Stainless Steel Strands and Lightweight Concrete for Pretensioned Concrete Girders

FDOT Contract No. BDV30-977-22 FSU Project No. 041063

Submitted to:

Florida Department of Transportation Research Center 605 Suwannee Street Tallahassee, Florida 32399-0450

Vickie Young, P.E. Project Manager FDOT Structures Design Office

Prepared by:

Michelle Roddenberry, Ph.D., P.E. Principal Investigator

Anwer Al-Kaimakchi Graduate Research Assistant

FAMU-FSU College of Engineering Department of Civil and Environmental Engineering 2525 Pottsdamer Street Tallahassee, FL 32310-6046

December 2020

Final Report B - Lightweight Concrete

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

SI* (MODERN METRIC) CONVERSION FACTORS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL		
LENGTH						
in.	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA				
in²	square inches	645.2	square millimeters	mm ²		
ft²	square feet	0.093	square meters	m²		
yd²	square yard	0.836	square meters	m²		
ac	acres	0.405	hectares	ha		
mi²	square miles	2.59	square kilometers	km²		
		VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL		
gal	gallons	3.785	liters	L		
ft ³	cubic feet	0.028	cubic meters	m ³		
yd³	cubic yards	0.765	cubic meters	m ³		
NOTE: volumes	greater than 1000 L shall be	shown in m ³				
		MASS				
oz	ounces	28.35	grams	g		
lb	pounds	0.454	kilograms	kg		
Т	short tons (2000 lb)	0.907	megagrams	Mg (or "t")		
	TEN	IPERATURE (exact degrees)				
°F	Fahrenheit	5(F-32)/9 or (F-32)/1.8	Celsius	°C		
		ILLUMINATION				
fc	foot-candles	10.76	lux	lx		
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²		
	FORC	E and PRESSURE or STRESS				
kip	1000 pound force	4.45	kilonewtons	kN		
lbf	pound force	4.45	newtons	N		
lbf/in ²	pound force per square inch	6.89	kilopascals	kPa		

APPROXIMATE CONVERSIONS TO SI UNITS

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

SI* (MODERN METRIC) CONVERSION FACTORS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL		
LENGTH						
mm	millimeters	0.039	inches	in.		
m	meters	3.28	feet	ft		
m	meters	1.09	yards	yd		
km	kilometers	0.621	miles	mi		
	·	AREA	·	·		
mm ²	square millimeters	0.0016	square inches	in ²		
m²	square meters	10.764	square feet	ft²		
m²	square meters	1.195	square yards	yd²		
ha	hectares	2.47	acres	ac		
km²	square kilometers	0.386	square miles	mi ²		
		VOLUME				
mL	milliliters	0.034	fluid ounces	fl oz		
L	liters	0.264	gallons	gal		
m ³	cubic meters	35.314	cubic feet	ft ³		
m ³	cubic meters	1.307	cubic yards	yd³		
		MASS				
g	grams	0.035	ounces	oz		
kg	kilograms	2.202	pounds	lb		
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т		
	TEN	IPERATURE (exact degrees)				
°C	Celsius	1.8C+32	Fahrenheit	٥F		
		ILLUMINATION				
lx	lux	0.0929	foot-candles	fc		

APPROXIMATE CONVERSIONS FROM SI UNITS

pound force per kPa 0.145 lbf/in² kilopascals square inch *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply

FORCE and PRESSURE or STRESS

fl

kip

lbf

foot-Lamberts

pound force

1000 pound force

0.2919

0.225

0.225

cd/m²

kΝ

Ν

candela/m²

kilonewtons

newtons

with Section 4 of ASTM E380.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession	No. 3. Re	cipient's Catalog No.	
4. Title and Subtitle		5. Re	port Date	
Stainless Steel Strands and Ligh	itweight Concrete fo	r Nove	mber 2020	
Pretensioned Concrete Girders Concrete)	htweight 6. Po	erforming Organizatio	n Code	
7. Author(s) Michelle Rambo-Roddenberry,	Anwer Al-Kaimakch	8. Pe	rforming Organizatior	n Report No.
9. Performing Organization Name and Add FAMU-FSU College of Engineer	ress ing	10. V	/ork Unit No. (TRAIS)	
Department of Civil and Enviro	nmental Engineering	11.0	ontract or Grant No.	
2525 Pottsdamer St., Rm, A129)	BDA:	30-977-22	
Tallahassee El 32310-6046				
12. Sponsoring Agency Name and Address	S	13. T	vpe of Report and Pe	riod Covered
Florida Department of Transpo	rtation	Fina	l Report	
605 Suwannee Street. MS 30		Dec	ember 2020	
Tallahassee, FL 32399-0450		14. S	ponsoring Agency Co	de
15. Supplementary Notes				
16 Abstract				
 16. Abstract Benefits of lightweight concrete include reduction in the self-weight of the girder and reduction in transportation and handling costs, as well as potentially longer spans. Lightweight concrete can be produced with strength equivalent to normal-weight concrete. However, FDOT does not currently have an approved lightweight concrete mix was developed; the fresh and hardened mechanical properties were measured, lightweight concrete bridge girders were constructed, and the camber behavior of the girders was measured. At a later date, the flexural/shear behavior of girders may be studied. The self-consolidating lightweight concrete mix for girders. The 10 ksi strength was achieved 11 days after casting the test girders, and the strength at 28 days was 11.22 ksi − 12% higher than the specified strength. The measured unit weight was 0.126 kH², slightly higher than the design unit weight of 0.122 kH². The developed ightweight concrete mix stifsfed FDOT's mix design requirements. The fresh properties – including sump, air content, and penetration – we evaluated before casting the concrete or. Staffed FDOT's mix design endurements. The fresh properties – including sump, air content, and penetration – were evaluated before casting the concrete compressive strength of lo ksi. The average measured modulus of elasticity was 0.48 KH70 equations for lightweight concrete compressive strength of lo ksi. The average measured modulus of lasticity was 1.5% higher than the calculated value using the ASHTO equations. Because no physical test was performed on the lightweight aggregate, the <i>K</i> factor was assumed as 1.0. The average measured splitting tensils properties with a da compressive strength higher than 10 ksi. Five 42-ft-long AASHTO Type II girders were fabricated: two (2) used the lightweight concrete mix described above, and three (3) used normal-weight concrete was 0.688 ksi, on 0.185 √_{fc}². ASHTO Equent AASHTO equation and oncel were soluted were sel				
17. Key Word		18. Distribution Statemen		
Lightweight concrete, lightweight girder, ma	aterial properties, camber	No restrictions.		
19. Security Classif. (of this report) Unclassified.	20. Security Classif. (Unclassified.	of this page)	21. No. of Pages 69	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

ACKNOWLEDGMENTS

The authors wish to express their gratitude and sincere appreciation to the Florida Department of Transportation for funding this project. The authors would like to thank Vickie Young, Will Potter, Sam Fallaha, Steve Nolan, and Bruno Vasconcelos for their technical input and support throughout the project. Also, the authors would like to thank Ariana Morales Rapallo, Paul Tighe, Ben Allen, Miguel Ramirez and Michael Waters at the FDOT Structures Research Center in Tallahassee, and Richard DeLorenzo, Juan Coz Sanchez and Andrew Pinkham at FDOT State Materials Office in Gainesville for their assistance in testing specimens; the work was enjoyable and well executed because of their expertise and enthusiasm.

EXECUTIVE SUMMARY

Benefits of lightweight concrete include reduction in the self-weight of the girder and reduction in transportation and handling costs, as well as potentially longer spans. Lightweight concrete can be produced with strength equivalent to normal-weight concrete. However, FDOT does not currently have an approved lightweight concrete mix for girders. The objective of this research was to study the implementation of lightweight concrete in girders. The following tasks were performed: a lightweight concrete mix was developed; the fresh and hardened mechanical properties were measured, lightweight concrete bridge girders were constructed, and the camber behavior of the girders was measured. At a later date, the flexural/shear behavior of girders may be studied.

The self-consolidating lightweight concrete mix that was developed for use in the girders had a design compressive strength of 10 ksi, which is higher than the 8.5-ksi strength of FDOT's standard concrete mix for girders. The 10-ksi strength was achieved 11 days after casting the test girders, and the strength at 28 days was 11.22 ksi – 12% higher than the specified strength. The measured unit weight was 0.126 k/ft³, slightly higher than the design unit weight of 0.122 k/ft³. The developed lightweight concrete mix satisfied FDOT's mix design requirements. The fresh properties - including slump, air content, and penetration - were evaluated before casting the concrete. The hardened properties – including unit weight, compressive strength, modulus of elasticity, splitting tensile strength, and modulus of elasticity – were evaluated by testing concrete cylinders and small beams, which were cast from the batches used to fabricate the girders. The current AASHTO LRFD equations are limited to lightweight concrete compressive strength of 10 ksi. This study investigated the applicability of AASHTO equations for lightweight concrete compressive strength higher than 10 ksi. The average measured modulus of elasticity was 4,875 ksi, which was 15% higher than the calculated value using the AASHTO equation. Because no physical test was performed on the lightweight aggregate, the K1 factor was assumed as 1.0. The average measured splitting tensile strength of the lightweight concrete was 0.618 ksi, or $0.185\sqrt{f_c'}$. AASHTO LRFD Section 5.4.2.8 conservatively estimated the concrete density modification factor (λ). The average measured modulus of rupture was 0.895 ksi, which is 19% higher than the value calculated using the AASHTO equation. It can be concluded that the current AASHTO equations conservatively estimate the hardened materials properties of the lightweight concrete mix used in this study, which had a compressive strength higher than 10 ksi.

Five 42-ft-long AASHTO Type II girders were fabricated: two (2) used the lightweight concrete mix described above, and three (3) used normal-weight concrete. Girder cambers were monitored over time. Short-term camber measurements were compared between lightweight and normal-weight girders. The average measured cambers at 33 days were 0.605 in. and 0.688 in. for normal-weight Girders (A1, A2, and A3) and lightweight Girders (D1 and D2), respectively. Lightweight concrete girders had higher camber because of their lower elastic modulus. Long-term cambers of the lightweight girders were compared with values obtained using the PCI multiplier method and FDOT Prestressed Mathcad program v5.2. The short- and long-term cambers of lightweight girders were overestimated by both the PCI multiplier method and the FDOT program, where the PCI multiplier method was the most conservative. The average measured camber of lightweight girders at 380 days was 0.75 in., which was 67% of the calculated camber by FDOT program. The two lightweight concrete girders are currently stored at the FDOT SRC and will be experimentally tested in flexure or shear after adding a deck slab to investigate the structural behavior of high-strength lightweight concrete girders.

TABLE OF CONTENTS

Disclaimer ii				
SI* (modern metric) conversion factorsiii				
Technical report documentation pagev				
Acknowledgmentsvi				
Executive summary				
List of tablesx				
List of figures				
1 INTRODUCTION				
2 CONCRETE MIX DESIGN				
3 GIRDER FABRICATION				
4 MATERIAL PROPERTIES TESTING MATRIX				
5 MATERIAL PROPERTIES TESTING RESULTS				
5.1 Compressive strength				
5.1 Unit weight				
5.2 Modulus of elasticity				
5.3 Splitting tensile strength				
5.4 Modulus of rupture				
6 CAMBER MEASUREMENTS 16				
6.1 At casting yard				
6.2 At FDOT SRC				
7 CAMBER PREDICTIONS				
7.1 PCI multiplier method				
7.2 FDOT Mathcad program				
8 FLEXURAL/SHEAR TESTS				
9 SUMMARY				
10 REFERENCES				
APPENDIX A: DETAILED DESIGN DRAWINGS				
APPENDIX B: FABRICATION OF LIGHTWEIGHT GIRDERS				

LIST OF TABLES

Table 1	Concrete mixture proportions	2
Table 2	Fabrication activities schedule	4
Table 3	Field concrete test results	5
Table 4	Concrete compressive strength during the first 28 days after casting	5
Table 5	Material properties testing matrix	7
Table 6	Compressive strength test results	9
Table 7	Modulus of elasticity test results	2
Table 8	Splitting tensile strength test results 1	3
Table 9	Modulus of rupture test results	4
Table 10	Comparison of measured and calculated camber at transfer and erection	1

LIST OF FIGURES

Figure 1	Casting bed layout
Figure 2	Reinforcement layout
Figure 3	Slump test
Figure 4	Air content test
Figure 5	Compressive strength versus concrete age
Figure 6	Concrete cylinders
Figure 7	Compressive strength test
Figure 8	Failure of concrete cylinder in compression
Figure 9	Illustration of normal-weight and lightweight aggregates in cylinders 10
Figure 10	Installing extensometer for modulus of elasticity test
Figure 11	Modulus of elasticity test 11
Figure 12	Splitting tensile strength test
Figure 13	Tensile failure of cylinder
Figure 14	Modulus of rupture test
Figure 15	Failure of concrete beam in tension 15
Figure 16	Illustration of normal-weight and lightweight aggregates in beams
Figure 17	Girders at the casting yard17
Figure 18	Laser machine at top of the girder 17
Figure 19	Adjusting the detector along the measuring ruler
Figure 20	Camber monitoring at the casting yard
Figure 21	Measuring camber at the FDOT lab 19
Figure 22	Camber monitoring at the FDOT lab

1 INTRODUCTION

Self-weight of girders represents a significant portion of the design load for prestressed concrete bridge girders. Self-weight can be reduced by using lightweight concrete. The key component in lightweight concrete is lightweight coarse aggregate. The use of lightweight concrete may be the solution for long girders that cannot be transported due to their heavy weight or route restrictions. Other advantages of lightweight concrete are reduced transportation and handling costs, as well as potentially longer spans.

