safely storing the video considering the privacy and cybersecurity issues. 

Through this preliminary market analysis, the research team has already contacted ten 
companies, which are known to be commercial drone-obtained service providers. Table 2-4 
indicates these companies and the conversation history. The research team will continue meeting 
with these companies in Task 2 and Task 3 before the proposal and vendor selection process.  

Table 2-4: Contacted drone service providers 

 

 Vendor 2: Video Analyzer 

Vendor 2 will be contracted to extract real-time or near real-time roadway user 
trajectories. Thus, a preliminary market analysis is conducted to determine the potential vendors 
among the existing vision-based traffic data providers. Vendor 2 will be responsible for:  

 Providing an algorithm that successfully analyzes the live stream video. 

Companies Inquiry Date Response Date Headquarters 

ArchAerial 12.04.2019  Houston, TX 

Hoverfly 12.04.2019  Orlando, FL 

Drone Aviation Corp  11.04.2019 11.15.2019 Jacksonville, FL 

South East Drone Technologies 12.04.2019 12.04.2019 Tallahassee, FL 

Vedair Drone Services 12.04.2019 12.04.2019 Jacksonville, FL 

Orlando Aerial Videos 12.04.2019 12.04.2019 Orlando, FL 

CellAntenna Wireless 12.04.2019  Coral Springs, FL 

Dronegenuity 12.04.2019  Hudson, MA 

Flyworx 12.04.2019  Atlanta, GA 

Drone Base 11.29.2019  Santa Monica, CA 

Elistair 10.20.2019 10.20.2019 France 
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 Detection, classification and tracking of roadway users with reasonable accuracy (Such 

roadway users can be vehicles, pedestrians, motorcycles, bicycles, trucks and buses). 

 Safely storing the video for visualization purposes considering the privacy and 

cybersecurity issues. 

Based on this preliminary market analysis, the research team has already contacted seven 
different video analytics companies that have already served other traffic agencies by building 
custom video image processing algorithms. Table 2-5 indicates these companies and the 
conversation history. The research team will continue meeting with these companies in Task 2 
and Task 3 before the proposal and vendor selection process. 

Among these companies, DataFromSky, a Czech Republic-based traffic data provider, is 
one of the leaders in the vision-based traffic data extraction market. Once the user uploads the 
video into their cloud system, the system analyzes the video and sends back a log file that 
includes trajectories and user classification. The user can further analyze the trajectories in their 
license free “viewer” software without being connected to the internet. The Viewer software lets 
the user set different configuration such as entry and exit gates to extract more data. Viewer is 
also a great visualization tool that allows the user create speed heat maps or conflict projections. 
Trafficvision, on the other hand, promotes real-time incident alerts to traffic management centers 
by leveraging their static camera network. Their system can provide non-video traffic data within 
the detection level such as counting vehicles. Miovision is also a well-known traffic data 
provider that has been utilized many traffic agencies.  

Table 2-5: Contacted vision-based traffic data collection companies 

 

 Conclusions 

The following conclusions are made as a result of Task 1: 

Companies Inquiry 
Date 

Response 
Date 

Web address 

DataFromSky 10.22.2019 10.24.2019 https://datafromsky.com/ 

Miovision 12.04.2019 12.05.2019 https://miovision.com/ 

CountingCars  11.04.2019 11.15.2019 https://www.countingcars.com/ 

IntuVision 12.04.2019 12.06.2019 https://www.intuvisiontech.com/#traffic 

Tri-State Traffic (TST) 12.04.2019  http://www.tstdata.com/index.html 

TrafficVision 12.04.2019  http://www.trafficvision.com/ 

Goodvision 12.05.2019 12.05.2019 https://goodvisionlive.com/ 

Transoft 12.05.2019  https://www.transoftsolutions.com/ 

Traffic Data Inc (Spack 
Solutions) 

12.04.2019 
 

http://trafficdatainc.com/ 

 

https://datafromsky.com/
https://miovision.com/
https://www.countingcars.com/
https://www.intuvisiontech.com/#traffic
http://www.tstdata.com/index.html
http://www.trafficvision.com/
https://goodvisionlive.com/
https://www.transoftsolutions.com/
http://trafficdatainc.com/
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 A thorough review of the literature and practice indicates that tUASs are promising tools 

for automated traffic data extraction at intersections. To the authors’ knowledge, there are 

no studies that have utilized tUASs for long-duration data collection and real-time 

analysis for traffic operations and safety purposes. 

 tUAS-obtained traffic data can be used for variety of purposes in order to improve traffic 

performance or safety at intersections. 

 Using the findings of this study, MUTS can be updated as explained in Section 5. 

Particularly, the methods sections regarding the turning movement counts and pedestrian 

movement counts can be updated with the proposed UAS-based data collection. Also, 

MUTS gap studies chapter (Chapter 8) do not cover critical gaps on roundabouts. Drones 

may be used to collect data on roundabouts and MUTS can have a new chapter for 

roundabouts. 

 Other intersections such as RCUTs and Michigan U-turns can also be studied with 

tethered drones with the large field of view provided. 

 Based on the needs of FDOT, a web-based data sharing platform such as the one crated 

by Montana DOT, can be developed (Montana DOT, 2018). Theirs do not have tethered 

drones, and their video image processing is limited to flight endurance. 

 There is keen interest for utilizing UAS in a variety of purposes from state governments. 

UAS Integration Pilot Program is the best example since it brings state DOTs, investment 

authorities, other government agencies, cities, and universities all together with the order 

from the president. 

 Traffic agencies also have been utilizing this technology in many aspects such as bridge 

inspection, precise agriculture, pavement checking, and highlighting polls to name a few. 

 Aerial vision-based traffic monitoring is currently emerging rapidly compared to utilizing 

drones for other aforementioned services such as bridge inspections.  

 Computer vision is currently in its golden era. People trust this technology to secure their 

privacy like in the case of those new generation iPhones. 

 UAS-based traffic monitoring has a high potential to provide extensive data that can be 

used on operations as well as the safety aspects of transportation. 

 Flight endurance issue of UAS has already been tackled with tethered drone cables that 

significantly decrease the mobility of the drone; however, it provides stability. For traffic 

monitoring, stability is more valuable since the video is captured with a large field of 

view. 

 FHWA have different grant programs for state DOTs to support UAS utilizations by state 

DOTs. New Jersey have started their UAS initiative through this grant from FHWA 

(FHWA, 2018). 

 Drones have been used on intersections for safety purposes and provided very valuable 

information in (Papadoulis et al., 2019). Aerial videos enabled researchers to find conflict 

analysis between pedestrian and vehicles. Although they did not collect the video with 

tethered drones, this work is a pioneer on UAS utilization for safety. 
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 Another study collected a detailed intersection operation study with UAS-collected 

videos (Khan, Ectors, Bellemans, Janssens, et al., 2018). Based on this study, researchers 

have found the queue dissipation time, accumulation and dissipation shock wave speeds, 

density, flow, and speed, and their pairwise relationship as fundamental diagrams.  

 Findings indicate that UASs are promising solutions to obtain data accurately and in an 

non-intrusive manner. 
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 TASK 2: ROADWAY GEOMETRIC DATA EXTRACTION FROM VERY HIGH-
RESOLUTION AERIAL IMAGES 

 Task Description 

Following the proposed execution plan and projected data pool creation, an additional 
and more urgent task identified was to extract the roadway geometric and spatial data from aerial 
images, which led to Task 2 of this project. Initially, as shown Figure 3-1, projected roadway 
geometry data were similar to the data requirements of MUTS and Highway Safety Manual 
(AASHTO, 2010). However, these geometric data for a single intersection could be easily 
collected from online visualization sources (i.e., Google Maps). As such, the main objective of 
this task was to create a statewide crosswalk map especially due to the fact that pedestrian safety 
concerns have been arising in the state and nation. In addition, this task explores the capabilities 
of computer vision techniques to extract statewide roadway geometry data from high-resolution 
aerial images. 

In this task, an automated crosswalk detection and mapping model was developed and 
three case studies were conducted in order to evaluate the efficacy of the developed model. Also, 
variety of data including shape files, preprocessed images, csv files with coordinates were 
provided along with this task deliverable. 

 

Figure 3-1: Initial projection for geometric data for single intersections 

 

 Why Crosswalks? 

The number of pedestrian fatalities in the U.S. increased by 53% from 2009 to 2018 (i.e., 
from 4,109 deaths in 2009 to 6,283 deaths in 2018) (Retting & GHSA, 2020). This increase was 
quite sharp as the increase was only 35% from 2008 to 2017 (Retting & GHSA, 2019). The 
annual number of pedestrian fatalities in the U.S. between 1988 and 2019 are illustrated in 
Figure 3-2a. Note that number of pedestrian fatalities in 2019 (6,590*) was projected from the 
preliminary data and historical trends. However, actual numbers from 2018 clearly shows the 
highest pedestrian fatalities since 1990, accounting for 17% of all the traffic deaths, which was 
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the highest since 1982 (Retting & GHSA, 2020). When it is compared with the 2% increase on 
all other type of fatal crashes (Figure 3-2b), pedestrian safety seems to be extremely alarming in 
the U.S. and the State of Florida, which is among the five states with the highest pedestrian 
fatalities (Figure 3-2c).  

 

Figure 3-2: (a) U.S. pedestrian fatalities: 1988-2019, (b) percentage increase in number of 
pedestrian and all other types of fatalities from 2009 to 2018, and (c) the states where most of the 
pedestrian fatalities occurred in the first half of 2019  (Retting & GHSA, 2020)  

 

In order to help address this national safety problem, FHWA has enacted Every Day 
Counts (EDC) initiative on Safe Transportation for Every Pedestrian (STEP) (FHWA, 2020a). 
Within this initiative, it was observed that 72% of pedestrian fatalities occurred away from 
intersections (i.e., midblock crosswalks) and approximately 26% occurred at intersection 
crosswalks where motor vehicles were given more priorities compared to pedestrians. Therefore, 
seven pedestrian safety countermeasures, so-called “spectacular seven”, were developed to guide 
state DOTs and other transportation agencies to improve safety on the crosswalks where this 
national safety issue predominantly occurs (FHWA, 2020c). FHWA’s YouTube channel has 
provided a playlist to explain the working principles of each countermeasure with short clips 
(FHWA, 2020b). Basically, these seven countermeasures are:  

(a) 

(b (c) 
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 Rectangular Rapid Flashing Beacons (RRFB): Flashing LED lights that can be actuated by the 

users or with automated detection on midblock or uncontrolled crosswalks. 

 Leading Pedestrian Intervals (LPIs): Reduces pedestrian vehicle conflicts and increase yielding 

on signalized intersections allowing pedestrians walk 3-4 s before vehicles. 

 Crosswalk Visibility Enhancements: Enhancing signage, lighting, and markings helps drivers 

to detect pedestrians. 

 Raised Crosswalks: Reduces vehicle speed, increase visibility and calms traffic. 

 Pedestrian Crossing/Refuge Island: Provides a safer place to stop at the median, especially 

useful for pedestrians with limited mobility. 

 Pedestrian Hybrid Beacons (PHBs): As an intermediate option between a full pedestrian signal 

and a flashing beacon, PHBs are useful for multilane roads with high speed and volume. 

 Road Diets: Decreasing number of driving lanes, road diets can reduce vehicle speed and create 

space for refuge islands and bike lanes. 

Initial studies on these countermeasures indicated tremendous safety benefits as shown in 
Figure 3-3 with the potential reduction on pedestrian crashes (FHWA, 2020c).  

 

Figure 3-3: Safety benefits of proposed countermeasures (FHWA, 2020c) 

 

Furthermore, FHWA provides guidelines for the agencies to describe a comprehensive 
decision-making process for the installation of pedestrian crossing countermeasures (Blackburn 
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et al., 2017). In this guide, FHWA leads the agency to follow a 6-step process as shown in Figure 
3-4.  

 

Figure 3-4: Process diagram for installation of pedestrian crossing countermeasures (Blackburn 
et al., 2017) 

Task 2 of this project focuses on the second step of FHWA’s guidelines where a 
crosswalk inventory list is requested with a detailed categorization focusing on the midblock and 
signalized intersection crosswalks. As aforementioned, Florida is among the five pedestrian 
crash prone states in the U.S. where higher number of pedestrian fatalities were observed 
compared to other states Therefore, following these guidelines and creating such a crosswalk 
inventory list is essential for FDOT. 

Since this project heavily involves computer vision techniques in conjunction with drones 
and the roadway geometry data is a part of the projected traffic data to be extracted, Task 2 is 
devoted to (a) create a statewide crosswalk map from aerial high-resolution images, and (b) 
evaluate the capabilities of computer vision techniques for roadway feature extraction purposes. 
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 Background on Roadway Feature Extraction from Imagery 

Rapid advancement on computer vision technology enables traffic agencies to save 
money and time in various aspects of data collection. In the past, image processing has been 
considered a time-consuming and error-prone approach for road inventory recording. Recent 
significant improvements on computational power and image pattern recognition algorithms 
have created new opportunities to detect and map roadway features from imagery data. For 
example, a study (Wu & Tsai, 2006) used selected image frames from a video recorded by the 
camera mounted on a vehicle (street view) to update 118,000 mile centerlines of road inventory 
data for Georgia DOT. They successfully performed this task in days, which could have taken 
years with manual desktop observations. Another study (Jalayer et al., 2015) evaluated the 
remote sensing technologies for the extraction of roadway geometry data required for Highway 
Safety Manual (AASHTO, 2010) implementations. The projected geometry data set in this 
project (Figure 3-1) also stemmed from the Highway Safety Manual. They provided a simple 
categorization of the roadway inventory collection methods (illustrated in Figure 3-5). More 
importantly, a satisfaction survey among the state DOTs from the same study indicated that the 
collection of geometry data with aerial and satellite images happened to be more satisfactory 
than field observations in terms of equipment cost, data accuracy, crew safety, data collection 
cost and data collection time. On the other hand, field observations were found to be more 
satisfactory in terms of data completeness and data reduction time. However, it is highly possible 
that these results have changed in the last six years with the advancement on the computing 
power and the processing methods of imagery data. 

 

Figure 3-5: Categorization of roadway inventory data collection (Jalayer et al., 2015)  

In this study, existing literature on roadway geometry data extraction using computer 
vision techniques were categorized based on the imagery data source and extracted data type. 
Table 3-1 indicates the categorized studies found in the literature. Note that there are several 
other roadway geometry data types (e.g., slope, trees, and traffic sign/control devices) that should 
be included for a full inventory list. However, those data types are outside the scope of this 
study. 
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Table 3-1: Categorization of related literature on roadway geometry extraction using imagery 
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Imagery Data Source 
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  (Koester et al., 
2016) 

 (Berriel, Lopes, et 
al., 2017) 

 (Kurath et al., 2017) 
 (Y. Sun et al., 2016) 

 (Liang & 
Urtasun, 
2018) 

 (Haider et al., 
2019) 

 (Z. S. Chen & 
Zhang, 2018) 

 (Fan et al., 2020) 
 (X. Liu et al., 

2017) 

 

The roadway extraction method involves the semantic segmentation of the entire 
roadway segment, where the pixels that fell onto roadways are classified and visualized with the 
value of 1 (white) and all other pixels are classified and visualized with the value of 0 (black). 
Using multispectral images (near-infrared or more bands additional to the RGB bands) helped 
increase the accuracy and disregard the vegetation around roadways (Ye et al., 2017) although 
panchromatic (single band, black and white) satellite images have also been used on roadway 
extraction and intersection detection (K. Sun et al., 2019). Regardless of the number of bands, 
satellite-based road geometry data collection requires very high-resolution images (<1 m/pixel), 
which cannot be acquired freely. GeoEye-1 (0.41 m/pixel), GF2 (0.8 m/pixel), IKONOS (1 
m/pixel), QuickBird (0.61 m/pixel) SV-1 (0.5 m/pixel), Pleiades (0.5 m/pixel) and WorldView-1 
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(0.46 m/pixel) are some commercial satellites commonly used for roadway geometry extraction 
purposes in varying studies such as (Dai et al., 2019, 2020; K. Sun et al., 2019). 

Lane marking segmentation works similarly to the roadway extraction; however, in this 
case, not the entire roadway but only the pixels that fall onto the lane markings are classified as 1 
and others, including the roadway pavement, are classified as 0. This method is commonly used 
to generate high definition (HD) maps where all roadway features including dashed lines and 
turning arrow pavement markings are extracted from imagery into the map format (Fischer et al., 
2018). Additionally, aerial images from FDOT (FDOT Surveying and Mapping Office, 2020) 
were used to extract the number of lanes in six different street segments in Miami (L. Tang et al., 
2014). Lane marking segmentation has also been used as the starting point for some crosswalk 
detection studies (Z. S. Chen & Zhang, 2018). Although it is commonly performed to analyze the 
street view for these purposes, lane marking segmentation is also crucial for several advanced 
driver assistance systems (ADAS) such as lane keeping assistance, lane advisory, and even for 
the automated driving (Azimi et al., 2019; Fischer et al., 2018) as well as for the safety of people 
with vision limitations. Some roadway geometric data can be extracted with lane marking 
segmentation; however, the inference of vehicles and occlusion by trees and shadows 
significantly affect the accuracy, and thus, land marking segmentation requires very high-
resolution images.  

Intersection detection has been performed on extracted roadways with ball-shaped 
detections (Dai et al., 2020) and vanishing point identification (Tümen & Ergen, 2020). 
Vanishing point is commonly used on street level studies, and it refers to the point where the 
roadway and all line features along the roadway become a point on the horizon line. Crosswalk 
detection studies have also used vanishing point at the street level analysis, even for multiple 
crosswalk detections in the single frame (Fan et al., 2020). On the other hand, OpenStreetMap 
(OSM) crosswalk data have been commonly used for developing crosswalk detection models and 
testing them (Berriel, Lopes, et al., 2017). Moreover, Kurath et al. (2017) developed a model to 
automatically detect crosswalks and update the OSM database if the detected crosswalks were 
not already available in the system. OSM is a very good, if incomplete, free data source for 
geocoded data. 

On the other hand, reconstruction and full boundary drawing of the crosswalks have been 
performed by using multiple sensor technologies such as LIDAR and aerial imagery in Liang & 
Urtasun (2018). Drawing the entire crosswalk is important specifically for people with vision 
limitations (Haider et al., 2019; Y. Sun et al., 2016). Additionally, the performance of the 
crosswalk detection models has been tested on the crosswalks with different lighting and 
pavement conditions by (Z. S. Chen & Zhang, 2018). Although the sample size was very limited 
(50), no impact was found due to the lighting conditions (100% detection of 40); however, 
obscuration (80% of 10) and peeled-off markings (0% of 2) have significantly affected the 
performance. Also, a crosswalk detection model was used for defilement and impairment 
analysis as crosswalk pavement markings are prone to be peeled off by the continuous traffic (X. 
Liu et al., 2017). They used street view images to classify seriously impaired or partially 
impaired crosswalks and clear crosswalks, reaching an average of 87.7% and 85% precision, 
respectively. 

Despite the variation and high accuracy achieved in the presented crosswalk detection 
studies, a large-scale analysis to develop a statewide crosswalk inventory is still missing in the 
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literature. Most of the studies tested their model in a single aerial image with less than 100 
crosswalks. This study, with the objective of generating a crosswalk inventory list for the entire 
state of Florida, is one of a kind to the best of authors’ knowledge. Additionally, most of the 
cited studies have only performed detection of the crosswalks from the specified imagery source; 
however, maps of detected crosswalks have been the data formats required for the extracted 
roadway geometry data to be archived and used again for different purposes such as pedestrian 
safety analysis. Finally, several studies were able to detect only zebra crosswalks (Berriel, Lopes, 
et al., 2017; Z. S. Chen & Zhang, 2018; Koester et al., 2016). However, crosswalk markings vary 
in Florida. All in all, the developed model should perform not only detection but also mapping of 
the crosswalks for the entire state while identifying both zebra and non-zebra crosswalks.  

