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EXECUTIVE SUMMARY 
 

Traffic incidents are the primary source of non-recurring congestion. In addition to affecting 

roadway operations, traffic congestion resulting from an incident exposes other vehicles to the 

risk of being involved in additional incidents, typically referred to as secondary crashes. 

Secondary crashes adversely affect traffic operations and impose risks to the safety of both 

road users and incident responders. Accurate identification of secondary crashes is the first and 

the most crucial step in devising strategies to mitigate their occurrence. Nonetheless, the 

identification of secondary crashes is not a straightforward process. The definition itself is 

subjective, and identifying secondary crashes depends on the accuracy of the approach used to 

estimate the incident impact area. Since identifying potential secondary crashes is difficult, 

investigating factors that may influence these crashes becomes even more challenging.  
 

The primary goal of this research was to develop a comprehensive approach to identify and 

mitigate secondary crashes on Florida’s Turnpike System in real time. The specific research 

objectives were to: 

 

• identify secondary crashes; 

• identify significant factors contributing to the occurrence of secondary crashes; 

• develop an algorithm that predicts the likelihood of secondary crashes in real time; and  

• explore the potential of connected vehicle (CV) applications in mitigating secondary 

crashes. 

 

Secondary Crash Identification 

 

A data-driven approach was developed to better estimate the incident impact area and identify 

secondary crashes within the impacted area. Traffic incidents from the SunGuide® database 

and high-resolution speed data from HERE Technologies were used to estimate the incident 

impact area. These data were collected from January 2014 to June 2019. The study area, which 

is located in Florida, included a 97-mile section of the Florida’s Turnpike Mainline and a 48-

mile Turnpike Extension. Overall, 4,549 secondary crashes in the upstream direction of the 

primary incident were identified from 3,977 primary incidents. The identified secondary 

crashes on the upstream direction of the primary incident accounted for 1.4% of the 322,259 

incidents. This is equivalent to 5.7 secondary crashes per mile per year. 

 

Factors Influencing the Occurrence of Secondary Crashes 

 

The Least Absolute Shrinkage and Selection Operator (LASSO) penalized logistic regression 

model, fitted using the bootstrap resampling approach, was used to identify potential factors 

influencing the risk of secondary crashes. The model is considered to improve the prediction 

accuracy because it accounts for the asymmetric nature of secondary crashes, performs variable 

selection, and removes correlated variables. 

 

The following factors were associated with an increase in the likelihood of secondary crashes: 

 

• Hazard-related incidents and crashes compared to the incidents related to vehicle 

problems. 

• Incidents attended to by more than one responding agency. 

• Moderate and severe incidents. 

• Incidents that occurred on wet road surface conditions. 
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• Incidents that occurred during morning peak hours. 

• The presence of diverge influence area, horizontal curve, or vertical curve within the 

incident impact area. 

 

The following factors were associated with a decrease in the likelihood of secondary crashes: 

 

• Higher average prevailing speed or speed variation before the occurrence of the 

incident. 

• The presence of merge influence area within the incident impact area. 

• Wider shoulders within the incident impact area. 

 

Real-time Secondary Crash Likelihood Prediction: Proof-of-concept  

 

An algorithm was developed as a proof–of-concept to predict the likelihood of secondary 

crashes in real time. The algorithm consists of three main parts, which includes: 

 

• Internal Storage Database, which stores incident, speed, and rainfall data collected in 

real time. It also archives the real time secondary crash prediction results, historical 

databases, and the statistical model equation with the secondary crash likelihood 

parameters. 

 

• Backend Applications for collecting, parsing, and saving incident, traffic, and rainfall 

data in real time. One of the applications continuously accesses Florida’s Turnpike 

SunGuide® database every two minutes and ping new incidents. Speed data are 

retrieved from the HERE real-time flow Extensible Markup Language (XML) feed 

every minute. Rainfall data are obtained from the Next-Generation Radar (NEXRAD) 

Level-II network at an interval of 4-6 minutes. 

 

• Secondary Crash Prediction Application: The information from the Internal Storage 

database and Real-time Data Backend Programs are then combined to predict the 

likelihood of secondary crashes every 15 minutes until the incident is cleared. 

 

Potential of CV Applications in Mitigating Secondary Crashes 

 

The microsimulation approach was used to explore the potential of CV applications in 

mitigating secondary crashes. The following simulation scenarios were considered: blockage 

of the inner lane, one outer lane, and two outer lanes. The scenarios also considered the effect 

of varying traffic volumes by analyzing traffic data during morning and evening peak periods. 

A sensitivity analysis was performed by considering varying market penetration rates (MPRs) 

of CVs. The significance of CV applications in mitigating secondary crashes was assessed 

using traffic conflicts derived from microsimulation models. 

 

Deployment of CV applications was found to result in up to 98% reduction in traffic conflicts. 

A more significant reduction was observed in less congested traffic, even with low MPRs of 

CVs. A higher MPR was required to achieve significant conflict reduction during congested 

periods. Additionally, more conflicts were observed when two lanes were blocked, compared 

to single lane closures. The detour advisory was found to be significant for incidents that block 

multiple lanes.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background  

 

Transportation agencies strive for an efficient transportation system that is safe and has minimal 

delays. Nevertheless, congestion and traffic incidents have continuously been deterring the 

performance of the transportation network. The cost of traffic congestion to Americans in 2019 

was estimated to be approximately $88 billion, an average of $1,377 per driver (INRIX, 2019). 

This congestion is partly caused by an increased traffic volume, particularly during peak hours, 

and is commonly termed as recurrent congestion. Traffic incidents, including traffic crashes, 

disabled vehicles, and debris on roadways, are also a significant cause of congestion, generally 

referred to as non-recurrent congestion. Traffic incidents often lead to capacity reduction and 

deterioration of the level of service. They account for more than half of all urban traffic delays and 

almost all rural traffic delays (Baykal-Gürsoy et al., 2009). 

 

In addition to affecting the operational quality of roadways, these events affect the safety of road 

users and incident responders. In the United States, traffic-related incidents are a leading cause of 

death for Emergency Medical Service (EMS) providers, law enforcement, and towing services. On 

average, one law enforcement officer is killed every month in the United States, and one towing 

professional is killed every six days (Hagen, 2017). Traffic incidents also expose other vehicles to 

the risk of being involved in additional crashes called secondary crashes (Owens et al., 2010). 

These incidents tend to occur within the prior incident queue as vehicles encounter unexpected 

congestion and are unable to brake in time. They can also occur near a traffic incident as drivers 

become distracted by the incident scene (Goodall, 2017). 

 

Secondary crashes have progressively been perceived as a significant issue, particularly on 

freeways ( Hirunyanitiwattana and Mattingly, 2006). As such, there has been a growing interest in 

mitigating secondary crashes. Secondary crashes are non-recurring, leading to reduced capacity, 

additional traffic delays, and increased fuel consumption and emissions. These crashes also affect 

the safety of both road users and incident responders. The United States Department of 

Transportation (USDOT) estimated that secondary crashes alone are responsible for approximately 

18 percent of all freeway traffic fatalities and 20 percent of all freeway crashes (Owens et al., 

2010). Further, compared to primary incidents, secondary crashes have a significant impact on 

traffic management resource allocation (Vlahogianni et al., 2012; Karlaftis et al., 1999). 

 

Prevention of secondary crashes has, therefore, been highlighted as a high-priority for traffic 

incident managers (O’Laughlin and Smith, 2002) and Transportation Management Centers 

(TMCs) (Owens et al., 2010). The Federal Highway Administration (FHWA) uses the reduction 

of secondary crashes as one of the performance measures for state incident management systems 

(National Cooperative Highway Research Program [NCHRP], 2014). The Florida Department of 

Transportation (FDOT) included secondary crashes as a Safety performance measure in its 

Transportation Systems Management and Operations (TSM&O) Strategic Plan (FDOT, 2017). 

Specifically, to reduce the risk to responders, secondary crashes, and delays associated with 

incidents, FDOT has an Open Roads Policy of clearing all travel lanes within 90 minutes (FDOT, 

2018). Several states also consider secondary crash mitigation strategies in allocating funding for 
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the development of Traffic Incident Management (TIM) programs and on-road help services, such 

as FDOT’s Road Ranger freeway service patrol (Lou et al., 2011). 

 

1.2 Secondary Crash Mitigation Challenges 

 

Agencies have been looking for ways to mitigate secondary crashes to reduce non-recurrent delays 

and the adverse safety impacts associated with these crashes. However, some hurdles limit the 

implementation of approaches to reduce secondary crashes. First and foremost, the process of 

identifying secondary crashes is itself a challenge since there is no universal definition of a 

secondary crash. The inconsistency in defining secondary crashes limits the possibility of 

exploring the underlying relationship between secondary crash occurrences and influential factors. 

This limitation, in turn, hinders the mitigation efforts. 

 

It is difficult to identify factors associated with the occurrence of secondary crashes. Previous 

studies have considered several incident-related, traffic-related, geometric-related, and weather-

related factors when developing secondary crash risk models. However, simply incorporating all 

variables in the model may lead to biased results, considering the possible significant correlation 

among the variables. 

 

Not all incidents lead to secondary crashes. The proportion of incidents that results in secondary 

crashes (primary incidents) is much less than the proportion of incidents that do not cause 

secondary crashes (normal incidents). Secondary crash risk models use the two incident categories, 

i.e., normal and primary incidents, as the response variable, and thus making the modeling of the 

secondary crash likelihood an imbalanced classification problem. Neglecting this imbalance 

characteristic can lead to serious consequences, both in the model’s coefficient estimates and 

prediction accuracy (Kitali et al., 2019b). 

 

The likelihood of secondary crashes depends on several factors, including traffic flow 

characteristics, incident characteristics, weather conditions, roadway geometric conditions, etc. An 

in-depth understanding of these factors will help agencies on several fronts. In general, three major 

challenges are encountered when modeling the risk of secondary crashes: (1) infrequent nature of 

secondary crashes, (2) selection of the most important variables, and (3) identification of variable 

correlation. Therefore, any candidate model needs to account for these issues. 

 

Research on approaches to mitigate secondary crashes is limited (Park et al., 2018; Park and 

Haghani, 2016b; Yang et al., 2017; Karlaftis et al., 1999; Kopitch and Saphores 2011). Numerous 

studies have indicated incident duration as one of the most important factors influencing the 

occurrence of secondary crashes (Kitali et al., 2018; Goodall, 2017; Wang et al., 2016; Zhan et al., 

2009). That is, the longer it takes to clear an incident, the higher the likelihood of a secondary 

crash. The impact of incident duration on the risk of secondary crashes was found to increase even 

further when traffic transitioned from a free-flow state to a congested state (Park and Haghani, 

2016b). Considering the interdependency between incident duration, prevailing traffic conditions, 

and the probability of secondary crashes, it is crucial to devise a proactive approach to mitigate 

the risk of secondary crashes (Park et al., 2018).
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1.3 Research Goal and Objectives 

 

The main goal of this research project was to develop a comprehensive approach to identify and 

mitigate secondary crashes on the Florida’s Turnpike System in real time. The specific objectives 

were to: 

 

• Investigate ways to accurately identify secondary crashes on the Florida’s Turnpike System 

using real-time traffic and incident data. 

• Identify factors that influence the occurrence of secondary crashes on the Florida’s 

Turnpike System. 

• Develop an algorithm that predicts the likelihood of secondary crashes in real time.  

• Explore the potential of connected vehicle (CV) applications in mitigating secondary 

crashes. 

 

1.4 Report Organization 

 

The rest of this report is organized as follows: 

 

• Chapter 2 entails a comprehensive synthesis of the literature on the main approaches used 

to identify and mitigate secondary crashes. The chapter also focuses on exploring factors 

associated with the occurrence of secondary crashes.  

 

• Chapter 3 discusses the data used to achieve the research goal and objectives. Specifically, 

the chapter describes, in detail, the types of data used, data sources, data collection strategy, 

and data processing steps. 

 

• Chapter 4 focuses on identifying secondary crashes. It first presents the methodology used 

to identify secondary crashes. It further discusses the characteristics of the identified 

secondary crashes.  

 

• Chapter 5 presents the methodology used to predict the likelihood of secondary crashes 

based on the characteristics of primary incidents, traffic flow parameters, weather 

conditions, and roadway geometric characteristics. 

 

• Chapter 6 discusses the algorithm developed to predict the likelihood of secondary crashes 

in real time. 

 

• Chapter 7 quantifies the potential benefits of CV applications in mitigating secondary 

crashes. Different microsimulation scenarios based on lane blockage, times of day, and CV 

market penetration rates (MPRs) were explored. 

 

• Chapter 8 summarizes this research effort.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a synthesis of previous studies that focused on identifying secondary crashes, 

analyzing the risk factors influencing the occurrence of these crashes, and the potential approaches 

to mitigate their occurrence. The first section of this chapter provides a summary of existing 

methods used to identify secondary crashes. A summary of studies that explored factors associated 

with the occurrence of secondary crashes is presented next. This section also discusses major issues 

accompanying the modeling of secondary crash likelihood. The third section presents previous 

literature that explored strategies to mitigate secondary crashes. The research areas that need 

further investigation associated with the identification, prediction, and prevention of secondary 

crashes are discussed in the last section. 

 

2.1 Existing Methods to Identify Secondary Crashes 

 

Secondary crashes are traffic incidents that occur within the spatial and temporal impact area of 

the primary incidents (Zhang and Khattak, 2010a; Moore et al., 2004; Yang et al., 2014a; Karlaftis 

et al., 1999). Unlike other traffic incidents that incident responders easily identify, detecting 

secondary crashes is not straightforward since the definition itself is subjective. It is difficult to 

determine visually, either directly at the crash site or through closed-circuit television (CCTV) 

cameras, if the crash is a result of the backup caused by another incident, especially since the 

backup may also be due to recurrent congestion. As summarized in Table 2-1, three major 

approaches are often used to identify secondary crashes: (1) manual method, where personnel 

visually identify secondary crashes within the queue of the prior incident; (2) static method that 

uses predefined spatiotemporal thresholds; and (3) dynamic approach that estimates the primary 

incident influence area as a function of its impact on traffic flow characteristics, e.g., speed, 

volume, and/or density, and identify crashes that occurred within the impact area as secondary 

crashes. 

 

Table 2-1: Methods Used to Identify Secondary Crashes 

Method Approach Advantages Challenges 

Manual 

Personnel visually identify secondary 

crashes: 

• On-site approach using incident 

responders, e.g., Highway Patrol, 

etc. 

• Off-site approach using CCTV, etc. 

• Simple 

• Does not require any 

data processing 

• Subjective 

• Unreliable 

• Inconsistent 

• Random 

Static 

Identify secondary crashes based on 

predefined distance and time thresholds 

for each primary incident (e.g., 2 miles 

upstream and 2 hours after the primary 

incident) 

• More reliable than the 

manual method 

• Relatively easy to 

implement 

• Less reliable compared 

to the dynamic method 

Dynamic* 

Identify secondary crashes based on the 

actual queue length of the primary 

incident 

• Most reliable 

• Accurate 

• Resource intensive 

• Limited by data 

availability  

Note: *Can be reliably implemented in real time; CCTV = Closed Circuit Television. 
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An extensive literature review revealed that several studies have focused on identifying secondary 

crashes. For brevity, only a summary of these studies is presented in this report. Readers are 

referred to Sando et al. (2019) for a detailed discussion on this topic. 

 

Figure 2-1 graphically summarizes previous studies that identified secondary crashes based on 

fixed spatial and temporal thresholds (Chang and Rochon, 2011; Green et al., 2012; 

Hirunyanitiwattana and Mattingly, 2006; Jalayer et al., 2015; Karlaftis et al., 1999; Kopitch and 

Saphores, 2011; Latoski et al., 1999; Moore et al., 2004; Raub, 1997; Tian et al., 2016; Zhan et al., 

2008). 

 

 
Figure 2-1: Studies That Used Static Method to Identify Secondary Crashes  

in the Upstream Direction 

 

Similarly, secondary crashes that occurred in the opposite direction of the primary incident – 

because of the onlooker effect – were also commonly identified using different predefined 

thresholds. Figure 2-2 summarizes the studies that used the static method to identify secondary 

crashes in the opposite direction of the primary incident (Chang and Rochon, 2011; Green et al., 

2012; Kopitch and Saphores, 2011; Moore et al., 2004). 
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Figure 2-2: Studies That Used Static Method to Identify Secondary Crashes  

in the Opposite Direction 

 

Unlike the manual method, the static method is more reliable because it is a function of predefined 

spatiotemporal parameters and not solely based on human judgment. However, the static method’s 

one-size-fits-all approach of using fixed spatiotemporal thresholds does not yield reliable results 

(Kitali et al., 2019a). In other words, the fixed spatiotemporal thresholds do not effectively reflect 

the dynamic impact of incidents with varying characteristics and, therefore, may under- or 

overestimate the impact area (Ou et al., 2020). 

 

To overcome the limitations associated with the static approach, some studies have focused on 

identifying secondary crashes based on prevailing traffic flow conditions at the time of the primary 

incident. In this case, spatiotemporal thresholds vary depending on the impact of the primary 

incident on traffic flow parameters, hence the term dynamic. The dynamic methods used in 

previous studies to identify secondary crashes can generally be grouped into three categories, i.e., 

queuing model-based, shockwave-based, and traffic data- based. Figure 2-3 visually summarizes 

some of the previous studies that explored the use of these models to capture the impact area of 

the primary incident (Chung 2013; Dougald et al., 2016; Goodall 2017; Imprialou et al., 2014; 

Kitali et al., 2018,  2019a, 2019b, 2021; Li et al., 2020; Mishra et al., 2016; Park and Haghani, 

2016a, 2016b; Sando et al., 2019; Sarker et al., 2017; Sun and Chilukuri, 2006,  2010; Vlahogianni 

et al., 2010;  2012; Wang et al., 2016; 2019; Xu et al., 2016; Yang et al., 2014a, 2014b, 2014c; 

Zhan et al., 2009; Zhang and Khattak, 2010a; Zheng et al., 2014). 
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Figure 2-3: Studies That Used Dynamic Method to Identify Secondary Crashes
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Although queuing methods provide a more realistic representation of incident impact areas – 

compared to the static approach – they generally rely upon the number and nature of the accessible 

variables, such as the assumed roadway capacities, arrival rate, etc. Different roadway segments 

are subject to different queuing formation processes because of their unique traffic, geometry, 

incident characteristics, and prevailing weather conditions. 

 

Besides the queuing model-based approaches, other studies have used shockwave principles to 

dynamically identify secondary crashes, as shown in Figure 2-3 (Mishra et al., 2016; Sarker et al., 

2017; Wang et al., 2019). In this case, the incident impact area is triangular. The spatiotemporal 

thresholds comprise the backward forming and discharging shockwaves linked with the occurrence 

and clearance of the incident (Yang et al., 2018). The backward-forming shockwave impacts the 

growth rate of the queue generated by the incident. When the incident is cleared, a forward-

recovery shockwave initiates and ultimately reaches the backward-forming shockwave resulting 

in queue dissipation. 

 

Several issues limit the application of the shockwave-based approach for identifying secondary 

crashes. The simplified assumption on the prevailing traffic conditions and modeling of the 

shockwave propagation remains to be an issue since they cannot accurately depict the dynamic 

progression of traffic states (Yang et al., 2018). Non-constant discharge and arrival rates make it 

challenging to model the complicated shockwaves with the assumption of a constant speed. 

Overall, both the queuing and shockwave dynamic methods use some prior assumptions to 

simplify the traffic conditions’ complex characteristics, resulting in an incorrect estimation of the 

incident impact areas. Further, both methods cannot accurately distinguish the recurrent congestion 

from the non-recurrent congestion caused by the incident (Ou et al., 2020). 

 

To overcome the limitations of the queuing model-based and shockwave-based methods, recent 

efforts in estimating the impact area of a primary incident have been shifted towards the use of 

data-driven approaches. Empowered by the advancements in traffic data collection technologies, 

several studies have explored data-driven approaches to identify secondary crashes (Dougald et 

al., 2016; Goodall, 2017; Kitali et al., 2018; Sando et al., 2019; Xu et al., 2016). Some traffic data 

sources include infrastructure-based traffic sensors, probe-vehicles, crowdsourced traffic data 

from third-party vendors, and CV technologies. The data-driven approaches use readily available 

traffic data to estimate incident impact areas while accounting for recurrent congestion (Ou et al., 

2020). Further consideration must be made to mimic how congestion builds up and dissipates along 

the segments impacted by the primary incident. This is an essential step towards the accurate 

identification of secondary crashes. Failure to correctly estimate the incident impact area may lead 

to over- or under-estimation of the impact area and hence the number of secondary crashes. 

 

2.2 Factors Influencing the Likelihood of Secondary Crashes 

 

Following the identification of secondary crashes, the next step towards developing strategies to 

mitigate secondary crashes is to identify potential factors associated with the occurrence of 

secondary crashes. Identifying risk factors that influence the likelihood of secondary crashes is 

critical to the development and implementation of efficient and resilient traffic management 

strategies.  
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2.2.1 Secondary Crash Risk Prediction Models 

 

The literature review indicated that only a few studies have explored factors associated with the 

occurrence of secondary crashes. Both parametric and non-parametric models have been used to 

analyze the likelihood of secondary crashes. Most of these studies adopted the respective models 

following the binary nature of secondary crash occurrence, i.e., given a primary incident or normal 

incident. Notably, primary incidents refer to incidents that resulted in a secondary crash(es), while 

normal incidents refer to incidents that did not result in secondary crashes. In these studies, 

geometric, weather, traffic conditions, and incident characteristics associated with primary 

incidents were compared with those of normal incidents. 

 

Most of the studies that developed parametric models used binary regression models such as logit, 

probit, or complementary log-log (cloglog) models to analyze the likelihood of secondary crashes 

(Goodall, 2017; Wang et al., 2016; Karlaftis et al., 1999; Kopitch and Saphores, 2011; Zhan et al., 

2009, 2008). In this case, the response variable is dichotomous with a “yes” category representing 

incidents that resulted in a secondary crash and a “no” category being an incident not resulting in 

a secondary crash. As mentioned earlier, these two categories of incidents are generally referred 

to as primary incidents and normal incidents, respectively. 

 

In secondary crash risk models, the independent variables include a list of potential factors that 

may contribute to the occurrence of secondary crashes. The coefficients obtained by estimating 

the relationship between the probability of a secondary crash following a primary incident – based 

on a set of explanatory variables – can hence be used to quantify the impact of each contributing 

factor on the secondary crash risk. Table 2-2 presents a summary of studies that used parametric 

modeling approaches to explore risk factors that influence the likelihood of secondary crashes. 

The table includes secondary crash identification methodologies, secondary crash risk prediction 

models, and significant variables in each study. In addition to logistic regression models, other 

studies have examined the likelihood of secondary crashes using other approaches, including the 

proportional test, probit models, and cloglog models ( Hirunyanitiwattana and Mattingly, 2006; 

Khattak et al., 2009; Kitali et al., 2018). 

 

As indicated in Table 2-3, non-parametric models such as Bayesian neural networks and decision 

trees have also been used to model secondary crash risk (Vlahogianni et al., 2010, 2012). A 

fundamental difference between non-parametric models and parametric models is that the non-

parametric models lack an inherent mechanism for explicitly describing the significance of input 

variables and hence considered black-box (Yang et al., 2018). The need for developing non-

parametric models with explanatory power is related to the decision-making process in 

transportation. Instinctively, any decision in transportation and traffic operations ought to be 

founded on a strong comprehension of the mechanism by which various variables interface with 

and impact transportation phenomena (Vlahogianni et al., 2012). 
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Table 2-2: Summary of Literature on Parametric Secondary Crash Risk Models 

Reference  
Secondary Crash 

Identification Method 
Method  

No. of 

Var. 

Variable Selection 

Method 
Significant Variables 

Karlaftis et al. 

(1999) 

Static (1 mile and 15 

min)  
LR 18 Not Applicable 

Season, clearance time, type of vehicle involved, 

and lateral location 

Zhan et al. (2008) 
Static (2 miles and 15 

min + clearance) 
LR 18 Not Applicable 

Number of lanes, primary incident duration, 

time-of-day, number of vehicles, and vehicle 

rollover. 

Zhan et al. (2009) Cumulative arrival and 

departure 
LR 19 

Forward conditional 

criterion 

Primary incidents type and lane-blockage 

duration, time of day, and direction where the 

incident occurred 

Kopitch and 

Saphores (2011) Static (2 miles and 2 h) LR 9 Not Applicable 
Number of vehicles, number of trucks, 

changeable message sign, and road work project 

Khattak et al. 

(2012) 

Static (1 mile and 

duration of primary 

incident (+15 min if lane 

blocked)) 

LR 13 Not Applicable 
Incident duration, crashes, peak hours, number of 

vehicles, and AADT 

Yang et al. 

(2014b) Data-driven approach 
LR (rare 

events) 
10 

Statistical significance 

level (0.1) 

Daytime off-peak hours, daytime peak hours, 

duration, rear-end crashes, lane closure, and 

winter season 

Wang et al. 

(2016) 
Shockwave principle LR 12 Not Applicable 

Shockwave originating in the wake of a primary 

incident, duration, unsafe speed, and weather 

Mishra et al. 

(2016) 
Shockwave principle 

Linear 

probability 

model, LR, 

and MNL  

16 
VIF correlation factor and 

significance level 

Average speed of upstream traffic, upstream 

flow, AADT, incident type, number of vehicles, 

weather condition, and functional class 

Wang et al. 

(2019) 
Shockwave principle LR 13 Not Applicable 

Shockwave speed that occurred at the time of the 

primary incident, shockwave speed generated 

when incident responders arrive at the scene to 

control traffic, shockwave speed during 

dissipation, incident processing duration, unsafe 

speed, and rain. 

Note: AADT = Annual Average Daily Traffic; Cloglog = complementary log-log, LASSO = Least Absolute Shrinkage and Selection Operator, LR = Logistic 

Regression, MNL = Multinomial Logistic Regression, No. of var. = Number of variables, VIF = Variance Inflation Factor. 
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Table 2-2 (Cont’d): Summary of Literature on Parametric Secondary Crash Risk Models  

Reference  
Secondary Crash 

Identification Method 
Method  

No. of 

Var. 

Variable Selection 

Method 
Significant Variables 

Xu et al. 

(2016) 
Data-driven approach 

Bayesian 

LR 
24 

Pearson correlation and 

stepwise logit 

Average speed, traffic volume, standard deviation 

of detector occupancy, volume difference 

between adjacent lanes, crash severity, crash 

type, day of the week, road surface condition, and 

number of lanes 

Goodall (2017) Data-driven approach LR 3 Not Applicable Congestion and incident duration 

Sarker et al. 

(2017) Shockwave principle 

Generalized 

ordered 

response 

probit 

15 Not Applicable 

AADT, traffic composition, land use, number of 

lanes, right side shoulder width, posted speed 

limits, and ramp indicator 

Kitali et al. 

(2018) 
Data-driven approach 

Bayesian 

cloglog 
21 Random Forest 

Average occupancy, incident severity, percent of 

lanes closed, incident type, incident clearance 

duration, incident impact duration, and incident 

occurrence time. 

Kitali et al. 

(2019b) 
Data-driven approach 

Penalized 

LR (with 

resampling) 

23 LASSO 

Mean of detector occupancy, coefficient of 

variation of equivalent hourly volume, mean of 

speed, incident type, percent lane closed, incident 

occurrence time, shoulder blocked, number of 

responding agencies, incident impact duration, 

incident clearance duration, and roadway 

alignment 

Note: AADT = Annual Average Daily Traffic; Cloglog = complementary log-log, LASSO = Least Absolute Shrinkage and Selection Operator, LR = Logistic 

Regression, MNL = Multinomial Logistic Regression, No. of var. = Number of variables, VIF = Variance Inflation Factor.  
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Table 2-3: Summary of Literature on Non-parametric Secondary Crash Risk Models 

Reference  

Secondary Crash 

Identification 

Method 

Method  
Explanatory 

Function  

Number of 

Variables 

Significant 

Variables 

Vlahogianni 

et al. (2010) 

Method based on 

spatiotemporal 

impact area of 

primary crash 

Bayesian Neural  

Network 

Mutual 

information 
8 

Maximum queue 

length, queue 

duration, and 

primary crash 

duration 

Vlahogianni 

et al. (2012) 

Automatic 

tracking of 

moving traffic 

jams 

Bayesian Neural 

Network 

Mutual 

information 

and partial 

derivatives 

11 

Traffic speed, 

changes in traffic 

speed and volume, 

duration of the 

primary crash, 

hourly volume, 

rainfall intensity, 

number of vehicles 

involved, blocked 

lanes, percentage of 

trucks, and upstream 

geometry 

Park and 

Haghani 

(2016b) 

  

Data-driven 

approach based on 

Gaussian Mixture 

Model and 

Bayesian structure 

equation model 

A principled Bayesian 

learning approach to 

Neural Network and 

Logit model 

Multilayer 

perceptron 
13 

Location area, 

incident type, and 

time of day 

Park et al. 

(2017); 

(2018) 

Data-driven 

approach based on 

Gaussian Mixture 

Model and 

Bayesian structure 

equation model 

A principled Bayesian 

learning approach to 

Neural Network and 

Stochastic Gradient 

Boosted Decision 

Trees 

A pedagogical 

rule extraction 
13 

Unexpected traffic 

congestion caused 

by a primary 

incident and 

onlooker factors 

 

While most primary incidents result in one secondary crash, some primary incidents result in 

multiple crashes, in this case, referred to as cascading crashes. Events consisting of multiple 

secondary crashes are expected to have a longer impact duration and severe impacts on traffic. 

This situation presents additional impedance and increases interference among vehicles, 

particularly in upstream traffic (Zhang and Khattak, 2010b). Although generally uncommon, such 

events present a significant challenge to transportation agencies. They are expected to be attended 

by multiple responding agencies at different time stamps and locations. Moreover, incidents 

attended to by numerous incident responders may require lane closures, which further reduces the 

roadway’s capacity, resulting in more congestion. 

 

Identifying factors associated with the likelihood of cascading crashes and their possible 

interdependency is the first step towards devising strategies to mitigate them. Only a few studies 

have explored factors associated with the occurrence of cascading crashes (Mishra et al., 2016; Xu 

et al., 2019; Zhang and Khattak, 2010b). In addition to understanding independent factors 

contributing to the risk of cascading crashes, it is also crucial to understand the possible 

interdependencies between the influential factors. For example, a cascading crash that occurred 

during peak hours is expected to have a different impact from a crash that occurred during peak 

hours while it is raining. Thus, understanding a combination of factors significantly associated 
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with the risk of cascading crashes is a crucial step towards devising strategies to mitigate cascading 

crashes. 