The objective of this research program was to study the implementation of lightweight concrete in girders. The first task was to develop a high-strength lightweight concrete mix design. The second task was to measure the fresh and hardened mechanical properties of the lightweight concrete and compare results with predicted values by AASHTO equations (2017). The third task was to construct the girders. The fourth task was to compare short-term camber measurements on the normal-weight girders (Girders A) and lightweight concrete girders (Girders D), and to compare the long-term camber measurements on the lightweight concrete girders with predicted values obtained using the PCI multiplier method and Florida Department of Transportation (FDOT) Prestressed Beam Mathcad program v5.2. Another task was to study the flexural behavior of the lightweight concrete girders; however, the testing was delayed due to limited testing availability at the FDOT Structures Research Center (SRC). The girders are stored at SRC, so the testing may be done at a later date.

2 CONCRETE MIX DESIGN

Currently, FDOT does not have an approved lightweight concrete mix for bridge girders. Therefore, the authors had to develop a mix design for this research program. The process started by approaching multiple companies and researchers to assist in the development of the mix. The authors ended up working with the research team at Dura-stress, Inc., a manufacturer (precaster) of prestressed concrete components, in Leesburg, FL. The original goal was to have a self-consolidating mix with 8.5-ksi compressive strength, which is the strength of FDOT's standard mix for girders. The general rules that guided the design process were that admixtures and materials should be easily obtained by precasters and should be familiar to precasters in Florida. Several trial mixes were developed, and they were tested in both fresh and hardened states. The fresh properties included slump, air content, and penetration. The hardened property was

compressive strength. The final mix had a compressive strength of 10 ksi and satisfied all the design limits requirements. The developed mix was approved by FDOT State Materials Office.

Table 1 shows the mix designs for lightweight concrete and normal-weight concrete used in the fabrication of the girders in this study. All the materials used in the two mixes were the same except that lightweight coarse aggregates were used in the lightweight mix. The proportions of the materials were slightly different. The same admixtures were used in both mixes, although the quantities differed slightly. The cement was produced by Argos. The lightweight aggregate was produced by Stalite, and the fine aggregate (sand) was supplied by Vulcan Materials Company. Separation Technologies supplied the fly ash, and all three admixtures were produced by BASF. The developed lightweight mix can be easily reproduced by any precaster in Florida.

Material	Unite	Quantity		
Wiaterial	Omts	Lightweight	Normal weight	
Type II cement	lb/yd ³	720	703	
Fly ash (Type F)	lb/yd ³	170	167	
Metakaolin	lb/yd ³	78	74	
Stalite #67	lb/yd ³	852	-	
Crushed stone #67		-	1360	
Sand	lb/yd ³	1200	1202	
Water	lb/yd ³	280	240	
Water-cement ratio	-	0.39	0.34	
Calcium Nitrite	oz/yd ³	320	320	
Air entraining admixture MB AE90	oz/yd ³	0.75	0.25	
Set retardant admixture, DELVO	oz/yd ³	19	28	
Water-reducing admixture, Glenium 7920	oz/yd³	65	69	

Table 1 Concrete mixture proportions

3 GIRDER FABRICATION

Five 42-ft-long AASHTO Type II girders were fabricated. Three girders were cast using normal-weight concrete while the other two girders were cast with lightweight concrete. The specified concrete compressive strength for both normal-weight concrete and lightweight concrete was 10 ksi. Both mixes were self-consolidating concrete. All girders were fabricated in one bed as shown in Figure 1. All five girders had 11 0.6-in.-diameter carbon steel strands, in four layers where the strand pattern was 1:2:4:4, starting from the bottom layer. The transverse reinforcement,

Figure 2, in the lightweight girders (Girder D1 and Girder D2) was carbon steel rebar. Note that all five girders had same transverse reinforcement spacing; however, different transverse reinforcement type was used in Girders A2 and A3. Detailed drawings for all five girders are provided in Appendix A. Also, more information about transverse reinforcement type in Girders A2 and A3 can be found in Part A of this report.

Figure 2 Reinforcement layout

Table 2 presents fabrication activities for the lightweight girders. First, carbon steel strands were run in the casting bed and then tensioned to 43.9 kips, which was 75% of ultimate strength. After tensioning the strands, confinement and stirrup reinforcement was tied, and concrete was cast. The forms were removed the next day, and strands were released two days after casting concrete. A fabrication check list, provided by Dura Stress, Inc., is included in Appendix B. More information about design and fabrication of the three girders cast with normal-weight concrete can be found in Part A of this report.

Date	Activity
9/10/2018	Run strands, tension strands and tie reinforcement
9/11/2018	Set side forms
9/12/2018	Cast concrete
9/13/2018	Remove side forms
9/14/2018	Release strands

Table 2 Fabrication activities schedule

Before casting concrete, Dura-stress, Inc., field lab performed several fresh tests on the concrete batches. The fresh tests included slump, air content, water-to-cement ratio, and penetration. Slump and air content testing are shown in Figure 3 and Figure 4, respectively. Results from those tests are given in Table 3. Note that the slumps in both concrete batches were slightly higher than the design limits. Dura-stress, Inc., field lab also tested multiple concrete cylinders in compression at different days during the first 28 days after casting to measure gain in concrete compressive strength. Results of the compressive strength tests are given in Table 4. Figure 5 presents concrete compressive strength versus concrete age; note that the specified compressive strength of 10 ksi was achieved 11 days after casting concrete.

Figure 3 Slump test

Figure 4 Air content test

Table 3 Field	concrete test results

Test	Truck 1	Truck 2	ASTM	Limit
Slump	31/31	31/32		24.5 in. – 29.5 in.
Air %	1	1	C1611	1 - 6
VSI	0	0	C1011	=< 1
T ₅₀	2	3		2-7 seconds
Penetration (mm)	1	0	C1621	=< 2 in.

Table 4 Concrete compressive strength during the first 28 days after casting

Specimen ID	Casting day	Testing day	No. of days after casting	Compressive strength (ksi)	Avg. comp. strength (ksi)
1		9/13/2018	1	5.70	5.70
2		0/14/2019	2	6.53	6.50
3		9/14/2018	2	6.64	0.39
4		9/18/2018	5	9.18	9.19
5	9/12/2018	0/24/2019	11	10.01	10.01
6		9/24/2018 11	10.00	10.01	
7				11.30	
8		10/10/2018	28	11.20	11.22
9				11.15	

Figure 5 Compressive strength versus concrete age

In addition, several concrete cylinders and small concrete beams were taken from each concrete batch as shown in Figure 6. Some cylinders were used to measure concrete compressive and splitting tensile strengths, modulus of elasticity, and Poisson's ratio. Other cylinders will be used to measure concrete compressive strength when future flexural and/or shear tests are performed. Small concrete beams were used to measure modulus of rupture.

Figure 6 Concrete cylinders

4 MATERIAL PROPERTIES TESTING MATRIX

The material properties of hardened concrete include compressive and splitting tensile strengths, modulus of rupture, and modulus of elasticity. Fifteen cylinders and eight beams were used to determine the material properties of the lightweight concrete mix used in the fabrication of the girders. The diameter and height of the cylinders were 4 in. and 8 in., respectively. After the cylinders were filled, they were covered with lids. The length, height, and width of the beams were 12 in., 4 in., and 4 in., respectively. Beams were removed from their molds 24 hours after casting and submerged in water. Both cylinders and beams were stored at the FDOT SRC in Tallahassee, FL. Later, 546 days after casting, cylinders and beams were sent for testing at the FDOT State Materials Office (SMO) in Gainesville, FL. All specimens were tested by professional technicians following the designated ASTM testing procedure. Table 5 shows the test matrix and specimen IDs.

	Testing	Testing	gBeams		
Specimen ID	Compressive strength ASTM C39 (2020)	Splitting tensile strength ASTM C496 (2017)	Modulus of elasticity and Poisson's ratio ASTM C469 (2014)	Specimen ID	Third point loading ASTM C78 (2018)
C1	X			B1	X
C2	Х			B2	X
C3	Х			B3	X
C4		X		B4	X
C5		X		B5	X
C6		Х		B6	X
C7		X		B7	X
C8		Х		B8	X
C9		Х			
C10	х 🔶		X		
C11	х 🔶		X		
C12	х 🔶		X		
C13	х 🗲		X		
C14	х 🔶		X		
C15	х 🔶		X		

Table 5 Material properties testing matrix

5 MATERIAL PROPERTIES TESTING RESULTS

Concrete compressive strength, unit weight, splitting tensile strength, modulus of rupture, and modulus of elasticity testing results are discussed below.

5.1 Compressive strength

A total of nine cylinders were tested in compression following ASTM C39 (2020) testing procedure. Figure 7 shows the compressive strength test apparatus. Three cylinders (C1, C2 and C3) were tested in compression only. Figure 8 shows failure of one cylinder in compression. The average compressive strength from those three cylinders was used to determine the proper load level for the modulus of elasticity test. The other six cylinders were first tested for modulus of elasticity, and then they were tested for compressive strength.

Table 6 lists the measured compressive strength for the lightweight concrete cylinders 546 days after casting; the average strength was 11.23 ksi with a standard deviation of 1.50 ksi. The average concrete compressive strength 28 days after casting was 11.22 ksi, which was 12.2% greater than the design compressive strength. The main difference between lightweight and normal-weight concretes is the use of lightweight coarse aggregate. Figure 9 shows normal-weight and lightweight cylinders after being tested in compression. The differences in the type of aggregate used in each of them is very visible.

Figure 7 Compressive strength test

Figure 8 Failure of concrete cylinder in compression

5.1 Unit weight

The design unit weight was 122 lb/ft³. Table 6 provides the hardened unit weight, calculated from the cylinder weights. The average measured unit weight was 126 lb/ft³ with a standard deviation of 1.56 lb/ft³.

Specimen ID	C1	C2	C3	C10	C11	C12	C13	C14	C15
Length (in.)	7.65	7.61	7.56	7.53	7.65	7.68	7.73	7.62	7.69
Diameter (in.)	4.01	4.01	4.01	4.00	4.01	4.02	4.02	4.02	4.01
Weight (g)	3207	3162	3153	3199	3209	3210	3209	3210	3145
Hardened density (lb/ft ³)	127	125	126	129	127	126	125	125	123
Max load (kips)	133	135	151	174	172	131	124	119	138
Compressive strength (ksi)	10.54	10.68	11.97	13.85	13.60	10.35	9.75	9.40	10.93

Table 6 Compressive strength test results

Figure 9 Illustration of normal-weight and lightweight aggregates in cylinders

5.2 Modulus of elasticity

Modulus of elasticity is another important property, which has a significant effect on camber and deflection calculations. Six cylinders were tested for modulus of elasticity following ASTM C469 (2014) test procedure. Generally, bridge girders remain in the elastic region under service conditions. The cylinders were tested 546 days after casting, which provides results comparable to service conditions. Figure 10 shows preparation of a cylinder to be tested for modulus of elasticity. Figure 11 shows a modulus of elasticity test. Results from the modulus of elasticity tests are given in Table 7. The average modulus of elasticity was 4,875 ksi with a standard deviation of 197 ksi.

Figure 10 Installing extensometer for modulus of elasticity test

Figure 11 Modulus of elasticity test

AASHTO LRFD Section 5.4.2.4 provides the following equation to calculate modulus of elasticity of lightweight concrete with compressive strengths up to 10 ksi.

$$E_c = 120,000 K_1 w_c^{2.0} f_c'^{0.33}$$

where

 K_I = correction factor for source of aggregate (taken as 1.0 unless determined by physical test, and approved)

 w_c = unit weight of concrete (kcf)

 f_c' = concrete compressive strength

The calculated modulus of elasticity using AASHTO equation was 4,231 ksi, where K_1 was assumed to be 1.0, and w_c was taken as 0.126 kcf. The calculated modulus of elasticity was approximately 87% of the average of that measured experimentally. As noted above, K_1 is a factor to adjust for type of aggregate; the higher the factor, the stiffer the aggregate. Even though K_1 was assumed as 1.0 for lightweight aggregate, the AASHTO equation for modulus of elasticity was conservative for the high-strength lightweight concrete used in this study. The calculated modulus of elasticity using design parameters (f'_c =10 ksi and w_c = 0.122 kcf) was 3,819 ksi. The average measured modulus of elasticity was 27.6% greater than that AASHTO calculated using design parameters.

Specimen ID	C10	C11	C12	C13	C14	C15
Length (in.)	7.53	7.65	7.68	7.73	7.62	7.69
Diameter (in.)	4.00	4.01	4.02	4.02	4.02	4.01
Modulus of elasticity (ksi)	5,221	5,048	4,826	4,752	4,761	4,645
Poisson's ratio	129	127	126	125	125	123

Table 7 Modulus of elasticity test results

5.3 Splitting tensile strength

Splitting tensile strength (f_{ct}) can be measured from cylinders. Six cylinders were tested for splitting tensile strength following ASTM C469 (2017) test procedure. Figure 12 shows the test setup for splitting tensile strength tests. Failure of all cylinders occurred by splitting of the cylinders into approximately identical halves as shown in Figure 13. Test results are given in Table 8, where the average splitting tensile strength was 0.618 ksi with a standard deviation of 0.075 ksi.

The splitting tensile strength (f_{ct}) is directly related to concrete compressive strength (f'_c) . The relationship between splitting tensile strength and concrete compressive strength can be represented by $f_{ct} = a \sqrt{f'_c}$ where *a* is a factor. The measured value of the *a* factor using average measured concrete compressive strength was 0.185, which was lower than the *a* value of 0.230 specified by AASHTO LFRD Section C5.4.2.7. Note that the specified *a* value in AASHTO is for normal-weight concrete with compressive strength lower than 10 ksi.