 Automated Crosswalk Detection and Mapping 

 Data Description 

 Image Data 

Florida Department of Transportation (FDOT) Surveying and Mapping Office maintains 
an aerial photography archive. These georeferenced images of all 67 counties of the State of 
Florida are stored for multiple years and well-indexed with the file names consisting of three 
letter county code, the year recorded and the tile number. FDOT provides public access to this 
archive through the Aerial Photography Look-Up System (APLUS) (FDOT Surveying and 
Mapping Office, 2020). In this platform, a limited number of images can be downloaded online, 
whereas large datasets, covering an entire county or even the state, can only be acquired by 
request followed by mailing or providing an external driver with adequate available storage 
space.  

For this study, the most recent images (as of December 2019) were extracted for every 
county of Florida, with a total size of 1.2 TB. Note that these images are considered to have very 
high-resolution. Although the exact resolution varies depending on the county, most of the 
images are in the 0.5 ft./pixel (~0.15 m/pixel) resolution with a size of 10,000 x 10,000, and 3-
band (RGB) image format. Also, the images are available in MrSID format where it can be 
projected on a map using a Geographical Information Systems (GIS) software such as ArcGIS.  

 Vector Data 

Florida Department of Transportation (FDOT) Transportation Data and Analytics Office 
provides a variety of GIS data. These data have been categorized into the four major classes: (a) 
designated roadway data, (b) roadway characteristics data, (c) traffic data, and (d) bicycle and 
pedestrian data. Each class has multiple shape files including but not limited to interstate 
centerlines, roadway surface widths, annual average daily traffic, separated bike lanes, number of 
through lanes, resting areas, signalized intersection points, truck traffic volumes, and weigh-in-
motion locations. These rich datasets and their detailed descriptions (metadata) can be found in 
(FDOT Transportation Data and Analytics Office, 2020) where each shape file can be 
downloaded individually or as a bulk within a geodatabase file.  

This study focused on the crosswalks located on the state highway system roadways (ON 
System Roads) as well as those located on the county- or city-controlled roadways (OFF System 
Roads). For this purpose, interstates were excluded from the ON System Roads shapefile and 
OFF System Roads shapefile was merged to combine all centerlines. In addition, signalized 
intersection points were used to categorize the detected crosswalks. Note that the GIS data 
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provided by (FDOT Transportation Data and Analytics Office, 2020) can help obtain several 
geometric data required for the mobility and safety performance evaluations except the 
crosswalk locations. As aforementioned, the major purpose of this study is to develop a statewide 
crosswalk inventory that also includes a categorization of midblock and signalized intersections 
for FDOT. 

 OpenStreetMap (OSM) Data 

OpenStreetMap (OSM) is a well-known, crowd-sourced, and free digital map database of 
the entire world (OpenStreetMap, 2020a). All types of vector data, including but not limited to 
roadway centerlines, building footprints, grocery store locations, bike lanes, restaurants, 
signalized or stop sign-controlled roadway intersections, city or county borderlines with 
demographics, and many others can be acquired with their associated key and tag pairs and 
imported into a GIS software. In this study, the key and tag pair “highway=footway” was used to 
extract the sidewalk line features and “highway=crossing” to extract the crosswalk point features 
from the OSM database for the entire state. This has been performed by using an out-of-the-bag 
toolbox named Get OSM Data from (Klinger, 2020) in ArcGIS Pro. Note that the OSM platform 
is not a completed data source as it works based on volunteering. Therefore, the sidewalks and 
the crosswalks that have already been uploaded by the OSM users were only extracted and used 
for validation of our crosswalk detection model in the Case Study III given below. On the other 
hand, the completeness of the OSM data set was tested with manually labeled complete data set 
of Leon County ON System Roads crosswalks in the Case Study I. 

OSM was developed in London, UK back in early 2000s. Although this platform has 
initially gained popularity in places where governments do not provide free spatial data, the 
platform has grown rapidly with bulk uploads of publicly available data sources such as TIGER 
lines in the U.S. Today, there are more than 6M users that actively update and edit geocoded data 
in this platform (OpenStreetMap, 2020c). Generally, OSM works in style that is very similar to 
the Wikipedia in which the users upload and edit the geospatial data, which is often called 
Volunteering Geographic Information (VGI) (Quinn & Dutton, 2020). These volunteering efforts 
constitute a social event known as “mapping parties” where a group of people gather and walk, 
bike, or drive through with GPS devices. Later, these recorded GPS tracts are uploaded to a 
central lab where data are entered with associated tags. The mapping party events around the 
world are quite often as announced in the main page of the OSM platform (OpenStreetMap, 
2020a). Although uploading GPS tracks is still useful, many OSM users enter the data by tracing 
aerial images or through the Overpass API nowadays (Application Programing Interface) 
(OpenStreetMap, 2020b).  

Although it is not complete and categorized, it is important to note that crosswalk 
locations around the world are available in OSM and have been used in many studies for 
developing and testing a crosswalk detection model (Berriel, Lopes, et al., 2017; Berriel, Rossi, 
et al., 2017; Kurath et al., 2017). Furthermore, the purpose of providing free map data based on 
OSM is also acknowledged by the U.S. DOT agencies; thus, it is highly recommended to initiate 
an OSM study for analyzing the further benefits.  

 Pre-processing 

Preprocessing is a required step due to the size of the data and the complexity of the 
object detection process. Broadly, our approach selects and excludes the images that does not 
intersect with a roadway centerline and then masks out the pixels that are not covered by a buffer 
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zone around the roadway centerlines. In this way, the number of images was reduced from ~90K 
to ~30K and the features outside the area of interest (100 ft. around ON- and OFF-System 
Roads) were ignored by the model.  

Details of the preprocessing approach are visualized in Figure 3-6. Initially, all images 
from all counties (approximately ~90K) were imported into a mosaic dataset within the ArcGIS 
Pro software. Mosaic datasets were used to manage and display multiple geocoded images 
(ESRI, 2020). Also, mosaic datasets allow one to make location-based image tile selections with 
intersections of other geocoded vector data. For example, individual images, that include a part 
of roadway centerline, were selected, and extracted to create a subset collection of the images 
(approximately ~30K). Furthermore, the model-builder interface of ArcGIS Pro was employed to 
develop an automated image masking tool. As indicated in Figure 3-7, the tool iterates through 
the images in a folder, masks each image based on the 100-ft buffer around the roadway 
centerlines, and converts masked images into JPG format for the object detection algorithm. 

 

 

Figure 3-6: Preprocessing approach 
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Figure 3-7: Automated image masking model used in the fourth step of preprocessing 

Finally, a metadata table was generated to indicate the exact coordinates of each image. 
Note that object detection algorithms can only identify which pixels in the given image cover the 
object (e.g., a crosswalk in this study). Therefore, exact location of each pixel of masked images 
must be known to be able to map the detected crosswalks. Fortunately, the aerial images in the 
APLUS Archive are well indexed by their name and precisely projected in the State Plan 
Coordinate System (SPCS), which converts the angular-based coordinate system (Latitude and 
Longitude) to a Cartesian system with the linear unit of U.S. Surveying feet. In Florida, 67 
counties are categorized into 3 different SPCS zones (SPCF83_903 N_FL, SPCF83_902 W_FL, 
SPCF83_901 E_FL) as shown in Figure 3-8. Although the resolution and size of the images vary 
within some counties (i.e., Miami-Dade), the exact corner locations of each image can be 
extracted in feet once the images are displayed in a mosaic dataset within their associated SPCF 
zone. Eventually, a metadata table was generated with the original name of the images, their 
SPCF zone, and the corner coordinates within the associated SPCS. By reading this table and 
using the size information, object detection model rescales the image if necessary and calculates 
the coordinates of the detected crosswalks instantly. 
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Figure 3-8: State plane coordinate system (SPCS) zones in Florida. Source: (FDOT, 2017) 

 

 YOLOv2 Crosswalks Detection Model 

You Only Look Once (YOLO) is a neural network model mostly used for real-time 
object detection purposes. The main advantage of YOLO compared to other object detection 
models like Region-based Convolutional Neural Network (R-CNN) or Faster R-CNN is its 
speed. That is, YOLO is 1000x and 100x faster than both R-CNN and Faster R-CNN 
architectures, respectively (Redmon, 2020). This is mainly because the other object detection 
models run hundreds of network evaluations on a single image. They also work as classifiers of 
the candidate regions and detect the object(s) based on the classification probability of those 
regions. The YOLO model, on the other hand, can search for the entire image with a single 
network evaluation and make predictions informed by the global context of the image. YOLO 
object detection algorithm was first published in 2016 (Redmon et al., 2016), the speed and 
accuracy was enhanced in the second version (YOLOv2) (Redmon & Farhadi, 2016), and the 
multi-scale predictions was improved in the third version (YOLOv3) (Redmon & Farhadi, 2018). 
Recently, YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Jocher, 2020) was published. 
Since there is not a scale problem present in our dataset and due to its ease of applicability with 
the available sources, YOLOv2 was employed in this study. 
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 Crosswalk Detector 

The model was trained using manually labeled 4,658 ON and OFF-road crosswalks in 
MATLAB v. 2020a, which was supported with Deep-Learning Toolbox and GPU enhancements 
when the hardware was available. The locations of training crosswalks were mined from the 
OpenStreetMap crosswalk data set and labeled with manually drawn bounding boxes on the 
masked images by using the Image Labeler interface of MATLAB. Although most of the 
training data consisted of the crosswalks from Alachua (1,360), Duval (756), and Miami-Dade 
(669) counties, crosswalks from 28 counties were included. For a fair performance evaluation in 
the case studies, Leon, Orange, and Sumter County crosswalks were not included in the training 
data set. In this way, a county from each SPCS zone was included in the case studies with 
moderate, high, and low population densities, respectively.  

This crosswalk detection network model was trained using 25 anchor boxes and ADAM 
optimizer (Kingma & Ba, 2014), which is commonly used in training deep learning algorithms to 
optimize the learning rate. The number of anchor boxes was automatically calculated with the k-
means algorithm from the training data to represent the prior knowledge on the target bounding 
boxes. Additionally, 30 epochs and 128 batch sizes were adopted on the training with the L2 
Regularization value of 0.0004. 

The performance of the detection model was evaluated with a 15% split of the test 
dataset. That is, a randomly chosen set of 698 crosswalks was not used in the training but utilized 
in order to test the accuracy of the model. A default 50% overlap between the label and the 
detection bounding boxes was accepted as a true prediction. Subsequently, precision was 
calculated as the true prediction rate among all the predictions and recall was calculated as the 
true prediction rate among the original labels. Figure 3-9 indicates the precision-recall curve, 
which is a commonly used measure of success for classifiers. The area under this curve was 
calculated as the average precision and it spans between 0 and 1. The value 1 indicates a perfect 
classifier with 100% match. Based on the resulting value of 0.95, we can conclude that the 
developed detector is performing quite well. 



51 

 

 

Figure 3-9: Developed YOLOv2 crosswalk detector accuracy 

 

 Mapping Crosswalks 

The crosswalk detector was first applied on single images. As shown in Figure 3-10, the 
detector successfully draws bounding boxes around crosswalks with the confidence score of the 
detection. To prevent false positives, the default value of minimum 0.5 confidence score was 
adopted as the threshold and more than 20% overlapping between two bounding boxes was 
prevented to avoid multiple detections.  

The detector was trained with 1,000 x 1,000 sub-images with a 0.5 ft. pixel resolution. 
Therefore, the detection was performed sliding this sub-image window with a step size of 900 
pixels on original images (10,000 x 10,000). If the given image had different size or resolution, it 
was rescaled and parsed with black pixels to have similar properties. With the sliding window, 
an overlap of 100 pixels was provided for each sub image on X and Y axis which helps detect 
crosswalks on the edges. However, the main reason for the sub image is to skip non-roadway 
areas in the full-size image. If the sub-image consisted mostly of black or white pixels, that sub-
image was ignored by the detector as it refers to a region outside 100 ft. surrounding the roadway 
centerlines (i.e., masked out area in the preprocessing). Also, using large images is not practical 
in object detection algorithms as the computation cost increases exponentially. 

Since the detector performed quite well on single images, the mapping process was 
performed at the county level. This process is summarized in Figure 3-11. First, based on the 
image names matching with the user input of 3-letter county code, the images in the masked 
images folder were selected and iterated to the detector. Then, the spatial information of the 
image was extracted from the metadata table in order to calculate the coordinates of the 
bounding boxes in that image. Once all images were passed to the detector, an output file was 
generated including all the crosswalks coordinates in that county. Additionally, confidence 



52 

 

scores, and the image names on which the crosswalk were detected are included in the output 
file. This file was used as an XY table to map crosswalks.  

 

Image 
Name Examples of crosswalk detection from single images 
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Figure 3-10: Crosswalk detection with bounding boxes and confidence scores on single images 
from Leon, Orange, and Sumter counties 
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Figure 3-11: Crosswalk detection and mapping at the county level 

 Post-processing  

Post-processing step cleans the duplicate detections due to the overlapping distance on 
sliding windows. Additionally, it separates ON road and OFF road crosswalks. No further 
categorization was performed on the OFF road crosswalks; however, ON roads detections were 
used for performance evaluation and further categorization in order to have a complete list that 
can serve as the statewide crosswalk inventory list. 

Cleaning the duplicate points was performed by integrating the detection points, which 
were less than 5 ft. from each other. Then, X and Y coordinates were calculated and added to the 
attribute table. Finally, the records with duplicating X and Y coordinate fields were cleaned. This 
process used a 5-ft minimum distance between each crosswalk and all performance evaluations 
and further categorizations were performed following this rule. 

 Case Studies and Results 

 Case Study I: Overall Performance Evaluation Using the Ground Truth Data 

 Experimental Design 

The first case study evaluated the performance of the model with a focus on both 
correctness and completeness and compared the findings with OpenStreetMap (OSM) data. For a 
proof of concept, a complete, manually placed Ground Truth (GT) dataset was generated in Leon 
County ON System Roads. A total of 1,272 GT points was placed on each visible crosswalk by 
using the masked images as the background. Figure 3-12 illustrates the GT dataset and OSM 
crosswalks in the study area. Note that OSM dataset missed all the crosswalks on the West 
Pensacola St. illustrated in Figure 3-12c and yet included crosswalks without visible pavement 
marking as illustrated in Figure 3-12b. This is mainly because some of the line features are 
missed as OSM crosswalks are mostly located at the intersection of roadway line features and 
footway line features. Including a broader dataset and missing all the crosswalks in a location 
can be considered as the tradeoffs of the Volunteered Geographic Information (VGI) concept. 
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Figure 3-12: Manually labeled ground truth crosswalks (GT) and OSM crosswalks in the study 
area 

As aforementioned, the proposed model has detected ON and OFF-road crosswalks in 
Florida with a minimum of 0.4 confidence score and these were mapped as points. For this case 
study, the model detected crosswalks (M) within the Leon County on ON Roads, which were 
extracted. A similar location-based selection approach was applied on the OSM crosswalks. 
Since the GT, M, and OSM are all points, the performance of the proposed model was evaluated 
by checking the 30 ft. surrounding of those points (i.e., detection proximity). In order to 
determine the 30 ft. radius for the detection proximity and the 0.4 confidence threshold for M 
crosswalks, sensitivity analyses were conducted with different values, but the results are not 
presented in this report to focus on the actual findings. 

Completeness (precision), correctness (recall), and quality (Intersection Over Union) 
were used to evaluate the performance of proposed model. These metrics are commonly used for 
performance evaluation of the similar models (Dai et al., 2020; K. Sun et al., 2019) since they 
were first used in (Wiedemann et al., 1998) and (Wiedemann & Ebner, 2000) for roadway 
extraction purposes. Details of these metrics are presented in Table 3-2. The following are 
determination rules required to calculate the performance evaluation metrics shown in Table 3-2. 

 False Negative (FN): # of GT crosswalks with no M crosswalk in 30 ft. radius  

 False Positive (FP): # of M crosswalks with no GT crosswalk in 30 ft. radius 
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 GT: Number of GT crosswalks 

 M: Number of Model detected crosswalks 

Table 3-2: Performance evaluation metrics  

Metric Formula Description 

Completeness 
𝐺𝑇 − 𝐹𝑁

𝐺𝑇
∗ 100% 

True detection rate among GT crosswalks (recall)  

Correctness 
𝑀 − 𝐹𝑃

𝑀
∗ 100% 

True detection rate among M crosswalks (precision) 

Quality 
𝐺𝑇 − 𝐹𝑁

𝐺𝑇 + 𝐹𝑃
∗ 100% 

True detection among M crosswalks plus the undetected 
GT crosswalks (Intersection over Union: IoU) 

 

The main objective of this case study was to evaluate the quality of the predictions made 
by the proposed model and compare it with the OSM dataset, another available source for 
crosswalks. After examining both correctness (precision) and completeness (recall) performance 
of the model with a complete dataset, completeness performance can be evaluated on categorized 
crosswalks. 

 

 Results 

Performance evaluation results are presented in Table 3-3 and several examples are 
illustrated in Figure 3-13. Overall results indicate that the model have successfully detected 
85.9% of the GT crosswalks (Figure 3-13(a, b, c, and d)) whereas OSM data could only detect 
77.8%. Figure 3-13(a) illustrates this where a GT was detected by the model but not included in 
the OSM dataset. On the contrary, most of the undetected crosswalks (FN), are included in the 
OSM data set as shown in Figure 3-13(f and g). In addition, it is proven that the proposed model 
can perform precise estimates as the correctness is 88.7%. This indicates that the model does not 
generate many false positives and GT crosswalks are eventually detected. Instead, FP is 
relatively low, and an example is depicted in Figure 3-13(e). However, the correctness is quite 
low for the OSM dataset. This is expected as it includes crosswalks that are not visible on the 
aerial images. Some of those crosswalks can be seen in Figure 3-13(b) where they are counted as 
FP for the OSM dataset.  

Note that almost all the undetected crosswalks are covered in the OSM data set. For 
example, one of the undetected crosswalks in Figure 3-13(g) is a midblock crosswalk on the 
Thomasville Rd., Tallahassee and it is included in the OSM data set. The reason for the 
crosswalk is missed in the model could be the peeled off pavement markings and the reason for 
OSM covers this crosswalk is that the existing footway line and roadway centerline intersect 
somewhere on that crosswalk. This is a good example of the benefits of the Volunteered 
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Geographic Information (VGI). Some users upload the data into the system and some other users 
process that data and create new data, despite missing all of the crosswalks in certain locations.  

Regardless, the developed model performs quite well, and it has high potential to not only 
create a state-wide crosswalk inventory but also to complete the OSM crosswalks in the future. 
In addition, the detection problems on peeled off crosswalks are commonly addressed challenges 
in the related literature. In this regard, crosswalks with a low detection confidence score or no 
detection can be utilized to determine the crosswalks that need visibility improvements and/or 
routine maintenance. 

Note that the conceptualization of this performance evaluation allows multiple matches 
because some adjacent GT crosswalks were detected as a single M crosswalk, and vice versa. 
This can be seen in Figure 3-13(c and d). However, for the point detection performance 
evaluation, the GT crosswalk was still detected although there were multiple M crosswalks (max 
record is 3) in the 30 ft. vicinity, which clearly shows the sensitivity for detection assignment. 

Table 3-3: Proposed model performance evaluation and comparison with OSM 

 

 

 

 

 

 

Ground Truth (GT) 
(n=1,272) 

Model (M) 
(n=1,316) 

OSM 
 (n=2,312) 

TP 1,092 989 
FN 180 283 
FP 149 1,208 
Completeness 85.9% 77.8% 
Correctness 88.7% 52.2% 
Quality 76.9% 39.8% 
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Figure 3-13: Automated crosswalk detection and mapping results. (a and b) true positive (TP) 
detection with 1:1 matching, (c and d) TP detection with 1: any matching, (e) false positive (FP) 
detection, (f) false negative (FN), undetected crosswalk, (g) detection problems due to peeled off 

markings and relatively long placement on Thomasville Rd., Tallahassee, FL. 

