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Executive Summary 

 

In steel girder bridges, fatigue cracking is one of the most important phenomena affecting 

structural performance and integrity. In general, fatigue cracks are the result of out-of-plane 

distortion or other unanticipated secondary stresses at low fatigue resistance members. 

Development of fatigue cracking may lead in time to a full-depth fracture of one girder without 

noticeable bridge profile changes. It is critical to ensure that the bridge will have adequate capacity 

to prevent collapse until the next cycle of inspection discovers the damage. Bridges that a failure 

in an individual member could result in the total collapse of the structure are classified as fracture 

critical by AASHTO. It is required that inspection of these bridges be carried out using an “arm’s 

length” approach, which is costly and is a drain on the state’s total bridge budget.  

Currently, twin steel box girder bridges are classified as bridges with fracture-critical members. 

However, recent research results indicate that these bridges could be redundant because of their 

high torsional resistance even after a full-depth fracture of one girder. The most notable study is 

the series of full-scale tests carried out by the University of Texas-Austin that demonstrated a high 

level of internal redundancy of twin steel box girder bridges. The main question as to what load 

level should be used and established using a scientific approach still remains as a task to be 

accomplished. Further, many questions remain regarding the expected failure mode of the 

damaged twin steel box girder bridges and the methods for assessing the bridge performance, 

before these bridges could be removed from the non-redundant list. An upcoming specification 

developed by Purdue researchers establishes a set of requirements for redundancy of twin steel 

box girder bridges that could be considered at the design stage to assure redundancy. This 

specification applies only to bridges with continuous spans.   

The objective of this project was to establish a design target performance and safety level for twin 

steel box girder bridges, and outline a methodology and approach for assessing the redundancy of 

these bridges of simple and continuous spans. The Florida Bridge Inventory was statistically 

analyzed to determine the available range of each functional and geometric parameter like span 

length, number of spans, number of lanes, deck width, and radius of curvature in existing twin 

steel box girder bridges, and at the end, the bridge tested at the University of Texas with the span 

length of 120 ft was selected as a baseline model for developing information for preliminary 

reliability analysis of twin steel box girder bridges. Furthermore, weight-in-motion (WIM) data 

from 32 stations collected throughout four years (2013-2016) in the state of Florida was used to 

develop a live load model the bridge would be subjected to during a two-year inspection interval. 

The data left after filtering out vehicles less than 20-kip gross vehicle weight (GVW) were used 

for further analysis.  

 

Since the controlling criteria in the design are the load effects, i.e., moment and shear created by 

vehicles. Each vehicle in the database was run over an influence line for the considered span length 

of 120 ft, and moment and shear were calculated. For a better interpretation of results, the moment 
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and shear produced by each vehicle were divided by the corresponding load effects of the HS-20 

design truck. It was assumed that 32 WIM stations in Florida have representative truck traffic for 

Florida. The statistical parameters of mean maximum and coefficient of variation (CV) of live load 

(moment) were presented and were used for reliability analysis calculations. 

 

A detailed finite element model was developed to simulate the local and global behavior of bridge 

superstructure using steel girder made composite with concrete deck slabs. The model was 

validated with a series of available test results on full-scale and scaled bridges.  These included 

the full-scale University of Nebraska bridge consisting of three I-shaped steel girders, and the FIU 

scaled twin steel box girders.  The finite element models were shown to simulate very well both 

the global and local behavior of the tested bridges in their intact condition as well as after one 

girder fracture (FIU Bridge).  The University of Texas bridge was then modeled to investigate the 

failure mode and ultimate load-carrying capacity of the bridge subjected to truck loading after a 

full-depth fracture in one of the girders. Material nonlinearity and concrete damage plasticity were 

used to consider tensile cracking and compressive crushing of the concrete deck in the model. 

Contact surface was used to define the surface contact between the railings and also to consider 

the possibility of support uplift during the loading. Moreover, according to the results of available 

tests and analyses, shear studs between girders and deck slab may influence the onset of failure in 

the deck, and therefore, shear studs were also modeled. A large number of analyses were performed 

on this bridge chosen as a case study for reliability analysis. 

 

Three tests were conducted by the University of Texas on the full-scale bridge. The first test was 

performed to evaluate the behavior of the bridge under loading simulated by the weight of concrete 

blocks (slightly over HS-20 loading and equal to 76 kips total) after a sudden fracture at the bottom 

flange of the exterior girder.  The second test was conducted by cutting the bottom flange and 83% 

web of the exterior girder to study the fractured bridge behavior under the same loading as Test 1. 

And finally, the ultimate load test was performed to investigate the ultimate load-carrying capacity 

of the fractured bridge. The ultimate test was performed by increasing a uniform load applied using 

sand over the HS-20 truck outline area until the bridge collapsed. The finite element model was 

validated against these available experimental test results conducted by the University of Texas, 

as shown in Figure- I. In addition to global behavior, the model was capable of simulating the local 

behavior, including the development of the deck yield line pattern shown in Figure- II. 
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Figure- I. Comparison of the deflection curve of the first test for fractured girder obtained from experiment and FE model. 

 

 
Figure- II. The yield line pattern of the deck subjected to increasing live load in the Finite Element Model. (white lines are added 

to reflect the idealized yield lines used in simple analysis). 

   

After verification of the FE model, the bridge was analyzed for two scenarios of the intact and 

fractured bridge. The bridge was loaded in terms of an HS-20 design truck positioned at the mid-

span over the fractured girder to generate maximum moment at the section with fracture (one-lane 

loading). In order to study the effect of truck position on the failure mode and the ultimate load-

carrying capacity, the HS-20 truck was positioned in four different locations across the bridge 

width. The results showed that concrete deck failure is the governing failure mode of the fractured 
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bridge subjected to truck loading at different positions. The sensitivity analysis indicated that one-

way shear is the bridge failure mode when the truck is positioned closest to the intact girder, and 

concrete deck bending is the bridge failure mode when the truck position transversely is farthest 

from the intact girder. Nevertheless, the truck position at farthest from the intact girder with the 

concrete deck bending failure resulted in the lowest bridge load carrying capacity and was 

considered as the dominant failure mode. 

 

In order to consider the effect of variation in bridge configurations and material properties, as well 

as truck loading configuration on the bridge failure mode, a sensitivity analysis for the deck 

concrete compressive, deck thickness, and truck configuration was conducted. Different concrete 

compressive strengths and deck thicknesses varying from 4 ksi to 6.2 ksi and 7.5 in. to 8.5 in., 

respectively, and three trucks with loading configurations other than the HS-20 truck were selected 

for this purpose, as shown in Figure- III. The C5 truck (80 kips; 36 feet long) is longer and heavier 

than the HS-20 design truck configuration, and the EV3 truck (86 kips; 19 feet long) that creates 

larger longitudinal and transverse bending moment in the bridge were selected as Florida legal and 

emergency vehicles. Moreover, WIM data in the state of Florida were also used for selecting a 

typical truck, which creates a larger moment and shear for a 120-ft simple span bridge. The selected 

truck, which is called here WIM Data-FL, has a gross vehicle weight of 120 kips distributed over 

seven axles (Class 13 based on FHWA vehicle category classification).  

 

The results showed that variation in material properties and truck loading configuration would not 

change the dominant mode of failure for the twin steel box girder bridge considered in this study 

after a fracture in one girder. Therefore, to simplify the process and avoid the need for FE analysis 

for each loading case, a simple and unified yield line analysis was developed to determine the 

bridge load-carrying capacity subjected to different truck configurations, based on the concrete 

deck damage pattern observed in the FE analysis, as shown in Figure-IV. This model is an 

improvement to a model proposed earlier by the University of Texas that was developed based on 

limited test and analysis results.  In this newly proposed pattern, the truck is positioned closest to 

the railing, where its center of gravity coincides with the mid-span over the fracture. The length of 

the longitudinal yield line (b) is considered equal to the truck length. To find the angle of the 

diagonal lines ( in Figure- IV), a parametric analysis was conducted to find an angle that results 

in capacity in agreement with patterns and capacity obtained from FE analysis. The results show 

that the simplified method with 35o gives the best average capacity ratio compared to the FE 

analysis. This unified pattern, however, provides a conservative estimate of the deck capacity when 

compared to the values obtained from nonlinear finite element analysis. 
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(a) 

 
(b) 

 
(c)  

Figure- III. Vehicle loading configuration. (a) Florida Emergency Vehicle (EV3); (b) Florida legal load (C5); (c) Florida typical truck 
(WIM Data –FL). 

 

 
Figure- IV. Simplified yield line pattern for different loading configurations. 

Moreover, a series of analyses were conducted on the bridge to investigate the behavior of the 

bridge in intact and damaged scenarios under dead and increasing live load. The goal was to 

determine the distribution of dead and live loads before and after the fracture of one girder. 

According to the results, the dead load moment on the intact girder increases by about 50 percent 

once a fracture occurs. The fractured girder has a very small stiffness at the middle (one can assume 

hinge or very weak spring), so it attracts only a negligible moment compared to the intact girder. 

The live load moment analysis for the intact bridge shows that the left girder (loaded) carries 60%, 
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and the right girder carries 40% of the live load. However, after the fracture, the right girder (intact) 

carries most of the live load (66%) because of a decrease in stiffness of the fractured girder.  

Nevertheless, the fractured girder is undamaged through most of its length. Because a truck’s load 

is applied through its wheel footprint, and rear and front wheels are at a distance from the middle, 

the fracture girder can transfer some portion of live load (34%) through those segments as a 

cantilever beam. Unlike the live load, the dead load is distributed along the bridge, and the 

fractured girder is able to transfer a noticeable portion through its undamaged end segments. 

  

A simplified reliability analysis of a twin steel box girder bridge superstructure and its deck was 

presented to estimate the minimum criteria that a deck should satisfy in order to ensure that it can 

transfer a minimum level of load between the box girders when one of the girders sustains a severe 

fracture.  The recommendation was made based on meeting a reliability index target, target=2.5 

over a five-year service period.  In addition, a list of live load factors was provided for different 

target reliability levels for the case of the two-year service period. The calculations were performed 

assuming that the load-carrying capacity of the deck was modeled using the yield line analysis 

approach presented in this study that provides a conservative estimate of the deck capacity 

compared to FE analysis. Nevertheless, lacking any additional data, it is herein assumed that the 

yield line analysis would be applicable for the most heavily loaded trucks that could potentially 

cross a Florida twin steel box girder bridge that has sustained a severe fracture to one of its box 

girders. In addition to applying the recommended live load factor, the yield line analysis implies 

the application of a dynamic amplification factor IM=1.33, a dead load factor DL=1.25 and a 

moment resistance factor for the concrete deck equal to =0.9. 

A reliability analysis was carried out to estimate the reliability index corresponding to various live 

load levels based on the simplified yield line bending failure of the deck only. The results are 

presented in Table- I. The analysis of the bridge deck for the 120-ft bridge studied in this report, 

therefore, indicates that the bridge deck in its current configuration and concrete strength and 

ignoring the possible contribution of the railings to help carry some of the load will fail at a live 

load factor LL=1.71 when the deck’s concrete strength is set at f’c=6.23 ksi as determined from 

the tests. This indicates that its reliability index is on the order of =2.0 for a five-year service 

period, or slightly higher than that for a two-year service period. However, For the bridge to 

provide sufficient reliability to sustain the possible fracture of one of its two-box girders, it is 

important that the remaining box girder has sufficient load carrying capacity to withstand the entire 

live load that may cross the damaged bridge with one fractured box.  This can be ensured if the 

bridge’s box girders outside of fracture can satisfy a minimum rating factor.  
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Table- I. Live load factors for deck analysis necessary to meet different target reliabilities. 

Target 

Reliability index 

5-year live load 

factor, LL 

2-year live load 

factor, LL 

3.50 2.69 2.61 

3.00 2.32 2.26 

2.50 2.00 1.94 

2.25 1.85 1.79 

2.00 1.71 1.65 

1.50 1.44 1.39 

1.00 1.21 1.16 

The analysis of fractured bridges was repeated for two scenarios.  The first scenario assumes that 

the fractured bridge will still be able to carry its own dead weight but transfers all the live load to 

the intact girder. The second scenario assumes that the load distribution follows the nonlinear FE 

analysis conducted in this study that the bending moment of the intact girder will increase by 50% 

under dead load, and 66% of the live load in the lane over the fractured girder will transfer to the 

intact girder.  Based on the assumed scenarios, Tables II and III show the LRFR Inventory Rating 

Factors required for the box girder members to ensure that the bridge will be able to sustain the 

fracture of one box girder and yet be able to support sufficient live loading over a two-year or a 

five-year service period until the damage is detected. The results show that an LRFR Inventory 

Ratings on the order of R.F.=1.28 to 1.33 and R.F.= 1.34 to 1.38 are required for scenarios I and 

II, respectively, to meet a target reliability index target=2.50 should one of the two box girders 

fracture.   

 
Table- II. LRFR inventory rating factors for box girders necessary for fractured bridge to meet different target reliabilities based 

on the first scenario. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.73 1.67 

3.00 1.52 1.46 

2.50 1.33 1.28 

2.25 1.24 1.19 

2.00 1.16 1.11 

1.75 1.07 1.03 

1.50 1.00 0.96 

1.25 0.92 0.89 

1.00 0.85 0.82 
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Table- III. LRFR inventory rating factors for box girders necessary for fractured bridge to meet different target reliabilities based 
on the second scenario. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.74 1.69 

3.00 1.55 1.51 

2.50 1.38 1.34 

2.25 1.30 1.27 

2.00 1.23 1.19 

1.75 1.15 1.12 

1.50 1.08 1.05 

1.25 1.01 0.98 

1.00 0.95 0.92 

The bridge analyzed in this study has an LRFR Inventory Rating of R.F.=2.05. Thus, the intact 

box girder is capable of sustaining a significant level of live loads as well as a large proportion of 

the dead loads that were originally carried by the fractured girder, and that the bridge failure is 

definitely expected to be due to the failure of the deck as explained earlier. It should be noted that 

in simple span steel bridges, service limit states are normally the governing design limit states, and 

the strength LRFR Inventory Rating is considerably greater than one and in the order of the bridge 

considered in this study.  
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 Chapter 1 Background Statement 

In steel girder bridges, fatigue cracking is one of the most important phenomena affecting 

structural performance and integrity [1]. In general, fatigue cracks are the result of out-of-plane 

distortion or other unanticipated secondary stresses at low fatigue resistance members. 

Development of fatigue cracking may lead in time to a full-depth fracture of one girder without 

noticeable bridge profile changes. It is critical to ensure that the bridge will have adequate capacity 

to prevent collapse until the next cycle of inspection discovers the damage. Investigations on the 

bridge collapses show that a failure in an individual member could result in the total collapse of 

the structure [2]. 

 

According to the American Association of State Highway Transportation Officials (AASHTO 

LRFD Bridge Design Specifications) [3], “Fracture Critical members (FCMs) are steel tension 

members or steel tension components of members whose failure would be expected to result in the 

collapse of the bridge.” It is required that inspection of these bridges be carried out using “arms-

length” approach, which is costly and is a drain on the State’s total bridge budget [4, 5]. Currently, 

twin steel box girder bridges are classified as bridges with fracture critical members. Specifically, 

the tension bottom flange in the twin steel box girder bridges is categorized as a fracture critical 

element. Inspection of tension bottom flanges over a busy roadway is costly, time-consuming, and 

causes traffic disruption and potential safety hazards. It may also take the inspectors as long as two 

years to detect the fracture, rendering the bridge potentially unsafe for a long duration [6, 7]. 

 

Studies on the fracture critical bridges indicate examples of steel bridges that survived even after 

a full-depth fracture in one of the girders [8]. The results demonstrated a high level of internal 

redundancy and secondary load paths in the bridge systems that have not been considered in the 

design procedure [9–16]. The US-52 bridge over the Mississippi River, the Neville Island bridge 

on I-79 in Pittsburgh, and the Brandywine River bridge on I-95 in Wilmington are examples of 

bridges with a full-depth fracture in one of the girders that remained in service with a static 

deflection [17, 18]. 

 

Recent research results indicate that twin steel box girder bridges could be redundant because of 

their high torsional resistance even after a full-depth fracture of one girder. The most notable study 

is the series of full-scale tests carried out by the University of Texas-Austin [19, 20] that 

demonstrated a high level of internal redundancy of twin steel box girder bridges. A study carried 

out by HNTB on the two box girder structures in the Marquette Interchange, through non-linear 

numerical analysis, also demonstrated the high level of internal and structural redundancy of twin 

steel box girder bridges [21]. NCHRP project 12-87 [11] includes an objective, “(1) develop a 

methodology to quantify when a steel bridge system is considered FC based on loads, existing 

conditions, material properties, and bridge configurations, and (2) recommend AASHTO 

specifications using the methodology in the design of new bridges and the evaluation of existing 
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bridges”. NCHRP 12-87 has recently developed a series of recommendations and requirements for 

twin steel box girder bridges to be considered non-fracture critical. 

 

The main question as to what load level should be used and established using a scientific approach 

still remains as a task to be accomplished. Further, many questions remain on the level of 

performance expected from damaged twin steel box girder bridges and behavior in between 

inspection cycles before twin steel box girder bridges could be removed from the non-redundant 

list. Additional efforts are spearheaded by Texas DOT for the use of “simple” method to assess 

the redundancy of twin steel box girder bridges, which oftentimes are difficult to meet because of 

the level of conservatism involved. It is, however, promising that FHWA has been more receptive 

to the idea of removing twin steel box girder bridges from the non-redundant list. There will be 

some complementary and overlap among the ongoing two limited studies cited above and this 

project. This should provide a more compelling reason for FHWA and more credible justifications 

and verifications to consider removing twin steel box girder bridges from the non-redundant list. 

In conclusion, this study, with the composition of the research team assembled, will be very 

influential in resolving this long-standing and challenging issue, namely the redundancy of twin 

steel box girder bridges.  

 

An additional relevant project related to twin steel box girder bridges is a limited numerical study 

being carried out at Purdue University with limited funding provided by the National Steel Bridge 

Alliance (NSBA). To date, this study has analyzed a few twin steel box girder bridges and has 

developed automated meshing that could be used in conjunction with detail three-dimensional non-

linear finite element analyses.  

 

The most comprehensive recent study is a project performed at Florida International University 

and sponsored by Florida Department of Transportation entitled “Managing Florida's Fracture 

Critical Bridges - Phases I & II,” FDOT Research Project Number BDV29-977-17 [22]. These 

extensive experimental, field testing, numerical and analytical studies have shown that a high level 

of redundancy exists in twin steel box girder bridges. Major conclusions from this study include:  

 

a) Twin steel box girder bridges have a capacity after the complete fracture of the tension 

flange on one girder 

b) Punching shear capacity of the deck is the weak link. Results of FDOT sponsored work 

indicates that damaged twin steel box girder bridges do not have the mechanism to transfer 

high wheel loads below the deck, and punching shear of the deck will take place before 

any other failure type. We should also note that very seldom the bridge sees loads that are 

designed for, and almost impossible to see the kind of wheel loads that would result in a 

failure. This important observation is completely absent in recent works conducted by 

Texas, NCHRP, or Purdue work.  
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What remains to be accomplished is to take advantage of existing knowledge and conduct the 

necessary additional work to fill in the knowledge gap and develop a sound methodology, 

approach, and tools that State DOTs could use to evaluate redundancy of twin steel box girder 

bridges and eliminate them from the fracture critical list.  

 

The existing guidelines in the AASHTO LRFD Bridge Design specification as well as the June 

20, 2012 memorandum (FHWA is in the process of issuing an update on this memorandum) issued 

by FHWA and very recent discussions with FHWA, and the recently completed NCHRP 12-87 

research project allows and provides a roadmap for assessing the redundancy of twin steel box 

girder bridges.  

 

The commentary for Section 6.6.2 of the AASHTO LRFD Bridge Design Specifications provides 

general guidelines that can be used to evaluate the performance of bridges with Fracture Critical 

members. The challenge in evaluating redundancy of the twin steel box girder bridges is that it is 

implied that each bridge in the State inventory should be analyzed individually before it can be 

removed from the fracture critical list. In this study, the notional bridge approach will be used, as 

explained later. 
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 Chapter 2 Project Objectives 

The objective of this project is to establish a design target performance and safety level for twin 

steel box girder bridges, outline a methodology and approach for assessing the redundancy of the 

twin steel box girder bridges, assess the redundancy of a bridge using the recommended approach, 

and summarize the findings to present the results to FHWA.  

 

For establishing bridge loading and response criteria, and minimum acceptable methods and 

requirements for analysis, a series of tasks as per the original proposal were conducted and 

deliverables were submitted as separate reports for each task. This Final Report compiles all 

previous reports in an organized manner supplemented by Executive Summary and Summary and 

Discussions. 
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 Chapter 3 Development of “Equivalent” or Notional Twin Steel Box 

Girder Bridge  

The FDOT sponsored project performed earlier by FIU has developed a preliminary approach to 

develop an “Equivalent” simple or continuous span bridge that could represent a series of twin 

steel box girder bridges. This approach and conceptual steps for developing a notional bridge are 

summarized as follows. 

 

The most reliable method for checking the redundancy of twin steel box girder bridges is 

conducting a detailed nonlinear finite element model and checking the critical limit states and the 

minimum load levels that bridges can carry before these limit states are reached. However, 

checking the redundancy of all twin steel box girder bridges within the inventory of a given state 

requires a significant amount of financial, labor, and computer recourses. Moreover, future bridges 

may have different characteristics than the current bridges, and their redundancy needs to be 

evaluated by developing a new finite element model.    

 

The notional approach proposed by the earlier FIU study suggested reducing the level of efforts 

by subdividing all twin steel box girder bridges within the state inventory into several groups based 

on their main characteristics, and developing a notional simple or continuous span twin steel box 

girder bridge that would represent each group. By evaluating the redundancy of the notional bridge 

using a detailed nonlinear finite element model, all bridges within the group under consideration 

can also be evaluated. Moreover, the redundancy of any new bridge can be evaluated by comparing 

its characteristics to the presented notional bridges.  

 

The grouping criteria are determined based on the geometrical characteristics of the bridge, 

including the type of bridge, designed lane-load number, maximum span length, number of spans, 

radius of curvature, and cross-section. Based on these factors, bridges of interest can be categorized 

into several groups. Once select bridges are categorized into groups, a notional bridge model that 

can represent all the bridges within each group needs to be developed. 