Figure 12 Splitting tensile strength test

Figure 13 Tensile failure of cylinder

Specimen ID	C4	C5	C6	C7	C8	С9
Length (in.)	7.63	7.55	7.69	7.57	7.61	7.65
Diameter (in.)	4.01	4.02	4.02	4.00	4.01	4.01
Max. applied load (kip)	31.07	31.81	24.44	27.43	27.75	35.56
Splitting tensile strength (ksi)	0.645	0.665	0.505	0.575	0.580	0.740

Table 8 Splitting tensile strength test results

AASHTO LRFD Section 5.4.2.8 provides the following equation to calculate the concrete density modification factor (λ) based on splitting tensile strength (f_{cl}) and concrete compressive strength (f'_c):

$$\lambda = 4.7 \ \frac{f_{ct}}{\sqrt{f_c'}} \le 1.0$$

Using the average measured splitting tensile strength (f_{cl}) of 0.618 ksi and average measured concrete compressive strength (f'_c) of 11.23 ksi, the calculated concrete density modification factor (λ) was 0.867. If the splitting tensile strength is not specified, AASHTO LRFD Section C5.4.2.8 provides a chart to determine the concrete density modification factor (λ) based on the unit weight of the mixture. For the measured unit weight of 0.126 kcf, the concrete density modification factor (λ) was found to be 0.936. Calculations indicate that the 4.7 factor in the above equation is conservative. Note that the measured compressive strength was 11.23 ksi, which was higher than the specified concrete compressive strength limit of 10 ksi for lightweight concrete according to AASHTO LRFD Section 5.4.2.6.

5.4 Modulus of rupture

Modulus of rupture is important in determining the required or acceptable amount of prestress. Eight small beams were tested in flexure under three-point loading following ASTM C78 (2018) testing procedure. Figure 14 shows the test setup for the modulus of rupture test. Failure of all beams occurred within the middle span as shown in Figure 15. Test results are given in Table 9. The average modulus of rupture was 0.895 ksi with a standard deviation of 0.107 ksi. Figure 16 shows the cross section of the beams, made with normal-weight and lightweight aggregate, after being tested for modulus of rupture.

Specimen ID	B1	B2	B3	B4	В5	B6	B7	B8
Span length (in.)	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Width (in.)	4.03	4.03	4.03	4.02	4.02	4.00	4.05	4.05
Depth (in.)	4.02	4.02	4.05	4.03	4.00	4.00	4.05	4.05
Total load (kip)	4.32	5.31	5.49	4.44	4.90	4.68	5.01	4.80
Modulus of rupture (kip)	0.795	0.980	0.995	0.815	0.915	0.875	0.910	0.875

Table 9 Modulus of rupture test results

Figure 14 Modulus of rupture test

Figure 15 Failure of concrete beam in tension

Figure 16 Illustration of normal-weight and lightweight aggregates in beams

AASHTO LRFD Section 5.4.2.6 provides the following equation to calculate modulus of rupture (f_r) of lightweight concrete with compressive strengths up to 10 ksi:

$$f_r = 0.24 \ \lambda \sqrt{f_c'} = 0.24 \ (0.936) \sqrt{11.23} = 0.753 \ \text{ks}$$

Comparison of the measured results with calculated results revealed that the factor value of 0.24 in the above equation underestimates the modulus of rupture for concrete compressive strength higher than 10 ksi. A factor value of 0.29 better predicts the modulus of rupture for lightweight concrete used in this study.

6 CAMBER MEASUREMENTS

6.1 At casting yard

Three self-consolidating normal-weight concrete Girders A1, A2, and A3 and two selfconsolidating lightweight concrete Girders D1 and D2 were cast in the same bed. After releasing the strands, camber occurred in each girder due to effect of the prestressing. A simple method was used to measure the camber when the girders were in the casting bed. The camber was determined by measuring the distance between the casting bed and bottom fiber of the girder using a measuring tape. The measured midspan camber at the casting bed was 0.25 in. for Girder A1 and Girder A2, and 0.188 in. for Girder A3, Girder D1 and Girder D2. Then, the girders were moved from the casting bed and stored at the casting yard for 33 days. Girders were put on supports as shown in Figure 17. The distance between center of supports was approximately 38 ft.

Figure 17 Girders at the casting yard

A rotary laser level, Figure 18, was used to take camber measurements on the girders at the casting yard. The rotary laser level operates by rotating 360 degrees and sending a red laser that can be detected by a receiver. A movable receiver was attached to a graded rod, Figure 19. The receiver was adjusted along the graded rod to be aligned with the red laser to determine elevation with respect to the laser level. Elevations at the two supports and midspan were taken each time. The difference between the average elevation at the supports and midspan represents camber. Figure 20 presents the camber measurements for the first 33 days after release.

Figure 18 Laser machine at top of the girder

Figure 19 Adjusting the detector along the measuring ruler

Figure 20 Camber monitoring at the casting yard

6.2 At FDOT SRC

All five girders were transported to FDOT SRC in Tallahassee, FL, 33 days after casting. When they arrived, they were put inside the lab. The three normal-weight girders (A1, A2, and A3) were tested either in shear or flexure, and no camber documentation was performed. More information about the shear and flexural testing of Girders A1, A2, and A3 can be found in Part A of this report.

After a few months of being stored in the lab, the lightweight girders (D1 and D2) were moved outside to the back yard of the lab as shown in Figure 21. Note that no camber readings were taken when the girders were inside the lab. The first camber reading at the lab was taken 303 days after casting the girders. A level device and a measuring tape were used to measure camber. First, the level device was installed. Then, elevations of the two supports and midspan were measured. At each reading, the camber was determined by calculating the difference between the average elevation at the supports and midspan. Figure 22 presents the measured camber versus time for the two lightweight girders. The final measured camber at 380 days was 0.75 in. for both girders. It can be concluded that the measured camber of lightweight girders had negligible change between erection (taken as 33 days, the age at which the girders were transported to FDOT SRC) and 380 days.

Figure 21 Measuring camber at the FDOT lab

Figure 22 Camber monitoring at the FDOT lab

7 CAMBER PREDICTIONS

7.1 PCI multiplier method

The camber of the girders at transfer and at erection (taken as 33 days in this study) was calculated using an approximate method, the PCI multiplier method (2003). The procedure for camber calculation is as follows.

1. Calculate camber due to prestressing force (Δ_p)

$$\Delta_P = \frac{P_{pi}}{E_{ci}I_g} \left(\frac{e_c \ L^2}{8}\right)$$

where

 P_{pi} = total prestressing force after transfer = 483.4 kips

 E_{ci} = modulus of elasticity of concrete at transfer = 4,961 ksi for normal-weight concrete and 3,549 ksi for lightweight concrete

 I_g = moment of inertia of girder = 50,979 in⁴

 e_c = eccentricity of prestressing strands = 10.49 in.

L = overall girder length = 42 ft at casting bed and 38 ft at erection

After substituting the variables into the above equation, the camber due to prestressing force (Δ_P) is 0.637 in. upward for Girders A1, A2, and A3 (normal-weight concrete) and 0.890 in.

upward for Girders D1 and D2 (lightweight concrete). Lightweight concrete girders had higher camber because of their lower modulus of elasticity.

2. Calculate camber due to self-weight (Δ_q)

$$\Delta_g = \frac{5w_g L^4}{384E_{ci}I_g}$$

where

 w_g = girder self-weight = 0.384 k/ft for normal-weight concrete and 0.329 k/ft for lightweight concrete

Calculated deflections due to girder self-weight (Δ_g) at transfer and erection are 0.106 in. and 0.071 in. downward, respectively, for Girders A1, A2, and A3 (normal-weight concrete), and are 0.125 in. and 0.084 in. downward, respectively, for Girders D1 and D2 (lightweight concrete).

3. Calculate camber at transfer (Δ_{tra})

$$\Delta_{tra} = \Delta_{\rm P} - \Delta_g$$

4. Calculate camber at erection (Δ_{33_days})

$$\Delta_{33_days} = 1.80 \Delta_P - 1.85 \Delta_g$$

The PCI multiplier method was found to significantly overestimate the camber of normalweight and lightweight girders at transfer and erection as shown in Table 10.

	At tr	ansfer (after re	elease)	At erection (33 days)					
Specimen ID	Measured (in.)	PCI multiplier method (in.)	FDOT Mathcad program (in.)	Measured (in.)	PCI multiplier method (in.)	FDOT Mathcad program (in.)			
Girder A1	0.250			0.563					
Girder A2	0.250	0.530	0.360	0.563	1.014	0.620			
Girder A3	0.188			0.688					
Girder D1	0.188	0.765	0.460	0.625	1 447	0.770			
Girder D2	0.188	0.703	0.400	0.750	1.44/	0.770			

Table 10 Comparison of measured and calculated camber at transfer and erection

7.2 FDOT Mathcad program

FDOT Prestressed Beam Mathcad program v5.2 was used to calculate the camber of the noncomposite section. The program is based on FDOT Report no. BD545-7, titled FIELD VERIFICATION OF CAMBER ESTIMATES FOR PRESTRESSED CONCRETE BRIDGE GIRDERS (Cook et al. 2005). The unit weight of concrete was the only parameter changed in the Mathcad program for the calculation of camber for lightweight concrete girders. As mentioned previously, the measured unit weight for lightweight concrete was 0.126 kcf. In the FDOT Mathcad program, a unit weight of 0.131 kcf, which includes 0.005 kcf for reinforcing materials, was used. The calculated camber by the FDOT program, for lightweight girders at 33 days, was 0.77 in., which is greater than the measured values as shown in Figure 20. As mentioned previously, the camber for the lightweight girders was monitored long-term. The calculated camber at 120 days was 0.94 in. The long-term camber was conservatively predicted by the FDOT program as shown in Figure 22.

8 FLEXURAL/SHEAR TESTS

The two lightweight concrete girders are currently stored in the back yard of the FDOT SRC in Tallahassee, FL. They will be tested either in shear or flexure after adding a deck slab to them. Tests are expected to be done in the future; no dates have been specified yet.

9 SUMMARY

A high-strength, 10 ksi, self-consolidating lightweight concrete mix was developed and used in this research program. Two 42-ft-long AASHTO Type II girders were fabricated using lightweight concrete. This study focuses on investigating the fresh and hardened properties of the developed mix. All experimental tests were conducted by professional technicians following the designated ASTM testing procedure. The fresh properties (slump, air content, and penetration) were tested before casting concrete in the bed. Several concrete cylinders and small beams were cast from the concrete batches used in the fabrication of the girders. Those cylinders and beams were used to determine the hardened properties of the concrete mixture. The hardened properties included unit weight, compressive strength, modulus of elasticity, splitting tensile strength, and modulus of elasticity. The design unit weight was 122 lb/ft³. However, the average measured unit weight was 126 lb/ft³. The specified compressive strength of the mixture was 10 ksi, which was achieved 11 days after casting concrete. The 28-day compressive strength was 11.22 ksi. Note that AASHTO LRFD equations regarding lightweight concrete are limited to compressive strengths up to 10 ksi. Thus, the applicability of AASHTO LRFD equations was investigated for compressive strength higher than 10 ksi.

The average measured and AASHTO calculated modulus of elasticity for lightweight concrete was 4,875 ksi and 4,232 ksi, respectively. Note that the K_I factor in the AASHTO equation was assumed as 1.0 because no physical test was performed on the lightweight aggregate used. The higher the K_I factor, the stiffer the aggregate. Results showed that the modulus of elasticity of the high-strength lightweight concrete was conservatively estimated by the AASHTO equation. The average measured splitting tensile strength (f_{cl}) was 0.618 ksi, which represents $0.185\sqrt{f_c'}$. The concrete density modification factor (λ) is conservatively calculated by AASHTO LRFD equation. The average modulus of rupture (f_r) was 0.895 ksi, which represents $0.29\lambda\sqrt{f_c'}$. Therefore, the AASHTO LRFD equation for modulus of rupture (f_r) was found to conservatively predict the experimental results.

Girders were monitored for camber. The measured cambers for normal-weight Girders A1, A2, and A3 at transfer were 0.250 in., 0.250 in., and 0.188 in., respectively, and at 33 days were 0.563 in., 0.563 in., and 0.688 in., respectively. The measured cambers for lightweight Girders D1 and D2 at transfer were 0.188 in. and 0.188 in., respectively, and at 33 days were 0.625 in. and 0.750 in., respectively. Both the PCI multiplier method and the FDOT program overestimated the camber of the lightweight girders, where the PCI multiplier method was the most conservative. The FDOT program was used to calculate the long-term camber of the lightweight girders. The calculated camber at 120 days and 380 days was 0.94 in. and 1.03 in., respectively. Results revealed that FDOT program overestimated the camber by approximately 37% at 380 days.

In the future, the two lightweight concrete girders will be experimentally tested to investigate the structural behavior of high-strength lightweight concrete girders.

10 REFERENCES

PCI. (2003). "PCI Bridge Design Manual", Precast/Prestressed Concrete Institute, Chicago, IL.

- ASTM C469. (2014). "Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression", American Society for Testing and Materials, West Conshohocken, PA.
- AASHTO LRFD. (2017). "AASHTO LRFD Bridge Design Specifications", 8th Ed., American Association of State Highway and Transportation Officials, Washington, DC.
- ASTM C496. (2017). "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens", American Society for Testing and Materials, West Conshohocken, PA.
- ASTM C78. (2018). "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)", American Society for Testing and Materials, West Conshohocken, PA.
- ASTM C39. (2020). "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", American Society for Testing and Materials, West Conshohocken, PA.
- Cook, R. A., Bloomquist, D., and Sanek, J. (2005). "Field Verification of Camber Estimates For Prestressed Concrete Bridge Girders." Florida Department of Transportation, Tallahassee, FL.