  

Visual observations indicate that most of the missed crosswalks were on the side of the 
roadways. Also, the visual patterns on signalized intersection crosswalks appeared to be much 
more detectable than the crosswalks outside roadways. Therefore, categorizing GT crosswalks 
and checking the completeness of the proposed model can be a fairer performance evaluation. 

 

 Case Study II: Performance Evaluation with Categorized Crosswalks  

 Experimental Design 

The purpose of this case study was to evaluate performance of the model against the 
crosswalks with different importance levels and marking patterns. To perform such an 
evaluation, the GT data used in the first case study were further classified into three different 
binary nodes (S, C, and Z) as illustrated in Figure 3-14 and Table 3-4. Additionally, this case 
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study also performed a sensitivity analysis on the final classification of the statewide crosswalk 
inventory. 

Node (S) separates the signalized intersection crosswalks (S1) and non-intersection 
crosswalks (S0) as illustrated with square and circle shaped points in the Figure 3-14, 
respectively. 52% of the total crosswalks are signalized intersection crosswalks on Leon County 
ON System Roads. On the other hand, node (C) separates crosswalks where pedestrians cross an 
ON Road (C1) and the crosswalks that are parallel to the ON Roads (C0) as symbolized with red 
and blue colored points in the Figure 3-14, respectively. Only 27% of the total crosswalks are 
crossing (perpendicular) Leon County ON System Roads as shown in Table 3-4. Finally, node 
(Z) separates the crosswalks with strip pavement markings (zebra crosswalks) (Z1) and the 
crosswalks marked with only two parallel lines (non-zebra crosswalks) (Z0). They are 
symbolized with black strips and solid colors in the Figure 3-14, respectively and only 17% of 
the total crosswalks have zebra markings on Leon County ON System Roads as shown in Table 
3-4. These binary nodes helped evaluate the performance of the model on the different 
importance levels of the crosswalks. For example, missing a crosswalk which is not crossing the 
roadway and not around signalized intersections (S0C0) can be more tolerable than missing other 
crosswalks. Also, as mentioned in the literature review section, the proposed model may perform 
differently on zebra and non-zebra crosswalks.  

More importantly, this categorization of the crosswalks can lead to the target 
categorization of the crosswalks as follows: (a) signalized intersection, (b) midblock crosswalks, 
and (c) driveway crosswalks. Particularly, the threshold distance from the signalized intersection 
point can be determined to extract signalized intersection crosswalks (S1). Then, another 
threshold distance from the roadway centerlines can help separate driveway (S0C0) and 
midblock crosswalks (S0C1) on the remaining crosswalks. Those threshold distances can be used 
in order to finalize the statewide crosswalk inventory list. 
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Figure 3-14: Ground truth (GT) crosswalk points and their categorization into three binary nodes 

 

Table 3-4: Number of ground truth (GT) crosswalks 

 

 

 

 

 

 

 

 

 

 Results 

Table 3-5 indicates the performance evaluation results on the categorized crosswalks. We 
observe that the model performed much better on the C1 and S1 crosswalks. This is probably 
because of the variation on the crosswalk markings especially outside the roadways. These 

Crosswalk Types Code # of Ground Truth (GT) 
Crosswalks in Leon 

Signalized Intersection  S1 665 (52%) 

Non-Signalized Intersection S0 607 

Crossing the ON Roads C1 352 (27%) 

Parallel to the ON Roads C0 920 

Strips-Zebra Z1 223 (17%) 

Solid-No zebra Z0 1,049 

TOTAL    1,272 
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crosswalks can be extracted from the images with a different method of masking in the 
preprocessing part such as roadway detection instead of using the 100-ft buffer zone around 
centerlines.  

On the other hand, the detection performance on zebra and non-zebra crosswalks is 
balanced, and this proves that the developed model can perform well on both types of pavement 
markings. Note that object detection algorithms can only detect the introduced patterns in the 
training data set; therefore, the similarity of crosswalk markings plays a significant role on the 
performance of the proposed model. Therefore, occlusion by cars, especially white cars, 
significantly increases the FP and FN of the model. Also, auxiliary turning lane crosswalks with 
relatively smaller shapes become harder to detect. However, the overall results confirm that the 
proposed model is suitable for creating a crosswalk inventory map. 

Table 3-5: Performance evaluation results on categorized crosswalks 

 

 Target Crosswalk Categorization Rules  

Figure 3-15(a) indicates that the signalized intersection crosswalks in the GT data set 
have less than 213 ft. to the nearest signalized intersections on average. Based on this result, a 
200-ft zone around the signalized intersection points was defined as the signalized intersection 
crosswalk zone. Any crosswalk detected and mapped in this zone was assigned to the signalized 
class in the statewide crosswalk inventory list. In the GT dataset, there were only a few S1 
crosswalks outside of this zone; however, they were located on the auxiliary turning lanes, and 
these crosswalks were classified as driveway crosswalks. 

Figure 3-15(b) indicates that the crosswalks parallel to the ON roads (C0) are within 15 
ft. or more to the roadway centerlines. Based on these rules, a 10-ft buffer zone around roadway 
centerlines was defined as a midblock zone, and any crosswalk outside the signaled intersection 
zone but inside the midblock zone was defined as a midblock crosswalk. The detections outside 
of both zones were used to identify driveway crosswalks. Illustrations of the zones and 
categorized crosswalks are presented in Figure 3-16. 

According to this classification method, there are three midblock crosswalks in Leon 
County: (1) Blountstown Hwy (illustrated in Figure 3-16), (2) S. Adams St. (Capital Cascades 
Trail) (3) Thomasville Rd. (Midtown Tallahassee). Note that there are crosswalks controlled with 
pedestrian actuated signals (i.e., W. Tennessee crosswalks in Figure 3-13), but these signals are 

Crosswalk Types Code # of GT # of Not-Detected GT Completeness 

Signalized Intersection  S1 665 (52%) 40 0.925 
Non-Signalized Intersection S0 607 139 0.771 
Crossing the ON Roads C1 352 (27%) 12 0.966 
Parallel to the ON Roads C0 920 167 0.818 
Strips-Zebra Z1 223 (17%) 34 0.848 
Solid-No zebra Z0 1049 145 0.862 
TOTAL    1,272 179 0.859 
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also included as part of the signalized intersections. Therefore, they are listed as signalized 
intersection crosswalks in the dataset. This is similar to the definition of the midblock crosswalks 
provided by FHWA in (Blackburn et al., 2017). The proposed model has detected two of these 
midblock crosswalks and missed the second one due to the peeling pavement markings as 
illustrated on Figure 3-13(g). 
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Figure 3-15: Distance analysis for the target categorization in the statewide crosswalks 
inventory list. (a) S1 crosswalks to signalized intersection points, and (b) parallel crosswalks to 

the roadway centerlines 

  

 

(a) 

(b) 
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Figure 3-16: Zones for categorizing the signalized intersection, midblock, and drive way 
crosswalks 

 

 Final Data Description 

In this study, a deep learning- and GIS-based model was described, and its performance 
was evaluated while detecting the crosswalks. This automated crosswalk detection and mapping 
model can detect and map 86% of the crosswalks within a 30 ft. distance and there is a 88% 
precision on its detections. Additionally, a sensitivity analysis was conducted to categorize the 
detected crosswalks in order to obtain a more accurate statewide crosswalk inventory list. The 
final numbers of this list are illustrated in Table 3-6.  

Note that the crosswalks were mapped based on the State Plan Coordinate System Zones. 
There are three different zones in Florida as shown in Table 3-6 and three different shape files 
are provided to fulfill the requirements of Task 2. In each shapefile, an attribute with the name 
“Class” indicates whether a crosswalk is a i) OFF road crosswalk, ii) Signalized intersection ON 
road crosswalk, iii) Midblock ON road crosswalk, and iv) Driveway ON road crosswalk. 

These three shapefiles can serve as the crosswalk inventory list for FDOT in order to 
enhance the pedestrian safety throughout the state. 



64 

 

 

Table 3-6: Statewide crosswalk inventory with the final numbers  

FL SPCS 
Zones 

OFF Road 
Crosswalks 

ON Road Crosswalks 
Total 

Total Midblock Signalized Int. Driveway 

North (903) 12,234 7,733 287 2,243 5,203 19,967 

West (902) 27,657 14,875 156 7,724 6,995 42,532 

East (901) 61,078 35,794 418 18,246 17,130 96,872 

Total 100,969 58,402 861 28,213 29,328 159,371 

 

 Discussions and Recommendations 

This task aimed to develop an automated signalized intersection geometric data 
extraction algorithm based on high-resolution images in order to identify crosswalks. This is an 
innovative solution that employs the computer vision technology to potentially replace 
traditional manual inventory, which is labor intensive and prone to errors. Using high resolution 
images, the developed algorithm can extract key intersection geometrics such as pedestrian 
crossings (crosswalks and midblock crosswalks) that can be recognized from images. The 
findings of Task 2 will help FDOT obtain cost savings by eliminating a need for a manual 
inventory process and improved intersection data quality by eliminating errors due to manual 
data input. 

There are several important limitations and future recommendations based on the 
findings of this task: 

 Roadway data extraction from imagery is clearly critical for transportation agencies 

and can provide many benefits. For example, roadway extraction and lane marking 

segmentation can lead to lane/shoulder/median width inventory for intersections 

without significant obstructions. 

 OSM a promising source and provides free geocoded data, which matches with 

FDOT’s data policy. A study for analyzing the full benefits of OSM can be 

considered by FDOT. 

 Defilement analysis can help identify which crosswalks need maintenance and visual 

improvements (X. Liu et al., 2017). 

 Aerial images cannot be used to detect the crosswalks underneath trees. 

 Regardless of the accuracy on the object detection part, geometry data collection 

requires mapping. Fortunately, this study uses free georectified aerial images 

maintained by FDOT.  

 Roadway centerlines create problems on masking and midblock detection. A better 

methodology can be developed to mask the images and/or to determine the signalized 

intersection zones and midblock zones. 
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 TASK 3: CONDUCT A PILOT-DRONE TEST IN SELECTED INTERSECTIONS  
 

 Background 

With a focus on the feasibility analysis for drone-based traffic data collection, the 
research team has conducted field exercises with a third-party drone service provider. This 
chapter presents the details on the purchased services and details of the exercises. In addition to a 
written report, a hard disk drive including all the recorded videos are submitted to FDOT to 
fulfill the requirements of the Task 3.  

 Exercise Design and Execution 

 Introduction 

With respect to the challenges and lessons learned from the literature review and best 
practices provided in Task 1, a series of exercises was conducted at five different locations in 
Florida (two in Tallahassee and three in Jacksonville) between March 13, 2021 and March 21, 
2021. To conduct this exercise with a professional UAS service provider, a request for quote was 
announced and handled through Florida State University Procurement Services. In this request, 
the scope of their work was explained as follows: 

 The vendor must comply with all of the federal and state laws to legally operate an 

unmanned aircraft and record aerial video over selected intersections. 

 The vendor must provide 13 to 15 hours of continuous drone footage over each intersection 

and broadcast this footage in real-time (or near real-time) to a ground computer station 

where traffic data such as road user classification and trajectories, traffic volume, queue 

lengths, speeds, accelerations, turning movements and conflict points can be extracted. 

 The vendor will provide HD quality video recordings of all legs of the intersections, to 

potentially share with FDOT Districts, and have it available for public outreach in Florida. 

 Tethered drones are preferred to acquire continues recordings, and these videos should 

include both AM and PM traffic as well as the mid-day traffic. 

 The vendor should also conduct real-time video image analysis and processing to detect the 

road users (i.e., car, truck, bus, pedestrian, bicyclist) and track them in the subsequent 

frames to provide coordinates of those road users in every 0.1 second (or lower) as road user 

trajectories.  

 While the road user trajectories are objected as the main output of this task, additional traffic 

data such as turning movement count or speed extractions without trajectories shall be used 

for the feasibility evaluation. An example trajectory is given in Table 4-1.  

 The accuracy of any extracted data will be tested by using the raw video records. 

 The vendor must protect the safety and privacy of the traveling public. 
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Table 4-1: Expected final trajectory output. 

Object ID User Type Time Stamp 

(hh:mm:SS.ss) 

Position X 

(US. Surveying ft.) 

Position Y 

(US. Surveying ft.) 

1 Car 00:00:10.00 XXX.xxxxxx YYY.yyyyyy 

1 Car 00:00:10.10 XXX.xxxxxx YYY.yyyyyy 

1 Car 00:00:10.20 XXX.xxxxxx YYY.yyyyyy 

2 Pedestrian 00:00:11.40 XXX.xxxxxx YYY.yyyyyy 

2 Pedestrian 00:00:11.50 XXX.xxxxxx YYY.yyyyyy 

2 Pedestrian 00:00:12.00 XXX.xxxxxx YYY.yyyyyy 

3 Truck 00:00:11.50 XXX.xxxxxx YYY.yyyyyy 

3 Truck 00:00:12.00 XXX.xxxxxx YYY.yyyyyy 

3 Truck 00:00:12.10 XXX.xxxxxx YYY.yyyyyy 

3 Truck 00:00:12.20 XXX.xxxxxx YYY.yyyyyy 

4 Bicyclist 00:00:12.00 XXX.xxxxxx YYY.yyyyyy 

4 Bicyclist 00:00:12.10 XXX.xxxxxx YYY.yyyyyy 

5 Bus 00:00:11.50 XXX.xxxxxx YYY.yyyyyy 

5 Bus 00:00:12.00 XXX.xxxxxx YYY.yyyyyy 

5 Bus 00:00:12.10 XXX.xxxxxx YYY.yyyyyy 

. . . . . 

. . . . . 

n-1 Car 14:58:28.10 XXX.xxxxxx YYY.yyyyyy 

n Pedestrian 14:59:42.10 XXX.xxxxxx YYY.yyyyyy 

n Pedestrian 14:59:42.20 XXX.xxxxxx YYY.yyyyyy 

n Pedestrian 14:59:42.30 XXX.xxxxxx YYY.yyyyyy 

 

Finally, a contract was signed with Sinclair Community College, National UAS Training 
and Certification Center from Ohio, USA. The contractor has also teamed up with Simlat Inc. to 
conduct the required video image processing tasks.  

 Purchased Service 

The contractor provided four certified drone pilots for a total of 11 workdays between 
Friday, March 12 and Tuesday, March 23, 2021. This operation team left Ohio on Friday, March 
12, 2021 morning and drove all the way to Florida. After two days of travel, drone exercises 
started in Tallahassee on Sunday, March 14, 2021 and continued on the following days of 
Monday and Tuesday. After the travel to Jacksonville on Wednesday, March 17, 2021, exercises 
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were conducted in Jacksonville on Thursday, March 17, 2021 and for the following days of 
Friday and Saturday. Note that the contractor travelled from Ohio with all the required 
equipment loaded on two trucks and a trailer. The equipment list, with their brand and model 
information, is presented in Table 4-2 including their current prices. Some items from this list as 
well as the drone exercise operations is illustrated in Figure 4-1. 

Table 4-2: Main equipment provided and used by the contractor and their current prices. 

Equipment      Brand / Model Price 
Drone #1 DJI M200 $4,500 
Drone #2 DJI M210/RTK $6,500 
Camera #1 DJI Zenmuse Z30 $3,000 
Camera #2 (backup) DJI Zenmuse X4S $600 
Drone Controller Screen DJI Crystal Sky $500 
Tether Elistair Light-T $6,600 
Drone Battery matched with tether  Elistair air module for DJI M200/210 $3,700 
Generator for tether BS 6500 $800 

 

For all drone operations, the maximum altitude was kept between 100 ft. and 120 ft. due 
to the tether cable restrictions. In addition, no operation was conducted when wind speed 
exceeded 20 knots (23 mph) due to the 800-W pull force limitation on the tether. The reason is 
that, when high wind is experienced, it swings the tether and creates extra pulling power.  

Additionally, after every 2.5 hours of flight time, the drone was taken down and the team 
switched to the other drone to continue traffic monitoring. This was done mainly due to the 
controller battery limitation. The crystal sky controller screen battery life is approximately 2.5 
hours and losing connection during the flight may even cause an unfavorable incident. Also, it 
was claimed that the just like most of the other drones, DJI M Series was made to fly a maximum 
of 30 minutes. If it was kept longer on the air, some problems such as losing the camera and/or 
gimbal control and malfunctioning of a critical flight control equipment might have occurred. 
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Figure 4-1: Pictures from the exercise. (a) Drone DJI M210/ RTK, (b) DJI M200 with Zenmuse 
Z30 camera attached and two batteries (one of them is Elistair’s Air Module for DJI M200/210), 
(c) Light-T Tether and BS6500 generator, (d) inside the trailer where the airspace is continously 
observed (top screens) and live-feed video is labeled with YOLO, (e) Crystal sky screen attached 

to the master drone controller and tether observation screen, and (f) labeled live feed video. 

 

 

 

(c) 
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 Exercise Locations 

The study sites were selected from the intersections where a recent signal warrant study 
or any other type of analysis was conducted with traditional methods. Signal warrant study is the 
common method to conduct an engineering analysis that aims to determine whether a signal 
control is required on an uncontrolled or stop-sign controlled intersections. This process requires 
extensive field data collection such as 8-hour vehicular traffic volume, speed (if posted speed 
limit is not used as the reference speed), 4-hour vehicular traffic volume, peak hour, pedestrian 
volume. Therefore, a cost benefit analysis in the Task 4 deliverable of this project attempted to 
compare the costs associated with warrant studies conducted with traditional methods and the 
drone-based data collection.  

Another constraint in terms of determining the study site was the air space classification 
since a Low Altitude Authorization and Notification Capability (LAANC) certification is 
required for operations nearby airports. Since obtaining this certification is time consuming, the 
research team avoided intersections closer to airports to conduct this exercise. The aerial images 
of the exercise locations with their coordinates and operation hours are presented in Figure 4-2, 
Figure 4-3, Figure 4-4, Figure 4-5, and Figure 4-6. 

 

 

Figure 4-2: Tallahassee Location 1: Apalachee Pkwy. & March Rd. Hours of operation: Sunday, 
March 14, 2021 between 10:17 AM – 5:02 PM, and Tuesday, March 16, 2021 between 9:43 AM 

– 6:39 PM 
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Figure 4-3: Tallahassee Location 2: US-231 & Jacob Rd. (RCUT intersection). Hours of 
operation: Monday, March 15, 2021, between 7:28 AM – 7:47 PM 

 

 

Figure 4-4: Jacksonville Location 1: US-90 (Beach Blvd.) & Leon Rd. Hours of operation: 
Thursday, March 18, 2021, between 6:46 AM – 8:05 AM 
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Figure 4-5: Jacksonville Location 2: SR-10 (Atlantic Blvd.) & Leon Rd. Hours of operation: 
Friday, March 19, 2021, between 6:49 AM – 8:38 PM 

 

Figure 4-6: Jacksonville Location 3: US-301 & SR 228 (Normandy Blvd.). Hours of operation: 
Saturday, March 20, 2021, between 8:33 AM – 5:02 PM 
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 Operational Steps and Challenges  

As aforementioned, the contractor was responsible for abiding with all federal and state 
rules to operate drones legally and safely and securing the safety of their pilots and equipment. 
Therefore, the contractor conducted a risk assessment study for each pre-determined location. As 
an example, Figure 4-7 indicates the risk assessment document for the Tallahassee Location 1 
study area on Apalachee Parkway.  