 

As indicated in Table 2-4, few studies have modeled the risk of cascading crashes (Mishra et al., 

2016; Xu et al., 2019; Zhang and Khattak, 2010b). Zhang and Khattak (2010b) used an ordered 

logit model to investigate factors contributing to cascading crashes. Multiple vehicles involved in 

the primary incident and lane blockage increased the likelihood of cascading crashes. In addition 

to multiple vehicles, Mishra et al. (2016) found the following variables to be associated with a 

higher risk of cascading crashes: high upstream traffic flow, rear-end crash, inclement weather, 

and crashes that occurred on arterial corridors rather than freeways. 

 

Table 2-4: Summary of Studies that Explored Factors Associated with the Occurrence of 

Cascading Crashes 

Study  Objective 
Study 

Location 

Real-time 

Data Use 

Incident 

Types used 

in the 

Analysis 

Methodology 

Factors that 

Significantly 

Influenced the 

Likelihood of 

Cascading Crashes 

Mishra 

et al. 

2016) 

Likelihood 

of cascading 

crashes 

Shelby 

County, 

Tennessee 

• Freeway 

(15-min 

speed, 

flow, and 

occupancy) 

• Arterials 

(MPO 

travel 

demand 

model) 

• Crashes 

only 

Multinomial 

logit (MNL) 

model 

• AADT (+) 

• Freeway vs. arterials 

(-) 

• Upstream flow (+) 

• Rear-end or single-

vehicle crashes vs. 

other crash types (+) 

• Good weather 

condition (-) 

Zhang 

and 

Khattak 

(2010b) 

Contributing 

factors to 

cascading 

crashes 

Hampton 

Roads, 

Virginia 

• Did not 

use real-

time data 

• Crashes 

• Disabled 

vehicle 

• Abandoned 

vehicle 

• Others 

Partial 

proportional 

odds (PPO) 

model 

• Crashes (+) 

• Longer incident 

durations (+) 

• Multiple vehicle 

involvement (+) 

• High percentage of 

lane blockage (+) 

• Shorter segment 

length (+) 

• High AADT (+) 

Xu et 

al. 

(2019) 

Effect of 

real-time 

traffic 

conditions 

on the 

occurrence 

of cascading 

crashes 

I-5 

freeway, 

California 

• 30-sec raw 

loop 

detector 

data, i.e., 

count, 

speed, and 

occupancy 

• Crashes 

only 

Zero inflated 

ordered 

probit model 

• Hit-and-run primary 

crashes (+) 

• Average detector 

occupancy (+) 

• Rainy weather (+) 

• Severe primary 

crashes (+) 

Note: AADT = Annual Average Daily Traffic; MPO = Metropolitan Planning Organization, (+) = variable increases 

the cascading crash risk; (-) = variable reduces the cascading crash risk. 

 

Xu et al. (2019) used a zero-inflated ordered probit regression model to study the effects of 

prevailing traffic characteristics on the likelihood of cascading crashes. Two states were 

considered in modeling the frequency of secondary crashes caused by one primary incident. The 
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first state, the secondary-crash-free state, predicted whether the initial incident would lead to 

secondary crashes. The second state, referred to as the secondary-crash-prone state, determined 

the frequency of secondary crashes caused by one primary incident. The following factors were 

influential in the secondary-crash-free state: average traffic volume, average speed, and the 

difference between the number of on-ramps and off-ramps in a segment. In the secondary-crash-

prone state, the significant factors that were found to influence the likelihood of multiple secondary 

crashes included hit-and-run primary crashes, average detector occupancy, rainy weather, and 

primary crash severity. The three studies presented in Table 2-4 identified primary incident 

characteristics, traffic flow conditions, inclement weather conditions as attributes that significantly 

influence the likelihood of cascading crashes.  

 

2.2.2 Issues Accompanying Modeling of Secondary Crash Risk 

 

Modeling the risk of secondary crashes is accompanied by several challenges. The infrequent 

nature of secondary crashes is one of the significant issues that need to be addressed. The selection 

of the most important variables, the detection of variable correlation, the use of more representative 

traffic variables, and the issue with missing information are among the issues encountered with 

explanatory variables used in secondary crash risk models. The following subsections discuss these 

issues in detail. 

 

Imbalanced Data 

 

As indicated earlier, secondary crashes are infrequent in nature. A majority of secondary crash risk 

models developed using either logit or probit link functions are symmetrical, i.e., the likelihood of 

secondary crash occurrence is presumed to rise to a probability of 0.5, then decrease toward the 

asymptote at one (1) (Kitali et al., 2017). In other words, in secondary crash likelihood prediction, 

symmetric models, such as logit or probit models, yield more reliable results when the proportion 

of normal incidents (~50%) is equal to the proportion of primary incidents (~50%). However, 

secondary crashes account for less than 20% (Owens et al., 2010; Sando et al., 2019) of total 

incidents, meaning that the proportion of primary incidents is much less than the proportion of 

normal incidents (i.e., primary incidents and normal incidents are asymmetrically distributed). 

 

To account for the imbalanced nature of the response variable in a secondary crash risk model, 

Yang et al. (2014b) introduced the rare-event logistic regression model, and Kitali et al. (2019b) 

used a Synthetic Minority Over-sampling TEchnique-Nominal Continuous (SMOTE-NC) 

technique. Kitali et al. (2018) used a cloglog as an alternative prediction model over the 

conventional logit and probit models. Unlike the logit and probit models, the cloglog model is 

asymmetrical with a fat tail as it departs from zero (0) and sharply approaches one (1) (Kitali et 

al., 2017; Martin and Wu, 2017). Accounting for the infrequent nature of the secondary crash 

events has proven to improve the prediction accuracy of the secondary crash risk models (Kitali et 

al., 2019b). 

 

Variables Selection 

 

As indicated in Figure 2-4, researchers have considered several incident-related, traffic-related, 

temporal-related, geometric-related, and weather-related factors when developing secondary crash 
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risk models. However, it may not be possible to include all variables in the model due to the 

possible significant correlation among the factors. Moreover, the use of less important variables 

will introduce noise in the model and hence, reduce its accuracy. 

 

 

Figure 2-4: Factors Contributing to Secondary Crash Occurrence 

 

One way to address this issue is to select and include only the most important variables. Variable 

subset selection methods, such as a stepwise technique, were used in several studies to add one 

best-fit variable at a time during model fitting (Mishra et al., 2016; Xu et al., 2016; Zhan et al., 

2009). Nevertheless, this criterion has several drawbacks, including the result that each addition 

of a new variable may render one or more of the already included variables non-significant. Also, 

because the stepwise variable selection process is discrete, it often exhibits high variance and may 

not reduce the full model’s prediction error. In other words, small changes in the data can result in 

different variables being selected, and this can potentially reduce the model’s prediction accuracy 

(Menard and Torelli, 2014; Tibshirani, 1996). 

 

As an alternative to stepwise variable selection, Kitali et al. (2018) used random forests, a non-

parametric approach, to select the most important variables for inclusion in the secondary crash 

risk prediction model. In a later study, Kitali et al. (2019b) applied the Least Absolute Shrinkage 

and Selection Operator (LASSO) penalized likelihood, a regression analysis method that performs 

both variable selection and regularization. The LASSO method enhances the prediction accuracy 

and interpretability of the statistical model (Tibshirani, 1996). LASSO shrinks some coefficients 

of a regression model, in this case, logistic regression, and sets others to zero (0) to obtain variables 

with a substantial effect on the outcome (Tibshirani, 1996). LASSO also performs variable 

selection and variable correlation simultaneously. That is, between a pair of highly correlated 
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variables, LASSO tends to pick the most important variable and discard the other by shrinking 

them towards zero. 

 

Because the LASSO method performs variable selection through a continuous process, it does not 

suffer as much from high variability, i.e., it simultaneously does both continuous shrinkage and 

automatic variable selection (Kitali et al., 2019b). The penalty term introduced by LASSO during 

the variable selection process ensures better estimation of the prediction error while avoiding 

overfitting. Selecting an optimal subset of explanatory variables is expected to improve the 

classification accuracy and make the model’s interpretation easier. Since some of the variables 

will be minimized to zero, model thriftiness is achieved as well (Kitali et al., 2019b). Similar to 

the imbalanced data issue, fitting secondary crash risk models with important variables only 

improves the model’s prediction accuracy (Kitali et al., 2019b). 

 

Use of Aggregated Traffic Flow and Weather Characteristics 

 

Traditional traffic data, such as annual average daily traffic (AADT) and speed limit, have often 

been included as explanatory variables in secondary crash risk models (Chimba and Kutela, 2014; 

Khattak et al., 2012; Mishra et al., 2016; Zhang and Khattak, 2010a). These data limit the reliability 

of results simply because they are aggregated values and do not reflect the prevailing traffic 

conditions at the time of an incident. Following the advancement in traffic data collection, high-

resolution traffic data, instead of AADT and speed limit, have been increasingly used in 

developing secondary crash risk prediction models (Kitali et al., 2018, 2019b; Park and Haghani, 

2016a, 2016b; Sando et al., 2019; Vlahogianni et al., 2012; Xu et al., 2016). The high-resolution 

traffic flow data provides a more accurate measurement of traffic flow conditions than traditional 

aggregated static traffic data. 

 

Xu et al. (2016) used the random-effect logistic regression to develop a secondary crash risk 

prediction model using the high-resolution traffic flow data before the occurrence of primary 

incidents. The results suggested that the inclusion of high-resolution traffic variables significantly 

increases the model’s predictive performance. Traffic volume, average speed, occupancy 

variation, and volume difference between adjacent lanes are the main traffic variables contributing 

to the increased risk of secondary crashes. 

 

Inclement weather conditions, particularly rainfall, is one factor that could potentially exacerbate 

the occurrence of secondary crashes. Rainfall decreases the driver’s sight distances and increases 

the vehicle’s stopping distance (Haule et al., 2020; Kidando et al., 2019). During rainy conditions, 

approaching vehicles may not have an adequate opportunity to make emergency maneuvers, 

leading to an increased possibility of secondary crashes (Li et al., 2014). It is imperative to 

incorporate weather conditions as one of the potential variables in the secondary crash likelihood 

model. 

 

Previous research that included rainfall as one of the secondary crash influential factors obtained 

the data either from an incident database (Wang et al., 2016; Khattak et al., 2012, 2009; Xu et al., 

2016; Zhan et al., 2008) or rain gauges (Kopitch and Saphores, 2011; Vlahogianni et al., 2012). 

Incident report-based rainfall data is qualitatively recorded by incident responders only once and 

mostly at the incident notification time. As such, this value of rainfall information may not reflect 
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the prevailing rainfall intensity, especially in locations that experience short duration rainfall, when 

the incident impact duration is relatively long (Andrew, 2019). Gauge-based rainfall data are 

retrieved from weather stations that are usually sparsely distributed (Andrew, 2019). Similar to 

traffic flow characteristics, rainfall intensity varies both spatially and temporally. However, both 

incident-based and gauge-based rainfall data do not account for the spatiotemporal nature of 

rainfall. 

 

Missing Potential Variables 

 

While previous studies have considered numerous variables in secondary crash likelihood models, 

some variables have rarely been considered. Some of these variables include the presence of 

vertical curves, merging, and diverging ramps within the incident impact area. Unlike other 

roadway sections, merge and diverge influence areas are accompanied by more lane changes and 

high speed differentials by drivers attempting to enter or exit the freeway. This situation may 

increase the risk of secondary crashes. Thus, it is essential to incorporate merge and diverge 

influence areas in secondary crash risk models. Few studies have considered ramps as a potential 

variable that may influence the likelihood of secondary crashes (Karlaftis et al., 1999; Khattak et 

al., 2012, 2009; Park and Haghani, 2016b). Of those studies, the influence of ramps on secondary 

crash occurrence was not found significant. 

 

In summary, researchers have used both parametric and non-parametric models to link secondary 

crash risks with geometric, incident, weather, and traffic characteristics. Understanding factors 

associated with secondary crash occurrence will help devise effective strategies to alleviate the 

effects of primary incidents, thus reducing the likelihood of secondary crash occurrence. 

 

2.3 Strategies to Mitigate Secondary Crashes 

 

Mitigating the risk of secondary crashes is critical for effective traffic incident management. 

Nonetheless, only a few studies have focused on drafting and deploying specific countermeasures 

to mitigate secondary crashes (Park et al., 2018; Park and Haghani, 2016b; Yang et al., 2017; 

Karlaftis et al., 1999; Kopitch and Saphores, 2011). Incident responding agencies could be better 

prepared to respond to potential secondary crashes when conditions associated with a high 

likelihood of occurrence exist. The success of this approach will depend on the availability of 

incident responders and the time they arrive at the incident scene. An incident responder may be 

hindered by a long queue, thus delaying the process of incident clearance (Yang et al., 2018). 

 

Numerous studies have indicated incident duration as one of the most important factors influencing 

the occurrence of secondary crashes (Kitali et al., 2018; Goodall, 2017; Wang et al., 2016; Zhan 

et al., 2009). Khattak et al. (2012) observed a significant correlation between incident duration, the 

likelihood of a secondary crash, and the primary incident characteristics. A 10-minute increase in 

the primary incident duration was found to be associated with a 0.2 percent increase in the 

likelihood of secondary crashes (Khattak et al., 2009). Similarly, Goodall (2017) found the 

probability of a secondary crash occurrence to increase by approximately one percentage point for 

each additional two to three minutes spent on the scene under congested traffic. Compared with 

other traffic incidents whose occurrences are quite stochastic, the occurrence of secondary crashes 

is more deterministic as they are mostly caused by either turbulent traffic conditions initiated by 
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the primary incident or the onlooker effect (Xu et al., 2019). The impact of incident duration on 

the risk of secondary crashes was found to increase even further when traffic transitioned from a 

free-flow state to a congested state (Park and Haghani, 2016b). 

 

Considering the interdependency between incident duration, prevailing traffic conditions, and the 

probability of secondary crashes, it is crucial to devise a proactive approach to mitigate the risk of 

secondary crashes (Park et al., 2018). A proactive secondary crash mitigation strategy can be 

implemented by disseminating advanced warning messages to inform upstream drivers of the 

potential secondary crash risk. Figure 2-5 illustrates a concept that focuses on disseminating 

advanced warning messages to drivers upstream a potential primary incident. This concept plan 

provides a framework for the processes required to effectively communicate information to 

upstream drivers in real time.  

 
Figure 2-5: A Conceptual Plan to Disseminate Secondary Crash Risk Warning Messages to 

Upstream Drivers in Real Time 

 

2.3.1 Potential Warning Messages 

 

As can be inferred from Figure 2-5, following the detection and verification of a traffic incident, 

the risk of occurrence of a secondary crash can be estimated, in real time, as a function of prevailing 

conditions. If the detected traffic incident is deemed to have a probability of resulting in a 

secondary, information about this incident could be disseminated to motorists upstream of the 

primary incident location in real time. The disseminated information will provide motorists with 

an opportunity to take necessary precautions to avoid being involved in a secondary crash, such as 

slowing down, changing lanes in advance, and/or diverting to alternate routes. 

 

Speed Advisory 

 

Speed advisory information may be provided in addition to other warning messages to increase 

the likelihood of driver compliance and prevent secondary crashes. Driver compliance and 

improved network performance have been reported when advisory speeds are only slightly 

lowered (Riggins et al., 2016). Li et al. (2014) proposed using variable speed limits to reduce the 

risks of secondary crashes during inclement weather conditions. By analyzing the risk of secondary 

crashes, the speed limits can be adjusted (i.e., lowered) depending on prevailing traffic and weather 

conditions. Based on safety surrogate measures, the proposed variable speed limit system was 

found to reduce the risk of secondary crashes by 40-50 percent (Li et al., 2014). Introducing a 
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variable speed limit when the risk of a secondary crash is high can help achieve the desired speed 

reduction to minimize hard-braking and high deceleration conditions that could potentially lead to 

secondary crashes. 

 

Lane Change Advisory 

 

Lane change advisory messages inform drivers of lane blockages resulting from traffic incidents 

downstream. Figure 2-6 shows two examples of lane change messages used for Active 

Transportation and Demand Management (ATDM) by the Washington State Department of 

Transportation (WSDOT). The distance between the downstream incident and the upstream lane 

change message varies, depending on the method of dissemination.  

 

 
Figure 2-6: Examples of Lane Change Advisory Messages  (WSDOT, 2019) 

 

Since a majority of the DMS locations are permanent, advisory messages may be displayed well 

upstream of an incident. CV messages, however, can be delivered to vehicles at variable distances 

within the range of the vehicle’s signal. Therefore, the algorithm should vary the advisory 

information to be disseminated based on incident characteristics and traffic flow parameters, such 

as queue formation, traffic flow, and density. 

 

Detour/Alternate Route Advisory 

 

The FHWA has identified the alternate route plan as a key traffic management strategy for 

reducing the effects of non-recurring congestion-causing events on highways (Dunn Engineering 

Associates, 2006). Alternate routes serve to reduce traffic demand upstream of an unplanned event, 

which helps minimize traffic congestion. Figure 2-7 shows an example of a detour advisory issued 

by the South Carolina Department of Transportation (SCDOT) using the Dynamic Message Signs 

(DMSs). 

 

Previous studies show that diversion of only 10-15% of the traffic flow can produce optimal 

benefits, and higher diversion rates may further decrease travel time on the main route and overall 

network (Liu et al., 2012; Park and Smith 2012; Zhou 2008). However, high diversion rates may 

also reduce performance on alternate routes. Therefore, diversion of traffic should be advised so 

long as motorists do not experience longer travel times while using the alternate route. This can be 

accomplished by tracking the diverting traffic to advise only a proportion to be directed to the 

alternate route.  
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Figure 2-7: An Example of Detour/Alternate Route Advisory  (Cabbagestalk, 2017) 

 

The greatest challenge associated with the dissemination of advance warning messages (i.e., speed 

advisory, lane change advisory, and detour/alternate route advisory) to inform upstream drivers of 

potential secondary crash risks is determining the location, time, and delivery method to alert 

motorists of the potential primary incident. 

 

2.3.2 Approaches to Disseminate Warning Messages to Upstream Drivers 

 

The following methods could be used to broadcast warning messages to upstream motorists:  

 

• DMSs (Kopitch and Saphores, 2011), and 

• Advanced Traveler Information Systems (ATIS), such as Florida’s FL511 service; 

navigation applications, such as Waze; and CV applications (Soloka, 2019; Yang et al., 

2017). 

 

The following subsections discuss these communication avenues to inform drivers upstream of a 

primary incident that may help to mitigate potential secondary crashes. 

 

Dynamic Message Signs  

 

DMSs are programmable devices that can display any combination of letters and/or 

symbols/graphics to deliver messages to motorists. They can provide real-time information and 

are used for traffic warnings, regulations, routing, and traffic management (Montes et al., 2008). 

Some messages provided by DMSs suggest a course of action to motorists, such as change travel 

speed, change lanes, or divert to a different route. Other messages may serve to inform motorists 

of changes in current or future traffic conditions (e.g., Congestion Ahead) or state regulations (e.g., 

Buckle Up It’s the Law, Click It or Ticket, etc.). 

 

DMS messages may reduce potential secondary crashes and downstream speed differentials by 

informing motorists of downstream traffic conditions (e.g., congestion caused by an incident) and 

encouraging safer driving (Chatterjee et al., 2002; Mounce et al., 2007). Kopitch and Saphores 

(2011) used the distance from the primary incident location to the nearest upstream DMS as a 

proxy to quantify the impacts of DMS messaging on secondary crash prevention. The DMS 
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location was assumed to be at least two miles away from the primary incident for it to be effective 

(Kopitch and Saphores, 2011). The effectiveness of DMSs in reducing secondary crashes increased 

between 2 and 11.15 miles and decreased between 11.15 miles and 22.3 miles. Although DMSs 

were found to influence the probability of secondary crashes, this finding was not statistically 

significant (Kopitch and Saphores, 2011). 

 

In addition to safety benefits, DMS messages have also been observed to improve mobility. DMS 

messages may be used to divert traffic to an alternate route, thereby reducing delays (Mounce et 

al., 2007; Chiu et al., 2001). The willingness of drivers to adhere to DMS messages and divert to 

alternate routes depends on several factors. A primary concern for drivers is the characteristics of 

the alternate route. Motorists are more willing to divert if they deem the alternate route to be 

suitable. If motorists believe the alternate route will have a similar amount of congestion as their 

current route, they may not be willing to divert. Additionally, motorists may not divert routes if 

they suspect the alternate route will not provide shorter travel times. 

 

Advanced Traveler Information Systems 

 

In addition to DMSs, other platforms that could be used to disseminate proactive safety messages 

to upstream drivers are ATIS, including: 

 

• Florida’s FL511 service, and 

• navigation applications, especially those that leverage crowdsourced user reports for 

providing services such as Waze. 

 

Navigation applications such as Waze can allow users to create and send highway advisory 

messages from their smartphone at the incident scene (Figure 2-8).  

 

 
Figure 2-8: Potential of Advanced Traveler Information System  

in Mitigating Secondary Crashes 
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The utilization of this correspondence innovation enables drivers to know what is happening on 

the road and alert them about traffic conditions, incidents, police presence, construction, and even 

route change suggestions to save time (Imani, 2019). The Waze platform has already been 

integrated into the SunGuide® software used by many TMCs in Florida for traffic management 

(Glotzbach, 2014). The incidents reported on Waze are linked directly to SunGuide® in real time. 

Likewise, the Waze database collects the incidents reported in the SunGuide® system (Glotzbach, 

2014). 

 

Amin-Naseri et al. (2017) evaluated the reliability, coverage, and added value of crowdsourced 

traffic incident reports from Waze in Iowa. The study concluded that the crowdsourced data stream 

from Waze is an invaluable source of information for broad coverage of traffic monitoring systems, 

covering 43.2% of Iowa’s Advanced Traffic Management System (ATMS) crash and congestion 

reports. The Waze application also provided timely reporting, 9.8 minutes earlier than the probe-

based alternative, on average, and with reasonable geographic accuracy. Waze reports currently 

make significant contributions to incident detection and further complement the ATMS coverage 

of traffic conditions. 

 

CV Applications  

 

Given the emerging CV technologies, it is likely that many vehicles will soon connect with the 

surrounding infrastructure. CVs are equipped with certain technologies that help them 

communicate with their environment. This connected environment allows the CVs to 

communicate (i.e., send and receive messages) with other vehicles, known as V2V 

communication, as well as communicate with the surrounding infrastructure, known as vehicle-to-

infrastructure (V2I) communication (Harding et al., 2014). This potential, coupled with roadside 

equipment, can subsequently provide the ability to alert drivers of downstream incidents, which 

can lead to enhanced safety and mobility. A notable benefit of such technology could be the 

prevention of secondary crashes.  

 

V2V communication uses on-board Dedicated Short Range Communication (DSRC) devices to 

convey information about a vehicle’s status, such as speed, direction, acceleration, braking status, 

and other information, to other vehicles and receive similar information from other CVs. Figure 2-

9 shows some of the CV technologies that utilize V2V communication. CVs also use the vehicle 

ad hoc network (VANET) to convey and process signals to and from roadside units (RSUs), as 

well as other vehicles in the stream (Ghori et al., 2018). The messages exchanged between vehicles 

have the range and line-of-sight capabilities that exceed current stand-alone vehicle sensing 

technologies (Harding et al., 2014). 
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Figure 2-9: An Example of V2V Technology  (Yue et al., 2018) 

 

The benefits of CV applications in preventing secondary crashes have, so far, been evaluated using 

microsimulation studies. Yang et al. (2017) examined the impact of V2V communication on 

improving the situational awareness of drivers to mitigate secondary crashes. The risk of secondary 

crashes, measured by the number of simulated conflicts, was found to be significantly reduced if 

the MPR of CVs on a highway was at least 15% in dense traffic conditions (Yang et al., 2017). 

 

Unlike V2V communication, V2I communication involves communication between vehicles and 

infrastructure equipment. Currently, the majority of V2I deployments are along arterial roadways, 

where the communication is primarily between vehicles and traffic signals and the surrounding 

environment. Through this communication system, CVs share information with RSUs linked to 

ground servers and traffic control centers (Yang et al., 2017). As illustrated in Figure 2-10, V2I 

communication could convey various real-time traffic information, including downstream 

congestion and advisory speed limits on sharp curves. Such real-time information promotes driver 

awareness, which may improve safety for motorists (Marshall et al., 2017).  
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Figure 2-10: An Example of V2I Technology  (Yue et al., 2018) 

 

2.4 Summary 

 

The FHWA has established the reduction of secondary crashes as one of the performance measures 

for incident management programs. Proper identification of secondary crashes is pivotal to 

accurate reporting of the effectiveness of the programs deployed to mitigate secondary crashes. 

However, the limited knowledge of the nature and characteristics of secondary crashes has largely 

impeded their mitigation efforts. The following subsections discuss the research gap pertaining to 

the identification of secondary crashes, understanding factors influencing the likelihood of 

secondary crashes, and the prediction of secondary crashes. 

 

2.4.1 Challenges in Identifying Secondary Crashes 

 

Primarily three methods have been used to identify secondary crashes: (1) manual method; (2) 

static method; and (3) dynamic method. In the “manual” method, secondary crashes are manually 

identified by either TMC personnel or incident responders. In this case, the impact area of primary 

incidents is estimated visually based on the observer's judgment. However, despite being the most 

commonly used method, it is subjective, unreliable, inconsistent, and random. 

 

Instead of relying on the manual method to identify secondary crashes, some studies defined the 

impact area of the primary incident based on fixed spatiotemporal thresholds and detected 

secondary crashes within the predefined area. Although the static method is better than the manual 

method, the one-size-fits-all approach of using fixed spatiotemporal thresholds does not yield 

reliable results. This is because the impact area of the primary incident depends on the prevailing 

traffic conditions, i.e., uncongested or congested conditions. To overcome the limitations of the 

manual and static methods, recent studies have adopted a data-driven dynamic method. In this 

case, spatiotemporal thresholds vary depending on the impact of the primary incident on traffic 

flow parameters, hence the term dynamic. Although the dynamic method is proven to yield 

accurate and reliable results, applying it requires high-resolution traffic data, which are only 

available at limited locations. To accurately identify secondary crashes, this approach needs to be 

able to distinguish non-congestion patterns from congestion patterns. Further consideration must 

be made to emulate how congestion conditions develop and disseminate. 

 

Prevailing traffic data were used to automatically estimate the impact area of individual incidents 

and identify secondary crashes within the affected area. The developed approach considered how 

the queue caused by the primary incident grows and dissipates upstream of the incident. This 
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approach is considered to more accurately identify secondary crashes since it better reflects the 

changes in traffic characteristics caused by the primary incident. 

 

2.4.2 Challenges in Identifying Factors Influencing Secondary Crashes 

 

After identifying secondary crashes, understanding the contributing factors is crucial to developing 

strategies to mitigate them. Both parametric and non-parametric models have been used to estimate 

the secondary crash likelihood. The response variable, which is the probability of a secondary 

crash, is modeled as a binary variable, i.e., primary incident as the “yes” category and normal 

incident as the “no” category. Primary incident characteristics and traffic flow characteristics, 

followed by weather conditions, and geometric characteristics, have been observed to have a 

significant impact on the likelihood of secondary crashes. 

 

Modeling the risk of secondary crashes has the following challenges: (1) accounting for the 

infrequent nature of secondary crashes; (2) selecting the most important variables with minimal 

correlation; (3) considering prevailing traffic conditions; and (4) including other potential variables 

that are rarely considered in the literature. 

 

A penalized logistic regression, fitted using the bootstrap resampling approach, was used to identify 

the risk factors that influence secondary crashes. Traffic flow, incident, temporal, weather, and 

roadway geometric attributes were considered as potential factors that may influence the likelihood 

of secondary crashes. Potential secondary crashes influential variables that were rarely considered 

in previous studies, i.e., presence of vertical curve, merge influence area, and diverge influence area 

within the incident impact area, were explored. 

 

2.4.3 Challenges with Deploying Secondary Crash Mitigation Strategies 

 

It is important to devise proactive strategies to promptly reduce the risk of secondary crashes 

because their occurrence is largely influenced by the severity of the primary incident and how 

quickly the incident is cleared. Previous research that explored strategies to mitigate secondary 

crashes used traffic data to identify and predict the likelihood of secondary crashes in real time 

(Kitali et al., 2018; Xu et al., 2016). However, these studies neglected the influence of prevailing 

traffic conditions on the likelihood of a secondary crash following the occurrence of the initial 

incident. 

 

An algorithm that predicts the likelihood of secondary crashes in real time was developed as a 

proof-of-concept in this research effort. This algorithm could be used to develop an ATMS to 

proactively prevent secondary crashes. The potential of CV applications in mitigating secondary 

crashes was also explored. The explored applications include speed advisory, lane-change 

advisory, and detour advisory.   
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CHAPTER 3 

DATA AND STUDY CORRIDORS 

 

This chapter discusses the data and study corridors used to achieve the research goal and 

objectives. Four main types of data, i.e., incident data, real-time speed data, real-time rainfall data, 

and roadway geometric characteristics data, were used. The study sections constituted the roadway 

corridors within the Florida’s Turnpike Mainline and Turnpike Extension.  

 

3.1 Data Requirements 

 

The following types of data were required to achieve the research goal: (1) incident data; (2) high-

resolution traffic data; (3) roadway geometric data, including work zone information; and (4) high-

resolution rainfall data. Incident data were obtained from the SunGuide® database. High-resolution 

traffic data were retrieved from HERE Technologies, and work zone data were obtained from the 

FDOT Open Data Hub (FDOT, n.d.). Other roadway geometric characteristics were extracted from 

the Roadway Characteristic Inventory (RCI) database, Google Earth Pro, and Google Maps. High-

resolution rainfall data were retrieved from the National Oceanic and Atmospheric Administration 

(NOAA) Next Generation Weather Radar (NEXRAD) Level-II network. These data were 

collected for 5.5 years, from January 2014 to June 2019. The following subsections discuss each 

of these data sources. 

 

3.1.1 SunGuide® 

 

SunGuide® is an ATMS software used by the FDOT to process and archive incident data on 

freeways. The database stores several incident attributes, including: 

 

• incident identification (Event ID), 

• roadway name, 

• latitude and longitude of the incident location, 

• incident notification time, 

• incident type, 

• number and categories of responding agencies (e.g., EMS, towing, Road Ranger, etc.), 

• lane closure information, 

• incident severity, 

• weather condition, and 

• road surface condition. 

 

The categories of incident events included in the SunGuide® database are crash, disabled vehicles, 

debris on roadway, emergency vehicles, police activity, vehicle fire, flooding, pedestrian, 

abandoned vehicles, construction, wrong-way driver, etc. These categories were further 

summarized into four groups: crashes, vehicle problems, hazards, and other events. Accordingly, 

the crashes group contained crash events. Vehicle problems included all events that were not 

crashes, but were vehicle-related, e.g., disabled vehicles, abandoned vehicles, etc. Hazards 

included all objects on the roadway with the potential of causing crashes, e.g., debris on roadway, 

wildlife, etc. Other events encompassed all events that do not fit in the three aforementioned event 
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categories, e.g., other, bridge work, amber alert, wrong-way driver, etc. These event types were 

excluded from the analysis. 