APPENDIX A: DETAILED DESIGN DRAWINGS

This section contains design detailed drawings for the lightweight girders as well as other girders. The designated IDs for lightweight girders are D1 and D2. The drawings included all the information needed for construction.

BEAM NOTES

- 1. Work Bar Bending Diagrams provided on this sheet with Index 415-001 for Beams A1, A3, B3, C1, C3, D1 and D2. Work Bar Bending Diagrams provided on this sheet with Developmental Design Standards Index D21310 for Beams A2, B2 and C2.
- 2. All bar bend dimensions are out-to-out.
- 3. Concrete cover: 2 inches minimum.
- 4. Strands N: ⅔" Ø minimum, stressed to 10,000 lbs. each. Strands N shall be Carbon Steel Strands.
- 5. Place one (1) Bar 4K or 5Z at each location. Alternate the direction of the ends for each bar.
- 6. Tie Bars 4K and 5Z to the fully bonded strands in the bottom or center row (see "STRAND
- PATTERN" on the Table of Beam Variables Sheet).
- 7. Place Bars 3D1 in beam END 1, and Bars 3D2 in beam END 2.
- 8. Contractor Options:
 - A. Bars 3D1 and 3D2 may be fabricated as a two-piece bar with a 1'-0" minimum lap splice of the bottom legs.
- 9. Cut wedges and Prestressing Strands at the end of the beam without damaging the surrounding concrete. See "STRAND CUTTING DETAIL."
- 10. Provide material certifications to FDOT Structures Research Center.
- 11. Carbon Steel and Stainless Steel reinforcing bars shall be Grade 60 per Specification Section 931.
- 12. GFRP reinforcing bars shall be in accordance with Specification Section 932.
- 13. Researchers and FDOT personnel shall be allowed to instrument the beams and monitor them during detensioning. Time required for instrumenting is approximately one day per casting bed setup.

STRAND CUTTING DETAIL

		REVI	sions			DRAWN BY:		STATE OF F		SHEET TITLE:	
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	JKF 12/17	DEDA	STATE OF FI	ANGDORTATION		
						CHECKED BY:	DEPA.	KIMENI OF IK.	ANSPORTATION		
						DESIGNED BY:	ROAD NO.	COUNTY	FINANCIAL PROJECT ID	PROJECT NAME:	-
						20					5
						CHECKED BY:					
											_

	BILL OF REI	NFORCING E BEAM O	STEEL NLY	
			· · · · ·	
MARK	NOTE NUMBERS	SIZE	NUMBER REQUIRED	LENGTH
Λ		5	A	12'_0"
A		2	4	72 -0
DI	8	3	12	3'-11%''
D2	8	3	10	3'-11¾''
K	5 & 6	4	80	4'-3 ¹ / ₂ "
N	1 8 0	3/" @ Strand	2	17 5"
N	4 & 9	78 0 Stranu	2	42 - 5
Ŷ	_	4	6	2'-5½"
Ζ	5&6	5	6	3'-7"
	BENDING L	DIAGRAMS	(See No	otes 1 & 2)
	BARS 3D1 &	3D2	blice $\frac{Z_{5}}{\Sigma}$ BARS 4 BARS 54 BARS 54	6" 4K 5" 5Z
Ο ΤΥΡΙ	E II BEAM - DETA	ILS AND NOT	ES	REF. DWG. NO.
Steel	Strands for Pret	ensioned Cond	crete	SHEET NO.
	Girders			1

			AASHT	Ο ΤΥΡΙ	E II BEAM - TAB	LE OF	BEA	M VAF	RIABLI	ES							
LOCA	ATION	CONCF	RETE PRO	PERTIES	MATERIALS FOR	STND.	END	PLAN	VIEW	BRG.	PLATE	ENI	OF BL	EAM &	BEARIN	G DIMEN	SIONS
SPAN	BEAM	CLASS	STRENGT	⁻HS (psi)	BARS 4K, 4Y, 5Z	PTRN.	ELEV.	CA	SE	MA	RK	ANG	LE Ø	ם אזח		רא אוס	רא אזם
NO.	NO.	CLASS	28 Day	Release	3D1, 3D2 & 5A	TYPE	COND.	END 1	END 2	END 1	END 2	END 1	END 2				
	A1	NWC	10000	6000	CARBON STEEL	3	1	1	1	-	-	90°	90°	-	-	-	-
	A2	NWC	10000	6000	GFRP	3	1	1	1	-	-	90°	90°	-	-	-	-
	A3	NWC	10000	6000	STAINLESS STEEL	3	1	1	1	-	-	90°	90°	-	-	-	-
	B2	NWC	10000	6000	GFRP	1	1	1	1	-	-	90°	90°	-	-	-	-
	B3	NWC	10000	6000	STAINLESS STEEL	1	1	1	1	-	-	90°	90°	-	-	-	-
	С1	NWC	10000	6000	CARBON STEEL	2	1	1	1	-	-	90°	90°	-	-	-	-
	С2	NWC	10000	6000	GFRP	2	1	1	1	-	-	90°	90°	-	-	-	-
	С3	NWC	10000	6000	STAINLESS STEEL	2	1	1	1	-	-	90°	90°	-	-	-	-
	D1	LWC	10000	6000	CARBON STEEL	3	1	1	1	-	-	90°	90°	-	-	-	-
	D2	LWC	10000	6000	CARBON STEEL	3	1	1	1	-	ļ	90°	90°	-	-	-	-

NOTES:

- 1. Work this Sheet with Sheets 1 and 2.

- - length for Beams B2 and B3.

STRAND DESCRIPTION: Use 0.6" Diameter, Stainless Steel Strands. Area per strand equals 0.2328 sq. in.

=STAINLESS STEEL STRAND PATTERNS ====

STRAND STRESSING LEGEND

- - Strands stressed at 43.9 kips each.
- - Strands stressed at 37.2 kips each.

NOTE: ALL STRANDS FULLY BONDED.

TYPE (3) 11 STRANDS

STRAND DESCRIPTION: Use 0.6" Diameter, Grade 270 Low-Relaxation Carbon Steel Strands. Area per strand equals 0.217 sq. in.

=		= CARB	ON	STEEL STRAND PATTERNS =							
	REVI	SIONS				DRAWN BY:		STATE OF FI	ORIDA	SHEET TITLE:	REF. DWG. NO.
DATE	BY DESCRIPTION	DATE	BY	DESCRIPTION		CHECKED BY: VAY 12/17	DEPA	ARTMENT OF TRA	NSPORTATION	AASHTO TYPE II BEAM - TABLE OF BEAM VARIABLES	
					28	DESIGNED BY:	ROAD NO.	COUNTY	FINANCIAL PROJECT ID	_ PROJECT NAME: Stainless Steel Strands for Pretensioned Concrete	SHEET NO.
						CHECKED BY:				Girders	3
								\$USEI	\$	\$DATE\$ \$TIME\$ \$FILE\$	

2. Use Carbon Steel Strands for Beams A1, A2, A3, D1 and D2. Use Stainless Steel Strands for Beams B2, B3, C1, C2 and C3. 3. For Beams B2, B3, C1, C2 and C3, FDOT will supply an adequate length of Stainless Steel Strand to extend length of casting bed and additional length as needed for stressing. 4. Return unused Stainless Steel Strand to FDOT Structures Research Center. 5. FDOT will cut Stainless Steel Strand samples from the beginning, middle and end of spool as needed for testing purposes. 6. Use Normal Weight Concrete (NWC) for Beams A1, A2, A3, B2, B3, C1, C2 and C3. 7. Use Light Weight Concrete (LWC) for Beams D1 and D2.

8. Beams B2, B3, C1, C2 and C3 may be cast with one set of 13 strands in the casting bed. This will require sheathing of two strands for the entire beam

415-001 1 of 1

	FRP RE	BAR HOC	OK DETAI	'LS	
ing Din	n.	Detailing	Dim.		
, Ó,	\mathbb{R}	d	D o		
	1	u	6		
A or	G		7		
0°		90°	UL		
	1000 /	100% C	000 1100/00	-	
D	160 r	100KS	90 HUUKS	,	
3"	4 ¹ /3''	31/2"	43/1"		
4 ¹ /2"	6 ³ //"	5½ 5¼″	71/2"		
4½"	8½"	5½"			
4½"	9 ³ / ₄ "	53/4"	105//"		
$\frac{-}{4^{1/2''}}$	111/2"	6"	1'-0''		
6"	1'-1½"	7 <i>¾</i> ″	1'-2"		
6"	1'-3"	8"	1'-4''		
		1	3		
		NOTE	S		
cion-	250 011 1	out			
nsions a Dimens	are out-to sions See	–out. REINFORCIN	IG BAR LIST	- She	et(s) in
es Plan	15.				
(TYPE	39 BARS)				
. In					
n rall He	eiaht				
al numb	ber of clo	sed turns a	t Top and B	ottor	n of spiral
= 1.5 tu ludo sr	urns piral colici	o in the Cor	ntract Unit D	Prico	for EPP
nforcin	g.			iice	
		. ,			
les De	are appro. tailed on	ximate. this sheet a	are for Illus	strati	ion Only.
ook Sty	le for an	y particular	bar will be	sho	wn under
eading	on REINF	ORCING BAP	R LIST shee	t(s) i	n
es Pidn	15.				
			INDEX		SHFFT
ጠጥ/			NO.		NO.
גע או אוי	NTT N		D2131	10	1 of 1

APPENDIX B: FABRICATION OF LIGHTWEIGHT GIRDERS

This section contains information about fabrication of the girders. All girders were fabricated at Dura-Stress, Inc., casting yard in Leesburg, FL. Dura-Stress provided fabrication check lists, which included the following:

- 1. Measured concrete fresh properties
- 2. Stress information
- 3. Rebar material/mechanical properties
- 4. Strand stress calculations
- 5. Pre-pour production sheet
- 6. Concrete mix designs
- 7. Concrete batch tickets
- 8. Casting bed diagram
- 9. Concrete compressive strength

CHECK LIST

TABLE SHEET STRESS REBAR/SPIRAL STRESS CALCS STRESS RESULTS PREPOUR BATCH TICKETS CASTING DIAGRAM JOB # B1789 FDOT # TEST BEAM PRODUCT TYPE TYPE II MARK # 1-01.1-02,1-A3,1-A2,1-A1 SERIAL # LW1-LW5 BED # 31 N MIX DESIGN LIGHT WEIGHT (10,000 mix) CS-2056 (10,000 mix)

Check Off!

-12-18

Cast Date:

Entered in Great Production:

Entered in MAC (initials)

Scanned:

Ready To File:

Sample #'s TESTOL

JULA NIA

TABLE SHEET

PROJECT NO	.: B1789 TEST B	2 EAM	I	PRODUCT :	TYPE II	- /						
BED # DATE CAST SLUMP RELEASE # OF REL. CYL'S	2: 24.5-29.5 : 6000 PSI : 70	MIX MIX AIR : SHIP MADE FROM	SE MI DESIGN TO 1 - 6 : $1 - 6$ RANDOM#	RIAL NOS X DESIGN CLASS DLERANCE AGG 251 7	$\frac{LW}{LGKTWEIC}$ $\frac{LW}{LGKTWEIC}$ $\frac{LW}{LOFWEIC}$ $\frac{LW}{LOFWEIC}$ $\frac{LW}{LOFWEIC}$ $\frac{LW}{LOFWEIC}$ $\frac{LW}{LOFWEIC}$: 0.9 : 25MM Max 0.3		R	rd setie)	CY TOTAL DAY 1 DAY 2	7,98	
SAMPLE #	LOT # / LAB #	AIR TEMP/ TIME	CONC. TEMP	T50	SLUMP	VSI	PEN.	AIR %	BUCKET VOLUME	MEASURE WEIGHT	MEASURE WITH CONCRETE	W/C RATIO
<i>Q.С.</i>	INITIAL	801	99	4500	26/27	0	ZMM	9.0	.25	8.40	37.95	,27
-	TRuch	0/829	99	2500	31/32	0	Ima	1.0	.25	8.40	40.35	27
18 TESTOI	R#1	85 855	100	3500	31/31	0	Orm	١.	.25	8.40	40.25	.27
	TRUCK #3											
	R#I				목말 적							
	TRUCK #											
LOT SIZE LOAD NUMBER SERIAL NUMBED	EW1-	R-1	R-		R-							
TESTING TECH	Ec	lie v				33						

TESTING TECH: REMARKS :

KK CS

a di la constanta di la	
010010	

Time: <u>830</u> Temp: Taken by:	LANA	1 DAY POUR: 2 DAY POUR: OTHER:
		MATION SLIP
F.D.O.T. PROJECT	YES NO	(CIRCLE ONE)
DATE 9-10-18		INITAL TENSION 5 0720
JOB#_/787	NUM OF STRAND //	FINAL TENSION 1/2 SUPP
BED#_3	JACK#	PAK# OR COIL#002.8 2.9 409
LIST MARK#S /- DI, 1-	D2, 1-A3, 1-A2,	002900.004 1-A1
PRODUCT TYPE Gict	2	TYPE OF CABLE
MUST BE SIGNED BY PE	RSON FILLING OUT SLIP:	Houte the
WILL NOT BE PROCE	SSED WITHOUT ALL PI	ROPER INFORMATION AND SIGNATURE
Stress Prepared Checked by:	by: garet	