 

By developing a calibrated finite element model for the notional bridge representing each group, 

the analysis results such as the ultimate load-carrying capacity and maximum deflection can be 

calculated to check against redundancy criteria. As a result, if the notional bridge model satisfies 

the redundancy criteria and is classified as redundant, all the bridges within that group will also be 

categorized as redundant. If the criteria are not satisfied, bridges in that group can be divided into 

smaller subgroups, and the process to find a group that meets the redundancy criteria can be 

repeated. This approach has the potential ability to classify all the bridges into redundant or non-

redundant groups. 
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3.1 Florida Bridge Inventory 

At the request of FIU researchers, FDOT Research Office provided an inventory of steel box girder 

bridges in the state of Florida.  As it was stated earlier, the functional and geometric parameters of 

bridges that have an effect on the ultimate load-carrying capacity and maximum deflection need 

to be considered for developing a notional bridge for each group of bridges in the inventory. As a 

result, the Florida Bridge Inventory was statistically analyzed to determine the available range of 

each functional and geometric parameter. According to the Florida Bridge Inventory, as of 2016, 

there are approximately 12,900 bridges in Florida, including 1200 steel bridges, of which 140 are 

steel box girder bridges, with the majority being two-box girder bridges. Three hundred ninety 

steel bridges currently are classified as Fracture Critical. Table 3-1 and Figure 3-1 show the 

distribution of bridges based on the number of box girders that varies from a single girder to nine 

girders. Single box girder bridges, regardless of their configurations, are classified as fracture 

critical bridges and are excluded from this study.  If a twin steel box girder bridge group is 

determined to be redundant, bridges with three or more box girders with the same characteristic 

would be automatically determined to be redundant. Hence, statistical analysis of the inventory in 

this study will be performed over all available two-box girder bridges. Detailed information 

obtained from the Florida Bridge Inventory is presented in Appendix A. 

 
Table 3-1. Distribution of bridges: Number of the box girder. 

No. of Box Girders 1 2 3 4 ≥5  Total 

No. of Bridges 3 85 33 7 12 140 

Percentage 2% 61% 24% 5% 9% 

 

 
Figure 3-1. Distribution of bridges: Number of box girders. 
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3.1.1 Maximum Span Lengths and Number of Spans 

The span lengths and the number of spans for a bridge are normally determined in design based 

on parameters such as the topography of the site, configuration of other roads beneath or around 

the bridge, environmental issues, architectural plans, structural systems, and construction methods. 

In a multi-span bridge, span lengths and the number of piers are usually determined for optimum 

configuration. However, by considering environmental effects and construction difficulties for the 

piers, longer spans with fewer foundations may be the preferred solution. Figure 3-2 shows the 

distribution of maximum lengths of span for Florida's twin steel box girder bridges divided into 

five main groups. The span lengths vary from 113 ft to 372 ft, with a large majority of bridges 

having a span between 150~250 ft. 

 

Figure 3-3 shows the distribution of bridges based on the number of the span. As can be seen, most 

of the bridges have more than three spans, and there are only five simple span bridges of this type 

in the state of Florida. The number of spans, consequently the continuity of spans, plays a defining 

role in the maximum deflection and ultimate load capacity of a bridge. This is especially important 

since one fractured girder in a span within a multi-span bridge can carry the load as a cantilever 

beam. As a result, the stiffness of continuous bridges after fracture is much higher than simple 

span bridges with the same characteristics. The worst fracture scenario in a multi-span bridge is a 

fracture in the middle of the first or last span, i.e., exterior spans. Because in this case, the fractured 

girder can act as a cantilever beam just on one side. Accordingly, and for simplicity, a two-span 

continuous bridge can be considered to represent all multi-span bridges conservatively. 

 

 
Figure 3-2. Distribution of bridges: Length of max. Span (ft). 
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Figure 3-3. Distribution of bridges: Number of the span. 

3.1.2 Number of Lanes 

The number of lanes is determined based on parameters such as average annual daily traffic 

(ADTT), the desired level of service, percent of trucks and peak hour factor (PHF), and the number 

of lanes in the connecting roadway. Loading configuration for the design and evaluation of a bridge 

depends on the number of lanes, therefore making it another effective parameter in redundancy 

evaluation. As shown in Figure 3-4, statistical analysis over the Florida bridge inventory shows 

that 92% of twin steel box girder bridges have 1 or 2 lanes, which are generally used for overpass 

roadways. Therefore, because of their lower percentage number, bridges with 3 or 4 lanes, for the 

time being, are not considered in the grouping criteria. Also, for all the remaining single and 

double-lane bridges, 2-lane bridges will be used conservatively in the grouping process. 

 

 
Figure 3-4. Distribution of bridges: Number of lanes.  
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3.1.3 Deck Width 

A typical lane width is 12 ft; however, the actual width can vary based on the type of roadway, 

whether it is a principal arterial, rural highway, or residential street, or whether it is in a straight or 

curved span.  Further, the lane closest to a raised median or in a ramp may be extra wide to allow 

for some distance between the vehicle and the median. Deck width includes the lane widths plus 

shoulders, curbs, and railings, and the larger the lane width, the more critical will be the effect of 

eccentric loading (over fractured girder).  Road width is normally 2 to 3 ft smaller than deck width.  

Analysis of inventory bridges shows that the deck width varies within a range for a certain number 

of lanes.  For example, deck width for a two-lane bridge varies between 40 ft and 50 ft. For this 

study, the deck width is not considered a parameter (variable).  For simplicity, it will be attempted 

to use in analysis a typical width that would represent the majority of two-lane bridges. It is also 

realized that the design of a specific bridge, including dimensions and spacing of the girders, have 

already taken into account the deck width, therefore renders it to be a dependable variable. Figure 

3-5 shows the distribution of bridges based on the deck width.  

 

 
Figure 3-5. Distribution of bridges: Deck width. 
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decrease, the torsional moment increases due to the eccentricity of gravity loads relative to the line 

of support. This torsional moment is significant even for a short span bridge.  

 

1 lane 2 lanes 3 lanes 4 lanes

25-40 ft 40-50 ft 50-60 ft 60-80 ft

No. of Bridges 38 40 3 4

45%
47%

4% 5%

0

5

10

15

20

25

30

35

40

45

N
O

. O
F 

B
R

ID
G

ES

DECK WIDTH (FT)



10 

 

Because of this, steel box girder bridges, because of their high torsional resistance, are mainly used 

for ramp and curved overpass highway bridges. In cases where one girder is fractured, torsional 

resistance would decrease significantly; as a result, loading eccentricity due to curvature will 

negatively affect the ultimate load capacity and serviceability of the bridge and cannot be ignored.  

 

  
Figure 3-6. The radius of curvature. 

 

According to the AASHTO LRFD, the horizontal radius of curvature measured to the centerline 

of the girder web shall not be less than 150 ft. In addition, the radius shall not be less than 1000 ft 

when the flange thickness exceeds 3.0 in or the flange width exceeds 30.0 in. Table 3-2 shows the 

available minimum radius of curvature for each span group that would be used for grouping 

representing the most critical combination of span length and curvature.  
 

Table 3-2. Distribution of loading eccentricity based on bridge curvature. 

Length of Max. Span (ft) 100-150 150-200 200-250 250-300 300-400 

Available Min. radius of curvature (ft) 175 280 400 490 774 

 

3.1.5 Parameters to Be Considered in Grouping 

Based on analyzing Florida Bridge Inventory, it can be concluded that the only number of spans 

(single span or two continuous spans), maximum span length, the radius of curvature, and cross-

section are the parameters with the highest impact and will be considered for grouping criteria. 

Other parameters will be assumed constant for notional bridges. In this research, the deck is 

assumed to have two lanes, and the width of the deck is assumed to be a typical value most used 

within the inventory for 2-lane bridges. For this stage of the investigation, skewness at supports 

will not be considered as one of the parameters, i.e., supports are assumed to be perpendicular to 

the longitudinal axis of the bridge.  
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For the initial grouping, all bridges in the inventory are divided into two main groups of simple 

and two continuous spans.  In the latter case, the fractured girder in a multi-span bridge can still 

carry loads as a cantilever beam from one side; as a result, the stiffness of these bridge after fracture 

is higher than simple span bridges with the same characteristics.  Also, a two continuous-span 

bridge can represent all other multi-span bridges conservatively. Each of these two main groups 

can be divided into five subgroups based on the maximum span length presented in Figure 3-2 to 

form 10 main initial groups. The range of radius of curvature for each span length group can be 

determined according to the available radius of curvature in the inventory.  

 

Once geometric parameters of the notional bridge for each group are determined, design details of 

a set of similar inventory bridges will be obtained from FDOT.  The notional finite element model 

for each group will then be developed based on these design details and analyzed to evaluate the 

ultimate load-carrying capacity and the maximum deflection to span length ratio for the intact 

bridge. The load-carrying capacity and deflection will be used to define the level of over or under 

capacity design as well as the deflection to span ratio and to assure that the cross-sections are a 

true representation for bridge configuration.  

 

Finally, the notional finite element model representing each group with the minimum available 

radius of curvature for that group can be developed for the fractured girder condition.  The models 

can be analyzed under the loading condition obtained from reliability analysis. The results can be 

compared to the redundancy criteria (Ultimate limit state and serviceability limit states) to find if 

a notional bridge with the minimum allowable radius of curvature will meet the redundancy 

criteria. If the notional bridge representing a group with the minimum radius of curvature satisfies 

the redundancy criteria, then all bridges in that group will be identified as redundant.  Otherwise, 

the radius of curvature will be increased incrementally until the redundancy criteria are met.  

Accordingly, the referenced bridge group can be divided into subgroups based on the radius of 

curvature that would satisfy the redundancy criteria. Since the groups cover wide ranges of span 

length with different radius of curvature, it is likely that some groups with large span will not meet 

the redundancy criteria even for a straight bridge. For such cases, the bridge group can then be 

divided into subgroups with varying span lengths in each group to determine redundant and non-

redundant subgroups based on their span length. Figure 3-7 presents the initial grouping for the 

notional bridge concept to be considered in the redundancy analysis. 
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Figure 3-7. Initial notional bridges. 
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 Chapter 4 Development of Loading and Criteria for Redundancy 

Verification  

Previous studies have investigated the redundancy of twin steel box girder bridges using more or 

less an arbitrary load level [13], [23–25]. Arbitrarily selecting the load level that the damaged twin 

steel box girder bridges should be able to carry has been frequently questioned. Therefore, there is 

a need to develop more rational approaches to establish the load level and application method that 

the damaged bridge should carry for proper evaluation. Further, there may also be a need to 

develop additional performance criteria, such as deflection limits for damaged bridges. The 

concept of damaged twin steel box girder bridges being able to deflect without collapse is a 

desirable mode of behavior since it will be detectable. This task may involve establishing the target 

safety level or reliability index. Two approaches may be considered to establish the target 

reliability level.  One approach will consist of seeking the bridge owner's input on an appropriate 

safety level. The other approach will be to establish the safety level inherent in redundant bridges.  

The reliability analysis of twin steel box girder bridges and discussions over the level of live loads 

are presented in Chapter 8.  

 

4.1 Proposed Live Load Model 

In the new generation of design codes, safety reserve is provided by means of load and resistance 

factors determined by the reliability-based calibration process [26]. The code calibration requires 

the knowledge of statistical parameters of load and resistance.  It is important to know the expected 

maximum load, its statistical parameters on the load side. However, these statistical parameters 

depend on location as they are site-specific, considered time period, and Average Daily Truck 

Traffic (ADTT). On the resistance side, respective statistical parameters are also needed. While in 

the case of evaluating the redundancy of new design methods and concepts, risk and reliability-

based assessment is important before it is implemented in the design codes.  

 

The objective of the proposed live load model is to develop a state-specific bridge live load model 

that may be expected on the bridge at fracture state for Florida. Since the bridges are inspected 

every two years, the evaluation period is limited to the inspection period. The analysis includes 

weigh-in-motion (WIM) data from 31 stations collected throughout four years (2013-2016) in the 

state of Florida. The obtained data included 136 million vehicles in total. After applying filtering 

criteria to eliminate lightweight vehicles, about 20% of the data were eliminated. The initial 

investigation of Redundancy of Twin Steel Box Girder Bridges was limited to 120 ft span length 

and evaluation (return) period of two years. The statistical parameters, mean (μ) and standard 

deviation (σ) for maximum moment and shear, are developed for 120 ft span and two year return 

period for ADTT’s ranging from 250 to 10,000.  
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4.1.1 WIM Database 

The WIM data used in this study contained data from the years 2013 – 2016 and was obtained 

from FHWA. The WIM stations in Florida are shown in Figure 4-1. The WIM data were obtained 

in 4 different traffic data monitoring formats that are in the Traffic Monitoring Guide (TMG) [27]. 

The truck weight data format was used as it contains information such as, but not limited to, the 

number of axles, the spacing between axles, axle weights and gross vehicle weight (GVW), and 

exact time of measurement for each recorded vehicle at each location. The data was available from 

31 WIM stations out of 32 WIM stations that are currently in Florida.  Table 4-1 shows the WIM 

stations co-ordinates, number of lanes, and directions of each WIM station used in this study.  

 

4.1.2 WIM Data Filtering 

Long-term WIM data collection can be affected by errors in recording due to various reasons such 

as malfunction and improper vehicle positioning on the sensor. More reasons for the need of WIM 

data filtering is discussed in the literature [28, 29]. Some of the errors are inevitable but using the 

proper filtering criteria can eliminate the improper recordings, thus eliminating the under or 

overestimation of loads and design. It was observed that the data obtained from FHWA was filtered 

through the Traffic Monitoring Analysis System (TMAS) Quality Control (QC) checks [30]. Only 

vehicles with a GVW of less than 20 kips were eliminated from the obtained database. Vehicles 

with GVW less than 20 kips limit do not cause much damage to bridges and pavements [31]. Table 

4-2 shows the number of records and days that are available for each WIM station that is 

considered in this study. The number of records is a total number of vehicles that were recorded 

in both directions and all the lanes. 
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Figure 4-1. WIM stations in Florida. 

4.1.3  Initial Data Analysis 

The data left after filtering out vehicles less than 20 kip GVW are used for further analysis. The 

Cumulative Distribution Function (CDF) of GVWs are plotted on probability paper in Figure 4-2 

for the year 2014. Each curve on the plot is data from each WIM station in Florida. Since the 

controlling criteria in the design are the load effects, i.e., moment and shear created by vehicles. 

Each vehicle in the database is run over an influence line for the considered span length of 120 ft, 

and moment and shear are calculated. For a better interpretation of results, the moment and shear 

produced by each vehicle are divided by the corresponding load effects of the HS-20 design truck. 

Figure 4-3 shows the CDF plot for the moment ratio of 120 ft span length for the year 2014. Traffic 

in WIM location 46907 is heavier compared to the rest of the WIM locations in Florida. Figure 

4-4 shows the CDF plot for a shear ratio of 120 ft span length for the year 2014. The moment and 

shear ratios have the same type of distribution. 
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Table 4-1. WIM stations coordinates and summary of direction and lanes. 

Serial Number WIM Station ID Latitude  Longitude 
No. of 

directions 

Lanes per 

direction 

1 39950 26.29169 -81.74247 2 2 

2 79918 26.75402 -81.05527 2 1 

3 109926 27.95868 -82.32668 2 2 

4 169927 28.05314 -82.00487 2 1 

5 169948 27.87893 -81.59732 2 1 

6 169951 28.15774 -81.81207 2 2 

7 189920 28.80083 -82.08849 2 2 

8 269904 29.52316 -82.3098 2 1 

9 299936 30.25178 -82.51512 2 1 

10 349909 29.55195 -82.90068 2 1 

11 460192 30.43572 -85.4465 1 1 

12 469907 30.39721 -85.43494 2 1 

13 489916 30.54356 -87.28171 2 1 

14 489949 30.50989 -87.29086 2 1 

15 509940 30.55474 -84.59297 2 1 

16 539943 30.71949 -85.03963 2 1 

17 549901 30.45142 -83.75296 2 1 

18 570219 30.54796 -86.49696 0 0 

19 589937 30.68388 -87.05378 1 1 

20 700223 28.49352 -80.84429 0 0 

21 709919 28.32957 -80.77445 2 1 

22 729905 30.13464 -81.53441 2 2 

23 729914 30.35666 -81.76062 2 2 

24 729923 30.42235 -81.65637 2 2 

25 799906 28.8875 -81.27905 2 2 

26 799929 28.932 -80.87713 1 2 

27 879947 25.87349 -80.3491 2 2 

28 939952 26.89359 -80.13425 2 2 

29 979913 27.24645 -80.34639 2 1 

30 979931 28.79909 -81.99811 2 1 

31 979933 26.17933 -80.30672 2 2 

32 979934 25.91205 -80.38156 2 2 
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Table 4-2. Summary of a number of records and days for each available year of WIM data. 

WIM 

Station ID 

YEAR 

2013 2014 2015 2016 

No. of 

records 

No. of 

days 

No. of 

records 

No. of 

days 

No. of 

records 

No. of 

days 

No. of 

records 

No. of 

days 

39950 1,152,871 365 1,356,465 365 1,414,695 333 1,668,626 364 

79918 599,433 353 740,377 362 722,516 333 649,578 365 

109926 1,533,003 365 1,174,407 365 242,309 70 0 0 

169927 360,962 359 328,987 315 302,534 333 186,515 214 

169948 499,291 365 606,877 364 594,815 333 623,310 366 

169951 2,225,227 365 2,420,670 365 2,007,969 333 1,974,743 301 

189920 2,225,050 365 2,430,585 365 1,546,895 261 0 0 

269904 1,999,877 365 2,046,124 365 1,500,610 303 0 0 

299936 1,365,149 365 1,453,450 364 1,254,093 321 1,659,298 365 

349909 108,567 365 87,509 361 99,140 272 0 0 

460192 17,441 365 21,403 365 23,644 270 0 0 

469907 172,215 247 290,228 365 265,738 331 304,625 365 

489916 246,460 365 192,958 363 148,237 299 0 0 

489949 1,071,839 365 1,230,179 365 1,204,885 333 1,407,113 366 

509940 38,054 365 45,605 362 34,849 272 3,521 30 

539943 55,129 363 68,009 357 54,411 302 24,070 122 

549901 1,458,382 365 450,154 107 0 0 0 0 

570219 0 0 0 0 0 0 0 0 

589937 26,044 350 8,059 97 0 0 0 0 

700223 0 0 0 0 0 0 0 0 

709919 1,237,832 365 1,321,028 354 1,308,070 333 1,502,369 366 

729905 2,632,309 365 2,702,871 336 2,694,015 333 2,155,516 366 

729914 627,877 125 2,239,028 364 2,146,196 333 2,489,478 366 

729923 2,287,335 355 12,998 5 738,075 91 0 0 

799906 1,764,788 365 1,834,224 364 1,354,705 330 569,544 145 

799929 24,512 365 25,226 365 21,278 270 0 0 

879947 445,005 175 753,381 334 945,805 333 1,092,731 364 

939952 1,528,004 363 1,633,682 365 1,476,551 333 1,698,537 364 

979913 1,095,237 365 1,301,554 365 1,319,373 333 1,583,223 366 

979931 1,284,042 334 1,497,063 364 1,492,759 333 1,786,579 366 

979933 564,712 365 120,175 63 0 0 208,530 91 

979934 1,437,970 359 1,628,987 365 1,702,749 333 1,926,311 365 

SUM 30,084,617 - 30,022,263 - 26,616,916 - 23,514,217 - 

 

 



18 

 

 
Figure 4-2. CDF plot of GVW of all WIM stations in Florida for the year 2014. 

 

 
Figure 4-3. CDF plot of moment ratio of all WIM stations in Florida for the year 2014. 
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Figure 4-4. CDF plot of the shear ratio of all WIM stations in Florida for the year 2014. 

4.1.4 Maximum Moment for Different Load Periods 

The maximum moment is a random variable, and it depends on the period of time considered, 

ADTT, and span length. In this report, the period of time of two years and a span length of 120 ft 

is considered. The ADTTs are varied from 250 to 10,000. The mean value of the maximum 

moment is determined for each WIM station traffic data for different ADTTs. More information 

about the procedure is discussed in Kulicki, J.M et al. [28]. For each CDF, the vertical coordinate 

of the maximum moment (Zmax) is given by Equation (1). The vertical coordinates for different 

ADTT’s are shown in Figure 4-5 (a) for normal probability scale and standard normal variable 

scale.  

 𝑍𝑚𝑎𝑥 = Ф−1 ൬
1

𝑁
൰ (1) 

 

where, Ф−1 = inverse standard normal distribution function. N = number of records for the period, 

T (in days), and certain ADTT as shown in Equation (2) 

 

 𝑁 = 𝑇 ∗ 𝐴𝐷𝑇𝑇 (2) 

 

The mean maximum moment can be directly obtained from the graph by reading the moment ratio 

(horizontal axis) with the corresponding vertical coordinate for the considered time period. The 

values for larger coordinates were projected or extrapolated as appropriate. For an easier 

interpretation, the vertical coordinates for different ADTT’s are plotted on the probability paper 

along with CDF’s for years 2013-2016 in Figure 4-5(a) to Figure 4-8(a). The mean maximum 
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moments of each WIM station traffic data are plotted on probability paper in Figure 4-5(b) to 

Figure 4-8(b). 

 

4.1.5 Statistical Parameters 

It is assumed that 32 WIM stations in Florida have representative truck traffic for Florida. The 

statistical parameters of mean maximum and coefficient of variation (CV) of live load (moment) 

are shown in Table 4-3. The mean of these maximum values can be considered as the mean 

maximum for Florida based live load model. These statistical parameters can be further used for 

reliability analysis calculations. At this stage, the statistical parameters are calculated only for 

moments.  

 
Table 4-3. Statistical parameters of live load moments for different ADTT. 

ADTT 
Year 2013 Year 2014 Year 2015 Year 2016 All years averaged 

μ CV μ CV μ CV μ CV μ CV 

250 1.51 0.07 1.51 0.08 1.50 0.06 1.51 0.04 1.51 0.06 

1,000 1.60 0.09 1.61 0.09 1.59 0.07 1.61 0.05 1.60 0.07 

2,500 1.66 0.10 1.67 0.10 1.64 0.07 1.66 0.05 1.66 0.08 

5,000 1.70 0.11 1.71 0.11 1.69 0.07 1.71 0.05 1.70 0.09 

10,000 1.75 0.11 1.76 0.12 1.73 0.08 1.75 0.06 1.74 0.09 
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(a) 

 

 
(b) 

Figure 4-5. CDF plot for the year 2013: (a) Vertical coordinates for different time periods; (b) Mean maximum moment ratios for 
different ADTT. 
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(a) 

 

 
(b) 

Figure 4-6. CDF plot for the year 2014: (a) Vertical coordinates for different time periods; (b) Mean maximum moment ratios for 
different ADTT. 
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(a) 

 

 
(b) 

Figure 4-7. CDF plot for the year 2015 (a) Vertical coordinates for different time periods; (b) Mean maximum moment ratios for 
different ADTT. 
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(a) 

 

 
(b) 

Figure 4-8. CDF plot for the year 2016: (a) Vertical coordinates for different time periods; (b) Mean maximum moment ratios for 
different ADTT. 
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 Chapter 5 Development and Validation of Finite Element Method 

 Finite element modeling has been recognized as a means for detailed analysis of steel box girder 

bridges to investigate their redundancy.  Construction of a detailed FE model of the bridge and 

analysis under loading of various configurations is a time-consuming and costly activity.  

Modeling of every detail in the bridge is neither economic nor always necessary.  Additionally, 

solution methods available for numerical analysis of FE models are numerous and do not always 

end to proper convergence and accurate results.  Hence, the application of FE modeling and 

analysis can be quite complex and finding an optimum level of refinement and modeling details, 

as well as the proper solution method, requires performing some experimentation and validation.  