 

Within the SunGuide® database, incident severity is categorized into three groups: minor, 

moderate, and severe. In the context of incident management, incident severity represents the 

impact of an incident on traffic conditions and the extent of lane blockage at the incident location. 

Illustratively, incidents that led to all lanes blocked were the most severe, while incidents without 

any lane blockages were the least severe (i.e., minor). In this research, incident severity was 

divided into two categories: minor and moderate/severe. 

 

3.1.2 HERE Technologies 

 

HERE Technologies record the space mean speed for roadways by dividing them into segments 

referred to as Traffic Message Channels. HERE Technologies speed data were collected from the 

Regional Integrated Transportation Information System (RITIS) platform. There are 406 Traffic 

Message Channels along the study corridor, 284 along the Mainline (State Road (SR)-91), and 122 

along Turnpike Extension (TE) (Figure 3-1).  

 

 
Figure 3-1: Network of HERE Traffic Message Channels within the Study Corridor 

 

On average, Traffic Message Channels along the study corridors are 1.9 miles and 0.7 miles on 

Mainline and TE, respectively. As depicted in Figure 3-2(a), 65% of the Traffic Message Channels 

along the Mainline are shorter than 1.4 miles. On the other hand, 88% of Traffic Message Channels 
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along TE are shorter than 1.5 miles (Figure 3-2(b)). Only 7% of the Traffic Message Channels 

along TE are longer than 2 miles. 

 

The Traffic Message Channel length affects the estimation of the impact caused by the incident on 

traffic flow, including queue formation and dissipation. That is, the use of traffic data from overly 

long Traffic Message Channels may result in an inaccurate estimation of the traffic flow 

characteristics changes caused by the incident. Since the longest Traffic Message Channel along 

TE is approximately 4 miles, while the longest Traffic Message Channel along the Mainline is 15 

miles, the cut-off of 4 miles was considered as a criterion to include a Traffic Message Channel in 

the analysis. Notably, only 15% of the Mainline Traffic Message Channels are longer than 4 miles. 

Thus, as depicted in Figure 3-3, the final study corridor has three main segments: 48-mile long TE, 

69-mile long Northern Turnpike Mainline (NTM), and 28-mile long Southern Turnpike Mainline 

(STM). 

 

 
(a) Turnpike Mainline 

  
(b) Turnpike Extension 

Figure 3-2: Spatial Distribution of Traffic Message Channels  

 

The 5-minute speed data from HERE Technologies were first used to identify secondary crashes. 

Next, speed data (i.e., mean and standard deviation (SD)) in the Traffic Message Channel where 

the incident occurred and within 10 minutes before the occurrence of the incident were collected 

to capture the traffic conditions before the occurrence of the incident. To determine the prevailing 

traffic conditions, speed data within the Traffic Message Channels impacted by the incident, from 

the time the incident was detected to the time when the traffic flow returned to normal, were used. 

Since the incident impact duration along different Traffic Message Channels may differ, the 

incident impact area was individually defined for each Traffic Message Channel. 
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Figure 3-3: Selected Roadway Sections within the Study Area 

 

3.1.3 Roadway Geometric Characteristics and Work Zone Data Sources 

 

Roadway geometric characteristics that may significantly impact traffic flow characteristics and 

hence the likelihood of secondary crashes were considered. The following geometric variables 

were considered: shoulder width, horizontal curves, vertical curves, merging segment, and 

diverging segment. Other potential geometric variables that were considered include service plazas 

and toll plazas. Since there are very few service plazas and toll plazas within the study area, these 

variables were excluded from the analysis. 

 

Shoulder width, horizontal curves, and vertical curves variables were collected from the RCI 

database for the years 2014 through 2019. The shoulder width variable was derived for the outside 

shoulder located adjacent to the outside travel lane. Outside shoulders provide for the 

accommodation of stopped vehicles, emergency use, and lateral support of the roadbed (FDOT, 

2016). Since the entire roadway section has a median, the shoulder width variable was collected 

from both directions. The final shoulder width corresponding with each incident was calculated as 

a weighted average of all the shoulder widths within the incident impact area: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ =  
∑ 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖×𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑖

𝑛
𝑖

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎
       (3-1) 



30 

where 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖 is the shoulder width within the incident impact area and 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑖 is the portion of the incident impact area with 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑖. The 

subscript 𝑖 represents the different shoulder width values within the incident impact area, where 𝑛 

is the total number of segments within the impact area. 

 

The horizontal curve variable was aggregated into two categories: incidents with a horizontal curve 

within their impact area and those without a horizontal curve within their impact area. The vertical 

curve variable was also aggregated in the same manner as the horizontal curve. 

 

The merge and diverge influence areas were derived from Google Earth Pro and Google Maps 

using the Historical Imagery and the Street View tools. The Historical Imagery tool was used to 

verify the location of the identified ramps during the study period. The merge and diverge influence 

areas were defined based on the Highway Capacity Manual (HCM) (Transportation Research 

Board [TRB], 2016). A merge influence area spans from the point where the edges of the travel 

lanes of the merging roadways meet to a point 1,500 feet downstream of that point. Similarly, a 

diverge influence area spans from the point where the edges of the travel lanes of the diverging 

roadways meet to a point 1,500 feet upstream of that point. While the HCM defines the ramp 

influence area as one that includes only lanes 1 and 2, both merge and diverge influence areas 

cover the entire roadway section (i.e., all travel lanes) since they are measured within the impact 

area of an incident (see Figure 3-4). 

 

 
(a) Southbound Merge Influence Area 

 
(b) Southbound Diverge Influence Area 

 
(c) Northbound Merge Influence Area 

 
(d) Northbound Diverge Influence Area 

  

Figure 3-4: Definition of Merge and Diverge Influence Areas 

 

The final merge/diverge influence area considered was also a dichotomous variable, similar to the 

horizontal/vertical curve variables. That is, incidents with a merge/diverge influence area within 

their impact area were grouped into the “yes” category and those without merge/diverge influence 

area within their impact area were categorized as “no”. Note that the “presence of merge influence 

area” and the “presence of diverge influence area” were treated as two separate variables. 

 

The work zone activities data were retrieved from the Active Construction Project database service 

that is updated nightly in the FDOT Open Data Hub. The database provides the work zone 

construction location and duration. The direction of the construction activities is not mentioned in 

the Open Data Hub and is therefore verified manually using the Google Map Historical Tool. 
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3.1.4 NOAA 

 

NOAA preserves, monitors, and assesses climate and historical weather data. One of the systems 

maintained by NOAA is NEXRAD. NEXRAD is a network of 160 high-resolution Doppler radar 

sites that detect precipitation and atmospheric movement and disseminate near real-time data in 

approximately 5-minute intervals from each site (Barr, 2018). With these high-resolution data, it 

is possible to obtain the actual rainfall intensity over the road network in short time intervals.  

 

Original data from the NEXRAD network, referred to as NEXRAD Level-II data, were used. 

These data included reflectivity, one of the meteorological base data quantities. Radar measures 

rainfall intensity using radiations reflected on a target surface, in this case, a roadway network. 

The proportion of a target’s productivity in capturing and returning radiofrequency energy is 

alluded to as reflectivity. Reflectivity can simply be defined as a measure of fractions of radiations 

reflected by a given surface. It is expressed as the ratio of the radiant energy reflected and the total 

amount of energy incident upon that surface (Andrew, 2019). 

 

As indicated in Figure 3-5, reflectivity data were downloaded from the radar located in Miami, 

Florida (KAMX – Miami, FL). This radar is positioned at latitude: 25.61056, longitude: -80.41306, 

and has been operational since April 20, 1995. Specifically, the NEXRAD Level-II data were 

accessed from Amazon S3 through the following link https://noaa-nexrad-

level2.s3.amazonaws.com. Similar to other high-resolution Doppler radars under NEXRAD, the 

KAMX radar covers a 248.5-mile radius. 

 

 
Figure 3-5: Collection of High-resolution Rainfall Data from Radar  (NOAA, n.d.) 

 

Figure 3-6 describes the approach used to retrieve rainfall data from NEXRAD. Reflectivity data 

were obtained for incidents that occurred during inclement weather conditions, as indicated in the 

https://noaa-nexrad-level2.s3.amazonaws.com/
https://noaa-nexrad-level2.s3.amazonaws.com/
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incident database. The data were retrieved at 5-minute intervals, from the time when the incident 

began impacting traffic to the time when either a secondary crash occurred for primary incidents, 

or when the traffic flow returned to normal for normal incidents. The downloaded radar data from 

Amazon S3 are in a unique digital binary format. Thus, as indicated in Figure 3-6 (Step 2), the 

NOAA Weather Climatic Toolkit (WCT) was used to visualize and convert data into a 

conventional scientific format, a shapefile in this case. ArcGIS software was then used to merge 

the downloaded radar data with the Traffic Message Channels impacted at time interval (t). 

 

The recorded reflectivity values were converted to rainfall intensity using the following 

reflectivity-rainfall intensity relationship (Andrew, 2019): 

 

𝑅 =
10

𝑑𝐵𝑍
1
2

10

250
                 (3-2) 

where, 𝑅 is the rainfall intensity expressed in millimeters per hour (mm/hr), and 𝑑𝐵𝑍 is an 

abbreviation for decibel relative to reflectivity (𝑍). The dBZ is used to compare the reflectivity of 

a target surface in mm6 per m3 to the return of a droplet of rain with a diameter of 1 mm. In other 

words, it measures the strength of the energy reflected to the radar by the target surface, in this 

case, the roadway segment. 

 

 
Figure 3-6: Workflow for Collecting and Processing Reflectivity Data 

 

Finally, the rainfall intensity data were grouped into three categories according to the American 

Meteorological Society (AMS) rainfall intensity classification (American Meteorological Society 

[AMS], n.d.). The three groups include light rainfall (Trace – 0.10 in/hr), moderate rainfall (0.10 

– 0.30 in/hr), and heavy rainfall (> 0.30 in/hr). Table 3-1 shows a sample of rainfall data retrieved 

from KAMX radar on June 30, 2019, 11:34:55 AM, on Florida’s Turnpike System Mainline [mile 
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marker (MM) 50.1 – 54.8. The high-resolution rainfall data were obtained from the NOAA 

database. 

 

Table 3-1: Sample Rainfall Data from NEXRAD on June 30, 2019 

Sweep Time Begin MM End MM Rainfall (mm/hr) Rainfall (in/hr) Rain Category 

11:34:55 AM 50.1 50.5 0.0051 0.0002 Light 

11:34:55 AM 50.5 54.1 5.1292 0.2019 Moderate 

11:34:55 AM 54.1 54.4 42.3367 1.6668 Heavy 

11:34:55 AM 54.4 54.5 42.3367 1.6668 Heavy 

11:34:55 AM 54.5 54.8 9.1212 0.3591 Heavy 

 

3.2 Study Area 

 

The study corridors were selected from the Florida’s Turnpike Mainline and Turnpike Extension. 

As shown in Figure 3-7, the Turnpike Mainline is a 312-mile corridor consisting of two main 

roadways: the Florida Turnpike Mainline (or SR-91) and TE (or SR 821). The two roadways are 

265 miles and 48 miles, respectively. The following subsections discuss the criteria considered 

while selecting the study corridors. 

 

 

Figure 3-7: Florida’s Turnpike Mainline and Turnpike Extension 
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3.2.1 Study Corridors for Identifying Secondary Crashes  

 

Two main data sources are required to estimate an incident impact area: (1) traffic incidents; and 

(2) high-resolution traffic data. The HERE Technologies record the speed for roadways by 

dividing them into Traffic Message Channels. The study corridors used to identify secondary 

crashes were selected based on the availability of high-resolution traffic data. As discussed in 

Section 3.1.1, segments with overly long Traffic Message Channels were excluded. This is because 

the traffic information from these segments may result in an inaccurate estimation of traffic flow 

changes caused by the incident. 

 

Figure 3-8(a) shows the location of the study area. The TE section is from MM 0 to MM 48 (see 

Figure 3-8(b)). The STM is located from MM 0 through MM 4, which is the Turnpike Mainline 

Spur, and from MM 48 through MM 72, which is the junction between SR-91 and SR-869 

(Sawgrass Expressway) (see Figure 3-8(c)). The NTM is located from MM 240 through MM 309 

(see Figure 3-8(d)). Table 3-2 summarizes the HERE Traffic Message Channels along the selected 

study corridors. 

 

  



35 

 
 

 
Turnpike Extension (TE) 

 
Southern Turnpike Mainline (STM) 

 
Northern Turnpike Mainline (NTM) 

 

 

Figure 3-8: Selected Roadway Sections along Florida’s Turnpike Mainline and Turnpike 

Extension 

 

  

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong 

Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User Community. 

(b) (c) (d) 

(a) 
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Table 3-2: Distribution of HERE Traffic Message Channels along the Study Corridors 

Roadway 

Number of Traffic Message Channels Length of 

Corridor 

(miles) 
Northbound Southbound 

                

Total 

Northern Turnpike Mainline (NTM) 46 47 93 69 

Southern Turnpike Mainline (STM) 34 35 69 28 

Turnpike Extension (TE) 61 61 122 48 

 

3.2.2 Study Corridor for Developing the Secondary Crash Likelihood Model 

 

Of the three corridors used to identify secondary crashes, only STM was used to develop the 

secondary crash likelihood models. Incident hotspots were considered one of the criteria for 

selecting the study corridors for developing the secondary crash likelihood model. The Kernel 

Density function in ArcGIS was used to identify high incident segments within the Florida’s 

Turnpike System. The hotspot analysis was conducted based on traffic incidents that occurred 

along the study corridors, i.e., TE, STM, and NTM, during the study period. 

 

The research also ensured there were no major construction activities, i.e., lane widening, bridge 

maintenance, interchange improvements, etc., taking place along the selected study corridor. 

Previous research indicated that factors that significantly affect the traffic flow characteristics are 

more likely to increase the risk of secondary crashes (Kitali et al., 2019b, 2018; Xu et al., 2016). 

The constrained driving environment in work zones tends to disturb the normal traffic flow, leads 

to speed reductions, and reduces road capacity. As such, the presence of the work zone, particularly 

construction activities, could exacerbate the occurrence of secondary crashes compared to other 

corridors without major construction activities. The Active Construction Projects shapefile from 

the FDOT Open Hub Data website was used to identify major construction activities along the 

study corridors during the study period. 

 

As indicated in Figure 3-9, both the incident hotpot analysis and the crash hotspot analysis 

identified the TE and STM as corridors that experienced the highest number of traffic incidents 

and crashes. Nonetheless, the exploratory analysis of the data in the Active Construction Projects 

shapefile indicated that lane widening construction activities were taking place within the TE 

section during the study period. Meanwhile, in STM, there were no such activities during the study 

period. Thus, this section was used to develop the secondary crash likelihood model. 
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(a) Incident hotspot 

 

(b) Crash hotspot 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong 

Kong), Esri Korea, Esri (Thailand), NGCC, OpenStreetMap contributors, and the GIS User Community. 

Figure 3-9: Corridors with High Incidents and Crashes along Florida’s Turnpike Mainline 

and Turnpike Extension 

 

3.2.3 Study Corridor for Developing the Secondary Crash Risk Prediction Model 

 

The STM corridor used in the secondary crash likelihood model was also used to predict the 

occurrence of secondary crashes in real time. As mentioned earlier, the STM corridor is a 28-mile 

section of the Florida’s Turnpike Mainline (SR-91) from MM 0 through MM 4, which is the 

Turnpike Mainline Spur, and from MM 48 through MM 72, which is the junction between SR-91 

and SR-869 (Sawgrass Expressway). 

 

3.2.4 Study Corridor for Exploring the Potential of Mitigating Secondary Crashes Using CV 

Applications  

 

The potential of CV applications to mitigate secondary crashes was explored using a 

microsimulation approach. The selected study corridor, shown in Figure 3-10, is a 7.8-mile, 6-lane 

(3-lanes in each direction) road segment on the Florida’s Turnpike Mainline (SR-91). The freeway 

segment is in Broward County and crosses four roadways: Sample Road, Copans Road, Coconut 

Creek Road, and Atlantic Boulevard. Note that the interchanges are 1 to 2 miles apart, with access 

to the Turnpike at each interchange except the Copans Road crossing. This site was chosen over 

other segments along the Florida’s Turnpike due to its relatively high number of crashes in 2016-

2019.  
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Figure 3-10: Selected Study Corridors for the Microsimulation Model: Turnpike Mainline 

(SR-91) and Detour Route (Lyons Road) 

 

Furthermore, a 4.2-mile section of Lyons Road, with two lanes in each direction, was considered 

for detouring purposes, as shown in Figure 3-10. The detour route is expected to divert a portion 

of the Turnpike’s mainline traffic, particularly while the incident is being cleared. The diverted 

traffic exits on Coconut Creek Road before traveling along Lyons Road and returns to the Turnpike 

mainline via W Sample Road. Compared to other possible detour routes along the Turnpike 

corridor, the selected detour is one of the sections with the closest consecutive interchanges (~ two 

miles). 

 

3.3 Summary 

 

The following four data types were used in this research: 

 

• Traffic incidents from the SunGuide® database, 

• High-resolution speed data from HERE Technologies, 

• Rainfall data from NOAA NEXRAD Level-II network, and  

• Roadway geometric attributes data from FDOT RCI, Google Maps, and Google Earth Pro. 

 

Table 3-3 summarizes the data requirements for different steps accomplished in this research 

effort. These data were collected both historically and in real time (except for roadway geometric 

variables).  
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Table 3-3: Data Needs for Predicting Secondary Crashes in Real Time 

Data Source Data Type 
Identify 

SC 

SC Likelihood 

Model 

SC Prediction 

Model 

SunGuide® Incident    

HERE Technologies Speed       

RCI 
Shoulder width, horizontal curve, and 

vertical curve 
   

Google Maps and 

Google Earth Pro 
Merge ramps and diverge ramps    

NOAA Rainfall intensity       

Note: FDOT = Florida Department of Transportation; RCI = Roadway Characteristic Inventory; NOAA = National 

Oceanic and Atmospheric Administration; SC = Secondary Crash. 

 

Table 3-4 summarizes the study corridors selected from the Florida’s Turnpike Mainline to achieve 

the research goal and objectives.   

 

Table 3-4: Summary of Study Corridors Considered in this Research Effort 

Research Objective Study Corridor 

Identifying SCs 48-Mile TE; 69-mile NTM; 28-mile STM 

Developing the SC Likelihood Model 28-mile STM 

Developing the SC Risk Prediction Model 28-mile STM 

Exploring the Potential of Mitigating SC Using CV 

Applications 

7.8-mile section of STM; 4.2-mile section of 

Lyons Road 
Note: SC = Secondary Crash; TE = Turnpike Extension; Northern Turnpike Mainline (NTM); STM = Southern 

Turnpike Mainline. 
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CHAPTER 4 

IDENTIFY SECONDARY CRASHES 

 

This chapter discusses the methodology used to identify secondary crashes along the Florida’s 

Turnpike Mainline and Turnpike Extension. A data-driven approach that accurately estimates the 

primary incident’s impact area and accurately identifies secondary crashes was developed. A 

critical component of this approach is that it considers that the queue built by the primary incident 

will grow and dissipate at different rates. The impact of the incident on the location where it 

occurred is expected to be different from the farther upstream segments. Additionally, using the 

developed approach, the incident’s non-recurrent congestion caused by the incident can be 

separated from any recurrent congestion within the incident’s spatiotemporal impact area. Note 

that this research focused on secondary crashes that occurred in the upstream direction of the 

primary incident.  

 

4.1 Background 

 

The impact area of individual incidents was first estimated as the first step towards identifying 

secondary crashes. The extent of the impact area was characterized by the primary incident 

duration and the length of the queue initiated by the incident. The fundamental questions addressed 

while developing an algorithm to identify secondary crashes included: 

 

• How to accurately determine the spatial and temporal boundaries of the impact area when 

an incident occurs? 

• How to determine whether the change in traffic states at the location of the secondary crash 

is due to the prior incident or other factors such as recurrent congestion? 

 

Two main data sources were required to estimate the impact area of a primary incident: (1) traffic 

incidents; and (2) real-time traffic data. These data were collected within the period of study, which 

ranges between January 2014 to June 2019. High-resolution speed data were retrieved from HERE 

Technologies, and traffic incident data were retrieved from the SunGuide® database. 

 

 4.2 Methodology 

 

A data-driven approach was used to identify secondary crashes. This method accurately estimates 

the impact area of the primary incident using speed data from HERE Technologies and identifying 

secondary crashes occurring within the impact area of the primary incident. The developed 

approach aims to better capture traffic flow characteristics, such as speed, that change over space 

and time and affect the queue formation caused by the primary incident. As discussed in Section 

3.2.1, the study area included the TE corridor, a 48-mile extension of the Florida’s Turnpike, and 

a 97-mile section on the Florida’s Turnpike Mainline, i.e., a 69-mile NTM and a 28-mile STM. As 

indicated in Figure 4-1, four major steps were used to identify secondary crashes using the 

developed data-driven approach. The following subsections discuss each of these four steps in 

detail. 
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Figure 4-1: Data-driven Approach to Identify Secondary Crashes 

 

4.2.1 Extract and Process Speed Data from HERE Technologies 

 

The 5-minute speed data from HERE Technologies were retrieved from the 284 Traffic Message 

Channels along the study corridor from January 2014 through June 2019. These data were used to 

establish the recurrent speed profile of the section under normal traffic conditions. The average 

speed in each 5-minute interval was used to establish the recurrent speed profile. Additionally, a 

confidence interval of two standard deviations was established to define the lower and upper 

bounds (i.e., speed bandwidth) of the speed profile to account for the variation in speeds on a 

roadway segment. For each Traffic Message Channel, seven speed profiles were generated, one 

for each day of the week. Independent speed profiles for different days of the week and times of 

the day were established to account for the recurrent traffic congestion. Figure 4-2 shows a typical 

speed profile for a 24-hour period on a weekday. As expected, there is a significant drop in speed 

during the morning peak hours, while the average speeds were the highest between midnight and 

5:00 AM. 

Identify Secondary Crashes 

Estimate Incident Impact Area  

Match Incidents to a Traffic Message Channel 

Extract and Process Speed Data from HERE Technologies 
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Figure 4-2: Sample Speed Profile for Estimating Normal Traffic Conditions 

 

4.2.2 Match Incidents to a Traffic Message Channel 

 

The geographic location of both the incidents and the Traffic Message Channels is the most critical 

information required for matching an incident to the Traffic Message Channel. MMs of incidents 

and Traffic Message Channels (start and end) were used instead of the geographic coordinates, 

i.e., longitudes and latitudes. Through the ArcGIS tool, the Toll Roads Polyline shapefiles 

extracted from the FDOT Transportation Data and Analytics Office website were used to assign 

MMs to the incidents and the start and end of the Traffic Message Channels. This approach ensures 

that roadway alignment characteristics, especially on curved segments, do not affect the accurate 

computation of the spatial relationship between incidents and Traffic Message Channels. 

 

Using the assigned MMs, each incident was matched to a Traffic Message Channel at the incident 

location. For northbound incidents, since MMs increase in the northbound direction, the MM of 

the northbound incident must be greater than or equal to the MM of the start of the Traffic Message 

Channel and less than or equal to the MM of the end of the Traffic Message Channel. Similarly, 

for southbound incidents, since MMs decrease in the southbound direction, the MM of the incident 

must be less than or equal to the MM of the start of the Traffic Message Channel and greater than 

or equal to the end of the Traffic Message Channel. In other words, the start and end of each Traffic 

Message Channel is direction dependent. Figure 4-3 provides an example of a 0.97-mile-long 

Traffic Message Channel in the TE section. The date, day, and reported time of incidents that were 

successfully matched with the Traffic Message Channels were extracted and used in the next steps. 
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Figure 4-3: An Example of Assigning Incidents to Traffic Message Channels 

 

4.2.3 Estimate Incident Impact Area 

 

Traffic incidents and real-time traffic data were required to estimate the incident impact area. The 

impact area was computed for incidents that were successfully matched to the Traffic Message 

Channels, as discussed in an earlier section. This process was achieved by tracking the reported 

speeds at the segment where the incident occurred, from the time the incident was detected to the 

time when the traffic flow returned to normal. An incident was considered to have affected the 

traffic flow characteristics of the segment when the average speed along the segment was less than 

the lower boundary of the speed profile. The same procedure was repeated for all the upstream 

Traffic Message Channels affected by the incident. Next, the time taken for the traffic to return to 

normal, following the occurrence of an incident, was recorded for each affected Traffic Message 

Channel. Since the incident impact duration along different Traffic Message Channels may differ, 

the incident impact area was defined for each Traffic Message Channel individually. 

 

In summary, this process enabled the accurate estimation of the spatiotemporal impact area of the 

incident. That is, for each impacted Traffic Message Channel, the temporal thresholds were 

defined by the incident impact duration, i.e., from the time the incident was first detected to the 

time traffic returned to normal. As indicated in Figure 4-4 (a), the incident impact length in the 

northbound direction is defined by the difference in distance between the location of the incident 

and the start of the last impacted Traffic Message Channel (n). Similarly, the incident impact length 

in the southbound direction refers to the difference in distance between the location of the incident 

and the end of the last impacted Traffic Message Channel (n). 
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(a) Definition of Incident Impact Length in the Northbound Direction 

 

 

(b) Definition of Incident Impact Length in the Southbound Direction 

 

Figure 4-4: Definition of Incident Impact Length 

 

Figure 4-5 shows an example of the impact area caused by an incident I-1, where the x- and y-

axes represent the time and length of the affected roadway segments, respectively. Note that each 

cell in Figure 4-5 represents a speed measurement by the Traffic Message Channel at the tth time 

interval, i.e., 5 minutes in this case. As indicated in Figure 4-5, the impact duration and impact 

length vary across the different Traffic Message Channels impacted by the incident. While the 

segment where the incident occurred, i.e., Traffic Message Channel 0, has the most extended 

impact duration, the farthest segment impacted by incident I-1, i.e., Traffic Message Channel 6, 

has the shortest impact duration. 
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Figure 4-5: Illustration of the Approach to Estimate Incident Impact Area 

 

4.2.4 Identify Secondary Crashes 

 

Following the establishment of the area impacted by each incident, the last step was to identify 

secondary crashes. A traffic incident was considered a secondary crash if it occurred within the 

prior incident’s spatiotemporal impact area. Referring to Figure 4-5, since incident I-1 occurred 

earlier than incidents I-2, I-3, and I-4, the main task was to determine whether these three incidents 

occurred because of incident I-1. Considering the impact area in Figure 4-5, incident I-3 was 

considered a secondary crash to incident I-1 since it occurred within the impact area of incident I-

1. 

 

4.3 Results and Discussion 

 

Along the study corridor, the SunGuide® database included a total of 622,264 incidents from 

January 2014 – June 2019. After excluding incidents with missing information, the remaining data 

consisted of a total of 322,259 incidents. Table 4-1 provides more information about incidents used 

to identify secondary crashes. Of these 322,259 incidents, 116,521 incidents occurred along TE, 

95,583 incidents occurred on the South Section of the Mainline (STM corridor), and the remaining 

110,155 incidents occurred on the Northern Section of the Mainline (NTM corridor). 

 

Incidents that occurred on ramps were also not included in the analysis. Compared to the mainline 

segments, ramps have a complex geometry that significantly affect the traffic transition states, i.e., 

from free-flow to breakdown, congested, recovery, and eventually back to free-flow. For this 

reason, incidents that occur on ramps cannot be combined with the incidents that occurred on the 

freeway mainline (Sando et al., 2019).
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Table 4-1: Incidents Used to Identify Secondary Crashes 

Criteria Count 

Total incidents from Jan 2014-June 2019 622,264 

Missing Information from SunGuide® 

Incidents with missing coordinates 7,016 

Incidents that were plotted outside the study corridor 144 

Incidents that occurred on ramps 2,522 

Incidents with “other” event types 42,240 

Missing Information from HERE Technologies 

Incidents with no matched Traffic Message Channels data 5,276 

Incidents along sections with overly long Traffic Message Channels 221,652 

Incidents with extreme incident impact duration and incident impact length 20,990 

Incidents without HERE speed data 165 

Total incidents excluded from the analysis 300,005 

Total incidents included in the identification of secondary crashes 322,259 

 

As indicated in Table 4-1, to identify secondary crashes, 322,259 incidents from the SunGuide® 

database and high-resolution speed data from HERE Technologies were evaluated. Table 4-2 

provides a summary of the secondary crashes identified along the study corridors. As indicated in 

the table, a total of 4,549 secondary crashes were identified from 3,977 primary incidents. This is 

an equivalent of 5.7 secondary crashes per mile per year along the 148-mile study corridor. In 

other words, about six secondary crashes per mile occurred annually along the study corridors. 

 

The identified secondary crashes account for 1.4% of all traffic incidents. While the proportion of 

secondary crashes, when compared to all incidents, may not seem alarming at first glance, 

secondary crashes account for 12.2% of all crashes included in the analysis. As indicated in Table 

4-2, the highest proportion of secondary crashes was identified along the TE corridor, followed by 

the STM, and finally, the NTM. 

 

Table 4-2: Secondary Crashes Identified along the Study Corridors 

Seg. 
Seg. Len. 

(miles) 
NI PI SC All Inc. 

All 

Crash 

SC/ 

mile/year 

Prop. of 

SC/Inc. (%) 

Prop. of 

SCs/Crash  

(%) 

TE 48 111,274 2,516 2,964 116,521 19,369 11.2 2.5 15.3 

STM 28 93,709 932 1,008 95,583 9,020 6.5 1.1 11.2 

NTM 69 109,090 529 577 110,155 8,818 1.5 0.5 6.5 

Overall  145 314,073 3,977 4,549 322,259 37,207 5.7 1.4 12.2 

Note: TE = Turnpike Extension; STM = Southern Turnpike Mainline; Northern Turnpike Mainline (NTM); Seg. Len. 

= Segment Length; NI = Normal Incident; PI = Primary Incident; SC = Secondary Crash; Inc. = Incident. 

 

4.3.1 Spatiotemporal Distribution of Secondary Crashes 

 

Figures 4-6 and 4-7 show the spatial and temporal characteristics of secondary crashes in relation 

to primary incidents. The median distance between primary incidents and secondary crashes was 

found to be 2.5 miles. About half of all secondary crashes occurred within 40 minutes after the 
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primary incident. Almost half of all secondary crashes (47%) occurred within 2 miles upstream of 

the primary incident. Meanwhile, more than three-quarters of secondary crashes (93%) occurred 

within two hours. Overall, 40% of secondary crashes occurred within two hours of the onset of a 

primary incident and two miles upstream of the primary incident, the most commonly considered 

static spatiotemporal threshold. 