Additionally, two supplementary checklists were strictly followed by the drone operation 
team. The first checklist, illustrated in Figure 4-8, was prepared by the Tether supplier Elistair to 
provide secure operations with tether attachments to DJI M series drones. Before every drone 
took off and after each one landed, the steps guided the drone pilots. The second checklist, 
illustrated in Figure 4-9, was prepared by the video image processing partner SIMLAT to initiate 
the object detection and labeling the road users on the live drone video feed. After every takeoff, 
the steps were followed by the drone operation team to transfer the live drone video into the 
computer in the trailer and run the pre-built YOLO algorithm on this video. Finally, three types 
of video recordings were obtained: a) YOLO labeled raw video, b) unlabeled raw video, and c) 
higher quality recorded video.  

The step-by-step execution of the exercise for each takeoff is conducted as follows: 

  

1) Start before 8 AM (10 AM for weekends) with two drone pilots. 

2) Secure location to park and determine safe distancing and flaying conditions. 

3) Test camera (primary: ZENMUSE 30), controller, and other equipment prepared for 

takeoff with the tether operation checklist (Figure 4-8). 

4) Test the live stream on the main and secondary controllers. 

5) Initiate video image processing and start recording according to the checklist (Figure 

4-9). 

6) Lift off the drone to altitude between 100 ft. and 125 ft. and find the best field of view. 

7) Continuously watch the camera, for other aircrafts, weather-related issues, and the 

tether-related variables (e.g., force, temperature). 

8) Land on after 2 to 2.5 hours. 

9) Change the battery on the controller and crystal sky. 

10) Charge batteries and start from the step #3 with the other drone. 

After 1 PM, drone pilots changed shifts and operation continued until sunset (around 8 
PM) (6 PM for Weekends). Finally, the challenges faced during the exercise are presented in 
Table 4-3 for each study location. 
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Figure 4-7: Flight card for the Tallahassee Location 1 indicating the prior risk assessment 
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Figure 4-8: Tether operation pre-takeoff checklist 
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Figure 4-9: Real-time video image processing system checklist 
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Table 4-3: Drone time and location table with associated challenges 
D

a
te

 Location 
Major 
Road 

Minor 
Road 

Start 
Time 

End 
Time 

Duration Challenges Faced 

S
u
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, 
M

ar
ch

 1
4,

 
2

0
21

 

Tallahassee1 

Apalachee 
Pkwy. 
(US-27) 

March Rd. 10:17 AM 5:02 PM 6 h 45 m  The cemetery property was used without advance permit. 
 Field of view was very limited from 120 ft maximum altitude. Total 

~500 ft. length of major road was fit in the frame. (~250 ft. per 
approach)  

 

M
o

nd
ay

, M
ar

ch
 1

5
, 

2
0

21
 

Tallahassee 2 

US- 231 Jacob Rd. 07:28 AM 7:47 PM 12 h 19 m   RCUT intersection did not fit on the frame. Each U-turn was recorded 
separately. 

 Tether gave alert due to high temperature around 11 AM. Generator was 
mislocated to blow heat air on tether. Generator was relocated and np 
flight for ~15 m. 

 A small plane was close by around 4 PM without any signal. Drone was 
taken to a lower altitude for safety. 

 Lost camera and gimbal control around 5 PM and changed to the second 
camera. No flight for ~30 m. 

T
u
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d

ay
, 

M
ar

ch
 1

6,
 

2
0

21
 

Tallahassee 1 

Apalachee 
Pkwy. 
(US-27) 

March Rd. 9:43 AM 6:39 PM 8 h 56 m  Cemetery management did not want us to use their property (turf).  
 Agreement was done to use the large green area just by the cemetery 

fences and US 27. Morning peak has been missed. 
 After some rain showers, operation was ended ~1 hour early. 

T
h

u
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d
ay

, 
M

ar
ch

 1
8,

 
2

0
21

 

Jacksonville 1 

Beach 
Blvd. 
(US-90) 

Leon Rd. 06:46 AM 08:05 
AM 

1 h 19 m  High wind speed blocked almost the entire day of operation. 
 Several alert from the other aircrafts (i.e., plane) flying very high 

altitude. 

F
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d
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, 
M
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ch

 1
9,

 
2

0
21

 

Jacksonville 2 

Atlantic 
Blvd. 
(SR-10) 

River 
Hills Cir. 
E 

06:49 AM 7:38 PM 12 h 49 m  Very urban area, several cars stopped by to check and chitchat. One car 
almost hit the tether and generator. 

 YOLO had problems with dense number of objects. 

S
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u
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ay
, 

M
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ch
 2

0,
 

2
0

21
 

Jacksonville 3 

US-301 Normandy 
Blvd. 

08:33 AM 5:02 PM 10 h 29 m  A swarm of eagles was present on the air and one of them wanted to 
attack the drone. ~15 m low altitude flight for safety. 

 Short rain showers for three times between 2 PM and 5 PM. All 
equipment was carried in the cabinet until the rain has stopped. The 
operation continued afterwards No flight for a total of ~1 h and stopped 
the exercise earlier. 

https://goo.gl/maps/TR2pm86ojXiJCXcG6
https://goo.gl/maps/YKZB76JWHAKcjKFq5
https://goo.gl/maps/TR2pm86ojXiJCXcG6
https://goo.gl/maps/6d5KzRGZf4kzP2ZE9
https://goo.gl/maps/Qcy6MBELncrQNcoe6
https://goo.gl/maps/ZsY4cXjEuWGm626T9
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 Conclusions  

Based on the conducted exercise and the challenges faced, following conclusions and 
future works are provided: 

 The field work was very successful, and the drone pilots were very experienced.  

 Trajectory extraction, or so-called multi-object tracking, is a very time-consuming task 

and warrants further research.  

 We have three types of videos, namely the raw video (drone live footage recorded as is), 

the labeled video (raw video was labeled with YOLO and recorded in real time), and the 

high-resolution video (recorded on SD Cart in drone during the flight) for more than 50 

hours of aerial traffic surveillance from different altitudes and angles.  

 This data set can be used for several research tasks such as multi-object tracking and 

extracting automated traffic performance metrics from the obtained trajectories. 
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 TASK 4: PROPOSE GUIDELINES FOR USING DRONES TO COLLECT 
INTERSECTION TRAFFIC DATA 

 

 Background 

Following up with the conclusions of Chapter 4, this chapter presents the results for 
drone-based data collection and analysis, a detailed fatal pedestrian-involved crash analysis and a 
comparative cost analysis, as part of the Task 4 Deliverable Report of this project. A sample of 
trajectories was acquired from the data analysis vendor and is presented in Section 2 of this 
chapter. In addition to the drone exercises, a pedestrian-involved crash analysis was carried out 
evaluating the spatial and statistical distributions of pedestrian-involved crashes in Florida 
between 2011 and 2020. The results of this safety assessment are presented in Section 3. 
Additionally, a comparative cost analysis was conducted comparing traditional methods with the 
proposed drone-based methodologies (Section 4). Finally, guidelines and recommendations for 
future drone-based traffic data collection are presented in Section 5. 

 Data Analysis Demonstration on the Obtained Trajectory Sample 

After completing the drone exercises, the vendor provided sample trajectory data for 140 
minutes of drone-captured video recorded at the Apalachee Pkwy. and March Rd. intersection. A 
20-minute portion of these videos will be presented in this section. Firstly, this part of the study 
provides background information on the conducted experiment before demonstrating the recently 
obtained trajectory sample data.  

 Exercise Background 

The research team signed a contract with Sinclair Community College National UAS 
Training and Certification Center from Ohio, USA, to operate tethered drones legally and safely 
to conduct the proposed exercises while providing the trajectory data. The contractor also teamed 
up with Simlat Inc. to conduct the required video image processing tasks. 

 Sample Trajectory Data and Classified Turning Movement Extraction  

The sample data were provided for the Tallahassee Location 1 using the recordings on 
Tuesday, March 16, 2021, covering 20 minutes between 9:50 AM and 10:10 AM. The video 
source of the data can be accessed from the previously submitted external drive (Day 3 
Mar16Tue Tallahassee Location 1>SD Card (Z30)>DJ _0001.mp4). Because the beginning of 
the video includes take-off scenes where no useful data can be extracted, the trajectories were 
provided starting from the seventh minute of the video.  

Similar to the example trajectory format provided to the vendor before the experiments, 
the sample data included data points, road user classes, and trajectory IDs in addition to the 
latitudes, longitudes, and the State Plan Coordinate System (SPCS) coordinates. In total, 36,806 
data points were extracted in this sample data, referring to 619 trajectories with 30 frame per 
second resolution. This original format with the trajectory points was preprocessed by the 
research team, converting points to the trajectory lines, and clustering those lines into each 
approach of the intersection. The results are demonstrated in Figure 5-1. The research team has 
analyzed these data to provide approach counts, which can be seen in Figure 5-1(b). In addition, 
the number of road user classes per approach is illustrated in Figure 5-2. 
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Figure 5-1: Sample trajectory data. (a) originally obtained data points. (b) preprocessed and 
clustered trajectory lines 

 

Figure 5-2: Number of classified road users per approach 
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 Challenges on Georeferenced Trajectory Extraction from Drone Videos 

All in all, the sample data demonstrates the capabilities of drone-based microscopic 
traffic data extraction. Although there are total of 50 hours video data, the vendor was able to 
process only 140 minutes in two months of timeframe. The research team and the data analyzing 
vendor has been in communication to identify the challenges faced to extract trajectories.  

According to the video-image processing vendor the main challenges can be identified as: 

1) Intersection not in the field of view: All the irrelevant frames needed to be cleaned 

out from the video. This includes the take off at the beginning, drafting or turning 

during the video, and landing at the end. 

2) Unsteady video stream: This is the main challenge on drone-based video-processing 

task since the camera is not stable and even a slight replacement on the frame 

alignment causes big problem for the automated trajectory extraction system. 

3) Lack of camera parameters and telemetry data: This is another challenge so far since 

the original plan of the vendor was to use the camera-related telemetry data for 

georeferencing video frames and any vehicle in those frames. However, the recorded 

telemetry data (i.e., the log files) did not include any camera-related information such 

as zoom level, look angle, and gimbal position. 

Currently, the data analysis vendor uses computer vision techniques to overcome these 
challenges. For example, homography transformation is used to project frame coordinate system 
to actual SPCS by tracking the landmarks or boundaries of the intersection. Figure 5-3 indicates 
an example of this transformation. 

 

Figure 5-3: Homography transformation of the video frames using the intersection boundaries. 

 

 Proposed Data Collection and Analysis Framework 

Drone-based traffic data collection requires a full collaboration with the traffic engineers, 

drone operators and video-image processing professionals because the whole process is fully 

connected. A system including these three domains can be set with a high fixed cost, but it can 
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operate with a very low maintenance cost and potentially higher accuracy than traditional 

methods while reducing the personal injury risks on the field. Including these three domains, a 

framework is recommended to extract road user trajectories from drone videos in real-time. The 

foundation of this framework, as presented in Figure 5-4, is on the metadata generation for each 

frame of the video. This allows one to exclude frames that are not focusing on the intersection so 

that georeferencing can be done seamlessly. Also, another framework is presented in Figure 5-5 

to extract trajectories automatically from the trajectories. This framework requires three inputs, 

namely trajectory, time interval to aggregate counts, and gate coordinates, to provide Origin-

Destination (O-D) matrix shaped turning movement counts (TMC) for each of the entrance and 

exit gates. 
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Figure 5-4: Recommended framework for real-time trajectory extraction 
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Figure 5-5: Recommended framework for automated TMC extraction from trajectories 
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 Pedestrian Involved Crash Analysis 

This chapter provides a more detailed analysis on the pedestrian safety issues considering 
the provided crosswalk inventory.    

 Background 

Pedestrians are among the most vulnerable road users due to the lack of protective 
equipment such as airbags, and seat belts. They also possess some distinctive characteristics, 
including slow walking speed, which increases the risk of getting involved in severe injury 
crashes particularly when crossing or walking along roadways. Safety design criteria and 
guidance (AASHTO, 2018a) should integrate their needs and focus on constructing sidewalks 
and other pedestrian facilities to prevent them from crashes. Note that design criteria could not 
necessarily guarantee pedestrian-involved crash occurrences (Alver et al., 2021) 

Based on the National Highway Transportation Safety Administration (NHTSA) Traffic 
Safety Facts (NHTSA, 2018), pedestrians accounted for nearly 17% of traffic fatalities nationally 
in 2018. Fatality Analysis Reporting System (FARS) also revealed that 4,483 out of 6,205 fatal 
pedestrian-involved crashes occurred at locations that were not intersections in 2019, which was 
associated with 72.2% of them (NHTSA, 2019). Pedestrian-involved crashes mostly occurred 
due to the following reasons: a) failing to yield to pedestrians, b) improper crossing, and c) 
visibility. The contributing factors are listed in Table 5-1. 

Table 5-1: Pedestrian fatality crashes by related factors, 2019, USA* 
 

Factors Number Percent 
Failure to yield right of way 3,017 48.6 
Improper crossing of roadway or intersection 1,185 19.1 
In roadway improperly (standing, lying, working, playing) 921 14.8 
Not visible (dark clothing, no lighting, etc.) 856 13.8 
Under the influence of alcohol, drugs, or medication 562 9.1 
Wrong-way walking 437 7.0 
Inattentive (talking, eating, etc.) 245 3.9 
Failure to obey traffic signs, signals, or officer 238 3.8 
Traveling on prohibited traffic ways 149 2.4 
Other factors 826 13.5 
Unknown 1,035 16.7 
TOTAL 6,205 - 

*Source: FARS 2019 ARF 

There are quite a few latent and hidden contributing factors that may increase the 
probability of crash risk among this vulnerable group such as land use, demographic parameters, 
and driver behavior at the time of crashes. In order to evaluate the contribution of these factors, 
there is a need to identify hotspot locations first. Therefore, the main objective of this analysis is 
to propose a spatial methodology to identify high-risk locations. As such, we focused on 
pedestrian-involved fatality crashes that occurred far away from intersections in this work. The 
objectives of this research for the Florida Department of Transportation (FDOT) include the 
following: a) identify high-risk locations regardless of the amount of number of crashes, b) 
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overlay drone output on hotspot location shapefiles to extract more detailed spatial contributing 
attributes, and c) evaluate hidden reasons behind pedestrian-involved crash occurrences. 

 Methodology 

Conventional hotspot identification methods could not provide accurate results in case 
there is not enough data (i.e., crash occurrences) as inputs for these statistical methods. Based on 
zero-vision strategies applied in the crash analysis field, we acknowledge that each single fatal 
crash enables us to identify potential high-risk locations. This requires urgent attention to 
improve pedestrian safety and prevent crash occurrences. This research focused on pedestrians 
who intend to cross the minor roadways at driveways, crossing the major roadways at locations 
far away from intersections, or walking along the roadways. The following sections describe the 
process utilized to categorize pedestrian-involved crashes based on their distance from the 
nearest intersection, crash lane, and level of injury. 

 Crash Data 

Pedestrian crash data is composed of points dispersed along with the roadway network 
and each point represents a crash with the associated information and attributes. This dataset was 
obtained from the Crash Analysis Reporting (CAR) online database for 10 years between 2011 
and 2020. Roadway network and center of intersection location data, on the other hand, were 
obtained from FDOT Transportation Data & Analytics Office (TDA) database (TDA, 2021).  

 Crash Data Filtration 

This analysis focuses on crashes that occurred far away from intersections, which we will 
name as “not at intersections”. Not at intersection crashes represent the ones that did not occur 
around the intersections and therefore not under the influence of intersection presence. In the 
State of Florida, a distance of 250 feet, measured from the center of the intersection, is set as the 
default value for “influenced by intersection” crashes. In order to separate not at intersection 
crashes from the original dataset, we mapped crash points based on their associated longitude 
and latitude coordinates provided as two attributes in the dataset. It is worth mentioning that 
crashes that occurred in parking lots did not contain coordinates (unmapped crashes) and we had 
to remove them from the original dataset. Next, we calculated the distances between crash 
locations and the nearest intersections using the network analyst built-in toolbox in ArcGIS. A 
250 ft. threshold was used to split the dataset into “not at intersection” and “at intersection” 
crashes. Also, a certain type of crashes, namely scooter-involved crashes did not involve any 
pedestrian and therefore were removed from the dataset. Moreover, we used the crash lane 
attribute to identify crashes that occurred on driveways, crosswalks, or side of roadways based 
on what was given in Table 5-2. Additionally, Figure 5-6 illustrates the process of data filtration. 
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Table 5-2: Crash lane identifier (Name of attribute: ACCLANE/CRASHLANE) 

Lane Identifier Code description 

1 1st thru lane from center 
2 2nd thru lane from center 
3 3rd thru lane from center 
4 4th thru lane from center 
5 5th thru lane from center 
6 6th thru lane from center 
7 7th thru lane from center 
8 8th thru lane from center 
9 9th thru lane from center 
A acceleration/merge lane 
B toll booth plaza 
C pedestrian impact in the crosswalk 
D crash in a driveway 
E ran off end of road at T 
H island area 
K service/access road 
L left-turn only lane 
M median or middle of intersection 
P parking lane (designated parking) 
R right-turn only lane 
S side of roadway/shoulder/off-road/emergency lane 
T continuous left turn lane, accessible both directions 
U unknown 
V bicycle travel lane 
X on a ramp 
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Figure 5-6: Data filtration process based on roadway network distance 
 

The final output of the filtration process, shown in Figure 5-6, is presented in Table 5-3. 
On average, 18% of not at intersection crashes that occurred during the time of the study, were 
on driveways, mid-block crosswalks, or side of roadways. Previous studies concluded that 
crosswalks are mostly equipped with features that facilitate them for pedestrians (Høye & 
Laureshyn, 2019; Patella et al., 2020); however, aforementioned locations do not. Although 
several researchers developed countermeasures (e.g., the beacon, rapid-flash beacon, and shared-
lane markings) to improve the safety of pedestrian crossings, the statistics reveal that there is still 
a need for further analysis and attention to decrease crash occurrences around driveways, mid-
block crosswalks, and side of roadways. 

The data extracted from the CAR online database contains an attribute that enables us to 
categorize crash data based on the highest level of injury. This information is initially converted 
from the incoming report data but may be changed during the Safety Office’s crash location 
processing. The single-digit code indicates the highest injury severity due to the crash. Table 5-4 
listed the identifier codes in the order of severity from lowest to highest. 
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Table 5-3: Pedestrian-involved crashes in Florida by location and crash lane 
 

Year 
Pedestrian-Involved Crash 

Total Not at Intersection Driveway - Crosswalk - Side 

2011 5356 984 18% 73 7% 

2012 6047 1083 18% 131 12% 

2013 6093 1032 17% 311 30% 

2014 6422 1149 18% 289 25% 

2015 7382 1325 18% 302 23% 

2016 4897 956 20% 204 21% 

2017 4925 967 20% 226 23% 

2018 5933 1036 17% 206 20% 

2019 5192 763 15% 57 7% 

2020 3827 575 15% 32 6% 

TOTAL 56074 9870 1831 

 
Table 5-4: Injury Severity identifier codes (highest in crash) (Source: FDOT Safety Office) 
 

Severity Identifier Code Description 
0 not coded/ unknown 
1 None 
2 Possible injury 
3 non-incapacitating injury 
4 Incapacitating injury 
5 fatal (within 30 days) 
6 non-traffic fatality 

 
Using the identifier codes, we categorized the pedestrian-involved crashes that occurred 

far away from Intersections (250 ft.), on mid-block crosswalks, driveways, side of roadways, and 
shoulders into their associated highest level of injury (see Table 5-5). To highlight the 
importance of the objective of the study, we focused on fatal crashes and created a new subset 
from the previously generated data based on the highest level of injury (highlighted in red in 
Table 5-5). The current subset contains 143 points that present the location of fatal pedestrian-
involved crashes that occurred far away from intersections (i.e., crosswalks, driveways, or side of 
roadways) between 2011 to 2020 in Florida. In the following section, some characteristics 
associated with this certain group of crashes were investigated in detail. 
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Table 5-5: Pedestrian-involved crashes by the highest level of injury 

Code Description 
Highest Injury Severity 

Total 
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

0 Not Coded/Unknown 0 0 0 0 0 0 0 0 0 1 1 
1 No Injury 12 18 53 54 49 13 21 15 2 3 240 
2 Possible Injury 18 43 81 85 92 61 52 64 15 3 514 
3 Non-incapacitating Injury 24 47 115 89 103 70 86 69 15 4 622 
4 Incapacitating Injury 13 14 46 40 41 37 52 38 12 10 303 
5 Fatality (within 30 days) 6 9 12 20 17 21 14 20 13 11 143 
6 Non-traffic Fatality 0 0 4 1 0 2 1 0 0 0 8 

Injury code 3 & 4 & 5 43 70 173 149 161 128 152 127 40 25 1068 
Injury code 4 & 5 19 23 58 60 58 58 66 58 25 21 446 

Injury code 5 6 9 12 20 17 21 14 20 13 11 143 
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 Facts and Statistics 

In this section, we focused on fatality pedestrian-involved crashes that occurred on 
crosswalks, driveway, or side of roadways from 2011 to 2020 in Florida and create the following 
bar plots to illustrate the distribution of these crashes based on various attributes. Figure 5-7 
shows a significant increasing trend during the period of 2011-2014, and after the sharp incline 
in 2014, there is an almost uniform distribution until 2018. It is also worth mentioning that the 
decrease after 2018 was mainly due to fact that crashes that occurred after this certain year are 
still being updated in the CAR database. Therefore, this decreasing trend may not reliable 
enough as of now. 
 

