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DISCLAIMER 

 

The opinions, findings, and conclusions expressed in this publication are those of the authors and 

not necessarily those of the State of Florida Department of Transportation. 
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EXECUTIVE SUMMARY 

A satisfaction survey among the state DOTs according to Jalayer et al. (2015) indicated that 

the collection of geometry data with aerial and satellite images happened to be more satisfactory 

than field observations in terms of equipment cost, data accuracy, crew safety, data collection 

cost, and data collection time. On the other hand, field observations were found to be more 

satisfactory in terms of data completeness and data reduction time. Also, image processing has 

been considered a time-consuming and error-prone approach for roadway inventory recording. 

However, these results have changed in the last six years with the advancement in computing 

power and the processing methods of imagery data. Rapid advancement in computer vision 

technology could enable traffic agencies to save money and time in various aspects of data 

collection. The existing literature suggested that the recent significant improvements in 

computational power and image pattern recognition algorithms have created new opportunities to 

detect and map numerous roadway features from various imagery data.  

A recent project titled “Feasibility Analysis of Real-time Intersection Data Collection and 

Processing Using Drones” (BDV30-977-29) aimed at providing proof of concept on the use of 

image processing techniques to extract intersection characteristics. Improving this work, this 

project proposed to develop a novel methodology to extract different roadway geometry data 

such as school zone markings and lane configurations (i.e., turning lanes) from high resolution 

aerial images using computer vision and artificial intelligence techniques. To this end, there has 

not been a study on using the computer vision techniques to extract different roadway geometry 

data and develop a statewide inventory for roadway geometry data such as school zone markings 

and lane configurations (i.e., turning lanes) from high resolution aerial images and a study 

related to how this can benefit roadway users such as drivers, pedestrians, and bicyclists. As 

such, this project developed automated tools to detect these roadway features in Florida using 

deep learning-based object detection models. This was achieved by running a retrained You Only 

Look Once (YOLO) artificial intelligent model to look for the introduced pavement marking 

combinations on the high-resolution aerial images followed by the GIS-based spatial analyses for 

both on and off state highway system roadways of Florida. This study, with the objective of 

generating an inventory list of different roadway geometry data for Florida, is one of a kind. 

The overall goal of this project was to develop computer vision tools to extract different roadway 

geometry data such as school zone markings and lane configurations (i.e., turning lanes) from 

high resolution aerial images, which could be used by FDOT planners and engineers at various 

levels of traffic operations and safety analysis. Consistent with this goal, the main objectives of 

this project were to: (a) examine how traffic data collection can leverage emerging computer 

vision techniques, in particular, image processing, deep learning, machine learning, and artificial 

intelligence to develop statewide roadway inventory lists; (b) design an automated signalized 

intersection geometric data extraction algorithm based on high-resolution images in order to 

identify roadway geometry data such as school zone markings and lane configurations (i.e., 

turning lanes) from high resolution aerial images, and (c) generate a GIS-based inventory list of 

these roadway geometry features for the entire state of Florida including on and off state 

highway system roadways. This was an innovative solution that employed computer vision 

technology to potentially replace traditional manual inventory, which was labor intensive and 

prone to errors. Meeting these objectives led to appropriate recommendations to Florida DOT in 

terms of providing automated, deep learning- and image processing-based methodologies in 

extracting a variety of geometric features from aerial images.   
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 INTRODUCTION 

A satisfaction survey among the state DOTs according to Jalayer et al. (2015) indicated 

that the collection of geometry data with aerial and satellite images happened to be more 

satisfactory than field observations in terms of equipment cost, data accuracy, crew safety, data 

collection cost and data collection time. On the other hand, field observations were found to be 

more satisfactory in terms of data completeness and data reduction time. Also, image processing 

has been considered a time-consuming and error-prone approach for roadway inventory 

recording. However, these results have changed in the last six years with the advancement in 

computing power and the processing methods of imagery data. Rapid advancement in computer 

vision technology could enable traffic agencies to save money and time in various aspects of data 

collection. The existing literature suggested that the recent significant improvements in 

computational power and image pattern recognition algorithms have created new opportunities to 

detect and map numerous roadway features from various imagery data.  

A recent project titled “Feasibility Analysis of Real-time Intersection Data Collection and 

Processing Using Drones” (BDV30-977-29) aimed at providing proof of concept on the use of 

image processing techniques to extract intersection characteristics. The project has been 

completed and proved the potential of using image processing techniques in extracting roadway 

geometric features. Improving this work, this project proposed to develop a novel methodology 

to extract different roadway geometry data such as school zone markings and lane configurations 

(i.e., turning lanes) from high resolution aerial images using computer vision and artificial 

intelligence techniques. 

To this end, there has not been a study on using computer vision techniques to extract 

different roadway geometry data and develop a statewide inventory for roadway geometry data 

such as school zone markings and lane configurations (i.e., turning lanes) from high resolution 

aerial images, and a study related to how this can benefit roadway users such as drivers, 

pedestrians, and bicyclists. As such, this project developed automated tools to detect these 

roadway features using deep learning-based object detection models in the State of Florida. This 

was achieved by running a retrained You Only Look Once (YOLO) artificial intelligence model 

to look for the introduced pavement marking combinations on high-resolution aerial images 

followed by GIS-based spatial analyses for both on and off state highway roadways of Florida. 

This study, with the objective of generating an inventory list of different roadway geometry data 

for the entire state of Florida, is one of a kind. 

 Study Objectives 

The overall goal of this project was to develop computer vision tools to extract different 

roadway geometry data such as school zone markings and lane configurations (i.e., turning lanes) 

from high resolution aerial images, which could be used by FDOT planners and engineers at 

various levels of traffic operations and safety analysis. Consistent with this goal, the main 

objectives of this project were to: (a) examine how traffic data collection can leverage emerging 

computer vision techniques, in particular, image processing, deep learning, machine learning, 

and artificial intelligence to develop statewide roadway inventory lists; (b) design an automated 

signalized intersection geometric data extraction algorithm based on high-resolution images in 

order to identify roadway geometry data such as school zone markings and lane configurations 

(i.e., turning lanes) from high resolution aerial images, and (c) generate a GIS-based inventory 

list of these roadway geometry features for the entire state of Florida including on and off state 
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highway system roadways. This was an innovative solution that employed computer vision 

technology to potentially replace traditional manual inventory, which was labor intensive and 

prone to errors. Meeting these objectives will lead to appropriate recommendations to Florida 

DOT in terms of providing automated, deep learning- and image processing-based 

methodologies in extracting a variety of geometric features from aerial images. The findings 

could be published in FDOT manuals and reports, as appropriate. 

 Report Structure 

The remainder of this report is structured in the following manner. After describing the 

research gaps based on the stated objectives in Chapter 1, Chapter 2 describes Task 1 Deliverable 

of this project, which includes the overview on state DOTs, and the RCI and the MIRE 

introduced by the Federal Highway Administration, and literature review. Chapter 3 presents 

Task 2, where study area, materials and methods, and developed object detection models are 

presented with an evaluation of the machine learning models used in collecting roadway 

geometric feature and discussion of the results from the study. Chapter 4 proposes guidelines on 

the statewide utilization of the proposed methodology. Chapter 5 discusses the conclusions and 

future work. 
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 TASK 1: CONDUCT A REVIEW OF LITERATURE AND PRACTICE TO 

IDENTIFY BEST IMPLEMENTATIONS AND STRATEGIES 

In this task, the research team developed and evaluated the machine learning models used 

to detect and extract roadway geometry features such as school zones and turning configurations. 

Based on the review of literature that has been conducted for the purpose of discovering 

published information that can help inform, shape, or guide the conduct of this research project, 

the models were developed and implemented throughout the State of Florida to extract school 

zones and turn configurations on both on and off state highway system roadways. The main 

focus of this task was to develop a machine learning model to extract roadway geometry features 

from high resolution aerial images. For this purpose, machine learning-based object detection 

models were developed for detecting school zones and turning configurations (e.g., left only, 

right only, and center lanes) from high-resolution aerial images. Also, the research team outlined 

various methods and approaches used in developing this model and extracting geometric data at 

intersections and data needs to facilitate the analysis. 

 Department of Transportations and Roadway Characteristics Inventory (RCI) 

Since the release of the Highway Safety Manual (HSM) in 2010, many state departments 

of transportation (DOTs) started implementing the manual’s safety requirements in their duties 

with the focus on improving safety (Jalayer et al., 2014). To achieve this, there has been the need 

to collect vital information about the transportation network made up of thousands of miles of 

highways, which has been a major challenge for state and local agencies to deal with. The 

fundamental responsibility for most highway agencies has been the collection of roadway 

inventory data. Keeping an up-to-date roadway inventory database has been vital for roadway 

planning, maintenance, designing, and rehabilitation purposes (Shamayleh and Khattak, 2003). 

According to the literature, recent considerable increases in processing power and development 

of picture pattern recognition algorithms have created new possibilities for detecting and 

mapping a variety of roadway features from diverse imagery data. 

Roadway characteristics inventory (RCI) data is a collection or data inventory of all 

features that make up a roadway. Some general RCI data include Highway Performance 

Monitoring System (HPMS), roadway geometry, traffic signals, Rail Line Facility, number of 

lanes, Traffic monitoring sites (e.g., TTMS), turning restrictions, intersections, interchanges, 

number of rest areas with or without facilities, High Occupancy Vehicle (HOV) lanes, pavement 

markings, road signs, pavement quality, driveways, and bridges. RCI have broad users in 

addition to the DOT officers. It is used by the public, local governments, mapping companies, 

engineers, and law enforcement agencies. RCI data is unique from other highway agencies’ data 

since they are not collected only for specific projects, but they are also collected on each 

roadway. That is, they are specific to the roadway but not the surrounding areas or buildings, and 

they basically describe the type, use, and physical characteristics of the roadway (Karimi et al., 

2000). 

There are several ways of collecting RCI data. The methods for collecting roadway 

feature depends on the characteristic of interest. Therefore, various methods have been used by 

DOTs to collect RCI data including field inventory, satellite imagery, mobile and airborne Light 

Detection and Ranging (Lidar), integrated Geographic Information System (GIS)/Global 

Positioning System (GPS) mapping systems, static terrestrial laser scanning, and photo/video 

logging (Jalayer et al., 2014).  
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Table 2-1 describes the common methods used for collecting RCI data in the literature. 

The methods can be classified into ground observation/field surveying, and aerial imagery or 

photogrammetry. It is generally costly to collect RCI data. Each of the methods require unique 

set of equipment and time for data collection which influence the cost of data collection. In field 

surveying, measurements along the roadside are taken using total stations. Field inventory 

involves collecting road geometry data by driving along the roadway and taking notes of current 

conditions which is later fed into the inventory database. For aerial imagery or photogrammetry, 

RCI data is extracted from georeferenced images taken by airborne systems such as satellites, 

aircrafts, or drones. Each method has their limitations and advantages related to cost of data 

acquisition, data accuracy, quantum of data that can be collected, data collection constraints, data 

storage requirements, labor intensity, data acquisition time, data processing time, and safety of 

crews. The data formats for RCI data are usually shapefiles, CSV, and Oracle SQL Databases. 

Table 2-1: Description of RCI Data Collection Methods 

Method Description 

Field Inventory Conventional GPS survey equipment are used to 

obtain desired road inventory data  

Photo/Video Log Geo-located photos or videos are recorded 

automatically while driving along the roadway to 

visually extract information about roadway features. 

Integrated GPS/GIS mapping Roadway information is recorded using integrated 

GPS/GIS field data logger and stored in a GIS 

database. 

Aerial photography or Satellite imagery Roadway information is extracted from high-

resolution images taken from aircrafts or satellites. 

Structure from Motion Roadway information is extracted from detailed 3D 

models reconstructed from a set of unstructured 

photos of the roadway. 

Static Terrestrial Laser Scanning Roadway information is extracted from direct 3D 

precision point clouds acquired from stationary 3D 

laser scanners. 

Mobile Mapping Systems (MMS)/Mobile 

Lidar 

A vehicle with a Lidar system installed is used to 

collect direct 3D precision point clouds information 

of the roadway out of which RCI data is extracted. 

Airborne Lidar Roadway information is extracted from direct 3D 

precision point clouds obtained from Lidar systems 

installed on aircrafts. 

 

The data acquisition method used by most highway agencies and DOTs are from direct 

field observations. Although accurate, they are tedious, time consuming and subject to 
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limitations by adverse weather conditions (Shamayleh and Khattak, 2003). Aside these, 

collection of traffic data on sites poses a lot of risk to data collectors. This makes it necessary to 

explore more efficient ways for collecting data in order to compile the roadway inventory. 

Lately, new, and emerging technologies have been explored with regards to the collection of 

roadway inventory data. Table 2-2 describes the techniques used by various state DOTs to 

collect roadway characteristic inventory data.  

Table 2-2: Techniques for Collecting RCI Data (Gong et al., 2012) 

Data Collection Method Equipment Utilized State Agency Implementation 

Field Inventory 

(Khattak et al. 2001) 

GPS, distance measuring 

tools, and laptops 

Alaska, Colo., Conn., Del., 

Hawaii, Ky., La., Mass., Mich., 

Minn., N.Y., N.D., Okla., Ore., 

Pa. 

Photo Log 

(Jeyapalan 2004; Wang et al. 

2010) 

Vehicle, GPS, and camera Ariz., Del., Ga., Mich., Wash., 

Ohio 

Video Log 

(Gunaratne et al., 2003) 

Vehicle, GPS, and video 

cameras 

Ala., Idaho, Ind., Md., Nebr., 

N. J., 

Okla., Pa. 

Integrated GPS/GIS Mapping 

Systems 

(Caddell et al., 2009) 

GPS and GIS data-logger 

combination 

Ala., N.H., Ohio, S.D., Utah, 

Wash. 

Aerial Photography 

(Veneziano 2001) 

Airplane, GPS, and digital 

camera 

Iowa, Nebr. 

Satellite Imagery 

(Ravani et al. 2009) 

N/A Iowa 

Virtual Photo Tourism 

(Uslu et al. 2011) 

Digital Camera  

Terrestrial Laser Scanner 

(Jaselskis et al. 2005) 

Terrestrial Laser Scanner Iowa, Caltrans, Wash. 

Mobile Mapping Systems 

(Khattak et al. 2001; Graham 

2010; Turner and Comport 

2007) 

GPS, vehicle, distance 

measurement indicator, 

inertia measurement 

system, digital cameras, and 

Lidar 

FHWA, City of Charlotte, Ind., 

Wis., Nev., Tex., Tenn., 

Hawaii 

Airborne Lidar 

(Shamayleh and Khattak 2003) 

Airplane, GPS, and Lidar Iowa, Nebr. 
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The traditional methods like using survey total stations, photo/video logs, and GPS 

loggers are accurate; however, they expose crew members to traffic and a lot of other dangers. 

Data collection time is also too long. It requires less automation and more human interaction. 

The manual processing of data may lead to blunders affecting data integrity.  