 

 
Figure 4-6: Spatial Distribution of Secondary Crashes in Relation to Primary Incidents 

 

 
Figure 4-7: Temporal Distribution of Secondary Crashes in Relation to Primary Incidents 
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4.3.2 Time of Day and Day of Week Distribution  

 

Figure 4-8 shows the distribution of the 4,549 secondary crashes, 3,977 primary incidents, and 

314,073 normal incidents by different periods. More than three-quarters of secondary crashes 

(85%) occurred during peak hours, i.e., morning peak, 6:00 AM to 10:00 AM, and evening peak, 

3:00 PM to 8:00 PM. Specifically, 33% of secondary crashes occurred during the morning peak, 

while the remaining 52% occurred during the evening peak. The highest proportion of secondary 

crashes during morning peak hours occurred from 8:00 AM to 9:00 AM (11%), while the highest 

proportion of secondary crashes during the evening peak period (13%) occurred between 5:00 PM 

and 6:00 PM, summing to a total of 24% of all secondary crashes that occurred along the study 

corridors. 

 

 
Figure 4-8: Distribution of Traffic Incidents by Time of Day 

 

The highest proportion of primary incidents was observed during the evening peak period between 

the hours of 2:00 PM and 8:00 PM, accounting for 50% of all primary incidents. As can be inferred 

from Figure 4-8, the peaks of primary incidents and secondary crashes are one hour apart. Unlike 

primary incidents and secondary crashes, there is no significant distinction in the distribution of 

normal incidents during peak hours. More than three-quarters of normal incidents (94%) occurred 

between the hours of 6:00 AM and 8:00 PM. As can be observed from Table 4-3, approximately 

half of normal incidents occurred during peak hours (53%), while the remaining half occurred 

during off-peak hours. 
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Table 4-3: Distribution of Traffic Incidents by Time of Day 

Temporal  

Characteristic 
Category 

Incident Category (%) 

Normal  

Incidents 

Primary  

Incidents 

Secondary  

Crashes 

Time of Day  
Peak Hours 68 84 85 

Off-peak Hours 32 16 15 

 

More than three-quarters of both primary incidents (84%) and secondary crashes (85%) occurred 

during peak hours. Compared to off-peak hours, peak-hour traffic flow characteristics were found 

to contribute more to the occurrence of secondary crashes. This is expected because smaller gaps 

between vehicles characterize congested traffic, providing less maneuvering room for drivers to 

avoid a crash (Mishra et al., 2016; Kitali et al., 2019b). 

 

Figure 4-9 presents the distribution of incidents by day of the week. It can be inferred from the 

figure that the proportion of normal incidents, primary incidents, and secondary crashes is much 

higher on weekdays than on weekends. Compared to other days of the week, Friday was found to 

experience the highest proportion of secondary crashes (20%). Only 13% of secondary crashes 

occurred on weekends. 

 

  
Figure 4-9: Distribution of Traffic Incidents by Day of Week 

 

4.3.3 Incident Characteristics  
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Figure 4-10: Distribution of Incident Clearance Duration for Towing Involved and No 

Towing Involved Incidents 

 

In addition to towing, the EMS presence at the incident scene was also identified as one of the 

factors that increase the incident clearance duration. This observation is evident in Figure 4-11, 

where 95% of traffic incidents that did not involve EMS were cleared within 90 minutes, while 

only 64% of traffic incidents that involved EMS were cleared within 90 minutes. As expected, 

traffic incidents involving towing and EMS resulted in longer incident clearance durations as they 

tend to require more time to be cleared. 

 

 
Figure 4-11: Distribution of Incident Clearance Duration for EMS Involved and No EMS 

Involved Incidents 
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As indicated in previous studies, the likelihood of secondary crashes increases with an increase in 

incident clearance duration (Xu et al., 2016; Kitali et al., 2018). This is evident from the data, as 

13% of primary incidents required towing, while only 3% of normal incidents required towing (see 

Table 4-4). Similarly, a higher percentage of incidents involving EMS resulted in secondary 

crashes (11%). Furthermore, while only 28% of normal incidents involved more than one 

responding agency, 51% of primary incidents and 55% of secondary crashes involved multiple 

responding agencies. These statistics suggest that incidents involving a greater number of 

responding agencies increase the likelihood of secondary crashes. 

 

Table 4-4: Incident Distribution Based on Responders’ Characteristics 

Incident Characteristics Category 
Incident Category (%) 

Normal Incidents Primary Incidents Secondary Crashes 

Towing Involved 
No 97.0 86.6 85.2 

Yes 3.0 13.4 14.8 

Emergency Involved 
No 98.2 89.4 89.1 

Yes 1.8 10.6 10.9 

Number of Responding 

Agencies 

1 71.9 49.0 45.2 

2 24.3 31.7 33.8 

3 1.8 7.0 9.0 

4 0.9 4.7 5.3 

5 0.8 4.9 5.0 

6+ 0.3 2.6 1.7 

 

As can be observed from Table 4-5, 97% of normal incidents did not result in a lane closure, while 

21% of primary incidents resulted in a lane closure. The percentage of lanes closed is an indicator 

of the severity of the primary incident, as severe incidents tend to result in an increased number of 

lanes closed. About 9% of primary incidents resulted in moderate to severe impacts on traffic, 

while only 1% of normal incidents were moderate to severe. 

 

Table 4-5: Incident Characteristics 

Incident 

Characteristics 
Category 

Incident Category (%) 

Normal Incidents Primary Incidents Secondary Crashes 

Percentage of Lanes 

Closed 

0 97.0 79.3 99.7 

0-50 0.4 2.7 0.2 

50-100 2.6 18.0 0.1 

Incident Severity* 

Minor 98.9 90.6 93.4 

Moderate 0.7 5.9 4.9 

Severe 0.4 3.5 1.7 

Note: *Incident severity refers to the extent to which the incident impacted the traffic. 

 

As indicated in Figure 4-12, only 10% of normal incidents were crashes, a proportion similar to 

all incidents (12%), while approximately half of the primary incidents were crashes (47%). In other 

words, the probability of secondary crashes was found to be higher when primary incidents were 

crashes. Note that the category “Other” in Figure 4-12 includes emergency vehicles, vehicle fire, 

and police activity. All incidents include normal incidents, primary incidents, and secondary 

crashes. 
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Figure 4-12: Distribution of Incidents by Incident Type 

 

Figure 4-13 shows the distribution of the incident clearance duration for normal incidents and 

primary incidents. Overall, normal incidents were cleared more quickly than primary incidents; 

approximately 94% of the normal incidents were cleared within 90 minutes, while only 82% of 

the primary incidents were cleared within 90 minutes. The longer clearance time of the primary 

incidents could be considered one of the factors that may have contributed to the occurrence of 

secondary crashes. 

 

 
Figure 4-13: Distribution of Incident Clearance Duration for Normal and Primary 
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Figure 4-14 presents the distribution of the incident clearance duration for the identified primary 

incidents and secondary crashes. Approximately 77% of the secondary crashes were cleared within 

90 minutes, while 82% of the primary incidents were cleared within 90 minutes. This observation 

implies that primary incidents were cleared slightly faster than secondary crashes. 

 

 
Figure 4-14: Distribution of Incident Clearance Duration for Primary Incidents and 

Secondary Crashes 

 

4.3.4 Environmental Conditions 

 

Environmental conditions (i.e., weather, roadway surface, and lighting) have been identified as 

some of the factors that influence the likelihood of secondary crashes (Vlahogianni et al., 2012). 

Table 4-6 summarizes the variation of weather condition, roadway surface condition, and lighting 

condition by incident category, i.e., normal incident, primary incident, and secondary crash. 

 

Table 4-6: Environmental Conditions 

Environmental 

Condition 
Category 

Incident Category (%) 

Normal 

Incidents 

Primary 

Incidents 

Secondary 

Crashes 

Weather 
Clear 97.9 87.3 79.9 

Cloudy/Fog/Rain 2.1 12.7 20.1 

Roadway Surface 

Condition 

Dry 98.7 88.7 81.6 

Wet 1.3 11.3 18.4 

Lighting Condition 
Daylight 71.3 80.2 77.5 

Dark/Dusk/Down 28.7 19.8 22.5 

 

Regarding weather condition, as indicated in Table 4-6, more than three-quarters of all the three 

incident categories occurred under clear weather condition. However, compared to normal 
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incidents (2%), a higher proportion of primary incidents (13%) occurred during cloudy/fog/rainy 

conditions. Similarly, a higher percentage of primary incidents (11%) and secondary crashes 

(18%) occurred on wet surface conditions. These statistics imply that inclement weather conditions 

and adverse road surface conditions are among the factors that increase the probability of 

secondary crashes. Compared to normal incidents, a higher proportion of primary incidents and 

secondary crashes occurred during the daytime. 

 

4.4. Summary 

 

Prevailing traffic data were used to estimate the impact area of individual incidents and identify 

secondary crashes within the affected area. The developed approach considered how the queue 

caused by the primary incident grows and dissipates upstream of the incident. Traffic incidents 

from the SunGuide® database and high-resolution speed data from HERE Technologies were used 

to estimate the impact area of a primary incident. These data were collected from January 2014 to 

June 2019. The study area, which is located in Florida, included a 97-mile section of the Florida’s 

Turnpike Mainline, and TE, a 48-mile adjoining corridor. The Mainline study corridor consisted 

of a 69-mile NTM and a 28-mile STM. 

 

The analysis was based on 322,259 traffic incidents that occurred along the study corridors 

between January 2014 and June 2019. Overall, 4,549 secondary crashes in the upstream direction 

of the primary incident were identified from 3,977 primary incidents. The identified secondary 

crashes on the upstream direction of the primary incident accounted for 1.4% of the 322,259 

incidents. This is equivalent to 5.7 secondary crashes per mile per year. 

 

Descriptive statistics of the secondary crashes indicated that 93% of the secondary crashes 

occurred within two hours after the occurrence of the primary incidents. Spatially, 47% of the 

secondary crashes occurred within two miles from the primary incident. Overall, 40% of secondary 

crashes occurred within two hours of the onset of a primary incident and within two miles upstream 

of the primary incident, the most commonly considered spatiotemporal threshold. The following 

are some of the key characteristics of the primary incidents and secondary crashes: 

 

• Only 3% of secondary crashes occurred between midnight and 5:00 AM, whereas 85% 

occurred during peak hours. Specifically, 33% of secondary crashes occurred during the 

morning peak (i.e., 6:00 AM - 10:00 AM), while the remaining 52% occurred during the 

evening peak (i.e., 2:00 PM - 8:00 PM). The highest proportion of primary incidents (13%) 

occurred between 4:00 PM and 5:00 PM, while the highest proportion of secondary crashes 

(13%) occurred an hour after the primary incident, i.e., between 5:00 PM and 6:00 PM. 

 

• The proportion of normal incidents and secondary crashes was much higher on weekdays 

than on weekends. Compared to other days of the week, Friday experienced the highest 

proportion of secondary crashes (20%). 

 

• While secondary crashes were found to occur on Mondays and Fridays, normal incidents 

were found to occur primarily on weekdays (i.e., Monday through Friday). Only 13% of 

secondary crashes were found to occur on weekends.  
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• As expected, traffic incidents involving towing and/or EMS resulted in longer incident 

clearance durations, as they tend to require more time to be cleared. Approximately 94% 

of normal incidents were cleared within 90 minutes, while 82% of primary incidents were 

cleared within 90 minutes. Likewise, 94% of traffic incidents that did not involve EMS 

were cleared within 90 minutes, while only 64% of traffic incidents that involved EMS 

were cleared within 90 minutes. The longer clearance time of the primary incidents could 

be considered to have contributed to the occurrence of secondary crashes. 

 

• The severity of primary incidents was found to be one of the factors that influence the 

occurrence of secondary crashes. About 9% of primary incidents were moderate/severe, 

while only 1% of normal incidents were moderate/severe. Besides the severity of primary 

incidents, the number of responding agencies, percentage of lanes closed, incident type, 

and incidents that required towing and/or EMS were also considered to be good indicators 

of incident severity. About 99% of normal incidents did not result in lane closure, while 

21% of primary incidents resulted in a lane closure. Only 10% of normal incidents were 

identified as crashes, while 47% of primary incidents were crashes. About 13% of primary 

incidents required towing, while only 3% of normal incidents required towing. Similarly, 

a higher percentage of incidents involving EMS resulted in secondary crashes (11%). 

While only 28% of normal incidents involved more than one responding agency, 51% of 

primary incidents and 55% of secondary crashes involved more than one responding 

agency. These statistics indicate that the severity of primary incidents influences the 

occurrence of secondary crashes. 

 

• Compared to normal incidents (2%), a higher proportion of primary incidents (13%) 

occurred during cloudy/foggy/rainy conditions. Similarly, a higher percentage of primary 

incidents (11%) and secondary crashes (18%) occurred on wet surface conditions. These 

statistics imply that inclement weather conditions and adverse road surface conditions are 

among the factors that increase the probability of secondary crashes. 
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CHAPTER 5 

ANALYZE FACTORS INFLUENCING OCCURRENCE OF SECONDARY CRASHES 

 

Not all incidents lead to secondary crashes. The likelihood of secondary crashes depends on several 

factors, including characteristics of incidents, weather conditions, geometric conditions, traffic 

flow characteristics, etc. An in-depth understanding of these factors will help agencies on several 

fronts. It will assist in proactively preventing secondary crashes. First responders will be more 

vigilant and prepared in case secondary crashes occur. And finally, motorists upstream of the 

primary incident could be warned about potential secondary crashes.  

 

This chapter discusses the methodology used to identify factors influencing the occurrence of 

secondary crashes. Variables from four data types (incidents, traffic flow characteristics, weather 

conditions, and geometric characteristics) were considered as potential factors that influence the 

likelihood of secondary crashes. Incident data were obtained from the SunGuide® database. Real-

time traffic data were extracted from the HERE Technologies. Weather conditions were obtained 

from NEXRAD Level-II network, and roadway geometric data were retrieved from the FDOT’s 

RCI, Google Earth Pro, and Google Maps.  

 

5.1 Study Area 

 

As indicated in Section 3.2.2, the selected study corridor for identifying factors associated with 

the occurrence of secondary crashes is the 28-mile STM section. Figure 5-1 shows the location of 

this 28-mile study corridor. This section was selected based on the availability of HERE data which 

was earlier used to identify secondary crashes. Besides, incident hotspots and major construction 

activities, i.e., lane widening, bridge maintenance, interchange improvements, etc., were used as 

additional criteria to select the study corridor. 

 

Both the incident hotpot analysis and crash hotspot analysis identified the TE and STM as corridors 

that experienced the highest number of traffic incidents and crashes. Nonetheless, the exploratory 

analysis of the data in the Active Construction Projects shapefile indicated that lane widening 

construction activities were taking place within the TE section during the study period. Meanwhile, 

there were no such activities during the study period in the STM corridor. Thus, this 28-mile 

section in the STM corridor was considered for predicting the likelihood of secondary crashes.  
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Figure 5-1: Study Corridor for Identifying Factors Associated with the Likelihood of 

Secondary Crashes 

 

5.2 Data 

 

The following data were used to develop the secondary crash likelihood prediction model: 

 

• Incident data from SunGuide®, 

• Traffic flow attributes from HERE Technologies, and 

• Roadway geometric attributes from RCI database, Google Earth Pro software, and Google 

Maps. 
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About 65% of the incidents that occurred along the study corridor during the study period (January 

2014 – June 2019) did not impact traffic. Figures 5-2(a) and 5-2(b) present the distribution of the 

maximum queue length and the maximum incident impact duration, respectively, for the incidents 

that impacted traffic, which is about 35% of the total incidents included in the likelihood model. 

 

 
(a) Maximum Queue Length 

 
(b) Maximum Incident Impact Duration 

Figure 5-2: Spatiotemporal Distribution of Incident Impact Area 

 

From these figures, it can be inferred that 78% of incidents had a maximum impact duration of 2 

hours. About 32% of incidents had a maximum queue length of 2 miles. Overall, 10% of incidents 

had a maximum impact area within 2 miles and 2 hours, the most commonly considered static 

spatiotemporal threshold. 
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Of the 95,583 incidents included in the likelihood model analysis, 7,319 incidents were further 

dropped from the analysis. As described in Table 5-1, of these 7,319, a total of 6,377 incidents 

were missing information on some of the attributes. The remaining 942 incidents were marked as 

non-tertiary crashes, meaning that these are secondary crashes that did not result in additional 

secondary crashes; in other words, they are neither normal incidents nor primary incidents. In total, 

1,008 incidents (66 being tertiary secondary crashes) were identified as secondary crashes 

accounting for 1.1% of the 95,583 incidents included in the analysis. The 1,008 secondary crashes 

were caused by 932 primary incidents indicating that 76 primary incidents resulted in more than 

one secondary crash. Thus, a total of 88,340 incidents (calculated as: (95,583 - 7,319) + 76) were 

included in developing the likelihood model. 

 

Table 5-1: Incidents used to Model the Likelihood of Secondary Crashes 

Criteria Count 

Incidents used to identify secondary crashes 95,583 

Unique secondary crashes 942 

Duplicated primary incidents 76 

Incidents to be used in the likelihood model 94,717 

Missing information from HERE Technologies   

Incidents without information on speed before the incident 844 

Missing information from SunGuide®   

Incidents with "NULL" responders 264 

Incidents with "Unknown" severity 5,268 

Incidents with "NULL/turn lane closure/blocked" worst lane blockage 5 

Total incidents excluded from the likelihood model 6,381 

Total incidents included in the secondary crash likelihood model 88,340 

 

Speed data (i.e., mean and standard deviation) in the Traffic Message Channel where the incident 

occurred and within 10 minutes before the occurrence of the incident were collected to capture the 

traffic conditions before the occurrence of the incident. Besides, to determine the prevailing traffic 

conditions, speed data within the Traffic Message Channels impacted by the incident from the time 

the incident was detected to the time when the traffic flow returned to normal were used. Since the 

incident impact duration along different Traffic Message Channels may be different, the incident 

impact area was defined for each Traffic Message Channel individually. The data preparation 

efforts for the roadway geometric characteristics are covered in detail in Section 3.1.3 of this 

report. 

 

5.3 Methodology 

 

Secondary crash risk models determine the probability that a secondary crash will occur given a 

prior incident. From a statistical learning point of view, secondary crash risk modeling can be 

viewed as a binary classification problem. Suppose that the incident dataset has n observations 

(𝑿𝑖 , 𝑦𝑖), 𝑖𝜖1,2, … , 𝑛 with p explanatory variables 𝑿𝑖 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 = 𝑥𝑖
𝑇. Let 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 

be the response variable, which is binary in nature, i.e., 𝑦𝑖 represents the secondary crash indicator 
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(1 indicates a secondary crash is caused by a primary incident (𝑖), and 0 indicates that no secondary 

crash occurred). 

 

Researchers have used several methods to identify factors influencing the risk of a secondary crash. 

Of all the previously adopted methods, logistic regression has an exceptional advantage since it 

provides a direct estimate of class probability and does not require a tuning parameter. As shown 

in Equation 5-1, the logistic regression model presents the class-conditional probabilities through 

a linear function of the predictors.  

 

𝑙𝑜𝑔
Pr(𝑦𝑖=1|𝑥𝑖)

Pr(𝑦𝑖=0|𝑥𝑖)
= 𝛽0 + 𝑥𝑖

𝑇𝛽                      (5-1) 

 

where 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇
 is the vector of coefficients of the 𝑝 predictors to be estimated excluding 

the intercept 𝛽0 and Pr(𝑦𝑖 = 1|𝑥𝑖) , Pr(𝑦𝑖 = 0|𝑥𝑖) denote the conditional probabilities of the class 

labels 1 and 0, respectively. A maximum likelihood approach is commonly used in calculating the 

coefficients and the log-likelihood can be written as shown in Equation 5-2. 

 

𝑙(𝛽0, 𝛽) = ∑ {𝑦𝑖𝑙𝑜𝑔𝑃𝑟(𝑌 = 1; 𝛽) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑙𝑜𝑔𝑃𝑟(𝑌 = 1; 𝛽))}𝑁
𝑖=1   

= ∑ {𝑦𝑖(𝛽0 + 𝑥𝑖
𝑇𝛽) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝑥𝑖

𝑇𝛽))}𝑁
𝑖=1          (5-2) 

 

Instead of using a conventional logistic regression, a LASSO penalized logistic regression fitted 

using the bootstrap resampling approach was used to model the likelihood of secondary crashes. 

The proposed method aimed at addressing the three major challenges encountered while modeling 

the secondary crash risk, i.e., variable correlation, variable selection, and imbalanced nature of the 

response variable. Specifically, the present study used the LASSO penalized estimator to extract 

the most important explanatory variables, with minimal correlation, influencing the risk of 

secondary crashes. Since the proportion of primary incidents is smaller than the proportion of 

normal incidents, the bootstrap resampling method was used to fit the penalized logistic regression. 

The next subsections describe in detail the penalized logistic regression and the bootstrap 

resampling approach. 

 

5.3.1 Penalized Logistic Regression 

 

LASSO penalized logistic regression is a regression analysis method that performs both variable 

selection and regularization to enhance the prediction accuracy and interpretability of the statistical 

model (Tibshirani, 1996). The LASSO penalized estimator shrinks some coefficients of a 

regression model and set others to zero to obtain variables with a substantial effect on the outcome 

(Tibshirani, 1996). LASSO performs important variable selection and variable correlation 

simultaneously. That is, between a pair of highly correlated variables, LASSO tends to pick the 

most important variable and discard the other by shrinking it toward zero. 

 

Because the LASSO method performs variable selection through a continuous process, it does not 

suffer as much from high variability, i.e., it simultaneously does both continuous shrinkage and 

automatic variable selection. The penalty term introduced by LASSO during the variable selection 

process ensures better estimation of the prediction error while avoiding overfitting. Selecting an 

optimal subset of explanatory variables is expected to improve the classification accuracy and 
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make the model’s interpretation easier. Since some of the variables will be shrunk to zero, the 

model parsimony is also achieved.  

 

The logistic regression model in Equation 5-1 can further be extended into the LASSO logistic 

regression model by adding the 𝐿1 constraint on 𝛽 parameters (Equation 5-2). The  𝐿1 constraint 

is added to minimize the negative log-likelihood function with the penalty term. The generated 

coefficients can be expressed as a sparse linear combination of 𝑝 number of predictor variables 

when solving the following optimization problem (Equation 5-3).  

 
𝑚𝑖𝑛

(𝛽0, 𝛽) {∑ −
1

𝑛
[𝑦𝑖(𝛽0 + 𝑥𝑖

𝑇𝛽) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝑥𝑖
𝑇𝛽))]𝑁

𝑖=1 + 𝑃𝜆(𝛽)}           (5-3) 

 

where 𝑃𝜆(𝛽) is the penalty term that depends on 𝜆, a vector of non-negative regularization 

parameters, commonly referred to as a tuning parameter. The tuning parameter 𝜆 controls the 

strength of shrinkage in the explanatory variables, i.e., when 𝜆 takes larger values, more weight 

will be given to penalty term and vice versa (Tibshirani, 1996). In this way, both shrinkage and 

variable selection are done simultaneously and it is also this property that makes LASSO generally 

easier to interpret. Depending on the property of the LASSO penalty, some coefficients in 𝛽 will 

be exactly equal to zero. Further, it is also because of the penalty term 𝜆 that a LASSO model can 

include any number of variables. 

 

While there are numerous penalty terms, a good penalty produces an estimator that is not biased 

or over-penalize large parameters (Algamal and Lee, 2015a). The adaptive LASSO penalty was 

thus selected because it applies adaptive weights when penalizing parameters (Zou, 2006). The 

adaptive LASSO imposes higher weight to the small coefficients and lower weight to the large 

coefficients to reduce the selection bias and fit the model consistently (Algamal and Lee, 2015b). 

This approach is thus said to have an oracle property, and it is the main advantage of adaptive 

LASSO as compared to other penalty terms such as conventional LASSO, ridge penalty, and 

elastic net (Algamal and Lee, 2015a). The estimation of the vector βj is thus obtained by 

minimizing Equation 5-4 where wj is a vector of data-driven weights. Although various methods 

have been used to estimate the weights (e.g., LASSO estimates), a ridge regression was used in 

this case to estimate initial weights (SAS Institute Inc., 2019) because of the limitations of LASSO 

as pointed by Algamal and Lee (2015b). 

 

𝛽̂ = arg min 𝛽 [−𝐿(𝛽|𝑌) + 𝜆 ∑ 𝑤𝑗|𝛽𝑗|𝑝
𝑗=1 ]                                  (5-4) 

 

5.3.2 Bootstrap Resampling 

 

The bootstrap resampling method was used to estimate the logistic regression parameters to resolve 

the data imbalance caused by a disproportionally high proportion of normal incidents than primary 

incidents. The bootstrap resampling involves estimating parameters by repeatedly and randomly 

sampling subsets of data hence providing more accurate estimates (Hastie et al., 2009; 

Kassambara, 2017; Pei et al., 2016). The conventional bootstrapping approach involves drawing a 

sample randomly and evenly with replacement.  The resampling focused on neutralizing the effect 

of a significantly low percentage of primary incidents.  
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A three-step resampling approach was thus applied to the dataset. First, the incident data were 

divided into two groups: normal incidents, and primary incidents. Then, k samples (where k equals 

the number of primary incidents) were randomly drawn from all groups in each bootstrap 

replication. The resulting subset of data contained an equal number of normal incidents and 

primary incidents. The new dataset was then used to fit the penalized logistic regression. Finally, 

the procedure of drawing samples of k observations and fitting the model was repeated 5,000 times 

(arbitrarily selected as a trade-off between prediction accuracy and computation time), and the 

standard errors and confidence intervals of the estimates were calculated based on these 5,000 

estimates.  

 

The model coefficients were obtained by calculating the mean of all the estimates of the bootstrap 

samples. The odds ratio (OR), which represents how the dependent variable varies with the 

predictor variable, is computed relative to the base category. The odds ratio was calculated as 

shown in Equation 5-5. 

 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 = 𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡                                 (5-5) 

 

5.4 Results and Discussion 

 

The following subsections discuss the descriptive statistics of the explanatory variables (i.e., traffic 

flow, incident attributes, temporal, weather, and roadway geometric attributes) and present the 

results of the fitted secondary crash likelihood model. 

 

5.4.1 Descriptive Statistics 

 

Tables 5-2 and 5-3 summarize the data used in this analysis. The data variables were categorized 

into incident, temporal, weather, traffic flow, and roadway geometric characteristics. From Table 

5-2, it can be inferred that a majority of normal incidents were vehicle related. The proportion of 

primary incidents that are crashes (37%) was about four times that of normal incidents that are 

crashes (8%). The majority of normal incidents were responded to by one agency (72%). In 

comparison, the proportion of primary incidents attended by one and more than one agency was 

almost equal, 52% and 48%, respectively. A higher proportion of primary incidents (13%) had 

EMS as one of the responding agencies compared to normal incidents, which had only 2% of 

incidents with EMS involvement. A similar observation can be made on incidents where towing 

was involved and with moderate or severe severity. 

 

While an equal proportion of normal incidents occurred during peak and off-peak hours, more than 

two thirds (72%) of primary incidents occurred during peak hours. Compared to normal incidents, 

a higher proportion of primary incidents occurred during adverse weather conditions and on wet 

road surfaces.  
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Table 5-2: Descriptive Statistics of Categorical Variables 

Attribute Attribute Category 

Secondary Crash Likelihood 

Total No (Normal Incident) Yes (Primary Incident) 

Count Percent Count Percent 

Incident Attributes 

Incident type 

Vehicle problem 62,309 71 457 49 62,766 

Hazard 17,704 20 125 13 17,829 

Crash 7,392 8 349 37 7,741 

Number of responding 

agencies 

1 63,158 72 482 52 63,640 

2+ 24,247 28 449 48 24,696 

EMS involvement 
No 85,944 98 813 87 86,757 

Yes 1,461 2 118 13 1,579 

Towing involvement 
No 85,257 98 805 86 86,062 

Yes 2,148 2 126 14 2,274 

Lane closure 
No 85,048 97 745 80 85,793 

Yes 2,357 3 186 20 2,543 

Incident severity 
Minor 86,574 99 831 89 87,405 

Moderate/severe 831 1 100 11 931 

Temporal Attributes 

Day of week 
Weekday 65,901 75 811 87 66,712 

Weekend 21,504 25 120 13 21,624 

Time of day 

Off-peak 46,505 53 263 28 46,768 

Morning peak 17,507 20 302 32 17,809 

Evening peak 23,393 27 366 39 23,759 

Weather Attributes 

Weather condition 
Clear 86,303 99 843 91 87,146 

Adverse 1,102 1 88 9 1,190 

Road surface condition 
Dry 86,575 99 851 91 87,426 

Wet 830 1 80 9 910 

Roadway Geometric Attributes 

Presence of horizontal 

curve within IIA 

No 35,628 41 239 26 35,867 

Yes 51,777 59 692 74 52,469 

Presence of vertical 

curve within IIA 

No 43,301 50 276 30 43,577 

Yes 44,104 50 655 70 44,759 

Presence of diverge 

influence area within IIA 

No 46,958 54 294 32 47,252 

Yes 40,447 46 637 68 41,084 

Presence of merge 

influence area within IIA 

No 26,351 30 264 28 26,615 

Yes 61,054 70 667 72 61,721 

Response variable 
Secondary crash 

likelihood 
87,405 99 931 1 88,336 

Note: EMS is Emergency Medical Service; IIA is Incident Impact Area. 

 

Table 5-3: Descriptive Statistics of Continuous Variables 

Variable Minimum Mean Median SD Maximum 

Shoulder width (feet)a 4.0 10.5 10.5 1.6 22.0 

Mean of speed before the incident (mph)b 
1.0 64.1 66.3 9.5 80.7 

SD of speed before the incident (mph) b 0.0 2.1 1.6 2.0 34.0 

Mean of prevailing speed (mph) b 4.4 63.9 66.2 9.1 80.9 

SD of prevailing speed (mph) b 0.0 3.1 1.9 3.7 30.9 

Note: a roadway geometric attribute; b traffic flow attribute; SD is standard deviation.  
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5.4.2 Results of the Likelihood Model 

 

The penalized logistic regression was used to identify factors that influence the risk of secondary 

crashes. Based on the percent of times selected, the variable importance is illustrated in Figure 5-

3. 

 

 
Note: SD = Standard Deviation. 

 

Figure 5-3: Selection of the Important Variables 

 

The top 90% of the selected variables, when fitting the penalized logistic regression on the 

bootstrapped samples, were considered the most important variables. Out of the 19 variables 

included in the analysis, the following 13 were selected as the most important variables: 

 

• Traffic flow attributes 

o mean of prevailing speed 

o standard deviation of speed before the incident 

 

• Incident-related variables 

o incident type 
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o lane closure 

o number of responding agencies 
 

• Weather-related variables 

o road surface condition  

o weather condition 
 

• Temporal attribute 

o Time of day 

 

• Geometric-related variables 

o vertical curve 

o horizontal curve 

o merge influence area 

o diverge influence area 

o shoulder width 

 

Table 5-4 shows the penalized logistic regression model results and the number of times the 

variable was selected in the model as an important variable. The following subsections discuss the 

results in detail. Note that only the most important variables that are significant at the 95% credible 

interval are discussed. 