 
Figure 5-7: Crash distribution by year 

We also investigated the crash distribution by the day of week and created the bar plot for 
the results (See Figure 5-8). No certain pattern was detected even when we categorized them 
based on weekdays and weekends. Moreover, Figure 5-9 illustrates that most of the fatal 
pedestrian-involved crashes did not occur under the influence of alcohol and/or drug influence, 
which is more common during weekend crashes (J. Liu et al., 2019; Pour-Rouholamin & Zhou, 
2016). Thus, it could be concluded that pedestrian-involved crashes would be expected to occur 
on each day of a week. Light condition is also among the factors that was not highly correlated 
with the probability of this certain type of crash (See Figure 5-10). Assessing weather conditions 
associated with these crashes, on the other hand, reveals a significant contribution of clear 
weather conditions on increasing the probability of crashes (See Figure 5-11). This indicates that 
drivers and pedestrians both are more cautious during adverse weather conditions, as expected 
based on previous research works  (Shaon, Qin, Chen, & Zhang, 2018). 
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Figure 5-8: Crash distribution by day of week 

 

 
Figure 5-9: Alcohol and/or drug influence on pedestrian-involved crashes 
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Figure 5-10: Crash distribution by light condition 

 

 
Figure 5-11: Crash distribution by weather condition 

 
These distribution assessments are followed by a statistical spatial analysis approach that 

enables us to evaluate the contribution of crash lanes and crash locations based on their distance 
from the center of the nearest intersections. Figure 5-12 illustrates that the significant percentage 
(76.2%) of fatal pedestrian-involved crashes occurred on side of roadways and shoulders. We 
also explored the exact crash locations that occurred on side of roadways and identified that most 
of them were in the middle of the roadways or median lanes instead of the side of roadways or 
shoulders. Figure 5-14 shows some examples of these crashes that were wrongly mapped as they 
were in the middle of the roadways. In order to make sure that these crashes occurred on side of 
roadways, we need to go through the long format of the crash reports and check the narrative 
descriptions or the attributes associated with pedestrian action at the time of crashes. In this way, 
we would find if the pedestrian were walking along the roadway or crossing the segment and 
could categorize them as “on side of roadway” or “on main lanes”, respectively. 
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Figure 5-12: Crash distribution by crash lane 
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Figure 5-13: Crashes labeled as “side of roadways” (wrongly mapped in the middle of the 
roadway). {Continued with the next page} 
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Figure 5-14: Crashes labeled as “side of roadways” (wrongly mapped in the middle of the 

roadway). {Continued from the previous page} 

Next, a network analysis method has been performed to calculate the distances between 
fatal pedestrian-involved crashes and the nearest intersection center. Based on Figure 5-15, the 
crash frequencies seem to be skewed to right which denotes that the mean (average) distances are 
lower than the median value. This indicates that crashes that were not under the influence of 
intersection presence also still tended to occur closer to the intersections. Regardless of higher 
crash frequency near intersections, statistical analysis reveals there is a positive correlation 
between the above-mentioned distance and the highest level of injury. The black dash-line shown 
in Figure 5-16 has a slight positive slope that indicates getting far away from intersections would 
increase the probability of crash occurrences with a higher injury severity. 
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Figure 5-15: Distance between crashes and nearest intersection 

 
Figure 5-16: Relationship between the highest level of injury and distance from the nearest 

intersection 
The results of the linear regression model are provided in Table 5-6. In the table, the 

estimated coefficient shows the positive or negative contribution of the predictor variable, which 
is, the distance between the crash location and nearest intersection, on the response variable, the 
highest level of injury. Standard Errors, estimate the standard deviation of the coefficients in the 
model. That is, it measures the precision of the model. Also, p-values reveal the significance 
level of the predictor variable on the response variable, and this value has been used to examine 
whether a predictor variable has significance at the 90% or higher on the linear regression model. 
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Table 5-6: Linear regression model between highest level of injury and distance from 
intersection 

Variables 
Estimated 
Coefficient 

Standard 
Error P-value 

90% Level of 
Significance 

(Intercept) 2.732e+00 3.671e-02 <2e-16  

Distance from Nearest Intersection 8.591e-05 3.771e-05 0.0228  

Number of observations: 143; p-value: 0.02285; Multiple R-squared:  0.002829 
Highest Level of Injury ~ Distance from Nearest Intersection 

 

 Hotspot Counties 

In this section, we intended to identify hotspot locations where fatal pedestrian-involved 
crashes occurred the most. This will determine if there is any statistically significant clustering in 
the spatial pattern of the data. Crash point features can be analyzed using the point counts option; 
however, there are only 143 fatal pedestrian-involved crashes in the State of Florida. Thus, 
conventional hotspot identification methods could not provide accurate outputs and result in 
over/underestimations (Wang et al., 2021). Therefore, we calculated the number of crashes that 
occurred within each county and ranked them in descending order. Based on Figure 5-17, 
Orange, Hillsborough, and Pasco are among the counties with a significant number of crashes of 
this certain type. In addition to these three counties, we also explored Leon County due to the 
high rate of fatality pedestrian-involved crashes with regards to its low population. 
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Figure 5-17: Fatality pedestrian-involved crashes in Florida during 2011-2020 

 
To identify the roadway corridors that need urgent countermeasures to improve 

pedestrian safety, there is a need to explore the hotspot counties at a micro-level. There are 143 
pedestrian-involved fatal crashes between 2011 and 2020 in Florida and detailed screenshots for 
crash are provided in the APPENDIX A. The following figures illustrate the pedestrian-involved 
crashes that occurred between 2011 and 2020 in each of these three counties. In each figure, the 
legend contains the number of crashes by crash lane. Moreover, crash points are symbolized 
based on their highest level of injury: a) red for fatal, b) black for incapacitating, and c) blue for 
incapacitating pedestrian-involved crashes. Detailed investigation of the crash locations revealed 
that, pedestrians mostly prefer the segments around turning left lanes to cross the roadways 
regardless of wider lane width. Presumably, pedestrians suppose that drivers may decrease their 
speed and be more cautious in these areas. Also, drivers may be more distracted while changing 
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the lanes before the left turn maneuver. There are three specific hotspot corridors in Orange 
County whereas crashes were distributed randomly and so sparse along Hillsborough County. 
The names of the all-hotspot corridors were displayed in between the Figure 5-18 and Figure 
5-37. In addition to these three selected counties, we identified a single crosswalk in Bay County 
which seems to be critical because two fatality pedestrian-involved crashes occurred on it over 
three years (See Figure 5-38). 
 

  
Figure 5-18: Pedestrian-involved crashes in Orange County 

Area (A) 

Area (B) 

Area (C) 

Area (D) 

Area (E) 

Area (J) 

Area (I) 

Area (H) 
Area (G) 

0
0

Area (F) 
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Figure 5-19:  Orange County – Area (A) – Aloma Ave. 

 

 
Figure 5-20: Orange County – Area (B) 
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Figure 5-21 : Orange County – Area (C) 

 

 
Figure 5-22: Orange County – Area (D) 



101 

 

 
Figure 5-23: Orange County – Area (E) – West Central Blvd. 

 

 
Figure 5-24: Orange County – Area (F) – East Colonial Dr. 
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Figure 5-25: Orange County – Area (G) – South Semoran Blvd. 

 

 
Figure 5-26: Orange County – Area (H) – South Orange Blossom and West Oak Ridge Rd 
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Figure 5-27: Orange County – Area (I) – International Dr. 

 

 
Figure 5-28: Orange County – Area (J)  – Landstreet Rd. 
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Figure 5-29: Pedestrian-involved crashes in Hillsborough County 

 
 
 

 
Figure 5-30: Hillsborough County - Area (A) – East Fletcher Ave., Maple Dr. (Around USF 

campus), and Bruce B Downs Blvd 

Area (A) 

Area (B) 
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Figure 5-31: Hillsborough County – Area (B) – Brandon Blvd. 

 

 

 
Figure 5-32: Pedestrian-involved crashes in Pasco County 

Area (A) 

Area (B) 

Area (C) 
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Figure 5-33: Pasco County - Area (A) – US-19 Highway and Little Rd 

 
Figure 5-34: Pasco County - Area (B) – US-19 Highway 
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Figure 5-35: Pasco County - Area (C) 

 
Figure 5-36: Pedestrian-involved crashes in Leon County 

Area (A) 
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Figure 5-37: Leon County - Area (A) – Tennessee St. 
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Figure 5-38: Fatality crashes in Front Beach rd.- Panama City - Bay County – Speed limit 30 

mph 

 

 Crashes in the Vicinity of a Left-Turn Lane 

In this section, we intended to assess the contribution of turning left lane presence on 
occurrence of fatal pedestrian-involved crashes that occurred not at intersection. Our assumption 
is as follows: Pedestrians expect drivers to reduce their speed and yield the crosswalk to them 
when crossing the travel lane. In order to do so, we first examine the long format of the crash 
reports’ narratives to assure that the pedestrian was attempting to cross the travel lane in the 
vicinity of turning left lanes. Therefore, we removed the crashes where pedestrians were walking 
along the side of roadways. After careful examination of the crash reports, we identified that 51 
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fatal pedestrian-involved crashes occurred in the vicinity of left turn lanes out of 143, and only 
10 of them were directly influenced by the left turn lane presence. Remaining crashes mostly 
occurred on the side of roadways. With such a low number, there was not way to develop a 
statistical model that would evaluate the contributing factors to these crash occurrences. Table 5-
7 shows more details for these crashes.
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Table 5-7: Fatal pedestrian-involved crashes that occur at locations that are not intersections and under the direct influence of left turn lanes 

Year County Time 
Light 

Condition 
Weather 

Condition 
On 

Crosswalk 
Day of 
Week 

Hit and 
Run 

Drug/Alcohol Influence  Age  Gender 

Driver Pedestrian  Driver Pedestrian  Driver  Pedestrian 

2011 Bay 20:59 Dark - Not Lighted Clear NO Tuesday NO NO NO  43 43  Male  Female 

2014 Orange 21:59 Dark - Lighted Clear NO Sunday NO NO NO  41 29  Male  Female 

2015 Brevard 18:04 Dark - Not Lighted Cloudy YES Wednesday NO NO NO  68 48  Male  Female 

2016 Orange 19:58 Dark - Lighted Clear YES Thursday NO NO NO  35 60  Male  Male 

2016 Orange 8:21 Daylight Clear YES Sunday NO NO NO  22 59  Female  Male 

2016 Bay 2:15 Dark - Lighted Clear YES Saturday YES NA NO  NA 51  Na  Female 

2017 Orange 23:50 Dark - Lighted Clear YES Friday NO NO NO  46 66  Female  Female 

2017 Hillsborough 7:08 Daylight Clear YES Saturday YES NO NO  23 70  Male  Male 

2019 Pasco 21:02 Dark - Not Lighted Clear NO Saturday NO NO NO  62 55  Male  Male 

2019 Bay 20:20 Dark - Lighted Clear YES Saturday YES NA NO  NA 46  Na  Female 
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Based on Table 5-7, Orange County appears to be still among the counties with the 
highest number of crashes of this type. Among these 10 crashes, 6 occurred during the weekend. 
In addition, visibility seems to be a significant factor since it increases the probability of 
occurrence of this type of crash. Based on the careful examination of the narratives and what was 
mentioned by the independent witnesses, the victims of these crashes were expecting the driver 
to stop and yield the crosswalk to them and continued walking on the crosswalk. However, 
drivers could not control their vehicle and hit the pedestrians. In some other cases, the vehicle in 
the inner lane stopped and yielded the crosswalk to the pedestrian, but the other vehicle in the 
outer lane continued to travel directly toward the pedestrian. This was mainly due to insufficient 
sight distance. The detailed crash diagrams for these 10 crashes are provided in the APPENDIX 
B. 

 

 Conclusions on Crash Analysis 

Based on the conducted experiment and the challenges faced, the following conclusions 
are provided: 

 Conventional statistical methods could not identify hotspot locations due to the low 
number of crashes. 

 Although the pedestrian-involved crashes labeled as “crosswalks” were not exactly 
located on them, the distances were less than 50 ft. 

 Turning left lanes are among the locations with a significant number of pedestrian-
involved fatal crashes and therefore require more attention. 

 As part of Task 4, we proposed a method to categorize crashes into “at intersection” 
and “not at the intersection” based on their associated roadway network distance from 
the center of intersections; however, a discontinuity in the roadway network shapefile 
results in the wrong detection in some cases. 

 Careful evaluation of crash reports’ narratives reveals that despite the limited number 
of crashes that occurred under the direct influence of left turning movement, the 
pedestrians may still expect drivers to be more cautious and reduce their speed in order 
to yield the crosswalk to them. It could be also concluded that, the authorities may need 
to add more safety features to accommodate pedestrians with a safe route to cross in 
addition to facilitating a section of a roadway as a crosswalk. These safety features 
include beacons, flashing lights, speed humps, and pavement markings to inform the 
drivers of the possible presence of pedestrians ahead. 

 

 Comparative Cost Analysis and Recommendations on Drone-based Traffic Data 
Collection Analysis 

 

This part of the study provides a cost-based comparison between the traditional methods 
and drone-based traffic data collection with tethered and untethered alternatives. First, previously 
performed work using the traditional methods were summarized. Second, a comparative cost 
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analysis was carried out with a focus on a) the fixed and work-hours, and b) potential software 
development that uses the trajectory data as input and populates the MUTS forms automatically.  

 Summary of Previously Conducted Work Using Traditional Methods 

Previously conducted studies in the study locations are all related with signal warrant 
study and intersection control strategy evaluation. This process may require a 12 hours-long data 
collection and make the traditional methods compatible with the prolonged flight time capability 
of tethered drones. Details of the previously conducted studies are presented in Table 5-8 with 
the contractor company, field collected data and available cost of the work to FDOT. 

As it can be seen from the previous studies, the main data collected from the field is the 
Turning Movement Counts (TMC). For example, signal warrant studies (performed on the 
locations of Tallahassee 1, Jacksonville 1, and Jacksonville 2) are the most common methods to 
conduct an engineering analysis to determine whether a signal control is required on an 
uncontrolled or stop-sign controlled intersection. This process requires extensive field data 
collection such as 8-hour vehicular traffic volume, speed (if posted speed limit is not used as the 
reference speed), 4-hour vehicular traffic volume, peak hour volume, and pedestrian volume. 
Therefore, the comparative cost analysis was based on the idea of extracting the TMCs using 
traditional methods versus drone-based traffic data collection. 

 Comparative Cost Analysis 

This part of the study compares the costs associated with conducting a signal warrant 
analysis on a Florida intersection with different methods, namely drone-based alternatives and 
the traditional method. The cost estimates were calculated based on 8 hours of traffic count data 
(Warrant #1 requirements) and it was assumed that no further field data collection was required 
to sign and seal the final signal warrant study report. The 8 hours of the data collection was 
envisioned to be 3 hours for each AM and PM peaks and 2 hours for the midday peak (i.e., lunch 
time). The exact times can be determined by the traffic engineer using the previous volume 
counts on the major roadway of the studied intersection. 
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Table 5-8: Summary of previous studies conducted using traditional methods 

Study 
Location 

Report 
Date 

Contractor Summary 
Field Collected 

Data 
Total Cost 

Tallahassee 1 

Ja
n

 8
, 2

02
1 

Roark 
Engineering 

 2019 data from an FDOT count station 
located half mile away used for 
background traffic. 

 Peak hours: 7:00-8:00 AM and 5:00-
6:00 PM 

 TMC were collected only for peak 
hours. 

 No warrant were met to justify a signal 
installation  

 2 hours of turning 
movement counts 
(TMC) 

- 

Tallahassee 2 

N
o

v
 5

, 2
01

8 

HNTB 

 FDOT Intersection Control Evaluation 
(ICE) toolset were used 

 Safety Performance Evaluation and 
Benefit Cost analysis were carried out. 

 RCUT installation was found the most 
beneficial control strategy due to the 
angle crashes 

 No field data 

collection (Mostly 

historical crash 

data are used) - 

Jacksonville 1 

Ja
n

 2
6,

 2
0

21
 

Peters & 
Yaffee 

 Various analyses were conducted 
including access management, 5-year 
work program, crash history, field 
review for 1 h, TMC for 12 h, delay 
analysis, synchro analysis. 

 Warrants 1,2, and 3 met but there are 
intersections in the proximity (access 
management not met) 

 Recommended to prevent NB and SB 
left turns and additional volume of U 
turns were studied for closest 
intersections 

 12 hours of TMC 
 Delay study 
 1 hour field review 
 

$10,703.09 

Jacksonville 2 

Ja
n

 1
2,

 2
0

21
 

Peters & 
Yaffee 

 Various analyses were conducted 

including access management, 5-year 

work program, crash history, field 

review for 1 h, TMC for 12 h, delay 

analysis. 

 No warrant has met.  

 12 hours of TMC 

 Delay study 

 1 hour field review 

 
$7,615.78 

Jacksonville 3 

Ju
l 

17
, 2

01
9 

HNTB 

 FDOT Intersection Control Evaluation 
(ICE) toolset were used. 

 Safety Performance Evaluation and 
Benefit Cost analysis were carried out. 

 RCUT installation was found the most 
beneficial control strategy due to the 
angle crashes. 

 Two-Way Stop control strategy is 
recommended based on the benefit cost 
analysis. 

 No field data 

collection (Mostly 

historical crash 

data are used) 

 $23.286.36 

 

 

 

 

https://goo.gl/maps/TR2pm86ojXiJCXcG6
https://goo.gl/maps/YKZB76JWHAKcjKFq5
https://goo.gl/maps/6d5KzRGZf4kzP2ZE9
https://goo.gl/maps/Qcy6MBELncrQNcoe6
https://goo.gl/maps/ZsY4cXjEuWGm626T9
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 Alternative Methods  

To include the financial aspect of the feasibility analysis of drone-based traffic data 
collection, three different alternative methods were compared in terms of the monetary cost per 
intersection. Figure 5-39 depicts these alternatives with their simplified cost items. Alternative 1 
represents the base option referring to the traditional methods. Alternative 2 includes a tethered 
drone with 10 hours of flight endurance powered with a tether cable with the assumption of 
optimal weather conditions. Alternative 3, on the other hand, includes a more complex flight 
operation where two untethered drones are facilitated with overlapping flights times in the last 5 
minutes of each flight. 