Satellite/aerial imagery (e.g., Google map or Bing map images) have been used to collect 

information about the earth over the past decade (Jalayer et al., 2014). RCI data can be extracted 

from high resolution images taken from an aircraft or satellite (Gong et al., 2012, Zhou et al., 

2013). RCI data for large areas can be collected and processed in a relatively short period of 

time. The increasing availability of high-resolution images and data extraction techniques brings 

into perspective the need to efficiently use them to extract roadway inventory data. One 

limitation of this method is the difficulty to extract small objects that are not clear or visible. 

However, with the development of more efficient machine learning techniques and algorithms, 

this limitation has been overcome. With these methodologies, well-trained models can be used to 

increase the accuracy of the output. This method uses little to no field costs, making it 

economically preferable. 

One of the contemporary methods for collecting roadway inventory is the Light Detection 

and Ranging (Lidar) technology. Lidar uses a principle like RADAR to collect information 

(Shamayleh and Khattak, 2003). The information of a surface is obtained by Lidar when the 

return time of reflected light beams coming from the target surface is recorded. The measured 

return time of the light beams is used to calculate the distance between the instrument and the 

target, and consequently used to generate a profile of the surface when many light beams are 

recorded. The Lidar technology may be attached to an aerial platform or mobile (ground) 

platform. Mobile Lidar captures geospatial information of an object from a moving vehicle. 

To this end, there has not been a study on using the computer vision techniques to extract 

different roadway geometry data and develop a statewide inventory for roadway geometry data 

such as school zone markings, lane configurations (i.e., turning lanes lengths, and lane, shoulder 

and median widths), and sidewalks (i.e., presence or absence of sidewalks) from high resolution 

aerial images, and a study related to how this can benefit roadway users such as drivers, 

pedestrians and bicyclists. As such, this project will develop automated tools to detect these 

roadway features using deep learning-based object detection models in the State of Florida. This 

will be achieved by running a retrained You Only Look Once (YOLO) artificial intelligent model 

to look for the introduced pavement marking combinations on the high-resolution aerial images 

followed by the GIS-based spatial analyses for both on and off state highway system roadways 

of Florida.  

 Department of Transportations and the Model Inventory of Roadway Elements 

(MIRE) System 

In 2010, the United States Department of Transportation (USDOT), through the Federal 

Highway Administration (FHWA, 2018), provided a comprehensive database in other to support 

the various states Department of Transportation (DOT) to build a well-structured data-driven 

program. This was a generalized database called the Model Inventory of Roadway Elements 

(MIRE). This database or inventory makes it possible for all state DOTs to have complete access 

to a collection of roadway components on all public roadways across the United States (Lefler et 

al., 2010).  

The elements in the MIRE database are categorized into three categories: 
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i. Roadway segments, 

ii. Intersections, 

iii. Interchanges. 

Many states in the United States do not have the Fundamental Data Elements (FDE) data 

in their existing roadway inventories. Quality data are the cornerstone for making crucial design, 

operations, and safety decisions on roadways. The need for safe operation is why the Florida 

Department of Transportation (FDOT) is in search of more robust, convenient, and technological 

methodologies to extract these roadway geometric features through aerial images, and computer 

vision techniques. FDOT is also part of the nationwide MIRE, a project for which various DOTs 

are required to collect certain roadway geometric features to create its generalized database with 

its fundamental data elements. MIRE was created by the Federal Highway Administration to 

provide a recommended approach for the creation of a comprehensive highway and traffic data 

inventory for efficient safety management. The conversion of MIRE, which is now a list of 

variables, into a Management Information System (MIS) is a vital step toward acceptance, and 

implementation of MIRE (USDOT, 2013.). 

This project seeks to employ artificial intelligence and aerial imagery (AI2) to extract 

roadway geometric features. The scope of the project is tuned to building a deep learning 

algorithm to detect school zones, signalized intersections, and other roadway features through 

image processing, image classification, and image analysis. This project will enable FDOT to 

collect roadway geometric features and other elements that are specified in the MIRE database. 

The method that will be used in this project is also safe and cost-effective since aerial images 

will be obtained from the Aerial Photography Look-Up System (APLUS) of FDOT (FDOT, 

2020) and the technique for detecting these features only requires a deep learning application 

programming interface (API). 

This study covers the methods used by other DOTs for collecting MIRE FDE data and 

the machine learning techniques that have been employed to detect and classify roadway 

geometric features from aerial imageries. The study also focuses on how training datasets for the 

deep learning model were collected and how the features were extracted. 

 MIRE Fundamental Data Elements 

The Model Inventory of Roadway Elements as developed by the Federal Highway 

Authority has 205 roadway geometric features that are to be included in the MIRE database. The 

fundamental data elements (FDE) account for only 37 of the 205 elements. The FDE is divided 

into three categories depending on the functional class and surface type. These three types of 

roads in this system are as follows: non-local paved roads, local paved roads, and dirt roads. All 

37 FDE for non-local paved roadways, 9 FDE for paved local roadways, and 5 FDE for unpaved 

roadways must be available to the state. These data elements also include traffic data elements 

which are very important to safety management. Under certain conditions, the state may choose 

not to collect the FDE on gravel or other unpaved roadways. The data elements for highway 

segments, intersections, and interchanges/ramps are separated from the FDE for non-local paved 

roadways.  

These basic but relevant features are the fundamental data elements that several state 

DOTs are developing more advance technological ways to extract from satellite imageries and 

others still use manual data collection methods. The data in the MIRE Management Information 
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Systems (MIS) must be of good quality in order for it to be most functional (Altobello et al., 

2013). The federal highway system has roadway segment data, and there are various elements in 

the data for all public highways. The MIRE FDEs can be built out using data from the Highway 

Performance Monitoring System (HPMS). The appropriate tables can be created using the 

Extract, Transform, and Load (ELT) operations (Experience, 2018). Even though some data exist 

for traffic counts and crash reporting, intersection data is a big gap in the database. These data 

elements is utilized on all public roadways to aid in the development of Strategic Highway 

Safety Plans (SHSPs) and Highway Safety Improvement Plans, as well as to support safety 

analyses. 

Additionally, by combining these features in a data-driven strategy, state DOTs will be 

able to improve their roadway and traffic data collections and provide a link to crash and safety 

data via geolocation. MIRE also allows connection to other relevant databases, which can help 

improve the safety analysis. By employing alternate data sources to broaden the scope of 

coverage of these datasets, such as speed limits, safety analysis can be expanded (Cook et al., 

2021). 

 Literature Review 

This section evaluates the state of the practice for RCIs by state and federal transportation 

agencies. Published work in literature is presented in order to uncover relevant information that 

can help inform, shape, or guide to conduct this research project. 

 State-of-the-Practice of RCI Data Collection Methods in Traffic Agencies 

RCI data collection methods can be categorized into two: land-based methods and 

air/space-based methods as seen in Table 2-3. Each method uses different techniques for data 

collection.  

Table 2-3: Categorization of RCI Data Collection (Gong et al., 2012) 

 Land Air or Space 

GPS Field Inventory 

Integrated GPS/GIS Mapping 

 

GPS and Imagery Photo/Video Log Satellite Imagery and 

Aerial Imagery 

GPS and Imagery and 

Lidar 

Static Terrestrial Laser 

Scanning (Uses stationary 3D 

laser scanners) and 

Mobile Lidar (Uses Lidar 

installed on mobile vehicles) 

Airborne Lidar 

 

A survey was conducted by Jalayer et al. (2015) to find out the methods adopted by 

various DOTs to collect RCI data. Figure 2-1 is a map showing the states that responded to the 

survey conducted to assess the various methods used by state DOTs to collect RCI data. Figure 

2-2 shows the results of this survey conducted to know the technology used by 50 state DOTs to 

collect various RCI data. The results received from 30 DOTs showed that over 50% of them 
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relied on the traditional ground methods like integrated GPS/GIS mapping, field inventory, and 

photo/video logging. Very few of them relied on aerial-based methods. Some methods like laser 

scanning and Lidar were rarely used. 

 

Figure 2-1: State DOTs that Responded to the Survey on RCI Methods They Use 

 

Figure 2-2: Percentage of Technology Adoption by 30 DOTs (Jalayer et al., 2015) 
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Recent studies on RCI data collection methods are shown in Table 2-4. They generally 

focus more on using Lidar, which is very accurate and produces rich data; however, it has a high 

cost of equipment and operations, large size of dataset, and long data processing and reduction 

times. Other studies focus on the traditional methods which has longer data collection times and 

they interrupt traffic operations and expose crew to traffic and other dangers. Very little focus 

has been given to emerging technologies such as using deep learning and computer vision 

techniques to extract roadway features from high resolution aerial images. This method 

eliminates field work and data collection time. The data for this method is available. It does not 

expose crew members to any traffic risks and dangers. It is highly accurate and can be used to 

obtain roadway features in large areas in a short time.  

Table 2-4: Recent Studies on RCI Data Collection Methods from 2014 to Date 

Research Method Description Support/Funding 

Jalayer et al. 

(2014) 

Lidar and Aerial 

Imagery 

Evaluated remote sensing methods 

to collect roadway inventory data. 

Illinois DOT 

Jalayer et al. 

(2015) 

Photo/Video 

logging 

Evaluated photo/video logging 

methods used to detect highway 

inventory data. 

Illinois DOT 

Balali and 

Golparvar-

Fard (2015) 

Ground/Roadway 

imagery 

Evaluated the use of AI to detect 

and classify traffic signs 

Data from Illinois 

DOT 

Guan et al. 

(2016) 

Mobile Lidar Mobile Lidar was used to collect 

traffic signals, poles, and roadway 

pavement. 

National Science 

Foundation of 

China 

Yan et al. 

(2016) 

Lidar A review of roadway collection 

using Lidar. 

Alberta 

Transportation, 

Canada. 

Nagarajan et 

al. (2016) 

Mobile Laser 

scanner, GPS, 

and Cameras 

Mobile mapping system based on 

laser scanners and camera was 

used to collect roadway inventory 

data (road markings and signs). 

Received support 

from FDOT in 

collecting field 

data. 

He et al. 

(2017) 

Airborne Lidar Airborne Lidar data together with 

ArcGIS-based algorithm was used 

to detect large traffic signs, 

billboards, bridges, traffic signals. 

Utah DOT 

Teo 2018 Mobile Lidar Mobile Lidar was used to extract 

roadway markings. 

Ministry of 

Interior Taiwan 

Kargah-

Ostadi et al. 

(2020). 

Ground/Roadway 

imagery 

Using AI, traffic signs were 

detected from roadway imagery 

obtained from driving along the 

roadway. 

No funding. 
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Shamayleh and Khattak (2003) studied the use of Lidar to collect certain roadway 

inventory such as highway grade, side slope, contours, and stopping and passing sight distance. 

The Lidar technology uses high speed computing, Global Positioning System (GPS), and laser 

range finders and precision inertial navigation to collect data (Shamayleh and Khattak, 2003). 

Lidar systems can be attached to ground or airborne platforms. Lidar systems measure the 

distance between a target object and the detector (Miotto, 2000) by measuring the time a light 

pulse takes to reflect to the detector from the target. In this study, the data were collected on 

computers and used for analysis. The data produced by Lidar systems were used to create digital 

elevation models (DEM) which is the surface profile of the earth in the form of elevation data. 

Lidar data and geocoded aerial imagery were merged and analyzed in a GIS platform. The 

extracted information was compared to ground truth data for validation. 

Gong et al. (2012) studied how highway inventory data are extracted using Mobile 

Terrestrial Laser Scanning (MTLS). Before data collection, the system was calibrated to extract 

GPS positions of all scanned points during driving. The 3D point clouds, GPS data, and camera 

data provided from the data collection were post processed to create geo-referenced point clouds 

and photographs from which roadway features were extracted. Digital elevation models (DEM), 

digital terrain model (DTM), track geometry, and vectorized contour lines were extracted from 

the data. 

 Existing Practices of State DOTs for Collecting Roadway Features  

Many states have existing inventories that are deficient in FDE data, particularly at 

intersections although most DOTs have already started working on better data development 

efforts. Each DOT is required to develop the MIRE fundamental data elements by September 30, 

2026. The mapping of safety features maps along roadway networks can help manage and 

maintain roadway safety infrastructure. The detailed safety feature map can be used by traffic 

engineers in our various DOTs to identify areas where new safety implementations should be 

built. The majority of these DOTs acquire data manually by going out into the field to inspect the 

roadways and visually interpret the street view images taken by transportation officials (Sainju & 

Jiang, 2020).  

The majority of Michigan DOT's available roadway data, including MIRE components, 

are gathered using the manual data collection from the DOT staff, counties, cities, and other 

planning organizations (Kwayu et al., 2022). As a result, there have been efforts to use GIS-

based technologies and machine learning techniques to automate information extraction from 

existing databases such as Michigan Imagery Solution and Lidar. The Michigan Department of 

Transportation has also made attempts to locate and classify intersections by MIRE traffic 

control type using the State of Michigan Traffic Crash Report (UD-10) crash data, and diagrams 

(Kwayu et al., 2022). This leads to the roadways being minimally exposed, making majority of 

Michigan's roadways being exempted from the process. 

An Automated Pavement Condition Survey (APCS) is used by Caltrans to collect 

inventory and condition data for all NHS and SHS pavements. The APCS measures the state of 

National Highway State and State Highway State pavements every 0.1 miles using high-

resolution pictures and lasers. This data collection initiative was started by Caltrans in 2015 

(Caltrans, 2018). As part of the preliminary studies and piloting programs for the MIRE project, 

the California Department of Transportation (CALTRANS) performed a study of state 

departments of transportation to learn about existing methods for collecting and maintaining 
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roadway asset data in different states (Ravani et al., 2009). The methods used to gather data vary 

greatly based on the technology available, the type of equipment used, the amount of time 

required, and the availability of personnel. Integrated mapping systems, airborne LIDAR, aerial 

photos, and video logging, among other technologies, were used to collect data. The study's 

findings highlighted the importance of using automated, scalable, and cost-effective approaches 

to extract desired data from state DOT data sources (Kwayu et al., 2022). 

This has proven that artificial intelligent techniques such as deep learning and machine 

learning should be employed together with other GIS methodologies to extract these roadway 

geometric features as they provide safer, more convenient, and cost-effective solutions. The deep 

learning tool embedded in the ArcGIS software makes the entire roadway feature detection 

model easier and the extraction process more effective and efficient. 

New Hampshire DOT (NDHOT) was one of two states chosen by FHWA to run a pilot 

project to examine the feasibility of collecting, storing, and integrating MIRE data into a MIS. 

They also combined roadway inventory data with collision and other pertinent data for safety 

analysis purposes. NHDOT collected data to expand its usage of AASHTOWare Safety 

Analysis, primarily to assist network screening analysis. They employed the AASHTOWare 

Safety Analysis to improve the upkeep of their safety data by using automated GIS tools and 

update the inventory on a yearly basis. This was comparable to the MIRE Fundamental Data 

Elements component, towards choosing which intersection elements to prioritize in the MIRE 

MIS intersection data collection operations. The MIRE MIS endeavor was split into two parts. 

The first part of the project included the design of proprietary GIS toolbar developed to combine 

the state’s Linear Referencing System (LRS) with the intersection inventory. On the other hand, 

the second part involved data collectors filling in the intersection elements that were not 

retrieved from the state’s LRS and double-checked the pre-filled components (Study, n.d.). 