 

Traffic Flow Attributes 

 

Of the four traffic flow-related variables that were included in the model, the following two 

variables were identified as the most important and are significant at the 95% credible interval: 

mean of prevailing speed and SD of speed before the incident. As shown in Table 5-4, the negative 

parameter of the average of the prevailing speed indicates that the risk of secondary crashes 

decreases as the average prevailing speed increases. That is, for a unit increase in the average 

prevailing speed, the likelihood of secondary crashes decreased by 11%. The decreasing speed 

represents an increase in traffic density and queue formation. The disturbances caused by the 

primary incident are easier to propagate these queuing traffic formations, leading to an elevated 

risk of secondary crashes. This finding is consistent with the previous studies, which reported that 

the risk of secondary crashes increases with the decrease in average speed (Kitali et al., 2019b; Xu 

et al., 2016).  

 

To prevent secondary crashes in this scenario, traffic control strategies could be developed to 

accelerate the dissipation of queues resulting from primary incidents. For example, variable speed 

limits could be used to gradually increase the speed downstream and decrease the speed upstream 

of the primary incident location at the same time. Further, information about the location and 

severity of the incident should be disseminated to upstream drivers, thereby allowing them to make 

decisions (e.g., change lanes, detour) in advance. 

 

Interestingly, the standard deviation of speed before the incident was negatively associated with 

the risk of a secondary crash, meaning that the risk of a secondary crash increases with a decrease 

in variation of speed ten minutes before the incident. Specifically, a unit increase in the standard 

deviation of the speed before the incident reduced the likelihood of secondary crashes by 7%.  
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Table 5-4: Secondary Crash Likelihood Prediction Model Results  

Variable Category Mean OR Med SD 
CI (%) 

Count % 
2.5 97.5 

Intercept N/A 6.94 N/A 6.92 0.76 5.49 8.48 5,000 100 

Traffic Flow Attributes 

Mean of speed before 

the incident (mph) 
N/A 0.02 1.02 0.02 0.01 0.01 0.03 1,808 36 

SD of speed before 

the incident (mph) 
N/A -0.07 0.93 -0.07 0.02 -0.12 -0.04 4,723 94 

Mean of prevailing 

speed (mph) 
N/A -0.12 0.89 -0.12 0.01 -0.15 -0.10 5,000 100 

SD of prevailing 

speed (mph) 
N/A 0.02 1.02 0.02 0.02 -0.02 0.05 3,719 74 

Incident Attributes 

Incident type 

Vehicle problem         

Hazard 0.25 1.28 0.24 0.10 0.05 0.45 4,816 96 

Crash 0.53 1.71 0.53 0.19 0.17 0.92 4,992 100 

Lane closure 
No         

Yes -0.06 0.94 -0.05 0.34 -0.80 0.59 3,601 72 

Number of 

responding agencies 

1         

2+ 0.23 1.26 0.23 0.10 0.05 0.42 4,886 98 

EMS involvement 
No         

Yes 0.21 1.23 0.21 0.39 -0.62 1.00 3,751 75 

Towing involvement 
No         

Yes 0.03 1.03 0.04 0.35 -0.71 0.72 3,558 71 

Incident severity 
Minor         

Moderate/severe 0.89 2.44 0.86 0.54 0.00 2.10 4,809 96 

Temporal Attributes 

Day of week 
Weekday         

Weekend -0.04 0.96 -0.04 0.11 -0.24 0.19 3,260 65 

Time of day 

Off-peak         

Morning peak 0.23 1.25 0.23 0.12 0.01 0.46 4,911 98 

Evening peak -0.27 0.76 -0.28 0.13 -0.52 -0.03 4,153 83 

Weather Attributes 

Weather condition 
Clear         

Adverse 0.53 1.71 0.50 0.54 -0.46 1.67 4,544 91 

Road surface 

condition 

Dry         

Wet 1.07 2.91 1.05 0.59 0.00 2.29 4,882 98 

Roadway Geometric Attributes 

Shoulder width (feet) N/A -0.14 0.87 -0.14 0.02 -0.19 -0.10 5,000 100 

Presence of 

horizontal curve 

within IIA 

No         

Yes 0.50 1.65 0.50 0.10 0.31 0.69 5,000 100 

Presence of vertical 

curve within IIA 

No         

Yes 0.82 2.27 0.82 0.09 0.63 1.01 5,000 100 

Presence of diverge 

influence area within 

IIA 

No         

Yes 0.27 1.32 0.27 0.10 0.08 0.47 4,989 100 

Presence of merge 

influence area within 

IIA 

No         

Yes -0.30 0.74 -0.30 0.09 -0.48 -0.11 4,962 99 

Note: Bolded numbers are significant at 95% credible interval; OR is odds ratio; Med is median; SD is standard 

deviation; IIA is incident impact area. 
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A high standard deviation indicates a higher variability, and vice versa. This metric is included to 

help capture the effect of rapid changes in traffic conditions (e.g., shockwaves and braking 

maneuvers) associated with pre-incident conditions. It is worth noting that high traffic speeds are 

associated with low standard deviation, whereas low traffic speeds usually have high speed 

variations. In other words, if the incident occurred when the traffic speed is higher, higher 

variability in speed is likely to occur as traffic is transitioning from the free-flow state to the 

congested state, a situation that increases the likelihood of secondary crashes. On the other hand, 

if the incident occurred when the variation of the traffic speed estimates is high (or the average 

speed is low), the likelihood of a secondary crash to occur is expected to be low since traffic is 

already in a congested state and a significant variation in speed is not expected. 
 

Incident Attributes 

 

The most important incident-related variables included incident type, number of responding 

agencies, and lane closure. Compared with vehicle problem-related incidents, hazard and crash-

related incidents were more likely to result in a secondary crash. Specifically, hazard-related 

incidents were 28% more likely to result in a secondary crash than vehicle problem-related 

incidents. Meanwhile, crashes were 71% more likely to result in a secondary crash than vehicle 

problem-related incidents. From this finding, it can be inferred that the risk of crashes to result in 

secondary crashes is twice as much as that of hazard-related incidents. A possible explanation for 

this observation may be related to the extent of impact different incident types may have on traffic. 

In general, crashes are more likely to cause congestion than other incident types, such as hazards 

and vehicle problems. 

 

As expected, the number of responding agencies was also identified as a significant predictor 

variable that influenced the risk of secondary crash occurrence. More specifically, incidents 

attended to by more than one responding agency were 26% more likely to result in a secondary 

crash compared to incidents attended to by only one responding agency. The number of responding 

agencies is an indicator of the severity of the incident as severe incidents tend to be attended by 

more responding agencies than less severe ones. Moreover, incidents attended to by multiple 

incident responders may require lane closures, a situation that further reduces the capacity of the 

roadway resulting in more congestion and hence increases the likelihood of a secondary crash. 

This fact is proven by the positive coefficient of the incident severity variable, which indicates that 

moderate/severe incidents were twice as likely to result in secondary crashes compared to incidents 

with minor severity.  

 

Weather Attributes 

 

Wet road surface condition was found to be positively associated with the risk of secondary 

crashes, indicating that incidents that occurred on wet road surface conditions were more likely to 

result in secondary crashes than those on dry surface conditions. The corresponding odds ratio of 

2.91 suggested that wet road surface conditions were twice as likely to cause secondary crashes. 

A similar observation was found in a previous study (Xu et al., 2016).  
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Temporal Attributes 

 

The results in Table 5-4 show that the time of day variable was among the most important 

variables. Compared to off-peak hours, incidents that occurred during morning peak hours were 

25% more likely to result in secondary crashes. This finding indicates that secondary crashes are 

more likely to occur during congested periods.  

 

Roadway Geometric Attributes 

 

All the five geometric-related variables considered were identified as the most important variables 

that significantly influence the likelihood of a secondary crash. The considered roadway 

geometric-related variables were diverge influence area, merge influence area, shoulder width, 

horizontal curve, and vertical curve. Incidents with impact areas within the diverge influence area 

were 32% more likely to result in secondary crashes. Diverge influence areas increase the risk of 

secondary crashes since they are accompanied by more lane changes and high speed differentials 

because of drivers who are attempting to exit the freeway. On the contrary, the estimated parameter 

of merge influence area was negative, implying that incidents with a merge influence area within 

the impact area were 26% less likely to cause secondary crashes. 

 

The estimated parameter of shoulder width was negative, implying that a unit increase in shoulder 

width was accompanied by a 13% decrease in the likelihood of a secondary crash. A possible 

explanation is that shoulders provide room for veering away from a possible crash. Further, when 

a platoon of vehicles is suddenly forced to slow down, some of the drivers in the middle of the 

platoon who are unaware of the downstream traffic condition tend to complete the deceleration 

process on the shoulders. 

 

As indicated in Table 5-4, incidents with horizontal curves within the impact area, compared to 

tangents, were associated with the increased risk of secondary crashes. When the curved segment 

is within the impact area of the incident, the likelihood of a secondary crash increased by 65%. 

This is expected as the queue along a curved section may not be quickly visible to the upstream 

drivers. A similar observation was found on incidents with a vertical curve within the incident 

impact area. Incidents with elevated sections within their impact area were 127% more likely to 

cause secondary crashes than those on flat sections. The presence of vertical curves may limit the 

sight distance, making it difficult for upstream drivers to easily recognize the queue built by the 

initial incident. 

 

5.5 Summary 

 

The LASSO penalized logistic regression model, fitted using the bootstrap resampling approach, 

was used to identify factors influencing the risk of secondary crashes. Traffic flow, incident, 

temporal, weather, and roadway geometric attributes were considered as potential factors that may 

influence the likelihood of secondary crashes. The study area included a 28-mile section of the 

Florida’s Turnpike Mainline SR-91. Data used were collected from the following sources: HERE 

Technologies (traffic flow attributes); SunGuide® database (incident); RCI database, Google Earth 

Pro software, and Google Maps (roadway geometric attributes). These data were collected for a 

period of five and a half years from January 2014 through June 2019. 
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Next, the LASSO penalized estimator was used to extract the most important explanatory 

variables, with minimal correlation, influencing the risk of secondary crashes. Because the 

proportion of primary incidents is smaller than the proportion of normal incidents, the bootstrap 

resampling method was used to fit the penalized logistic regression. The model is considered to 

improve the predictive accuracy of the secondary crash risk model because it accounts for the 

asymmetric nature of secondary crashes, performs variable selection, and removes correlated 

variables. 

 

Out of the 19 variables included in the analysis, the following 13 were selected as the most 

important variables: 

 

• Traffic flow attributes 

o mean of prevailing speed 

o SD of speed before the incident 

 

• Incident-related variables 

o incident type 

o lane closure 

o number of responding agencies 

 

• Weather-related variables 

o road surface condition  

o weather condition 

 

• Temporal attribute 

o Time of day 

 

• Geometric-related variables 

o vertical curve 

o horizontal curve 

o merge influence area 

o diverge influence area 

o shoulder width 

 

All the aforementioned 13 most important variables except weather condition were found to be 

significant at the 95% credible interval. The following are some of the key findings on the 

influence of these factors on the likelihood of secondary crashes. 

 

• A unit increase in the average prevailing speed reduces the likelihood of a secondary crash 

by 11%. In other words, a unit decrease in average prevailing speed was accompanied with 

an 89% increase in the risk of secondary crashes. 

 

• A unit increase in the standard deviation of speed before the occurrence of the incident 

reduced the risk of a secondary crash by 7%. 
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• Hazard-related incidents were 28% more likely to result in secondary crashes compared to 

vehicle problem-related incidents. 

 

• Crashes were 71% more likely to result in secondary crashes than vehicle problem-related 

incidents. 

 

• Incidents attended to by more than one responding agency were 26% more likely to result 

in secondary crashes compared to incidents attended by only one responding agency. 

 

• Moderate/severe incidents were twice as likely to result in secondary crashes compared to 

minor incidents. 

 

• Incidents that occurred on wet road surface conditions were twice more likely to result in 

secondary crashes than those on dry surface conditions. 

 

• Compared to off-peak hours, incidents that occurred during morning peak hours were 25% 

more likely to result in secondary crashes. 

 

• Incidents with diverge influence area within their impact area were 32% more likely to 

result in secondary crashes. 

 

• Incidents with merge influence area within their impact area were 26% less likely to cause 

secondary crashes. 

 

• A unit increase in shoulder width was associated with a 13% decrease in the likelihood of 

a secondary crash. 

 

• Incidents with a curved segment within their impact area increased the risk of secondary 

crashes by 65%. 

 

• Incidents with a vertical curve segment within their impact area increased the risk of 

secondary crashes by 127%. 
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CHAPTER 6 

REAL-TIME PREDICTION OF SECONDARY CRASHES: PROOF-OF-CONCEPT  

 

The availability of real-time traffic and weather data offers an opportunity to proactively mitigate 

secondary crashes. This chapter discusses the algorithm developed to predict the likelihood of 

secondary crashes in real time. The study area included a 28-mile section of the Florida’s Turnpike 

Mainline (SR-91). 

 

6.1 Databases 

 

As depicted in Table 6-1, four main types of data are required to predict the likelihood of secondary 

crashes in real time. 

 

Table 6-1: Data Requirements for the Real-time Secondary Crash Prediction Algorithm 

Data Type 
Historical 

Data Source 

Real-time 

Data Source 

Ping Rate 

(Minutes) 

Incident: 

• Incident type 

• Time of day 

SunGuide® SunGuide® 2 

Traffic: 

• Standard deviation of speed before the incident 

• Mean prevailing speed 

RITIS 
HERE 

Technologies 
1 

Rainfall NEXRAD Level-II NEXRAD Level-II 4-6 

Roadway geometric characteristics: 

• Shoulder width 

• Horizontal curves 

• Vertical curves 

• Merging segment 

• Diverging segment 

• RCI 

• Google Earth Pro 

• Google Maps 

N/A N/A 

Note: NEXRAD = Next Generation Weather Radar; RCI = Roadway Characteristic Inventory; RITIS = Regional 

Integrated Transportation Information System. 

 

• Incident Data: In Chapter 5, the following incident-related variables were identified as the 

most important: incident type, number of responding agencies, and incident severity. Of 

all the incident-related variables, only incident type was included in the real-time secondary 

crash prediction model. Number of responding variables and incident severity were not 

included since it is not clear at what time these variables are reported after the incident 

occurred. Since these two variables could be considered a surrogate measure of congestion, 

time of day, the most important temporal attribute, was used instead. A program that uses 

a Virtual Private Network (VPN) was used to access incident data in real time from the 

SunGuide® database every two minutes, i.e., at a 2-minute interval (see Table 6-1). 

 

• Traffic Data: As discussed in Chapter 5, the following two traffic-related attributes were 

identified as the most important: the standard deviation of speed before the incident and 

the mean prevailing speed. Note that historical speed data from HERE Technologies were 

retrieved from RITIS. The real-time traffic data were obtained from the HERE real-time 

flow Extensible Markup Language (XML) feed and accessed via Hypertext Transfer 

Protocol (HTTP). 
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• Rainfall Data: The radar-based historical and real-time rainfall data were retrieved from 

the NEXRAD Level-II network archived by the Amazon Web Service (AWS) Command 

Line Interface (CLI). The rainfall intensity values from NEXRAD are usually updated 

every 4-6 minutes. Note that the downloaded rainfall data are categorized into two groups, 

i.e., no/light rainfall and medium/heavy rainfall. 

 

• Roadway Geometric Characteristics: In Chapter 5, all considered geometric variables were 

found important: shoulder width, horizontal curves, vertical curves, merging segment, and 

diverging segment. Shoulder width, horizontal curves, and vertical curves variables were 

collected from the RCI database for the years 2014 through 2019. The merge and diverge 

influence areas were derived from Google Earth Pro and Google Maps using the Historical 

Imagery and the Street View tools. Since the roadway geometric variables do not change 

as often, they were stored in an internal database and will be updated based on changes 

made along the study corridor. 

 

6.2 Real-time Secondary Crash Prediction Algorithm  

 

The real-time secondary crash prediction algorithm is divided into three main parts: 

 

• Internal Storage Database, 

• Real-time Data Backend Applications, and 

• Secondary Crash Prediction Program. 

 

6.2.1 Internal Storage Database 

 

The first part of the algorithm is the Internal Storage database consisting of the following 

information: collected real-time incident, speed, and rainfall data, real-time secondary crash 

prediction results, historical databases, statistical model equation and parameters for the secondary 

crash likelihood, and other potential attributes required to predict the likelihood of secondary 

crashes but are not collected in real time, i.e., roadway geometric characteristics. Specifically, the 

Internal Storage database consists of: 

 

• Speed Profiles database, which contains the Traffic Message Channel’s specific historical 

average speed (speed) and the lower bound speed (speed_LB) for different days of the week 

at a 5-minute interval. 

 

• Upstream Traffic Message Channels database, which includes the corresponding upstream 

Traffic Message Channels for each Traffic Message Channel in the study corridor. 

 

• Secondary Crash Likelihood Model Parameters table, which includes the model 

coefficients (i.e., β values) for each explanatory variable in the model and the intercept. 

 

• Roadway Geometric Characteristics database, which includes shoulder width (feet), 

presence of merge influence area, diverge influence area, horizontal curve, and vertical 

curve. 
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In addition to archiving historical data, the Internal Storage database also stores the real-time 

incident information from the SunGuide® database, real-time speed data from HERE 

Technologies, and real-time rainfall data from the NEXRAD Level-II AWS system. The database 

also stores the real-time secondary prediction likelihood results along with the data used to derive 

them. 

 

6.2.2 Real-time Data Backend Applications 

 

The second part of the algorithm, referred to as the Real-time Data Backend Applications, has 

programs that read, parse, and save speed and rainfall data in real time. 

 

• Real-time Speed Data: One of the Backend Applications, referred to in the algorithm as 

RealtimeSpeed, retrieves the real-time speed data from the HERE real-time flow XML 

feed. It accesses the XML feed every minute via HTTP. Since the XML feed data are 

available in a .gp format, the application has a sub-step that converts the .gp data into a 

readable format, such as the .xml format. Within the RealtimeSpeed application, a sub-

process continuously aggregates the data every ten minutes to obtain the standard deviation 

of speed before the incident. This application also computes the mean of the prevailing 

speed every 15 minutes from the time the incident is pinged to the time the incident is 

cleared/traffic comes back to normal. 

 

• Real-time Rainfall Data: The RealtimeRain application retrieves real-time rainfall 

information from NEXRAD Level-II data hosted in the “noaa-nexrad-level2” Amazon S3 

bucket. The rainfall intensity values from NEXRAD are usually updated every 4-6 minutes. 

The RealtimeRain application also has a function to convert the maximum value of the 

rainfall intensity into no/light rainfall and medium/heavy rainfall. 

 

6.2.3 Secondary Crash Prediction Application 

 

The information from the Internal Storage database and Real-time Data Backend Programs are 

then combined to predict the likelihood of secondary crashes. The secondary crash prediction 

process makes the third and final part of the algorithm, referred to as the 

SecondaryCrashPrediction application. The SecondaryCrashPrediction application has three 

main functionalities: (1) ping new incidents from the SunGuide® database, (2) estimate the queue 

of the pinged incident, and (3) estimate the probability of the pinged incident resulting in a 

secondary crash. The application uses VPN to identify and retrieve incidents from the SunGuide® 

database every two minutes. The application has a filter that retains only incidents that occurred 

within the study area. The main incident characteristics that are saved include the incident first 

notified date and time, incident first notified day, incident direction, incident location (MMs and/or 

latitudes and longitudes), and incident type. The SecondaryCrashPrediction application also 

categorizes the incident’s first notified time into off-peak hours, morning peak hours, or evening 

peak hours. 

 

Once the SecondaryCrashPrediction application pings a new incident, it then combines the 

information from the Internal Storage database, RealtimeRain application, and RealtimeSpeed 

application to predict the likelihood of secondary crashes. The application performs the following 



74 

two steps: (1) estimate the impact area of an incident; and (2) predict the likelihood of secondary 

crashes. 

 

Estimate the Incident Impact Area 

 

Incident occurrence time and incident location are required to estimate its impact area. This 

information is retrieved through the SecondaryCrashPrediction application. When an incident is 

reported in the SunGuide® database, its location based on MM (𝐼𝑀𝑀) and direction of travel are 

recorded. The time of day and day of the week when the incident is reported are also captured. The 

location and direction of the incident are then used to identify the Traffic Message Channel 

(TMC0) where it occurred. Once this Traffic Message Channel is determined, the corresponding 

Traffic Message Channel (TMC1) upstream TMC0 is extracted from the Upstream Traffic 

Message Channel Database. 

 

The incident impact area is estimated to (1) determine whether the incident can result in secondary 

crashes and (2) identify the spatial and temporal extent for disseminating the messages to upstream 

motorists. Both historical and real-time traffic data are required for this purpose. The real-time 

traffic speed on TMC0 𝑉𝑇𝑀𝐶0_𝑖 is retrieved from the HERE real-time flow XML feed using the 

RealtimeSpeed application. The value of 𝑉𝑇𝑀𝐶0_𝑖 is compared with the lower bound speed of TMC0 

at the time and day, similar to the incident’s first notified time and day. Note that the Traffic 

Message Channel’s lower bound speed is obtained from the Speed Profile Database. 

 

If the prevailing traffic speed is lower than the Traffic Message Channel’s lower bound speed, the 

next step involves predicting the likelihood of secondary crashes at TMC0. 

 

Predict the Likelihood of Secondary Crashes 

 

A logistic regression model is used to predict the likelihood that a secondary crash will occur given 

a set of explanatory variables. More information about this approach is provided in Chapter 5. 

Specifically, the probability 𝑃(𝑖) of an incident (𝑖) causing a secondary crash, with 𝑃(𝑖) taking 

values from 0 to 1, is obtained using Equation 6-1. 

 

𝑃(𝑖) =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑝

1+𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑝
                         (6-1) 

 

Due to the probability output of the logistic regression model, there is a dilemma in selecting the 

correct threshold because a high threshold typically fails to identify many potential primary 

incidents. In contrast, a low threshold falsely identifies normal incidents as primary incidents. This 

problem is more pronounced in imbalanced classification data. That is, the proportion of the 

primary incident is overly lower than the proportion of normal incidents. Thus, an optimal 

indicator that will maximize the prediction of actual primary incidents and minimize false normal 

incidents is necessary. 

 

The selection of an optimal cutoff value involves balancing the false positive rate (FPR) and false 

negative rate (FNR). The receiver operating curve (ROC) could visualize and quantify the tradeoff 

between the two measures. This curve is created by plotting the true positive rate (TPR) on the y-
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axis against the false positive rate (FPR) on the x-axis at various cutoff settings, i.e., between 0 

and 1. A false negative (FN) means that an incident resulted in a secondary crash, but the model 

failed to detect it. In contrast, a false positive (FP) indicates that an incident did not result in a 

secondary crash, but the model predicted it as a primary incident. If 𝑃(𝑖) is greater than the optimal 

threshold, an incident (𝑖) is considered to have a higher potential of resulting in one or multiple 

secondary crashes. 

 

This process is repeated to the corresponding upstream Traffic Message Channels every 15 minutes 

until the prevailing speed is higher than the TMC0’s lower bound speed. Natural traffic flow at 

shorter time intervals will contain a large amount of noise (Guo et al., 2018). Previous literature 

has recommended using a minimum of 15-minute measurement intervals to obtain stable traffic 

flow rates (Smith and Ulmer, 2003). Figure 6-1 summarizes the data required to identify incidents 

with a higher likelihood of resulting in secondary crashes. 

 

 
Figure 6-1: Data Used in the Real-time Secondary Crash Prediction Algorithm 

 

6.3 Steps to Predict Secondary Crash Likelihood in Real Time 

 

The main goal of the algorithm is to accurately determine if the traffic incident has a high 

likelihood of resulting in secondary crashes. Once the SecondaryCrashPrediction application 

detects an incident within the study corridor, it first determines whether an incident significantly 

impacted traffic. If yes, then the application predicts the likelihood of the respective incident 

resulting in a secondary crash. This process is repeated until traffic comes back to normal in the 

Traffic Message Channel where the incident occurred and the immediate upstream Traffic 

Message Channel. 

 

Figure 6-2 shows the main steps used in the algorithm to estimate the incident impact area and 

predict the likelihood of the respective incident resulting in a secondary crash. To better illustrate 

the functionalities in the algorithm, the process is explained using the following example. 
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6.3.1 Incident Impact Area Estimation 

 

Step 1: Consider an incident 𝐼 pinged by the SecondaryCrashPredictioprogram at 8:00 AM. 

Following the detection of incident 𝐼, its location based on MM (𝐼𝑀𝑀) and direction of 

travel are recorded. The time of day and day of the week when the incident is reported are 

also captured. 

 

Step 2: The location and direction of the incident are then used to identify the Traffic Message 

Channel (TMC0) where it occurred. Once this Traffic Message Channel is determined, 

the corresponding Traffic Message Channel (TMC1) upstream TMC0 is extracted from 

the Upstream Traffic Message Channel Database.  

 

Step 3: As mentioned earlier, the RealtimeSpeed application continuously reads, parses, and saves 

speed data every minute for each Traffic Message Channel. The real-time traffic speed of 

the Traffic Message Channel where the incident occurred (TMC0) and the time when the 

incident was detected (8:00 AM), i.e.,  𝑉𝑇𝑀𝐶0_𝑖, is retrieved from the saved speed data. The 

value of 𝑉𝑇𝑀𝐶0_𝑖 is compared with the lower bound speed of TMC0 at the time and day, 

similar to the incident’s first notified day and time. Note that the Traffic Message Channel’s 

lower bound speed is obtained from the Speed Profile Database. 

 

Step 4: The incident 𝐼 is considered to impact the traffic significantly when the prevailing traffic 

speed is lower than the Traffic Message Channel’s lower bound speed. In this case, the 

next step involves predicting the potential of incident 𝐼 resulting in a secondary crash. 

 

6.3.2 Secondary Crash Prediction 

 

Step 5: A logistic regression equation is used to predict the likelihood that a secondary crash will 

occur given a set of explanatory variables. The model has the following ten explanatory 

variables: 
 

a. incident type grouped into three categories, i.e., vehicle problems (e.g., disabled 

vehicles, emergency vehicles, abandoned vehicles, and vehicle fire), debris on 

roadway, and crashes. 

b. incident first notified time categorized into three groups, i.e., off-peak hours, morning 

peak hours, and evening peak hours. 

c. Rainfall intensity categorized into no/low rainfall and medium/heavy rainfall 

d. Shoulder width (feet) 

e. Presence of merge influence area 

f. Presence of diverge influence area 

g. Presence of horizontal curve 

h. Presence of vertical curve 

i. Standard deviation of speed before the incident (miles per hour) 

j. Mean of prevailing speed (miles per hour) 
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Figure 6-2: Real-time Secondary Crash Prediction Algorithm 
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Step 6: As mentioned earlier, the incident type and incident first notified time variables are saved 

internally using the SecondaryCrashPrediction application. For the analysis at the time 

when the incident occurred, real-time traffic and rainfall data were extracted 5 minutes 

before the incident reported time, i.e., 07:55 AM and 08:00 AM. The purpose was to 

account for potential inaccuracies in the incident reported time (Golob and Recker, 2003; 

Kitali et al., 2018; Xu et al., 2016). 

 

Step 7: The rainfall intensity is obtained from the NEXRAD Level-II database through the 

RealtimeRainfall application. Specifically, the maximum rainfall intensity between 07:55 

AM and 08:00 AM is used as the rainfall intensity value in the model. 

 

Step 8: The speed data are retrieved from the HERE real-time flow XML feed through the 

RealtimeSpeed application. The standard deviation of the speed before the incident is 

obtained by computing the sample standard deviation of the speed values between 07:45 

AM and 07:55 AM. The mean of the prevailing speed is obtained by averaging speed 

values between 07:55 AM and 08:00 AM. 

 

Step 9: The roadway geometric attributes, i.e., shoulder width, presence of merge influence area, 

presence of diverge influence area, presence of horizontal curve, and presence of vertical 

curve are retrieved from the Roadway Geometric Attributes Database. Except for the 

shoulder width variable, which is used as a continuous variable, the rest of the roadway 

geometric variables are grouped into the “yes” category implying Traffic Message 

Channels with the merge/diverge/horizontal curve/vertical curve and the “no” category 

meaning Traffic Message Channels without merge/diverge/horizontal curve/vertical 

curve. 

 

Step 10: The collected explanatory variables and the parameters from the Likelihood Model 

Parameters Database are used to predict the probability of secondary crashes. The 

equation for predicting the likelihood of secondary crashes is shown in Equation 6-2. If 

the estimated secondary crash probability is higher than 0.4, incident 𝐼 is considered to 

have a higher likelihood of resulting in a secondary crash. Steps 1-10 are repeated to the 

corresponding upstream Traffic Message Channels (TMC1).  

 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝑟𝑎𝑠ℎ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1/(1 + 𝐸𝑋𝑃(−1 ∗ (7.36 + (−0.08 ∗
𝑆𝐷 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)  +  (−0.13 ∗
𝑀𝑒𝑎𝑛 𝑜𝑓 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑)  +  (−0.25 ∗ 𝐷𝑒𝑏𝑟𝑖𝑠 𝑜𝑛 𝑅𝑜𝑎𝑑𝑤𝑎𝑦)  +  (0.44 ∗
𝐶𝑟𝑎𝑠ℎ)  +  (0.01 ∗ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑎𝑘)  +  (−0.63 ∗ 𝐸𝑣𝑒𝑛𝑖𝑛𝑔 𝑝𝑒𝑎𝑘)  +
 (0.72 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)  +  (−0.1 ∗ 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ)  +  (0.67 ∗
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑐𝑢𝑟𝑣𝑒)  +  (1.17 ∗ 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑐𝑢𝑟𝑣𝑒)  +  (0.43 ∗
𝐷𝑖𝑣𝑒𝑟𝑔𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎)  +  (−0.53 ∗ 𝑀𝑒𝑟𝑔𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎))))      (6-2) 

 

Step 11: Steps 1-10 are repeated every 15 minutes until the prevailing speed is higher than the 

TMC0’s lower bound speed. For the example incident 𝐼, the next analysis period will be 

08:15 AM. Table 6-2 provides the secondary crash predicted probabilities for incident 𝐼. 

The unit of the speed values in columns “Current speed”, “Low bound speed”, “standard 



79 

deviation of speed before the incident”, and “Mean of prevailing speed” are miles per hour 

(mph). 