 

Figure 5-39: Alternatives of signal warrant analysis 

 Cost per Intersection Estimates 

For the Alternative 1 (Traditional Methods), the cost per intersection is extracted from the 
previous studies. $9,000 per intersection is calculated as the approximate average of the 2 
previous signal warrant studies. On the other hand, for Alternative 2 and 3, the fixed cost for 
equipment, the fixed cost for coding (programs for data collection and analysis) should be 
converted into a per intersection cost. Additionally, work-hours and the engineering cost to sign 
and seal the final report should be calculated. 

 Drone Equipment Fixed Cost per Intersection 

As mentioned in Chapter 2, the cost of drones has exponentially decreased in the last 
decade. For example, DJI Phantom drones have been commonly used in traffic monitoring 
studies (Barmpounakis & Geroliminis, 2020) and they cost approximately $1,500 with a built in 
gimbal and high-resolution camera as well as smart screen control with first person view options. 
On the other hand, tethered drones are relatively new technologies; thus, they require more 
precise and costly equipment. Elistair is a leading brand for supplying tethers and associated 
drones. Their approximate price for an Orion model drone, Safe-T model tether and other 
necessary equipment is approximately $30,000. 

Drone life expectancy is an ongoing research in robotic and aviation fields; however, 800 
hours of total flight time is recommended for an untethered drone in the ‘ask drone u’ podcast 
(which is a well-known platform among drone operators to learn from others’ experience) 
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(DroneU, 2021). This flight time is calculated considering the certain equipment such as 
propeller, gimbal, or folding parts. Therefore, 800 hours of total flight time can be extended by 
changing those parts, which costs considerably lower than investing on a brand-new drone. 
However, since we consider the worst-case scenario in this study, 800 hours of flight time is 
considered as the life time of an untethered drone. For the tethered drone, 1,000 h total flight 
time is considered as the life expectancy since tethered drones are designed to fly for hours as the 
continuous power supply is provided. With this life expectancy, the equipment fixed cost per 
intersection can be calculated as: 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 2: 

 Total cost for the equipment = ~$30,000 
 Tethered drone life expectancy = 1,000 h 
 8 h flight time per intersection  

1,000

8
= 125 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  

$30,000

125
= $240 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 3: 

 Total cost for the equipment = ~$3,000 
 Tethered drone life expectancy = 800 h 
 4 h flight time per drone per intersection  

800

4
= 200 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

$3,000

200
= $15 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

 Work-hour Cost per Intersection 

According to the available databases in Florida, the average hourly wage for a trained 
drone pilot is $40. Also, compared to operating two drones with partially overlapping times, a 
tethered drone can be operated with a single set up without having the need to land during a 3-
hour flight. Therefore, one trained drone pilot for Alternative 2 is needed whereas two trained 
drone pilots are considered for Alternative 3. The costs can be calculated as: 

 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 2: 

$40 ∗ 8ℎ = $320 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  

 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 2: 

2 ∗ $40 ∗ 8ℎ = $640 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  
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 Software Fixed Cost Per Intersection 

Both drone alternatives are assumed to be using the proposed frameworks for real-time 
trajectory extraction and automated turning movement count (TMC) calculation presented in 
Figure 5-4 and Figure 5-5, respectively. Note that once these programs are created with a desired 
accuracy, they can be used for an indefinite period. However, we envision that, with the current 
technology speed, a 5-year lifetime would be logical. After five years, the programs can be 
reevaluated or improved with better technology. 

Additionally, it was assumed that five signal warrant study per month would be a logical 
number for the entire state of Florida based on expert knowledge. This would sum up to 300 
intersections in the 5-year lifetime of the generated programs.  

Finally, a rough cost estimate to develop these programs are presented using the $27 
average hourly wage for a programmer in Florida. The software cost estimates are based on the 
book of Estimating Software Costs: Bringing Realism to Estimating (Jones, 2007). According to 
this book, there is a rule of thumb to estimate the cost of a software based on the concept of Line 
of Code (LOC). The cost estimate calculates the monthly effort based on the LOC metrics and 
creates monthly function points based on these efforts. Cost estimates can be presented as: 

𝑉𝑖𝑑𝑒𝑜 𝑡𝑜 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦: 

 100 – 1,000 Line of Code = 6 months = 1,040 work-hours of a programmer 
1040 ℎ ∗ $27 = $28,080 

 Cost of AI Model development, Interface Design, Testing, Integration  

= $150,000 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ~180,000 

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑡𝑜 𝑇𝑀𝐶: 

 100 – 1,000 Line of Code = 3 months = 520 work-hours of a programmer 
520 ℎ ∗ $27 = $14,040 

 Cost of Interface Design, Testing, Integration  

= $100,000 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ~120,000 

5 Warrant Study per month for 5 years = 300 intersections 

$180,000 + $120,000 = $300,000 

$300,000

300
= $1,000 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

 

Finally, all estimated costs are presented in Table 5-9 with the addition of an engineering 
cost of, which generally constitutes to the 17% to 20% of the total cost. The engineering cost 
includes the sealing and signing of the final warrant study report according to the FDOT 
requirements. According to the Table 5-9, both tethered and untethered alternatives are more 
than 4.5 times cheaper than the traditional methods to conduct a warrant study on a Florida 
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intersection. Additionally, tethered drone alternative costs approximately $100 less than the 
untethered option despite a significant difference on equipment prices.  

 

Table 5-9: Comparative cost analysis between the traditional method and drone-based 
methods to conduct a signal warrant study in Florida 

Cost Categories 

Unit Cost Value per Intersection 

Traditional Methods 
Tethered  

Drone 
Untethered  

drones 

Equipment Cost per Intersection  - $240  $15 

Coding Cost per Intersection  - $1000  $1000 

Work-hour Cost per Intersection  - $320 $640 

Engineering Cost   -  $300 $300 

Total cost per intersection $9,000  $1,860 $1,955 

Comparative ratio  4.83 4.60 
 

 Recommendations for Consultants to Set a Drone Operation Team 

Based on the comparative cost analysis using the worst-case scenario, drone-based traffic 
data collection and analysis indicate a significant financial advantage compared to the traditional 
methods. In order to take benefit of this advantage, following steps are recommended for 
consultants to have drone-based traffic data component in their efforts: 

 Invest on the proposed drone equipment 

 Set a team with: 

o 2 drone pilots  

o 4 programmers 

o 2 administrator staff 

o 1 manager 

 Drone pilots are not necessarily to be expert since hovering the aircraft on air is not a 

complex job. However, they need to have the remote pilot license which requires to pass 

an FAA exam that costs $150. The license should be renewed every 2 years. In addition, 

an experience is still required to trust the expensive equipment in the field. As a rule of 
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thumb, 20 hours to 50 hours of flight time experience is needed for the drone pilots given 

the type of drone.  

 Among the four programmers, Programmer 1 can deal with the AI models to train and 

test neural networks and provide the ready to use detector/tracker with a clear explanation 

of the performance/accuracy. Programmer 2 must know how to deal with the image data 

as AI models are very sensitive to the input image properties. Programmer 3 can perform 

road user trajectory mining to extract end data for traffic operations. Programmer 4 can 

develop tools to populate the MUTS forms automatically. 

 Two administrator staff can help with logistics and housekeeping. 

 The manager should be somebody who can oversee all the work performed and 

communicate with the traffic engineer who seals and signs the final report. 

 Note that this drone-based traffic data collection can help not only TMC and warrant 

studies, but any required work shown in MUTS can be performed such as roundabout gap 

acceptance, delay, vulnerable user analysis, conflict study, and fundamental diagrams. 

 Collected microscopic traffic data can be used for traffic simulation calibration and 

driving behavior analysis. 

 In addition, the team can focus on other source of imagery data to provide land use and 

control device inventory information similar to the work that was performed in Chapter 3. 
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 CONCLUSIONS 

 

The overall goal of this project was to provide a feasibility analysis on the utilization of 
drones and computer vision applications to extract microscopic traffic data at intersections. 
Findings are expected to help Florida Department of Transportation (FDOT) in integrating new 
technologies into their day-to-day data collection operations. Consistent with this goal, the 
following tasks have been completed as part of the project: (a) perform a literature review and 
analyze state-of the-practice to provide guidance and recommendations on legally and safely 
using drones with video/image processing techniques for the uniform traffic studies; (b) generate 
statewide crosswalk inventory using aerial images and artificial intelligence (AI2); (c) 
investigate the fatal pedestrian-involved crashes that occur at locations other than intersections in 
Florida and analyze their detailed crash reports; (d) design and conduct exercises with tethered 
drones to collect intersection data in the cities of Tallahassee and Jacksonville, Florida; and (e) 
perform a cost analysis comparing traditional methods with different drone-based traffic data 
collection techniques.  

Meeting these objectives led to appropriate guidelines and recommendations to FDOT in 
terms of evaluating and justifying the feasibility of using drones as safer and cheaper data 
collection alternatives while significantly improving intersection safety and operations. Both 
tethered and untethered alternatives are more than 4.5 times cheaper than the traditional methods 
to conduct a warrant study on a Florida intersection. Additionally, tethered drone alternative 
costs approximately $100 less than the untethered option despite a significant difference on 
equipment prices. Results and recommendations of this research will also be used by the FDOT 
consultants who already perform traffic data collection on Florida’s roadways. 

An automated crosswalk detection and mapping model was also developed, and three 
case studies were conducted in order to evaluate the efficacy of the developed model. The model 
performed with an accuracy of more than 85%. The developed model performs quite well, and it 
has high not only created a state-wide crosswalk inventory but it can also complete the OSM 
crosswalks in the future. In addition, the detection problems on peeled off crosswalks are 
commonly addressed challenges in the related literature. In this regard, crosswalks with a low 
detection confidence score or no detection can be utilized to determine the crosswalks that need 
visibility improvements and/or routine maintenance. 

Left turn lanes are among the locations with a significant number of pedestrian-involved 
fatal crashes and therefore require more attention. Careful evaluation of crash reports’ narratives 
reveals that despite the limited number of crashes that occurred under the direct influence of left 
turning movement, the pedestrians may still expect drivers to be more cautious and reduce their 
speed in order to yield the crosswalk to them.  

  



121  

 

 

REFERENCES 

AASHTO. (2010). Highway Safety Manual (1st ed.). Washington D.C.: Amerikan Association of 
State Highway and and Transportation Officials. http://www.highwaysafetymanual.org/ 

AASHTO. (2016). Survey 2016: State DOTs Using Drones to Improve Safety, Collect Data and 
Cut Costs. Amerikan Association of State Highway and and Transportation Officials. 
http://asphaltmagazine.com/wp-content/uploads/2016/05/Dronesss.pdf 

AASHTO. (2018a). A policy on geometric design of highways and streets (7th ed.). Washington 
D.C.: American Association of State Highway and Transportation Officials. 

AASHTO. (2018b). Survey 2018: Most State DOTs Now Deploying or Testing Aerial Drones for 
Regular Use. Amerikan Association of State Highway and and Transportation Officials. 
https://indd.adobe.com/view/12579497-56a5-4d8a-b8fe-e48c95630c99 

AASHTO. (2019). Survey 2019 Finds State DOTs Hiring Next-Gen Workforce to Run Drone 
Operations. Amerikan Association of State Highway and and Transportation Officials. 
https://aviation.transportation.org/wp-content/uploads/sites/8/2019/05/2019-Drones-Press-
release.pdf 

Aguilar, W. G., & Angulo, C. (2014). Robust video stabilization based on motion intention for 
low-cost micro aerial vehicles. 2014 IEEE 11th International Multi-Conference on Systems, 
Signals & Devices (SSD14), Barcelona, Spain, 1–6. 
https://doi.org/10.1109/SSD.2014.6808863 

Alver, Y., Onelcin, P., Cicekli, A., & Abdel-Aty, M. (2021). Evaluation of pedestrian critical gap 
and crossing speed at midblock crossing using image processing. Accident Analysis and 
Prevention, 156(April), 106127. https://doi.org/10.1016/j.aap.2021.106127 

Appel, R., Belongie, S., Perona, P., & Doll, P. (2014). Fast Feature Pyramids for Object 
Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1532–
1545. https://doi.org/10.1109/TPAMI.2014.2300479 

Azimi, S. M., Fischer, P., Korner, M., & Reinartz, P. (2019). Aerial LaneNet: Lane-Marking 
Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive 
Symmetric Fully Convolutional Neural Networks. IEEE Transactions on Geoscience and 
Remote Sensing, 57(5), 2920–2938. https://doi.org/10.1109/TGRS.2018.2878510 

Barmpounakis, E., & Geroliminis, N. (2020). On the new era of urban traffic monitoring with 
massive drone data: The pNEUMA large-scale field experiment. Transportation Research 
Part C: Emerging Technologies, 111(October 2019), 50–71. 
https://doi.org/10.1016/j.trc.2019.11.023 

Barmpounakis, E., Vlahogianni, E. I., & Golias, J. C. (2016). Unmanned Aerial Aircraft Systems 
for transportation engineering: Current practice and future challenges. International Journal 
of Transportation Science and Technology, 5(3), 111–122. 
https://doi.org/10.1016/j.ijtst.2017.02.001 

Berriel, R. F., Lopes, A. T., De Souza, A. F., & Oliveira-Santos, T. (2017). Deep Learning-Based 
Large-Scale Automatic Satellite Crosswalk Classification. IEEE Geoscience and Remote 
Sensing Letters, 14(9), 1513–1517. https://doi.org/10.1109/LGRS.2017.2719863 



122  

 

Berriel, R. F., Rossi, F. S., de Souza, A. F., & Oliveira-Santos, T. (2017). Automatic large-scale 
data acquisition via crowdsourcing for crosswalk classification: A deep learning approach. 
Computers and Graphics (Pergamon), 68, 32–42. https://doi.org/10.1016/j.cag.2017.08.004 

Biswas, D., Su, H., Wang, C., & Stevanovic, A. (2019). Speed Estimation of Multiple Moving 
Objects from a Moving UAV Platform. ISPRS International Journal of Geo-Information, 
8(6), 259. https://doi.org/10.3390/ijgi8060259 

Blackburn, L., Zegeer, C., Brookshire, K., & FHWA. (2017). Guide for Improving Pedestrian 
Safety at Uncontrolled Crossing Locations (FHWA-SA-17-072; Issue July). 

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and 
Accuracy of Object Detection. ArXiv. http://arxiv.org/abs/2004.10934 

Braut, V., Culjak, M., Vukotic, V., Segvic, S., Sevrovic, M., & Gold, H. (2012). Estimating OD 
matrices at intersections in airborne video - A pilot study. MIPRO, 2012 Proceedings of the 
35th International Convention, 977–982. 

Brooks, C., Dobson, R., David, B. M., Dean, D., Oommen, T., Escobar-Wolf, R., Havens, T. C., 
Ahlborn, T. M., Hart, B., Cook, S. J., & Clover, A. D. (2014). Evaluating the use of 
unmanned aerial vehicles for transportation purposes (RC-1616). 
https://www.michigan.gov/documents/mdot/RC1616_Part_A_488515_7.pdf 

Brooks, C., Dobson, R., David, B. M., Oommen, T., Zhang, K., Mukherjee, A., Havens, T. C., 
Ahborn, T., Escobar-Wolf, R., Bhat, C. R., Zhao, S., Lyu, Q., Marion, N., Cook, S. J., & 
Clover, A. D. (2018). Implementation of Unmanned Aerial Vehicles ( UAVs ) for 
Assessment of Transportation Infrastructure – Phase II (SPR-1674). 
https://www.michigan.gov/documents/mdot/SPR-1674_FinalReport_revised_631648_7.pdf 

Chen, P., Zeng, W., Yu, G., & Wang, Y. (2017). Surrogate Safety Analysis of Pedestrian-
Vehicle Conflict at Intersections Using Unmanned Aerial Vehicle Videos. Journal of 
Advanced Transportation, 2017. 

Chen, Z. S., & Zhang, D. F. (2018). An Effective Detection Algorithm of Zebra-Crossing. In 
Lecture Notes in Electrical Engineering (Vol. 482, pp. 809–816). Springer Singapore. 
https://doi.org/10.1007/978-981-10-7986-3_81 

Coifman, B., McCord, M., Mishalani, R. G., Iswalt, M., & Ji, Y. (2006). Roadway traffic 
monitoring from an unmanned aerial vehicle. IEE Proceedings - Intelligent Transport 
Systems, 153(1), 11. https://doi.org/10.1049/ip-its:20055014 

Dai, J., Wang, Y., Li, W., & Zuo, Y. (2020). Automatic Method for Extraction of Complex Road 
Intersection Points From High-Resolution Remote Sensing Images Based on Fuzzy 
Inference. IEEE Access, 8, 39212–39224. https://doi.org/10.1109/ACCESS.2020.2974974 

Dai, J., Zhu, T., Zhang, Y., Ma, R., & Li, W. (2019). Lane-level road extraction from high-
resolution optical satellite images. Remote Sensing, 11(22). 
https://doi.org/10.3390/rs11222672 

Datondji, S. R. E., Dupuis, Y., Subirats, P., & Vasseur, P. (2016). A Survey of Vision-Based 
Traffic Monitoring of Road Intersections. IEEE Transactions on Intelligent Transportation 
Systems, 17(10), 2681–2698. https://doi.org/10.1109/TITS.2016.2530146 

Dollár, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian detection: An evaluation of 



123  

 

the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 
743–761. https://doi.org/10.1109/TPAMI.2011.155 

DroneU. (2021). What is My Drone Life Expectancy. https://www.thedroneu.com/adu-0704-life-
expectancy-drone/ 

Elistair. (2019). A busy roundabout in Lyon with Safe-T. Elistair. https://elistair.com/wp-
content/uploads/2017/01/Use-Case-Road-Traffic-Monitoring-at-roundabout-in-Lyon-with-
Safe-T-tethered-drone-station.pdf 

ESRI. (2020). Mosaic datasets. ArcGIS Pro Help. https://pro.arcgis.com/en/pro-
app/help/data/imagery/mosaic-datasets.htm 

FAA. (2019a). knowbeforeyoufly.org. http://knowbeforeyoufly.org/ 

FAA. (2019b). Unmanned Aircraft Systems (UAS). www.faa.gov/uas/ 

FAA, & Kittyhawk. (2019). B4UFLY Mobile App. 
https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/b4ufly/ 

Fan, Y., Sun, Z., & Zhao, G. (2020). A Coarse-to-Fine Framework for Multiple Pedestrian 
Crossing Detection. Sensors, 20(15), 4144. https://doi.org/10.3390/s20154144 

FDOT. (2017). FDOT Districts and State Plane & UTM Zones. 
https://fdotwww.blob.core.windows.net/sitefinity/docs/default-
source/geospatial/maps/zones-districts.pdf?sfvrsn=7ff7afe8_4 

FDOT Surveying and Mapping Office. (2020). Aerial Photography Look-Up System (APLUS). 
https://fdotewp1.dot.state.fl.us/AerialPhotoLookUpSystem/ 

FDOT Traffic Engineering & Operations Office. (2016). Manual on Uniform Traffic Studies 
(No. 750-020-007-d). https://www.fdot.gov/traffic/trafficservices/studies/muts/muts.shtm 

FDOT Transportation Data and Analytics Office. (2020). Geographic Information System (GIS). 
https://www.fdot.gov/statistics/gis 

FHWA. (2018). Use of Unmanned Aerial Systems ( UAS ) by State DOTs February 27 , 2018 
Peer Exchange (FHWA-HIF-18-060). https://www.fhwa.dot.gov/uas/peer/2018peer.pdf 

FHWA. (2020a). Safe Transportation for Every Pedestrian (STEP). 
https://www.fhwa.dot.gov/innovation/everydaycounts/edc_5/step2.cfm 

FHWA. (2020b). Safe Transportation for Every Pedestrian (STEP). 
https://www.youtube.com/playlist?list=PL5_sm9g9d4T3l4Co020jzSf022naHKwox 

FHWA. (2020c, June). Taking STEPs to Boost Pedestrian Safety. Innovator, 78, 4–5. 
https://www.fhwa.dot.gov/innovation/innovator/issue78/img/Innovator_Issue78_MayJune2
0.pdf 