These were methods that required extra work from the staff as limited data will be collected. 

This brings the need for these machine learning techniques where algorithms could be built to 

detect these roadway features from either satellite imageries or drone images automatically. 

The more information a state or local agency has for a roadway, the better that agency 

will be able to deploy resources to identify problem areas, diagnose concerns, recommend 

appropriate remedies, and assess the effectiveness of those remedies. Other states have various 

ways of extracting roadway geometric features and other databases, and forms of storage. Table 

2-5 indicates these states and their forms of data inventory. 

 Choosing and Object Detection Model 

The performance of an algorithm when observing a standardized image collection will 

not be the sole criterion for selecting the best object detection model. Many considerations have 

become relevant when choosing a suitable model for a particular target task due to the 

uniqueness of a project (Campbell et al., 2019). According to this study, most of the leading 

models, including those provided by TensorFlow, have converged on the same overall concept, 

making it simple to use any model for custom object detection. As a result, each model's low-

level operations will be defined in terms of speed, memory dependence, and accuracy. 
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Table 2-5: Examples of Technologies Used by Other DOTs 

State DOT Inventory Collection 

Technique 

Storage Inventory Data 

Michigan Integrated GPS/GIS 

mapping systems, and 

field inventory 

GIS Guardrails, pipes, culverts, culvert ends, 

catch basins, and impact attenuators 

New 

Hampshire 

Online aerial imagery, and 

street-level imagery 

GIS/Linear 

Referencing 

System 

Intersection and intersection legs 

California Aerial imagery GIS/Linear 

Referencing 

System 

Intersection, and interchange ramps 

Washington Photo log, integrated 

GPS/GIS mapping 

systems 

GIS Cable barriers, concrete barriers, culverts, 

culvert ends, ditches, drainage inlets, 

glare screens, guardrails, impact 

attenuators, miscellaneous fixed objects, 

pipe ends, pedestals, roadside slope, rock 

outcroppings, special use barriers, 

supports, trees, tree groupings, and walls 

Ohio Photo log integrated 

GPS/GIS mapping 

Systems 

GIS Wetland delineation, and 

vegetation classification 

Iowa Airborne Lidar, and aerial 

photography 

GIS Landscape, sloped areas, individual 

counts of trees, side slope, grade, and 

contour 

Idaho Video log MS 

Access 

Guardrails 

Tennessee Tennessee Road 

Information Management 

System (TRIMS), and 

Maintenance 

Management System (MMS) 

Central 

Database 

Traffic signs, guardrails, 

and pavement markings which are 

manually collected 

New Mexico Photo, Laser Scanner, 

and Virtual Reality System 

Video Most types of visible highway assets 

except for light posts, and road detectors 

Virginia Web-based asset 

management system using 

Google Maps 

Google 

Maps 

Cross pipes, and ditches 

FHWA 

Baltimore 

Washington 

Parkway 

Mobile mapping Point Cloud 

Software, GIS 

Corridors, and signs 
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 Roadway Geometric Feature Extraction and Data Collection Using Computer Vision 

and Deep Learning 

Recently, computer vision and deep learning techniques such as convolutional neural 

networks and recurrent neural networks have become emerging instruments when it comes to 

transportation (Habibi Aghdam et al., 2016). These methods have been used in image detection, 

where autonomous vehicles use them to detect objects on the roadways in real time. Researchers 

in numerous transportation projects have used aerial images and video data in conjunction with 

deep learning and computer vision to detect and classify roadway geometry elements (Kwayu et 

al., 2022).  

Computer vision techniques were used to detect and classify traffic signs using Google 

Street View (GSV) photos of interstate segments in a study (Balali et al., 2016). The researchers 

employed a machine learning technique that combined the histograms of oriented gradients 

(HOG) features with a linear support vector machine (SVM) classifier to detect and classify 

roadway signs based on their pattern and color information. With a classification accuracy of 

94.63%, this strategy was successful. The proposed technique, however, was not tested on local 

roadways or non-interstate routes. Another study used a novel hybrid local multiple systems 

(LM-CNN-SVM) based on convolutional neural network (CNN) and SVMs for object 

recognition and pedestrian detection using the Caltech-101 and Caltech pedestrian datasets. This 

is due to its robust categorization property and powerful feature extraction capabilities (Uçar et 

al., 2017). The entire image was partitioned into local regions in the proposed system, and 

several CNNs were used to learn local areas and local object characteristics. Principal component 

analysis was used to select discriminative characteristics. To improve the generalization ability 

of the classifier system, the features were then imported into multiple SVMs using both 

empirical and structural risk minimization instead of a direct CNN. In addition, the output of 

SVM was fused, and a pre-trained AlexNet and a new CNN architecture were used. The 

proposed approach had an accuracy range of 89.80% to 92.80%. 

Table 2-6 shows the advantages and disadvantages of RCI data collection methods. 

  



15 

 

Table 2-6: Advantages and Disadvantages of RCI Data Collection Methods 

Method Description Advantages Disadvantages Related studies 

Field  

Inventory 

Conventional GPS survey 

equipment is used to 

collect information in the 

field. 

High data accuracy. 

Low initial cost. 

Low data reduction 

effort. 

Tedious. Crew exposed to 

traffic. Long field data 

collection time. 

Zhou et al. (2013) 

Photo/Video 

Log 

Automatically recording 

photos or videos while 

driving a vehicle along the 

roadway. 

Small roadside 

objects are visible to 

identify and record. 

Less exposure to 

traffic. Short field 

data collection time. 

Difficulty in recovering 

accurate geometric 

information. Inability to 

measure feature dimensions 

Time consuming to 

manually process data. 

Accuracy depends on user 

recognizing elements in 

photos/videos. 

Tsai et al., (2009), 

Wang et al. 

(2010), Balali et 

al., (2016), Zhou 

et al. (2013) 

Integrated 

GPS/GIS 

Mapping 

Integrated GPS/GIS field 

data logger is used to 

record and store inventory 

information. 

Low initial cost. 

Low data reduction 

effort. User friendly, 

Requires less 

training. High 

accuracy. 

Tedious. Crew exposed to 

traffic. Long field data 

collection time. GPS outage 

problems due to tree 

canopy. 

Caddell et al., 

(2009), Ravani et 

al., (2009) 

Aerial and 

Satellite 

Imagery 

High-resolution images 

taken from aircrafts, 

drones, or satellites are 

used to extract road 

inventory data. 

Eliminates field 

work and data 

collection time. No 

exposure of crew to 

traffic. No traffic 

disruption. Images 

are compatible with 

GPS. 

Difficult to identify small 

objects like traffic signs or 

signals from images. 

Ravani et al., 

(2009) 

Terrestrial  

Laser 

Scanning 

3D point clouds obtained 

from stationary 3D laser 

scanners are used to 

extract roadway inventory 

data. 

High data accuracy. 

Can operate in day 

or night. 

Long field data collection 

time. High cost. Large 

dataset size. Long data 

processing and reduction 

time. 

Slattery & Slattery 

(2010), Vincent 

and Ecker, (2010), 

Caltrans, (2018)  

Mobile  

Lidar 

Lidar instrument attached 

to a vehicle is used to 

collect 3D point 

information out of which 

roadway inventory data 

are extracted. 

Short data collection 

time. High accuracy 

High cost. Large dataset 

size. Long data processing 

and reduction time. 

Tang and Zakhor 

(2011), Vincent 

and Ecker, (2010), 

Guan et al., 

(2016), Teo, 

(2018) 

Airborne 

Lidar 

Lidar instrument attached 

to an aircraft is used to 

collect 3D point 

information out of which 

roadway inventory data 

are extracted. 

No exposure of 

crew to traffic. Short 

data collection time.  

High cost. Large dataset 

size. Long data processing 

and reduction time. 

Chow and 

Hodgson (2009), 

Vincent and 

Ecker, (2010) 
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 Extracting Image Features with CNNs 

CNN was created primarily to classify images. Its notion of parameter sharing allows a 

model to learn fewer parameters than a traditional neural network. CNN also has a series of 

layers (Sainju & Jiang, 2020). In this study, to map and extract features from Google Street View 

imagery, a model spatial linear pattern using LSTM was presented. An LSTM model was 

utilized on a sequence of image data retrieved by the CNN model to model the spatial linear 

structure on a roadway network path. The suggested model's middle component was built around 

a retrained CNN model for extracting low-dimensional features from individual images. This 

LSTM is a recurrent neural network (RNN) that uses gating functions to prevent the problems of 

exploding and disappearing gradients. The structure in Figure 2-3 shows the proposed model 

used.  

 

Figure 2-3: Overall Framework of the Deep Learning Model 

 Data Preparation for Model Training and Evaluation 

Quality imagery data are needed to train deep learning models to detect the various 

roadway geometric features. The procedure for the image preparation is shown in Figure 4. The 
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flowchart in Figure 2-4 frames the issue with a focus on school zone identification and image 

annotation. 

 

Figure 2-4: Example Data Preparation Flowchart 

 Linear Referencing System (LRS) 

Using LRS, many of the highway qualities maintained by state DOTs are linked to a 

physical location on the roadway network. Locations of roadway features like bridges, 

guardrails, signs, and changes in roadway geometry like the number of lanes and pavement 

condition are measured using an LRS as a linear distance along a defined route from a given 

reference point. 

A physical feature such as a junction or mile marker signage, a virtual point such as a 

state or county boundary, and the start point of a state numbered route are all possible choices for 

the reference points. Almost any roadway feature can be located within the precision of the 

distance measurement by selecting the reference point and measured distance. 

State DOTs have been using linear references for more than 40 years, and it predates the 

deployment of GIS technology by more than 20 years. However, many State DOTs still save 

roadway inventory data on mainframe computers and have just lately began converting these 

databases to a GIS enterprise environment, allowing the data to be linked and shown alongside a 

State DOT's geospatial roadway network (Spear et al., 2010). 

 Field Cameras/Ground Imagery  

Kargah-Ostadi et al. (2020) collected roadway imagery data using a camera mounted on a 

vehicle. The captured imagery was divided into training and test datasets. These were used to 

train and test the deep learning object detection model. Convolutional Neural Network (CNN) 

deep learning model based on MobileNetV2 SSDLite was trained using a pre-processed image 

data. The trained model created a multiscale feature map for each image made up of cells and a 

collection of bounding boxes and scores (probabilities) when there was a presence of traffic signs 

in the boxes. The bounding box with the most overlap and highest score was selected. GPS 

coordinates and bounding box coordinates assigned to each image from the survey were used to 

triangulate the local information about the traffic sign.  

 Photo/Video Logging 

Jalayer et al. (2015) used photo/video log method to collect roadway inventory data. Geo-

tagged digital photos and videos were collected using the Red Hen video mapping system. The 

collected data were imported into Arc Editor and ArcView, extensions of the ArcGIS software. 

The digital motion pictures contained GPS locations for the roadways where they were taken. A 

point feature class was created using the GPS location where each video or picture was taken. 

Roadside elements were identified from the videos by a user when played.  

 Lidar and Aerial Imagery 
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In a study by Shamayleh and Khattak (2003), aerial imagery of two meters resolution and 

Lidar data in ASCII comma delimited text file format with 6 inches accuracy was used to collect 

the roadway data. Height information was added to Lidar point shapefiles using ArcView and the 

datapoints were finally converted into Triangular Irregular Networks (TIN). Lidar bounds and 

aerial images were merged to start the entire analysis. ArcView’s object obstruction tool was 

used to identify objects obstructing the line of sight of an observer. Stopping sight distance was 

obtained by observing the line of sight drawn. The line of sight was drawn, and green line 

segments showed visible terrain while red line segments showed obstructed terrain. The side 

slope and contours were obtained by using the identifying tool and contour tool in ArcView. The 

grade was calculated by taking a difference of elevation of two ends of a segment. Yan et al. 

(2016) extracted roadway markings from Lidar point clouds using the scan line method. Using 

their timestamps, the algorithm orders Lidar point clouds sequentially and organised into scan 

lines using scanner angle. The height difference between trajectory data and roadway surface 

was used to extract seed road points, which were later used to extract full road points. A line was 

fitted through the seed points and all other points along the scan line. Only points that fall within 

a specified threshold of the line were kept and classified into road marking or asphalt points 

based on their intensity. To reduce the noise in data, a dynamic window median filter was used 

to smoothen the intensity values. Edge detection and constraints method was used to extract 

roadway markings. 

 Object Detection and Tracking 

Roadway user detection is the key component of vision-based traffic methods. These can 

be categorized into point detection, machine learning, and deep learning algorithms. Most of the 

point detection and tracking algorithms, such as KLT point tracking or blob analysis, are 

unsupervised algorithms and can be applied rapidly without any training data set. These 

algorithms represent the early stage of computer vision utilization in transportation as they can 

be found in vehicle detection and surveillance technologies used in ITS (Mimbela & Klein, 

2000). Also, they are easy to cluster with simple algorithms like k-means algorithm (Ke et al., 

2015). Speed clustering of the interest points can be used for background subtraction as well (Ke 

et al., 2017). However, these algorithms are sensitive to the complexity of the image such as 

shadows, roadway facilities, and adjacent vehicles. Their performance is low in congested traffic 

conditions.  

Most of the supervised vehicle detection algorithms come from the Viola-Jones face 

recognition algorithm (VJ) with hand crafted features (i.e., Haar, Histogram Oriented Gradients 

(HOG), or SIFT Local Binary Pattern) (Viola & Jones, 2005). Moreover, Integral Channel 

Features (ICF) (Dollár et al., 2012) and its improved version Aggregated Channel Features 

(ACF) (Appel et al., 2014) also originated from the VJ-based object detection algorithms. 

Basically, the cascade function in these algorithms needs to be trained with positive and negative 

images. Training data set consists of positive and negative images to emphasize what the interest 

object is and what is not. For example, in vehicle detection, positive images include vehicle(s) 

and negative ones include only the roadway with trees or other side features. The larger the size 

of the training dataset, the higher accuracy on the vehicle detection, similar to face recognition. 

When an object has all the features according to a running vehicle training set, it will be detected 

as a vehicle and a bounding box will be drawn around it (Xu et al., 2016). They can be used to 

detect vehicles in congested traffic flow; however, there is still an overlapping problem. A study 

(Kim et al., 2019) used a 40% overlapping threshold for ACF-based vehicle detection. If the 
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overlapping area was greater than 40 % of the total detected area, only the vehicle with higher 

detection score was retained. Haar like features and HOG were also used for pedestrian detection 

and tracking from UAS-obtained images (Ma et al., 2016).  

More recently, deep learning-based convolutional neural networks (CNN) have shown an 

outstanding performance in object detection (Tang et al., 2017; Vattapparamban et al., 2016; Xie 

et al., 2018; Xu et al., 2017). These algorithms have been improved with region-based CNN (R-

CNN) (Girshick et al., 2012), Fast R-CNN (Girshick, n.d.), and finally with Faster R-CNN (Ren 

et al., 2017). CNN algorithm basically extracts region proposals as candidate locations for the 

objects followed by the computation of the CNN features. Faster R-CNN improves performance 

by using a Region Proposal Network (RPN) in addition to the object detection network. A recent 

study (Kim et al., 2019) proposed a detailed comparison on the vehicle detection and tracking 

performances of deep learning (faster R-CNN) and machine learning algorithms (ACF). Their 

findings indicated that faster R-CNN outperforms ACF. Therefore, the algorithm to run the 

analysis should be selected carefully. Depending on the purpose of the analysis, the output of the 

vehicle detection and tracking algorithms can be speed, volume, or vehicle trajectories. Unlike 

point tracking algorithms, vehicle detection algorithms can classify vehicles as well.   