Table 6-2: Predicted Secondary Crash Probabilities for Incident 𝑰 
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3/5/2021 8:02 40.3 53.2 3.2 47.8 0 1 1 0 1 10.6 1 1 1 1 0.94 

3/5/2021 8:15 33.4 51.9 3.2 40 0 1 1 0 1 10.6 1 1 1 1 0.98 

3/5/2021 8:30 67.8 69.0 3.2 67.3 0 1 1 0 0 10.6 1 1 1 1 0.37 

3/5/2021 8:45 74.3 70.4 - - - - - - - - - - - - - 

 

The shoulder width values are in feet. Except for the speed-related and shoulder width variables, 

the rest of the variables are dummy variables. That is, if the cell value is 1, it implies incident 𝐼 is 

associated with the characteristics shown in the column heading. For instance, incident I in this 

example, is a crash, occurred during morning peak hours, on a horizontal curve, etc. otherwise, if 

the cell value is 0, it implies the opposite, i.e., incident 𝐼 does not have the characteristics 

mentioned in the column heading. As shown in this table, the traffic returned to normal at 8:45 

AM, i.e., the current speed at 08:45 AM was higher than the lower bound speed of the speed profile 

for the Traffic Message Channel where the incident occurred. Since the predicted probabilities of 

a secondary crash at 8:02 AM and 8:15 AM are higher than 0.4 (optimal threshold), it implies that 

incident 𝐼 has a higher likelihood of resulting in a secondary crash at these timestamps. 

 

6.4 Summary 

 

This chapter presented the algorithm, developed as a proof-of-concept, to predict the likelihood of 

secondary crashes in real time. The study area included a 28-mile section of SR-91. The algorithm 

consists of three main parts, the first one being the Internal Storage database, which includes: 

 

• historical databases, 

• statistical model equation and parameters for the secondary crash likelihood, and 

• other potential attributes required to predict the likelihood of secondary crashes but are not 

collected in real time, i.e., roadway geometric characteristics. 

 

The second part of the algorithm consists of Backend Programs for collecting, parsing, and saving 

incident, traffic, and rainfall data in real time. One algorithm application continuously accesses the 

Florida’s Turnpike SunGuide® database through VPN every two minutes and pings new incidents. 

The RealtimeSpeed application functions to retrieve, process, and save real-time speed data from 

the HERE real-time flow XML feed. This process is implemented for each Traffic Message 
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Channel within the study corridor every minute. The RealtimeRainfall application retrieves real-

time rainfall information from the NEXRAD Level-II network hosted in the “noaa-nexrad-level2” 

Amazon S3 bucket. The rainfall intensity values are available every 4-6 minutes. 

 

The information from the Internal Storage database and Real-time Data Backend Programs are 

then combined to predict the likelihood of secondary crashes. The secondary crash prediction 

process makes the third and final part, referred to as the Secondary Crash Prediction Program. 

This program is a two-fold process that focuses on (1) estimating the impact area of an incident 

and (2) predicting the likelihood of secondary crashes. 
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CHAPTER 7 

EXPLORE THE POTENTIAL OF CONNECTED VEHICLE (CV) APPLICATIONS 

 

This chapter quantifies the potential benefits of CV applications in mitigating secondary crashes. 

Since CVs are not yet fully operational, a sensitivity analysis was conducted at varying MPRs. 

The first section of this chapter provides a brief introduction to the CV applications and their 

potential to mitigate secondary crashes. It also discusses microsimulation and surrogate safety 

measures as a suitable approach to analyze CV applications. The second section focuses on the 

methodology used to quantify the benefits of CVs in mitigating secondary crashes. The results are 

presented and discussed in the third section. The final section includes the summary.  

 

7.1 Background 

 

To effectively mitigate the risk of secondary crashes, information about primary incidents must 

promptly be communicated to upstream drivers (Kitali et al., 2018). TIM agencies use advance 

warning messages to alert drivers about downstream incidents (Yang et al., 2018). Conventionally, 

the advance warning messages are posted along the roadside by incident response agencies. 

Responders can be hindered by incident-induced congestion (Yang et al., 2018, 2017), leading to 

potential delays in posting advance warning messages, and hence, increasing the likelihood of 

secondary crash occurrence. Other methods, such as DMSs, highway advisory radio (HAR), 

traveler information websites, and 511 systems, are used to disseminate incident information to 

travelers in real time (Carson, 2010; Motamed and Machemehl, 2014; Pearce and Subramaniam, 

1998). Nonetheless, once the incident occurred, the longer it takes for the information to be 

disseminated to the public, the greater is the likelihood of secondary crashes (Kitali et al., 2019b; 

Yang et al., 2018). 

 

CV applications have the potential to reduce the delay in relaying advance warning messages to 

upstream drivers by automating the incident detection process and instantly sending a message to 

upstream drivers after TMC has verified the incident. Because CVs are not yet fully deployed, 

traffic simulation models and surrogate safety measures are typically used to assess their safety 

performance (Paikari et al., 2014; Rahman et al., 2018; Yang et al., 2017). Among the surrogate 

measures proposed by the FHWA, time to collision (TTC) is the most well-known time-based 

safety indicator (Gettman and Head, 2003). TTC is defined as the time remaining before two 

vehicles collide, assuming both maintain their course and speed (Saffarzadeh et al., 2013; Shahdah 

et al., 2015). The TTC threshold (range 1.5 to 4.0 seconds) defines the potential traffic conflict and 

is effective for rear-end, head-on, and weaving conflicts (Mahmud et al., 2019). Post-

encroachment time (PET) is another commonly used surrogate measure and is more efficient for 

intersection conflicts (Mahmud et al., 2019). PET refers to the time interval between two instances 

when the first vehicle leaves a conflict point and when the second vehicle enters it  (Sen et al., 

2007). 

 

The following lane blockage scenarios were analyzed as a primary incident: one outer lane closed, 

one inner lane closed, and two outer lanes closed. Since full market penetration of CVs is not 

anticipated anytime soon, a sensitivity analysis was performed at varying CV MPRs. The analysis 

also considered the effect of the time period (AM peak and PM peak), which reflects situations 

with different traffic volumes. The VISSIM microscopic software was used to model a freeway 
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road segment on the Florida’s Turnpike System and Lyons Road, an arterial that runs parallel to 

the freeway. The software was used to replicate CV applications to issue advisories, such as speed, 

lane-change, or detour advisory to drivers during an incident. The safety evaluation was performed 

using the Surrogate Safety Assessment Model (SSAM) software by importing trajectory files from 

VISSIM to analyze conflicts. The change in the number of simulated conflicts was used to evaluate 

the effectiveness of CV technology in mitigating secondary crashes. 

 

7.2 Methodology 

 

The VISSIM model was used as a simulation testbed. Incident modeling and V2I communication 

were modeled using the V2X module in the VISSIM software through the component object model 

(COM) application programming interface (API). This module simulates wireless communication 

and data exchange within the connected environment. Scripting was done using the Visual Basic 

Scripting (VBS) language. Another critical stage of this methodology was a safety evaluation, 

which employed the SSAM software. The details regarding SSAM are provided in the safety 

evaluation section. Finally, a statistical analysis was conducted to assess the significance of CVs 

in mitigating secondary crashes at different MPRs. Figure 7-1 summarizes steps for VISSIM 

model development and a safety evaluation process by SSAM software. The following subsections 

describe in detail the VISSIM modeling, simulation of the CV environment, and safety evaluation. 

 

 
Figure 7-1: Methodology Framework for Exploring the Potential of CV Applications in 

Mitigating Secondary Crashes 
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7.2.1 Model Network Development 

 

VISSIM is a microscopic simulation software that evaluates vehicle data based on car-following 

and lane-changing models. The software is capable of modeling complex traffic situations, such 

as CV communication, by virtual creation of sensors and wireless communication through the use 

of COM. The VISSIM model used was partly developed and calibrated by the FDOT by merging 

the previously developed VISSIM models for the Sawgrass Expressway and Interstate 95 (I-95). 

To include the real-world queues, the model limits of the arterials were extended to approximately 

0.5 miles outside the main construction project limits. Another VISSIM model for a detour was 

created and merged with the previous model to analyze the potential safety benefits of using detour 

strategies in the CV environment.  

 

Florida’s Turnpike Mainline 

 

As shown by the rectangle in Figure 7-2, the segment that experienced more crashes from 2016-

2019 was clipped from the parent Turnpike model and used for further analysis.  

 

 
Figure 7-2: Turnpike VISSIM Model 
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The morning peak period was from 6:30 AM to 9:30 AM, and the evening peak period was from 

4:00 PM to 7:00 PM. Within the peak period, the AM and PM peak hours were 7:30 AM to 8:30 

AM and 5:00 PM to 6:00 PM, respectively. A 30-minute seeding time was added to load the 

network with traffic to attain equilibrium between the number of vehicles entering and exiting the 

traffic flow. The total simulation time was marked as 6:00 AM to 9:30 AM and 3:30 PM to 7:00 

PM. Notably, traffic volumes represented traffic conditions of three different one-hour periods, 

including the pre-peak hour, peak hour, and the post-peak hour. The volumes were given in 15-

minute intervals with the percentages of passenger cars and heavy vehicles. 

 

Table 7-1 provides a breakdown of traffic volumes along the Turnpike Mainline and the ramp 

volumes on each on-ramp and off-ramp used in the clipped model. Additionally, Table 7-2 

summarizes the loading factors used to convert the balanced 2016 peak hour volume into pre-peak 

hour and post-peak hour volumes. It shows the hourly conversion factors for each 15-minute 

interval in the total simulation period. These factors were generated based on time-slicing factors 

obtained from the hourly traffic volume distribution recorded in the field. 

 

Table 7-1: Mainline and Ramp Traffic Volumes Used in the Microsimulation Model 

(a) AM Period 

Location 
Demand 

Volume1 
Location 

Demand 

Volume1 

Florida’s Turnpike Northbound  Florida’s Turnpike Southbound 

Mainline before Atlantic Boulevard off-ramp  6,090 
Mainline after on-ramp from Sawgrass 

Expressway  
5,460 

Mainline after Atlantic Boulevard off-ramp  4,860 Mainline after on-ramp from Sample Road  5,740 

Mainline after on-ramp from Coconut Creek 

Road 
4,810 

Mainline after on-ramp from Coconut Creek 

Road 
4,910 

Mainline after on-ramp from Sample Road 4,160 Mainline after on-ramp from Atlantic Boulevard 5,840 

Off-ramp to Atlantic Boulevard  1,230 On-ramp from Atlantic Boulevard 930 

Off-ramp to Coconut Creek Parkway  710 Off-ramp to Coconut Creek Parkway  1,230 

On-ramp from Coconut Creek Parkway  660 On-ramp from Coconut Creek Parkway  400 

Off-ramp to Sample Road  1,200 Off-ramp to Sample Road  690 

On-ramp from Sample Road  550 On-ramp from Sample Road  970 

(b) PM Period 

Location 
Demand 

Volume1 
Location 

Demand 

Volume1 

Florida’s Turnpike Northbound  Florida’s Turnpike Southbound 

Mainline before Atlantic Boulevard off-ramp  5,720 
Mainline after on-ramp from Sawgrass 

Expressway  
3,980 

Mainline after Atlantic Boulevard off-ramp  4,830 Mainline after on-ramp from Sample Road  4,610 

Mainline after on-ramp from Coconut Creek 

Road 
5,560 

Mainline after on-ramp from Coconut Creek 

Road 
4,660 

Mainline after on-ramp from Sample Road 5,140 Mainline after on-ramp from Atlantic Boulevard 5,900 

Off-ramp to Atlantic Boulevard  890 On-ramp from Atlantic Boulevard 1,240 

Off-ramp to Coconut Creek Parkway  400 Off-ramp to Coconut Creek Parkway  620 

On-ramp from Coconut Creek Parkway  1,130 On-ramp from Coconut Creek Parkway  670 

Off-ramp to Sample Road  1,060 Off-ramp to Sample Road  400 

On-ramp from Sample Road  640 On-ramp from Sample Road  1,030 

Note: 1 Demand volume in vehicles per hour. 
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Table 7-2: Hourly Volume Conversion Factors 

Time Interval 
Simulation Time 

(Seconds) 

AM Condition PM Condition 

15 minutes Hourly 15 minutes Hourly 

Seed Time 
0 - 900 9.38% 

22.07% 
22.08% 

45.34% 
900 – 1,800 12.69% 23.26% 

Pre-Peak Hour 

AM: 6:30 - 7:30 AM 

PM: 4:00 - 5:00 PM 

1,800 – 2,700 16.57% 

81.55% 

22.37% 

92.31% 
2,700 – 3,600 19.38% 22.92% 

3,600 – 4,500 21.29% 23.20% 

4,500 – 5,400 24.31% 23.82% 

Peak Hour 

AM: 7:30 - 8:30 AM 

PM: 5:00 - 6:00 PM 

5,400 – 6,300 25.50% 

100.00% 

24.25% 

100.00% 
6,300 – 7,200 25.32% 25.20% 

7,200 – 8,100 24.74% 25.39% 

8,100 – 9,000 24.44% 25.17% 

Post-Peak Hour 

AM: 8:30 - 9:30 AM 

PM: 6:00 - 7:00 PM 

9,000 – 9,900 23.60% 

87.19% 

24.44% 

92.82% 
9,900 – 10,800 22.38% 24.07% 

10,800 – 11,700 20.74% 22.83% 

11,700 – 12,600 20.47% 21.48% 

 

Lyons Road 

 

A parallel arterial, Lyons Road, was included in the analysis to evaluate the benefits of a detour 

strategy. Therefore, a VISSIM model was developed from the Turnpike exit on Coconut Creek 

Road and then connected to Lyons Road, and finally to W Sample Road. The model replicated the 

existing road geometric conditions, desired speed, and priority rules along the detour. The traffic 

volumes were retrieved from the Florida Traffic Online database for the AM and PM peak periods. 

The traffic volume balance was considered between the volume obtained from FTE and those 

entering and exiting the Turnpike network. The balanced volumes were then entered in 15-minute 

intervals, the same as in the Turnpike mainline model. 

 

Among other traffic-related functions, PTV Vistro does optimization of traffic signal timings. 

Considering its compatibility with PTV VISSIM, the PTV Vistro 2020 software was used to 

optimize signal timings for major signalized intersections along the Lyons Road detour segment. 

The software exported Ring Barrier Controller (RBC) files with optimized signal timings for each 

intersection. The RBC files were imported into the VISSIM software to provide priority rules at 

signalized intersections along the considered detour. 

 

7.2.2 Model Calibration and Validation Processes 

 

The Florida’s Turnpike Enterprise provided the VISSIM model containing the Turnpike network, 

and the initial calibration and validation process is well documented in their VISSIM model 

calibration report (Florida’s Turnpike Enterprise, 2017). The report provides details of the model 

development and calibration processes for the existing 2016 AM and PM peak conditions for the 

SW 10th Street project in Broward County. Calibration targets, including capacity, traffic volume, 

travel time, speed, intersection delay, queue length, and visualization, were used as recommended 

by the FDOT Traffic Analysis Handbook (FDOT, 2014). These targets were established based on 

average speed, vehicle flows, and queues to ensure the developed model replicates the existing 

traffic conditions. 
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The calibration process resulted in parameters indicated in Tables 7-3 and 7-4. Table 7-3 presents 

the freeway calibration parameters, and Table 7-4 shows the calibration parameters for the 

arterials. As mentioned before, the model included an extended segment of arterials outside the 

main construction project limits to include the real-world queues. Therefore, the calibration 

parameters for arterials were adopted for the merged detour model.  

 

Table 7-3: Calibration Parameters for the Freeway Microsimulation Model 
Lane Change Parameters Default Freeway Calibration Parameters 

Necessary Lane Change (Route) 

Maximum deceleration  
-13.12 ft/s2 (Own) 

-9.84 ft/s2 (Trail) 

-13.12 ft/s2 

-9.84 ft/s2 

-1 ft/s2 per distance  200 ft (Freeway) 200 ft 

Accepted deceleration  
-3.28 ft/s2 (Own) 

-1.64 ft/s2 (Trail) 

-3.28 ft/s2 

-1.64 ft/s2 

Waiting time before diffusion  60 sec 180 sec 

Minimum headway (front/rear)  1.64 ft 0.98 ft and 1.51 ft 

To Slower Lane if Collision Time Above (seconds) 0.00 0.00 

Safety distance reduction factor  0.6 0.25 and 0.40 

Maximum deceleration for cooperative braking  ‐9.84 ft/s2 ‐29.99 and ‐31.99 ft/s2 

Overtake reduced speed areas Uncheck Checked 

Advanced Merging Checked Checked 

Cooperative lane change  Unchecked 
Checked especially for freeway 

merge/diverge areas 

If Checked  
Maximum Speed Difference 6.71 mph 6.71 mph 

Maximum Collision Time 10 sec 10 sec 

 

Table 7-4: Calibration Parameters for the Arterial Microsimulation Model 
Lane Change Parameters Default Arterial Calibration Parameters 

Necessary Lane Change (Route) 

Maximum deceleration  
-13.12 ft/s2 (Own) 

-9.84 ft/s2 (Trail) 

-13.12 ft/s2 

-9.84 ft/s2 

-1 ft/s2 per distance  100 ft (Arterial) 100 ft 

Accepted deceleration  
-3.28 ft/s2 (Own) 

-3.28 ft/s2 (Trail) 

-3.28 ft/s2 

-3.28 ft/s2 

Waiting time before diffusion  60 sec 180 sec 

Minimum headway (front/rear)  1.64 ft 1.51 ft 

To Slower Lane if Collision Time Above (seconds) 0.00 0.00 

Safety distance reduction factor  0.6 0.25, 0.40, 0.50 

Maximum deceleration for cooperative braking  ‐9.84 ft/s2 ‐29.99 and ‐31.99 ft/s2 

Overtake reduced speed areas Uncheck Checked 

Advanced Merging Checked Checked 

Cooperative lane change  Unchecked Checked 

If Checked  
Maximum Speed Difference 6.71 mph 6.71 mph 

Maximum Collision Time 10 sec 10 sec 

 

7.2.3 Incident Modeling 

 

A lane blockage was considered to represent a primary incident. The trajectory files for conflict 

analysis were filtered based on spatiotemporal relation with the modeled primary incident. In other 

words, the traffic conflicts were considered to be directly influenced by the lane blockage. The 
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vehicular conflicts were therefore used as a proxy for secondary crash risk upstream of the primary 

incident location. 

 

The VISSIM 2020 simulation software does not have a specific built-in incident formation module. 

Therefore, the present study adopted a stopped vehicle approach to simulate incident blockages. 

This approach utilizes the “AddVehicleAtLinkPosition” function that exists within the COM 

interface. The function lets users add or remove a vehicle at a specific time at a chosen location 

(Chou and Miller-Hooks, 2011). To replicate an incident with this function, a stationary vehicle is 

added and stays at the incident location for the chosen incident duration. It is set to be removed 

when the incident is cleared. To simulate situations where two or more lanes are blocked, multiple 

vehicles with the same time of placement and removal can be added to adjacent lanes. 

 

A total of 90 scenarios were considered in the analysis, as described in Table 7-5. The scenarios 

involved one outer lane closed, one inner lane closed, and two outer lanes closed, performed at 

varying CV MPRs. The present study adopted an incident duration of 30 minutes for all the lane 

blockage scenarios. The chosen span was between the minimum and maximum duration for one 

lane and two lanes closed recommended by HCM (HCM, 2016). The 90 scenarios described 

in Table 7-5 were simulated by incorporating Visual Basic scripts in the VISSIM model through 

the event-based script, enabling creating the CV environment and controlling traffic behaviors 

during the simulation time. In the simulation model, a resolution is defined as simulation time-

steps per second. In other words, the resolution is the time steps in a second for which vehicle data 

are collected and can be accessed during simulation time. The resolution was set to 10-time steps 

per simulation second, which replicate a transmission frequency of 10 Hz for the Basic Safety 

Messages (BSMs). Per the recommendation provided in the VISSIM User Manual, five simulation 

runs were conducted for each scenario, with a random seed increment of 10 for each run (PTV, 

2020). 

 

Table 7-5: Lane Blockage Scenarios  
Scenario  Period CV MPR  

One outer lane blocked (AM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

One outer lane blocked (PM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

One inner lane blocked (AM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

One inner lane blocked (PM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

Two outer lanes blocked without detour (AM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

Two outer lanes blocked with detour (AM) Pre-peak, Peak, Post-peak 0%, 25%, 50%, 75%, and 100% 

 

7.2.4 CV Applications in Microsimulation  

 

VISSIM provides add-on APIs, such as COM, which allow users to incorporate their applications 

and access objects data during the simulation. The COM steps are task-specific depends on the 

objective of the study. A COM API was used to access vehicle attributes and integrate CV 

applications during the run time. COM API was used in steps such as a real-time collection of 

vehicle data, incident modeling, processing, and disseminating advisory messages, which involves 

changing CV’s driving behavior to maximize safety benefits during the incident, and termination 

of incident-related messages.  
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To the extent possible, the study used VB-scripting and the COM API interface in VISSIM to 

simulate CV applications to mitigate secondary crashes. This method enhances the CV 

environment and modeling of traffic behavior and travel conditions during the simulation process. 

This section describes the procedures and techniques adopted to simulate CV applications to 

mitigate secondary crashes on freeways. 

 

Roadside Unit 

 

In the connected environment, RSUs collect and transmit a wide range of vehicle data from CVs 

that are in range. Modeling of RSU capabilities was considered in the COM environment to enable 

real-time data collection. The function “GetbyLocation” in the COM environment was used to 

return vehicle collection data within a 2-mile communication range. The following vehicle 

attributes were collected: vehicle identification (Veh ID), speed, desired speed, link identification 

(Link ID), lane number, desired lane, location, coordinate at front of each vehicle (CordFront), and 

vehicle type (Veh Type). The “GetbyLocation” mimics RSU functions in the real-world, which 

collects and communicates CV information within a range of two miles under DSRC technologies. 

All CV data were available for other processes in the COM, enabling the generation of advisory 

messages to be broadcast to CVs within range. 

 

Advisory Messages 

 

Figure 7-3 shows the algorithm used to process advisory messages to be disseminated to motorists 

in the presence of an incident. The algorithm provides speed, lane change, and/or detour advisory 

to drivers upstream of the incident location. The dashed rectangle in Figure 7-3 shows the part of 

the detour advisory algorithm, which was used for “with detour” scenarios. The algorithm first 

determines whether or not the vehicle approaching the incident location is CV. If the vehicle is a 

CV, the algorithm checks whether it is within the DSRC range of the RSU close to the incident 

scene. When the CV is within range, the algorithm adjusts the CV driving behavior and retrieves 

the real-time vehicle data necessary to process the advisory messages.  

 

Notably, conventional vehicles must passively interact with each other as well as with the CVs. 

As such, drivers of these conventional vehicles may adjust their car-following behavior and lane-

changing behavior after perceiving and assessing other surrounding vehicles’ status. These 

induced interactions and the adjusted behavior of CVs may change the overall safety performance 

of the traffic flow. Besides, as the conventional vehicles approach the incident scene, they usually 

slow down and/or change lanes. 
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Figure 7-3: Algorithm to Process Advisory Messages 
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The kind of advisory message for an individual CV is a function of the position of that CV relative 

to an incident location.  Moreover, the algorithm also considers conventional car behaviors as they 

approach close to the incident location. The following operational assumptions were made while 

modeling the V2I communication: 

 

• An incident was modeled in the northbound direction, and the analysis considered only 

northbound traffic. 

• The communication plan was set to operate at 10 Hz. i.e.,  the vehicle data collection, 

processing of an appropriate advisory message, and dissemination of advisory messages were 

done every 0.1 seconds, a time interval which has been used for BSMs (Kenney, 2011). 

• The effective range of V2I communication was two miles, with the use of the DSRC mode. 

• The study assumed no communication latency or information loss in V2I communication. 

• Driver compliance with advisory messages was assumed to be 100%. 

 

Driver Behavior in CV Environment 

 

The continuous driving behavior adjustment (CDBA) method was used to model driving behavior 

in the CV environment in VISSIM. The method is used for applications that give drivers 

continuous instructions to adjust their driving behavior for a particular goal (i.e., to mitigate the 

risk of secondary crashes) during a specific period, as shown in Figure 7-4 (Songchitruksa et al., 

2016). CDBA is applicable for CV applications, such as lane change assist system and variable 

speed advisory. 

 

 
Figure 7-4: Process for Continuous Driving Behavior Adjustment 

 

Different models, including car-following, lane-changing, and gap-acceptance models, control 

vehicle movements in microscopic simulation. While the car-following model controls the 

interaction between two vehicles in the same lane, the lane-changing model governs vehicles’ 

lateral movements. On the other hand, the gap-acceptance model dictates the merging of vehicles 

to a destined lane. The findings from a previous study, which performed a sensitivity analysis of 

VISSIM’s driver behavior parameters on vehicles’ safety (Habtemichael and Santos, 2013), were 

used as a basis for adjusting CV driving behavior to enhance safety benefits. 

 

In longitudinal driving behavior, the number of observed preceding vehicles (in the ‘look ahead 

distance’ parameter set) controls how well vehicles can predict and react to the movement of other 

vehicles in the link. For the car-following model, the simulated vehicle’s safety distance is 
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governed by two parameters – CC0 (standstill distance) and CC1 (headway time), as shown in 

Equation 7-1. 

                   

𝑆𝑎𝑓𝑒𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐶𝐶𝑂 + 𝐶𝐶1 ∗ 𝑠𝑝𝑒𝑒𝑑                   (7-1) 

 

The safety distance is more affected by the multiplicative part (i.e., CC1) than the additive part 

(i.e., CC0), particularly for high-speed facilities such as freeways. A higher value of CC1 reflects 

a more cautious driver, enhancing safety by increasing the safety distance. The ‘following’ 

parameter (i.e., CC2) controls how much more distance than the desired safety distance a driver 

allows before intentionally moving closer to the leading vehicle. Thus, the CC1 and CC2 values 

were set slightly higher for CVs than for conventional vehicles. Another important car-following 

parameter that significantly impacts the simulated vehicle’s safety is an empirical parameter called 

the threshold for entering ‘following’ (i.e., CC3). It controls the deceleration process, in particular, 

the number of seconds before reaching the safety distance. The driver recognizes a preceding 

slower vehicle at this stage, and the larger the CC# value, the more safety distance is assigned to 

the vehicle. 

 

For the study corridor, both free and necessary lane-changing parameters were adjusted to enhance 

safe lane-changing maneuvers. In free lane-changing parameters, the safety distance reduction 

factor controls the gap which a vehicle accepts for a lane-changing maneuver. The larger the factor, 

the fewer the number of conflicts in the simulation. Regarding the necessary lane-changing 

parameters, factors such as lane-changing position, maximum deceleration of trailing vehicles, and 

acceleration reduction for trailing vehicles, are known to influence traffic safety (Habtemichael 

and Santos, 2013). In the present study, these three factors were adjusted to increase the safety of 

simulated CVs during an incident. 

 

Driver Behavior Adjustments in CV Environment 

 

A CV will change its behavior by adjusting car-following and lane-change behaviors when it 

receives the safety message regarding an incident (Yang et al., 2017). In the simulation model, this 

was done by creating a separate driving behavior for a vehicle class, “CVs with the active 

message”, which contained adjusted driving behaviors discussed in the previous section and 

was added to the main link behavior types for links in the VISSIM model. This behavior was 

activated for all CVs within range by changing their vehicle type to one under the vehicle class 

“CVs with the active message”. The vehicle type was returned to its original type after passing the 

incident location, which restores the original driving behavior. This change of the vehicle class 

was performed within the event-based script. Figure 7-5 is a conceptual diagram that visualizes 

how lane change and detour advisories were disseminated in the simulation model. Speed advisory 

was also disseminated to CVs within range to facilitate a smooth reduction in speed as they pass 

the incident location. It was assumed that there is a connection between TMC and RSU, so 

messages from TMC reach CVs via RSU. In the VISSIM model, information such as advisory 

speed information, detours, and lane change were used as potential TIM messages from TMC and 

were disseminated during the incident. 

 

Lane-change Advisory: Lane change messages were sent to all CVs within the communication 

range at a distance of 0.75 miles upstream of the incident location. Once received, the vehicles’ 
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desired lanes were set to those not blocked by the incident, making them change lanes once they 

get sufficient gaps in the adjacent lanes. 

 
Figure 7-5: Flow of Advisory Information in Simulation Model  

 

Speed Advisory: For speed advisory systems, speeds are sent directly to the On-Board Units 

(OBUs) of the individual vehicle through V2I communication (Grumert and Tapani, 2012). The 

suggested speed sent to a CV within a communication range depends on its distance from the 

incident location, its current speed, and the advised speed. The driver of the CV adjusts speed 

(100% driver compliance was assumed), based on the desired speed distribution generated, to 

attain a smooth deceleration rate as the driver approaches the new recommended speed point. 

Vehicles were only advised to reduce speeds when the average speed within 300 ft of the incident 

location dropped to 10% less than normal. Speed reductions were advised at 20 mph less than the 

speed limit within 0.5 miles upstream of the incident and 10 mph below the speed limit within 0.75 

miles upstream of the incident. It should be noted that the speed advisory varied depending on 

whether the primary incident resulted in a single or a two-lane blockage. 

 

Detour Advisory: Travel time was used as a performance measure to assess the impact of traffic 

diversion during the incident. Vehicles were advised to consider a detour whenever the travel time 

through the incident scene becomes longer than using a detour. 

 

7.2.5 Safety Evaluation 

 

The SSAM software uses developed algorithms to identify conflicts from vehicle trajectory files 

generated in traffic microscopic simulation software. It calculates surrogate measures of safety 

corresponding to each vehicle-to-vehicle interaction and determines whether or not each 

interaction satisfies the criteria to be deemed an official conflict. Thresholds for analyzed surrogate 

measures can be altered or changed in the software to match desired thresholds of analysis, 
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including TTC, PET, Maximum deceleration, Speed difference, and Deceleration Rate. Simulated 

conflicts analyzed in SSAM are categorized according to the degree of collision as either lane-

change conflicts, rear-end conflicts, or crossing conflicts. Rear-end and lane-change conflicts, 

common in freeway operation, were considered to evaluate the potential of CVs in mitigating 

secondary crashes. A 2-mile section upstream of the incident location was created in the VISSIM 

model to collect vehicle trajectories. This section replicates the V2I communication range of the 

RSU at the incident location using DSRC technology. For each scenario, the vehicle trajectory 

files generated in each run were then imported into the SSAM software. The SSAM facilitates the 

identification of conflicts through statistical analysis of vehicle trajectory files generated from the 

microscopic simulation. TTC and PET parameters were used as measurable traffic indicators to 

obtain traffic conflict data in the SSAM. Specific thresholds were adopted to determine critical 

conflicts, i.e., 1.5 seconds for TTC and 5.0 seconds for PET, which are consistent with a previous 

study by Yang et al. (2017).  