Validation can be performed by modeling and analysis of bridges that are tested and for which 

adequate data in the behavior is available. The finite element (FE) model of a twin steel box girder 

bridge adopted for this study was created in the environment of ABAQUS [32] to simulate the 

response of the bridge under the fractured box scenario. A generic model is shown in Figure 5-1.  

The proper modeling techniques, analysis procedure, and material inputs were investigated 

thoroughly. The details on element types, material properties, and solution method will be 

discussed later for each of the bridges modeled.   

 

To date, three bridge specimens for which experimental test results were available were modeled 

and analyzed for validation of the FE model developed in this study. These bridges are: 

 

 The University of Nebraska–Lincoln Multiple Plate Girder Bridge, 

 The University of Texas Twin Steel Box Girder Bridge, 

 The Florida International University Twin Steel Box Girder Bridge, 

 

The selected bridges have steel girder concrete deck composite superstructure.  

 

The University of Nebraska-Lincoln bridge [33] is selected as the first model for validation of the 

FE models for the elastic and ultimate load tests available for this bridge. Although the Nebraska 

bridge did not use steel box girders and was not subject to fracture of the girder, however, 

availability of extensive and accurate experimental test results that included failure modes similar 

to those expected for twin steel box girder bridges were recognized to provide an excellent source 

for validating FE modeling and analysis technique and its details in general.  The bridge has the 

same combination of steel girder (I-girder) and concrete deck and included failure modes for the 

deck such as one-way shear and two-way shear (punching shear) and failure limit states for steel 

girders.  

 

For the second step, The University of Texas Twin Steel Box Girder Bridge was selected to 

validate the twin steel box girder model for intact and fractured scenarios. The Texas bridge tests 

included ultimate uniform loading and point loads in terms of simulating the HS-20 truck for the 

fractured box scenario. Finally, The Florida International University (FIU) Twin Steel Box Girder 
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Bridge [22] was used to validate the capability of the finite element model for predicting local 

failure modes such as punching shear and one-way shear in addition to global bridge response. In 

the FIU bridge tests, a series of elastic tests, a cyclic test, and ultimate load tests were conducted 

on a small-scale twin steel box girder to evaluate the redundancy of this type of bridge. The results 

of the experimental tests revealed that punching shear and one-way shear would be the dominant 

failure modes for both intact and one-girder fractured twin steel box girder bridges subjected to 

the wheel-simulated loads. 

 

After the model is validated by using experimental results of these three bridges, the twin steel box 

girder bridge model can then be used for evaluating the redundancy of existing bridges in the state 

of Florida by analyzing the notional bridges for each group of bridges.  The results of these 

analyses can also be used to determine the dominant failure mode to be considered in the reliability 

and redundancy analysis.  

 

5.1 Modeling Details 

Material nonlinearity for steel and concrete are considered in the models. Traditional metal 

plasticity is used to represent steel components, and concrete damaged plasticity is used for 

simulating the cracking and crushing of concrete.  Geometric nonlinearity was not deemed to have 

a significant effect on the results, and for the sake of simplicity, was not included in the modeling.  

When bridge railing is modeled, Hard contact surface is used for defining the surface contact 

between the railings. Because there is a gap between each railing segment, there would be no 

contact between the railing until the gap is closed due to the large deflection of the bridge.  In that 

stage, two sides of the gap will come in contact, and contact force would increase the stiffness of 

the bridge. As a result, railing contact with a gap needs to be considered in all models. 

Experimental tests on fractured twin steel box girders show that when there is loading eccentrically 

over the fractured girder only, torsional moment induced by the loading eccentricity may cause 

uplift of the intact girder over the supports. Therefore, to consider the possibility of support uplift 

during the loading, the contact surface is defined between the girders and supports.  

 

Twin steel box girder bridges consist of steel plate girders, brace members, concrete deck, and 

bridge railings. According to the structural behavior of each component, various type of elements 

is used to provide a realistic representation of the twin steel box bridges [34]. Eight-node linear 

brick elements are used for the concrete deck and the railing with a 2-node linear 3-D truss as the 

reinforcement embedded into the concrete elements. The Four-node shell element (S4R) is used 

for modeling steel plate girders and stiffeners; all the brace members for diaphragms are modeled 

using 2-node linear 3-D truss and beam elements.  According to results of available tests and 

analyses, shear studs between girders and deck slab may influence the onset of failure in the deck, 

and therefore shear stud failure is modeled.  In this study, the effect of shear stud failure was 

investigated by comparing the results of FE analysis in the models where shear studs were modeled 
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with the result of analysis where shear studs were not modeled (perfect bond between steel and 

concrete at the girder to deck slab interface).   

 
Figure 5-1. Typical finite element model of twin steel box girder bridge. 

 

5.2 Material 

5.2.1 Steel Material Model 

The multi-linear inelastic material model with isotropic hardening is used for the behavior of steel 

plates, diaphragms, and reinforcement in both tension and compression [35, 36]. The linear elastic 

behavior was defined by the specification of the modulus of elasticity and Poisson’s ratio, which 

were 29,000 ksi and 0.3, respectively. Yield and ultimate stress of steel material are considered as 

the typical value used in the Florida bridges. For the case of the University of Nebraska–Lincoln 

bridge, the girders were specified as A36 steel with the yield strength of 40 ksi (average obtained 

from tensile testing), and the concrete reinforcing rebar used in the concrete slab was specified as 

grade 60 with 60 ksi yield strength, and for the UT bridge, 50 ksi for the steel plates and 60 ksi for 

the concrete reinforcing bars is assumed as the yield strength of steel material. Figure 5-2 shows 

the uniaxial representation of the stress-strain relationship for the steel plates and concrete 

reinforcement used for the UT bridge. According to von Mises theory, the material yields when 

the equivalent stress exceeded the yield criterion. 

 



28 

 

 
Figure 5-2. Typical steel stress-strain relation. 

 

5.2.2 Concrete Material Model 

A linear elasticity with the concrete damage plasticity is used in the FE models [37]. For the initial 

elastic behavior, the modulus of elasticity is calculated based on the ACI 318-14 [38] (𝐸𝑐 =

57,000ඥ𝑓𝑐
,
 (in psi) for normal-weight concrete) and a Poisson ratio of 0.2 was used. The concrete 

damage plasticity is a continuum, plasticity-based, damage model for concrete. It assumes that the 

main two failure mechanisms are tensile cracking and compressive crushing of the concrete 

material, and the uniaxial tensile and compressive response of concrete is characterized by 

damaged plasticity, as shown in Figure 5-3 [32, 39]. 

 

  
Figure 5-3. Response of concrete to uniaxial loading: (a) in tension; (b) in compression.[32] 
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For uniaxial tension, the stress-strain relationship of concrete is a linear elastic until the point of 

failure stress, σt0. After that point, due to micro cracking in the concrete, tensile resistance 

decreases with a sharp softening stress-strain response, which induces strain localization in the 

concrete structure. Under uniaxial compression, the response is linear elastic until the point of 

initial yield, σc0. In the plastic regime, the response is typically characterized by stress hardening 

followed by strain-softening beyond the ultimate stress, σcu. This representation, although 

somewhat simplified, captures the main features of the response of concrete. 

 

As shown in Figure 5-3, when the concrete specimen is unloaded from any point on the strain-

softening branch of the stress-strain curves, the unloading response is weakened: the elastic 

stiffness of the material appears to be damaged (or degraded). The degradation of the elastic 

stiffness is characterized by two damage variables, dt and dc, which are assumed to be functions of 

the plastic strains, temperature, and field variables. The damage variables can take values from 

zero, representing the undamaged material, to one, which represents the total loss of strength. 

 

5.3 Analysis Procedure 

For simulating the bridge behavior during construction, finite element analysis is divided into two 

main steps: bridge construction and final analysis for live loading. For the first step, an initial 

implicit static analysis is used to incorporate the loading effect through the erection and 

construction phase when the concrete is not hardened yet, and the section acts non-compositely 

with only the girders carrying the dead load. During the bridge construction, only the girders carry 

the deck, and the dead load deflections in the girders remain locked after the concrete deck hardens. 

For this reason, the stiffness and mass of the concrete and reinforcing rebar are reduced to a very 

low value during the construction phase, and an equivalent dead load of the deck is applied on the 

top flange of the girders based on the tributary area. Moreover, the self-weight of the structural 

steel of the girder components is applied to the model at this stage. By reducing the stiffness of the 

deck to negligible, only girders carry the load, and there will be no stress and strain on the concrete 

deck at the end of the construction phase once the concrete deck has hardened. 

 

The results of the first step will be used as an initial predefined state for the final analysis step. In 

other words, initial states (stresses, strains, displacements, and forces) for the final analysis step is 

the final state at the completion of bridge construction. From this point on, the girder and slab 

sections act compositely together.  Therefore, the initial equivalent uniform dead load of the 

concrete on the girders considered in the analysis for the previous step is removed and replaced by 

concrete with its actual stiffness and mass.  The concrete damaged plasticity is also activated. 

Moreover, based on the construction procedure, railing elements are added at this step, which 

depending on the railing type, can increase the stiffness of the bridge. To model the sudden girder 

fracture, tie constraints between the elements of the girder web, and flange on two sides of the 

fracture assigned at the first step are removed. 
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At the final step, the flange and webs of one girder are fractured, and an HS-20 truck loading is 

applied at the middle of the span over the fractured girder with the maximum transverse 

eccentricity. At this stage, the bridge experiences large deflection and material damage, and the 

problem becomes highly nonlinear. Because of this, the implicit static solution method for analysis   

becomes very sensitive and suffers from numerical instability. As a result, the Explicit dynamic 

solution method that uses the Euler Central Difference scheme is used for the final analysis steps 

to prevent convergence problems. In Explicit solver, the solution at the end of a time increment is 

computed based on the state of the system at the beginning of the time increment. The stability of 

the solution is constrained to a small stable time increment and depends on the mass, stiffness, and 

size of the finite elements used. 

 

In order to compare the results of dynamic analysis with static test experiments, HS-20 truck 

loading is applied on the deck slowly to minimize the dynamic effect of sudden fracture and 

loading on the bridge. The equivalent static deflection is then obtained by averaging the peak 

dynamic displacements after two periods of oscillation and the maximum. Figure 5-4 shows a 

typical girder mid-span deflections during dynamic explicit analysis. 

 

   
Figure 5-4. Typical dynamic girder deflection due to traffic loading 

 

5.4 Nebraska Bridge Test 

The University of Nebraska bridge, whose test results will be used here for validation of the FE 

model, is a full-scale simple span bridge with a span length of 70 ft and is 26 ft wide (two lanes). 

The superstructure consists of three welded steel plate girders made composite with a 7 ½ inches 

reinforced concrete deck, as shown in Figure 5-5. The girders are spaced 10 feet in the center, and 

the reinforced concrete deck has a 3 feet overhang. As shown in Figure 5-6, the railing system is 

a typical Nebraska Department of Road (NDOR) open concrete bridge rail, with 11x11 inch posts 

spaced 8 feet on center. Although the superstructure in this bridge did not contain steel box girders, 

due to the availability of reliable and extensive experimental results that included service and 
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ultimate load testing and associate failure modes, modeling of this bridge was thought to provide 

a good background for validation of the FE modeling method adopted for this study.   

 
Figure 5-5. The cross-section of the Nebraska test 

 
Figure 5-6. Details of standard NDOR open concrete bridge rail 

Live load testing of this bridge consisted of applying cycles of the equivalent of 2.5 times the 

weight of AASHTO HS-20-44 truck load on each lane of the bridge. Because of the laboratory 

limitations, the loading pads were placed at twelve and fifteen feet, instead of ASHTO HS-20 

typical spacing of 14 feet. To simulate the typical tire contact area, loads were applied through 

steel plates having the dimensions of 20"×8"×2" and 10"×4"×2" for the rear and front wheels, 

respectfully.  

 

Several tests were conducted on this bridge to evaluate the effect of diaphragms, elastic behavior, 

and ultimate load-carrying capacity of the bridge. The ultimate test, which consisted of loading the 

bridge to collapse, is selected for validating the capability of FE modeling adopted in this study 

for predicting the elastic behavior and ultimate capacity and failure modes. During the ultimate 

load test, all diaphragms except those at the ends were removed to analyze more accurately the 

response of the steel girder bridge to the applied truck loading. The bridge failure in the laboratory 

testing is governed by local punching shear failure in the deck under the loading plates. Figure 5-7 

shows the loading configuration of the ultimate test.  
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The strength tests on concrete cylinder samples showed 6000 psi for 221 days after casting, which 

coincides with the time of ultimate load testing. The steel material used for the girders was 

specified as A36 steel with the yield strength of 40 ksi, (average obtained from tensile testing), 

and the concrete reinforcing rebar used in the concrete slab was specified as grade 60 with 60 ksi 

yield strength.  Figure 5-8 shows typical K frame diaphragms used in the ultimate test for the end 

supports. Deflection measured at mid-span by potentiometers is used to validate the FE model.  

 
Figure 5-7 The loading configuration of the ultimate test. 

 
Figure 5-8. Typical K frame detail. 

 

The two-step analysis (bridge construction and load application) was carried out to verify the 

capability of the FE model for predicting the global behavior and the local punching shear failure 

for the ultimate test. Figures 5-9 and 5-10 show the location and pattern of local punching shear 

failure that occurred in the experimental test and the FE concrete damage at the top and bottom of 

the deck, respectively. Figures 5-11 to 5-13 show the comparison of load-deflection curves 

between experimental and FE results for exterior and interior girders. 
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(a) 

 
(b) 

Figure 5-9. The locations of punching shear failure: (a) Experimental test; (b) Finite Element Model. 

 

  
(a)                                                                                                           (b) 

Figure 5-10. Typical punching shear failure: (a) Experimental test; (b) Finite Element Model. 
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Figure 5-11. Comparison of load-deflection curves for north exterior girder obtained from experiment and FE model. 

 

 
Figure 5-12. Comparison of load-deflection curves for south exterior girder obtained from experiment and FE model. 
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Figure 5-13. Comparison of load-deflection curves for interior girder obtained from experiment and FE model. 

Figure 5-14 compares the local cracking in the railing during ultimate load testing for the 

experimental test and FE model. The results and comparisons show that the FE model can predict 

the global behavior of the bridge during the elastic and plastic states and simulates the local failure 

due to punching shear in the deck and cracking in the railing. 

 

  
(a)                                                                                                                (b) 

Figure 5-14. Torsional cracks in the rails: (a) Experimental test; (b) Finite Element Model. 
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5.5 The University of Texas Twin Steel Box Girder Bridge 

To further verify the FE model for the case of a bridge with steel box girders, The University of 

Texas Twin Steel Box Girder bridge was selected.  This bridge had been tested in full-scale, with 

one of its girders having the bottom flange and part of the web fractured, and therefore, offered an 

excellent opportunity for FE model verification. The UT bridge was a curved 120-ft composite 

single-span twin box girder bridge. The deck width was 23.3 ft with the radius of curvature of 

1,365.4 ft and deck slab thickness of 8 in. The bridge also used 3 in. concrete haunch above the 

flange of the steel boxes. Figure 5-15 shows the UT bridge that was tested. The deck in this bridge   

also had erection diaphragms, end stiffeners, intermediate diaphragms, and horizontal bracings. 

 

Three tests were conducted on the full-scale bridge. The first test was performed to evaluate the 

behavior of the bridge under loading simulated by the weight of concrete blocks (slightly over HS-

20 loading and equal to 76 kips total) after a sudden fracture at the bottom flange of the exterior 

girder.  The second test was conducted by cutting the bottom flange and 83% web of the exterior 

girder to study the fractured bridge behavior under the same loading as Test 1. And finally, the 

ultimate load test was performed to investigate the ultimate load-carrying capacity of the fractured 

bridge. The ultimate test was performed by increasing a uniform load applied using sand over the 

HS-20 truck outline area until the bridge collapsed. These three tests were used for verification of 

the FE model for the fractured bridge scenario.  

 

 
Figure 5-15. The University of Texas twin steel box girder bridge. 
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The steel material used for the girders of this bridge was specified with a yield strength of 50 ksi, 

and the reinforcing rebar used in the concrete slab was specified as grade 60 with 60 ksi yield 

strength. Based on the compression tests performed on the concrete cylinder samples, 5.37 ksi for 

the first test and 6.23 ksi for the second and third test was used as the compressive strength of 

concrete in the deck.  

 

Similar to the earlier analysis, a two-step analysis (bridge construction and load application) was 

performed with the FE model for simulating the experimental testing on the UT bridge. Figure 

5-16 shows the FE model used for validating the results. Hard contact surfaces were used for 

defining the surface contact at railing gaps, and girders support bearings in this model. Since there 

is a gap between each railing segment, there is no contact between railing segments until the gap 

is closed due to large deflection of the bridge, as shown in Figure 5-17 with the stress and concrete 

damage rise at railing contact points. After closing the gap, the contact force increases the stiffness 

of the bridge. As a result, for the first test, since there is a small deflection, the railing does not 

increase the stiffness of the system. However, for the second and third tests, surface contact 

between railings increases the stiffness of the bridge.  

 

 

Figure 5-16. The University of Texas FE model. 
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Figure 5-17. Crushing of the railing due to contact surface. 

 

Figures 5-18 and 5-19 show the comparison between experimental and analytical deflection of the 

fractured girder for the first and second tests, respectively.  The horizontal axis in these graphs 

shows the location along the span, and the vertical axis shows the deflection at the end of the test. 

As shown in these graphs, the FE model can predict the deflection of the girder along the bridge 

for both first and second tests. One exception is for Test 2 (Figure 5-19) for deflection at the mid-

span.  A separation between the top flanges of the fractured girder and the concrete deck due to 

tension cracking of the concrete was observed during the second experimental test, which caused 

a sudden deflection at the middle of the span. This may, however, be attributed to post-failure local 

loss of composite action.  By defining the concrete damage plasticity, the FE model can predict 

the cracking and crushing of the deck due to loading within its capabilities. 

 

Experimental results of the University of Texas test show that extensive cracking developed on 

the top surface of the concrete deck in the second test. The most prominent cracks were located 

longitudinally above the intact girder due to one-way shear failure, and the cracks extended toward 

the supports. Furthermore, some transverse cracks were observed starting from the railing of the 

fractured girder toward the intact girder. Figures 5-20 and 5-21 show the crack pattern on the 

surface of the concrete deck from both experimental test and FE analysis. As shown, the FE model 

can predict the transverse and longitudinal crack pattern of the concrete deck due to load 

distribution after the fracture.  
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Figure 5-18. Comparison of the deflection curve of the first test for fractured girder obtained from experiment and FE model. 

 

 

 
Figure 5-19. Comparison of the deflection curve of the second test for fractured girder obtained from experiment and FE model. 
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(b) 

 
(a) 

Figure 5-20. Crack patterns on concrete deck: (a) Experimental test; (b) Finite Element Model. 

 

 

(a)                                                                                            (b) 

Figure 5-21.  Crack patterns above the interior flange of the intact girder: (a) Experimental test; (b) Finite Element Model. 
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5.6 The Florida International University Twin Steel Box Girder Bridge Specimen 

After comparing the results of the FE model with the experimental test results for two full-scale 

bridges (The Nebraska bridge Test and UT bridge), a twin steel box girder bridge specimen tested 

by the Florida International University (FIU) (Figures 5-22 and 5-23) was selected to validate the 

capability of the FE model for predicting local failure modes like punching shear or one-way shear 

of the concrete slab in addition to predicting the global behavior. The results from the FIU 

experiments indicate that the bridge with a full fracture in one of the girders has some reserved 

capacity, and the vertical loads could be transferred to the intact girder through one or more of the 

railing, continuity, slab, and external cross frames. Moreover, the results show that depending on 

the loading configuration, the failure mode of the fractured bridge could be punching shear or one-

way shear of the deck. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5-22. The Florida International University bridge: (a) Side view; (b) plan view; (c) cross-section view. 
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(a)                                                                                                      (b) 

Figure 5-23. The FIU test setup: (a) View from cantilever end; (b) View from the simply supported end. 

 

The FIU bridge was an approximately one-third scale straight version of a typical twin steel box 

girder bridge. The bridge consisted of two spans to consider the effect of continuity on the bridge 

redundancy with a total length of 41 ft.  and width of 109 in. The thickness of the deck was 

selected and designed to be 5 in. to provide enough space for four mats of #4 reinforcement bars. 

A removable railing system, including several railing segments, was used to investigate the 

effect of railing on the behavior of the fractured bridge. Figure 5-22 shows the cross-section and 

side view of the bridge, and Figure 5-23 shows the FIU test setup. 

 

All the steel plates of the box girders were ASTM A709 Grade 50, and the steel reinforcements 

were A706 Grade 60 materials. The concrete used for the deck had a compressive strength of 

7.8 ksi at the time of the ultimate tests. Several elastic tests, a cyclic test, and five ultimate tests 

were conducted on this bridge to investigate the behavior of twin steel box girder bridges in both 

linear and nonlinear range. In order to investigate the failure mode for the fractured bridge, five 

ultimate tests were performed on the bridge with a full fracture in one of the girders, which are 

summarized in Table 5-1. Railing segments and continuity were removed for the ultimate tests 

and different load configuration and locations were used to investigate all the possible failure 

modes for the fractured bridge. 

 

Tests E-1 and E-2 (Table 5-1) of five ultimate tests performed by FIU were modeled to validate 

the FE method for predicting local and global failure modes for the one-girder fractured 

condition. Test E-1 included loading on top of the fractured girder with a single loading pad 

(2×9×36 in.) placed at the mid-span location, and Test E-2 included a single smaller loading pad 

(10 in. square) over the fracture in between the steel girder flanges to investigate the punching 

shear failure. The overall response of the ultimate Test E-1 illustrated that the fractured bridge 

had a linear elastic response up to 60 kips. After that, by extending longitudinal and transverse 

cracks at the mid-span, the bridge stiffness greatly reduced, and at the load of 156 kips, the 

specimen failed due to concrete deck crushing under the loading pad. The test results indicated 
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that a combination of one–way shear and two-way shear was the failure mode of the fractured 

bridge under a large single loading pad, as shown in Figure 5-24. 

 
Table 5-1. The FIU ultimate load tests. 

Test Loading Configuration Loading Type 

W-1 

 

The load was applied until the 

plateau in the load-deflection 

curve was observed. The test was 

discontinued before the failure. 

W-2 

 

The load was applied until the 

failure occurred  

E-1 

 

The load was applied 

incrementally until failure 

occurred. 

E-2 

 

The load was applied until the 

failure occurred  

E-3 

 

The load was applied through four 

loading pads until failure 

occurred. 

 

 

Since in the ultimate test E-1, the edge of the loading pad was located on the top of the girder 

flanges, the ultimate test E-2 was conducted to consider the punching shear failure between 

flanges. The results of test E-2 show that the damaged girder responded linearly up to 30 kips when 

cracking of concrete started to propagate; however, as shown in Figure 5-25, the intact girder 

responded linearly for the entire test until the punching shear failure through the loading pad at 83 

kips. It is important to note that since this test was conducted after ultimate Tests, W-1 and W-2, 

and the deck was not reconstructed (only repaired locally), there are some residual deformations 

in the experimental test results. Therefore, the experimental results of this test are used only for 

comparing the punching shear capacity predicted by the FE model and the test results. 