 Findings 

Findings indicate that, the existing methods provide accurate results; however, they have 

a lot of setbacks. For example, Lidar and laser scanning methods are costly. Due to the high 

density of data, it requires considerable number of data processing time. Traditional surveys, 

integrated GPS/GIS methods, and photo/video logging methods expose crew members to traffic 

risks. Data collection times are long and data processing has a lot of human interaction. New and 

cheaper methods for collecting RCI data such as using computer vision and artificial intelligence 

should be employed to collect data. 

A study by Kwayu et al. (2022) appear to be valuable here. In this study, approximately 

85% of the total automated photos were randomly selected for model training and 15% for model 

testing from a scalable deep learning framework where MIRE intersection control types were 

extracted from panoramic images (Kwayu et al., 2022). It had a 98% recall rate on average. The 

model losses and learning rate were the most closely examined performance measures. The 

learning rate is a metric that measures how quickly the model learns from the data. As the 

number of training steps increases, the model loss should reduce and the learning rate should 

increase (Kwayu et al., 2022). A total loss of 1.5 was found acceptable in another similar study 

(Campbell et al., 2019). As a result, when the model had learned from 6,000 training steps, the 

training process ended. The model was trained for approximately 4 GPU hours in total. In the 

same study where GIS was used with google street view imagery, the GIS analysis was 

successful in selecting relevant places that observed 90.80% of the intersection signage within 

the study area, based on the quantitative analysis. The practicality of using street view 

photography to detect street signage is determined by several factors. Above all, a geographic 

area must be covered by Google Street View, and the imagery's currency must be current. 

Furthermore, urban transportation networks tend to receive more complete coverage than rural 

transportation networks, resulting in a disparity in the amount of data available to different 

regions (Campbell et al., 2019). 

Results from most state DOTs clearly indicated the need for more advanced techniques in 

data collection, and image processing and classification. For example, New Hampshire DOT 
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uses a Linear Referencing System coupled with the AASHTOWare for data management, but 

this clearly indicates how most of elements in their database were replicated from other sources 

and there is still a need to expand their data collection methodology. This is since the data 

needed for AASHTOWare to make the necessary traffic safety analysis was not efficient. 

 



21 

 

 TASK 2: GEOMETRIC DATA EXTRACTION 

 Task Description 

In this task, the research team developed and evaluated the machine learning models used 

to detect and extract roadway geometry features such as school zones and turning configurations. 

Based on the review of literature that has been conducted for the purpose of discovering 

published information that can help inform, shape, or guide the conduct of this research project, 

the models were developed and implemented throughout the State of Florida to extract school 

zones and turn configurations on both on and off state highway system roadways. The main 

focus of this task was to develop a machine learning model to extract roadway geometry features 

from high resolution aerial images. For this purpose, machine learning-based object detection 

models were developed for detecting school zones and turning configurations (e.g., left only, 

right only, and center lanes) from high-resolution aerial images. Also, the research team outlined 

various methods and approaches used in developing this model and extracting geometric data at 

intersections and data needs to facilitate the analysis. 

 Study Area 

This section describes the study areas used in this research. Two areas in Florida were 

studied in this research (a) Orange County, Florida and, and (b) Duval County, Florida (Figure 

3-1). They were both considered due to their diversity in roadway infrastructural development. 

Also, ground truth data collected in Leon County, Florida has been used for validating the 

models. 

Orange County, Florida, the home for the City of Orlando, has been selected as the case 

study area for detecting school zones. The county has 1,003 square miles of total area and its 

borders are Brevard County on the east, Seminole and Lake Counties on the north, Lake County 

on the west, and Osceola County on the south (US Census, 2020). Within the county, land-

surface heights are less than 250 feet, and the geography of the region differs significantly from 

west to east. Light commercial, residential, and open irrigated space such as golf courses and 

school grounds are the primary land uses in the study area (OCPS, 2022). The estimated 

population of Orange County is over 1.42 million as of 2020 according to the U.S. Census 

Bureau (2020). There are 264 schools in the Orange County Public Schools system, serving 

199,089 students. 80% of the county’s students are from the underrepresented communities. The 

county has 131 preschools, 170 elementary schools, 89 middle schools, and 56 high schools 

(OCPS, 2022).  

On the other hand, Duval County has been selected as the case study area for detecting 

turning lanes and configurations. The City of Jacksonville is the county seat for Duval County, 

which is in Northeast Florida. The county has 918 square miles of total area and shares border 

with Clay, Baker, Nassau, and St. Johns Counties in Florida (US Census, 2020). According to 

the U.S. Census Bureau (2020), Duval County has a population of 995,560. Duval County has 

over 587 miles of local roadways and 503 miles of state roadways. 



22 

 

 

(a) 

 

(b) 

Figure 3-1: Map of (a) Orange County and (b) Duval County Florida, with the roadway network 
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 Materials and Methods 

The choice of method used to collect roadway inventory data depends on factors such as 

data collection time (i.e., data collection, reduction, and processing), cost (i.e., data collection, 

and reduction), and accuracy, safety, and data storage requirements. In this study, our aim was to 

create a deep learning object detection model to detect school zones and turning lane markings 

from high resolution aerial images in Orange County and Duval County. 

 Data Description 

Aerial imagery is archived by the Surveying and Mapping Office of the Florida 

Department of Transportation (FDOT). These well-indexed, georeferenced photos of all 67 

Florida counties are preserved across a period of years, with file names that include the three-

letter county code, the year the image was taken, and the tile number. The high-resolution aerial 

images used for the study were obtained from the Florida Aerial Photo Look-Up System 

(APLUS). This archive is accessible to the public via APLUS, which is run by the FDOT 

Surveying and Mapping Office (FDOT, 2020). A small number of photos can be downloaded 

from this platform's website, but massive datasets—covering an entire county or perhaps an 

entire state—can only be obtained by sending a request and a letter or by supplying an external 

drive with enough storage capacity. With a combined size of 17.73 GB, the most recent high-

resolution pictures (as of December 2019) for the Florida counties of Pinellas, Gulf, Santa Rosa, 

Hillsborough, Duval, Broward, Orange, Escambia, Miami-Dade, and Leon were retrieved for 

this study. The aerial images used for model training and detection have a resolution ranging 

from 1.5 ft down to 0.25 ft. Because our model is based on this type of resolution, any imagery 

that falls within this resolution or is higher can effectively be utilized to detect school zones 

using our model. The majority of the photographs were in the 0.5 ft/pixel (0.15 m/pixel) 

resolution with a size of 10,000 × 10,000 and 3-band (RGB) image format, while the precise 

resolution varied depending on the county. Additionally, the photos are supplied in MrSID 

format, which allows for GIS projection on a map. 

Another source of GIS data is the FDOT Transportation Data and Analytics Office. This 

information has been divided into four main categories: (a) data on designated roadways, (b) data 

on roadway features, (c) data on traffic, and (d) data on bicyclists and pedestrians. This study 

focused on school zones found on county- or city-controlled roads as well as those found on state 

highway system roads. Interstate roadways were removed from the state roadway, and all 

centerlines in the county- and city-controlled roadways shapefile were combined. State highway 

system roads are described in this study as ON System Roadways or state roads while the 

county- or city-controlled roads are described as OFF System Roadways or local roads according 

to FDOT classification. It should be noted that the FDOT's GIS data can assist in obtaining 

several geometric data points necessary for the mobility and safety performance evaluations; 

however, the dataset lacks information on the positions of school zones on state and local 

roadways. As such, the main goal of this project was to use an advanced object identification 

model to compile an inventory of school zone markers and turning lane markers precisely left 

only, right only, and center lanes on both state and local roadways in Orange and Duval counties, 

Florida.  

 Pre-processing 

Aerial images were obtained from the Florida Aerial Photo Look-Up System (APLUS). 

This archive is accessible to the public via APLUS, which is run by the FDOT Surveying and 
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Mapping Office. After obtaining aerial images, one important task is to mask the images. Due to 

the amount of data and the difficulty of the object recognition procedure, preprocessing is a 

necessary step. In general, our method chooses and discards any pictures that do not cross a 

roadway centerline, and then it masks out any pixels that are not encircled by a buffer zone. In 

this approach, the number of photos was decreased from 90K to 30K, and the image masking 

model excluded objects that were 100 feet away from state and local roadways. Before the 

images were masked, the roadway shapefile which were used, were buffered to form polygons 

having overlapping boundaries dissolved. Using this layer as a reference, aerial images were 

iterated, and intersecting regions of the aerial images were cropped. During the masking process, 

pixels that fell outside the boundary of the reference layer were removed. The cropped images, 

which consequently had smaller number of pixels, were mosaiced together to form a single raster 

file. This new file was smaller and was easier to handle in a mosaic format for all forms of raster 

analysis or data processing. 

Figure 3-2 illustrates the preprocessing strategy in detail. All the photos from the chosen 

counties (n = about 90K) were initially imported into a mosaic dataset using the ArcGIS Pro 

program. Multiple geocoded photos were managed and shown using mosaic databases. 

Additionally, mosaic datasets enable the intersection of additional geocoded vector data to pick 

picture tiles depending on location. For instance, a subset collection of the photographs (n=30K) 

was created by selecting and extracting individual images that comprise a portion of the roadway 

centerline. Furthermore, an automatic picture masking process was created using the ArcGIS Pro 

ModelBuilder interface. As shown in Figure 6b, the tool repeatedly goes through a folder of 

photographs, applies a mask to each image based on a 100-foot buffer around the centerlines of 

the road, and then saves the masked images as JPG files for the object recognition method.  
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(a) 

  

(b) 

Figure 3-2: (a) Preprocessing approach and (b) implementing automated image masking model 

used in the fourth step of preprocessing 
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 Data Preparation for Model Training and Evaluation 

 School Zone Model 

Quality imagery data are needed to train deep learning models to detect various school 

zone features. The procedure for the image preparation is shown in Figure 3a which illustrates 

the process from school zone identification to image or training data extraction. A lot of time and 

effort were spent to create the training data for the model creation since a greater percentage of 

the model’s performance relies on the amount, quality and diverseness of the training data used 

for training the model. Similarly, extra time and work was required during the model training 

process where different parameters were tested, and the optimum was selected to train the model. 

This is illustrated in the larger box size for “Manually label school zones” and “training data” in 

Figure 3-3a. The labels used for describing the training data were “schoolzones” and 

“not_school” which were class 1 and class 0 respectively. The labels were made up of 

rectangular bounding boxes drawn around the school zone and not school zone markings. 

 Turning Lane Model 

Two different multi-class models were developed to detect the turning configurations 

(Figure 3-3b). Firstly, a 12-class object detection model was developed, followed by a 4-class 

object detection model. Two different forms of training data with different classes were prepared 

for the study. The first training data which was used to train the first turning lane model had 12 

classes which were as follows: “left_only”, “right_only”, “left_through”, “right_through, 

“through”, left_right_through”, “bicycle”, “center”, “left_right”, “merge”, “u_turn”, and “none”. 

These were class 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 respectively. The labels used for 

describing the training data for the second model were “left_only”, “right_only”, “center”, and 

“none”, which were classes 1, 2, 8, and 12, respectively (Table 3-1). It is important to note that 

object detection models perform well when trained using clear and distinct features. The 

observed difference between the left only and right only turning markings is commonly a lateral 

inversion of the other which is less distinct and therefore its’ detection performance by the model 

is anticipated to be relatively low. To ensure uniqueness, the labels used to train the center lane 

class contained both left arrows facing each other from different travel directions. A similar idea 

was employed in labelling all other features to maintain uniqueness in the training features. The 

metadata of the exported labels were in the pascal visual objects format. The input mosaic data 

was made up of high-resolution aerial images of the entire State of Florida with tile size of 5000 

x 5000 sq ft. 
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(a) 

  

(i) left_only, left_right, and right_only (ii) left_only, left_through, through, and 

right_only 

  

(iii) right_only, through, and left_only (iv) through, right_through, and right_only 

(b) 

Figure 3-3: (a) Model training data preparation framework and (b) training data examples for 

turning lane with bounding boxes. 

 



28 

 

Table 3-1: Turning lane model training data description 

ID Class name Description Example/Picture Training Example 

1 left_only Left only 

   

2 right_only Right only 

 
 

3 left_right Left and Right 

 

 

 

4 through Through 

  

5 left_through Left and Through 

  

  

 

6 right_through Right and Through 

     

 

 

7 left_right_through Left Right and 

Through 
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8 center Center lane (left 

turn possible in 

both direction or 

two way) 

  
 

9 bicycle Bicycle lane       

  

 

   

 

 

10 merge Merge lane 

   

11 u_turn U turn 
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Table 3-1, continued 

12 none None 

1. Yield 

2. Stop 

3. Parking 

4. Speed limits  

etc 

    

  

 

 

 YOLOv3: School Zone and Turning Lane Detection Model  

The neural network model known as You Only Look Once (YOLO) is mostly employed 

for real-time object identification. When compared to other object identification models like 

Region-based Convolutional Neural Network (R-CNN) or Faster R-CNN, YOLO's quickness is 

by far its biggest advantage. In other words, YOLO outperforms R-CNN and Faster R-CNN 

architectures by 1000 and 100 times, respectively (Redmon and Farhadi, 2018). This is largely 

because other object identification models classify potential regions first, then identify the 

item(s) based on the classification probability of those regions, requiring hundreds of network 

evaluations to be performed on a single picture. On the other hand, the YOLO model may make 

predictions based on the entire context of the image and look for the entire image using just one 

network analysis. The initial version of the YOLO object identification method was released in 

2016 (Redmon et al., 2016), the second version, YOLOv2, in 2017 (Redmon and Farhadi, 2017), 

and the third version, YOLOv3, which improved multi-scale predictions, in 2018 (Redmon and 

Farhadi, 2018). YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Jocher et al., 2020) were 

published in 2020 and 2022, respectively. YOLOv3 was used in this investigation since our 

dataset does not have a scalability problem and because it is simple to apply using the available 

sources (Figure 4). Unlike other detection models, YOLOv3 uses Darknet-53 as its backbone. 