Setup prepared by: Checked by:

gand

6,000 psi-10,000 psi no sheathing

REBAR REPORT

JOB #	B1789								
BED #	31N								
MARK #	1-D1, 1-D2, 1-A3, 1-A2, 1-A1								
	GIRT 2								
BAR SIZE	HEAT # BR181 2076879								
BAR SIZE	HEAT # BR1810121101								
BAR SIZE	HEAT # 1-7579136								
BAR SIZE	HEAT # 7578475, 6614503707?								
BAR SIZE	HEAT #								
BAR SIZE	HEAT #								
BAR SIZE	HEAT #								
BAR SIZE	HEAT #								

SOLD I	0: 00	ST	TRAIGH 33 P 9	IT BIL Jucor Steel 900 NE 10 Ompano B 54-942-940	CADING Birmingham FH Way each, FL 330	• NO1 , Inc. 64	negotiae Beba	PIC	Page: 1 of Bill of Lading I 507382 Rev 0 CKED: 07-06-2018 12:17 P RINT: 6-Jul-201812:44 PM
DURA PO I LEES (352	A-STRES BOX 490 BURG, 2) 787-	S INC 779 FL 347 RECEIVE JUL 09 20	D 18		DURA-STRES 11325 COUN LEESBURG, (352) 787-	S INC TY RD FL 3 1422 de: T	SCANNED	2	The carrier may decline to a delivery of this bill of la if this shpment is to be deliv to the consignee without reco on the consignor, the consi shall sign the following statem The carrier may decline to n delivery of this shipment with payment of freight and all of lawful charges.
CUSTO	MER NO	CUSTOMER ORDER	NUMBER	OUR ORD	ER NUMBER	SHIP		TEDMO	NUE
10	099	See Below		See I	Below		P1-41856	Prenaid	(Signature of Consignor)
		SHIP VIA	VEHICI			D		Tiepaiu	Freight Charges are PREPAII unless marked collect.
	Fast F	Iorida Freight	109	Julio		R			CHECK BOX IF COLLECT:
NO. OF BUNDS.	NO. OF PIECES		DESCI	RIPTION			PRODUC	T CODE	WEIGHT
9	3024	ALL BUNDLES M ALL MATERIAL DOT INSPECTION ALL DELIVERIE ****SPECIAL T FAST FLORIDA 1 OUR ORDER NUMBER CUSTOMER PO# - 1 Tag# 1 : BR18120 Tag# 2 : BR18120 Tag# 4 : BR18120 Tag# 5 : BR18120 Tag# 6 : BR18120 Tag# 8 : BR18120 Tag# 9 : BR18120	UST HAVE MUST BE N AS TRU S B/4 2: IE WIRE DELIVERY 615M GR4 - 3606 13289 SO 076879 076880 076880 076888 076888 076889 076889 076857 076868 076857	E TAGS CLEAN/NO JCK ARRIVE 00 FRIDAY TAGGING** NEEDED 7 20 (Gr60) 55/1 UTHSIDE Heat Lot	PITTING/NO F S S B/4 10 AM ** /10 AM - PRE #: BR18103 #: BR18103 #: BR18103 #: BR18103 #: BR18103 #: BR18103(#: BR18103(#: BR18103(#: BR18103(#: BR18103(#: BR18103(#: BR18103() #: BR18103()	UST LOAD 079 07901 079010000000000	yooooooooooooooooooooooooooooooooooooo	Ag s int 804200 336 336 336 336 336 336 336 336 336 3	45,477 5,053 5,053 5,053 5,053 5,053 5,053 5,053 5,053 5,053 5,053
			Z AN	Total Tags	5	Tota	NTERFI) Si	3024 ₽07201	45,477 8
Name of RECEIV AT The proj consigne or corpo otherwisis subject to WHETHE AGREED Carrier the proj	Carrier F ED, subject to berty describ d, and destin ation in pos a to deliver to b all the term ER INDIVIDU TO IN WRI acknowle- opperty desc	ast Florida Freight b the terms and conditions of this Bill of ed above in apparent good order, et hed as indicated above, which said ca ession of the property under the co p another carrier on the route to said is and conditions of this bill of lading IALLY DETERMINED OR FILED WIT TING BY THE SHIPPER AND CARRI dges receipt of tribed above in	of Lading. except as noter rrier (the word ntract) agrees destination. It i . THIS BILL OI H ANY FEDEF ER. Carri	d (contents and co carrier being unders to carry to its usua s mutually agreed t F LADING IS NOT TAL OR STATE RE er Certification;	Carrier's No. 	109 Ju packages i ntract as m id destinal performed SSIFICAT EXCEPT	Ilio If a la l	the shipment carrier by water ding shall state to shipper's weight' he agreed-on de ereby specifically kceeding	moves between two ports i , the law requires that the bill whether it is "carrier's weight" o

36

SOLD DURA-STRESS INC PO BOX 490779 TO: LEESBURG, FL 34749-

DURA-STRESS INC

11325 COUNTY RD 44E

LEESBURG, FL 34788-

SHIP

TO:

NUCOR

NUCOR STEEL BIRMINGHAM, INC.

Ship from:

MTR #: 0000182011 Nucor Steel Birmingham, Inc. 3900 NE 10TH Way Pompano Beach, FL 33064 954-942-9400

Date: 6-Jul-2018 B.L. Number: 507382 Load Number: 41856

Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative

LOT #			PHY	SICAL TES	CTC						NBMG	-08 January 1, 2	012
	DESCRIPTION	VIELD	TENOUE	FLOUR	515	T			CHE	MICAL TEST	S		
HEAT #		P.S.I.	P.S.I.	ELONG % IN 8"	BEND	WT%	C	Mn	P	s	Si	Cu	
PO# => BR1810307901 BR18103079	ALL BUNDLES MUST HAVE TAGS ALL MATERIAL MUST BE CLEAN/NO DOT INSPECTION AS TRUCK ARRI ALL DELIVERIES B/4 2:00 FRIDAYS 13289 SOUTHSIDE Nucor Steel - Birmingham Inc 10/#3 Rober	D PITTING VES B/4 10 AI 69,700	G/NO RUS M 107,500	T 11.0%	ОК	-2.7%	.34	1.22	012	037	<u>Cb</u>	<u>Sn</u>	С.Е.
5110105079	40' A615M GR420 (Gr60) ASTM A615/A615M-16 GR 60 AASHT O M31-15	481MPa	a 741MPa	3		.026	.14	.22	.032	.005	.001	.30	÷
PO# => BR1810308001 BR18103080	13289 SOUTHSIDE Nucor Steel - Birmingham Inc 10/#3 Rebar 40' A615M GR420 (Gr60) ASTM A615/A615M-16 GR 60 AASHT O M31-15	75,500 521MP	110,900 a 765MPa	13.0%	OK	-2.9% .026	.34 .12	1.32 .24	.017 .033	.049 .006	.21 .001	.29	

hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements.
 Weld repair was not performed on this material.
 Melted and Manufactured in the United States.
 Mercury, Radium, or Alpha source materials in any form have not been used in the production of this material.

QUALITY

Dange & Milja, Jr.

Page: 1

		ST	RAIGH	T BILL O	FLADING	- NOT	NEGOTIAB	LE	
NUCON	SD STEEL	BIRMINGHAM, INC.	N 2 K	ucor Steel 060 Avenue ISSIMMEE	Birmingha A FL 34758	n, Inc.			Page: 1 of 1 Bill of Lading No
SOLD DURA PO E LEES (352	000 -STRES: 50X 490 BURG, 1) 787-:	APR 1 APR 1 320.00 S INC 779 FL 34749 1422	2 2018	21-219-019	HIP TO: DURA-STR 11325 CO LEESBURG (352) 78 Freight	010 ESS INC UNTY RD , FL 34 7-1422 Mode: Tr	SEN APR 1 3 2 4Kelly Ke	T PIC PI 018	502262 Rev 0 CKED: 04-12-2018 11:21 AM RINT: 12-Apr-201811:36 AM Subject to section 7 of the term and conditions of this bill of ladir if this shpment is to be delivere to the consigner without recours on the consigner, the consign shall sign the following statement The carrier may decline to mak delivery of this shipment without payment of freight and all other lawful charges.
CUSTO	MERNO	CUSTOMER ORDER	UMBER	OUR ORD	ER NUMBER	SHIP	PER NUMBER	TERMS	(Signature of Consignor)
10	099	See Below		See E	Below	C	01-114348	Prepaid	Freight Charges are PREPAID
			VEHICLI			R	OUTING	10 01 015 10 10000	unless marked collect.
ł	REEDO	OM TRUCKING	1 DE	ENNIS				CIC IN COLUMN	To Be Prepaid
NO. OF BUNDS.	NO. OF PIECES		DESCI	RIPTION			PRODUC	T CODE	WEIGHT
0	1701	ALL BUNDLES M ALL MATERIAL DOT INSPECTIO ALL DELIVERIE	UST HAVE MUST BE N AS TRU S B/4 2:	E TAGS CLEAN/NO JCK ARRIVE 00 FRIDAY	PITTING/NG S S B/4 10 2	NUST	800000134	1804200	45 450
9	TVOI	OUR ORDER NUMBER CUSTOMER PO# - Tag# 1 : BR1812	- 3587 11811 SC 030844 -	UTHSIDE	#: BR181	01207	Pieces:	189	5,050
		Tag# 2 : BR1812	030796 🛰	Lot Heat	#: BR181 #: BR181	0120701	Pieces:	189	5,050
		Tag# 3 : BR1812	030772	Lot Heat	#: BR181 #: BR181 #: BR181	0120901 01210 0121001	Pieces:	189	5,050
		Tag# 4 : BR1812	030778	Heat	#: BR181 #: BR181	01210	Pieces:	189	5,050
		Tag# 5 : BR1812	030781 -	Heat	#: BR181	01210	Pieces:	189	5,050
		Tag# 6 : BR1812	030782 🕳	Heat	#: BR181 #: BR181	0121001	Pieces:	189	5,050
	0	Tag# 7 : BR1812	030759	Heat	#: BR181 #: BR181	0121001	Pieces:	189	5,050
		Tag# 8 : BR1812	30764 -	Lot Heat	#: BR181 #: BR181	0121101 01211	Pieces:	189	5,050
		Tag# 9 : BR18120)31001 -	Lot Heat Lot	#: BR181 #: BR181 #: BR181	0121101 01288 0128801	Pieces:	189	5,050
T 11		SCANNED	8/4	Total Tag	s: 9	Tot EN	al Pieces: TERED SEP	1701 0 6 2018	45,450
Name o RECEN A'T	of Carrier F /ED. subject t	REEDOM TRUCKING o the terms and conditions of this still	of Lading.		Carrier	's No1 DE	NNIS	If the shipmen a carrier by wat lading shall stat "shipper's weig	it moves between two ports b ter, the law requires that the bill o e whether it is "carrier's weight" or ht".
The pro consign or corp otherwi subject	operty describ led, and desti oration in pos se to deliver t	ed above in apparent good order, ned as indicated above, which said o isession of the property under the o o another carrier on the route to said or and conditions of this bill of ladin	except as not arrier (the word ontract) agrees destination. It a. THIS BILL (ed (contents and (l carrier being under to carry to its usu is mutually agreed OF LADING IS NO	condition of conten erstood throughout t ial place of delivery i that every service T SUBJECT TO AN	s of packages his contract as at said destin to be performe Y CLASSIFIC/	s unknown), marked, meaning any person hation, if on its route, is hereunder shall be VTION OR TARIFES.	The agreed-on hereby specifica exceeding	declared value of the property is ally stated by the shipper to be no per

otherwise to deriver to another carrier on the route to said destination. It is mutually agreed that every service to be performed hereunder shall be subject to all the terms and conditions of this bill of lading. THIS BILL OF LADING IS NOT SUBJECT TO ANY CLASSIFICATION OR TARIFES. "HETHER INDIVIDUALLY DETERMINED OR FILED WITH ANY FEDERAL OR STATE REGULATORY AGENCY, EXCEPT AS SPECIFICALLY AGREED TO IN WRITING BY THE SHIPPER AND CARRIER.

Carrier Certification: Carrier acknowledges receipt of the property described above in Descriptunter. good order and condition. Per

Shipper hereby certifies that he is familiar with all the lerms and conditions of this bill of lading, including those on the back hereof, and the said terms and conditions are hereby agreed to by the shipper and accepted for itself and its assigns.

.

NUCOR

NUCOR STEEL BIRMINGHAM, INC.

Nucor Steel Birmingham, Inc. 2060 Avenue A KISSIMMEE, FL 34758 321-219-0191

Page: 1 of 1

Bill of Lading No .:

502262 Rev 0

PICKED: 04-12-2018 11:21 AM PRINT: 12-Apr-201811:36 AM

SOLD TO: 000

> DURA-STRESS INC PO BOX 490779 LEESBURG, FL 34749 (352) 787-1422

SHIP TO: 010

STRAIGHT BILL OF LADING - NOT NEGOTIABLE

DURA-STRESS INC 11325 COUNTY RD 44E LEESBURG, FL 34788 (352) 787-1422

Subject to section 7 of the terms and conditions of this bill of lading if this shpment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement: The carrier may decline to make delivery of this shipment without payment of freight and all other lawful charges.