 

The FIU bridge specimen was constructed with shoring and then transferred to the test setup. 

Therefore, the analysis with the FE model was performed only by the application of the load at the 

loading pad for simulating the experimental testing on the bridge. The displacement control 

approach was utilized to simulate the test loading by defining a frictionless contact surface between 
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the loading pad and the bridge deck. Figure 5-26 shows the FE model used for the analysis. 

Experimental tests of this bridge showed that one-way or (punching) two-way shear failure is the 

failure mode for the bridge with one fractured girder under wheel simulated loading. To simulate 

this type of failure, the concrete damage plasticity index for cracking and crushing was calculated 

over the effective area of one-way shear and (punching) two-way shear, as shown in Figure 5-27. 

The damage index is indicative of the extent of damage occurring at each stage and can be 

effectively used to signal shear failure over the effective area/line.  In the analysis, damage index 

along the effective lines and within the slab depth were calculated and averaged.  

 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5-24. Damages in the Test E-1 of FIU bridge. 
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Figure 5-25. Punching shear failure in the Test E-2 of FIU bridge. 

 

 

Figure 5-26. The FIU bridge FE model. 

In general, shear strength in reinforced concrete slabs can be checked by two approaches. The first 

approach is to calculate the beam shear capacity over a certain effective width of the support. The 

second approach is to calculate the punching shear capacity of the slabs over the critical perimeter 

around the load. ACI 318-14 [38] will be utilized in this study to predict the shear resistance of a 

damaged twin steel box girder bridge that predominantly failed in one-way or two-way shear. It 

should be noted that these shear resistance expressions are derived based on results from beam 

tests. For beams, the maximum shear stress is assumed to be uniform over the entire beam width 

so that the entire width will be used to compute the shear resistance in the beam. For the slabs, 

however, the shear resistance should not be calculated over its entire width but over a certain 

effective width (beff). The effective width of a one-way slab under a concentrated load can be 

determined using either a fixed width approach or a horizontal load spreading approach. The 

horizontal load spreading approach is a more popular approach where the effective width is 

determined by the projected length of the load onto the face of the support. There are a couple of 

variations of this horizontal load spreading approach being used depending on the local practice 
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and nature of the problem. Based on the ACI 318-14, the one-way and two-way shear capacity of 

the deck can be calculated using Equations (3) and (4), respectively. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-27. Determination of effective width: (a) One-way shear for Test E-1; (b) Two-way shear for Test E-1; (c) One-way shear 
for Test E-2; (d) Two-way shear for Test E-1. 
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𝑉𝐴𝐶𝐼 = 2ඥ𝑓′
𝑐
𝑏𝑒𝑓𝑓𝑑 (psi)                                                                                                                  (3) 

𝑃𝐴𝐶𝐼 = 4ඥ𝑓′
𝑐
𝑏𝑜𝑑 (psi)                                                                                                                      (4) 

These equations were derived from tests on slab-column connections and also applicable to slabs. 

The effective width for calculating one-way shear is determined using 45o horizontal spreading 

from the far side of the load, as shown in Figure 5-27. This method was also found to have a better 

correlation with the experimental results of Lantsoght’s study [40]. When the slabs are subjected 

to multiple concentrated loads, the effective width can be considered by each wheel load separately 

or by each wheel axle. In ACI 318-14 code, the punching shear stress is assumed to be twice the 

maximum shear stress of beams failing in the one-way shear manner. The punching shear 

resistance of the slabs, according to ACI 318-14, is calculated over a critical perimeter, bo, located 

at a distance d/2 away from the loading area. It is important to note that the predictions of the 

punching shear resistance of the bridge slabs in both Tests W-2 and E-2 would be the same using 

the punching shear provisions above since the load was applied over the same area of the footprint. 

However, as observed in the experiment, the punching shear failure load in Test W-2 was more 

than two times greater than the failure load in Test E-2. This significant difference indicated that 

the fracture damage had a great influence on the punching shear capacity of the deck slab. Critical 

perimeter and effective width for Test E-1 and E-2 are shown in Figure 5-27. 

 

As was mentioned above, damage indexes along the effective lines and within the slab depth were 

calculated and averaged as an indication of one-way and two-way shear failure. The average 

tension damage index for all elements of the effective width and perimeter, as shown in Figures 5-

28 and 5-29, is obtained from the FE model to investigate the one-way and two-way shear failure 

modes of the model. Figure 5-30 (b, d) illustrates the load-tension damage index curve for Test E-

1 and E-2. The average damage index of zero in these graphs shows that there is no damage in the 

effective area. As damage progresses, the damage index increases toward one that would indicate 

fully damaged elements and complete loss of stiffness in tension.  For convergence reasons, 

however, a smaller upper limit of 0.9 was considered. It is also understood that some portions of 

element thickness toward the bottom of the deck panel could be in compression and therefore not 

included in damage index calculation, another reason for the average index to be lower than 0.9.  

As it can be concluded from the results, the effective one-way shear width starts cracking around 

32 kips and 45 kips for the Test E-1 and E-2, respectively. Tension cracks start to propagate from 

the surface of the mid-span and extend to the supports and depth of the deck. By comparing the 

damage index of the FE model and experimental test results, it can be concluded that when the 

average damage index of the effective area reaches about 0.7, the section has lost its capacity in 

carrying more load, a stage that can be considered as the one-way or two-way shear failure. At this 

point, the maximum tension damage index for all elements of the effective area in tension is 

reached to signal negligible capacity. Figure 5-30 (b) indicates that both one-way and two-way 

shear failure occur at the end of Test E-2 around 160 kips loading. However, Figure 5-30 (d) shows 

that by decreasing the size of the loading pad in Test E-2, the two-way shear capacity of the section 

was decreased, and therefore, the FE and experimental Test results show that two-way shear is the 
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failure mode for Test E-2 with the capacity of around 83 kips. Table 5-2 compares the results of 

one-way and two-way shear capacity obtained from the Test, FEM, and ACI 318-14. 

 

 
Figure 5-28. One-way shear effective width in the FE model. 

 
Figure 5-29. Two-way shear critical perimeter in the FE model. 

 

 

Critical Perimeter 

Effective Width 
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(a) (b) 

 
(c) 

 
(d) 

Figure 5-30. Comparison of the FE model with the experimental test: (a) Load-deflection curves of Test E-1; (b) Concrete Damage 
Plasticity Index of Test E-1; (c) Load- deflection curves of Test E-2; (d) Concrete Damage Plasticity Index of Test E-2. 

 
Table 5-2. Comparison of one-way and two-way shear. 

 
Test E-1 

𝑓′
𝑐

= 7.8 𝑘𝑠𝑖 
Test E-2 

𝑓′
𝑐

= 7.2 𝑘𝑠𝑖 

 
One-Way 

(kips) 

Two-Way 

(kips) 

One-Way 

(kips) 

Two-Way 

(kips) 

Test 156 156 - 83 

FEM 161.9 168.6 159.8 94.17 

ACI 87.03 149.79 66.64 76.03 

 

In order to obtain useful data for local behavior of the fractured bridge under point loads in the 

FIU test, strain gauges and potentiometers were installed along the length of the specimen at 

different sections, as shown in Figures 5-31 and 5-32. It is important to note that in addition to 

predicting the global response, the FE model also needs to be validated for simulating the local 
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behavior of the bridge in the ultimate tests to demonstrate its ability for predicting load transferring 

mechanism and failure modes. To this end, strain results of the FE model for top and bottom 

flanges of the intact girder at mid-span section and the strain of intact girder bottom flange at 

section 5 way from the mid-span for the Test E-1 are compared with the experimental results and 

shown in Figure 5-33 (minor fluctuation in the FE results is due to utilizing the dynamic solution 

for the damaged bridge). The comparison of the strain data shows that the FE model could predict 

not only the global behavior and failure mode but also local behavior and load transferring 

mechanism.  

 

 
Figure 5-31. Location of strain gauges and potentiometers along the length of the specimen in FIU test. 

 
Figure 5-32.Strain gauges in section 2 of the FIU test. 

 
Figure 5-33. Comparison of the longitudinal strain of intact girder: (a) Section 2; (b) Section 5. 
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5.7 FE Analysis for Load-Carrying Capacity of a Baseline Bridge  

After verification of the FE model, The University of Texas bridge was selected as a baseline 

model for developing information for preliminary reliability analysis of twin steel box girder 

bridges.  The bridge was analyzed for two scenarios of the intact bridge, where both girders are 

intact, and the fractured scenario, where one of the girders is fully fractured. The goal was to 

develop the response curve and maximum load-carrying capacity under these scenarios and to 

investigate the local and global behavior of the twin steel box girder bridge under the HS-20 truck 

loading. The HS-20 truck loading configuration is shown in Figure 5-34. The distance between the 

front and middle axles shall be varied between 14 ft and 30 ft to produce the maximum loading 

effect. The tire contact area is assumed to be a single 10-in. square footprint for the front wheels 

and a single rectangular with 20 in. width and 10 in. length footprint for the rear wheels. In this 

study, axle distances were considered to be 14 ft, to produce the maximum positive moment and 

deflection in the middle of the bridge. The truck load is placed in the middle of the bridge (at a 

position to produce the maximum moment at fracture location) and only in one lane over the left 

box girder (fractured) to create the worst scenario, i.e., when there is maximum torsion and bending 

on the bridge due to eccentric loading caused by distributions [41]. The truck load was increased 

in terms of multiple HS-20 until the bridge reaches its maximum capacity.  

 

 
Figure 5-34. Characteristic of the design truck. 

5.7.1 Intact Bridge 

Figure 5-35 shows the load-deflection curve for the intact bridge scenario at the middle of the span 

under the center of the girders due to truck loading. The truck loading increased until the load-

displacement curve flattened, indicating approaching the maximum load capacity of the bridge.  

This condition was associated with the development of plastic strain over the entire section of both 

girders.  Before reaching this stage, local failures were in the deck were also observed. The first 

local failure, as shown in Figure 5-36, was the punching shear pattern under the rear wheels around 

nine times HS-20, after which one-way shear occurred above the right box. After the local failures, 

the bridge still continued to carry higher loads until 19 times the HS-20, at which the bridge 

response (load-deflection curve) plateaued, indicating reaching maximum capacity due to the 

formation of a hinge in the girders. Figure 5-37 shows the plastic stress over the entire sections at 

19 times the HS-20 load.  
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Figure 5-35. Load-deflection curves of intact bridge obtained from the FE model. 

 
Figure 5-36. The punching shear failure of the concrete deck under 9xHS-20. 

  
Figure 5-37. Plastic stress of the steel boxes under 19xHS-20. 
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5.7.2 Bridge with One Fractured Girder 

The FE results of the damaged bridge show that once the sudden fracture happened, the bridge had 

a 3.1 in. deflection under the self-weight of the bridge at the mid-span of the fractured girder, and 

the tension stress at the bottom flange of the intact girder reached the yielding stress. After that, 

the truck loading increased up to 6 times the HS-20 load, where the middle span deflection of the 

fractured girder reached 11.51 in. At this level (defined here as failure), the concrete deck 

experienced extensive damage leading to tension stress at the intact girder due to flexural and 

torsional moment reaching the yielding point. Figure 5-38 (a) shows the yielding of the intact 

girder under six times HS-20 loading, and Figure 5-38 (b) shows the concrete tension damage at 

the top of the deck at this load level.   

 

 

 
(a) 

 
(b) 

Figure 5-38. Fractured bridge under 6xHS-20: (a) Yielding of the intact girder; (b) Concrete tension damage.  
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5.7.3 Plastic Moment Capacity of UT Bridge Test 

The plastic moment capacity of the UT bridge test for the intact scenario is calculated to compare 

with the maximum capacity of the bridge obtained from the FE model. The effective flange width 

of a concrete deck slab in composite or monolithic construction may be taken as the tributary width 

perpendicular to the axis of the member for determining cross-section stiffness for analysis and for 

determining flexural resistances. The slab effective flange width in composite girder and/or 

stringer systems or in the chords of composite deck trusses may be taken as one-half the distance 

to the adjacent stringer or girder on each side of the component, or one-half the distance to the 

adjacent stringer or girder plus the full overhang width. 

To determine the plastic moment capacity of composite sections, the following assumptions are 

made: 

 Full interaction between steel, reinforcement, and concrete – this is normal practice for 

bridge design and assumes no slip between the composite components 

 The effective area of the structural steel member is stressed to fyd 

 The area of reinforcement in compression is ignored 

 The effective area of concrete in compression is stressed to 0.85fc 

Table 5-3 and Figure 5-39 summarize the section properties of the University of Texas bridge for 

calculating the plastic moment of one girder. The total flexural capacity of the bridge can be 

obtained by adding the capacity of two girders. Moreover, the FE model is used for obtaining the 

bridge plastic moment capacity considering all the details, such as reinforcement, as shown in 

Figure 5-40. Table 5-4 shows the calculation of the plastic moment for two different concrete 

compressive strength and the result obtained from the FE model. The higher plastic moment 

obtained from the FE model compared to that obtained by hand calculation can be attributed to the 

contribution of reinforcement in the FE model and the higher concrete compressive strength (6.2 

ksi). In addition, the moment-curvature of the bridge section is illustrated in Figure 5-41. 

 

Figure 5-39.UT Bridge Section. 
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Table 5-3. Section properties of UT bridge. 

Parameter Value Unit 

f'c 4 or 6 ksi 

fy steel 50 ksi 

fy reinforcement 60 ksi 

Slab Thickness  8 in 

Slab Effective Flange 

Width 
140 in 

Haunch Thickness 3 in 

Haunch Width 12 in 

Top Flange Thickness 0.625 in 

Top Flange Width 12 in 

Web Thickness 0.5 in 

Web Height 60 in 

Web Height Projected 58.17 in 

Bottom Flange Thickness 0.75 in 

Bottom Flange Width 47 in 

 

 
Figure 5-40. Plastic Moment Capacity in FEM. 

Table 5-4. Plastic moment capacity. 

Compressive 

Strength of 

Concrete 

Ps 

kip 

Ph 

kip 

Pc 

kip 

Pw 

kip 

Pt 

kip 

YPNA 

in 

dt 

in 

dw 

in 

dc 

in 

Mp 

kip. ft 

F’c=4 ksi 3808 163.2 750 3000 1687.5 11.6 58.6 29.1 0.3 17972.2 

F’c=6 ksi 5712 244.8 750 3000 1687.5 7.6 62.6 33.1 3.7 19026.8 

F’c=6.2 ksi-

FEM 
FEM 20816.7 
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Figure 5-41. Moment curvature curve with nonlinear material properties (f'c=6 ksi). 

 

In order to investigate the effect of railing on the final capacity of the bridge in fracture and intact 

scenarios, the UT bridge model was loaded until the failure for the intact and fractured bridge 

considering the effect of the railing. Figure 5-42 shows the results obtained from the FE models 

for two conditions of the intact bridge (no fracture in the left girder under the load) and the 

fractured condition (fracture of left girder under the load). It can be concluded from the results that 

railing could slightly decrease the maximum deflection of the fractured bridge at failure load for 

up to 8%. 

 
Figure 5-42. The effect of railing on the fractured bridge.  
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 Chapter 6 Determining Failure Load Using Simple Analysis for 

Possible Failure Mechanisms 

Based on the finite element analysis and available experimental results, as well as work by others, 

it is inferred that the failure after fracture of one girder can be one of; a) one-way shear failure of 

the deck, or b) flexural failure of the deck. The failure of the intact girder under bending and torsion 

could also be a possible mechanism; however, none of the results from analysis and experiments 

neither other sources have indicated the occurrence of such mechanism before the failure of the 

deck. One-way shear failure and flexural failure of the deck are investigated here for the University 

of Texas bridge. 

6.1 Sensitivity Analysis for One-Way Shear Transfer in the University of Texas 

Twin Steel Box Girder Bridge 

The objective of the investigation reported in this section is to perform a sensitivity analysis for 

one-way shear transfer in the deck slab where the varying parameter is the transverse position of 

the truck wheels. The main goal is to validate the simple model for one-way shear at the deck in 

comparison with finite element results and to determine the effective width for the calculation of 

shear stresses for HS-20 loading.  The bridge was loaded in terms of the HS-20 design truck with 

14 ft axle spacing positioned at the mid-span over the fractured girder to generate maximum 

moment at the section with the fracture. Figure 6-1 shows the loading configuration for the 

parametric study of one-way shear failure. In order to study the effect of truck position on one-

way shear effective width and shear stress distribution over the girders, HS-20 truck was positioned 

in four different locations across the bridge width as shown in Figure 6-2, to constitute four cases, 

one for each position. Cases 2, 3, and 4 were used for investigating the sensitivity analysis for one-

way shear. Case 1, an extraordinary eccentric loading, was used for bending failure investigation 

later in this report. 

 

Based on the HS-20 design truck location, the shear stress profile was obtained for four sections 

in the bridge deck slab along the bridge immediately next to the end of steel girder flanges of intact 

and fractured girders. Figure 6-3 shows the location of shear stress sections. Total shear force 

transferred longitudinally and transversely was calculated by integrating shear stress profile in 

longitudinal and transverse across the bridge slab. According to the results, it can be seen that 

despite the fracture in one girder, a portion of the truck loading is transferred to the fractured girder 

end supports in the longitudinal direction, and the remaining is transferred transversely to the intact 

girder.  The portion of live load transferred longitudinally by the fractured girder to its support can 

be calculated by integrating shear stresses along the sections shown in Figure 6-3, and transverse 

distribution of the live load from the fractured girder to the intact girder can be calculated by 

subtracting the longitudinally transferred load from the total live load. The proportion of 

longitudinal and transverse load transfer will depend on the truck location and bridge 

configuration, i.e., girder spacing, deck thickness, cross-frame spacing, etc. 
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Figure 6-1. Loading Configuration in the one-way shear analysis. 

 

Figure 6-2. HS-20 Truck location in the one-way shear analysis. 

 
Figure 6-3. Sections in the one-way shear analysis. 

For the analysis, the bridge was loaded incrementally until the failure, plateau in the load-

deflection curve, and shear stress was captured for all the sections along the bridge in four different 

truck positions (Cases 1- 4). The results show that shear stress follows a similar pattern for each 

section and case by increasing the truck loading until the failure stage, where crushing and cracking 

of the deck changes the initial pattern. Hence, the stress pattern is studied for the failure stage. 

Figure 6-4 shows the shear stress profile in the slab along the sections for all cases under dead load 

and twice the HS-20 design truck. Moreover, in order to study the effect of the increasing live load 

on shear stress pattern and the effective width for one-way shear, shear stress in the slab along 

Section 1-1 for Case 2 was obtained and is shown in Figure 6-5. The results indicate that by 

increasing the live load (up to twice HS-20), shear stress follows a similar pattern with negligible 

changes in one-way shear effective width. Comparison of the shear stress pattern and values in 

Section 1-1 and Section 2-2 (Figures 6-4 (a) and (b)) indicates that the live load positioned between 

intact and fractured girder is transferred in both longitudinal and transverse direction.  Moreover, 
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the analysis shows that after the fracture, the intact girder (Section 1-1) carries more shear stress 

than the fractured girder (Section 2-2) because of having a higher stiffness. 

 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 6-4. Shear stress in the slab along the faces of the intact and fractured girder for all the cases under dead load and two 
times HS-20 design truck: (a) Section 1-1; (b) Section 2-2; (c) Section 3-3; (d) Section 4-4. 
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Figure 6-5. Shear stress in the slab along Section 1-1 in case 2 under dead load and increasing HS-20 design truck. 

Shear stress analysis of the live load's distribution between Section 3-3 and Section 4-4 (Figures 

6-4 (c) and (d)) shows that forces over the fractured girder are mainly transferred transversely to 

Section 2-2 and then to the Section 1-1 and the remaining is transferred longitudinally to the end 

supports. Total shear force transferred to the fractured girder was calculated by integrating shear 

stress along the bridge at each section (Figures 6-4 (c) and (d)). The results reveal that although 

the local shear transfer is recorded for both Sections 3-3 and 4-4, the total shear force transferred 

to the fracture girder in the transverse direction is negligible. Therefore, positive and negative shear 

stress along Section 3-3 and Section 4-4 could be attributed to local deflection after the fracture.  

The results show pull-out shear forces along Section 3-3 and Section 4-4 in a limited length, which 

may cause a shear stud failure only at the mid-span. In this region, the bridge deck would not 

follow the fractured girder deflection at the middle of the span because of its high transverse 

stiffness, and as a result, pull-out forces will develop between the deck and the fractured girder. 

 

Two methods were used in this study for estimating the effective width and average shear stress 

transferred transversely to the girders for the approximate simple method (referred hereafter as 

simple prediction Methods 1 and 2). In the first method (Method 1), the effective width was 

predicted using 45o spreading line from the far side of the first and last point loads, and total width 

was considered as the effective width by ignoring gaps between spreading lines. In the second 

method (Method 2), the effective width was predicted for each point load separately using 45o 

spreading line from the far side of each point load. See Figure 6-6 for illustration of two different 

effective widths.  Furthermore, the effective width for one-way shear was also calculated using the 

finite element model for Section 1-1 and Section 2-2 by measuring the length of the negative shear 

stress to correspond to effective widths estimated using Methods 1 and 2 described for the simple 

method.  

 

Figures 6-7 (a) and (b) show effective width estimation for the FE method for Method 2. The 

effective width for Method 1 for FE analysis will be the entire length from the first point on the 

left to the last point on the right.  The effective width for calculating one-way shear from simple 

prediction methods was compared to the FEM results, as shown in Tables 6-1 and 6-2. The 

prediction value shows a good agreement with the effective width obtained using the FE model 
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when using Method 1. For Method 1, in all but one case (Case #4, Section 2-2 in method 1), the 

approximate effective width is smaller than the FE calculated, hence providing for more 

conservative stress calculation. Method 2 results for simple prediction compare fairly with FE 

results, the difference to be attributed to the non-distinct variation of stress in the FE results.  As a 

result, the minimum effective width value obtained in this study for Section 1-1 based on the 

critical live load position (Case 4) can be used for calculating the one-way shear capacity of the 

fractured bridge. 

 

Tables 6-1 and 6-2 show the maximum and average stress obtained from FEM and simple 

predication Methods 1 and 2 over the effective width under twice the HS-20 design truck loading.  

Stresses from the effect of dead load after fracture are subtracted from the total shear stress to 

obtain live load shear stresses. The difference between average stress in FEM and the simple 

prediction method can be attributed to two sources. First, because of fracture, in reality, and as 

captured by FE analysis, the intact girder (Section 1-1) carries more shear stress than the fractured 

girder (Section 2-2), i.e., a major proportion of the live load will be transferred to intact girder 

from the fractured girder, where, in the simple predication methods, shear stress is assumed to be 

transferred only to the intact girder. Moreover, a proportion of live load on fractured girder will be 

transferred longitudinally to its support, as shown by the FE analysis results. However, in the 

simple prediction methods, it is assumed that shear stress only will be transferred transversely. 