Darknet-53 is a deeper version of Darknet-19 which was the backbone of YOLOv2. The 

architecture of the backbone has 53 convolutional layers which improves the model’s accuracy 

and speed (Tsang, 2019), making the feature extractor perform better and 2x faster than 

ResNet152 (Redmon and Farhadi, 2018). Figure 3-4 shows images that are produced at the end 

of the detection layers in YOLOv3, depicting the three-scale detection process. This involves 

applying a 1x1 detection kernel on feature maps located at three different areas and sizes within 

the network.  
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Figure 3-4: YOLOv3 network architecture school zone example adapted from (Kathuria, 2018) 

 School Zone Detector 

The school zone model was trained with manually labelled 13,208 school zone and not-

school-zone classes on the aerial images using the Deep-Learning Toolbox in ArcGIS Pro. The 

school zone class was made up of 7,056 features, which is 53.4% of the training data, whereas 

the not-school-zone class contained 6,152 features which is the remaining 46.6% of the training 

data. The not-school-zone labels were made up of randomly selected roadway markings that 

describe other features than school zones including railroad crossings, stop, slow, only, and 

speed limit markings. The school zone class was labeled as 1 while the not-school-zone class 

was labeled as 0 in the training data. The two classes clearly distinguished between the school 

zone features and not-school zone features observed in an input image by the detector. This clear 

classification improves the model’s detection performance. Based on these classes, the output 

data was categorized into school zones and not-school zone using a class value field. The 

training data consists of the school zones and not-school-zones from Miami-Dade (8,096), 

Pinellas (4,060), Escambia (80), and Leon (972) counties. For a fair model performance, these 

counties were selected due to the variations in image resolutions, demographics, and roadway 

infrastructure development for the training. These counties selected also had varying school zone 

markings on the roadways.  

 Note that demographics provide valuable statistical information about human population 

in terms of age, income, sex, education, race, and others. These variables, which can also be used 

to describe the needs of a community, consequently, provide vital information on the highly 

populated communities as well as communities that have a substantial number of schools to 

serve their residents. Information about underserved neighborhoods with limited infrastructural 

development and less schools available can serve as a valuable resource in obtaining training 

data for the model since a large chunk of school zone markings with varying characteristics were 
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needed to efficiently train the model. Demographical data pointed us to specific areas with a lot 

of school zone markings and vice versa.  

 The school zone model’s tunable parameters and hyperparameters include the learning 

rate, input image size, number of epochs, batch size, anchor box size and ratios, and training and 

test data percentages. The ML model evaluation metrics were illustrated using the validation and 

training loss graph (Figure 5a). The validation loss and mean average precision were computed 

on the validation set, which is made up of 30% of the input training dataset. The object detection 

parameters that have a high impact on the object detection are the batch size, the learning rate, 

and the training epoch. The learning rate represents the rate at which the model learns new 

information about the training data by overwriting the existing information with newly acquired 

information during the training process. Choosing an ideal learning rate strikes a compromise 

between precision and convergence speed. A model can be trained effectively, with excellent 

convergence characteristics, and with the greatest level of accuracy by using an optimal learning 

rate. Therefore, an optimum learning rate of 0.0003 was used to train the model. The batch size 

describes the number or bundle of training samples or images selected and processed for training 

each iteration. The selection of batch size depended on factors like the size of dataset, model’s 

complexity, and the available computer hardware’s resources. For instance, with a larger batch 

size, more data can be processed in parallel, and the training process is faster. However, this 

requires more computer memory. Smaller batch size, on the other hand, increases randomness in 

training data selection during the training process. This enhances the model’s performance on 

new data and therefore improves predictions. Since the developed school zone model has two 

classes with less data complexity, a smaller batch size of 16 was used in the training process to 

improve model’s performance. Also, the anchor box represents the size, shape and location of 

the object being detected. 9 anchor boxes were used to train the model. The epoch number is the 

number of iterations the model will be trained. It describes the number of times the training 

dataset is passed forward and backward through the neural network once. The percentage of 

training data actually used to train the model was 70%. This dataset is randomly chosen to train 

the model. 

A 30% split of the training dataset was used to assess the detection model's performance. 

In other words, 3,962 randomly selected school zone and non-school zone photos were used to 

assess the model's accuracy rather than for training. The size of the training dataset was mainly 

considered when determining the training and test data split. With a training dataset > 10000, a 

20%-30% validation size provides enough randomly sampled data to test the model’s 

performance. As a valid prediction, a default 50% overlap of the label and detection bounding 

boxes was accepted. Following that, recall and precision were determined as the true prediction 

rate among the original labels and all other predictions, respectively. In YOLOv3, the likelihood 

of an input belonging to a certain label is calculated using individual logistic classifiers instead 

of the SoftMax function which was used in previous versions (Redmon et al., 2016; Redmon and 

Farhadi, 2017). During the model training, a binary cross-entropy loss was used for each label to 

calculate the classification loss, rather than using mean square error. Therefore, logistic 

regression was used to predict both object confidence and class predictions. This approach 

reduces the complexity of computations involved and improves the model’s performance 

(Redmon and Farhadi, 2018). The graph of the train-validation loss is shown in Figure 3-5a. The 

validation loss examined how well the model fits new data, whereas the training loss evaluated 

how well the model fits training data.  A high loss indicates that the product of the model has 
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errors while a low loss value shows there are fewer errors present in the model. Since the 

accuracy of the developed school zone model was 0.88, we can conclude that the developed 

detector performs quite well.   

 Turning Lane Detector 

The 12-class and 4-class turning lane models were trained with manually labelled 23,669 

and 8,241 features, respectively, on the aerial images of Miami-Dade, Gulf, Santa Rosa, 

Hillsborough, and Broward counties using the Deep-Learning Toolbox in ArcGIS Pro. For the 

12-class model, the “left_only” class had 3,021 features (12.3% of training data), “right_only” 

class had 2,179 features (8.9%), “left_through” class had 1,627 features (6.6%), “right_through” 

class had 1,583 features (6.4%), “through” class had 2,233 features (9.1%), “left_right_through” 

class had 920 features (3.7%), “bicycle” class had 3,230 features (13.1%), “center” class had 

3,043 features (12.4%), “left_right” class had 159 features (0.6%), “merge” class had 2,262 

features (9.2%), “u_turn” class had 632 features (2.6%), and “none” class had 2,780 features 

(11.3%). On the other hand, the 4-class model had 2,178 features (26.4%) for the “left_only” 

class, 2,060 features (25%) for the “right_only” class, 1,884 features (22.9%) for the “center” 

class, and 2,119 features (25.7%) for the “none” class. The “none” class labels for the 12-class 

model were made up of randomly selected roadway markings that describe all other features than 

the turning lane markings of interest including railroad crossings, stop, slow, only, and speed 

limit markings. On the other hand, the “none” class labels for the 4-class model were made up of 

all other visible markings or features except “left_only”, “right_only”, and “center”. Some 

features which were very common such as “left only”, “right only”, and “bicycle” had higher 

presence in the training data for the turning lane model with 12 classes. However, rare features 

such as, “left_right”, “u_turn”, and “left_right_through” had lower presence in the training data 

set.  

Some of these features were duplicated to increase their proportions in the training data 

set. To avoid model overfitting, bias and limited model generalization as a result of duplication, a 

data augmentation technique named rotation was utilized to increase dataset diversity and 

quantity without solely resorting to duplication. Data rotation method was used to randomly 

rotate the training data features at desired angle producing extra training data in various 

rotations. This helps the model detect objects in various positions and orientations. This was very 

useful since the study features such as left only and right only lanes can be observed in all travel 

directions at each intersection. A 90 degrees rotation was applied to the training data. Finally, 

468,176 exported image chips containing 567,876 features were used to train the 12-class model 

and 144,224 image chips containing 185,560 features were used to train the 4-class model. 

Please note that a single image chip may contain more than 1 feature. 

 Each class was distinctively labeled in the training data. The classes clearly distinguished 

between the turning lane features, and “none” features observed in an input image by the 

detector. This clear classification improves the model’s detection performance. Based on these 

classes, the output data was categorized into either “left only”, “right only”, “center”, and “none” 

using a class value field. The training data for the 12-class model consists of turning lane 

features from Miami-Dade (169,592), Hillsborough (286,584), Santa Rosa (4,708), and Gulf 

(8,556) counties. That of the 4-class model consists of Broward (6,712), Miami-Dade (112,552), 

Hillsborough (53,136), Santa Rosa (5,324), and Gulf (7,836) counties. For a fair model 

performance, these counties were selected due to the variations in image resolutions and roadway 
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infrastructure development for the training. These counties selected also had varying turning lane 

markings on the roadways.  

 The ML model evaluation metrics were illustrated using the average precision, 

validation, and training loss graph (Figure 3-5b and Figure 3-5c). The validation loss and mean 

average precision were computed on the validation set, which is made up of 30% of the input 

training dataset. An optimum learning rate of 1.096e-06 and 3.311e-06 was used to train the 12-

class model and 4-class model, respectively. Since the developed turning lane models were 

multi-class models with high data complexity, a higher batch size of 64 was used in the training 

process to improve model’s performance. The percentage of training data was 70%. A 30% split 

of the training dataset (140,453 and 43,268) image chips were used to assess the 12-class and 4-

class models’ accuracy, respectively. Similar to the school zone model, a default 50% overlap of 

the label and detection bounding boxes was accepted as true detection. The graphs of the train-

validation loss for 12-class and 4-class turning lane models are shown in Figure 3-5b and Figure 

3-5c. From the graphs, it can be noted that the 4-class model had a relatively higher training and 

validation loss difference with the training loss much lower than validation loss (Figure 3-5c). 

However, there was very little difference between the training and validation loss values 

obtained from the 12-class model (Figure 3-5b). This shows that the developed turning lane 

models fit equally with new data; however, the 4-class model fits better with the training data. 

Also, the 4-class model has less errors compared to the 12-class model. The average accuracy of 

the developed 12-class model was 0.84 whereas the 4-class model average accuracy was 0.85. 

Therefore, we can conclude that the developed turning lane detector performs quite well. 

 

(a) 

Figure 3-5: Developed YOLOv3 model train and validation loss graph: (a) school zone model, 

(b) 12-class turning lane model, and (c) 4-class turning lane model 
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(b) 

 

(c) 

Figure 3-5: Developed YOLOv3 model train and validation loss graph: (a) school zone model, 

(b) 12-class turning lane model, and (c) 4-class turning lane model 
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 Mapping School Zones and Turning Lanes 

The school zone and turning lane detectors were initially tested on individual photos. 

Figure 3-6 demonstrates how the detectors correctly outline school zones and turning lanes with 

bounding boxes using the detection's confidence score. 

For the school zone detector, a threshold of 0.1 was employed to lessen false positives. 

However, due to the complexity of multiclass models, a threshold of 0.05 was employed in 

turning lane detection to capture all features detected with very low confidence levels. It is 

important to note that lower detection thresholds generally increase false positives, which results 

in lower precision, increases computational workload, which tends to increase detection time, 

and increases detection of irrelevant features or noise. However, lower detection thresholds also 

increase model’s sensitivity to detect faint or partially visible features, while increasing recall. 

With higher recall, the model is more likely to identify and detect all instances of the target 

object class and reduce the chances of missing any objects. For all models, more than 10% 

overlap between two bounding boxes was avoided to minimize duplication detections. To lessen 

information loss from the margins of the detection pictures, a padding parameter of 56 was added 

to the boundary pixels on the outside of the image. The detector was trained on 256 x 256 sub-

images with a stride of 128 by 128 pixels and a resolution of 0.5 feet per pixel. Because the 

stride is half of the size of the image chip, this leads to a 50% overlap between any two image 

chips in sequence. The image was rescaled and processed with black pixels to have the same 

attributes if the provided image had a different size or resolution. It should be noted that utilizing 

huge photos with object detection techniques is impractical since the cost of computing grows 

rapidly with size. 

The mapping procedure was carried out at the county level because the detector performs 

very well on single photos. Figure 3-6a provides a summary of this procedure. The photographs 

in the folder labeled "masked images" were first selected and iterated through the detector. An 

output file of all the identified school zones in that county was created once all photos had been 

sent to the detector. Confidence scores were included in the output file. This file was used to map 

school zones. Note that the model can detect school zone and turning lane markings from images 

with a resolution ranging from 1.5 ft down to 0.25 ft or higher. However, the model has not been 

tried on any images with resolution lower than the ones provided by the Florida APLUS system. 

From the observations, the models made some false detections in a few instances. These were 

outlined and discussed in the results. Figure 3-6c shows some examples of the detected features, 

and some observed false detections or misclassification. 
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(a) 

Figure 3-6: (a) School zones and turning lane detection framework, (b) school zone detection 

polygons and confidence scores on images from Leon, Miami-Dade, and Pinellas counties, and 

(c) turning lane detection polygons and confidence scores on images from Leon County 
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(b) 

Figure 3-6: (a) School zones and turning lane detection framework, (b) school zone detection 

polygons and confidence scores on images from Leon, Miami-Dade, and Pinellas counties, and 

(c) turning lane detection polygons and confidence scores on images from Leon County 
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Figure 3-6: (a) School zones and turning lane detection framework, (b) school zone detection 

polygons and confidence scores on images from Leon, Miami-Dade, and Pinellas counties, and 

(c) turning lane detection polygons and confidence scores on images from Leon County 

 Post-processing 

The redundant detections caused by the overlapping distance on sliding images are 

removed at the post-processing stage. For various analytical objectives, school zones and turning 

lanes found on state and local roadways can also be divided into categories. The total number of 

observed school zone markings in Leon County was 61. After passing the turning lane model on 

the obtained aerial images in Leon County, the total number of observed left, right, and center 

detections in Leon County from the 12-class model and 4-class model were 2,736 and 3,165, 

respectively. Non maximum suppression was used to filter the detected school zones by selecting 

and keeping school zone detections that overlap and have the highest confidence level. Detected 

school zones with more than a 20% overlap and lower confidence levels were removed whereas 

detected turning lane markings with more than a 10% overlap and lower confidence levels were 

also removed. Detected features were then converted from polygon shapefiles into point 

shapefiles for subsequent analysis. 

 Results  

 Overall Performance Evaluation Using the Ground Truth Data 

 Experimental Design 

Leon County was utilized as the county where ground truth data were collected and the 

developed models’ performances are assessed together with their accuracies and completeness, 

and the results are contrasted with training data. A full, manually positioned Ground Truth (GT) 

school zone and turning lane datasets were created in Leon County as proof of concept. After 

visual inspection, a total of 51 and 2,566 visible school zone and turning lane markings for left, 

right, and center lanes were collected using the masked photographs as the background, 

respectively. Please be aware that whereas a single school zone marking is observed at a time, 

each turning lane may exhibit a range of 1-6 features, such as left-only or right-only indicators. 

Consequently, a single turning lane could encompass several consecutive features that 

collectively define that lane. In cases where an intersection contains multiple turning lanes 

aligned in parallel, each lane may consist of several features. Within this framework, any feature 

that is inaccurately classified amidst correctly classified features within the same lane is deemed 

a false positive or a misclassified turning lane. For instance, in a left-only lane with four features, 

if three of them are correctly identified as left, and the fourth is misclassified as right or center, 

the entire lane is considered a false positive or misclassified detection. Figure 3-7a and Figure 

3-7b show the GT dataset and detected school zone and turning lane markings in Leon County, 

respectively. Although some of the turning lane markings, especially the left only marking, were 

missed by the model, the overall performance of the turning lane model was reliable. Also, a few 

of the school zone markings were also missed by the model. This is mainly because of various 

reasons such as occlusions, faded markings, shadows, poor image resolution, and the variety in 

pavement marking design. 