FHWA, ITE, AASHTO, ATSSA, & IMSA. (2009). Manual on Uniform Traffic Control Devices 
(2009th ed.). 
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0%5Cnhttp://s
cholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Manual+on+Uniform+Traffic+
Control+Devices#0 

Fischer, P., Azimi, S. M., Roschlaub, R., & Krauß, T. (2018). Towards HD maps from aerial 



124  

 

imagery: Robust lane marking segmentation using country-scale imagery. ISPRS 
International Journal of Geo-Information, 7(12), 1–14. https://doi.org/10.3390/ijgi7120458 

Florida DOT. (2019). Florida DOT UAS Brochure. Florida DOT. http://www.florida-aviation-
database.com/library/filedownload.aspx?guid=5c60d4b8-45de-409a-b1dd-d07ea80177b8 

Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on 
Computer Vision, 2015 Inter, 1440–1448. https://doi.org/10.1109/ICCV.2015.169 

Girshick, R., Donahue, J., Darrell, T., Berkeley, U. C., & Malik, J. (2012). (r-cnn) Rich feature 
hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference 
on Computer Vision and Pattern Recognition, 2–9. https://doi.org/10.1109/CVPR.2014.81 

Haider, M. M., Hoque, M. R., Khaliluzzaman, M., & Hassan, M. M. (2019). Zebra Crosswalk 
Region Detection and Localization Based on Deep Convolutional Neural Network. 2019 
IEEE International Conference on Robotics, Automation, Artificial-Intelligence and 
Internet-of-Things (RAAICON), 93–97. https://doi.org/10.1109/RAAICON48939.2019.41 

Hainen, A., Stevens, A. L., Day, C. M., Li, H., Mackey, J., Luker, M., Taylor, M., Sturdevant, J. 
R., & Bullock, D. M. (2015). Performance Measures for Optimizing Diverging Interchanges 
and Outcome Assessment with Drone Video. Transportation Research Record: Journal of 
the Transportation Research Board, 2487(1), 31–43. https://doi.org/10.3141/2487-03 

Hainen, A., Stevens, A., Li, H., & Bullock, D. (2014). Three-Phase Operations at a Diverging 
Diamond Interchange Using an Unmanned Aerial Vehicle (UAV) Camera. Purdue 
University Research Repository. https://doi.org/doi:10.4231/R7C24TC4 

Helmicki, A. J. (2019). In Support of ODOT Operations Research Team. Ohio DOT. 
http://www.dot.state.oh.us/engineering/OTEC/2017Presentations/65/Helmicki-65.pdf 

Høye, A., & Laureshyn, A. (2019). SeeMe at the crosswalk: Before-after study of a pedestrian 
crosswalk warning system. Transportation Research Part F: Traffic Psychology and 
Behaviour, 60, 723–733. https://doi.org/10.1016/j.trf.2018.11.003 

Hurwitz, D., Olsen, M., & Barlow, Z. (2018). Driving Distraction Due to Drones. In Oregon 
Department of Transportation (FHWA-OR-RD-18-12). https://doi.org/FHWA-OR-RD-18-
12 

Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of Remote Sensing 
Technologies for Collecting Roadside Feature Data to Support Highway Safety Manual 
Implementation. Journal of Transportation Safety and Security, 7(4), 345–357. 
https://doi.org/10.1080/19439962.2014.976691 

Jocher, G. (2020). YOLOv5. https://models.roboflow.com/object-detection/yolov5 

Jones, C. (2007). Estimating Software Costs: Bringing Realism to Estimating. 
http://www.amazon.com/Estimating-Software-Costs-Bringing-Realism/dp/0071483004 

Kanistras, K., Martins, G., Rutherford, M. J., & Valavanis, K. P. (2015). Survey of unmanned 
aerial vehicles (uavs) for traffic monitoring. Handbook of Unmanned Aerial Vehicles, 
February 2015, 2643–2666. https://doi.org/10.1007/978-90-481-9707-1_122 

Ke, R., Kim, S., Li, Z., & Wang, Y. (2015). Motion-vector clustering for traffic speed detection 
from UAV video. 2015 IEEE 1st International Smart Cities Conference, ISC2 2015, 1–5. 



125  

 

https://doi.org/10.1109/ISC2.2015.7366230 

Ke, R., Li, Z., Kim, S., Ash, J., Cui, Z., & Wang, Y. (2017a). Real-Time Bidirectional Traffic 
Flow Parameter Estimation from Aerial Videos. IEEE Transactions on Intelligent 
Transportation Systems, 18(4), 890–901. https://doi.org/10.1109/TITS.2016.2595526 

Ke, R., Li, Z., Kim, S., Ash, J., Cui, Z., & Wang, Y. (2017b). Real-Time Bidirectional Traffic 
Flow Parameter Estimation from Aerial Videos. IEEE Transactions on Intelligent 
Transportation Systems, 18(4), 890–901. https://doi.org/10.1109/TITS.2016.2595526 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2017a). UAV-Based Traffic 
Analysis: A Universal Guiding Framework Based on Literature Survey. Transportation 
Research Procedia, 22(2016), 541–550. https://doi.org/10.1016/j.trpro.2017.03.043 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2017b). Unmanned Aerial 
Vehicle–Based Traffic Analysis: Methodological Framework for Automated Multivehicle 
Trajectory Extraction. Transportation Research Record: Journal of the Transportation 
Research Board, 2626(1), 25–33. https://doi.org/10.3141/2626-04 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2018). Unmanned aerial 
vehicle-based traffic analysis: A case study for shockwave identification and flow 
parameters estimation at signalized intersections. Remote Sensing, 10(3). 
https://doi.org/10.3390/rs10030458 

Khan, M. A., Ectors, W., Bellemans, T., Ruichek, Y., Yasar, A. U. H., Janssens, D., & Wets, G. 
(2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study to Analyze Traffic 
Streams at Urban Roundabouts. Procedia Computer Science, 130, 636–643. 
https://doi.org/10.1016/j.procs.2018.04.114 

Kim, E. J., Park, H.-C., Ham, S.-W., Kho, S.-Y., & Kim, D.-K. (2019). Extracting Vehicle 
Trajectories Using Unmanned Aerial Vehicles in Congested Traffic Conditions. Journal of 
Advanced Transportation, 2019, 1–16. https://doi.org/10.1155/2019/9060797 

Kim, Z. (2005). Realtime Road Detection by Learning from One Example. 2005 Seventh IEEE 
Workshops on Applications of Computer Vision (WACV/MOTION’05) - Volume 1, 455–
460. https://doi.org/10.1109/ACVMOT.2005.99 

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. 
http://arxiv.org/abs/1412.6980 

Klinger, R. (2020). Get OSM Data-An ArcGIS Toolbox. Github. 
https://github.com/riccardoklinger/OSMquery 

Knoppers, P., van Lint, H., & Hoogendoorn, S. (2012). Automatic Stabilization of Aerial Traffic 
Images. Transportation Research Board 91st Annual Meeting, 1–13. 

Koester, D., Lunt, B., & Stiefelhagen, R. (2016). Zebra Crossing Detection from Aerial Imagery 
Across Countries. In Lecture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9759, pp. 27–34). 
https://doi.org/10.1007/978-3-319-41267-2_5 

Kurath, S., Das Gupta, R., & Keller, S. (2017). OSMDeepOD - Object Detection on Orthophotos 
with and for VGI. GI_Forum, 1(2), 173–188. 
https://doi.org/10.1553/giscience2017_02_s173 



126  

 

Kwasniak, A., & Kerezman, A. (2017). Drones in Transportation Engineering: a Discussion of 
Current Drone Rules, Equipment, And Applications. ITE Journal, 40–43. 
https://mydigitalpublication.com/publication/?i=380807&article_id=2701568&view=article
Browser#%7B%22issue_id%22:380807,%22page%22:40%7D 

LAANC Kittyhawk. (2019). Kittyhawk. https://kittyhawk.io/feature/laanc/ 

Liang, J., & Urtasun, R. (2018). End-to-End Deep Structured Models for Drawing Crosswalks. 
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics): Vol. 11216 LNCS (pp. 407–423). 
https://doi.org/10.1007/978-3-030-01258-8_25 

Lin, Y., & Saripalli, S. (2012). Road detection from aerial imagery. Proceedings - IEEE 
International Conference on Robotics and Automation, 3588–3593. 
https://doi.org/10.1109/ICRA.2012.6225112 

Liu, J., Hainen, A., Li, X., Nie, Q., & Nambisan, S. (2019). Pedestrian injury severity in motor 
vehicle crashes: An integrated spatio-temporal modeling approach. Accident Analysis & 
Prevention, 132, 105272. https://doi.org/10.1016/j.aap.2019.105272 

Liu, X., Zhang, Y., & Li, Q. (2017). AUTOMATIC PEDESTRIAN CROSSING DETECTION 
AND IMPAIRMENT ANALYSIS BASED ON MOBILE MAPPING SYSTEM. ISPRS 
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-
2/W4(2W4), 251–258. https://doi.org/10.5194/isprs-annals-IV-2-W4-251-2017 

Ma, Y., Wu, X., Yu, G., Xu, Y., & Wang, Y. (2016). Pedestrian detection and tracking from low-
resolution unmanned aerial vehicle thermal imagery. Sensors (Switzerland), 16(4). 
https://doi.org/10.3390/s16040446 

Massachusetts DOT. (2016). The State of the Practice of UAS Systems in Transportation (Issue 
December). https://rosap.ntl.bts.gov/view/dot/35033 

Mimbela, L. E. Y. (2000). A Summary of Vehicle Detection and Surveillance Technologies used 
in IN INTELLIGENT TRANSPORTATION SYSTEMS PREPARED BY : Image 
(Rochester, N.Y.). 

Montana DOT. (2018). Drone Library for Transportation. National Transportation Library. 
https://doi.org/https://transportation.libguides.com/uav/home 

NHTSA. (2018). Traffic Safety Facts 2018: A Compilation of Motor Vehicle Crash Data. 
National Highway Traffic Safety Administration. 
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812981 

NHTSA. (2019). Fatality Analysis Reporting System (FARS). National Highway Traffic Safety 
Administration. https://www-fars.nhtsa.dot.gov/Main/index.aspx 

Nicotra, M. M., Naldi, R., & Garone, E. (2017). Nonlinear control of a tethered UAV: The taut 
cable case. Automatica, 78, 174–184. https://doi.org/10.1016/j.automatica.2016.12.018 

Niu, H., González-Prelcic, N., & Heath, R. W. (2018). A UAV-Based Traffic Monitoring System 
- Invited Paper. IEEE Vehicular Technology Conference, 2018-June, 1–5. 
https://doi.org/10.1109/VTCSpring.2018.8417546 

OpenStreetMap. (2020a). Wiki-Main Page. https://wiki.openstreetmap.org/wiki/Main_Page 



127  

 

OpenStreetMap. (2020b). Wiki-Overpass API. 
https://wiki.openstreetmap.org/wiki/Overpass_API 

OpenStreetMap. (2020c). Wiki-Stats. https://wiki.openstreetmap.org/wiki/Stats 

Pan, P., Xue, C., & Zhou, H. (2019). Video Analytics for Estimating Control Delays at 
Signalized Intersections Based on Videos Collected by Unmanned Aerial Vehicles. 
Proceedings of the TRB 2019 Annual Meeting. http://amonline.trb.org/68387-trb-
1.4353651/t0005-1.4505752/1297-1.4506426/19-01667-1.4506515/19-01667-1.4506516 

Papadoulis, A., Quddus, M., & Imprialou, M. (2019). Evaluating the safety impact of connected 
and autonomous vehicles on motorways. Accident Analysis and Prevention, 124(January), 
12–22. https://doi.org/10.1016/j.aap.2018.12.019 

Patella, S. M., Sportiello, S., Carrese, S., Bella, F., & Asdrubali, F. (2020). The Effect of a LED 
Lighting Crosswalk on Pedestrian Safety: Some Experimental Results. Safety, 6(2), 20. 
https://doi.org/10.3390/safety6020020 

Pour-Rouholamin, M., & Zhou, H. (2016). Investigating the risk factors associated with 
pedestrian injury severity in Illinois. Journal of Safety Research, 57, 9–17. 
https://doi.org/10.1016/j.jsr.2016.03.004 

Puri, A. (2005). A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance. 
Technical Paper, 1–29. papers2://publication/uuid/6D241E9E-AF0D-42BF-B87C-
668CCD166527 

Quinn, S., & Dutton, J. A. (2020). OpenStreetMap and its use as open data. E-Education 
Institute, College of Earth and Mineral Sciences, The Pennsylvania State University. 
https://www.e-education.psu.edu/geog585/node/738 

Redmon, J. (2020). YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolo/ 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, 2016-Decem, 779–788. 
https://doi.org/10.1109/CVPR.2016.91 

Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 2017-Janua, 6517–6525. 
https://doi.org/10.1109/CVPR.2017.690 

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. ArXiv. 
http://arxiv.org/abs/1804.02767 

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 

Retting, R., & GHSA. (2019). Pedestrian Traffic Fatalities by State: 2018 Preliminary Data. 
https://www.ghsa.org/resources/Pedestrians19 

Retting, R., & GHSA. (2020). Pedestrian Traffic Fatalities by State: 2019 Preliminary Data. In 
February 2020. https://www.ghsa.org/resources/Pedestrians20 

Rodríguez-Canosa, G. R., Thomas, S., del Cerro, J., Barrientos, A., & MacDonald, B. (2012). A 



128  

 

real-time method to detect and track moving objects (DATMO) from unmanned aerial 
vehicles (UAVs) using a single camera. Remote Sensing, 4(4), 1090–1111. 
https://doi.org/10.3390/rs40401090 

Salvo, G., Caruso, L., & Scordo, A. (2014). Gap acceptance analysis in an urban intersection 
through a video acquired by an UAV. Recent Advances in Civil Engineering and 
Mechanics, 199–205. 

Snyder, P., Waller, Z., Wheeler, P., Tootle, A., Milton, J., Larue, T., Gray, J., Gill, S., Frederick, 
G., Cook, S., & Banks, E. (2018). Successful Approaches for the Use of Unmanned Aerial 
System By (NCHRP Project 20-68A, Scan 17-01). 
http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-68A_17-01.pdf 

Stevens, C. (2017). Concept of Operations and Policy Implications for Unmanned Aircraft 
Systems Use for Traffic Incident Management (UAS-TIM). In Texas A&M Transportation 
Institute (PRC 15-69F). https://doi.org/PRC 15-69F 

Stevens, C., & Blackstock, T. (2017). Demonstration of Unmanned Aircraft Systems Use for 
Traffic Incident Management ( UAS-TIM ) Final Report Demonstration of Unmanned 
Aircraft Systems Use for Traffic Incident Management ( UAS-TIM ). Texas A&M 
Transportation Institute. https://doi.org/PRC 17-69 F 

Sun, K., Zhang, J., & Zhang, Y. (2019). Roads and intersections extraction from high-resolution 
remote sensing imagery based on tensor voting under big data environment. Wireless 
Communications and Mobile Computing, 2019. https://doi.org/10.1155/2019/6513418 

Sun, Y., Zhang, F., Gao, Y., & Huang, X. (2016). Extraction and Reconstruction of Zebra 
Crossings from High Resolution Aerial Images. ISPRS International Journal of Geo-
Information, 5(8), 127. https://doi.org/10.3390/ijgi5080127 

Tang, L., Gan, A., & Alluri, P. (2014). Automatic extraction of number of lanes from 
georectified aerial images. Transportation Research Record, 2460(1), 86–96. 
https://doi.org/10.3141/2460-10 

Tang, T., Zhou, S., Deng, Z., Zou, H., & Lei, L. (2017). Vehicle detection in aerial images based 
on region convolutional neural networks and hard negative example mining. Sensors 
(Switzerland), 17(2). https://doi.org/10.3390/s17020336 

Tümen, V., & Ergen, B. (2020). Intersections and crosswalk detection using deep learning and 
image processing techniques. Physica A: Statistical Mechanics and Its Applications, 543, 
123510. https://doi.org/10.1016/j.physa.2019.123510 

Vattapparamban, E., Güvenç, I., Yurekli, A. I., Akkaya, K., & Uluaǧaç, S. (2016). Drones for 
smart cities: Issues in cybersecurity, privacy, and public safety. 2016 International Wireless 
Communications and Mobile Computing Conference, IWCMC 2016, 216–221. 
https://doi.org/10.1109/IWCMC.2016.7577060 

Viola, P., & Jones, M. (2005). Rapid object detection using a boosted cascade of simple features. 
July 2014, I-511-I–518. https://doi.org/10.1109/cvpr.2001.990517 

Wang, X., Pei, Y., Yang, M., & Yuan, J. (2021). Meso-level hotspot identification for suburban 
arterials. Accident Analysis & Prevention, 156, 106148. 
https://doi.org/10.1016/j.aap.2021.106148 



129  

 

Wiedemann, C., & Ebner, H. (2000). Automatic completion and evaluation of road networks. 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences - ISPRS Archives, 33, 979–986. 

Wiedemann, C., Heipke, C., Mayer, H., & Jamet, O. (1998). Empirical Evaluation Of 
Automatically Extracted Road Axes. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5701 

Wu, J., & Tsai, Y. (James). (2006). Enhanced Roadway Geometry Data Collection Using an 
Effective Video Log Image-Processing Algorithm. Transportation Research Record: 
Journal of the Transportation Research Board, 133–140. https://doi.org/10.3141/1972-18 

Xie, X., Yang, W., Cao, G., Yang, J., Zhao, Z., Chen, S., Liao, Q., & Shi, G. (2018). Real-Time 
Vehicle Detection from UAV Imagery. 2018 IEEE 4th International Conference on 
Multimedia Big Data, BigMM 2018, 1–5. https://doi.org/10.1109/BigMM.2018.8499466 

Xu, Y., Yu, G., Wang, Y., Wu, X., & Ma, Y. (2016). A hybrid vehicle detection method based 
on viola-jones and HOG + SVM from UAV images. Sensors (Switzerland), 16(8). 
https://doi.org/10.3390/s16081325 

Xu, Y., Yu, G., Wang, Y., Wu, X., & Ma, Y. (2017). Car detection from low-altitude UAV 
imagery with the faster R-CNN. Journal of Advanced Transportation, 2017. 
https://doi.org/10.1155/2017/2823617 

Ye, Q. Z., Wu, P., & Zhang, M. L. (2017). Research on automatic highway extraction technology 
based on spectral information of remote sensing images. Journal of Information Hiding and 
Multimedia Signal Processing, 8(2), 368–380. 