 

Comparison of results shows that for Method 1 (extended effective width for the entire truck), the 

average shear stress estimated at Section 1-1 using simple prediction agrees well and is slightly 

higher than the average shear stress calculated from FE analysis.  Results for Method 2 (effective 

width for individual wheels) show that the average shear stress estimated at Section 1-1 for the 

rear wheels using the simple prediction method agree very well with the maximum shear stresses 

calculated by FE analysis. Method 1 is believed to generate results that are more representative of 

shear stresses when compared with FE analysis results.  The effective length obtained from Method 

1 is therefore used for calculating the fractured bridge one-way shear capacity in different cases 

for comparison with bending yield line results. The maximum shear stress is assumed to be uniform 

over the entire effective width, and the ACI 318-14 equation for one-way shear is used to compute 

the shear resistance in the deck (Table 6-7).  

 
Table 6-1. One-way shear effective width for Method 1. 

 One-Way Shear Effective Width (in) 

 Case#2 Case#3 Case#4 

 FEM 
Simple 

Prediction 1 
FEM 

Simple 

Prediction 1 
FEM 

Simple 

Prediction 1 

Section 1-1 506 461 476 421 440 381 

Section 2-2 462 381 447 421 418 461 
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Case #1 

 
Case #2 

 
Case #3 

 
Case #4 

Figure 6-6. The effective width for one-way shear using the simple prediction method. 
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Table 6-2. One-way shear effective width for Method 2 (Front denotes front wheel; Rear denotes rear wheel). 

 One-Way Shear Effective Width (in) 

 Case#2  Case#3  Case#4 

 FEM 
Simple 

Prediction 2 
FEM 

Simple 

Prediction 2 
FEM 

Simple 

Prediction 2 

 Rear Front Rear Front Rear Front Rear Front Rear Front Rear Front 

Section 1-1 132 139 130 120 139 139 90 80 110 95 50 40 

Section 2-2 119 99 50 40 125 139 90 80 154 137 130 120 

 

 
Figure 6-7. The effective width for one-way shear using the finite element model: (a) Section 1-1; (b) Section 2-2. 

 
Table 6-3. One-way shear stress over the effective width under 2xHS-20 for Method 1. 

 One-Way Shear Stress (psi) 

 Case#2 Case#3 Case#4 

 FEM 
Simple 

Prediction 1 
FEM 

Simple 

Prediction 1 
FEM 

Simple 

Prediction 1 

 Max. Avg. Avg. Max. Avg. Avg. Max. Avg. Avg. 

Section 1-1 33.4 14.7 19.5 56.4 18.8 21.4 101.4 20.5 23.6 

Section 2-2 21.3 5.76 0 11.3 1.9 0 20.4 5.0 0 
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Table 6-4. One-way shear stress over the effective width under 2xHS-20 for Method 2. 

 One-Way Shear Stress (psi) 

 Case#2  Case#3  Case#4 

 FEM 

Simple 

Prediction 

2 

FEM 

Simple 

Prediction 

2 

FEM 

Simple 

Prediction 

2 

 
Max. 

Avg. Avg. 
Max. 

Avg. Avg. 
Max. 

Avg. Avg. 

 R F R F R F R F R F R F 

Section 1-1 33.4 15.9 10.9 30.8 8.3 56.4 22.4 11.6 44.4 12.5 101.4 28.3 9.8 80.0 25.0 

Section 2-2 21.3 7.5 6.9 0 0 11.3 0.1 3.9 0 0 20.4 7.8 5.9 0 0 

Note:  R= Rear-wheel; F= Front-wheel 

6.2 Flexural Failure of the Deck Based on Yield Line Analysis: 

The simple yield line model developed by the University of Texas [19] to capture the bending 

response of a twin steel box girder is investigated here for estimation of the bending capacity deck 

in the fractured bridge. The proposed yield line pattern of the University of Texas is based on the 

overall cracking and crushing pattern from the University of Texas bridge test. The experimental 

results show that the failure in the deck followed the shape of a half-ellipse. Accordingly, a yield 

line pattern was developed by the University of Texas using a combination of straight lines.  

Several assumptions were made for developing the pattern. First, it was assumed that a yield line 

in the deck between the girders closer to the fractured girder (parallel to the girders longitudinal 

axis) would not form because the shear studs connecting the fractured girder to the deck will fail 

due to the pull-out force and the fractured girder would not have any contribution. Second, the 

yield line consisted of straight lines lying on the perimeter of an ellipse along with two diagonal 

interior fold lines with the linear deflection to its maximum at the edge of the deck at mid-span. 

The proposed pattern gives the most conservative estimate of capacity by ignoring the contribution 

of the fractured girder. The yield line pattern is defined by two major parameters; the angle φ 

between the inner diagonals and the vertical axis and horizontal distance from points at the end of 

outer diagonal lines to the origin (along the outer edge of the deck over the fractured girder). A 

series of parametric studies were conducted by the University of Texas to determine these 

parameters to correspond to minimum capacity under HS-20 truck load.   

 

In the one-way flexural failure of the bridge, plastic hinges will form at the location of the 

maximum moment, and the hinge lines will rotate plastically with an increase of the load to form 

the final yield lines. Based on the yield line pattern, the virtual work principle could be used for 

the calculation of deck bending capacity. The principle of virtual work requires that the external 

virtual work done by the external forces be equal to the internal virtual work done by the internal 

forces of each element of a structure. The external virtual work is computed from the summation 

of the product of the externally applied forces multiplied by the virtual displacement at the load 

position, which is a function of the assumed virtual displacement. The total internal virtual work 

due to the virtual displacement is equal to the summation of the product of the bending moment 

developed at the segment of the yield line multiplied by the hinging rotation of each segment. 
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Figure 6-8 shows the yield line pattern proposed by the University of Texas. It was assumed that 

a straight yield line would initiate at the interior top flange of the intact girder, and it would extend 

diagonally to the edge of the deck above the fractured girder. The yield line needs to be completed 

by assuming two inner diagonal lines from the end of the interior top flange of the intact girder to 

the edge of the deck above the fractured girder.  

 

A yield line analysis was performed for the four cases discussed above based on the University of 

Texas yield line pattern. The finite element model was used for estimating the position and length 

of the outer yield lines by using concrete damage index in the deck as shown in Figure 6-9, and 

the ultimate capacity of the bridge was calculated for each case (Tables 6-5 and 6-6). The yield 

line obtained from the FE analysis closely compares to the yield line suggested by the University 

of Texas for a similar loading pattern (Case 1). It should be noted that the actual load carried by 

the University of Texas bridge under uniform loading in term of HS-20 was 363 kips (5 times HS-

20). According to the Texas yield line (Table 6-7), the maximum capacity of the bridge in case 1 

is 4.2 times HS-20, which is slightly conservative when compared to the maximum capacity of 

4.5times HS-20 obtained from the finite element model here in this study. This can be attributed 

to ignoring the contribution of the fractured girder in the yield line analysis. 

 
Table 6-5. External work calculation of the truck load. 

Number of HS-20 Design Truck 4.2 

 P Xpoint Ypoint rLoad r Delta EW 

Front Wheel 16.8 14.0 5.9 6.3 22.5 0.3 4.7 

Front Wheel 16.8 14.0 11.9 12.3 26.5 0.5 7.8 

Middle Wheel 67.2 0.0 5.9 5.9 14.2 0.4 28.0 

Middle Wheel 67.2 0.0 11.9 12.0 14.2 0.8 57.0 

Rear Wheel 67.2 -14.0 5.9 6.3 22.5 0.3 18.7 

Rear Wheel 67.2 -14.0 11.9 12.3 26.5 0.5 31.2 

      EWTruck 147.4 

      EW DL 33.3 

      EW Total 180.7 

 
Table 6-6. Internal work calculation for the Texas bridge. 

  L a ml mt mb Rotation dIW 

Perimeter 

  

33.75 0.00 17.86 17.86 17.86 0.07 42.07 

19.30 0.77 17.86 17.86 17.86 0.05 15.64 

19.30 1.05 17.86 17.86 17.86 0.05 15.64 

  

 Diagonals 

22.00 0.86 22.68 22.68 22.68 0.05 26.13 

22.00 0.97 22.68 22.68 22.68 0.05 26.13 

      IW Railing 55.22 

            IWTotal 180.82 
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Case #1

 
Case #2

 
Case #3

 
Case #4 

Figure 6-8. The yield line pattern proposed by the University of Texas for cases 1 to 4. 
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To investigate the effect of shear studs in the load-carrying capacity of the bridge, the interaction 

between the shear studs and the concrete deck were modeled in the FE analysis. The connector 

element was utilized for modeling the shear studs. The ultimate shear and tension capacity for the 

connector elements were assigned based on the shear and pull-out test conducted by Topkaya [42] 

and the University of Texas [43]. Once the shear or tension force in the shear stud element reaches 

its capacity, the element would lose its connection to simulate the pull-out or shear failure. The 

analysis showed that with the connector elements calibrated based on the available stud tests, 

failure of the studs occurs along a limited length of the deck immediately over the inner edge of 

the fractured girder just enough to allow the development of the assumed yield line pattern.  For 

comparison purposes, FE analysis was performed on Texas bridges with and without modeling the 

shear studs.  The case of without shear studs assumes perfect composite action with no failure in 

the studs.  Figure 6-9 shows a comparison between the load-displacements curves for Case 1 

loading with and without modeling the studs.  The response curves are in close agreement until 

the applied load of about three times HS-20, where the pull-out failure of shear studs begin at the 

middle of the span over the fractured girder.  Stud pull-out extends over a limited length until the 

maximum capacity is reached. Table 6-7 shows the maximum capacities obtained from FE analysis 

with stud modeling. For comparison purposes, the maximum capacity for Case 1 is also reported 

from FE analysis without modeling the shear studs, i.e., assuming full composite action between 

deck slab and girders.   

 

Another bridge feature influencing the deck bending failure mechanism is bridge railing.  In the 

normal bridge operation, concrete bridge railing is not considered to be a structural component 

because of the gap between railing segments for expansion joints. When a bridge is subjected to 

large deflections due to severe damage, two sides of the gap will eventually come into contact, and 

contact force would increase the stiffness of the bridge. However, in the Finite element model, the 

railing segments were modeled with no contact force between the segments to eliminate the 

uncertainty of the railing gap and the force between railing after a large deflection.  On the other 

hand, the simplified yield line model utilized by the University of Texas takes into account the 

contribution of the railing in the bending resistance along the yield lines wherever applicable. 

 

The finite element analysis incorporating the shear studs shows that the pull-out of studs occurs 

along a limited length at the mid-span allowing the yield lines to form in a pattern similar to the 

University of Texas. Moreover, the bridge deflection in the finite element model matches with the 

proposed pattern when considering the pull-out shear stud failure. Although the yield line pattern 

proposed by the University of Texas is conservative due to ignoring the contribution of the 

fractured girder, it can estimate a lower bound capacity for the fractured bridge.  

 

Figures 6-10 (a) and (b) show the yield line pattern obtained from the finite element model using 

concrete damage plasticity index in the top and bottom view of the deck, respectively. Positive and 

negative bending lines can be observed in the bottom and top view of the deck. Figure 6-11 shows 
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the vertical deflection of the deck at the failure in the finite element model and the deflection based 

on the yield line pattern. It can be seen from the deflected FE model that the bridge deflection in 

the failure region is approximately linear from the edge of the intact girder to its maximum value 

at the edge of the deck above the fractured girder at the middle of the span, and the deflection 

reflects the half-ellipse shape that is the basis for determining the yield line pattern. 

 

 
Figure 6-9. Comparison between the load-displacements curves for Case 1 loading with and without modeling the studs. 

According to the results shown in Table 6-7, one-way shear is the critical failure mode for Cases 

3 and 4 (closest to intact girder), and flexural failure of the deck at the yield lines is the failure 

mode for Cases 1 and 2 (farthest from intact girder). Accordingly, it can be inferred that the 

ultimate capacity of the bridge with one fractured girder under HS-20 design truck using simplified 

method is the smaller value between one-way shear capacity in Case 4 and the deck bending 

capacity using yield line method in Case 1. Figure 6-12 shows the suggested effective width and 

yield line pattern for calculating one-way shear and yield line analysis. One-way shear capacity 

can be estimated using Equation (5) for using the effective width shown in Figure 6-12 (a), and 

the yield line bending capacity can be estimated using the yield line pattern shown in Figure 6-12 

(b) as per the procedure described earlier and shown in Tables 6-5 and 6-6. 

 

𝑉𝐴𝐶𝐼 = 2ඥ𝑓′
𝑐
𝑏𝑒𝑓𝑓𝑑 (psi)                            (5) 
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(a) 

   
(b) 

Figure 6-10. The yield line pattern of the deck in the Finite Element Model for Case 1: (a) Bottom view of the deck where positive 
bending yield lines are shown; (b) Top view of the deck where negative bending yield lines are shown (white lines are added to 

reflect the idealized yield lines used in simple analysis). 
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(a) 

 

                        
(b) 

 

 
(c) 

 
(d) 

Figure 6-11. Yield line pattern of the deck: (a,c) Deck deflection contour in FEM; (b,d) Deck deflection based on 
yield line pattern. 
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Figure 6-12. The University of Texas bridge failure mechanisms: (a) One-way shear in Case 4; (b) Yield line failure in Case 1.                                                                                    

Table 6-7. Bridge capacity for cases 1 to 4. 

Case 

One-Way Shear 

Capacity  

(kips) 

Bending Yield 

Line capacity 

(kips) 

Max. Capacity from 

FE analysis- shear 

studs are modeled 

(kips) 

1 448.7 301.7 320 

2 412.9 362.2 329 

3 377.1 474.5 335 

4 341.2 563 340 

 

6.2.1 Sensitivity Analysis for the Concrete Compressive Strength in the University of Texas 

Twin Steel Box Girder Bridge 

Variation in the bridge configuration and material properties, i.e., concrete compressive strength 

and steel ultimate strength, may result in different failure modes and, therefore, different reserve 

capacity. In this section, sensitivity analysis for the deck concrete compressive strength is 

conducted to investigate its effect on the ultimate failure strength and mode. 

 

In the previous analysis, the concrete compressive strength was taken as 6.2 ksi as per reported 

test results. Accordingly, two other concrete compressive strengths were assigned to the deck in 
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the FE models to investigate the behavior of the bridge with fractured girder under various concrete 

strengths. 

 

The concrete material parameters used in the presented analyses are: the modulus of elasticity E0 

that is calculated based on the ACI 318-14 [38] (𝐸𝑐 = 57,000ඥ𝑓𝑐
,
), the Poisson’s ratio ν, and the 

compressive and tensile strengths. The concrete damaged plasticity model was considered in the 

models. The dilation angle ψ was considered as 36o, the shape factor, Kc =0.667, the stress ratio 

σb0/ σc0 =1.16, and the eccentricity ε=0.1. 

 

Concrete in compression was modeled with the Hognestad parabola [44] (see Figure 6-13). The 

assumed stress-strain behavior of the concrete under uniaxial compressive loading could be 

divided into three domains. The first one represents the linear-elastic branch, with the initial 

modulus of elasticity. The linear branch ends at the stress level of σc0. The second segment 

describes the ascending branch of the uniaxial stress-strain relationship for compression loading 

to the peak load at the corresponding strain level. The third part of the stress-strain curve shows 

the strength descending part after the peak stress and until the ultimate strain εu. Concrete damage 

was assumed to occur in the softening range in both tension and compression. In compression, the 

damage was introduced after reaching the load corresponding to the strain level, ε0. 

 

The uniaxial stress-strain response of concrete in tension is linear elastic up to its tensile strength, 

𝑓 𝑡
′ . After cracking, the descending branch is modeled by a softening process, which ends at a 

tensile strain εu, where zero residual tensile strength exists (see Figure 6-14). Sensitivity analyses 

for the concrete compressive strength for the University of Texas Twin Steel Box Girder bridge 

were conducted using three different concrete compressive strengths of 4 ksi, 5 ksi, and 6.2 ksi. It 

should be noted that the concrete compressive strength for the University of Texas bridge at the 

time of its ultimate test (32 months after casting the deck) was 6.2 ksi and had an average strength 

of 4.8 ksi at the age of 28 days. 

 

Table 6-8 shows the ultimate bridge capacity obtained from the FE analysis and simplified 

methods for one-way shear and bending yield line capacity. The results show that by increasing 

the concrete strength capacity of the deck, the one-way shear capacity increases by the square root 

of concrete compressive strength according to Equation (5). Moreover, section bending capacity 

increases by increasing the concrete compressive strength. For example, the section capacity along 

the yield lines with concrete compressive strength of 4 ksi and 5 ksi is 20 kip. ft/ft and 21.3 kip. 

ft/ft, respectively. The FE results indicate a similar trend. 
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Figure 6-13. The uniaxial compressive stress-strain relationship for concrete. 

 
Figure 6-14. The uniaxial tensile stress-strain relationship for concrete. 

 
Table 6-8. Bridge capacity for cases 1 and 4 with different concrete compressive strengths. 

Case 

concrete 
compressive 

strength 
(ksi) 

One-Way Shear 
Capacity  

(kips) 

Bending Yield 
Line capacity 

(kips) 

Max. Capacity from FE 
analysis- shear studs 

are modeled 
(kips) 

1 

6.2 448.7 301.7 320 

5 403.0 288.0 316 

4 360.4 273.6 310 

4 

6.2 341.2 563 340 

5 306.5 532 335 

4 274.1 506 327 
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6.2.2 Sensitivity Analysis for the Truck Loading in the University of Texas Twin Steel Box 

Girder Bridge 

The first edition of AASHTO’s Standard Specification for Highway Design in 1931, which was 

based on the 1924 committee report, contained a representation of a design truck and/or a group 

of trucks with a single unit weighing up to 40 kips, which was known as the H20 truck, and a lane 

load to be used in specific circumstances. For the HS-20 design truck loading, this consisted of a 

uniform load of 0.64 kip/ft and a moving concentrated load or loads. A concentrated load of 26 

kips was used for shear and for reaction, two 18-kips concentrated loads were used for the negative 

moment at support and were positioned in two adjacent spans, and a single 18-kips load was used 

for all other moment calculations.  

 

In the early 1940s, the design truck was extended into a tractor–semi-trailer combination, known 

in the 1944 Standard Specifications as H20-S16-44 and commonly referred to as simply the HS-

20 truck. This vehicle weighed a total of 72 kips and was comprised of a single steering axle 

weighing 8 kips and two axles that supported the semi-trailer, each weighing 32 kips. The axle 

spacing on the semi-trailer could vary from 14 to 30 ft, and it was assumed that there was 14 ft 

between the steering axle and the adjacent axle that formed part of the tractor. The HS-20 design 

truck is an idealization and did not represent any particular truck. The truck configuration, i.e., 

axle spacing and weights, is represented to produce moments and shears in the bridge longitudinal 

direction based on actual truck loading. However, for the fractured bridge in which most of the 

loads are being transferred transversely, and the failure mode could be one-way shear or flexural 

failure of the deck, the HS-20 truck may not represent the worst-case scenario for one-way 

mechanisms. Therefore, sensitivity analysis for the truck loading needs to be conducted for 

different loading configurations. 

 

In order to consider the effect of truck loading configuration on the bridge failure mode as well as 

the effect on yield line pattern and one-way shear effective width, three trucks with loading 

configurations other than HS-20 truck were selected as shown in Figure 6-15. Florida legal loads 

and emergency vehicles are used for this purpose. The C5 truck that is one of the Florida legal 

loads weighs a total of 80 kips and with a total length of 36 feet that is longer and heavier than the 

HS-20 design truck configuration used in this study. EV3 truck loading is one of the Florida 

emergency vehicles with a total weight of 86 kips (14 kips heavier than HS-20 Truck) and a total 

length of 19 feet (9 feet shorter than the HS-20 truck configuration used in this study) that creates 

larger longitudinal and transverse bending moment in the bridge. Moreover, WIM data in the state 

of Florida was also used for selecting a typical truck, which creates a larger moment and shear for 

a 120 feet simple span bridge. The selected truck, which is called here WIM Data-FL, has a gross 

vehicle weight of 120 kips distributed over seven axles (Class 13 based on FHWA vehicle category 

classification). The ratio of the selected truck moment and shear to HS-20 truck is 1.58 and 1.56, 

respectively.  
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It should be noted that in all models studied in this section, concrete compressive strength was 

considered as 6.2 ksi, and the trucks were positioned over the fractured girder in two different 

locations across the bridge width, to constitute Case 1 for studying the one-way flexural bending 

failure of the deck and Case 4 for one-way shear failure. In these cases, where most of the truck 

loading is being transferred transversely to the intact girder, the center of gravity of trucks was 

positioned at the mid-span for all cases. 

 

Table 6-9 indicates the results of sensitivity analysis for the truck loading. The one-way shear 

capacity was calculated using the method mentioned in the previous section (The effective width 

was predicted using 45o spreading line from the far side of the first and last point loads, and total 

width was considered as the effective width by ignoring gaps between spreading lines.) and the 

bending yield lines for each case, as shown in Figures 6-16 and 6-17, were captured from the finite 

element models using the damage indexes, as explained in the previous sections. The bridge yield 

line capacity and one-way shear capacity were calculated for each case using the yield line pattern 

and the proposed method for the shear, and the results were compared in Tables 6-9 and 6-10 to 

the bridge ultimate load capacity obtained from the finite element model. 

 

 
(a) 

 
(b) 

 
 (c)  

Figure 6-15. Vehicle loading configuration: (a) Florida emergency vehicle (EV3); (b) Florida legal load (C5); (c) Florida typical 
truck (WIM Data –FL). 
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EV3 
(a) 

  
C5 
(b) 

  
HS-20 

(c) 

 

WIM-Data-FL 
(d) 

Figure 6-16. University of Texas Bridge Yield Line Failure in case 1 for Different Truck Loading: (a) EV3; (b) C5; (c) HS-20; (d) WIM-
Data-FL.  
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EV3 
(a) 

  
C5 
(b) 

 
HS-20 

(c) 

 
WIM-Data-FL 

(d) 
Figure 6-17. The University of Texas bridge yield line failure in case 4 for different truck loading: (a) EV3; (b) C5; (c) HS-20; (d) 

WIM-Data-FL. 
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Table 6-9. Bridge capacity for Cases 1 and 4 with different truck configurations. 

Case Truck 
One-Way Shear 

Capacity 
(kips) 

Bending Yield 
Line capacity 

(kips) 

Max. Capacity from FE 
analysis- shear studs 

are modeled 
(Kips) 

1 

C5 534.7 288 300 

HS-20 448.7 286.6 318 

EV3 351.1 309.6 333 

WIM-Data 577.7 330 374 

4 

C5 427.2 620 350 

HS-20 341.2 563 340 

EV3 243.6 524 352 

WIM-Data 470.2 668 402 

 

The results show that the bending yield line failure is the failure mode for all the truck 

configurations in Case 1, where the truck position transversely is farthest from the intact girder, 

and one-way shear is the failure mode in Case 4, where the trucks were positioned closest to the 

intact girder. Moreover, the proposed bending yield line can conservatively predict the bridge 

ultimate load capacity in Case 1 by ignoring the effect of the fractured girder and diaphragms. It 

is worth mentioning that only for the EV3 truck configuration where the truck length is very short, 

and the truck weight (86 kips) is much heavier than the HS-20 design truck, the one-way shear 

capacity of the bridge in Case 4 (243.6 kips) is less than its bending yield line capacity in Case 1 

(309.6 kips). In all other truck loadings, Case 1, with the largest eccentricity of loading, is the 

governing case with the bending yield line as the dominant mode of failure. 