As noted, the suggested turning lane model has identified turning lane markers with a 

minimum confidence score of 5% while the school zone model detected school zones at a 

minimum 55%. For the purposes of this case study, the model identified turning lane or school 
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zone markers (M) on both state and local roadways in Leon County, which were then retrieved. 

On the GT, a similar location-based selection methodology was used. While the school zone 

model’s performance was assessed at various confidence levels of 0.55, 0.6, 0.7, 0.8, and 0.9, the 

suggested turning lane model's performance was assessed by examining the points that were 

discovered within the polygons and vice versa at various confidence levels of 75%, 50%, 25%, 

10%, and 5% because the GT and M are points and polygons, respectively (Table 3-2). The 

performances of the developed models were assessed. 

The school zone and turning lane models’ performances were assessed using the criteria 

of completeness (precision), correctness (recall), and quality (intersection over union) and 

visualized using a graph and a circus plot (Krzywinski et al., 2009) respectively in Figures 8a, 8b 

and 8c. These criteria were initially utilized in (Wiedemann et al., 1998) and (Wiedemann and 

Ebner, 2000) for the goal of highway extraction, and they are now often used for performance 

evaluation of the related models (Sun et al., 2019; Dai et al., 2020). The following selection 

criteria are necessary to determine the performance evaluation metrics using the turning lane 

example: 

i. False Negative (FN): # of GT turning lane points not found within M turning lane 

polygon,   

ii. False Positive (FP): # of M turning lane polygons with no GT turning lane point, 

iii. True Positive (TP): # of M turning lane polygons with GT turning lane point, 

iv. GT: Number of GT turning lane points, and 

v. M: Number of Model detected turning lane markings 

Performance evaluation metrics:  

Completeness =
𝐺𝑇−𝐹𝑁

𝐺𝑇
∗ 100%, true detection rate among GT turning lane (recall) 

Correctness =
𝑀−𝐹𝑃

𝑀
∗ 100%, True detection rate among M turning lane (precision) 

Quality =
𝐺𝑇−𝐹𝑁

𝐺𝑇+𝐹𝑃
∗ 100%, True detection among M turning lane plus the undetected GT turning 

lane (Intersection over Union: IoU) 

Here, our major goal is to assess the accuracy and performance of the proposed model's 

predictions and contrast them with a ground truth dataset. Separate evaluation analysis will be 

performed using “school zone”, “left_only”, “right_only”, and “center” detections of the 

developed models. The accuracy and performance of models will be assessed after testing the 

models’ correctness (precision) and completeness (recall) using a complete ground truth dataset 

and measuring the f-1 score. The f-1 score calculates the harmonic mean using the precision and 

recall values. It is the appropriate evaluation metric when dealing with imbalanced datasets. It is 

crucial in object detection tasks where missing actual objects is more detrimental than incorrectly 

classifying background regions as objects. The f1-scores of the developed turning lane models 

were compared and visualized using a circus plot in Figure 3-9. 
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(a) 

Figure 3-7: Leon County manually labeled Ground Truth (GT) and detected (a) school zone 

markings and (b) turning lane markings. 
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(b) 

Figure 3-7: Leon County manually labeled Ground Truth (GT) and detected (a) school zone 

markings and (b) turning lane markings. 
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Based on the findings, we observe that this automated school zone detection and mapping 

model can detect and map 94% of the school zones with 100% precision at 90% confidence 

level. At a lower confidence level of 55%, it can detect 96% with 80% precision. At 90% 

confidence level, the quality of the model is 94% whereas the quality of the model is 77.8% at 

55% confidence level. Meanwhile, the 12-class turning lane detection and mapping model can, 

on average, detect and map 23% of the turning lanes with 94% precision at 75% confidence 

level. At a lower confidence level of 5%, it can detect 73% of the turning lanes with 96% 

precision. At 75% confidence level, the average quality of the model’s detection is 16% whereas 

the average quality of the model is 59% at 5% confidence level. On average, the 4-class turning 

lane model recorded 42% of detections with 99% precision at 75% confidence level. At a lower 

5% confidence level, 80% of detections were observed at 97% precision. The average quality of 

the 4-class model detections at 75% confidence level is 28% and 68% at 5% confidence level.  

Higher accuracy was achieved at low confidence levels since there is a higher recall and 

more room is given to increase the number of detections. That is, from the observations, detected 

roadway geometry markings that had occlusions from vehicle or trees, shadows, and faded 

markings generally had lower confidence levels. Therefore, reducing the confidence level 

threshold adds these detected features to the total number of detections. The new detections 

allowed into the pool for valuation relatively includes more true positives, less false positives, 

and less or zero false negatives. With the increase in the number of true positives as confidence 

decreases, the accuracy of the model increases since the accuracy is described based on the 

relationship between the number of true positives, total number of detections, the high-resolution 

aerial images, and the false negatives. It can be observed that the 4-class turning lane detection 

model generally recorded higher accuracies than the 12-class model. This is due to the less 

complexity or lower number of classes of the 4-class model which increases model’s 

performance.  

The summarized model performance evaluation can be observed in Table 3-2 and 

visualized in Error! Reference source not found.. It can also be observed that the poor 

distinctiveness of the detection features of the turning lane model greatly affected detection 

performance. As stated earlier, the observed difference between the left only and right only 

turning markings, which is just a lateral inversion of the other marking, made it less unique and 

therefore resulted in a low detection performance. When the left turn is flipped horizontally, it 

becomes a right turn and vice versa. On the other hand, center lane which was trained using a 

relatively distinct shape recorded better detection results than the left only and right only lanes. 



46 

 

 

(a) 

Figure 3-8: (a) Visualization of school zone model and visualization (circus plot) of performance 

evaluation metrics between the ground truth (GT) and predictions made by the YOLOv3-based (b) 

12-class turning lane model and (c) 4-class turning lane model for detecting left_only (turquoise), 

right_only (blue), and center (red). The circus plot also shows the distribution of the true positives 

(magenta), false negatives (yellow), and false positives (green). The links between the classes 

show the number of true positives (correctly classified), false negatives (unclassified), and false 

positives (misclassified) in each class; the thickness of the links describes their percentages. The 

size of the radii of the inner segments depicts the total value of the fields in ascending order. The 

outer concentric bars depict the percentages of the values in descending order. From 8c (4-class 

model), about 70% of right-only detections are true positives while only 56% were true positives 

in 8b (12-class model). 
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(b) 

Figure 3-8: (a) Visualization of school zone model and visualization (circus plot) of performance 

evaluation metrics between the ground truth (GT) and predictions made by the YOLOv3-based (b) 

12-class turning lane model and (c) 4-class turning lane model for detecting left_only (turquoise), 

right_only (blue), and center (red). The circus plot also shows the distribution of the true positives 

(magenta), false negatives (yellow), and false positives (green). The links between the classes 

show the number of true positives (correctly classified), false negatives (unclassified), and false 

positives (misclassified) in each class; the thickness of the links describes their percentages. The 

size of the radii of the inner segments depicts the total value of the fields in ascending order. The 

outer concentric bars depict the percentages of the values in descending order. From 8c (4-class 

model), about 70% of right only detections are true positives while only 56% were true positives 

in 8b (12-class model). 
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(c) 

Figure 3-8:  (a) Visualization of school zone model and visualization (circus plot) of performance 

evaluation metrics between the ground truth (GT) and predictions made by the YOLOv3 based (b) 

12-class turning lane model and (c) 4-class turning lane model for detecting left_only (turquoise), 

right_only (blue), and center (red). The circus plot also shows the distribution of the true positives 

(magenta), false negatives (yellow), and false positives (green). The links between the classes 

show the number of true positives (correctly classified), false negatives (unclassified), and false 

positives (misclassified) in each class; the thickness of the links describes their percentages. The 

size of the radii of the inner segments depicts the total value of the fields in ascending order. The 

outer concentric bars depict the percentages of the values in descending order. From 8c (4-class 

model), about 70% of right only detections are true positives while only 56% were true positives 

in 8b (12-class model). 
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Figure 3-9: Visualization (circus plot) of f1-score comparison between the 12-class and 4-class 

YOLOv3-based turning lane model for detecting left_only (green-yellow), right_only (shamrock), 

and center (red). The circus plot also shows the distribution of the 4-class model’s f1-score 

(magenta) and the 12-class model’s f1-score (blue). The links between the classes show the f1-

scores in each class; the thickness of the links describes their percentages. The size of the radii of 

the inner segments depicts the total value of the fields in ascending order. The outer concentric 

bars depict the percentages of the values in descending order. The f1-score of the 4-class model is 

more than 50% in all classes, indicating a better performance than the 12-class model. Also, the 

total value of the 4-class model’s f1-score is ~240 which is higher than the 12-class model which 

is ~215. 
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 Detecting School Zones in Orange County and Turning Lanes in Duval County  

Additionally, the model was used to detect school zones and turning lanes in Orange and 

Duval Counties respectively. The detected features were classified under different confidence 

levels. The final list is shown in Table 3-2. The detected school zone and turning lanes features 

have been visualized on Figure 3-10a and Figure 3-10b, respectively. The extracted road 

geometry data can be integrated with crash and traffic data to advise policy makers and roadway 

users. That is, they can be used for a variety of purposes such as identifying those markings that 

are old and invisible, comparing the school zone or turning lane locations with other geometric 

features like crosswalks, and analysing the crashes occurring around the zones or intersections. 

 

(a) 

Figure 3-10: Model-detected (a) school zones in Orange County and (b) turning lanes in Duval 

County. 
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(b) 

Figure 3-10: Model-detected (a) school zones in Orange County and (b) turning lanes in Duval 

County. 

Table 3-2: Model performance evaluations and detected features 

Leon County Ground Truth Comparison Analysis 

4-class turning lane model 

left_only: GT = 1723    

 

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 283 275 8 1448 15.96 97.17 15.89 27.42 

50 457 436 21 1287 25.30 95.40 25.00 40.00 

25 666 626 40 1097 36.33 93.99 35.51 52.41 

10 821 764 57 959 44.34 93.06 42.92 60.06 

5 1008 935 73 788 54.27 92.76 52.06 68.47 

         

right_only: GT = 632     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 129 127 2 505 20.09 98.45 20.03 33.38 
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Table 3-2, continued 

50 216 211 5 421 33.39 97.69 33.12 49.76 

25 341 334 7 298 52.85 97.95 52.27 68.65 

10 400 390 10 242 61.71 97.50 60.75 75.58 

5 456 444 12 188 70.25 97.37 68.94 81.62 

         

center: GT = 211     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 104 104 0 107 49.29 100.00 49.29 66.03 

50 133 133 0 78 63.03 100.00 63.03 77.33 

25 157 157 0 54 74.41 100.00 74.41 85.33 

10 166 166 0 45 78.67 100.00 78.67 88.06 

5 178 177 1 34 83.89 99.44 83.49 91.00 

         

12-class turning lane model 

left_only: GT = 1723     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 11 10 1 1713 0.58 90.91 0.58 1.15 

50 62 57 5 1666 3.31 91.94 3.30 6.39 

25 271 255 16 1468 14.80 94.10 14.66 25.58 

10 553 513 40 1210 29.77 92.77 29.10 45.08 

5 858 787 71 936 45.68 91.72 43.87 60.98 

         

right_only: GT = 632     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 11 10 1 622 1.58 90.91 1.58 3.11 

50 62 60 2 572 9.49 96.77 9.46 17.29 

25 182 176 6 456 27.85 96.70 27.59 43.24 

10 304 291 13 341 46.04 95.72 45.12 62.18 

5 382 367 15 265 58.07 96.07 56.72 72.39 

         

center: GT = 211     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

75 98 98 0 113 46.45 100.00 46.45 63.43 

50 129 129 0 82 61.14 100.00 61.14 75.88 

25 148 148 0 63 70.14 100.00 70.14 82.45 

10 155 154 1 57 72.99 99.35 72.64 84.15 

5 160 159 1 52 75.36 99.38 75.00 85.71 

         

School zone model 

GT = 51     

Confidence (%) M TP FP FN Completeness (%) Correctness (%) Quality (%) F1-score (%) 

90 48 48 0 3 94.12 100.00 94.12 96.97 

80 52 48 4 3 94.12 92.31 87.27 93.20 

70 55 48 7 3 94.12 87.27 82.76 90.57 

60 59 48 11 3 94.12 81.36 77.42 87.27 

55 61 49 12 2 96.08 80.33 77.78 87.50 
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Table 3-2, continued 

 

Detection of Right, Left, and Center Markings in Duval County 

Left  

Confidence Level (%) 
Detected left only features 

State Roads Local Roads Total  

75 1238 971 2209  

50 2167 1722 3889  

25 3607 2819 6426  

10 4315 3346 7661  

5 4969 3768 8737  

     

Right  

Confidence Level (%) 
Detected right only features 

State Roads Local Roads Total  

75 459 311 770  

50 822 607 1429  

25 1381 1066 2447  

10 1661 1347 3008  

5 1946 1631 3577  

     

Center  

Confidence Level (%) 
Detected Center lane features 

State Roads Local Roads Total  

75 317 406 723  

50 430 533 963  

25 478 627 1105  

10 522 706 1228  

5 634 886 1520  

     

 

Detection of School Zone Markings in Orange County 

Confidence Level (%) 
Detected School Zone Features 

State Roads Local Roads Total  

90 79 410 489  

80 80 426 506  

70 83 442 525  

60 85 451 536  

55 88 481 569  
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 TASK 3: PROPOSE GUIDELINES ON THE STATEWIDE UTILIZATION OF THE 

METHODOLOGY 

 

 Task Description 

In this task, the research team described the approach employed to develop the machine 

learning models used to detect and extract roadway geometry features such as school zones and 

turning configurations. Based on the review of literature that has been conducted for the purpose 

of discovering published information that can help inform, shape, or guide the conduct of this 

research project, the models were developed and implemented on the entire State of Florida to 

extract school zones and turn configurations on both on and off state highway system roadways. 

The main focus of this task was to provide the step-by-step method used to develop the machine 

learning model to extract roadway geometry features from high resolution aerial images. For this 

purpose, the following steps were described: (1) preprocessing steps, (2) training data creation 

method, (3) machine learning-based object detection model development, and (4) post-

processing steps used for detecting school zones and turning configurations (e.g., left-only, right-

only, and center lanes) from high-resolution aerial images. Also, the research team outlined 

various methods and approaches used in developing this model and extracting geometric data at 

intersections and data needs to facilitate the analysis. 

 Materials 

The choice of method used to collect roadway inventory data depends on factors such as 

data collection time (i.e., data collection, reduction, and processing), cost (i.e., data collection, 

and reduction), and accuracy, safety, and data storage requirements. In previous tasks of this 

project, our aim was to create a deep learning object detection model to detect school zone and 

turning lane markings from high resolution aerial images in Orange County and Duval County.  

 System Configuration and Software Setup 

To ensure the successful implementation of the developed object detection model, there 

are several system and software setup requirements that need to be addressed. The software used 

was ESRI’s ArcGIS Pro version 3.0. The default version does not contain the deep learning 

libraries; therefore, they need to be installed separately after installing the ArcGIS Pro software. 