Freight Mode: Truck

					FI	NUE				
CUSTO	MER NO.	CUSTOMER ORDER	NUMBER	OUR ORD	ERN	UMBER	SHIP	PER NUMBER	TERMS	(Signature of Consignor)
10	099	See Below		See I	Belov	N	0	1-114348	Prepaid	Freight Charges are PREPAID
	S	HIP VIA	VEHICL	E NUMBER			RC	DUTING		unless marked collect.
	FREEDC	M TRUCKING	1 D	ENNIS						To Be Prepaid
NO OF	NO OF									
BUNDS.	PIECES		DESC	RIPTION				PRODUCT	CODE	WEIGHT
		SPECIAL INSTRUCTI ALL BUNDLES M ALL MATERIAL DOT INSPECTIO ALL DELIVERIE								
9	1701	13/#4 Rebar 40' A OUR ORDER NUMBER CUSTOMER PO# -	615M GR4 - 3587	420 (Gr60) 732/2 OUTHSIDE				900000134	804200	45,450
		Tag# 1 : BR1812	030844	Heat	#:	BR18101	207	Pieces:	189	5,050
		Tag# 2 : BR1812	030796	Heat	#:	BR18101	209	Pieces:	189	5,050
		Tag# 3 : BR1812	030772	Heat	#:	BR18101	210	Pieces:	189	5,050
		Tag# 4 : BR1812	030778	Heat	#: #: #.	BR18101 BR18101	21001	Pieces:	189	5,050
		Tag# 5 : BR1812	030781	Heat	#: #:	BR18101	21001	Pieces:	189	5,050
		Tag# 6 : BR1812	030782	Heat	#:	BR18101 BR18101	21001	Pieces:	189	5,050
		Tag# 7 : BR1812	030759	Heat	#: #: #.	BR18101 BR18101	211	Pieces:	189	5,050
		Tag# 8 : BR18120	030764	Heat	#: #: #.	BR18101 BR18101	21101	Pieces:	189	5,050
		Tag# 9 : BR18120	031001	Heat Lot	#: #: #:	BR18101 BR18101 BR18101	288 28801	Pieces:	189	5,050
				Total Tag	s:	9	Tota	al Pieces:	1701	45,450
								13	f the chipmon	mouse between two norts by

Name of Carrier FREEDOM TRUCKING RECEIVED, subject to the terms and conditions of this Bill of Lading.

Carrier's No. 1 DENNIS

The property described above in apparent good order, except as noted (contents and condition of contents of packages unknown), marked, consigned, and destined as indicated above, which said carrier (the word carrier being understood throughout this contract as meaning any person or corporation in possession of the property under the contract) agrees to carry to its usual place of delivery at said destination, if on its route, otherwise to deliver to another carrier on the route to said destination. It is mutually agreed that every service to be performed hereunder shall be subject to all the terms and conditions of this bill of lading. THIS BILL OF LADING IS NOT SUBJECT TO ANY CLASSIFICATION OR TARIFES, MHETHER INDIVIDUALLY DETEMINED OR FILED WITH ANY FEDERAL OR STATE REGULATORY AGENCY, EXCEPT AS SPECIFICALLY AGREED TO IN WRITING BY THE SHIPPER AND CARRIER.

	Carrier Certification:	AND AN AVAILABLE TOTAL AND
Carrier acknowledges receipt of the property described above in good order and condition. Per	Descripture.	

a carrier by water, the law requires that the bill of lading shall state whether it is "carrier's weight" or "shipper's weight".

The agreed-on declared value of the property is hereby specifically stated by the shipper to be not exceeding

D	e	٢		

Shipper hereby certifies that he is familiar with all the terms and conditions of this bill of lading, including those on the back hereof, and the said terms and conditions are hereby agreed to by the shipper and accepted for itself and its assigns.

AT

Page: 1

NUCOR

NUCOR STEEL BIRMINGHAM, INC.

CERTIFIED	MILL	TEST	REPO	DRT
-----------	------	------	------	-----

Ship from:

MTR #: 0000168857	
Nucor Steel Birmingham, Inc.	
2060 Avenue A	Р
KISSIMMEE, FL 34758	В.
321-219-0191	Loa

Date: 12-Apr-2018 .L. Number: 502262 ad Number: 114348

DURA-STRESS INC 11325 COUNTY RD 44E SHIP

SOLD DURA-STRESS INC PO BOX 490779 LEESBURG, FL 34749-

TO: LEESBURG, FL 34788-

Material Safety Data Sheets are available at www.nucorbar.com or by	contacting your inside sales representative.
---	--

							NBMG-08 January 1, 2012						
LOT #	DESCRIPTION			SICAL TES	515	T	CHEMICAL TESTS						
HEAT #	DESCRIPTION	P.S.I.	P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni	Mn Cr	PMo	SV	Si Cb	Cu Sn	C.E.
	ALL BUNDLES MUST HAVE TAGS												5 MR- 5 7
	ALL MATERIAL MUST BE CLEAN/	NO PITTIN	G/NO RUS	Т									
	DOT INSPECTION AS TRUCK AR	RIVES											
	ALL DELIVERIES B/4 2:00 FRIDAY	S B/4 10 A	M										
PO# =>	11811 SOUTHSIDE												
BR1810120701	Nucor Steel - Birmingham Inc	66,400	102,200	12.0%	OK	-4.3%	39	91	011	035	20	15	
BR18101207	13/#4 Rebar	458MF	a 705MPa	à		.033	.12	18	036	.005	.20	.45	
	40' A615M GR420 (Gr60)					000407207			.000	.000	.017		
	ASTM A615/A615M-16 GR 60 AASH												
	O M31-15												
PO# =>	11811 SOUTHSIDE												
BR1810120901	Nucor Steel - Birmingham Inc	67,400	98,200	11.0%	OK	-4.0%	.41	.81	.014	.050	.20	.36	
BR18101209	13/#4 Rebar	465MF	Pa 677MPa	à		.034	.14	.14	.032	.004	.016		
	40' A615M GR420 (Gr60)												
	ASTM A615/A615M-16 GR 60 AASH												
DO# ->	U M31-15												
PU# =>	11811 SOUTHSIDE	04 500			-								
BP1810121001	Nucor Steel - Birmingnam Inc	61,500	92,800	11.0%	OK	-4.2%	.38	.83	.016	.050	.18	.33	
DIV10101210	13/#4 Rebar	424MF	a 640MPa	2		.036	.12	.18	.039	.004	.016		
	40 AOTOW GR420 (Grou)												
	O M31-15												
PO# =>													
BR1810121101	Nucor Steel - Birmingham Inc	65 900	97 300	10.0%	OK	2 60/	10						
BR18101211	13/#4 Rebar	454MF	2 671MP	10.076	UK	-3.0%	.40	.84	.013	.046	.22	.32	
	40' A615M GR420 (Gr60)	io inii	u or nin c	4		.034	.11	.14	.037	.004	.016		
	ASTM A615/A615M-16 GR 60 AASH1												
	O M31-15												

hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements.
 Weld repair was not performed on this material.
 Melted and Manufactured in the United States.
 Mercury, Radium, or Alpha source materials in any form have not been used in the production of this material.

George Miljus ASSURANCE:

QUALITY

Dange P. Milja, Jr.

SOLD DURA-STRESS INC PO BOX 490779 TO: LEESBURG, FL 34749-

DURA-STRESS INC

11325 COUNTY RD 44E

LEESBURG, FL 34788-

SHIP

TO:

NUCOR

NUCOR STEEL BIRMINGHAM, INC.

CERTIFIED MILL TEST REPORT

Ship from:

MTR #: 0000168857 Nucor Steel Birmingham, Inc. 2060 Avenue A KISSIMMEE, FL 34758 321-219-0191

Date: 12-Apr-2018 B.L. Number: 502262 Load Number: 114348

Page: 2

Material Safety Data Sheets are available at www nucorbar com or by contacting your inside

material ouldry Da	a onects are available at www.hucolbal.com of	by contactin	g your inside	sales repre	esentative.						10200000	1. 2007 V. C.		
LOT #	DESCRIPTION		PHY	SICAL TES	STS		CHEMICAL TESTS							
HEAT #	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT%	C Ni	Mn Cr	PMO	SV	Si	Cu	C.E.	
PO# => BR1810128801 BR18101288	11811 SOUTHSIDE Nucor Steel - Birmingham Inc 13/#4 Rebar 40' A615M GR420 (Gr60) ASTM A615/A615M-16 GR 60 AASHT	62,700 432MP	90,900 a 627MPa	13.0%	ОК	-3.7% .036	.38 .10	.83 .11	.009 .042	.045 .004	.22 .014	.32		

O M31-15

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements.

1.) Weld repair was not performed on this material.

Melled and Manufactured in the United States.
 Mercury, Radium, or Alpha source materials in any form have not been used in the production of this material.

Gange 7. Milja, p

Strand-Tech Manufacturing PO Box 2220 Summerville SC 29484 USA

Pack S	Slip: 71855	Packing	Page:	1 of 1		
Ship	To: DURA-STRESS, INC 11325 CR 44 EAST LEESBURG FL 34788		Sold To:	DURA-STRESS, INC 11325 CR 44 EAST LEESBURG FL 34788	3	
Phone Fax: Email:	RECEIVED AUG 2 9 2018 DURA-STRESS, INC.		Phone: Fax: Email:	SCANNED S-29-18		
Ship Dat	te: 8/28/2018	F.O.B.: FOB 5	Summerville			
	Ship Via: MOL TRUCKING		163 - Shifta Pantinter Cabiral - Kraine			
THE DAY DO						
		CUSTOMER SPE	CIFICATIONS			
	No Covers ☑ Lo Tarped ☑ Lo Spaced for Straps ☑ Lo	oad to Side oad Down Center oad Eye to the Sky	 ✓ Certify ✓ P.O. N □ Repre □ Chem 	v with Domestic Stateme No. Must Appear on Pack sentative Curve ical Analysis	nt king Slip	
	Shipments must be 7 pack shi only take delivery of truckload Friday- 7:00 am to 12:00 the traffic light for overnight or	ipments. Packs must be v s between the following h pm If a driver arrives early parking.	with no welds nours! Monday before 7:00 am	1/13/2014 10:33> They	r can 3:30 pm gate at	
Line	Part Number / Description			Pla	anned Qty	
Sale	es Order: 60816 Your P	O : 12875				
	Salesperson(s): Aldo E	Bassi	and a second second second			
	Line 1 4600.270.D	Rel 39		Back Order Qty:	66,500 FT 3,148 F	Г
		ATION	ENIE	RED AUG 2 9 2018		
<	002829.009	5	<u>Shipped Qty</u> 9,066 FT		<u>Net We</u> 6,709	i ght LB
	002829.011		9,057 FT		6,702	LB
	002900.001		9,110 FT		6,741	LB
	002900.004		9,053 FT		6,699	LB
	002900.005		9,063 FT		6,707	LB
			9,069 FT		6,711	LB
			8,934 FT		6,611	LB
1	63,352 FT			Total Net Weight:	46,880	LB

CUSTOMER: DURASTRESS, INC LOCATION: LEESBURG, FL 34788 PURCHASE ORDER: 12875

PRODUCT DESCRIPTION

.600" (15.24 mm) DIAMETER 270 (1860) GRADE LOW RELAXATION SEVEN WIRE STRAND

COIL IDENTIFICATION	ON	
COIL #'S	HEAT #	
002829.009	82325S	
002829.011	82325S	
002900.001	82329S	
002900.004	82329S	
002900.005	823295	
002900.006	82329S	
002900.007	823295	

TESTS AND SAMPLE INFORMATION

ATTACHED ARE ACTUAL TEST RESULTS FOR SAMPLES TAKEN FROM THE MATERIAL BEING PROVIDED. ADDITIONAL TESTS AND MANUFACTURING DATA AVAILABLE AS REQUIRED BY ASTM. ROD HEAT AND CHEMISTRY INFORMATION ON FILE.

COMMENTS

Prestressed concrete strand identified on this certification was produced by Strand Tech Martin Inc. and meets the requirements for "Domestic Origin" as defined by the Surface Transportation Act of 1978, and amended 1982, and meets all of the requirements set forth in Federal Highway Administration rules and regulations with regard to "Domestic Origin." All materials listed above was produced and fabricated in the United States of America. Meets certification ASTM A416/A416M

COMMENTS

"THE MATERIAL DESCRIBED IN THIS CERTIFICATION WILL BOND TO CONCRETE OF A NORMAL STRENGTH AND CONSISTENCY IN CONFORMANCE WITH THE PREDICTION EQUATIONS FOR TRANSFER AND DEVELOPMENT LENGTH GIVEN IN THE ACI/ AASHTO SPECIFICATIONS."

STRAND-TECH MARTIN, INC. P.O. BOX 2220 SUMMERVILLE, SC 29484 TOLL FREE (877) 783-3305 CERTIFICATION PREPARED BY:

CHRIS LEWIS

Strand-Tech Manufacturing, Inc. Manufacturer of PC Strand & Wire 258 Deming Way Summerville, SC 29483

7-Wire Strand ASTM A416

Test Date	08/16/2018
Size	.600" 270 LR
Lot:	002829
Sample:	05
Heat Number:	82325S
Test #:	1
Tested By:	203 AW
Ultimate, lbf:	60900
Ultimate, kN:	271
Load @, lbf:	55500
Load @, kN:	247
Elongation, %:	6.33
Nominal Area, in2:	0.217
Nominal Area, mm ² :	140
Actual, in ² :	0.2184
Actual, mm ² :	140.91
Strand Diameter, in:	0.604
Modulus, Mpsi:	28.7
Modulus, MPa:	197700
Minimum, in:	0.0098

002829.009 002829.011

44

Strand-Tech Manufacturing, Inc. Manufacturer of PC Strand & Wire 258 Deming Way Summerville, SC 29483

7-Wire Strand ASTM A416

Test Date Size	08/26/2018 .600" 270 LR
w	
Lot:	002900
Sample:	01
Heat Number:	82329S
Test #:	1
Tested By:	203 AW
Ultimate, lbf:	62700
Ultimate, kN:	279
Load @, lbf:	57800
Load @, kN:	257
Elongation, %:	5.29
Nominal Area, in ² :	0.217
Nominal Area, mm ² :	140
Actual, in ² :	0.2186
Actual, mm ² :	141.03
Strand Diameter, in:	0.604
Modulus, Mpsi:	28.7
Modulus, MPa:	197800
Minimum, in:	0.0093
002900.001 002900.004 002900.005 002900.006 002900.007	

9/10/2018 7:58

.