 

7.3 Results and Discussion 

 

This section discusses the conflict analysis results from the SSAM software. The TTC and PET 

parameters were used as the surrogate safety measures; the adopted thresholds were 1.5 seconds 

and 5.0 seconds for TTC and PET, respectively. Notably, SSAM classified the conflicts as rear-

end or lane-changing conflicts, which are likely to occur on the freeway. Thus, the obtained 

conflicts were used as a surrogate measure of secondary crashes.  

 

7.3.1 Scenarios with One Lane Blocked 

 

One of the three northbound lanes was closed to evaluate scenarios with one lane blocked. The 

study presents and compares conflicts resulting from scenarios with a blocked inner lane and a 

blocked outer lane. Additionally, the detour strategy was analyzed when the outer or inner lane 

was blocked, and the results are presented in this section.   

 

Traffic Conflicts During AM Peak Period 

 

Figure 7-6 presents the number of conflicts during the AM pre-peak hour, AM peak hour, and AM 

post-peak hour. It shows the number of rear-end conflicts, lane-change conflicts, and total conflicts 

found for each 25% increment of CV penetration (i.e., MPR of 0%, 25%, 50%, 75%, 100%) in 

each analysis period. Total conflicts are calculated as the sum of rear-end and lane-change 

conflicts. For the same analysis period and the same CV penetration rate, the graphs show results 

for the two one-lane blockage scenarios: Inner Lane Blocked (ILB) and Outer Lane Blocked (OLB). 

Furthermore, Table 7-6 shows a matrix that summarizes the percentage change in the number of 

conflicts as the CV penetration rate increases. 

 

Total Conflicts: Overall, for both the ILB and the OLB scenarios, as expected, CVs reduced total 

conflicts. In ILB scenarios, as the MPR of CVs was increased, a more or less similar trend in 

conflict reduction was observed during all the analysis periods (i.e., pre-peak, peak, and post-

peak). On the other hand, a varying pattern was observed when the outermost lane was blocked. 

Notably, the number of total conflicts is higher in the OLB scenarios than ILB scenarios. This 
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finding could be due to a relatively high frequency of merge and diverge maneuvers when the 

outer lane was blocked. 

 

  

 
Figure 7-6: Traffic Conflicts for ILB and OLB Scenarios (AM Peak Period) 

 

Regarding ILB scenarios, a reduced number of total conflicts, by up to 98%, with full CV market 

penetration was observed. A reduction in conflicts was observed even at 25% MPR of CVs during 

the pre-peak, peak, and post-peak periods, as shown in Table 7-6. A consistent trend in reduction 

in conflicts was observed for each 25% increment of CV market penetration. For the OLB 

scenarios, a pronounced reduction in conflicts was noticed at 25% CV MPR during the pre-peak 

and post-peak hours. In these periods, successive increments of CV composition beyond 25% 

resulted in a slight decline in conflicts.   
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Table 7-6: Percent Change in Conflicts for ILB and OLB Scenarios (AM Peak Period) 
WHEN THE INNER LANE IS BLOCKED (ILB) 

AM Pre-peak hour AM Peak hour AM Post-peak hour 

               Total Conflicts 

  Initial Composition (%) Initial Composition (%) Initial Composition (%) 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -44.90%       -16.30%       -29.00%       

50 -75.00% -65.90%     -39.40% -27.60%     -56.90% -39.30%     

75 -82.00% -73.10% -28.10%   -67.10% -60.70% -45.80%   -79.80% -71.60% -53.20%   

100 -89.60% -86.20% -58.20% -41.90% -94.90% -94.00% -91.60% -84.60% -97.50% -96.50% -94.20% -87.70% 

                Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -48.90%       -16.70%       -30.50%       

50 -82.60% -65.90%     -40.20% -28.30%     -59.00% -41.00%     

75 -86.30% -73.10% -21.20%   -68.30% -61.90% -46.90%   -82.60% -75.00% -57.60%   

100 -92.90% -86.20% -59.50% -48.50% -95.60% -94.80% -92.70% -86.20% -97.90% -96.90% -94.80% -87.70% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -19.80%       -10.70%       -2.20%       

50 -27.40% -9.50%     -26.40% -17.60%     -18.80% -16.90%     

75 -55.30% -44.20% -38.40%   -48.60% -42.40% -30.10%   -28.90% -27.30% -12.50%   

100 -68.40% -60.50% -56.40% -29.20% -83.60% -81.70% -77.80% -68.20% -91.10% -90.90% -89.10% -87.50% 

WHEN THE OUTER LANE IS BLOCKED (OLB) 

AM Pre-peak hour AM Peak hour AM Post-peak hour 

               Total Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -72.60%       -2.50%       -47.70%       

50 -91.10% -69.30%     -12.60% -10.40%     -71.50% -45.50%     

75 -93.10% -75.30% -22.90%   -46.30% -44.90% -38.60%   -80.00% -61.80% -29.90%   

100 -97.60% -92.30% -72.90% -64.90% -96.20% -96.10% -95.60% -92.90% -98.30% -96.70% -93.90% -91.40% 

               Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -73.60%       -2.60%       -48.10%       

50 -91.90% -69.30%     -13.10% -10.80%     -72.90% -47.70%     

75 -93.50% -75.30% -19.60%   -48.10% -46.80% -40.30%   -81.50% -64.30% -31.70%   

100 -98.00% -92.30% -74.90% -68.70% -96.70% -96.70% -96.20% -93.70% -98.50% -97.20% -94.60% -92.10% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -57.60%       -0.80%       -38.60%       

50 -78.30% -48.90%     -3.00% -2.20%     -44.20% -9.10%     

75 -87.50% -70.60% -42.40%   -8.80% -8.10% -6.00%   -51.10% -20.30% -12.40%   

100 -91.60% -80.30% -61.40% -33.00% -84.40% -84.30% -84.00% -82.90% -92.80% -88.30% -87.10% -85.30% 

      Conflict reduction     Conflict increase               

 



96 

 

However, during the peak hour, a greater reduction in conflicts was observed in the transition 

between 50% and 75% CV market penetration. It should be noted that the reduction in total 

conflicts was due to a reduction in either rear-end or lane-change conflicts or both. A detailed 

discussion on conflict reduction, per specific conflict type, is presented in the following 

subsections. 

 

Rear-end Conflicts: In all scenarios, rear-end conflicts were more prominent than lane-change 

conflicts. This finding is expected since drivers on a freeway may not find enough time to react to 

the incident ahead of their path. This effect may propagate to upstream traffic in a short time and 

result in relatively more rear-end conflicts. These results are consistent with a previous study 

(Atamo, 2012), which also used VISSIM and SSAM tools and reported more rear-end conflicts 

than other conflicts on freeways. As shown in Figure 7-6, fewer rear-end conflicts were observed 

for ILB scenarios compared to OLB scenarios. This finding could be due to a relatively high 

frequency of merge and diverge maneuvers when the outer lane was blocked. Notably, for both 

OLB and ILB scenarios, the overall reduction in the number of rear-end conflicts follows a similar 

trend as the total conflicts. With a 25% composition of CVs, a vast conflict reduction was reported 

for ILB scenarios during pre- and post-peak hours, by about 45% and 29%, respectively. Similarly, 

for the OLB scenarios, 73% and 48% of conflicts were reduced during pre- and post-peak hours, 

respectively. However, with only 25% of CV penetration, a lower conflict reduction was reported 

(approximately 2% and 16% for the OLB and ILB, respectively) during the peak hour. Unlike in 

the peak hour, relatively lower traffic volumes for the pre- and post-peak hours might be the reason 

for the difference in conflict reduction among the peak periods. In general, rear-end conflicts 

decreased as the MPR of CVs increased. The high reductions in rear-end conflicts in the presence 

of CVs are associated with the decrease in vehicle speeds and change in driver behaviors, which 

were accounted for by early warnings of the incident and the advance advisory messages. 

 

Lane-change Conflicts: Fewer lane-change conflicts were observed compared to rear-end 

conflicts. Only a slight difference in the number of lane-change conflicts was observed between 

the ILB and the OLB scenarios.  As MPR of CVs increased, a relatively small reduction in lane-

change conflicts resulted, despite which lane was blocked. The reduction was more pronounced in 

low traffic periods, pre- and post-peak hours in particular than in the peak hour. For the OLB 

scenarios, fewer conflict reductions were observed in the peak hour until 100% penetration of CVs. 

This is possibly due to a situation where either a leading or lagging vehicle is not a CV, resulting 

in not enough cooperation in creating a gap for a lane-changing maneuver. Thus, with 100% MPR 

of CVs, both leading and lagging vehicles are aware and behave cooperatively for lane-changing 

maneuvers, which results in a considerable reduction of the lane-change conflicts. 

 

Traffic Conflicts During PM Peak Period  

 

Figure 7-7 presents the number of conflicts during the PM peak period. It shows the conflicts and 

scenarios similar to those discussed in the earlier section (i.e., during the AM peak periods). The 

results are presented in a 25% increment of CV composition for pre-peak, peak, and post-peak 

hours. Again, the outermost (OLB) or innermost (ILB) lane blockage was considered in the 

analysis. Table 7-7 shows a matrix that summarizes the percentage change in the number of 

conflicts as the CV penetration rate increases. 
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Total Conflicts: The PM peak period analysis was found to experience more conflicts compared 

to the AM peak period. During the PM period, the OLB scenarios reported more conflicts 

compared to the ILB. As expected, the adoption of CVs was found to reduce the number of total 

conflicts. With a blocked inner lane, the increase in CV composition resulted in conflict reduction, 

with a similar trend for the pre-peak, peak, and post-peak hours. A large reduction was found in 

the transition from 75% to 100% composition of CVs. Another consistent pattern of conflict 

reduction was seen in the OLB scenarios. Up to 50% CV penetration, a 5% reduction was observed 

for the peak and post-peak hours, whereas it was approximately 16% for the pre-peak hour. The 

transition from 50% to 75% penetration of CVs resulted in a considerable reduction in total 

conflicts for the entire peak period. The following section gives a detailed discussion on conflict 

reduction per specific conflict type. 

 

  

 
Figure 7-7: Traffic Conflicts for ILB and OLB Scenarios (PM Peak Period) 

 

Rear-end Conflicts: There are many rear-end conflicts in the PM period than the corresponding 

AM peak period. These conflicts were more prominent than the lane-change conflicts.  Unlike the 

AM peak period, the PM period experienced a lower reduction of rear-end conflicts with the 

increase in the CV MPR. For instance, with up to 50% of CV penetration for OLB scenarios, a 5% 

reduction was observed for the peak and post-peak hours, whereas it was about 16% for the pre-

peak hour. 
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Table 7-7: Percent Change in Conflicts for ILB and OLB Scenarios (PM Peak Period) 
WHEN THE INNER LANE IS BLOCKED (ILB) 

PM Pre-peak Hour  PM Peak Hour  PM Post-peak Hour 

               Total Conflicts 

  Initial Composition (%) Initial Composition (%) Initial Composition (%) 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -13.50%       -10.90%       -9.20%       

50 -31.90% -21.30%     -17.40% -7.40%     -11.90% -3.00%     

75 -38.60% -29.10% -9.80%   -22.90% -13.60% -6.70%   -20.50% -12.50% -9.70%   

100 -82.40% -79.70% -74.10% -71.30% -79.50% -77.00% -75.20% -73.40% -76.90% -74.60% -73.80% -71.00% 

                Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -13.40%       -11.20%       -9.20%       

50 -32.70% -22.20%     -18.10% -7.70%     -12.40% -3.50%     

75 -38.70% -29.20% -9.00%   -23.30% -13.60% -6.40%   -21.20% -13.30% -10.10%   

100 -84.00% -81.50% -76.20% -73.90% -80.00% -77.50% -75.60% -73.90% -78.80% -76.70% -75.80% -73.10% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -14.60%       -3.10%       -8.90%       

50 -18.50% -4.50%     -3.90% -0.80%     -1.70% 7.90%     

75 -37.40% -26.70% -23.20%   -15.00% -12.20% -11.50%   -3.10% 6.40% -1.40%   

100 -53.10% -45.10% -42.50% -25.10% -69.50% -68.50% -68.20% -64.10% -31.10% -24.40% -30.00% -29.00% 

WHEN THE OUTER LANE IS BLOCKED (OLB) 

PM Pre-peak Hour  PM Peak Hour  PM Post-peak Hour 

Total Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -3.30%       -2.50%       -1.90%       

50 -16.70% -13.90%     -5.40% -2.90%     -5.80% -3.90%     

75 -47.00% -45.20% -36.30%   -33.20% -31.40% -29.40%   -32.20% -30.90% -28.00%   

100 -91.00% -90.70% -89.20% -83.10% -70.00% -69.20% -68.30% -55.10% -77.60% -77.20% -76.20% -67.00% 

               Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -2.80%       -0.90%       -1.70%       

50 -16.80% -14.40%     -4.80% -3.90%     -5.40% -3.70%     

75 -48.00% -46.50% -37.50%   -34.30% -33.70% -31.00%   -33.90% -32.70% -30.10%   

100 -91.90% -91.70% -90.30% -84.40% -70.80% -70.50% -69.30% -55.50% -79.10% -78.70% -77.90% -68.30% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -14.10%       -33.80%       -6.40%       

50 -15.70% -1.80%     -16.40% 26.20%     -15.00% -9.20%     

75 -22.90% -10.20% -8.50%   -10.40% 35.20% 7.20%   10.20% 17.60% 29.60%   

100 -71.10% -66.40% -65.70% -62.60% -55.00% -32.00% -46.10% -49.80% -41.10% -37.10% -30.70% -46.50% 

          Conflict reduction                 Conflict increase       
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There was a greater reduction in total conflicts at low penetration rates (up to 50%) for the ILB 

than the OLB scenarios. Similar to the AM period results, merge and diverge maneuvers may have 

contributed to more rear-end conflicts in the OLB than in the ILB scenarios. Notably, in both 

scenarios, maximum benefits in conflict reduction (about 80%) were reported at a full CVs 

penetration. A lower reduction in conflicts at lower penetration of CVs during the PM peak hours 

was observed. This result could be because of the higher traffic volume along the study corridor. 

Higher traffic volumes cause vehicles to move close to each other, and when the incident happens, 

only CVs get information and advisory messages. Thus, at low CV penetration rates, there are 

more conventional vehicles with neither incident information nor advisory messages. Therefore, 

when a CV receives a speed reduction warning, a conventional vehicle(s) behind the CV may delay 

reducing speed. Consequently, the lack of cooperation among conventional vehicles and CVs to 

perform safe maneuvers may have resulted in more rear-end conflicts. Nevertheless, with the full 

penetration, all vehicles receive an early warning and speed advisory, resulting in a considerable 

reduction in rear-end conflicts. 

 

Lane-change Conflicts: High traffic demand during the PM peak period is associated with fewer 

lane-change conflicts as CV composition increased. The maximum reduction (approximately 

70%) was experienced with full penetration of CVs during the PM pre-peak hour under the OLB 

scenario. Surprisingly, in some scenarios, conflicts increased with the increase in CV composition, 

as shown in Tables 7-8, 7-9, and 7-10. For example, during the peak hour for the OLB scenarios, 

conflicts increased as CV penetration increased from 25% to 75% (Table 7-9). This result may be 

attributed to many CVs receiving a lane-change advisory, unlike conventional vehicles. Thus, the 

lack of cooperation for lane-changing maneuvers among vehicles results in an overall increase in 

lane-change conflicts. 

 

Statistical Analysis  

 

The surrogate safety indicators used for statistical analysis were the number of conflicts obtained 

from the SSAM safety evaluation. For a standard comparison among scenarios with varying CV 

compositions, a 2-mile segment (CV communication range) upstream of the primary incident 

location was used as an exposure variable. The objective was to check the significance of CV 

technologies at various penetration rates in reducing traffic conflicts, which are considered as a 

surrogate measure for secondary crashes. The statistical analysis of the average number of conflicts 

employed a one-tailed t-test with the null and alternative hypotheses. The student t-test was used 

to determine if the means of two sets of data are significantly different from each other. 

 

The null hypothesis was that the mean difference between the average number of conflicts between 

0% and a succeeding percentage of CV compositions is zero. The null hypothesis was tested 

against an alternate hypothesis that the mean difference between the average number of conflicts 

between the two scenarios is greater than zero.  

 

• Null Hypothesis, H0: 𝜇1 - 𝜇2 = 0, OR 𝜇1 = 𝜇2  

• Alternate Hypothesis, HA: 𝜇1 – 𝜇2 >0, OR 𝜇1 > 𝜇1 

where,  

𝜇1 = mean number of conflicts at 0% penetration of CVs, and  

𝜇2 = mean number of conflicts at i% penetration of CVs. 
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Tables 7-8 and 7-9 show the statistical test results at a 95% confidence level for the ILB and the 

OLB scenarios, respectively. Furthermore, the statistical test was done to check whether there is a 

significant difference in the number of conflicts between the ILB and OLB scenarios. The null 

hypothesis was that, for a given MPR of CVs, the mean difference between the average number of 

conflicts between the ILB and the respective OLB scenario is zero. The null hypothesis was tested 

against an alternate hypothesis that the mean difference between the average number of conflicts 

between the two scenarios is less than zero. 

 

• Null Hypothesis, H0: 𝜇i – 𝜇o = 0, OR 𝜇i = 𝜇o  

• Alternate Hypothesis, HA: 𝜇i – 𝜇o < 0, OR 𝜇i < 𝜇o 

where,  

𝜇i = mean number of conflicts for the ILB scenario at i% penetration of CVs, and  

𝜇o = mean number of conflicts for the OLB scenario at i% penetration of CVs. 

 

For the ILB scenario, the difference in total conflicts and rear-end conflicts was statistically 

significant for every 25% increment in CV composition. Greater penetration of CVs was required 

to significantly reduce lane-change conflicts during the AM post-peak, PM peak, and PM post-

peak hours. During low traffic volume (AM pre- and post-peak hours), under OLB scenarios, a 

significant reduction in total and rear-end conflicts was observed as the MPR of CVs increased. 

However, at high traffic volumes (AM peak and PM period), there was a significant reduction 

beyond 50% CV penetration. This shows that CV applications are a viable solution for reducing 

rear-end conflicts and lane-change conflicts. Even at low penetration of CVs, the results are more 

pronounced for low traffic volume situations than during congested periods.  
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Table 7-8: Summary of Paired t-Test Results for Number of Conflicts for ILB Scenarios 

Period 

  

CV 

Composition 

  

N  

Total Conflicts Rear-end Conflicts Lane-change Conflicts 

Mean SD 
p-

value 
Significant Mean SD 

p-

value 
Significant Mean SD 

p-

value 
Significant 

AM 

Pre-

peak 

hour 

0% 5 574 125     495 126     79 3     

25% 5 280 128 
<.0031

8 
YES 253 91 0.004 YES 63 10 0.004 YES 

50% 5 144 19 <.001 YES 86 16 <.001 YES 57 6 <.001 YES 

75% 5 112 28 <.001 YES 68 25 <.001 YES 42 14 <.001 YES 

100% 5 64 21 <.001 YES 35 11 <.001 YES 31 14 <.001 YES 

AM 

Peak 

hour 

0% 5 6259 313     5895 313     364 21     

25% 5 5237 453 0.0016 YES 4912 439 0.002 YES 325 20 0.009 YES 

50% 5 3792 581 <.001 YES 3524 547 <.001 YES 268 35 <.001 YES 

75% 5 2057 505 <.001 YES 1870 491 <.001 YES 187 21 <.001 YES 

100% 5 643 25 <.001 YES 540 98 <.001 YES 103 15 <.001 YES 

AM 

Post-

peak 

hour 

0% 5 3855 302     3653 290     203 14     

25% 5 2738 16 <.001 YES 2540 15 <.001 YES 198 14 0.199 NO 

50% 5 1663 231 <.001 YES 1498 220 <.001 YES 165 11 0.02 NO 

75% 5 747 53 <.001 YES 635 45 <.001 YES 113 18 0.003 YES 

100% 5 96 5 <.001 YES 78 5 <.001 YES 17 5 <.001 YES 

PM 

Pre-

peak 

hour 

0% 5 7626 273     7238 247     388 28     

25% 5 6597 701 0.008 YES 6266 690 0.009 YES 331 11 0.001 YES 

50% 5 5191 302 <.001 YES 4875 297 <.001 YES 316 14 <.001 YES 

75% 5 4734 226 <.001 YES 4439 211 <.001 YES 295 32 <.001 YES 

100% 5 1343 84 <.001 YES 1160 84 <.001 YES 182 21 <.001 YES 

PM 

Peak 

hour 

0% 5 12948 634     12378 615     570 40     

25% 5 11645 82 <.001 YES 11090 69 <.001 YES 556 14 0.2 NO 

50% 5 10785 468 <.001 YES 10234 450 <.001 YES 551 18 0.2 NO 

75% 5 10066 725 <.001 YES 9578 676 <.001 YES 488 49 0 YES 

100% 5 2675 229 <.001 YES 2500 255 <.001 YES 175 25 <.001 YES 

PM 

Post-

peak 

hour 

0% 5 10830 420     10394 423     436 4     

25% 5 9872 196 <.001 YES 9438 205 <.001 YES 434 35 0.455 NO 

50% 5 9537 609 0.002 YES 9108 595 0.002 YES 428 14 0.141 NO 

75% 5 8609 770 <.001 YES 8186 756 <.001 YES 422 19 0.081 NO 

100% 5 2500 383 <.001 YES 2204 354 <.001 YES 296 36 <.001 YES 

Note: CV = Connected Vehicle; N = Number of Microsimulations Used to Generate Conflicts; SD = Standard Deviation. 
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Table 7-9: Summary of Paired t-Test Results for Number of Conflicts for OLB Scenarios 

Period 

  

CV 

Composition 

  

N 

  

Total Conflicts Rear-end Conflicts Lane-change Conflicts 

Mean SD 
p-

value 
Significant Mean SD 

p-

value 
Significant Mean SD 

p-

value 
Significant 

AM 

Pre-

peak 

hour 

0% 5 2,897 136     2,727 163     170 3     

25% 5 793 157 <.001 YES 721 96 <.001 YES 72 10 <.001 YES 

50% 5 257 19 <.001 YES 221 14 <.001 YES 37 5 <.001 YES 

75% 5 199 32 <.001 YES 178 27 <.001 YES 21 14 <.001 YES 

100% 5 70 15 <.001 YES 56 6 <.001 YES 14 14 <.001 YES 

AM 

Peak 

hour 

0% 5 8,273 413     7,891 413     382 28     

25% 5 8,064 589 0.2674 NO 7,686 570 0.266 NO 379 26 0.428 NO 

50% 5 7,227 523 
0.0039

77 
YES 6,856 492 0.003 YES 371 31 0.294 NO 

75% 5 4,441 595 <.001 YES 4,092 580 <.001 YES 349 25 0.044 YES 

100% 5 317 91 <.001 YES 257 87 <.001 YES 60 14 <.001 YES 

AM 

Post-

peak 

hour 

0% 5 6,096 423     5,809 363     287 13     

25% 5 3,189 18 <.001 YES 3,013 17 <.001 YES 176 1 <.001 YES 

50% 5 1,736 295 <.001 YES 1,576 264 <.001 YES 160 11 <.001 YES 

75% 5 1,217 62 <.001 YES 1,076 50 <.001 YES 140 24 <.001 YES 

100% 5 105 5 <.001 YES 85 4 <.001 YES 21 5 <.001 YES 

PM 

Pre-

peak 

hour 

0% 5 14,930 437     14,300 358     630 34     

25% 5 14,441 1051 0.183 NO 13,900 1020 0.216 NO 541 13 <.001 YES 

50% 5 12,432 484 <.001 YES 11,901 506 <.001 YES 531 20 <.001 YES 

75% 5 7,919 408 <.001 YES 7,433 359 <.001 YES 486 42 <.001 YES 

100% 5 1,342 42 <.001 YES 1,160 75 <.001 YES 182 40 <.001 YES 

PM 

Peak 

hour 

0% 5 18,400 1331     17,500 1230     900 60     

25% 5 17,933 139 0.2 NO 17,337 109 0.388 NO 596 20 <.001 YES 

50% 5 17,407 739 0.1 NO 16,655 630 0.104 NO 752 23 <.001 YES 

75% 5 12,298 1485 <.001 YES 11,492 1284 <.001 YES 806 80 0 YES 

100% 5 5,520 46 <.001 YES 5,115 122 <.001 YES 405 40 <.001 YES 

PM 

Post-

peak 

hour 

0% 5 17,160 883     16,500 847     660 6     

25% 5 16,832 334 0.2 NO 16,214 325 0.25 NO 618 53 0.059 NO 

50% 5 16,170 961 0.064 NO 15,609 833 0.066 NO 561 18 <.001 YES 

75% 5 11,636 1578 <.001 YES 10,909 1437 <.001 YES 727 31 <.001 YES 

100% 5 3,843 77 <.001 YES 3,454 170 <.001 YES 389 56 <.001 YES 

Note: CV = Connected Vehicle; N = Number of Microsimulations Used to Generate Conflicts; SD = Standard Deviation. 
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Table 7-10: Summary of Paired t-Test Results Comparing Conflicts for ILB and OLB Scenarios 

Period 

  

CV 

Composition 

  

N 

  

Total Conflicts Rear-end Conflicts Lane-change Conflicts 

Mean SD 
p-

value 
Significant Mean SD 

p-

value 
Significant Mean SD 

p-

value 
Significant 

AM 

Pre-

peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.093 NO 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

75% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.024 YES 

100% 5 N/A N/A 0.311 NO N/A N/A 0.003 YES N/A N/A 0.046 YES 

AM 

Peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.146 NO 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.003 YES 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

75% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

100% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

AM 

Post-

peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

50% 5 N/A N/A 0.336 NO N/A N/A 0.312 NO N/A N/A 0.259 YES 

75% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.038 YES 

100% 5 N/A N/A 0.008 YES N/A N/A 0.024 YES N/A N/A 0.142 NO 

PM 

Pre-

peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

75% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

100% 5 N/A N/A 0.489 NO N/A N/A 0.498 NO N/A N/A 0.5 NO 

PM 

Peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.003 YES 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

75% 5 N/A N/A 0.008 YES N/A N/A 0.009 YES N/A N/A <.001 YES 

100% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

PM 

Post-

peak 

hour 

0% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

25% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A <.001 YES 

50% 5 N/A N/A 0.002 YES N/A N/A <.001 YES N/A N/A <.001 YES 

75% 5 N/A N/A <.001 YES N/A N/A 0.003 YES N/A N/A <.001 YES 

100% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.007 YES 

Note: CV = Connected Vehicle; N = Number of Microsimulations Used to Generate Conflicts; SD = Standard Deviation. 
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Detour Strategy  

 

The analysis considered both the AM and PM periods with either an innermost (ILB) or outermost 

(OLB) lane blockage. The analysis used travel time as a criterion to advise traffic to take a detour. 

Surprisingly, even at high traffic volumes (during the PM peak period), it rarely happened that 

travel time in the mainline traffic was greater than using a detour. Thus, less than 2% of all vehicles 

received a detour advisory message during the entire analysis period. This is because the 

interchanges along the study corridor are spaced further apart (about two miles) to enhance 

mobility along the mainline. 

 

Additionally, the detour route has a lower posted speed limit (35 mph) and four signalized 

intersections that the traffic must navigate through before re-entering the freeway. Consequently, 

it takes much longer for traffic to use the detour to get back to the mainline. This finding is in line 

with a previous study, which concluded that a detour strategy could potentially be beneficial when 

incident on the mainline involves multiple lane closures and takes over 30 minutes to clear (Chou 

and Miller-Hooks, 2011). Overall, in the present study, the safety evaluation using the SSAM 

indicated a more or less similar conflict reduction pattern for both with and without detour 

scenarios. These results necessitate further analysis of the use of CVs and a detour advisory when 

an incident results in the blockage of two lanes. 

 

7.3.2 Scenario with Two Lanes Blocked  

 

The corridor segment used for analyzing scenarios with a single lane blockage was also used to 

analyze scenarios with two lanes blocked. The incident location was consistent with scenarios in 

which a single lane was closed. Two outer lanes, out of the three northbound lanes, were closed.  

The study analyzed the blockage of outer lanes since the results from a single lane closure showed 

higher traffic conflicts for the outer lane blockage. The following subsections discuss the conflicts 

resulting from scenarios in which the two outermost lanes were blocked, both with and without 

detour advisory. 

 

Traffic Conflicts During AM Peak Period  

 

Three morning peak hours consisting of low, high, and moderate traffic volume were chosen to 

analyze scenarios in which two outer lanes are closed. In all three analysis periods, an incident that 

blocks two lanes resulted in a rapid formation of queues upstream of the incident location. The 

rate of queue formation was a function of the analysis period when the incident occurred; the 

upstream queues were found to be most severe during the peak period, with fewer queues during 

the pre-peak hour. This could be due to the difference in traffic volumes among the analyzed 

periods. Unlike scenarios where a single lane was closed, more vehicles experienced longer travel 

times using the Turnpike mainline than if they opted for the Lyons Road (parallel arterial) detour. 

This finding is consistent with previous research (Chou and Miller-Hooks, 2011).  

 

Total Conflicts: Surprisingly, during the peak period, for both with and without detour advisory, 

25% CV penetration increased total conflicts (Figure 7-8). This could be due to fewer CVs in the 

network that receive less cooperation from conventional vehicles while the CVs adjusted their 

driving behavior for safety benefits. A reduction in total conflicts was observed from 50% 
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penetration of CVs in scenarios with detour advisory, a slightly higher reduction than those without 

the advisory. With full MPR of CVs, a decrease in the total conflicts of about 20% and 15% for 

with and without detour advisory, respectively, was observed. 

 

For pre- and post-peak scenarios, with full CV market penetration, a reduced number of total 

conflicts of up to 71% and 64% for with and without detour advisory, respectively, was observed. 

The number of conflicts were reduced, even at 25% MPR of CVs, during these scenarios, as shown 

in Table 7-11. A consistent trend in conflict decline was observed for every 25% increment of CV 

composition. The following section gives a detailed discussion on conflict reduction, per specific 

conflict type. 

 

Rear-end Conflicts: As expected, in all scenarios, rear-end conflicts were more prominent than 

lane-change conflicts. The blocking of two lanes disrupted the traffic on a high-speed facility, i.e., 

freeway, which resulted in long queues, creating many stop-and-go situations for vehicles. 

Consequently, more rear-end conflicts were observed than during the blockage of a single lane, as 

observed in a previous study (Atamo, 2012). As shown in Figure 7-8, greater reduction in rear-end 

conflicts was observed when the detour advisory was disseminated under the increased penetration 

of CVs. This could be due to the reduction of traffic approaching the incident scene after the detour 

advisory. Moreover, early speed and lane-change advisories to CVs help drivers adjust their 

driving behavior as they approach the scene. 