ArcGIS pro has a python notebook interface where lines for codes can be used to implement 

model creation and image processing. Here, the advantage is that the interface allows users to 

directly import geoprocessing tools and utilize them for various analytical purposes. In other 

words, each line of code can be visualized in a geoprocessing tool format for easy 

implementation and usage, which would be very helpful for FDOT users. Similarly, the 

visualized geoprocessing tool in extension can also be used to generate lines of codes which can 

be implemented in other python environments (i.e., outside ArcGIS Pro software). It is important 

to check software access options to ensure that the user has access to the ArcGIS Image Analyst 

tools and ArcGIS API for python.  

Several deep learning libraries for the current ArcGIS Pro version should be downloaded 

and installed. The deep learning libraries downloaded for ArcGIS Pro v3.0 is the Deep Learning 

Libraries Installer for ArcGIS Server 3.0 or equivalent (https://github.com/Esri/deep-learning-

frameworks/blob/master/README.md?rmedium=links_esri_com_b_d&rsource=https%3A%2F

%2Flinks.esri.com%2Fdeep-learning-framework-install). Most packages included in the Deep 
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Learning Libraries installer are designed to function well on a wide range of machine 

configurations. For instance, PyTorch has the capability to utilize a Graphics Processing Unit 

(GPU) for accelerated computation, but it switches to Central Processing Unit (CPU) processing 

when a GPU is absent. Nonetheless, it is worth noting that GPU-based computation offers a 

substantial speed boost, and certain packages like TensorFlow in this distribution exclusively 

require a compatible GPU to operate effectively. To enable GPU processing, one will need 

Compute Unified Device Architecture (CUDA)—a fundamental necessity for modern GPU-

accelerated deep learning tools. NVIDIA drivers are required and a 8GB or more of dedicated 

memory is recommended. 

 Implementation of Methods 

 Pre-processing 

As described in previous tasks, aerial images were obtained from the Florida Aerial Photo 

Look-Up System (APLUS). This archive is accessible to the public via APLUS, which is run by 

the FDOT Surveying and Mapping Office. After obtaining aerial images, one important task is to 

mask the images. Due to the amount of data and the difficulty of the object recognition 

procedure, preprocessing is a necessary step. In general, our method chooses and discards any 

images that do not cross a roadway centerline, and then it masks out any pixels that are not 

encircled by a buffer zone. This study focused on the roadway geometry data located on the state 

highway system roadways (ON System Roads) as well as those located on the county- or city-

controlled roadways (OFF System Roads). For this purpose, first, interstates were excluded from 

the data set all together after merging both the ON System Roads shapefile and OFF System 

Roads shapefile to combine all centerlines. Before the images were masked, the roadway 

shapefile which were used, were buffered 100 ft. to form polygons having overlapping 

boundaries dissolved. Using this layer as a reference, aerial images were iterated, and 

intersecting regions of the aerial images were cropped. During the masking process, pixels that 

fell outside the boundary of the reference layer were removed. The cropped images, which 

consequently had smaller number of pixels, were mosaiced together to form a single raster file. 

In this approach, the number of photos was decreased from 90K to 30K, and the image masking 

model excluded objects that were 100 feet away from state and local roadways. This new file 

was smaller and easier to handle in a mosaic format for all forms of raster analysis or data 

processing. 

To implement the image masking process, a new blank geoprocessing model was 

developed where a folder variable was created and connected to the path of the masked images 

folder. Then, a raster iterator tool was imported to iterate through the raster images. A name 

string was used for the iteration and the output raster was extracted using the extract by mask 

tool. The “Name” (blue) is a derived output from the raster iteration tool which is a string 

containing the name of the raster file. While the “%Name%” (green) is the output raster from 

extract by mask tool containing the cell values extracted from the input raster. The enclosed 

percent signs (%) were used to perform inline variable substitution by substituting the output 

variable names derived from the extract by mask tool with the original names used for raster 

iteration. This method maintains the original names of the input raster images used for the 

masking process. The buffered roadway shapefile was used as a mask feature and the extraction 

area was set inside. Finally, “raster to other format tool” was used to convert and export the 
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output of the extraction in the format of a jpeg file into a folder. This masking process was 

automated using the ArcGIS Pro ModelBuilder. 

Figure 3-2a illustrates the preprocessing strategy in detail. All the photos from the chosen 

counties (N is approximately 90K) were initially imported into a mosaic dataset using the 

ArcGIS Pro program. Multiple geocoded photos were managed and shown using mosaic 

databases. Additionally, mosaic datasets enable the intersection of additional geocoded vector 

data to pick picture tiles depending on location. For instance, a subset collection of the images 

(n=30K) was created by selecting and extracting individual images that comprise a portion of the 

roadway centerline. This automated masking process is shown in Figure 3-2b, the tool repeatedly 

goes through a folder of photographs, applies a mask to each image based on a 100-foot buffer 

around the centerlines of the road, and then saves the masked images as JPG files for the object 

recognition method.  

To implement image masking in ArcGIS Pro, the following steps are required where they 

are shown for Orange County specifically: 

(a) Preprocessing - Selecting Images for Masking (Figure 3-2a) 

− Start ArcGIS Pro 

− In the upper right corner, click Sign in and type your username and password. 

Click Sign in. 

− On the start page, start a new project by clicking on Map or open existing project 

by clicking on any existing project or Open another project in the Recent 

Projects tab. 

− After clicking on Map, a pop up appears, create a Name (avoid leaving any 

spaces in the name) for the project, set project folder Location and click OK. 

− Go to the Geoprocessing group in the Analysis tab and click on Tools to open 

the Geoprocessing tools search box. In the search box, type ‘Create Mosaic 

Dataset’. 

− Click on the Create Mosaic Dataset tool in the search results to open it.  

− On the Parameters tab, navigate to and select the Output Location or the path to 

your geodatabase where the mosaic dataset will be stored by clicking on the 

folder icon. Create a name for the mosaic file in the Mosaic Dataset Name field 

and input the coordinate system of the mosaic dataset. Note that the coordinate 

system can be set by easily dragging and dropping an image file from the raster 

images to be used to create the mosaic dataset into the map view. Afterwards, 

click the drop down arrow in the Coordinate System field to select the added 

image as the source for the coordinate system. Maintain all other default fields 

and click Run. 

− Again, in the Geoprocessing tools search box, type ‘Add Rasters’. Click on the 

Add Rasters to Mosaic Dataset tool to open it. 

− In the Parameters tab, navigate to and select the created mosaic dataset or use the 

drop-down arrow to select the created mosaic dataset to fill the Mosaic Dataset 
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field. Change the Input Data from ‘File’ to ‘Folder’ and use the folder icon with 

a plus sign to browse to the folder containing the raster images and select it.  

− Keep all other fields as default and click Run. The created mosaic dataset 

contains all the raster images in the folder and displays it as a single raster file. 

− Now, go back to the Geoprocessing tools search box, type ‘Select by location’. 

Click on the Select Layer By Location tool to open it. 

− In the Parameters tab, add the ‘Footprint’ of the created mosaic dataset in the 

Input Features field by clicking on the drop-down arrow and selecting 

‘mosaic_name\Footprint’. Set the spatial relationship to be evaluated to ‘Intersect’ 

in the  Relationship field. Add the feature layer that will be used to select the 

input features based on their relationship to the selecting features in the Selecting 

Features field in this case ‘on_off_merge_no_freeways.shp’. This layer was used 

to select the images that intersect the roadways of interest. Maintain the Selection 

Type field as ‘New selection’, keep all other fields as default and click Run. 

− After the tool completes the selection, go back to the Geoprocessing tools search 

box, type ‘Export mosaic dataset items’. Click on the Export Mosaic Dataset 

Items tool to open it. 

− On the Parameters tab, add the created mosaic dataset in the Mosaic Dataset 

field by clicking on the drop-down arrow and selecting. Indicate the output folder 

of the exported mosaic dataset items in the Output Folder field by clicking on 

the folder icon and navigating to an existing or created output folder. Leave all 

other fields as default and click Run.  

− The selected images are exported into a folder for masking. 

(b) Preprocessing – Creating Image Masking Model (Figure 3-2b) 

− To buffer, go to the Geoprocessing tool search box and search ‘buffer’. Click on 

the Buffer tool and add the roadway layer in the Input Features field. Create the 

Output Feature Class name in the field and indicate the output directory. Set the 

distance value in the Distance field, set the desired units, and maintain all other 

fields as default. Click Run to create the buffer layer for masking. 

− On the ribbon above the map view, click on the Analysis tab. In the 

Geoprocessing group, click on the ModelBuilder tool. A new model interface 

opens and ModelBuilder tab is added to the ribbon. 

− On the Insert group of the ModelBuilder tab, click on Iterators to expand the 

options and select Iterate Rasters to load the tool in the model interface. 

− In the model interface, double click on the Iterate Raster tool to open. A pop-up 

window will show. In the Parameters tab, navigate to the folder containing raster 

images to be masked (images that intersect the roadways) by clicking on the 

folder icon next to the Workspace field. Leave the Wildcard field empty and 

click on the drop-down arrow in the Raster Format field and select the extension 

of the images in this case was ‘JPG’. Leave all other parameters as default and 
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click OK. Notice the tool loads the parameters and becomes active (turns from 

gray to color). 

− Go back to the Geoprocessing group in the Analysis tab and click on Tools to 

open the Geoprocessing tools search box. In the search box, type ‘Extract by 

Mask’. 

− Click and drag the Extract by Mask tool onto the model interface. 

− Double click the Extract by Mask tool to open. A pop-up window appears where 

the tool’s parameters can be added. In the Parameters tab, indicate the Input 

raster by clicking on the drop-down arrow in the field to select the available 

Model Variable (the output from the Iterate Rasters tools) in this case was 

‘ORA2021_252955.JPG’. Add the Input raster or feature mask data by 

navigating to the folder containing the masking layer to select and click OK, in 

this case ‘on_off_merge_no_freeways_buffer.shp’. Remember, this layer was 

buffered a 100 ft before utilizing in masking. Input In the Output raster field, 

type ‘%Name%’ as the output name, leave the Extraction Area as ‘Inside’, 

maintain all other parameters as default and click OK. 

− Once again, go back to the Geoprocessing tools search box and type ‘Raster to 

other format’. 

− Click and drag the Raster To Other Format tool onto the model interface. 

− Double click the Raster To Other Format tool to open. A pop up window 

appears where the tool’s parameters can be added. In the Parameters tab, indicate 

the Input Rasters by clicking on the drop-down arrow in the field to select the 

Model Variable (the output from the Extract by Mask tool) which is 

‘%Name%’. For Output Workspace, navigate to the directory where your output 

folder for the masked files is to select and click OK. Change the Output raster 

format to ‘JPEG’. Maintain all other default fields and click OK. 

− Click on Auto Layout in the View group of the ModelBuilder tab to 

automatically arrange the elements in the model. 

− Before running the model, verify that all data elements and parameters are valid 

by clicking on Validate in the Run group of the ModelBuilder tab. Correct all 

errors if any. 

− Run the model by clicking on Run in the Run group of the ModelBuilder tab. 

 

 Data Preparation for Model Training 

 Creating Training Samples 

Quality imagery data are needed to train deep learning models to detect various school 

zone features. The procedure for the image preparation is shown in Figure 4-1a which illustrates 

the process starting with school zone identification towards image or training data extraction. A 

lot of time and effort were spent to create the training data for the model creation since a greater 

percentage of the model’s performance relies on the amount, quality, and diverseness of the 
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training data used for training the model. Similarly, extra time and work were required during the 

model training process where different parameters were tested, and the optimum one was 

selected to train the model. Two different forms of training data with different classes were 

prepared for the study. The labels used for describing the training data for the turning lane model 

were “left_only”, “right_only”, “center”, and “none”, which were classes 1, 2, 8, and 12, 

respectively. On the other hand, the labels used for describing the training data for school zone 

model were “schoolzones” and “not_school”, which were class 1 and class 0, respectively. It is 

important to note that object detection models perform well when trained using clear and distinct 

features. Some of the training features were duplicated to increase their proportions in the 

training data set. To avoid model overfitting, bias, and limited model generalization as a result of 

duplication, a data augmentation technique named rotation was utilized to increase dataset 

diversity and quantity without solely resorting to duplication. Data rotation method was used to 

randomly rotate the training data features at desired angle producing extra training data in 

various rotations. This helps the model detect objects in various positions and orientations. This 

was very useful since the study features such as left only and right only lanes can be observed in 

all travel directions at each intersection. A 90 degrees rotation was applied to the training data. 

The metadata of the exported labels were in the pascal visual objects format. The input mosaic 

data was made up of high-resolution aerial images of the entire State of Florida with tile size of 

5,000 x 5,000 sq ft. 

To create training samples in ArcGIS Pro, the following steps are required: 

(a) Creating training classes (Figure 4-1a) 

− Start ArcGIS Pro and open the recent project. 

− On the View tab, go to the Windows group and click on the Contents to open the 

Contents Pane if Contents Pane is not already open. 

− Following the previous steps, create a mosaic dataset out of the masked images.  

− In the Contents Pane, select the mosaic data set (make sure it is highlighted), and 

go to the Imagery tab. In the Image Classification group, click on the 

Classification Tools to expand the tool options. Select Label Objects for Deep 

Learning to open tool. 

− Using the mouse, move to one end of the Image Classification window to expand 

the Image Classification window in order to make visible all the available 

buttons in the Image Classification toolbar. 

− On the toolbars in the Layer tab, click on the plus symbol to add new class to the 

classification schema. 

− In the open window, create a name for the class in the Name field and a value for 

the class in the Value field. Please note, all name and value entries should be 

unique. Click on the drop-down arrow to select preferred color for the class. 

Optionally, you can add an alias and a description to the class. Repeat the process 

to add all classes to the schema. Make sure the New Schema field is highlighted 

when creating classes. 
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− Save the classification schema by clicking on the Save button. Create the schema 

name in the Name field, add a brief description in the Description field, add the 

output folder location in the Output Location field and click Save.  

− Begin bounding box creation. 

(b) Creating bounding box (Figure 4-1b) 

− On the Image Classification toolbar, select the Rectangle button (for rectangular 

bounding box).  

− Click on the class that is about to be labeled in the schema field to ensure that the 

class is highlighted. 

− Use the mouse to zoom into the features on the images.  

− Click and draw the bounding box around the feature in the image. Repeat the 

process for all features in the image. Remember to click and highlight the required 

class when labelling any feature within that class.  Note that labelling can be done 

using the entire mosaic layer view or individual footprints view. This can be 

achieved by switching from Layer tab to Image Collection tab. 

− To delete a wrongly classified feature or wrongly drawn bounding box, go to the 

table in the Labeled Objects field found at the lower part of the Image 

Classification window. Click on the wrong label to select and highlight. Click on 

the ‘X’ icon or the Delete button on the Labeled Objects tab to remove the 

selected label. It is important to save training samples into a feature class to avoid 

losing labelled data. 

− To save training samples, click on the Save button on the Labeled Objects tab. 

Navigate to any output file Geodatabase. Create a name for the training samples 

and click Save. Remember to click on the Save button each time the samples are 

updated to avoid any data losses. 