			PRODUCT						
]		GIRT 2						
JOB#:	B1	789	MARK #						
DATE:	9/10/2018								
BED #:	31N		1-D1, 1-D2, 1-A3, 1-	A2, 1-A1					
JACK #									
STRAND SIZE	.600 7W 2	270 LR ASTM A416							
COIL/PACK/REEL #	002829009-0	0							
0	002900004-0	0	CORRECTION I	NFO.					
0	0	0	Number of cable #	11					
	0	0	Exp. Conc temp @ Placement:	85					
BED LENGTH (L):	3811.375	0	Ambient temperature(at):	73					
STRAND SIZE: (A)	0.2170	0	Abutment rotation (ar): N/A	0					
FINAL TEN. (P)	43900	0	Live end seating (les):	0.2362					
PRE TEN. : (Pi)	5000	0	Dead end slippage (des):	0.08858					
M.O.E. (E):	28.70	0	anchorage movement:	0.375					
		0							
		0							
ELONGATION delta.a.t (Ptxdb/Pb)= delt.(Pi x L)/(A x E) = delta'b.(PxL)/(AxE)= delta'bed shortning (bs/2)+(bs/#strand)= GROSS ELONG.	0 3.0599 23.8062 0.2216 24.353 24 1/8		FORCE ADJUSTMENTS Pb (P - Pi) = Pt(= Par (arxAxE)/(L)= Ples(lesxAxE)/(L)= Pdes no adj. required Pbs (dbsxAXE)/(L)= TOTAL FORCE ADJ. ADJUSTED FORCE = JACKING FORCE =	38900 0 385.9578 0 362.101 748.0588 39648.0588 44648					
			TOTAL ADJ. FORCE	44648					
RANGE + 2.5%	24 11/16								
RANGE - 2.5%	23 1/2		AASHTO MAX =	46872					
			RANGE +2.5% =	45764					
			RANGE -2.5% =	43532					

31N

DURA-STRESS INC. STRAND STRESS REPORT

									r										(GIRT	2					
ITEM NO'S:													MARK #													
DATE	: 9	9/10/2	018						0.5											-						
PROJECT NO				B1	789																					
PRODUCT	г	GIR	٢2														1-0	,,,,	-02,	1-A3	i, 1-A	42, 1	-A]	21	-	
BED NO		311	N																i		17	7	/	11	X	1-
NO. OF CABLE	: he	11			-							-		JA	CK	CAL	DATI	ES:	10			\smile	/	11	0	1
TECHNICIAN.	IN	-			Am	bier	it te	empe	erat	ure((at):			A	IBIE	NT T	EMP	:	10	0'						
DATE	9-1	01	8										73	3		JAC	K # :	7	-/	2				1		
									(CAB	BLE	TYP	E:	.60	00 7V	V 270	LR	AST	MA	416				44	45	0
		CHUC	K S	LIPI	PAG	E										F	INAL	TE	ISIC	N		Г		446	48	۲
LIVE						۵)EA	D														F				1
2131	11	11				1/	1	1	11	(1	/										ľ				
K K	111	1/21			1	18	K	2	'k	1	10	1			F	INAL	ELC	DNG	ATIC	N		Г		24 1	/8	
1-10	17,	14			/	0	10		10	> /	0										+2.	5%		24 11	/16	
AVEDACE	1	1		-+	A 1 / F									_							- 2.	5%		23 1	/2	
AVERAGE:				!	AVE	:RAG	jE:							4												
TUTAL:									_	_				1				AA	SHI	го м	AX =	= [4687	2	
CALICE ELO	L C ALL	2010			CAL		TE			2.4.1	105	1 =:	-	IFI	ARG	ET =	AASI	HTO	ELO	NGA	FION	MAY	NC	TWO	RK	
AUGE ELU	10AU	JE		_	GAI	UGE			1	JAL	JGE	LEL	.0	G	AUG		_0	G	AUG	E	LO		GAL	JGE	ELO	
2 44150 2414	12		+	-	23				3	4				45				56		_	+	6	7			_
3 441.50 24	14		+	-	24				2	5				40			_	57			-	6	8			_
4 4460 74	15		-	-	26				3	7				41				50			+	6	9			4
5 44650 74	16				27				3	8		-+		40				59			+	- 17				4
6 441 5 24	17		+	- 13	28				3		-			50		-+		61				7	1			-
7 44650 9.4	18				29				4					51				62			 	7				-
8 44650 24/4	19		1	3	30				4	1				52	11.5			63				7	1		-	4
9 44650 24'	20			3	31				4	2		-		53				64			<u> </u>	7	-			-
10 44650 241/4	21			3	32				4	3			197	54				65			-	76	-	-		-
11 44650 24	22			3	3				4	1				55				66				77	-			1
											0.000												-	-		1
		++			_				-																	
	-+	++		-		-			-	-																
-		++				-		_	-		-		-		_	_										
ŀ						-			-	-	-															
ŀ		++	+		+-	+		-	1	-	-				_	_	-									
-		++-	+	+			1		-	1		E	-									_				
ŀ		+	+	+			0	- 7	2	6		3							_	+		_				
L							L	-		15	2	11					-									

31N

25

9/12/2018 9:34

			PRODUCT	
]		TYPE II	
JOB#:	B178	39	MARK #	
DATE:	9/12/2018			
BED #:	54M		TEST	
JACK #				
STRAND SIZE	.6	ST TEST		
COIL/PACK/REEL #	D430001-1D	0		
0	0	0	CORRECTION IN	FO.
0	0	0	Number of cable #	13
	0	0	Exp. Conc temp @ Placement:	85
BED LENGTH (L):	3021.5	0	Ambient temperature(at):	85
STRAND SIZE: (A)	0.2328	0	Abutment rotation (ar): N/A	0
FINAL TEN. (P)	37200	0	Live end seating (les):	0.3438
PRE TEN. : (Pi)	5000	0	Dead end slippage (des):	0.1093
M.O.E. (E):	24.40	0	anchorage movement:	0.625
		0		
		0	-	
ELONGATION delta.a.t (Ptxdb/Pb)= delt.(Pi x L)/(A x E) = delta'b.(PxL)/(AxE)= delta'bed shortning (bs/2)+(bs/#strand)=	0 2.6596 17.128 0.3606		FORCE ADJUSTMENTS Pb (P - Pi) = Pt(= Par (arxAxE)/(L)= Ples(lesxAxE)/(L)= Pdes no adj. required Pbs (dbsxAXE)/(L)= TOTAL FORCE ADJ.	32200 0 646.3326 0 677.9161 1324.2487
			ADJUSTED FORCE =	33524.2487
GROSS ELONG. NET ELONG.	17.942 17 9/16		JACKING FORCE =	38524
			TOTAL ADJ. FORCE	38524
RANGE + 2.5%	18			
RANGE - 2.5%	17 1/8		AASHTO MAX =	46560
			RANGE +2.5% =	39487
			RANGE -2.5% =	37561

54M

DURA-STRESS INC. STRAND STRESS REPORT

									TYPE II												
									ITE	EM NO)'S:						MARK	(#			
	DA	ATE:		9/12/2	2018	٦												1.000000	_		
PI	ROJECT	NO.			В	1789	6		Τ				1				TEO	-			
	PROD	ист		TYP	EII												IE2				
	BED	NO.		541	N																
NO.	OF CAE	BLE:		13									JA	CK CA	DATE	S:					
TEC	CHNICIA	N				Am	bient	temper	atur	e(at):			AM	BIENT	TEMP:						
												OE									
	DA	ATE:										00		JA	CK # : _						
									CA	BLE 1	ΓYΡ	E:	.6 5	ST TES	т						
				CHU	CK SLI	PPA	GE]		FINAL	TENS	SION			3852	24
	LIVE						D	EAD													
													1								
														FIN	AL ELO	NGA	TION			17 9/	16
																		+2.5%	,	18	
																		- 2.5%		17 1/	8
AVER	RAGE:					AV	ERAG	E:	1												
TOTA	\L:	_			-				-							AAS	SHTO N	/AX =	113-13	4656	0
													IF T	ARGET	= AASH	TO E	LONGA	TION M	AY N	OT WO	RK
GAU	GE ELC	2	GA	UGE	ELO	GA	UGE	ELO	G/	AUGE	EL	.0	GA	UGE	ELO	GA	UGE	ELO	GA	UGE	ELO
1		-	12			23			34				45		_	56			67		
2			13			24			35				46		_	57		_	68		
3			14		-	25	1		36				47			58		_	69		
4			15			26			37				48		_	59			70		
5			16			27			38				49			60			71		1
6			17			28			39				50			61		-	72		
7			18			29			40				51			62			73		1
8		!	19			30			41				52			63			74		
9			20			31	-		42				53			64			75		
10			21			32		_	43				54			65		-	76		
11			22			33		-	44				55			66	10000		77		
		E	-			T T			r 7	- 1	1					<u> </u>			1		
		H	f	+++			-+-+		+		+-	+		-		┢──┝		+ + -	4		
		-	-	+		+			+		+		\vdash	_		┢──┝		++-	4		
		-	+			+	\rightarrow	_	+		+	-				+			-		
		ŀ	+	++		+	++		+		+							++-	-		
		F	+	+ + +		+			+		+	+				+		++-	-		
		H	+	+		+			+		+-	+		_			-+-+-	+	1		
		-	+-	+++	-+	+	+		+					_		+		+ + -	{		
		H	+	+++		+	+		+		+					+		+ + -	1		
		F	+	+++		+			+		+		-			+	++-	+-+	1		
		F	+	+		+	+				+					╂┼-			1		
		ŀ	+	+++		+	++		+		+					+		+	1		
		L	+				_ I I									L			1		
			1																		

54M

PREPOUR PRODUCTION SHEET

F

	B# B1780	1	PRODUCT TYPE II BED# 31 N								
F.D.O.1	# TEST BO	EAH									
CAST DA	E			MIX # 🦺	SHTWEIGHT	10,0					
COMMEN	TKEVE /-	OK OF AC			05-2056	<u> </u>					
SERIAL #'S	(W1)	UR, U= AL	CEPTABLE,	X = NOT AC	CEPTABLE	And she had a set					
MARK #'S	LWI	LWL	LW3	LW4	LWS						
DATE	9,00:18	S 10.8	AO	AZ	AI						
INSPECTOR:	les	1-1010	9-10-10	9-10-10	9-10-18						
WIDTH	-m										
ENGTH	0	0	0	C	e						
HEIGHT	0	0	0	0	0						
CARLE HOLES	0	0	0	C	0						
" " BAD HOLES	0	0	0	0	0						
LAMEED	0	0	0	0	0						
CHAMFER	0	0	0	0	0						
NEEDTE	NA										
NSERIS	MA	T									
OPH OLEANNESS	NA	+									
ORM CLEANNESS	C	0	C	0	\bigcirc						
LATES FORM FACE	NH -	T									
OMMENTS											
EDIAL #PC	1										
LINAL # 5	LWI	LWZ	LW3	LWH	LWS						
ATE	DI	DZ	A3	A2	AI						
AIE.	9-10:10	9-10-18	9-10-18	9-10-18	9-10-18						
ISPECTOR:	hs										
EINFORCEMENT	0	C	0	0	C						
TEEL SPACING	0	0	C	C	C						
LATES	NA -			Ø							
LEARANCE	0	0	0	0	0	111					
INER	0	\mathcal{O}	0	0	0						
FTING LOOPS	0	0	0	0	0						
HEATHING	NA -										
OMMENTS											
		/	a dia mangaharan karang								
RIAI #S	1 11 2 1	1122	11.17								
ARK #S	Di	LW L	47	LW4	LWS						
SPECTOR-	160	02	A3	A2	A1						
TE ·	n x	0	0.00	0.1.0							
OP IN PLATER	A/A -	8-11-18	4-11-18	2-11-18	8-11-18						
OCK OUTS	NA -										
0000013	NA										
CEDTO	NH -										
SERTS	0	0	0	C	0						
SERTS ADERS	0					_					
SERTS EADERS INGTH	0	0	Ø	0	0						
SERTS EADERS INGTH DRMS	0	0	00	0	0						