 

In all the above cases, the yield line configuration was determined using the specific finite element 

damage pattern for each case. Using these results, a unified and simplified method can be 

developed for predicting the yield line pattern in the deck of a twin steel box girder with one 

fractured girder for different loading configurations.  

 
Table 6-10. Minimum bridge capacity for all cases with different truck configurations. 

Truck 
Min. One-Way 
Shear Capacity 

(kips) 

Min. Bending Yield 
Line capacity 

 (kips) 

Capacity from 
 FE analysis 

(Kips) 

C5 427.2 288 300 

HS-20 341.2 286.6 318 

EV3 243.6 309.6 333 

WIM-Data 470.2 330 374 
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6.3 A Unified Simple Model for Predicting the Reserved Capacity of Twin Steel 

Box Girder Bridges with A Fracture in One Girder 

6.3.1 Simplified Yield Line Pattern for Different Loading Configurations 

The results presented in the previous section indicated that the dominant mode of failure for the 

twin steel box girder bridge considered in this study after a fracture in one girder in all but one 

case was the bending yield line failure.  The exception was the case of EV3, where one-way shear 

for Case 4 was smaller than bending yield line failure for Case 1 for the same truck. However, 

even in this case, the capacity indicated by bending yield line failure was noticeably smaller than 

the capacity obtained from finite element analysis.  Also, the simple method adopted in this study 

for one-way shear failure seems too conservative for the shorter and more compact trucks.  Hence, 

from now on, the simple model based on bending yield line failure will be considered for reliability 

and redundancy analysis applicable to all truck configurations.   

 

The characteristics and geometry of the yield line pattern for each case have been deducted from 

the detailed finite element analysis conducted for that specific case (truck loading and position).  

To simplify the process and avoid the need for FE analysis for each loading case, a simple and 

unified method of determining the yield line pattern becomes instrumental. This unified pattern, 

however, has to agree well with the results obtained using FE analysis to satisfy the complex load 

distribution after the fracture of one girder.  Therefore, a parametric analysis was conducted for 

developing a simplified yield line pattern to be used for calculating the bridge capacity based on 

the bending yield line failure that would be applicable to different loading configurations. The 

parametric study on the truck loading configuration shows that when the bridge is loaded over the 

fractured girder far from the intact girder (Case 1), the deck starts to first crack over the intact 

girder due to the one-way bending mechanism of the bridge deck. By increasing the load, cracks 

in the deck will extend along the span, and four diagonal cracks will form to complete the failure 

mechanism in the deck (Figure 6-16). A comparison between the yield line patterns obtained from 

the FE analysis for different loading configurations shows that the longitudinal crack over the 

intact girder extends up to about the truck length in all configurations. Internal diagonal cracks 

will follow a regular pattern connecting the end of the longitudinal crack to a point on the edge of 

the deck at the fracture location. However, external diagonal cracks form with different angles 

from the end of longitudinal cracks to the railing, depending on the loading configuration (see 

Figure 6-16).  

 

Considering the FE analysis, a simplified yield line pattern was developed, as shown in Figure 

6-18. In this pattern, the truck is positioned closest to the railing, where its center of gravity 

coincides with the mid-span over the fracture. The length of the longitudinal crack is considered 

equal to the truck length. To find the angle of the diagonal lines ( in Figure 6-18), a parametric 

analysis was conducted with varying angles.  The goal was to find an angle that results in capacity 

in agreement with previous results using FE derived patterns and capacity obtained from FE 

analysis. Table 6-11 summarizes the parametric analysis for yield line patterns with different 
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angles varied from 30o by 5o increments. The ratio of the simplified bending yield line capacity to 

the bridge capacity obtained from the FE analysis is shown in the table for each angle. The results 

show that the simplified method with the 35o gives the best average capacity ratio (0.92) compared 

to the bending yield line capacity and ultimate bridge capacity obtained from the FE analysis, and 

no case produces capacity above the capacity obtained from FE analysis. By decreasing the angle 

to 30o, the bending yield line analysis gives a higher capacity than the ultimate bridge capacity 

from FE analysis, and the results for 40o and 45o are too conservative.  

 
Table 6-11. Parametric results on the suggested simplified yield line pattern for different loading configurations. 

Truck 

Bending Yield 
Line capacity-

FEM 
(kips) 

 

 
Ratio 

 

Bending Yield Line Capacity-Simplified Method 
(kips) Capacity from FE 

analysis 
(Kips) 

a=30 

 

 
Ratio 

 

a=35 

 

 
Ratio 

 

a=40 

 

 
Ratio 

 

a=45 

 

 
Ratio 

 

C5 288 0.96 329.6 1.10 300.2 1.00 281.6 0.94 263.2 0.88 300 

HS-20 286.6 0.90 329.7 1.04 298.4 0.94 278.6 0.88 251.6 0.79 318 

EV3 309.6 0.93 351.1 1.05 310.4 0.93 279.1 0.84 254.6 0.76 333 

WIM-Data 330 0.88 325.6 0.87 301 0.80 282.7 0.76 265.2 0.71 374 

Average   0.92   1.02   0.92   0.85   0.79   

 

 
Figure 6-18. Simplified yield line pattern for different loading configurations. 

The yield line pattern can be defined for each loading configuration based on the proposed pattern, 

and the virtual work can be used for computing the fractured bridge capacity. Using fundamental 

trigonometric relationships, displacement of point loads (Equation (6)), the center of gravity of 

railing, and the concrete deck triangles (for self-weight) are obtained for calculating the external 

virtual work (Equations (7-9)). In order to calculate the internal virtual work by the bridge deck, 

including the deck and railing, the length and rotation of each yield line are calculated using the 

failure pattern geometry (Equations (10), (11)). Railing can contribute significantly to the ultimate 

bridge capacity. After a fracture in one of the girders, the railing acts as an edge beam for carrying 

the loads. The internal work by the railing depends on the type of railing, the location of the hinge 

lines, and the gaps between railing segments. In the railing system with expansion joints (gap), 

two sides of the gap will come in contact after a large displacement and increase the internal work 

depending on the gap size. However, due to uncertainty of gaps size and to be conservative, virtual 
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work by the railing at the gap (assumed in this study at the fracture location) is not considered in 

the calculations of the simplified method. Nevertheless, the virtual work by the railing is 

considered where the yield line intersects the railing by two external diagonal lines. 

δload = rload ·Δ/r                              (6) 

EW Railing = A Railing·(a1+a2)·0.15·Δ/2                                                                                      (7) 

EW Deck Triangles = A Deck Triangles. t · 0.15 · Δ/3                                                                           (8) 

EW Truck load = Σ (load. δload)                     (9) 

IW Deck Triangles = Σ (mb·l· θ Deck Rotation)                                 (10) 

IW Railing = Σ (mb· θ Railing Rotation)                   (11) 

Where δload = Displacement of point loads; rload= Distance from the point load to Point O (see 

Figure 6-18); r = Distance from Point O to the yield line (passing from the point load); mb = 

Bending capacity. 

 

6.3.2 Evaluation of the Simple Model for Various Deck Thickness and Concrete 

Compressive Strength 

The proposed yield line patterns and analysis were used for calculating the ultimate bridge capacity 

under various truck loading for different concrete deck thickness and compressive strengths 

separately. The concrete deck thickness varied from 7.5 in. to 8.5 in. and the concrete compressive 

strength varied from 4 ksi to 7 ksi. Note that for the concrete deck thickness sensitivity analyses, 

the compressive strength was assumed 6.2 ksi, and for the concrete compressive strength analyses, 

8 in. thickness was assumed for the deck. Tables 6-12 and 6-14 summarize the results of sensitivity 

analysis for the concrete deck thickness and compressive strength, respectively. Moreover, FE 

analyses were used for comparing the bridge ultimate load-carrying capacity obtained from the FE 

model and the simple method, as shown in Tables 6-13 and 6-15.  

 
Table 6-12. Ultimate bridge capacity obtained using the yield line analysis for different concrete deck thicknesses (ksi). 

 
Truck 

Concrete Deck Thickness (in) 

 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 

Ultimate 

Bridge 

Capacity 

(kips) 

EV3 292 295.8 299.4 303.2 306.7 310.4 314 317.5 321.3 324.9 328.7 

C5 279.4 283.7 287.7 292 296 300.2 304.2 308.5 312.5 316.7 320.8 

WIM 279.7 283.9 288 292.3 296.6 301 305.2 309.5 313.4 317.8 322.1 

HS-20 279.5 283.3 287.1 290.9 294.7 298.4 302.5 306.3 310 313.8 317.7 

Table 6-13. Comparison of the ultimate bridge capacity obtained using the simple and FE analysis methods. 

 

Truck 

 Concrete Deck Thickness (in) 

 
Yield Line Analysis  FEA 

7.5 8 8.5  8 

Ultimate 

Bridge 

Capacity 

(kips) 

EV3 292 310.4 328.7  333 

C5 279.4 300.2 320.8  300 

WIM 279.7 301 322.1  374 

HS-20 279.5 298.4 317.7  318 
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Table 6-14. Ultimate bridge capacity obtained using the yield line analysis for different concrete compressive strength (ksi). 

  Concrete Compressive Strength (ksi) 

 Truck 4 4.5 5 5.5 6 6.2 6.5 7 

Ultimate 

Bridge 

Capacity 

(kips) 

EV3 287.4 293.4 298.8 303.9 308.3 310.4 312.5 316.3 

C5 273 280.2 286.7 292.6 297.9 300.2 302.8 307.2 

WIM 272.8 280.2 286.9 293 298.4 301 303.6 308 

HS-

20 
274 280.3 286.2 291.7 296.4 298.4 301 304.8 

 
Table 6-15. Comparison of ultimate bridge capacity obtained using simple and FE analysis methods. 

 Concrete Compressive Strength (ksi) 

 
Truck Yield Line Analysis  Finite Element Analysis 

4 5 6.2  4 5 6.2 

Ultimate Bridge Capacity (kips) HS-20 274 286.2 298.4  308 314 318 

 

It should be pointed out that the amount of reinforcement in the deck was kept the same (#5 bar 

with 6 inches spacing (Figure 6-19)) for all deck thicknesses.  As shown in Figure 6-20, the 

external/internal work (used in the simple method) and the ultimate bridge capacity in the yield 

line analysis varies with the section moment capacity, loading configuration, and the yield line 

patterns. The results indicate that the bridge ultimate load capacity is directly proportional with 

the deck section moment capacity and deck thicknesses and varies nonlinearly with the concrete 

compressive strength. 

 

Figures 6-20 (a) and (b) show the moment capacity and the external/internal work (used in yield 

line analysis) obtained using the simple method for various truck configuration and variation of 

the deck thickness, where Figures 6-20 (c) and (d) show the same for variation of concrete 

compressive strength. The results show that the slope of the ultimate bridge capacity and 

external/internal work varies with each truck because of the difference in the loading 

configurations and yield line pattern. 

 

Moment capacity analysis using the simple model (Figures 6-20 (c) and (f)) shows that an increase 

in deck thickness or concrete compressive strength results in an increase in the positive and 

negative moment capacity.  Since the deck configuration used in this study, as shown in Figure 

6-19 (#5 bar with 6 inches spacing), is under-reinforced, the rebar reaches yield strain before the 

concrete reaches crushing strain for all the studied thicknesses. Therefore, increasing the section 

thickness linearly increases the positive and negative moment capacity of the deck. However, the 

effect of concrete compressive strength in the section moment capacity is nonlinear.  
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Figure 6-19. The concrete deck section. 

 
Table 6-16. Maximum moment and shear in a simple 120- ft span bridge for different truck loading. 

Truck 

Moment Shear 

Maximum 
(kip.ft) 

Location 
(Distance from support) 

(ft) 

Maximum 
(Kip) 

Location 
(Distance from support) 

(ft) 

WIM 2944.3 57.8 103.8 

0 and 120 
EV3 2339.3 58.6 81.2 

C5 1994.8 57.7 68.5 

HS20 1883.8 57.6 66.4 
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Figure 6-20. Sensitivity analysis of concrete deck thickness: (a-c) and concrete compressive strength; (d-f) using the yield line 

analysis. 
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Figure 6-21. Moment and shear diagram in a simple 120 ft span bridge for different truck loading: (a) Maximum moment; (b) 

Maximum shear. 

6.4 Load Distribution Analysis in the University of Texas Twin Steel Box Girder 

Bridge 

A series of analyses are conducted on the bridge to investigate the behavior of the bridge in intact 

and damaged scenarios under dead and increasing live load. The goal is to determine the 

distribution of dead and live loads before and after the fracture of one girder. One way to determine 

the load distribution is by comparing the support reactions of the girders. Unsymmetrical bridge 

loading like Case #1 in this study creates additional torsional moment over the bridge section that 

is supported at the bearing as coupling forces (upward and downward forces (T)), which can 
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change the total reaction forces. Depending on the loading eccentricity, bridge configuration, and 

condition, the torsional force could even lead to uplift at the supports. In the twin steel box girder 

bridges, since after a fracture in one of the girders, the intact girder needs to transfer the torsional 

moment created by eccentric loading to the supports, the uplift forces are more pronounced. To 

this end, the reaction forces at the supports for the intact and damaged bridge subjected to the 

1×HS-20 loading (Figures 6-23 and 6-24) are obtained from the FE analysis as shown in Tables 

6-17 and 6-18. 

 

The results show that after the fracture in the loaded girder, the reactions at the intact girder 

supports would increase. However, the girder reactions are affected by both vertical load (R) and 

an eccentricity torque (T), as shown in Figures 6-22 and 6-23.  The torque reduces the total 

reactions on the right girder and increases the total reaction of the left/loaded girder.  The torque 

is understood to be even larger after fracture when the centroid would move closer to the intact 

girder. The results show that after a fracture of one girder, a larger portion of the dead load and 

live load would transfer transversely to the intact girder near the mid-span.  A significant portion 

of the transferred force, however, returns to the fractured girder through the deck and cross-frames 

that are away from the fracture zone (yield line pattern) therefore reducing the reaction forces on 

the intact girder to balance the torque.   
 

Table 6-17. Bridge support reaction for the intact bridge obtained from FE analysis. 

 

Left Girder  (Loaded)  Right Girder 

North South 
Girder 

Reaction 
Ratio to 

Total 
 North South 

Girder 
Reaction 

Ratio to 
Total 

Dead Load (R) 
(kips) 

124.7 124.4 
249.1 

0.50  124.7 124.4 249.1 0.50 

1xHS-20 (R) (kips) 30.9 30.5 61.4 0.85  2.3 8.3 10.6 0.15 

 
Figure 6-22. Bridge support reaction for the intact bridge obtained from FE analysis. 
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Table 6-18. Bridge support reaction for dead and live loads after the full-depth fracture obtained from the FE analysis. 

 
Left Girder (Loaded-Fractured) Right Girder 

North South Girder Reaction North South Girder Reaction 

Dead Load (R+T) (kips) 115.3 116.9 232.2 132.5 133.5 266 

1xHS-20 (R+T) (kips) 26.4 30.2 56.6 6.2 9.2 15.4 

 
Figure 6-23. Bridge support reaction after the full-depth fracture. 

As an alternative way to estimate the live and dead load transfer/distribution to the intact girder 

after a fracture, shear stress profiles for a section at the face of the intact girder (Figure 6-24) were 

extracted from the FE analysis. The total shear force from the concrete deck and intermediate 

cross-frames along the span for the intact and damaged bridge subjected to the dead load and the 

live load was obtained as shown in Tables 6-19 and 6-20, respectively.  It is also realized that the 

proportion of load transferred due to the fracture of a girder would increase as the level of load 

increases. This can partly attribute to the damages at the deck to the girder interface (shear studs) 

and the deck itself, as well as increased torque due to shifting the bridge centroid. To demonstrate 

this, the damaged bridge was analyzed under 3.2×HS-20 that is closer to the bridge capacity.  Table 

6-20 shows the transfer of loads because of fracture through shear at the deck and cross-frames 

from fracture of one girder at Section 1-1.  

 
Figure 6-24. Shear force in Section 1-1. 
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Table 6-19. Shear forces transferred to the right girder under dead load and 1 x HS-20 design truck for the intact bridge at 
section 1-1. 

 Shear Forces 

Concrete Slab Cross-Frames Transfer 
Total 

Dead Load (kips) 16.1 0.3 16.4 

1x HS-20 (kips) 10.4 15.6 26 
 

Table 6-20. Shear forces transferred due to fracture to the right girder under dead load and 3.2 times HS-20 design truck. 

 

Shear Forces 

Concrete Slab Cross-Frames 
Transfer 

Total Ratio to Total live load 
Dead Load (kips) 31.7 27.8 59.5 

3.2xTime HS-20 (kips) 71.5 85.0 156.5 0.68 

 

The results show that for 3.2×HS-20, 68% of the total live load will be transferred to the intact 

girder after the fracture of the loaded girder through the concrete deck and cross-frames. Another 

way for simple estimation of shear transfer is based on the yield line analysis where the live load 

is assumed to be transferred as shear stress to the intact and fractured girder through the outside 

yield lines, as shown in Figure 6-25. The live load distribution to the intact and fractured girder 

for the HS-20 truck loading according to the suggested yield line pattern was calculated as 70% 

and 30%, respectively; that is a good estimate compared to the FE analysis (68%). 

 
Figure 6-25. Live load distribution based on the yield line analysis for HS-20 loading. 

When a fracture occurs, and the deck fails under increasing live load, for the bridge not to collapse, 

the intact girder has to be able to carry the loads transferred to it, i.e., the intact bridge, to have 

adequate moment capacity. Accordingly, moment analysis was conducted on the bridge subjected 

to dead and live load at the middle of the span where the bridge is damaged. Table 6-21 shows 

sectional moments extracted from finite element analysis for the intact and damaged bridge. 

According to the results, the dead load moment of each girder in the intact bridge is about 3538.7 

kip-ft. However, the moment on intact girder increases by about 50 percent once a fracture occurs 

in the loaded girder (5618.8 kip. ft).  The fractured girder has a very small stiffness at the middle 

(one can assume hinge or very weak spring), so it attracts only a negligible moment (893 kip. ft) 

compared to the intact girder.  
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The live load moment analysis for the intact bridge shows that the left girder (loaded) carries 60%, 

and the right girder carries 40% of the live load. However, after the fracture, the right girder (intact) 

carries most of the live load (66%) because of a decrease in stiffness of the fractured girder.  

Nevertheless, the fractured girder is undamaged through most of its length. Since the truck loads 

are applied through its wheel footprints, and rear and front wheels are at a distance from the middle, 

the fracture girder can transfer some portion of live load (34%) through those segments as a 

cantilever beam. Unlike the live load, the dead load is distributed along the bridge, and the 

fractured girder is able to transfer a noticeable portion through its undamaged end segments. 

 

In the bridge with one girder fractured, the total moments at the middle of the bridge is not the 

same as the intact bridge since the girders (or the bridge) cannot be assumed anymore to be 

separately simply supported. There is a complex interaction between the intact and fractured girder 

away from the fracture point that can only be simulated with the FE analysis. It should also note 

that the percentages calculated represent the changes of the moment at mid-span due to the fracture 

and do not necessarily give a picture of how the load is distributed.   

 
Table 6-21. Moment analysis of the bridge under HS-20 loading (FEM). 

 Moment (kip-ft) 

 

Bridge Section 

 

Right Girder Section 

 

Left Girder Section 

 

 Dead Dead+ 3.2 HS-20 Dead Dead+ 3.2 HS-20 Dead Dead+ 3.2 HS-20 

Intact Bridge 7079.6 12636.0 3538.7 5801.7 3541.0 6834.3 

Damaged Bridge 6512.2 10792.8 5618.8 9560.7 893.4 1232.1 
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 Chapter 7 Continuous Curved Twin Steel Box Girder Bridge 

A continuous curved bridge was analyzed to demonstrate the capability of the finite element 

modeling methods proposed in Chapter 5 of the report. The possible failure mechanisms and the 

applicability of the simplified methods presented in Chapter 6 for calculating the bridge ultimate 

load-carrying capacity will also be investigated. Suggestions will also be made for future work to 

adapt the methods developed in this study for simple spans to continuous spans.   

 

7.1 Bridge Description 

A three-continuous span bridge located in Miami, FL, was selected for this analysis. The bridge 

was built in 2005 and has an overall length of 682.4 ft.  carrying one traffic lane.  The length of 

the first and last span is 210 ft, and the middle span length is equal to 262.4 ft. The first and second 

spans have a radius of curvature of 492 ft. while the last span is straight. Figures 7-1 and 7-2 show 

the bridge plan and elevation view. The bridge has diaphragms at supports and horizontal and 

vertical bracing along the bridge for stability, similar to the University of Texas bridge. 

 

 
Figure 7-1. Plan view of the three-continuous span bridge. 

 

 
Figure 7-2. Elevation view of the three-continuous span bridge. 
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7.2 Finite Element Analysis 

A finite element model of the bridge was developed to study the bridge behavior after a full-depth 

fracture at the middle of Span 1 (Figure 7-3). Material properties, contact surfaces, and analysis 

procedures were assumed the same as the simple span model. In addition to the deck failure 

mechanisms discussed in this report, a possible failure mechanism in the continuous span bridges 

is the failure of the intact girder when the bridge is loaded over the fractured girder due to torsion 

and bending.  

 

In interior spans, two sides of the fracture girder will behave as cantilever beams carrying a large 

portion of the dead and live load; however, in exterior spans, only one side of the fractured girder 

can carry the load as a cantilever beam. Therefore, in general, for an equal span length, exterior 

spans are the critical span for the continuous span bridges, and the only failure in the side span 

was studied in this report.  Since the last span does not have a curvature and has the same length 

as the first span, the finite element model was developed to consider the fracture in the first span. 

For the model, a full-depth fracture was assigned to the interior girder (left girder) at the middle of 

the span, and an increasing load in terms of the HS-20 design truck similar to the simple span 

bridge was applied over the fractured girder up to the bridge failure.  

 

 
Figure 7-3. Finite element model of the three-continuous span bridge. 

7.3 Intact Girder Failure Mechanism 

The results show that the intact girder at the middle of Span 1 reaches its plastic moment under 

dead load and eight times HS-20 design truck loaded over the fractured girder due to a portion of 

dead load and live load being transferred to the intact girder after the fracture. Moreover, due to 

the curvature and loading eccentricity, the effect of torsion is more significant in this bridge 

compared to a straight bridge. Figure 7-4 shows the failure of the intact girder under dead and live 

loading. Moreover, the results indicate that because of the girder continuity, the fractured girder 
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also carries a large portion of dead load and live load as a cantilever beam more pronounced on 

the continuous side. This contribution is relatively significant since under eight times HS-20 

loading when the intact girder is failed, the stress at the bottom and top flange and a portion of the 

web of the fractured girder reaches 50 ksi (negative moment). The stress contours in Figure 7-5 

show the contribution of the fractured girder in carrying a portion of the loads as a cantilever beam. 