Zang, A., Xu, R., Li, Z., & Doria, D. (2017). Lane boundary extraction from satellite imagery. 
Proceedings of the 1st ACM SIGSPATIAL Workshop on High-Precision Maps and 
Intelligent Applications for Autonomous Vehicles - AutonomousGIS ’17, 1–8. 
https://doi.org/10.1145/3149092.3149093 

Zhou, H., Kong, H., Wei, L., Creighton, D., & Nahavandi, S. (2015). Efficient road detection and 
tracking for unmanned aerial vehicle. IEEE Transactions on Intelligent Transportation 
Systems, 16(1), 297–309. https://doi.org/10.1109/TITS.2014.2331353 

 

 



130  

 

APPENDIX A : Aerial Images of Locations where the Recorded 143 Pedestrian Fatality 
Crashes Occurred between 2011 and 2020 in Florida 
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Table A-1: Number of fatal pedestrian-involved crashes in Florida between 2011 and 2020 

County Name Number of Crashes 

Orange 18 
Hillsborough 11 
Pasco 9 
Broward 8 
Miami-Dade 6 
Leon 6 
Palm Beach 5 
Polk 5 
Collier 5 
Brevard 5 
Lee 4 
Volusia 4 
St. Johns 4 
Manatee 4 
Duval 4 
Others Counties (<3) 45 
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Table A-2: Attributes associated with fatal pedestrian-involved crashes in Florida between 2011 and 2020 
Hillsborough; Leon; Orange; Pasco 

ID COUNTY 
NAME 

YEAR CRASH 
NUMBER 

CRASH DATE DAY OF 
WEEK 

DISTANCE CRASH 
LANE 

LATITUDE LONGITUDE 

1 Escambia 2011 819934570 3/26/2011 0:00 Saturday 603 Side 30.374286 -87.355703 

2 Monroe 2011 820535280 6/9/2011 0:00 Thursday 741 Side 24.661516 -81.409844 

3 Miami-Dade 2011 820851010 5/13/2011 0:00 Friday 259 Side 25.911608 -80.209915 

4 Miami-Dade 2011 823532700 5/5/2011 0:00 Thursday 600 Side 25.653098 -80.329825 

5 Jackson 2011 820056070 7/15/2011 0:00 Friday 441 Side 30.677309 -85.080903 

6 Bay 2011 820777290 7/12/2011 0:00 Tuesday 440 Side 30.264243 -85.971775 

7 Brevard 2012 819505460 2/16/2012 0:00 Thursday 542 Side 28.202851 -80.661062 

8 Miami-Dade 2012 828641690 1/12/2012 0:00 Thursday 300 Side 25.73283 -80.346554 

9 Orange 2012 828541380 1/12/2012 0:00 Thursday 500 Side 28.55249 -81.449032 

10 Marion 2012 829010990 4/25/2012 0:00 Wednesday 300 Side 29.213898 -82.06045 

11 Miami-Dade 2012 835389680 7/17/2012 0:00 Tuesday 500 Side 25.778012 -80.16508 

12 Polk 2012 831625860 12/20/2012 0:00 Thursday 285 Side 28.346991 -81.663419 

13 Highlands 2012 821239560 8/2/2012 0:00 Thursday 269 Side 27.299356 -81.353653 

14 Broward 2012 805222160 11/2/2012 0:00 Friday 1149 Side 25.975174 -80.348209 

15 Pasco 2012 832577870 12/18/2012 0:00 Tuesday 1400 Cross Walk 28.335006 -82.666326 

16 Palm Beach 2013 813401000 9/23/2013 0:00 Monday 300 Side 26.617136 -80.105434 

17 Duval 2013 836056750 7/19/2013 0:00 Friday 421 Side 30.277782 -81.637204 

18 St. Johns 2013 823880080 11/16/2013 0:00 Saturday 500 Side 29.910807 -81.361041 

19 Broward 2013 834995970 11/18/2013 0:00 Monday 1150 Side 26.059259 -80.152661 

20 DeSoto 2013 832455310 1/26/2013 0:00 Saturday 308 Side 27.171902 -81.875534 

21 Escambia 2013 829386710 3/22/2013 0:00 Friday 257 Side 30.499359 -87.180042 

22 Monroe 2013 832466950 5/26/2013 0:00 Sunday 2000 Side 24.576209 -81.725928 
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23 Pasco 2013 833317200 7/21/2013 0:00 Sunday 336 Side 28.354287 -82.698951 

24 Santa Rosa 2013 833264710 7/16/2013 0:00 Tuesday 540 Side 30.399926 -86.998286 

25 Volusia 2013 835254720 8/6/2013 0:00 Tuesday 800 Side 29.013023 -80.977086 

26 Volusia 2013 834513460 8/27/2013 0:00 Tuesday 495 Side 28.964934 -80.891306 

27 Orange 2013 836502010 7/20/2013 0:00 Saturday 300 Side 28.378105 -81.503874 

28 Highlands 2014 821393790 3/25/2014 0:00 Tuesday 1000 Side 27.474318 -81.443156 

29 Sarasota 2014 839398140 4/16/2014 0:00 Wednesday 300 Side 27.325074 -82.529757 

30 Pinellas 2014 842553800 3/27/2014 0:00 Thursday 300 Cross Walk 27.82095 -82.825972 

31 Orange 2014 837737870 5/3/2014 0:00 Saturday 500 Side 28.411479 -81.474548 

32 St. Johns 2014 837654730 6/28/2014 0:00 Saturday 300 Side 29.987417 -81.462466 

33 Orange 2014 842874690 10/26/2014 0:00 Sunday 500 Cross Walk 28.672829 -81.461176 

34 Palm Beach 2014 844854970 10/26/2014 0:00 Sunday 1000 Side 26.347749 -80.117968 

35 Duval 2014 836035260 11/20/2014 0:00 Thursday 300 Side 30.282049 -81.746558 

36 Collier 2014 833359220 11/15/2014 0:00 Saturday 430 Side 26.019135 -81.630128 

37 Polk 2014 846237200 11/26/2014 0:00 Wednesday 1000 Side 28.055936 -81.82671 

38 Sarasota 2014 837227970 1/22/2014 0:00 Wednesday 792 Side 27.225678 -82.518404 

39 Sarasota 2014 837228030 1/28/2014 0:00 Tuesday 770 Side 27.080435 -82.41215 

40 Walton 2014 837941360 6/12/2014 0:00 Thursday 1584 Side 30.365422 -86.22934 

41 Orange 2014 838375170 6/28/2014 0:00 Saturday 740 Driveway 28.532092 -81.272763 

42 Miami-Dade 2014 843604230 4/28/2014 0:00 Monday 1000 Side 25.598607 -80.510988 

43 Manatee 2014 713847500 12/25/2014 0:00 Thursday 1100 Driveway 27.531638 -82.593396 

44 Palm Beach 2014 813965560 12/13/2014 0:00 Saturday 450 Driveway 26.615535 -80.069852 

45 Orange 2014 833584500 10/23/2014 0:00 Thursday 1584 Cross Walk 28.459813 -81.468839 

46 Pasco 2014 845374830 11/21/2014 0:00 Friday 350 Driveway 28.280578 -82.708303 

47 Brevard 2014 847982700 10/4/2014 0:00 Saturday 490 Cross Walk 28.121615 -80.644702 
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48 St. Johns 2015 823942280 7/8/2015 0:00 Wednesday 1500 Side 29.936781 -81.332803 

49 Highlands 2015 837596880 6/2/2015 0:00 Tuesday 265 Side 27.443964 -81.293092 

50 Collier 2015 838392820 4/25/2015 0:00 Saturday 1500 Side 26.379237 -81.417037 

51 Leon 2015 844944380 12/6/2015 0:00 Sunday 1800 Side 30.456277 -84.374872 

52 Sumter 2015 845377140 2/8/2015 0:00 Sunday 550 Side 28.898234 -82.095044 

53 Monroe 2015 847246420 9/16/2015 0:00 Wednesday 1500 Side 24.552473 -81.760688 

54 Broward 2015 847631850 10/29/2015 0:00 Thursday 400 Side 26.164731 -80.204477 

55 Lake 2015 848646760 6/10/2015 0:00 Wednesday 500 Side 28.738534 -81.87145 

56 Lee 2015 848665960 5/4/2015 0:00 Monday 650 Side 26.705627 -81.842494 

57 Citrus 2015 848809430 5/11/2015 0:00 Monday 680 Cross Walk 28.950896 -82.625855 

58 Broward 2015 849072500 5/4/2015 0:00 Monday 850 Side 25.97745 -80.120083 

59 Hillsborough 2015 849214090 11/4/2015 0:00 Wednesday 585 Side 27.996465 -82.111507 

60 Charlotte 2015 851478030 8/18/2015 0:00 Tuesday 778 Side 26.884319 -81.999859 

61 Brevard 2015 851647250 9/15/2015 0:00 Tuesday 1056 Side 28.478989 -80.780126 

62 Brevard 2015 852082390 12/2/2015 0:00 Wednesday 370 Cross Walk 28.246599 -80.737919 

63 Clay 2015 852209840 11/12/2015 0:00 Thursday 500 Side 30.06289 -81.896195 

64 Manatee 2015 901933000 4/1/2015 0:00 Wednesday 376 Side 27.518597 -82.563069 

65 Palm Beach 2016 814557050 10/2/2016 0:00 Sunday 415 Driveway 26.619019 -80.132467 

66 St. Johns 2016 851688110 1/7/2016 0:00 Thursday 825 Side 29.965674 -81.3504 

67 Hillsborough 2016 851843570 11/27/2016 0:00 Sunday 1466 Side 28.050352 -82.454776 

68 Hernando 2016 852236430 4/1/2016 0:00 Friday 1584 Side 28.481658 -82.319499 

69 Escambia 2016 852412080 5/14/2016 0:00 Saturday 575 Cross Walk 30.281669 -87.517931 

70 Citrus 2016 852544650 2/9/2016 0:00 Tuesday 1056 Side 28.801119 -82.508497 

71 Orange 2016 852616380 1/14/2016 0:00 Thursday 469 Cross Walk 28.607244 -81.294178 

72 Pasco 2016 852886930 4/25/2016 0:00 Monday 1129 Side 28.328982 -82.585302 
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73 Orange 2016 852946660 3/27/2016 0:00 Sunday 330 Cross Walk 28.497257 -81.396856 

74 Collier 2016 853048050 5/16/2016 0:00 Monday 320 Cross Walk 26.269034 -81.756409 

75 Jefferson 2016 853907250 12/11/2016 0:00 Sunday 2640 Side 30.60471 -83.892922 

76 Santa Rosa 2016 854123590 11/21/2016 0:00 Monday 360 Side 30.403456 -86.974411 

77 Miami-Dade 2016 859668710 10/5/2016 0:00 Wednesday 600 Side 25.446129 -80.475027 

78 Hillsborough 2016 861583880 12/27/2016 0:00 Tuesday 1900 Side 27.977424 -82.552766 

79 Hillsborough 2016 862065590 3/13/2016 0:00 Sunday 475 Driveway 28.09394 -82.580484 

80 Orange 2016 864065680 4/21/2016 0:00 Thursday 300 Cross Walk 28.542144 -81.376834 

81 Orange 2016 864111370 6/23/2016 0:00 Thursday 615 Side 28.54481 -81.311644 

82 Polk 2016 864434820 8/22/2016 0:00 Monday 350 Side 28.17906 -81.814112 

83 Bay 2016 865489310 5/21/2016 0:00 Saturday 380 Cross Walk 30.2083 -85.862727 

84 Pinellas 2016 866068950 8/24/2016 0:00 Wednesday 1110 Cross Walk 27.94282 -82.835991 

85 Duval 2016 866454020 11/3/2016 0:00 Thursday 300 Side 30.402043 -81.741799 

86 Orange 2017 853448410 3/10/2017 0:00 Friday 1000 Side 28.365 -81.389089 

87 Leon 2017 854318530 5/23/2017 0:00 Tuesday 830 Cross Walk 30.320435 -84.398095 

88 Walton 2017 854356540 1/21/2017 0:00 Saturday 840 Side 30.740832 -86.371844 

89 Pasco 2017 854403450 1/12/2017 0:00 Thursday 700 Side 28.212059 -82.181121 

90 Volusia 2017 854744080 7/15/2017 0:00 Saturday 275 Side 29.032439 -81.259285 

91 Orange 2017 855087830 3/24/2017 0:00 Friday 880 Cross Walk 28.437682 -81.472192 

92 Pasco 2017 855209880 5/13/2017 0:00 Saturday 462 Side 28.29276 -82.709842 

93 Orange 2017 855273530 5/10/2017 0:00 Wednesday 262 Side 28.4022 -81.41067 

94 Alachua 2017 865955720 2/11/2017 0:00 Saturday 1156 Side 29.617803 -82.377973 

95 Broward 2017 866249290 2/27/2017 0:00 Monday 300 Side 26.108621 -80.322172 

96 Hillsborough 2017 869179310 6/24/2017 0:00 Saturday 310 Cross Walk 28.069197 -82.4314 

97 Orange 2017 871168860 12/12/2017 0:00 Tuesday 400 Driveway 28.473682 -81.396651 
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98 Orange 2017 871263310 12/16/2017 0:00 Saturday 1320 Side 28.55667 -81.128602 

99 Hillsborough 2017 873707410 10/29/2017 0:00 Sunday 600 Side 28.001668 -82.373097 

100 Indian River 2018 819920870 3/1/2018 0:00 Thursday 792 Side 27.658469 -80.446487 

101 Palm Beach 2018 835800800 2/4/2018 0:00 Sunday 1056 Side 26.81191 -80.264141 

102 Leon 2018 855433950 2/4/2018 0:00 Sunday 850 Side 30.50845 -84.33731 

103 Citrus 2018 855617100 1/23/2018 0:00 Tuesday 1265 Side 28.858017 -82.332418 

104 St. Lucie 2018 871301230 6/20/2018 0:00 Wednesday 2112 Side 27.392928 -80.340203 

105 Lake 2018 871818750 6/19/2018 0:00 Tuesday 300 Side 28.882385 -81.72129 

106 Orange 2018 871848780 3/26/2018 0:00 Monday 1650 Cross Walk 28.47242 -81.4091 

107 Orange 2018 872015050 4/5/2018 0:00 Thursday 550 Side 28.39762 -81.40468 

108 Pasco 2018 872103620 6/4/2018 0:00 Monday 950.4 Side 28.377003 -82.657679 

109 Hardee 2018 872892540 9/10/2018 0:00 Monday 751 Side 27.58209 -81.838072 

110 Duval 2018 874951520 10/12/2018 0:00 Friday 1355 Side 30.40426 -81.81745 

111 Hillsborough 2018 877154630 7/16/2018 0:00 Monday 300 Side 28.095825 -82.50891 

112 Hillsborough 2018 877126750 5/14/2018 0:00 Monday 840 Cross Walk 28.056838 -82.426078 

113 Hillsborough 2018 878663830 11/16/2018 0:00 Friday 1289 Side 28.007453 -82.150049 

114 Walton 2018 880147650 10/19/2018 0:00 Friday 300 Cross Walk 30.37532 -86.35769 

115 Marion 2018 880245970 11/13/2018 0:00 Tuesday 308 Side 29.091729 -82.170534 

116 Manatee 2018 880253290 12/31/2018 0:00 Monday 713 Side 27.431924 -82.392119 

117 Orange 2018 880271110 10/26/2018 0:00 Friday 528 Side 28.451574 -81.334414 

118 Collier 2018 880316360 11/13/2018 0:00 Tuesday 1350 Side 26.25622 -81.53721 

119 Broward 2018 886595450 10/31/2018 0:00 Wednesday 990 Cross Walk 26.064901 -80.235285 

120 Hillsborough 2019 887682620 5/27/2019 0:00 Monday 329 Driveway 27.95288 -82.49636 

121 Hillsborough 2019 878665620 1/17/2019 0:00 Thursday 360 Side 28.024195 -82.073482 

122 Lee 2019 880436280 2/24/2019 0:00 Sunday 500 Side 26.6607 -81.89059 
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123 Putnam 2019 880749910 5/11/2019 0:00 Saturday 825 Side 29.60853 -81.58341 

124 Pasco 2019 880985680 2/27/2019 0:00 Wednesday 1000 Side 28.339134 -82.699346 

125 Lake 2019 880944670 7/25/2019 0:00 Thursday 1320 Side 28.737608 -81.896358 

126 Suwannee 2019 881156130 10/10/2019 0:00 Thursday 450 Side 30.3943 -82.945221 

127 Pasco 2019 881286790 5/11/2019 0:00 Saturday 586 Side 28.3331 -82.66626 

128 Manatee 2019 881643760 8/17/2019 0:00 Saturday 500 Side 27.557678 -82.564647 

129 Lee 2019 881869720 11/26/2019 0:00 Tuesday 400 Driveway 26.56853 -81.88024 

130 Volusia 2019 886955970 4/5/2019 0:00 Friday 280 Driveway 29.263271 -81.106599 

131 Bay 2019 892800620 11/9/2019 0:00 Saturday 1220 Cross Walk 30.208308 -85.862742 

132 Broward 2019 894513670 11/26/2019 0:00 Tuesday 630 Cross Walk 26.235497 -80.219756 

133 Marion 2020 872302370 6/9/2020 0:00 Tuesday 560 Side 29.11962 -82.18462 

134 Collier 2020 881665440 5/8/2020 0:00 Friday 412 Side 26.43043 -81.4207 

135 Leon 2020 882616600 5/11/2020 0:00 Monday 450 Side 30.398449 -84.315488 

136 Polk 2020 883225020 4/25/2020 0:00 Saturday 475 Side 27.99667 -81.75577 

137 Brevard 2020 883638590 10/10/2020 0:00 Saturday 300 Side 28.699845 -80.859342 

138 Seminole 2020 883864230 11/22/2020 0:00 Sunday 500 Side 28.786327 -81.33505 

139 Lee 2020 887840510 1/11/2020 0:00 Saturday 619 Side 26.71105 -81.869939 

140 Leon 2020 891476250 1/30/2020 0:00 Thursday 750 Cross Walk 30.448261 -84.302469 

141 Polk 2020 893748810 2/24/2020 0:00 Monday 335 Side 27.926956 -82.036416 

142 Broward 2020 897750240 2/19/2020 0:00 Wednesday 660 Side 26.136951 -80.137573 

143 Leon 2020 901120060 11/8/2020 0:00 Sunday 400 Side 30.478015 -84.299166 
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APPENDIX B: Crash Diagrams for the Recorded 10 Pedestrian-involved Fatalities Occurred between 2011 and 2020 in 
Orange County, Florida 

  

Crash Number: 855087830 – Orange County in 2017: The vehicle was traveling south in the right lane on International Drive and two pedestrians were 
crossing a marked crosswalk from east to west on International Drive. The driver failed to stop for the pedestrians when another vehicle in the left lane 
stopped to let them cross the southbound lanes of International Drive. 
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Crash Number: 852946660 – Orange County in 2016: The vehicle was traveling southbound in the center lane on US-441 (Orange Blossom Trail) and the 
pedestrian was walking from the west side of the road to the east side in a marked crosswalk. 
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Crash Number: 852616380 – Orange County in 2016: This crash occurred during dark night time on crosswalk. The vehicle was traveling west on State 
Road (426), named, Aloma Avenue, in the outside lane approaching a pedestrian crosswalk just west of Tangerine Avenue. The pedestrian was walking 
north across the eastbound lanes of state road 426. As vehicle 1 approached the crosswalk, the pedestrian entered the crosswalk and continued traveling 
north. A female that was walking behind the victim stated that she told him not to cross due to the traffic, but the pedestrian stated that the cars would stop! 
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Crash Number: 865489310 – Bay County in 2016: It was a hit and run crash. The pedestrian was walking northbound across US highway 98 in the 
marked crosswalk and the vehicle was traveling east, struck the pedestrian and fled the scene of the crash. 
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Crash Number: 892800620 – Bay County in 2019: It was a hit and run crash! The driver was traveling west on US98 and the pedestrian was crossing the 
crosswalk, walking north from Sharky’s. The vehicle failed to yield the crosswalk to the pedestrian. The vehicle did not stop and left the scene without 
stopping. 
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Crash Number: 820777290 – Bay County in 2011: The vehicle was traveling west on the right westbound travel lane of US98 (Panama City Beach 
Parkway) and the pedestrian was traveling in north direction attempting to cross US 98 from the south 
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Crash Number: 881286790 – Pasco County in 2019: The vehicle was traveling northbound in the inside lane on Little Road approaching the intersection 
with Cricket Street and the pedestrian was crossing the roadway in a westbound direction outside of the crosswalk. 
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Crash Number: 869179310 – Hillsborough County in 2017: The vehicle was traveling west bound within the left through lane on Fletcher Avenue and 
approaching a marked pedestrian crosswalk. The pedestrian was attempting to cross travel north in a wheelchair. The driver was 23 and the pedestrian was 
70 years old. 
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Crash Number: 852082390 – Brevard County in 2015: The vehicle was traveling southbound on Stadium Parkway approaching the pedestrian crosswalk. 
The pedestrian was walking on the crosswalk and attempting to cross the southbound lanes.  
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