 

During the peak period, queue dissipation to normal traffic conditions was not observed during the 

analysis period. A similar finding was observed by Pulugurtha and Mahanthi (2016). Greater 

conflict reduction (about 25%) was observed in the transition from 25% to 50% penetration of 

CVs for both with and without detour scenarios. The difference in conflict reduction 

between with and without detour advisory was less for the transitions to higher CV penetration 

rates. This is because, during the peak period, Lyons Road also experience high traffic. Thus, only 

few CVs received detour advisory. 

 

For pre-peak scenarios, conflict reduction was observed even at 25% MPR of CVs. The conflict 

reduction was 55% and 49% for with and without detour advisory. The parallel arterial used as a 

detour had less traffic during the pre-peak hour. Thus, more CVs received the detour advisory and 

increased the safety benefit, even at lower penetration. A similar trend in the reduction of rear-end 

conflicts was observed during the post-peak hour.  
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Figure 7-8: Traffic Conflicts For Scenarios With Two Outer Lanes Blocked (AM Peak 

Period) 

 

Lane-change Conflicts: In all the scenarios, fewer lane-change conflicts were observed than rear-

end conflicts, as shown in Figure 7-8. As discussed in the analysis of a single lane closure, CVs in 

congested periods experienced less cooperation from conventional vehicles during lane-changing 

maneuvers. Thus, there was an increase in lane-change conflicts with lower CV penetration in high 

traffic volume, as shown in Table 7-11. Moreover, more conflicts were observed for scenarios with 

the detour advisory than those without the advisory. The reason could be due to an increase in 

conflicts as CVs changed lanes to access the detour route. 
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Table 7-11: Percent Change in Conflicts for Two Outer Lane Block Scenarios (with and without Detour Advisory) 

TWO OUTER LANE BLOCKED - WITHOUT DETOUR ADVISORY 

AM Pre-peak Hour AM Peak Hour AM Post Hour 

               Total Conflicts 

Initial Composition (%) Initial Composition (%) Initial Composition (%) 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -49.45%       4.11%       -43.56%       

50 -52.61% -6.23%     -3.15% -6.97%     -44.97% -2.50%     

75 -59.26% -19.41% -14.05%   -12.38% -15.84% -9.53%   -48.11% -8.07% -5.71%   

100 -64.79% -30.34% -25.70% -13.56% -15.62% -18.96% -12.88% -3.70% -50.24% -11.83% -9.57% -4.10% 

                Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -50.25%       4.36%       -43.85%       

50 -53.23% -5.98%     -3.23% -7.27%     -45.61% -3.12%     

75 -59.88% -19.36% -14.23%   -12.42% -16.08% -9.50%   -48.60% -8.46% -5.51%   

100 -65.05% -29.76% -25.28% -12.89% -15.62% -19.15% -12.81% -3.66% -50.41% -11.68% -8.83% -3.52% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -10.65%       -6.64%       -27.23%       

50 -22.24% -12.98%     0.42% 7.57%     -9.65% 24.16%     

75 -29.09% -20.64% -8.80%   -10.73% -4.38% -11.11%   -20.82% 8.81% -12.36%   

100 -51.81% -46.06% -38.02% -32.04% -15.72% -9.73% -16.08% -5.59% -40.63% -18.42% -34.29% -25.02% 

TWO OUTER LANE BLOCKED - WITH DETOUR ADVISORY 

AM Pre-peak Hour AM Peak Hour AM Post Hour 

Total Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -54.08%       4.29%       -44.63%       

50 -57.63% -7.73%     -13.61% -17.17%     -51.10% -11.69%     

75 -64.25% -22.14% -15.62%   -19.67% -22.97% -7.01%   -51.80% -12.95% -1.43%   

100 -70.63% -36.05% -30.69% -17.86% -19.73% -23.03% -7.08% -0.08% -52.61% -14.41% -3.09% -1.68% 

               Rear-End Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -54.69%       4.36%       -45.39%       

50 -58.60% -3.91%     -14.10% -17.69%     -51.94% -12.00%     

75 -64.93% -10.24% -15.29%   -19.92% -23.27% -6.78%   -52.45% -12.93% -1.05%   

100 -71.06% -16.37% -30.09% -17.48% -19.94% -23.29% -6.80% -0.02% -53.00% -13.94% -2.20% -1.17% 

               Lane-Change Conflicts 

%CVs 0 25 50 75 0 25 50 75 0 25 50 75 

25 -24.14%       1.01%       -2.45%       

50 -10.27% 18.30%     7.33% 6.26%     -4.25% -1.85%     

75 -30.99% -9.02% -23.09%   -8.55% -9.46% -14.79%   -15.71% -13.59% -11.96%   

100 -49.81% -33.83% -44.07% -27.27% -10.52% -11.41% -16.63% -2.15% -30.84% -29.10% -27.77% -17.95% 

              Conflict reduction       Conflict increase     
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Statistical Analysis  

 

Table 7-12 shows the statistical test results at a 95% confidence level for the with and without detour 

advisory scenarios, respectively. The statistical test was performed to check whether there is a 

significant difference in the number of conflicts between the with and without detour advisory 

scenarios. The null hypothesis was that, for a given MPR of CVs, the mean difference between the 

average number of conflicts between the two scenarios is zero. It was tested against an alternate 

hypothesis that the mean difference between the average number of conflicts between the two 

scenarios is greater than zero. 

• Null Hypothesis, H0: 𝜇i – 𝜇o = 0, OR 𝜇i = 𝜇o  

• Alternate Hypothesis, HA: 𝜇i – 𝜇o > 0, OR 𝜇i > 𝜇o 

where,  

𝜇i = mean number of conflicts for the without detour advisory at i% penetration of CVs 

𝜇o = mean number of conflicts for the with detour advisory at i% penetration of CVs 

 

For the periods with less traffic volume compared to that of the peak hour, i.e., pre- and post-peak 

hours, both with and without detour advisory, the reduction in total conflicts and rear-end conflicts 

was statistically significant for every 25% increment in CV composition. Greater penetration of CVs 

(about 75%) was required to significantly reduce lane-change conflicts during the post-peak hour. On 

the other hand, during high traffic volume (i.e., peak hour), a significant reduction in total and rear-

end conflicts was observed in the transition from 50% to 75% of CV composition for scenarios without 

the detour advisory. For scenarios with detour advisory, a significant reduction was observed in the 

transition from 25% to 50% CVs. In regards to lane-change conflicts, a less significant benefit was 

observed during the peak hour. 

 

When comparing scenarios with and without detour advisory, no significant reduction was observed 

in the number of rear-end conflicts using the detour strategy during the peak hour. Also, with full 

penetration of CVs, the number of conflicts reduced by adopting the detour advisory was not 

statistically significant. As the CVs take the detour, a point is reached where the travel time using the 

detour becomes longer than not taking the detour. Thus, no more CVs get diverted. Except for lane-

change conflicts, other scenarios showed a statistical significance of using the detour to reduce traffic 

conflicts, as shown in Table 7-12.
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Table 7-12: Summary of Paired t-Test Results for Number of Conflicts for Two Lanes Blocked Scenarios (with and without 

Detour Advisory) 

Period CV MPR N 

Total Conflicts Rear-end Conflicts Lane-change Conflicts 

Mean SD 
p-

value 

Significan

t 
Mean SD 

p-

value 
Significant Mean SD 

p-

value 
Significant 

Without Detour Advisory 

AM  

Pre-peak 

hour 

0% 5 10,474 422     10,264 404     210 24     

25% 5 5,294 229 <.001 YES 5,106 233 <.001 YES 188 7 0.04 YES 

50% 5 4,964 153 <.001 YES 4,801 156 <.001 YES 164 15 0.003 YES 

75% 5 4,267 280 <.001 YES 4,118 282 <.001 YES 149 18 0.001 YES 

100% 5 3,688 199 <.001 YES 3,587 200 <.001 YES 101 9 <.001 YES 

AM  

Peak 

hour  

0% 5 16,649 1319     16,272 1283     377 49     

25% 5 17,334 1043 0.195 NO 16,982 1025 0.181 NO 352 23 0.168 NO 

50% 5 16,125 1387 0.279 NO 15,747 1372 0.274 NO 378 22 0.475 NO 

75% 5 14,587 1224 0.017 YES 14,251 1209 0.017 YES 336 25 0.071 NO 

100% 5 14,048 699 0.002 YES 13,730 702 0.002 YES 317 20 0.019 YES 

AM  

Post-peak 

hour 

0% 5 15,759 588     15,482 586     278 14     

25% 5 8,895 133 <.001 YES 8,693 134 <.001 YES 202 23 <.001 YES 

50% 5 8,672 223 <.001 YES 8,421 235 <.001 YES 251 25 0.034 YES 

75% 5 8,177 297 <.001 YES 7,957 307 <.001 YES 220 19 <.001 YES 

100% 5 7,842 496 <.001 YES 7,677 497 <.001 YES 165 17 <.001 YES 

With Detour Advisory 

AM  

Pre-peak 

hour 

0% 5 10,474 422     10,264 404     210 24     

25% 5 4,810 397 <.001 YES 4,651 376 <.001 YES 160 27 0.007 YES 

50% 5 4,438 170 <.001 YES 4,249 175 <.001 YES 189 7 0.045 YES 

75% 5 3,745 306 <.001 YES 3,600 297 <.001 YES 145 13 <.001 YES 

100% 5 3,076 274 <.001 YES 2,971 267 <.001 YES 106 21 <.001 YES 

Note: CV = Connected Vehicle; N = Number of Microsimulations Used to Generate Conflicts; SD = Standard Deviation. 
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Table 7-12 (Cont’d): Summary of Paired t-Test Results for Number of Conflicts for Two Lanes Blocked Scenarios (With and 

Without Detour Advisory) 

Period CV MPR N 

Total Conflicts Rear-end Conflicts Lane-change Conflicts 

Mean SD 
p-

value 
Significant Mean SD 

p-

value 
Significant Mean SD 

p-

value 
Significant 

AM  

Peak 

hour  

0% 5 16,649 1319     16,272 1283     377 49     

25% 5 17,363 470 0.144 NO 16,982 457 0.139 NO 380 26 0.442 NO 

50% 5 14,382 471 0.003 YES 13,978 480 0.003 YES 404 16 0.135 NO 

75% 5 13,374 159 <.001 YES 13,030 164 <.001 YES 344 11 0.096 NO 

100% 5 13,364 791 <.001 YES 13,027 769 <.001 YES 337 32 0.086 NO 

AM  

Post-peak 

hour 

0% 5 15,759 588     15,482 586     278 14     

25% 5 8,726 123 <.001 YES 8,455 120 <.001 YES 271 15 0.237 NO 

50% 5 7,706 375 <.001 YES 7,440 366 <.001 YES 266 10 0.082 NO 

75% 5 7,596 149 <.001 YES 7,362 147 <.001 YES 234 4 <.001 YES 

100% 5 7,468 84 <.001 YES 7,276 84 <.001 YES 192 18 <.001 YES 

Comparison Between Without and With Detour Advisory 

AM  

Pre-peak 

hour 

25% 5 N/A N/A 0.023 YES N/A N/A 0.025 YES N/A N/A 0.025 YES 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.005 YES 

75% 5 N/A N/A 0.011 YES N/A N/A 0.011 YES N/A N/A 0.349 NO 

100% 5 N/A N/A 0.002 YES N/A N/A 0.002 YES N/A N/A 0.347 YES 

AM  

Peak 

hour 

25% 5 N/A N/A 0.478 NO N/A N/A 0.5 NO N/A N/A 0.052 NO 

50% 5 N/A N/A 0.014 YES N/A N/A 0.013 YES N/A N/A 0.034 YES 

75% 5 N/A N/A 0.03 YES N/A N/A 0.028 YES N/A N/A 0.258 NO 

100% 5 N/A N/A 0.093 NO N/A N/A 0.085 NO N/A N/A 0.142 NO 

AM  

Post-peak 

hour 

25% 5 N/A N/A 0.035 YES N/A N/A 0.009 YES N/A N/A <.001 YES 

50% 5 N/A N/A <.001 YES N/A N/A <.001 YES N/A N/A 0.124 NO 

75% 5 N/A N/A 0.002 YES N/A N/A 0.002 YES N/A N/A 0.07 NO 

100% 5 N/A N/A 0.068 NO N/A N/A 0.057 NO N/A N/A 0.019 NO 

Note: CV = Connected Vehicle; N = Number of Microsimulations Used to Generate Conflicts; SD = Standard Deviation. 
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7.4 Summary 

 

This chapter presented the findings on efforts to quantify the potential benefits of CV applications 

in mitigating secondary crashes on freeways. The CV applications that utilize V2I communication, 

including speed advisory, lane-change advisory, and detour advisory, were explored. Advisory 

messages were disseminated to vehicles equipped with OBUs through V2I communication. 

 

The study area included a 7.8-mile, 6-lane (3-lanes in each direction) road segment on SR-91. This 

site was chosen over other segments along the Florida’s Turnpike due to its relatively high number 

of crashes in 2016-2019, based on observations from the Signal Four Analytics database. 

Furthermore, a 4.2-mile section of Lyons Road, with two lanes in each direction, was considered 

for detouring purposes. Compared to other possible detour routes along the Turnpike corridor, the 

selected detour is one of the sections with the closest consecutive interchanges (~ two miles). 

 

A microscopic simulation approach was used to evaluate the effectiveness of CV applications to 

mitigate secondary crashes. The VISSIM microscopic simulation software was used to 

demonstrate traffic flow characteristics under the CV environment. As the first step, a calibrated 

VISSIM model was developed for the study area. The model mimics geometric and traffic 

characteristics for the selected corridor. Furthermore, incident and V2I communication were 

modeled using the V2X module in the VISSIM software through the COM API. This module 

simulates wireless communication and data exchange within the connected environment.  

 

The following simulation scenarios were considered: blockage of either the inner lane, the outer 

lane, or the two outer lanes to represent a primary incident. The scenarios also considered the effect 

of varying traffic volumes by analyzing traffic data during AM and PM peak periods. Since full 

market penetration of CVs is not anticipated soon, a sensitivity analysis was performed by 

considering varying MPRs of CVs. In each scenario, the safety evaluation was performed in the 

SSAM software by importing trajectory files from VISSIM to analyze the associated traffic 

conflicts. The change in the number of simulated conflicts, considered to be the surrogate measure 

of secondary crashes, was used to evaluate the safety benefits of the CV applications. Finally, a 

statistical analysis was conducted to assess the significance of CVs in mitigating secondary crashes 

using traffic conflicts as a proxy for secondary crashes. 

 

Deployment of CV applications was found to result in up to 98% reduction in traffic conflicts. The 

greater reduction was observed in less congested traffic, even with low penetration of CVs. Greater 

MPR was required to achieve significant conflict reduction during congested periods. It was also 

observed that incidents that block the outer lane result in more traffic conflicts than incidents that 

block the inner lane. Thus, with the same market penetration of CVs, more conflicts were reduced 

when the inner lane was blocked than when the outer lane was blocked.  This could be due to less 

restrictions to merge and diverge when the inner lane was closed, compared to the scenario when 

the outer lane was blocked. Additionally, more conflicts were observed when two lanes were 

closed, compared to single lane closures. The detour advisory was found to be significant for 

incidents that block multiple lanes.  
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

 

Traffic incidents are the primary source of non-recurring congestion. In addition to affecting 

roadway operations, traffic congestion resulting from an incident exposes other vehicles to the risk 

of being involved in additional incidents, typically referred to as secondary crashes. Secondary 

crashes are non-recurrent in nature and lead to reduced freeway capacity, increased delay, and 

decreased travel time reliability. Not only do secondary crashes affect traffic operations, but they 

also impose risk on the safety of road users. Incident management agencies have therefore been 

investing a substantial amount of resources in devising strategies to mitigate secondary crashes. 

Accurate identification of secondary crashes is the first and the most crucial step in devising 

strategies to mitigate their occurrence. Nonetheless, the identification of secondary crashes is not 

a straightforward process. The definition itself is subjective, and identifying secondary crashes 

depends on the accuracy of the approach used to estimate the incident impact area. 

 

Following the identification of secondary crashes, the next step towards developing strategies to 

mitigate secondary crashes is to explore the causal relationship between secondary crashes and 

potential explanatory variables. There are also some difficulties involved in identifying factors 

influencing the occurrence of secondary crashes:  infrequent nature of secondary crashes, selection 

of the most important variables, and identification of variable correlation. 

 

The primary goal of this research was to develop a comprehensive approach to identify and 

mitigate secondary crashes on the Florida’s Turnpike System in real time. The research goal was 

achieved through the following objectives: 

 

1. Investigate ways to accurately identify secondary crashes on the Florida’s Turnpike System 

using real-time traffic and incident data. 

2. Identify factors that influence the occurrence of secondary crashes on the Florida’s 

Turnpike System. 

3. Develop an algorithm that predicts the likelihood of secondary crashes in real time.  

4. Explore the potential of CV applications in mitigating secondary crashes. 

 

8.1 Secondary Crash Identification 

 

Accurate estimation of the primary incident spatiotemporal impact area is essential and imperative 

for mitigating secondary crashes. A data-driven approach was developed to better estimate the 

primary incident impact area and identify secondary crashes within the impacted area. The 

developed approach considered how the queue, initiated by the incident, grows and dissipates 

upstream of the incident. This approach is able to estimate the spatial and temporal impact ranges 

of primary incidents while accounting for the effects of traffic flow conditions. 

 

Traffic incidents from the SunGuide® database and high-resolution speed data from HERE 

Technologies were used to estimate the impact area of a primary incident. These data were 

collected from January 2014 to June 2019. The study area, which is located in Florida, included a 

97-mile section of the Florida’s Turnpike Mainline and TE, a 48-mile adjoining corridor. The 

Mainline study corridor consisted of a 69-mile NTM and a 28-mile STM. 
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The analysis was based on 322,259 traffic incidents that occurred along the study corridors 

between January 2014 and June 2019. Overall, 4,549 secondary crashes in the upstream direction 

of the primary incident were identified from 3,977 primary incidents. The identified secondary 

crashes on the upstream direction of the primary incident accounted for 1.4% of the 322,259 

incidents. This is equivalent to 5.7 secondary crashes per mile per year. 

 

Descriptive statistics of the secondary crashes indicated that 93% of the secondary crashes 

occurred within two hours after the occurrence of the primary incidents. Spatially, 47% of the 

secondary crashes occurred within two miles from the primary incident. Overall, 40% of secondary 

crashes occurred within two hours of the onset of a primary incident and within two miles upstream 

of the primary incident, the most commonly considered spatiotemporal threshold. The following 

are some of the key characteristics of the primary incidents and secondary crashes: 

 

• Only 3% of secondary crashes occurred between midnight and 5:00 AM, whereas 85% 

occurred during morning and evening peak hours. Specifically, 33% of secondary crashes 

occurred during the morning peak (i.e., 6:00 AM - 10:00 AM) while the remaining 52% 

occurred during the evening peak (i.e., 2:00 PM - 8:00 PM). The highest proportion of 

primary incidents (13%) occurred between 4:00 PM and 5:00 PM, while the highest 

proportion of secondary crashes (13%) occurred an hour after the primary incident, i.e., 

between 5:00 PM and 6:00 PM. 

 

• The proportion of normal incidents and secondary crashes was much higher on weekdays 

than on weekends. Compared to other days of the week, Friday was found to experience 

the highest proportion of secondary crashes (20%). 

 

• While secondary crashes were found to occur on Mondays and Fridays, normal incidents 

were found to occur primarily on weekdays (i.e., Monday through Friday). Only 13% of 

secondary crashes were found to occur on weekends.  

 

• As expected, traffic incidents involving towing and/or EMS resulted in longer incident 

clearance durations, as they tend to require more time to be cleared. Approximately 94% 

of normal incidents were cleared within 90 minutes, while 82% of primary incidents were 

cleared within 90 minutes. Likewise, 94% of traffic incidents that did not involve EMS 

were cleared within 90 minutes, while only 64% of traffic incidents that involved EMS 

were cleared within 90 minutes. The longer clearance time of the primary incidents could 

be considered to have contributed to the occurrence of secondary crashes. 

 

• The severity of primary incidents was found to be one of the factors that influence the 

occurrence of secondary crashes. About 9% of primary incidents were moderate/severe 

while only 1% of normal incidents were moderate/severe. Besides the severity of primary 

incidents, the number of responding agencies, percentage of lanes closed, incident type, 

and incidents that required towing and/or EMS were also considered to be good indicators 

of incident severity. About 99% of normal incidents did not result in lane closure, while 

21% of primary incidents resulted in a lane closure. Only 10% of normal incidents were 

identified as crashes, while 47% of primary incidents were crashes. About 13% of primary 
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incidents required towing, while only 3% of normal incidents required towing. Similarly, 

a higher percentage of incidents involving EMS resulted in secondary crashes (11%). 

While only 28% of normal incidents involved more than one responding agency, 51% of 

primary incidents and 55% of secondary crashes involved more than one responding 

agency. These statistics indicate that the severity of primary incidents influences the 

occurrence of secondary crashes. 

 

• Compared to normal incidents (2%), a higher proportion of primary incidents (13%) 

occurred during cloudy/foggy/rainy conditions. Similarly, a higher percentage of primary 

incidents (11%) and secondary crashes (18%) occurred on wet surface conditions. These 

statistics imply that inclement weather conditions and adverse road surface conditions are 

among the factors that increase the probability of secondary crashes. 

 

In practice, the developed approach can be easily implemented considering that its algorithm does 

not require much computational effort except for establishing the speed profiles for normal traffic 

conditions. Notably, these profiles are established once and can be used for a prolonged time (up 

to a year). This method can be used by the incident management officials while generating standard 

reports on a monthly, quarterly, and yearly basis. With additional programming work and the 

availability of access to real-time traffic and incident data, this method could be utilized to 

accurately identify potential secondary crashes in real time. 

 

8.2 Factors Influencing the Occurrence of Secondary Crashes 

 

Identifying risk factors that influence the likelihood of secondary crashes is critical to the 

development and implementation of efficient and resilient traffic management strategies. The 

LASSO penalized logistic regression model, fitted using the bootstrap resampling approach, was 

used to identify risk factors that influence the risk of secondary crashes. Traffic flow, incident, 

temporal, weather, and roadway geometric attributes were considered as potential factors that may 

influence the likelihood of secondary crashes. The proposed model is considered to improve the 

predictive accuracy of the secondary crash risk model because it accounts for the asymmetric 

nature of secondary crashes, performs variable selection, and removes correlated variables. 

 

The study area included a 28 miles STM section. Data used were collected from the following 

sources: HERE Technologies (traffic flow attributes), SunGuide® database (incident, temporal, 

and weather attributes), RCI database, Google Earth Pro software, and Google Maps (roadway 

geometric attributes). These data were collected for a period of five and a half years from January 

2014 through June 2019. 

 

The following factors were found to significantly influence the likelihood of secondary crashes: 

 

• A unit increase in the average prevailing speed reduces the likelihood of a secondary crash 

by 11%. In other words, a unit decrease in average prevailing speed was accompanied with 

an 89% increase in the risk of secondary crashes. 

• A unit increase in the standard deviation of speed before the occurrence of the incident 

reduced the risk of a secondary crash by 7%. 
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• Hazard-related incidents were 29% more likely to result in secondary crashes compared to 

vehicle problem-related incidents. 

• Crashes were 70% more likely to result in secondary crashes than vehicle problem-related 

incidents. 

• Incidents attended to by more than one responding agency were 28% more likely to result 

in secondary crashes compared to incidents attended by only one responding agency. 

• Moderate/severe incidents were twice as likely to result in secondary crashes compared to 

minor incidents. 

• Incidents that occurred on wet road surface conditions were twice more likely to result in 

secondary crashes than those on dry surface conditions. 

• Compared to off-peak hours, incidents that occurred during morning peak hours were 25% 

more likely to result in secondary crashes 

• Incidents with diverge influence area within their impact area were 89% more likely to 

result in secondary crashes. 

• Incidents with merge influence area within their impact area were 29% less likely to cause 

secondary crashes. 

• A unit increase in shoulder width was associated with a 7% decrease in the likelihood of a 

secondary crash. 

• Incidents with a curved segment within their impact area increased the risk of secondary 

crashes by 34%. 

• Incidents with a vertical curve segment within their impact area increased the risk of 

secondary crashes by 127%. 

 

As can be inferred from the study findings, the occurrence of secondary crashes is influenced by 

incident severity and how quickly the incident is cleared. To prevent the risk of secondary crash 

occurrence, traffic management strategies should be developed to accelerate the dissipation of the 

queue upstream of the potential primary incident. Warnings could be sent to drivers approaching 

a primary crash scene in real time through various means, including DMSs, information sharing 

technologies such as the Waze application, and emerging technologies such as CVs, allowing them 

to take necessary precautions (such as detour or drive with caution) to avoid being involved in a 

secondary crash. Furthermore, when the conditions associated with a high likelihood of secondary 

crashes prevail, responding agencies could be better prepared to respond to secondary crashes if 

they were to occur. These strategies will help to potentially reduce the frequency and severity of 

secondary crashes. 

 

8.3 Real-time Secondary Crash Likelihood Prediction: Proof-of-concept  

 

Mitigating the risk of secondary crashes is a crucial goal for effective traffic incident management. 

An algorithm was developed as a proof-of-concept to predict the likelihood of secondary crashes 

in real time. The study area included a 28-mile section of SR-91. The algorithm consists of three 

main parts, the first one being Internal Storage database, which include: 

 

• historical databases, 

• statistical model equation with the secondary crash likelihood parameters, and 

• other potential attributes required to predict the likelihood of secondary crashes but are not 

collected in real time, i.e., roadway geometric characteristics. 
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The second part of the algorithm consists of Backend Programs for collecting, parsing, and saving 

incident, traffic, and rainfall data in real time. One of the algorithm applications continuously 

accesses the Florida’s Turnpike SunGuide® database through VPN every two minutes and ping 

new incidents. The RealtimeSpeed application functions to retrieve, process, and save real-time 

speed data from the HERE real-time flow XML feed. This process is implemented for each Traffic 

Message Channel within the study corridor every minute. The RealtimeRainfall application 

retrieves real-time rainfall information from the NEXRAD Level-II network hosted in the “noaa-

nexrad-level2” Amazon S3 bucket. The rainfall intensity values are retrieved every 4-6 minutes. 

 

The information from the Internal Storage database and Real-time Data Backend Programs are 

then combined to predict the likelihood of secondary crashes. The secondary crash prediction 

process makes the third and final part, referred to as the Secondary Crash Prediction Program. 

This program is a two-fold process that focuses on (1) estimating the impact area of an incident 

and (2) predicting the likelihood of secondary crashes. 

 

In summary, this algorithm could be used to develop ATMS to proactively prevent secondary 

crashes. Through this algorithm, first responders will be more vigilant and better prepared in case 

secondary crashes occur. In addition, motorists upstream of the primary incident could be warned 

about the potential for secondary crashes. Warnings could be sent to drivers approaching a 

potential primary incident scene in real time through various means, including DMSs, information 

sharing technologies such as Waze application, and the emerging technologies such as connected 

vehicles, giving them an opportunity to take necessary precautions (such as detour and/or drive 

with caution) to avoid being involved in a crash. 

 

8.4 Potential of CV Applications in Mitigating Secondary Crashes 

 

In light of the potential benefits offered by CV applications and the safety concerns associated 

with secondary crashes, the potential benefits of CV applications in mitigating secondary crashes 

was quantified. Since CVs are not yet fully operational, a sensitivity analysis was conducted at 

varying MPRs. The study leverages the application of CV technologies that utilize V2I 

communication, including speed advisory, lane-change advisory, and detour advisory. Information 

was disseminated to vehicles equipped with OBUs through V2I communication. 

 

The study area included a 7.8-mile, 6-lane (3-lanes in each direction) road segment on SR-91. The 

freeway segment is in Broward County and crosses four roadways: Sample Road, Copans Road, 

Coconut Creek Road, and Atlantic Boulevard. The interchanges are 1 to 2 miles apart along the 

study corridor, with access to the Turnpike at each interchange except the Copans Road crossing. 

This site was chosen over other segments along the Florida’s Turnpike due to its relatively high 

number of crashes in 2016-2019, based on observations from the Signal Four Analytics database. 

Furthermore, a 4.2-mile section of Lyons Road, with two lanes in each direction, was considered 

for detouring purposes. Compared to other possible detour routes along the Turnpike corridor, the 

selected detour is one of the sections with the closest consecutive interchanges (~ two miles). 

 

A microscopic simulation approach was used to evaluate the effectiveness of CV applications to 

mitigate secondary crashes. The VISSIM microscopic simulation software was used to 

demonstrate traffic flow characteristics under the CV environment. As the first step towards 
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achieving the study objective, a calibrated VISSIM model was developed for the study area. The 

model mimics geometric and traffic characteristics for the selected corridor. Furthermore, incident 

and V2I communication were modeled using the V2X module in the VISSIM software through 

the COM API. This module simulates wireless communication and data exchange within the 

connected environment.  

 

The study designed various simulation scenarios, including blockage of either the inner lane, the 

outer lane, or the two outer lanes to represent a primary incident. It also considered the effect of 

varying traffic volumes by analyzing traffic data during AM and PM peak periods. Since full 

market penetration of CVs is not anticipated soon, the study performed a sensitivity analysis by 

considering varying MPRs of CVs. In each scenario, the safety evaluation was performed in the 

SSAM software by importing trajectory files from VISSIM to analyze the associated traffic 

conflicts. The change in the number of simulated conflicts, considered to be the surrogate measure 

of secondary crashes, was used to evaluate the safety benefits of the CV applications. Finally, a 

statistical analysis was conducted to assess the significance of CVs in mitigating secondary crashes 

using traffic conflicts as a proxy for secondary crashes. 

 

Deployment of CV applications was found to result in up to 98% reduction in traffic conflicts. 

Greater reduction was observed in less congested traffic, even with low penetration of CVs. 

Greater MPR was required to achieve significant conflict reduction during congested periods. It 

was also observed that incidents that block the outer lane result in more traffic conflicts than 

incidents that block the inner lane. Thus, with the same market penetration of CVs, more conflicts 

were reduced when the inner lane was blocked than when the outer lane was blocked.  This could 

be due to fewer restrictions to merge and diverge when the inner lane was closed, compared to the 

scenario when the outer lane was blocked. Additionally, more conflicts were observed when two 

lanes were closed, compared to single lane closures. The detour advisory was found to be 

significant for incidents that block multiple lanes. 

 

The adopted methodology used traffic conflicts from the microscopic simulation as a proxy for the 

risk of secondary crashes. However, with the current state-of-the-art, there is no direct quantitative 

link between simulated traffic conflicts and the number of possible secondary crashes. Future 

research could investigate and establish the connection between the simulated traffic conflicts and 

secondary crashes. Parameters based on previous studies were used while modeling incident 

conditions. It is recommended that future work should consider calibrating the VISSIM model 

based on traffic conditions within the incident impact duration. 
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