The FE results also show that after the failure of the intact girder at the middle of Span 1 and with 

a large deflection, the fractured girder is the only element carrying the load up to the failure at the 

support due to the negative moment.  

 

 
Figure 7-4. Intact girder failure under dead load and eight times HS-20 design truck at the middle of Span 1. 

 
Figure 7-5. Contribution of the fractured girder in carrying a portion of the loads as a cantilever beam. 

 

7.4 Deck Failure Mechanism 

Investigation on the deck failure after the fracture using concrete damage plasticity model shows 

that first cracks will form over the middle supports. After the fracture of one girder, negative 

moment over the support will increase dramatically since the fractured girder can only carry the 

load as a cantilever beam (negative moment and partially toward simple support), and some portion 

of the dead load and live load will transfer to the intact girder which increases the positive moment 

at the middle of the span and the negative moment over the middle support in the intact girder. 

Therefore, negative moments over the support will increase for both girders and tension cracks 

will appear on the top of the deck, as shown in Figure 7-6. 
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By increasing the live load, longitudinal cracks will form along the intact girder at the middle of 

the span, and the transverse cracks at the support will be extended. Finally, diagonal cracks will 

form the half-ellipse failure of the deck, similar to the simple span bridge. Nevertheless, because 

of the continuity and the contribution of the fractured girder, the angle of the diagonal crack on the 

continuous span side is much wider than the simple span bridge. Moreover, the fractured girder at 

the yield line needs to be yielded, as shown in Figure 7-5. (Bottom and a portion of the web in the 

fractured girder is yielded at the yield line and the support). Therefore, the combination of these 

factors would result in a higher yield line capacity in the continuous bridge compared to the simple 

span bridge. 

 

 
Figure 7-6. Deck crack pattern after a full-depth fracture of one girder in the continuous bridge in Span 1. 

 

The results of the deck failure show that the yield lines will form at dead load plus six times HS-

20 before the failure of the intact girder due to the bending and torsion at eight times HS-20 design 

truck. Figure 7-7 shows the yield line pattern obtained from the FE analysis, which is compared to 

the proposed yield line pattern for the simple span bridges (Chapter 6) in Figure 7-8.  It is evident 

from the FE results that the continuity of the span has significantly altered the yield line pattern 

when compared to the simple yield line model developed for simple span bridges. However, it is 

useful to compare the deck capacity using the simple yield line pattern for comparison purposes 

only. 

 

The simplified yield line analysis proposed in Chapter 6 for simple span bridges is used to calculate 

the continuous bridge capacity, as shown in Figure 7-8, Tables 7-1 and 7-2. This bridge has an 8.5 

in. deck reinforced longitudinally using two layers of #5 bars with a spacing of 12 in. and 10 in. 

for top and bottom layers, respectively. In the transverse direction, two layers of #4 with a spacing 

of 5 in is used for both layers. Noted that the deck moment capacity (concrete only) in this bridge 

is less than the simple span bridge studied in Chapter 6. (#5 bars with a spacing of 6 in. is used for 

the simple span bridge for both layers and directions) 
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In the yield line analysis, only concrete deck capacity was considered in the internal work 

calculation, and the effect of the fracture girder (continuity) was ignored for simplicity and 

comparison with Chapter 6. The bridge yield line capacity obtained as 1.9 times HS-20 design 

truck much less than the capacity obtained from the FE model as six times HS-20 when the yield 

line pattern formed because of ignoring the girder continuity. Therefore, the simplified method 

needs to be modified for continuous span bridges by considering the effect of girder continuity in 

future studies. 

 

(2×HS-20 Design Truck) 

 
(4×HS-20 Design Truck) 

 
(6×HS-20 Design Truck) 

Figure 7-7. The yield line pattern of the deck in the Finite Element Model of the continuous bridge in Span 1. 
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Figure 7-8. The yield line pattern for the continuous span bridge subjected to HS-20 design truck. 

 

Table 7-1. External work calculation of the HS-20 truck load in the continuous span bridge. 

Number of HS-20 Design Truck 1.9 

 P Xpoint Ypoint rLoad r Delta EW 

Front Wheel 7.7 18.7 8.4 6.9 27.3 0.3 2.0 

Front Wheel 7.7 18.7 2.4 11.4 30.3 0.4 2.9 

Middle Wheel 30.9 4.7 8.4 13.1 22.6 0.6 17.9 

Middle Wheel 30.9 4.7 2.4 21.9 27.1 0.8 25.0 

Rear Wheel 30.9 -9.3 8.4 7.0 19.5 0.4 11.1 

Rear Wheel 30.9 -9.3 2.4 11.1 20.8 0.5 16.5 

      EWTruck 75.4 

      EW DL 41.1 

      EW Total 116.57 

 
Table 7-2. Internal work calculation for the continuous span bridge. 

  L a ml mt mb Rotation dIW 

Perimeter 28.80 0.00 19.70 16.81 16.81 0.05 24.31 

  

 Diagonals 

25.30 0.96 12.99 16.81 14.24 0.04 13.21 

25.00 0.96 12.99 16.81 14.24 0.05 18.65 

27.30 0.79 15.05 19.70 17.37 0.04 19.04 

22.10 1.12 15.05 19.70 15.94 0.03 11.68 

      IW Railing 29.68 

            IWTotal 116.57 
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7.5 Plastic Moment Capacity  

The plastic moment capacity of the bridge for the intact scenario is calculated for the maximum 

capacity of the bridge. The effective flange width of a concrete deck slab is taken as the tributary 

width perpendicular to the axis of the member for determining cross-section stiffness for analysis 

and for determining flexural resistances. The slab effective flange width is taken as one-half the 

distance to the adjacent girder plus the full overhang width. The cross-section in this bridge varies 

along the spans based on the demand moments. The plastic moment of one girder at the middle of 

Span 1 is calculated as 28257 kip. ft. (Figure 7-9). The total flexural capacity of the bridge can be 

obtained by adding the capacity of two girders.  

 

 
Figure 7-9. Moment curvature curve of one girder at the middle of span 1. 

Based on a 3D analysis of the continuous bridge for load condition resulting in the maximum 

positive moment in the side span, the moment capacity calculated above corresponds to dead load 

plus 7.2 times HS-20 design truck or 3.1 times HL-93 (Uniform lane load+HS-20 design truck). 

 

7.6 Conclusions 

The above analysis results indicate that; 

- The finite element modeling developed earlier for the simple span is applicable for the case 

of continuous bridges. 

- The simplified yield line method developed for estimating the load-carrying capacity of 

the deck for single simply supported bridge spans is not directly applicable to the case of 

continuous bridges. The yield pattern is most influenced by the continuous end of the span, 

which brings a significant contribution of the steel girder in the formation and deviation of 

the external inclined line in the original simple model.  

- The yield line pattern and assumptions can be adjusted based on the results of FE analysis 

to serve the purpose of estimating deck capacity for continuous bridges.  This is out of the 

scope of this work and could be the subject of future work. 
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- The load-carrying capacity of the intact girder plays a bigger role in the reserve load-

carrying capacity of the bridge after the fracture of one girder. 

- Distribution of dead and live load between the intact and fractured girder may be far from 

that assumed for simple span bridges and needs to be determined using the parametric study 

with the FE model in future work. 
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 Chapter 8 Simplified Reliability Analysis of Fracture-Critical Twin 

Steel Box Girder Bridge 

8.1 Summary 

This section presents a simplified reliability analysis of a twin steel box girder bridge 

superstructure and its deck to estimate the minimum criteria that a deck should satisfy in order to 

ensure that it can transfer a minimum level of load between the box girders, which one of the 

girders sustain a severe fracture.  The recommendation is made based on meeting a reliability index 

target, target=2.5 over a five-year service period.  In addition, a list of live load factors is provided 

for different target reliability levels for the case of a two-year service period.    

 

The calculations are performed assuming that the load-carrying capacity of the deck is modeled 

using the yield line analysis approach described in Chapter 6, which is similar to the one proposed 

earlier by the University of Texas.  Based on a very limited number of checks, it is observed that 

the proposed yield line analysis provides a conservative estimate of the deck capacity when 

compared to the values obtained from nonlinear finite element analysis. However, the level of 

conservativeness was inconsistent and depended on the truck load configuration. Nevertheless, 

lacking any additional data, it is herein assumed that the yield line analysis would be applicable 

for the most heavily loaded trucks that could potentially cross a Florida two-box steel girder bridge 

that has sustained a severe fracture to one of its box girders. 

 

The yield line analysis process consists of:  

a) Choosing a representative truck configuration.  In these analyses, the Florida C5 Semi-

Trailer Legal Load (see Figure 6-15(b)) is taken as representative truck because WIM data 

shows that generally semi-trailers constitute the vast majority of trucks on US highways 

and the vast majority of overloaded trucks.  

b) Assigning yield lines based on the truck configuration. The yield lines are traced along the 

edge of the intact box girder that faces the fractured girder for a distance equal to that of 

the truck centered along a line parallel to that of the truck.  Two yield lines then connect 

the two edges of the first line to the center of gravity of the truck, and another set of two 

lines flare out from the two edges of the first line along 35o angles towards the damaged 

box.  These five lines enclose three triangular areas within which the truck falls. This yield 

line pattern was inferred from the nonlinear finite element analysis of the bridge, including 

the concrete deck, as explained in Chapter 6.   

c) Applying the dead weight with the appropriate dead load factor from the AASHTO LRFD 

(e.g., DC=1.25 for components and DW=1.5 for wearing surface. Apply the C5 truck load 

along with a dynamic amplification IM=1.33 and a live load factor LL=2.0 to meet a target 

reliability target=2.5 over a 5-year service period.  

d) Verify that the work done by the applied factored loads is less than the work done by the 

deck after the formation of hinges along the yield lines.   The internal work done by the 
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hinge lines is based on a factored moment capacity of the reinforced concrete deck Mn 

where =0.90 as per the AASHTO LRFD specifications.  

Using the models developed in Chapter 6 for the particular bridge and the C5 Class 9 Florida 

Truck, the deck’s safety check takes the form: 

𝐼𝑊 ≥ 𝐸𝑊                    (I) 

with 

𝐸𝑊 = 𝛾𝐿𝐿 × 𝐼𝐶𝐿𝐿  × 𝐼𝑀 +  𝛾𝐷𝐿 × 𝐼𝐶𝑑𝑒𝑐𝑘 × 𝜔𝑑𝑒𝑐𝑘 + 𝛾𝐷𝐿 × 𝑊𝑟𝑎𝑖𝑙𝑖𝑛𝑔 × 𝐼𝐶𝑟𝑎𝑖𝑙𝑖𝑛𝑔                         (II) 

Where LL=2.0, ICLL=34.35 kip.ft is the influence coefficient for the C5 nominal truck 

configuration, IM=1.33 as per AASHTO LRFD,  DL=1.25 is the permanent load factor as per the 

AASHTO LRFD, ICdeck=147.2 ft4 is the influence coefficient for the deck, deck is the specific 

weight of reinforced concrete which is usually equal to 0.15 kip/ft3, ICdeck=147.2 ft is the influence 

coefficient for the deck, Wrailing is the total weight of the railing over the area within the contours 

of the yield lines and is equal to 20.6, ICrailing =0.5 is the influence coefficient for the railing.   

The internal work done by the concrete deck is equal to  

IW=IW(n                 

where the resistance factor =0.90 is used for consistency with the AASHTO LRFD.  

Table I below gives the different live load factors necessary to achieve different reliability levels 

for the deck of a bridge whose one of its two boxes has fractured.  Results for both a five-year 

rating period and a two-year period are given. As mentioned earlier, to achieve the target reliability, 

in addition to applying the recommended live load factor, LL given in Table I, the yield line 

analysis implies the application of a dynamic amplification factor IM=1.33, a dead load factor 

DL=1.25 and a moment resistance factor for the concrete deck equal to =0.9.  

The analysis of the bridge deck for the 120-ft bridge studied in this report indicates that the bridge 

deck in its current configuration and concrete strength and ignoring the possible contribution of 

the railings to help carry some of the load will fail at a live load factor LL=1.71 when the deck’s 

concrete strength is set at f’c=6.23 ksi as determined from the tests. This indicates that its reliability 

index is on the order of =2.0 for a five-year service period, or slightly higher than that for a two-

year service period. The live load factors provided in Table I are based on the nominal concrete 

strength, which is often lower than the actual strength. It is understood that testing the material 

properties will remove the implicit conservative bias applied during the calibration of the factors 

in Table I. On the other hand, testing will also reduce the uncertainties in the estimated strength, 
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and it is often assumed that the reduced uncertainties will offset the removal of the conservative 

bias implying the final live load factors in Table I are still valid.     

 
Table I.  Live load factors for deck analysis necessary to meet different target reliabilities. 

Target 

Reliability index 

5-year live load 

factor, LL 

2-year live load 

factor, LL 

3.50 2.69 2.61 

3.00 2.32 2.26 

2.50 2.00 1.94 

2.25 1.85 1.79 

2.00 1.71 1.65 

1.50 1.44 1.39 

1.00 1.21 1.16 

For the bridge to provide sufficient reliability to sustain the possible fracture of one of its two-box 

girders, it is important that the remaining box girder has sufficient load carrying capacity to 

withstand the entire live load that may cross the damaged bridge with one fractured box.  This can 

be ensured if the bridge’s box girders outside of fracture can satisfy a minimum Rating Factor.  

The analysis of fractured bridges is repeated for two scenarios.  The first scenario assumes that the 

fractured bridge will still be able to carry its own dead weight but transfers all the live load to the 

intact girder.  The second scenario assumes that the fractured girder will be able to transfer 

longitudinally 50% of its own weight away from the critical cross-section due to the action of the 

deck over the fractured girder and the contribution of the secondary members while the remaining 

50% of its weight is transferred laterally to the intact girder’s section. Similarly, 34% of the live 

load traveling in the lane over the fractured girder will transfer longitudinally away from the 

fractured section while the remaining live load is transferred laterally to the adjacent box girder 

section. The load transfer mechanism of scenario two was verified through the nonlinear finite 

element analysis conducted in this study. 

Table II gives for the first scenario, the LRFR Inventory Rating Factors required for the box girder 

members to ensure that the bridge will be able to sustain the fracture of one box girder and yet be 

able to support sufficient live of loading over a two-year or a 5-year service period until the damage 

is detected and necessary rehabilitation actions are undertaken.  The table shows that an LRFR 

Inventory Rating on the order of R.F.=1.28 to 1.33 is required to meet a target reliability index 

target=2.50 should one of the two box girders fractures.   

 

 



101 

 

Table II. LRFR inventory rating factors for box girders necessary for the fractured bridge to meet different target reliabilities, 
assuming that all the live load is transferred laterally to the intact girder but none of the dead load. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.73 1.67 

3.00 1.52 1.46 

2.50 1.33 1.28 

2.25 1.24 1.19 

2.00 1.16 1.11 

1.75 1.07 1.03 

1.50 1.00 0.96 

1.25 0.92 0.89 

1.00 0.85 0.82 

Table III gives for the second scenario, the LRFR Inventory Rating Factors required for the box 

girder members to ensure that the bridge will be able to sustain the fracture of one box girder and 

yet be able to support sufficient live of loading over a two-year or a 5-year service period until the 

damage is detected and necessary rehabilitation actions are undertaken.  The results shown in Table 

III require more conservative section strengths because, for these box girder bridges, the dead load 

is higher than that of a one-lane live load.  In this case, an Inventory Rating on the order of 

R.F.=1.00 is required to meet a target reliability index target between 1.25 and 1.50. 

 
Table III. LRFR inventory rating factors for box girders necessary for the fractured bridge to meet different target reliabilities 
assuming that all 50% of the dead load is transferred laterally to the intact girder along with 66% of the live load that was 

originally carried by the fractured girder. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.74 1.69 

3.00 1.55 1.51 

2.50 1.38 1.34 

2.25 1.30 1.27 

2.00 1.23 1.19 

1.75 1.15 1.12 

1.50 1.08 1.05 

1.25 1.01 0.98 

1.00 0.95 0.92 

The Texas bridge analyzed in this study has an LRFR Inventory Rating R.F.=2.05. Thus, its 

remaining intact box is capable of sustaining a significant level of the live load as well as a large 

proportion of the dead load that was original carried over the fractured girder and that the bridge’s 

failure is expected to be due to the failure of the deck as explained earlier.  In general, to meet a 
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target reliability level of target=2.5, a 120-ft simple span twin steel box girder bridge would need 

to have a rating factor R.F. on the order of 1.34 to 1.38 to produce a sufficiently high safety level 

to carry some level of traffic after the fracture of one of its two boxes.     

8.2 Assumptions 

Several assumptions are made to come up with the recommendation made above.  These 

assumptions need to be supported in future research through a careful review and extensive 

sensitivity analyses, which are beyond the scope of this particular study.  The assumptions made 

can be summarized as follows: 

1. The 120-ft simply supported bridge analyzed in this study is considered to be a typical 

bridge used in this report to illustrate the process of assessing the after-fracture safety of 

twin steel box girder bridges and the procedure of calibrating appropriate live load criteria 

to evaluate their ability to sustain a minimum level of live loading in their damaged state.  

2. The Florida WIM truck data used in the modeling of the maximum load effect was 

truncated at some upper limit.  This means that many trucks may produce load effects 

higher than 1.64 times the effect of one C5 truck, which was used to represent the effects 

of overloaded trucks that may cross a fractured Florida bridge.  Also, the model assumes 

that the length of the bridge being 120-ft is controlled by one truck in a lane.  The loading 

on longer bridges may be controlled by several trucks following each other in one lane.  

3. It is assumed that the C5 truck used for the calculations performed in this report represents 

the configuration of the heavy critically overloaded trucks crossing over Florida’s bridges.   

4. It is assumed that the yield line analysis produces similar levels of accuracy as the 

AASHTO load distribution analysis for girder bridges. 

5. It is assumed that the calculation of the deck moment capacity produces similar levels of 

accuracy as that of the analysis of reinforced concrete beams in bending. 

6. Also, it is assumed that after the fracture of one box, the fractured box will still be able to 

carry some of its own dead weight due to the ability of the deck of closing the gap and 

transferring some of the live load longitudinally to other sections of the bridges but a 

significant portion of the dead and live load moments will be transferred laterally and will 

have to be carried by the remaining intact box.  

8.3 Objectives and Approach 

The objective of this study is to develop criteria for checking fracture critical two-box steel girder 

bridges to verify that such fracture-critical bridges provide sufficient levels of safety against 

collapse should one of the two girders fracture.  This section supports the goals of the study in 

providing a reliability assessment of a typical simply supported two-box steel girder bridge to 

recommend a set of criteria that will ensure that similar bridges will be able to sustain a potential 

fracture to one box girder and be able to carry some level of live load in their damaged state.  The 

reliability calculations performed in this section are based on the response of the typical bridge as 

obtained from a nonlinear finite element analysis and the data provided by the supporting team 
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from Auburn University that studied a set of weigh-in-motion data to project maximum live load 

effects that the bridge may be subject to over different service periods.   

 

There were several studies conducted in the past by the author and his colleagues to study the 

redundancy of bridge superstructures and substructures and calibrate methods to assess their 

capability of carrying some live load after damage to one of their main members [45–47]. Most of 

these previous studies analyzed bridges assuming complete damage to one entire girder, although 

the criteria developed in those studies were applied to demonstrate their applicability to the case 

of the fracture of one girder of a continuous span twin steel box girder bridge [48].  The main focus 

of these previous studies was on the superstructure, although a sensitivity analysis was performed 

by Ghosn et al. [46] to analyze the effect of the bridge deck on the load distribution between the 

intact members of damaged bridges.  This current study took a systematic approach to study the 

nonlinear behavior of the box girder as well as the deck and the possible failure of the deck after 

the fracture of one box of a 120-ft simple span twin steel box girder bridge.  The current analysis, 

however, does not consider the release of energy associated with the fracture process.  A 

preliminary analysis of the dynamic effects associated with the fracture phenomenon itself was 

studied by Miao & Ghosn [49].  The extension of the work of Miao & Ghosn [49], however, was 

outside the scope of this study.  

    

Specifically, the analysis performed during the course of this study focused on analyzing the after 

fracture load-carrying capacity of a typical two-box steel girder bridge configuration having a 

simply supported 120-ft span.  The bridge has the same configuration as the one tested by the 

University of Texas at Austin [19, 23]. A detailed finite element analysis of the bridge confirmed 

the results of the Texas University Study that showed that, after the complete fracture at the mid-

span of one girder, this particular bridge exhibited deck failure at high load before the failure of 

the other originally intact box girder.  Thus, this study proposed a simplified approach that 

engineers could implement in routine engineering practice to verify that the deck will be able to 

transfer the load from the fractured box girder to the intact girder.  The proposed method is based 

on yield line analysis principles and is consistent with the one proposed in the Texas University 

study [19, 23]. Because the proposed method is approximate and because it involves parameters 

whose values are highly uncertain, it is important to associate the proposed method with 

appropriate safety factors to reduce the probability of failure of the particular bridge being analyzed 

and, by extension, other fracture-critical bridges with similar configurations.    

 

The objective of this section was to execute a reliability analysis of the fracture-critical box girder 

bridge analyzed in Chapter 6 and use the reliability results to calibrate appropriate safety factors 

that can be applied in conjunction with the proposed analysis method.  To achieve the objective, 

this section is divided into the following four subsections: 
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1. Overview of Reliability Analysis Methodology, which provides a summary of the 

principles of structural reliability analysis and their application for the calibration of 

codified safety checking procedures.    

 

2. Live Load Modeling: After giving a quick overview of load modeling principles, this 

section presents the results of the analysis of the weigh-in-motion data performed by the 

University of Auburn team as part of this study.  

 

3. Permanent Load Model: The statistical data used to represent the effect of the permanent 

loads are provided in this section.  These data are consistent with the data used by Nowak 

[26] during the calibration of the AASHTO LRFD Specifications. 

 

4. Load Carrying Capacity Model: In this section, the probabilistic models used for evaluating 

bridge member capacity, including the analysis of the deck, are presented. These models 

are consistent with those previously used by Nowak [26] during the calibration of the 

AASHTO LRFD Specifications.  

 

5. Reliability Analysis of Example Fracture-Critical Box Girder Bridge: The results of the 

analysis of the bridge configuration are implemented in a simplified reliability analysis 

procedure to extract the reliability index for the bridge members and its deck and assess its 

ability to safely transfer the load from the fractured girder to the intact girder.  In this 

section also, the results of the reliability analysis performed in Section 8.5 are used to 

propose a set of safety factors that can be used by bridge engineers to assess the ability of 

a twin steel box girder bridge to carry a sufficient level of traffic load for a limited period 

of service time until a potential fracture is detected and necessary actions undertaken by 

the authorities.     