(c) Exporting training samples (Figure 4-1c) 

− Training samples can be directly exported using the Export Training Data tab in 

the Image Classification window. Otherwise, go to the Geoprocessing tool 

search box and type ‘Export training data for deep learning’. Click on the Export 

Training Data For Deep Learning tool in the search results to open it. 

− On the Parameters tab, add the created mosaic dataset in the Input Raster field 

by clicking on the drop-down arrow and selecting the mosaic dataset or using the 

browse button to navigate to the folder containing the images. Indicate the output 

folder where the exported training dataset image chips and metadata will be stored 

in the Output Folder field by clicking on the folder icon and navigating to an 

existing or created output folder. In the Input Feature Class or Classified Raster 

Or Table field, add the saved training sample layer by navigating to the 

geodatabase where the file was stored and selecting it. Set the Class Value Field 

to ‘Classvalue’. To set the Image Format field, which is the output raster format, 

click on the drop-down arrow in the field and select ‘TIFF format’. The rotation 
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angle value in the Rotation Angle field can be set to 90 and Metadata Format 

can be set to ‘PASCAL Visual Object Classes’ which is compatible with YOLO 

models. Leave all other fields as default and click Run. 

 

 

(a) 

 

(b) 

Figure 4-1: (a) Creating training classes, (b) creating bounding boxes, and (c) exporting training 

data 
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(c) 

Figure 4-1: (a) Creating training classes, (b) creating bounding boxes, and (c) exporting training 

data 

 Training YOLOv3 Detection Model 

The neural network model known as You Only Look Once (YOLO) is mostly employed 

for real-time object identification. When compared to other object identification models like 

Region-based Convolutional Neural Network (R-CNN) or Faster R-CNN, YOLO's quickness is 

by far its biggest advantage. In other words, YOLO outperforms R-CNN and Faster R-CNN 

architectures by 1000 and 100 times, respectively (Redmon and Farhadi, 2018). This is largely 

because other object identification models classify potential regions first, then identify the 

item(s) based on the classification probability of those regions, requiring hundreds of network 

evaluations to be performed on a single picture. On the other hand, the YOLO model may make 

predictions based on the entire context of the image and look for the entire image using just one 

network analysis. The initial version of the YOLO object identification method was released in 

2016 (Redmon et al., 2016), the second version (YOLOv2) (Redmon and Farhadi, 2017), and the 

third version (YOLOv3) (which improved multi-scale predictions), respectively (Redmon and 

Farhadi, 2018). YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Jocher et al., 2020) were 

published in 2020 and 2022, respectively. YOLOv3 was used in this investigation since our 

dataset does not have a scalability problem and because it is simple to apply using the available 

sources. Unlike other detection models, YOLOv3 uses Darknet-53 as its backbone. Darknet-53 is 

a deeper version of Darknet-19 which was the backbone of YOLOv2. The architecture of the 

backbone has 53 convolutional layers which improves model’s accuracy and speed (Tsang, 

2019). Making the feature extractor perform better and 2x faster than ResNet152 (Redmon and 

Farhadi, 2018). Figure 4 shows images that are produced at the end of the detection layers in 
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YOLOv3 undergoes a three-scale detection process which involves applying a 1x1 detection 

kernel on feature maps located at three different areas and sizes within the network. The object 

detection model was trained with manually labelled features on the aerial images using the Deep-

Learning Toolbox in ArcGIS Pro consisting of all classes. The classes were clearly distinguished 

between the features observed in an input image by the detector. This clear classification 

improves the model’s detection performance. Based on these classes, the output data were 

categorized into either school zones, not-school zone, or left or right turn lanes using a class 

value field. For a fair model performance, the counties selected for training data creation were 

ones having variations in image resolutions and roadway infrastructure development. These 

counties selected also had varying markings on the roadways.   

 The model’s tunable parameters and hyperparameters include the learning rate, input 

image size, number of epochs, batch size, anchor box size and ratios, and training and test data 

percentages. The validation loss and mean average precision were computed on the validation 

set, which is made up of 30% of the input training dataset. The object detection parameters that 

have a high impact on the object detection are the batch size, the learning rate, and the training 

epoch. The learning rate represents the rate at which the model learns new information about the 

training data by overwriting the existing information with newly acquired information during the 

training process. Choosing an ideal learning rate strikes a compromise between precision and 

convergence speed. A model can be trained effectively, with excellent convergence 

characteristics, and with the greatest level of accuracy by using an optimal learning rate. The 

batch size describes the number or bundle of training samples or images selected and processed 

for training each iteration. The selection of batch size depended on factors like the size of 

dataset, the model’s complexity, and the available computer hardware’s resources. For instance, 

with a larger batch size, more data was processed in parallel, and the training process was faster. 

However, this requires more computer memory. Smaller batch size, on the other hand, increases 

randomness in training data selection during the training process. This enhances the model’s 

performance on new data and therefore improves predictions. Also, the anchor box represents the 

size, shape, and location of the object being detected. The epoch number was the number of 

iterations the model would be trained. It describes the number of times the training dataset was 

passed forward and backward through the neural network once. The percentage of training data 

actually used to train the model was 70%. This dataset was randomly chosen to train the model. 

A 30% split of the training dataset was used to assess the detection model's performance. 

The size of the training dataset was mainly considered when determining the training and test 

data split. With a training dataset >10,000, a 20%-30% validation size provides enough randomly 

sampled data to test the model’s performance. As a valid prediction, a default 50% overlap of the 

label and detection bounding boxes was accepted. Following that, recall and precision were 

determined as the true prediction rate among the original labels and all other predictions. In 

YOLOv3, the likelihood of an input belonging to a certain label was calculated using individual 

logistic classifiers instead of the SoftMax function which was used in previous versions 

(Redmon et al., 2016; Redmon and Farhadi, 2017). During the model training, a binary cross-

entropy loss was used for each label to calculate the classification loss, rather than using mean 

square error. Therefore, logistic regression was used to predict both object confidence and class 

predictions. This approach reduces the complexity of computations involved and improves the 

model’s performance (Redmon and Farhadi, 2018). The validation loss examined how well the 

model fits new data, whereas the training loss evaluated how well the model fits training data.  A 
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high loss indicates that the product of the model has errors while a low loss value shows there are 

fewer errors present in the model. 

To train object detection model in ArcGIS Pro: 

(a) Training object detection model using tabs (Figure 4-2) 

− Start ArcGIS Pro and open the recent project. 

− Go to the Geoprocessing group in the Analysis tab and click on Tools to open 

the Geoprocessing tools search box. In the search box, type ‘Train deep learning 

model’. 

− Click on the Train Deep Learning Model tool in the search results to open it. 

− In the Parameters tab, navigate to the folder containing the image chips and add 

it in the Input Training Data field by using the browse folder button. You can 

add multiple input training data folders if you have your training data grouped in 

several folders. Indicate the output folder where the trained model will be stored 

in the Output Model field by clicking on the folder icon and navigating to an 

existing or created output folder. Type the number of epochs value into the Max 

Epochs field for instance ‘100’. 

− In the Model Type field of the Model Parameters tab, select ‘YOLOv3 (Object 

detection)’. 

− Input the batch size in the Batch Size field for instance ‘16’. 

− In the Model Arguments field, maintain the default values and add another field. 

In the Name column, type ‘monitor’ and ‘average_precision’ in the corresponding 

Value column. 

− Change the backbone model to ‘DarkNet-53’ to correspond to YOLOv3. 

− Set the Validation field value to ‘30%’ and uncheck Stop when model stops 

improving checkbox. 

− In the Environments tab, set the Processor Type to GPU using the drop down 

arrow if your computer has a GPU, otherwise leave it blank. 

− Leave all other fields as default and click Run. 

(b) Training object detection model using python notebook 

− Open python repository (jupyter, google colab, etc) or use ArcGIS Pro python 

notebook. 

− To open the python notebook, go to the Geoprocessing group in the Analysis tab 

and click on Python to open the python notebook to run script. 

− Remember to install arcpy module before running the script in any environment 

outside ArcGIS Pro. 

− Run the following script:  

input_f = r"'C:\Users\rba21b\OneDrive – Florida State 

University\Desktop\Turning_lane\Gulf_org_12_R90'" 
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output_f = r"C:\Users\rba21b\OneDrive - Florida State 

University\Documents\ArcGIS\Projects\MyProject2\Trained_model" 

epochs = 100 

model = "YOLOV3" 

batch_size = 16 

lr = None 

backbone = "DARKNET53" 

pretrained_mod = None 

val = 30 

stop = "CONTINUE_TRAINING" 

freeze = "FREEZE_MODEL") 

import arcpy 

with   arcpy.EnvManager(processorType="GPU"): 

arcpy.ia.TrainDeepLearningModel(input_f, output_f, epochs, model, batch_size, 

"chip_size 224;resize_to #;monitor valid_loss;monitor average_precision", lr, backbone, 

pretrained_mod, val, stop, freeze) 

− Replace folder directories into the folders you are working in before running 

script. 

 

 

Figure 4-2: Training YOLO v3 object detection model 

 Detecting School Zones and Turning Lanes 

After model training, the detectors were initially tested on individual photos and later 

applied to the entire State of Florida on a county level. For the school zone detector, a threshold 

of 0.1 was employed to lessen false positives. However, due to the complexity of multi class 
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models, a threshold of 0.05 was employed in turning lane detection to capture all features 

detected with very low confidence levels. It was important to note that lower detection thresholds 

generally increase false positives which results in lower precision, increases computational 

workload which increases detection time and increases detection of irrelevant features or noise. 

However, lower detection thresholds also increase model’s sensitivity to detect faint or partially 

visible features, while increasing recall. With higher recall, the model was more likely to identify 

and detect all instances of the target object class and reduce the chances of missing any objects. 

For all models, more than 10% overlap between two bounding boxes was avoided to minimize 

duplicate detections. To lessen information loss from the margins of the detection pictures, a 

padding parameter of 56 was added to the boundary pixels on the outside of the image. The 

detector was trained on 256 x 256 sub-images with a stride of 128 by 128 pixels, yielding a 50% 

overlap with the following image chip, and a resolution of 0.5 feet per pixel. The image was 

rescaled and processed with black pixels to have the same attributes if the provided image had a 

different size or resolution. It should be noted that utilizing huge photos with object detection 

techniques is impractical since the cost of computing grows rapidly. 

The mapping procedure was carried out at the county level because the detector performs 

very well on single photos. The detection images were first selected and iterated through the 

detector. An output file of all the identified school zones in that county was created once all 

photos had been sent to the detector. Confidence scores were included in the output file. This file 

was used to map school zones. Note that the model can detect school zone and turning lane 

markings from images with a resolution ranging from 1.5 ft down to 0.25 ft or higher. However, 

the model has not been tried on any images with resolution lower than the ones provided by the 

Florida APLUS system. 

To perform detections, the following steps are required: 

(a) Performing object detection (Figure 4-3) 

− Start ArcGIS Pro and open the recent project. 

− Go to the Geoprocessing group in the Analysis tab and click on Tools to open 

the Geoprocessing tools search box. In the search box, type ‘Detect objects using 

deep learning’. 

− Click on the Detect Objects Using Deep Learning tool in the search results to 

open it. 

− On the Parameters tab, navigate to the folder containing the images and add it in 

the Input Raster field by using the browse folder button. Rename the output 

folder where the trained model will be stored in the Output Detected Objects 

field by clicking on the folder icon and navigating to an existing or created output 

folder.  

− Use the browse folder button next to the Model Definition field to navigate to the 

folder containing the trained model files and add the ‘.dlpk’ file. 

− Set the required model Arguments Name and Value.  

− Check the Non Maximum Suppression box. Ensure that the Confidence Score 

Field has ‘Confidence’ and the Class Value Field has ‘Class’. Set Max Overlap 

Ratio value to 0.2. 
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− On the Environments tab, set Processor Type to ‘GPU’. 

− Leave all other fields as default and click Run. 

 

 

Figure 4-3: Detecting features from aerial imagery 

 Post-processing 

The redundant detections caused by the overlapping distance on sliding images are 

removed at the post-processing stage (Figure 4-4). For various analytical objectives, school 

zones and turning lanes found on state and local roadways can also be divided into categories. 

Non maximum suppression was used to filter the detected school zones by selecting and keeping 

school zone detections that overlap and have the highest confidence level. Detected features were 

converted from polygon shapefiles into point shapefiles for subsequent analysis. 

To perform post-processing in ArcGIS Pro, the following steps are required: 

(a) Filtering detections 

− Go to the Geoprocessing group in the Analysis tab and click on Tools to open 

the Geoprocessing tools search box. In the search box, type ‘Select layer by 

attribute’. 

− Click on the Select Layer By Attribute’ tool in the search results to open it. 

− In the Input Rows field of the Parameters tab, use the browse folder button 

navigate to the folder containing the output shapefile from the detections to select 

the ‘.SHP’ file and click OK. 

− Selection Type field should contain ‘New Selection’. 
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− Use the SQL expression in the Expression field to select and remove the ‘none’ 

class from the detections. In the Where field, select ‘Class’, select ‘is equal to’ in 

the next field and type ‘none’. Click on Run. If you must filter by confidence 

level, click on Add Clause button, and include the filter boundaries. 

− Export selected features by going to the Geoprocessing tools search box, type 

‘Export features’. Click on the Export Features tool to open it. 

− On the Parameters tab, add the detections shapefile in the Input Features field 

by clicking on the drop-down arrow and selecting the detections shapefile. 

Indicate the output folder where the exported feature class will be stored in the 

Output Feature Class field by clicking on the folder icon and navigating to an 

existing or created output folder or renaming the generated output folder name. 

− Optionally, you can select which fields in the attribute table to keep in the Field 

Map section, and sort them using the Sort field in the Sort section. 

− Leave all other fields as default and click Run. 

 

 

Figure 4-4: Post-processing
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 CONCLUSIONS 

This study investigated the utilization of computer vision tools for roadway geometry 

extraction focusing on Florida school zones and turning lanes as proof of concept. This has been 

a creative approach that used computer vision technology to possibly replace labor- and error-

intensive traditional manual inventory. The created system could extract recognizable turning 

lane and school zone marks from images using high quality images. By removing the 

requirement for a human inventory procedure and improving highway geometry data quality by 

removing mistakes from manual data entry, the findings would assist stakeholders in saving 

money. The benefits of such roadway data extraction from imagery for transportation agencies 

are numerous and include identifying markings that are outdated and invisible, comparing the 

locations of turning lanes or school zones with other geometric features like crosswalks, and 

analyzing, crashes that take place close to these locations. 

Based on the results of this assignment, there are several significant constraints and 

recommendations for the future. Aerial images of roadways with tree canopies and occlusion 

limit the identification of markings. The developed model can be used to collect roadway 

geometry data such as school zones and turning lanes precisely left, right and center which are 

part of the roadway geometry inventory data usable in HSM and Model Inventory of Roadway 

Elements (MIRE). Turning lane and school zone markings that are old or have missing 

inscriptions can be identified and repainted. In future work, this model will be improved and 

extended to detect and extract other roadway geometric features particularly turning lanes such 

as right and through, left and through, and through lanes. Also, future works will include 

integration of extracted school zone, left only, right only, and center lanes with crash data, traffic 

data, and demographics for a more detailed analysis.  
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