CONCRETE MIX DESIGN

05-2056

Producer: Dura-Stress, Inc.	Class VI (85	00 PSI)	/ Self-C	onsolidati	ng Effective D	ate: 7/16/2018	
Aggregrate Correction Factor: 0.9	Environmen	t: Extre	mely Ag	ggressive	Hot Weathe	er	
		Sourc	e of Ma	iterials			
Product			Quan	itity	Production Facility		
921: Cement - Type II (MH)			703	Pound(s)	CMT29 - Suwannee A	American Cement - Bran	ford El
929: Fly Ash - Class F			167	Pound(s)	FA01 - Separation Te	chnologies - Crystal Rive	or El
929: Metakaolin			74	Pound(s)	MK03 - BASE Middle	Georgia	51, T L
901: C12 - #67 Stone			1340	Pound(s)	10645 - VULCAN MA	TERIALS COMPANY	
902: F01 - Silica Sand (Concrete)			1180	Pound(s)	11057 - VULCAN MA	TERIALS COMPANY	
MasterAir AE 90 (MB-AE 90) [924-000-014 - Ac Air Entraining]	Imixture for Co	oncrete	2.36	FL OZ	BASF Construction Ch	nemicals, LLC	
MasterSet DELVO (Delvo) [924-003-021 - Admix D]	ture for Concre	ete Type	28	FL OZ	BASF Construction Ch	nemicals, LLC	
MasterGlenium 7920 [924-001-070 - Admixture fo	or Concrete Ty	pe A]	57	FL OZ	BASF Construction Ch	remicals U.C.	
MasterLife CI 30 (Rheocrete CNI) [924-009 Concrete - Corrosion Inhibiting]	-002 - Admix	ture for	320	FL OZ	BASF Construction Ch	nemicals, LLC	
Water			34.1	GAL			
Nater			284	LB			
Calculated Values					Produce	er Data	
Theoretical Unit Weight	139.9	PCF	Me	thod of me	easuring	Pressure Meter	
Theoretical Yield	26.99	CF	Air	Content -	Pressure	1.7	%
Nater Contributed from Admixture(s)	18.1	LB	Ter	mperature		95	dearee F
Mix Design Limitet			— Slu	mp Flow		26.5	in
			— J-R	Ring Slump	Flow	27.0	in
Sump Flow = $27 + 7 - 2.5$ in			Pas	ssing Abilit	у	0.5	in
vater to Cementitious Materials Ratio <= 0.32			Sta	tic Segrea	ation	11.0	%
Siump Flow Cut Off Time <= 12 min						11.0	10

Average Chloride Content

Compressive Strength

Surface Resistivity

T<sub>50<sub>

Density (Unit Weight

Penetration Depth (Pd)

Slump Flow Cut Off Time

Age

Age

VSI

Water to Cementitious Materials Ratio

0.196 lbs/yd3

13 Days

12 min

21 Days

144.2 lbs/ft3

0

37.56 kOhm-cm

3.0 seconds

1 mm

0.31

10,860 PSI

Special Use Instructions:

*See Contract Documents for Limits not displayed

Company:	DURA ST	RESS INC		Batch Size		Т						
Date:	8/15/2018			CV CV	1	4					0.08057851	2
Trial #:	Florida Sta	te Universit	v DOT Spec	Cu ft	10	-			Sa	nd/Agg Ratio	0.449	T
			<u></u>		1.2		#10-5-11			W/C	0.39	and the state of the
	Class Spec	ial 10000PS	SI Metakanli			1.20	V2			W/CM	0.289	0.29
				470		0.396	V1		Total C	ementicious	968.00	1
				470						Fly Ash	17.6	The state of the second second
	Lbs	Tuno	S	30-0		the second states				Total Mass	3300	
Cement	720	rype Oto	Spg.	Volume		rial Weight	S			sts Per 1	st Per Y	ard
Fly Ash	120	SAC	3.15	3.66	12 m / 12	Cement	32.00	lbs	March 12		5	l
#67	952	Sep. Techn.	2.2	1.24	-	Fly Ash	7.56	lbs			C .	
#80	052	Vulcan	1.52	8.98		#67	39.65	lbs		1	¢ ·	
Sand	1200	Vulcan	2.42	0.00	-	#89	0.00	lbs			e -	+
Metakaolin	1200	Vulcan	2.63	7.31		Sand	55.04	lbs			¢ -	+
Wator	70		2.5	0.50		Metakaolin	3.47	lbs			¢ -	+
Air	280	Water	1	4.49		Water	7.96	lbs				+
TheolUnitWo	370		0	0.81								
Theo Chill We	122.25		Total	26.99	27.99							
	oz/cwt		oz/cy	oz/truck		ml / Trial						
MasterAir AE	0.25		2.42	2.42		MasterAir AE	3.18	ml				
MasterGleniu	6		58.08	58.08		MasterGleniu	76 30	ml	and the second second		\$ -	Color Services
Delvo	3		29.04	29.04		MasterSet R9	38 17	ml	Van de la reserve de la reserve	Manufacture of States	\$ -	
MasterSure Z	0		0.00	0.00	Are particular to	MasterSure Z	0.00		化合成 (4) 合成 (4)		5	The second second second
MasterLife CI	0		320.00	0.00	576	MasterLife CI	14 22				\$ -	
	98	97					11.66	02			\$ -	
Add. Water +/-		614	Moisture Tria	Mix						Total	\$ -	\$ -
Slump			Stone #1	4.7%	1 78	water from CI	30	1.00				
30 Min					1.70							
60 Min												
Air %		2.80	Stone #2	0.0%	0.00							
Unit Weight			Sand #1	3.2%	1.71	ь						
Amb. Temp.			Sand #2	0.0%	0.00							
Int sot	•			Total	3.49							
int set						L						

* * * * * * * * * *	******	********	*****	*****			
Job: Operator: Mix:	31-10KLWAG W62342488 10KLW	G Date: Sep 12 Duration/Wai Mix Name: 10	, 2018 Star t: 20:04/3:55 K psi LIGHTWET	t:07:26 Disch Batch#:4184	:07:48 9	Mixer#: 1	
Required: Amount: PreWet: 70%	12.00 6.00 CY	Batched: 6.0	0	NA LEA		ţ	BW
Material STALITE 0.5 SAND 11-057 SUWANEE STI FLYASH GLENIUM 7920 DELVO MB AE90 Prewet Water Prewet Mixing Dry Mixing Wet Mixing Total Moistu Water/Cement	Bin Moist 3 5.20, 1 4.00, 3 4 0 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t/ABS% Design /0.00 852 /0.00 1200 720 170 65.00 19.00 0.75 0:01 0:01 2:00 240 0.270	Target 5378 7488 4320 1020 390.00 114.00 4.50 620 271	Actual 5340 Lb 7440 Lb 4320 Lb 1025 Lb 388.00 Oz 112.00 Oz 6.00 Oz 615 Lb 264 Lb 0:01 s 0:01 s 2:00 s 1429 Lb	%Err -0.7 -0.6 0.0 0.5 -0.5 -1.8 33.3 -0.8 -2.6	*Note Jogs 34 1 2 	

÷,

Î4

8

+46816 metamax

+ 1920 02 CNI (C130)

							the second second	and the store she she she	als also do de	314 S -
Job: 31 Operator: W6 Mix: 10 Required: 12 Amount: 6. PreWet: 70%	-10KLWA 2342488 KLW .00 00 CY	GG Date Dura Mix I Batc!	: Sep 12 tion/Wai Name: 10 hed: 12.	, 2018 Start t: 25:52/3:20 K psi LIGHTWEIGH 00	:07:54 Di Batch#:4 HT	sch: 1851	: *ABOR'	Mixer TED*	#: 1 Z	BU
Material STALITE 0.5 SAND 11-057 SUWANEE STI FLYASH GLENIUM 7920 DELVO MB AE90 Prewet Water Prewet Mixing Dry Mixing Wet Mixing Total Moisture Water/Cement:	Bin Moi: 3 5.2(1 4.0(2 4 2 1	st/ABS% 0/0.00 0/0.00	Design 852 1200 720 170 65.00 19.00 0.75 0:01 0:01 2:00 240 0.270	Target 5378 7488 4320 985 390.00 114.00 4.50 620 270	Actual 5360 7460 4355 970 388.00 112.00 6.00 616 270 0:01 0:01 0:09 1438	Lb Lb Oz Lb s s Lb	%Err -0.3 -0.4 0.8 -1.5 -0.5 -1.8 33.3 -0.6 0.0	*Note	Jog: 22 3 7 5	5

. 27

+46816 meta

+ 1920 02 CN1

Job: 31-10KLWAGG Date: Sep 12, 2018 Start:08:40 Disch:08:51 Operator: W62342488 Duration/Wait: 10:46/1:00 Batch#:41852 Mixer#: 1 Mix: 10KLW Mix Name: 10K psi LIGHTWEIGHT Required: 12.00 Batched: 12.00 Amount: 6.00 CY PreWet: 70% Material Bin Moist/ABS% Design Target Actual %Err *Note Jogs
 STALITE 0.5
 3 5.20/0.00
 852

 SAND 11-057
 1 4.00/0.00
 1200

 SUWANEE
 2
 720
 5378 7488 5380 Lb 0.0 ---- 7 7600 Lb 1.5 0---- 2 4320 970 720 170 4370 Lb 1.2 0---- 7 980 Lb 1.0 -C--- 2 SUWANEE ∠ STI FLYASH 4 gLENIUM 7920 4 432.00 Oz 0.0 -----72.00 432.00 2 DELVO 12.00 72.00 70.00 Oz -2.8 -----Prewet 641 632 Lb -1.4 -----Water 284 275 Lb -3.2 -----Prewet Mixing 0:01 0:01 s Dry Mixing 0:01 0:01 s Wet Mixing 1:00 1:55 s Total Moisture: 245 470 1465 Lb -0.3 Water/Cement: 0.275

.27

+ 468 16 meta + 1920. CCNI (C130)

BEAM PLACEMENT DIAGRAM

1 @Not 1 1

BINO.: DTINO.: DESIGN: DESIGN: SIN MARK	17.89 ST GEAY PRODUCT HTWEIGHT (10,000 1 LWI DI	31 N TYPE IL YIN) /05-2056 LW2 D2	INSPECTOR: JCB/DK TEST LOAD(s): TOTAL YARDS: TGATE COVER	DATE CAST : 9-12-18 RED? OR CUR COMPOUND CUR EXP DATE CUR 42		
TR 76 76	enck #4 c7 - Air High Rejected (9) uck#5 uck#5 5- 838 - 8:46 AIR · 1	Truck # 6 767 - 906 Air = 1.	767-636-IN Full TRUCK#1	767-648 OUT 11/2 yd From TRUCK #1 TRUCK #2.	765-705 007 TRUCK # 2, 3yd TRU-K # 3 767	
				765 - 650 IN Full	7:16 IN 7:21 OUT 11/2 yds	
WIC MAX	ATUEIGHT x () 0.3	UGHTWEIGHT 5 REA	DY MIX TRUCK(S) MEET QCM BATCH	OS-2029 PLANT CRITERIA	05-2029	

1)

PROJECT NO.	EIT89 TEST BEAM	-	BED #:	31N	DATE DE	TENSIONED:	9-14-18	
DATE CAST:	9-12-18	-	TYPE:	TYPE	Су	-INDER PSI:	6532/6641 9023/8922	- LWMix.
SERIAL NO .:	LWI	1417	1 14	12		REQUIRED	RELEASE: 6000	SI COSE MIX
MARK NO .:	DI	07		2	LW4	LWS	5	
SIDE LENGTH RIGHT:	42'-1/8"	47'-1/0"	112	<u> </u>	AZ	A1		
SIDE LENGTH LEFT:	47'- 1/8"	47'-110"	72	- 14	42'- 14"	42'-	18"	
AVG. LENGTH:	42'- 1/x "	42'-1/5"	40	1 1/ 11	42'	42'-	18	
DESIGN LENGTH :	42'0"	42' 0"	72	- 18	42' 18"	42'-	1/8"	
HORIZONTAL ALIGNMENT		ÿ						
CAMBER (INCH)	0/3/14	0 3/16		0114	m11/4		- 13/	
NEMARKS:					· ·		2 (116	

28- DA' `REAKS

W42206367 (BW)		K4005007	7 (КК)	T52017368 (DT)			Great Production DuraNet			Poles I	MAC Faxed_	_ Faxed	
Job #	Bed	R #	Sample #	Dia. 1 Inches	Dia. 2 Inches	Avg. Dia. Inches	Cylinder Length	Area Inches	Load English	PSI	DATE BROKE: DATE CAST: Avg. PSI	10/10/2018 9/12/2018 Type of Breaks	Tecl
	40	98	160	3.99	3.99	3.99	8.00	12.504	119330	9544			VV
				3.99	3.99	3.99	8.00	12.504	121770	9739	9650	3	KK
	-			3.99	3.99	3.99	8.00	12.504	120950	9673		5	
			PC	4.00	4.00	4.00	8.00	12.566	126440	10062		5	
		-	and the second second second second second	4.00	4.00	4.00	8.00	12.566	127920	10180	10090	5	
B1790	21	Contraction of the local division of the loc	and the second	4.00	4.00	4.00	8.00	12.566	126030	10029		5	KK
5-2056	31		TEST 01-1	4.04	4.04	4.04	8.00	12.819	145890	11381		5	
J-2050				4.04	4.04	4.04	8.00	12.819	147100	11475	11450	5	
B1780	21		-	4.04	4.04	4.04	8.00	12.819	147180	11481		5	
LIGHT	- 31		TEST 01	4.04	4.04	4.04	8.00	12.819	144890	11303		5	
VEIGHT				4.04	4.04	4.04	8.00	12.819	143620	11204	11220	5	
B1670	10014	D1		4.04	4.04	4.04	8.00	12.819	142990	11155		5	
POLES	18246	R1	1814A43Q	4.03	4.04	4.04	7.98	12.819	144460	11269		6	
FULLS			18-141	4.04	4.04	4.04	8.00	12.819	146220	11407	11380	5	KK
DOT	25			4.04	4.04	4.04	8.01	12.819	146920	11461		5	
	25	RI RI	18DOTA169Q	4.04	4.04	4.04	8.00	12.819	155130	12102		5	
				4.03	4.05	4.04	8.01	12.819	154520	12054	12130	5	
	CO TO AT THE OTHER OF			4.04	4.04	4.04	8.00	12.819	156720	12226		6	
										the second se		0	KK
													-
											1		
									A. 1997				
											1 1		

Manager's Signature:

. ~ 2

REVISION 4-25-17