8.4 Overview of Reliability Analysis Methodology 

The aim of structural reliability theory is to account for the uncertainties encountered while 

evaluating the safety of structural systems or during the calibration of load and resistance factors 

for structural design and evaluation codes. To account for the uncertainties associated with 

predicting the load-carrying capacity of a structure, the intensities of the loads expected to be 

applied, and the effects of these loads on the structural components and entire system, as well as 

the capacity of structural members and systems to carry these loads, may be represented by random 

variables.   

 

The value that a random variable can take is described by a probability distribution function.  That 

is, a random variable may take a specific value with a certain probability, and the ensemble of 

these values and their probabilities are described by the distribution function.  In many cases, the 

most important statistical characteristics of a random variable are its mean value or average and 

the standard deviation that gives a measure of dispersion or a measure of the uncertainty in 
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estimating the variable.  For example, assuming that R represents the resistance capacity of a 

structural member or system, the standard deviation of the random variable R, which may have a 

mean value equal to 𝑅ത is represented by R.  A dimensionless measure of the uncertainty is the 

coefficient of variation (COV), which is the ratio of the standard deviation divided by the mean 

value.  For example, the COV of the random variable R is represented by VR such that: 

                           (12) 

Structural design codes and standards often specify nominal or characteristic values for the 

variables used in design equations.  These nominal values are related to the means through bias 

values.  The bias is defined as the ratio of the mean to the nominal value used during the design or 

evaluation process.  For example, if R is the structural member capacity (or resistance), the mean 

of R, namely, 𝑅ത  can be related to the nominal or design value, Rn, using a bias factor such that: 

 

= br Rn                   (13) 

where: br is the resistance bias, and Rn is the nominal value as specified by the design code.  For 

example, A50 steel has a nominal design yield stress of 50 ksi, but coupon tests show an actual 

average value close to 56 ksi.  Hence, the bias of the yield stress is 56/50 or 1.12.   

 

In structural analysis, safety may be described as the situation where capacity (member strength 

or resistance) exceeds demand (applied load, moment, or stress).  In structural engineering, the 

probability that a certain limit state criterion is not met is usually referred to as the probability of 

failure, Pf, which is usually defined as the probability that the capacity is less than applied load 

effects. There are various simulation and iterative methods that can be used to formally calculate 

Pf. However, the accuracy of the numerical value depends upon detailed data on the probability 

distributions of load and resistance variables.  Because such data are often not available, 

approximate models are usually used for calculation.  

 

The reserve margin of safety of a bridge component or system, also known as failure function or 

limit state equation, can be defined as Z, such that:   

 

Z = R – S                (14) 

where R is the structural resistance or capacity, S is the total load effect. Probability of failure, Pf, 

is the probability that the resistance R is less than or equal to the total applied load effect S or the 

probability that Z is less or equal to zero.  This is symbolized by the equation: 

 

Pf = Pr [ R  S ]                            (15)  

where Pr is used to symbolize the term probability.  If R and S follow independent normal 

(Gaussian) distributions, then the probability of failure can be obtained based on the mean of Z 

and its standard deviation, which can be calculated from the mean of R and S and their standard 

deviations. If these are independent Gaussian or normal random variable, the probability of failure 

is obtained from: 

R
V R

R




R
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                                          (16) 

where  is the normal cumulative probability function that gives the probability that the 

normalized random variable is below a given value. 𝑍ҧ is the mean safety margin, and Z is the 

standard deviation of the safety margin. Thus, Equation (16) gives the probability that Z is less 

than 0.0 (or R is less than S).  

 

To avoid the need to work with very small values of the probability of failure, structural engineers 

prefer to use the reliability index, , as a measure of structural safety. The reliability index is 

related to the probability of failure: 

 

                 (17) 

For example, if the reliability index is =3.5, then the implied probability of failure is obtained 

from the normal probability distribution tables given in most books on statistics as Pf=2.326x10-4.  

A reliability index =2.5 leads to Pf =6.21x10-3.  A  =2.0 implies that Pf =2.23x10-2.   

 

Because it is often difficult to ascertain the type of probability distribution that each variable 

follows and because it is difficult to collect real data on structural failures, calculated values of 

probability of failure are often considered to be notional measures of likelihood of failure that are 

used to compare different structural design options and compare various load capacity evaluation 

methodologies rather than being considered as actuarial values.   

 

For the independent normal distribution case, the reliability index is obtained from: 

               (18) 

Thus, the reliability index, , which is commonly used as a measure of structural safety, gives in 

this instance the number of standard deviations that the mean margin of safety falls on the safe 

side as represented in Figure 8-1. 
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Figure 8-1. Graphical Representation of Reliability Index, . 

 

The reliability index  defined in Equations (17) and (18) provides an exact evaluation of the 

probability of failure if R and S follow normal distributions.  Although   was originally developed 

for normal distributions, similar calculations can be made if R and S are lognormally distributed 

(i.e., when the logarithms of the basic variables follow normal distributions).   In this case, the 

reliability index can be calculated as: 

 

              (19)  

Which, for small values of VR and VS on the order of 20% or less can be approximated as: 

                                     (20) 

when R and S are functions of several underlying random variables or when the safety margin 

equation is not linear, the evaluation of the reliability index   becomes more complicated. In such 

cases, one can resort to using simulation techniques or “Level II methods”.  "Level II" methods 

have also been used to obtain the reliability index for the cases when the basic variables are neither 

normal nor lognormal.  These methods, often referred to as FORM (First Order Reliability 

Methods) or FOSM (First Order Second Moment), involve an iterative calculation to obtain an 

estimate to the reliability index and the probability of failure.  This is accomplished by 

approximating the failure equation (i.e., when Z=0) by a tangent multi-dimensional plane at the 

point on the failure surface closest to the mean value.  For example, during the calibration of the 

AASHTO LRFD code, Nowak [26] used the FORM algorithm to calculate the reliability index 

values when the resistance R is assumed to follow a lognormal distribution and the load S is a 

normal random variable.  More advanced techniques, including SORM (Second Order Methods), 

have also been developed.  In recent years with the advancement in computer capacities, the 
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implementation of Monte Carlo Simulations, including various variance reduction techniques has 

become increasingly practical.  

 

The approximate nature of Equation (20) notwithstanding, several previous studies have shown 

that Equation (20) is sufficiently accurate to produce reliability index values very close to those 

obtained using FORM algorithms and Monte Carlo Simulations when analyzing the reliability of 

short to medium span bridges [50].  

 

As observed from this short introduction, evaluating the reliability of bridges requires probabilistic 

models for all the random variables that control the safety of bridge structures. These can be 

assembled into three groups: Live loads, Permanent Loads, and Member Resistance. 

 

8.5 Live Load Reliability Model 

The factored nominal live load models used in the design and load capacity evaluation of bridges 

take the form of deterministic simplified formats that do not explicitly include all the parameters 

that control the effects of live loading on the bridge nor do the models explicitly reflect the random 

nature of the live load.  A more realistic representation of live load effects on bridge members 

would take the form (see, for example, Ghosn, Sivakumar and Miao [50]; and Sivakumar et al. 

[51]): 

 

𝐿𝐿𝑇 = 𝐿𝑚𝑎𝑥 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎                    (21) 

 

Where LLT = total live load effect on the bridge member or on the bridge system, Lmax= maximum 

projected load due to the random trucks on the bridge presented in the function of the number of 

HS-20 equivalent trucks, LHS-20 is the load effect of the HS-20 truck used as the base line for 

analysis, IMfac= dynamic amplification factor of the total load effect, Lmax is a variable that reflects 

the uncertainties in estimating the maximum load effect calculated using the live load projection 

methodology performed by the team from Auburn University participating in this study and 

described in Section 4.1, site-to-site is a variable representing the variation in the projected live load 

between data collected at different WIM sites, data is a variable representing the effect of 

limitations in the approach taken to perform the live load simulation and the extreme value 

projection technique utilized.    

 

The live load model presented in Equation (21) can be used to perform reliability calculations of 

bridge members or systems.  Statistical data related to the random variables of Equation (21) are 

obtained from three sources: a) the analysis of large numbers of WIM data sets assembled from 

various parts of the state of Florida, which was performed by the Auburn University team and 

described in Section 4.1, b) the data used in NCHRP 368 during the calibration of the AASHTO 

LRFD as described in NCHRP 368 by Nowak [26], c) ) The analysis of large numbers of WIM 
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data sets assembled from various parts of the US as described by Sivakumar & Ghosn [52] in the 

web-based report NCHRP 20-07 Task 285. 

 

8.5.1 Maximum Load Effects  

The analyses performed by Azizinamini and his research team in previous studies [22] have shown 

that the failure of fractured box girder bridges is dominated by loading in the lane closest to the 

fractured box when the deck slab reaches its limiting capacity, which restricts its ability to transfer 

the load to the other intact box girder.  Therefore, the load simulations performed by the team from 

Auburn University as described in Section 4.1 provided projections for the expected maximum 

load effect in a single lane obtained based on projections of truck traffic data collected at a number 

of Florida weigh-in-motion (WIM) sites. The simulations have shown that, generally speaking, the 

maximum moment on the 120-ft simply supported bridge approaches a normal distribution with a 

ratio between the simulated maximum moment as compared to the effect of the AASHTO HS-20 

design truck that varies between 1.50 to 1.75 depending on the site and the projection period.  

These results are summarized in Table 4-3 for the 120-ft simple span bridge. The simulations show 

that if one lane of traffic on a 120-ft bridge show an Average Daily Truck Traffic ADTT=1250 

(thus a total ADTT=2500), the heaviest trucks on the bridge will produce an expected maximum 

two-year load effect equivalent to the effect of 1.66 times that of the AASHTO HS-20 truck.  A 

five-year projection of the loads on a bridge whose ADTT=2000 will lead to a maximum moment 

effect equal to 1.76 times that of the HS-20 design truck.  

 

The AASHTO Manual of Bridge Evaluation [5] was calibrated using projections assuming a rating 

period equal to 5 years.  Thus, for the purposes of this study, the variable Lmax in Equation (21) 

will take the value of 1.76. The variability in this estimated load effect is on the average equal to 

9%.  Thus, Lmax in Equation (21) is assumed to be a random variable with an average value equal 

to 1.0 and a COV=8%.       

 

8.5.2 Variability in Results of Simulations  

In addition to the expected maximum load effect from the simulation, the reliability analysis 

requires the consideration of the uncertainties in the maximum load estimate.  These uncertainties 

are represented by the variables data, and site-to-site.  Previous sensitivity analyses such as those 

performed in NCHRP 368 have indicated that data can approximately have a COV on the order of 

2% to 5%. These variabilities, for example, represent the differences obtained when comparing 

the results from different years. A value of 5% is adopted in this study.  Finally, the variability in 

the results between sites having the same ADTT but accounting for different truck weight 

histograms is represented by site-to-site, which in NCHRP Report 20-07 Task 285 have shown 

variations in COV with a conservative estimate on the order of 20%, which is the value adopted 

in this study [52]. 
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8.5.3 Variability in Dynamic Amplification Factors  

The AASHTO LRFD specifies that a nominal dynamic amplification IM=1.33 be used on the truck 

load effect to account for the increased stresses due to the vibrations of the bridge under moving 

loads. However, it has been well established that this value is a conservative upper bound. On the 

average, Nowak [26] indicates that heavily loaded trucks usually produce lower values than the 

nominal value with a mean value IMfact = 1.13 and a COV of VIM=9% for individual truck 

crossings. For simultaneous crossings in multi-lanes, the average is IMfact=1.09, and the COV is 

VIM=5.5%.  

 

8.6 Permanent Load Model 

Following the approach adopted by Nowak [26], the total permanent load effect, DL is divided 

into the dead load of pre-fabricated members, DC1, the dead load of cast-in-place members, DC2, 

and the dead load of the wearing surface, DW, such that the mean total dead load is given by: 

 

                         (22) 

 

The standard deviation of the total dead load, σDL, is expressed as a function of the standard 

deviations of each dead load component: 

 

              (23) 

 

Following Nowak [26], the dead load effects are assumed to follow Normal probability 

distributions where the mean values and the COV’s of each dead load component are given as:  

 

  

                (24) 

   
 

Where DC1, DC2, and DW are respectively the nominal values of the dead load of pre-fabricated 

members, cast-in-place members, and wearing surface.   

 

The example bridge analyzed in this study has a cast-in-place concrete slab and composite steel 

box girders where the steel is pre-manufactured, and the concrete is cast in place. Because the 

weight of the concrete dominates, a bias equal to 1.05 and a COV=10% are used for the effects of 

all permanent loads. 
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8.7 Load Carrying Capacity Model 

The traditional methods used to calculate the moment and shear capacities of bridge members have 

been found to lead to conservative estimates of the actual capacities.  The data used by Nowak 

[26] to account for the biases and the variability in the existing current member analysis methods 

assuming that the member capacities follow lognormal distributions are summarized as follows: 

 

Bending capacity of composite steel beams;     

Bending of prestressed concrete beams;     

Bending of reinforced concrete beams;     

                 (25) 

Shear capacity of composite steel beams;         

Shear capacity of prestressed concrete beams;    

Shear capacity of reinforced concrete beams;    

 

Of particular interest to this study are the bending capacity of the composite steel box girders and 

that of the reinforced concrete deck.   

 

The statistical parameters in Equation (25) are for structural member capacities in bending or in 

shear.  There is very little data that provide probabilistic models for the variability and biases 

between actual bridge system capacities and those estimated using advanced finite element 

analyses.  For the purposes of this study, we will assume that the biases and COV’s listed for 

composite steel members and also valid for steel box girder bridges. Therefore, a bias equal to 1.12 

and COV equal to 10% are adopted for the box girders to illustrate the proposed reliability analysis 

methodology assuming that the mode of failure is related to exceeding the bending capacity of 

composite members.   For the analysis of the failure of the concrete slab in bending, then a bias 

equal to 1.14 and a COV=13% are adopted. 

 

8.8 Reliability Analysis of 120-ft Twin Steel Box Girder Bridge 

8.8.1 Analysis of Nominal Member Strength 

The configuration of the steel boxes of the bridge analyzed during the course of this study indicated that 

each box girder has a nominal moment capacity Rn=19,026.8 kip-ft based on coupon tests of the deck that 

showed a concrete strength f’c=6 ksi.  Typical design of bridges assumes concrete deck to made of concrete 

with f’c=4 ksi or even f’c=3 ksi is often assumed). If the concrete deck was assumed to have a strength f’c=4 

ksi each box girder would have produced a nominal moment capacity Rn= 17,972.2 kip-ft.  The ratio 

between these two nominal moment capacity values, which is on the order of 6%, is accounted through the 

bias factor between nominal strength and the mean strength, as explained above.  
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Even though some other than strength criteria may have dominated the design, such as service limit states 

or deflection limits, the bridge as-built is clearly overdesigned for the strength limit state, which is of most 

interest when structural safety is concerned. 

 

The first step of this section is to determine the level of overdesign of main box girders of the bridge and 

compare the reliability of the box girder members as built to the reliability if they were to be designed to 

exactly meet the AASHTO Specifications’ strength limit state criteria.   

 

According to the AASHTO specifications, the nominal resistance, Rn, of a box girder should meet the 

criterion set in the following equation: 

 

𝑅𝑛 ≥ 1.25𝐷𝐶𝑛 + 1.75𝐿𝐿𝑛                (26) 

 

where the nominal live load, LLn, is calculated based on the moment effect of the HS-20 truck, which for 

this 120-ft span bridge is found to be 𝐿𝐻𝑆20 = 1883.8 𝑘𝑖𝑝. 𝑓𝑡 times the dynamic allowance IM=1.33 plus 

the effect of a lane load 𝜔𝑙𝑎𝑛𝑒= 0.64 kip/ft, which produces a lane load moment 𝐿𝑙𝑎𝑛𝑒 = 1152 𝑘𝑖𝑝. 𝑓𝑡 .  

The total live load is multiplied by the lane distribution factor, D.F., so that: 

 

𝐿𝐿𝑛 = (𝐿𝐻𝑆20 × 𝐼𝑀 + 𝐿𝑙𝑎𝑛𝑒) × 𝐷. 𝐹.              (27) 

 

For box girder bridges, D.F. is calculated based on the number of loaded lanes, NL, and the number of box 

girders, Nb, using the equation: 

 

𝐷. 𝐹. = 0.05 + 0.85
𝑁𝐿

𝑁𝑏
+

0.425

𝑁𝐿
                  (28) 

Which, for two beams carrying two lanes of traffic, produces a lane distribution factor 𝐷. 𝐹. = 1.113 .   

 

The final nominal live load is found to be 𝐿𝐿𝑛 = 4071 𝑘𝑖𝑝. 𝑓𝑡 which when combined with a dead load 

moment 𝐷𝐶𝑛 = 3650 𝑘𝑖𝑝. 𝑓𝑡 and implemented in Equation (26) produces a nominal moment capacity 

𝑅𝑛 = 11,686 𝑘𝑖𝑝. 𝑓𝑡.  If a wearing surface DWn= 553 𝑘𝑖𝑝. 𝑓𝑡 is added with a load factor equal to 1.5, the 

strength limit state design would have led to a required nominal resistance 𝑅𝑛 = 12,515 𝑘𝑖𝑝. 𝑓𝑡. Thus, the 

calculated moment capacity of the particular bridge analyzed in this study is based on the actual concrete 

strength f’c=6.23 ksi, which is Rn=19,026.8 kip-ft is 1.53 to1.63 times the value that is required by the 

Strength limit state of the AASHTO specifications.  In the rest of the calculations performed in this report, 

the weight of the wearing surface is omitted because the finite element analysis performed in this study did 

not include the weight of the wearing surface.  
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8.8.2 Box Girder Member Strength Reliability Analysis 

Several cases are considered in the reliability analysis performed in this section. Each section also 

includes a number of sensitivity analyses to study the effect of various factors on the reliability 

results.   

8.8.2.1 One-Lane Loading on the intact bridge when box girder is designed to exactly meet 

AASHTO’s strength limit state 

The AASHTO Specifications were developed such that the reliability levels of individual members 

would meet a target member reliability index =3.5 for a 75-year design life, assuming typical 

Average Daily Truck Traffic ADTT=2000 trucks per day. In this example, we illustrate the 

application of Equation (20) in combination with Equation (21) for the reliability analysis of one 

composite box girder of the 120-ft simple span bridge.  In this section, we analyze the reliability 

of a box girder to verify whether the reliability index of a box girder member designed to strictly 

satisfy the AASHTO strength limit state will meet the target reliability index.   

 

When studying the loads on the bridge system, the maximum live load is obtained using the live 

load modeling procedure performed by the Auburn University team, as outlined in Section 4.1.  

The maximum live loads for different projections are shown in Table 4-3 in terms of HS-20 

equivalents. For one-lane loading on the 120-ft simple span bridge, the expected maximum 

moment will be equivalent to 1.74 HS-20 trucks for a 5-year service period assuming an 

ADTT=2000 trucks per day, which is equivalent to an ADTT=10,000 as set in Table 4-3. The 

calculations also show that the expected maximum live load will be associated with a COV for 

Lmax=9%.  A variation in the estimate with a COV data=5% is also used as recommended by 

Sivakumar et al. [51] to reflect variations in the expected maximum load associated with the load 

projection method and the number of data points used to perform the projection.  Also, based on 

previous work by Sivakumar et al. [51], who studied a large number of WIM data sites, it is 

estimated that the variations due to changes in the WIM data can be associated with site-to-site on 

the order of 20%.  Furthermore, the dynamic load allowance has an average value 𝐼𝑀തതതതfact=1.13 and 

a COV of VIM=9% for individual truck crossings based on Nowak [26].       

 

In the simplified calculations performed in this report, we assume a lognormal model for the 

resistance, R, as well as a lognormal model for the combined effects of all the applied loads 

represented by the variable, S in Equation (20). As mentioned above, previous calculations have 

shown that the lognormal model produces results similar to those obtained using more advanced 

models such as FORM or Monte Carlo Simulations for the type of analyses performed for the 

reliability assessment of bridges (Ghosn, Sivakumar and Miao, [50]).  

 

In this analysis, we also assume that each box girder was designed without the consideration of a 

future wearing surface because the FEM analysis performed in this study did not consider the 

weight of the wearing surface.  The input data are summarized as follows:  
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Nominal Resistance:    Rn=11,686 kip.ft  

Mean resistance assuming bending failure: 𝑅ത = 𝑏𝑅𝑅𝑛 = 1.12 × 11,686 = 13,088 𝑘𝑖𝑝. 𝑓𝑡  

COV of bending resistance:     

Mean of total live load Lmax in lane 1  𝐿𝑚𝑎𝑥 = 1.74 × 𝐿𝐻𝑆20 = 1.74 × 1883.8 =
3278 𝑘𝑖𝑝. 𝑓𝑡 

COV of Lmax:     VLmax=9% 

COV site-to-site:     

COV data limitation:     

Mean Dynamic Amplification:  IMfact=1.13 

COV Dynamic Amplification:  VIM=9% 

Mean of Random Total Live Load Effect on the bridge due to one lane loading: 

𝐿𝐿തതത
𝑇 = 𝐿𝑚𝑎𝑥 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 1.74 × 1883.8 × 1.13 × 1 × 1 × 1   = 3704 𝑘𝑖𝑝. 𝑓𝑡  

COV of Applied Random Live Load: 

𝑉𝐿𝑇 = ට𝑉𝐿𝑚𝑎𝑥
2 + 𝑉𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒

2 + 𝑉𝑑𝑎𝑡𝑎
2 + 𝑉𝐼𝑀

2 = ඥ9%2 + 20%2 + 5%2 + 9%2 = 24% 

The AASHTO specifications were developed for a base line of two-lane loadings, and the 

distribution factor D.F. for one lane as specified by AASHTO, which is used in combination with 

the nominal live load implicitly includes a multiple presence factor mp=1.2 to account for the 

probability that two-lane loadings are on the average lower than two times the loading of one lane.  

Therefore, when the live load on the bridge is obtained from actual projections of truck data rather 

than from the nominal design loads, the multiple presence factor must be removed.  This is very 

clear in this situation, where one girder could not possibly carry more than the load of one truck 

when only a single lane of the bridge is loaded.  Therefore, an estimate of the mean of the 

distribution factor for the box girder bridge loaded by a single lane is obtained as 𝐷. 𝐹.തതതതതത= 
 1.113

1.2
=

0.928.  Ghosn and Moses [53] associated the D.F. with a COV=8% to account for variabilities in 

measured distribution factors due to different truck configurations and variations in their lateral 

position within a lane.  

 

10%RV 
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Based on the above, the applied live load moment on one box girder is estimated to have a mean 

value: 

𝐿𝐿തതത = 𝐿𝐿തതത
𝑇 × 𝐷. 𝐹.തതതതതത = 3704 × 0.928 = 3437 𝑘𝑖𝑝. 𝑓𝑡   

The COV for the live load on a girder is obtained from: 

𝑉𝐿𝐿 = ට𝑉𝐿𝑇
2 + 𝑉𝐷𝐹

2 = ඥ24%2 + 8%2 = 25% 

The nominal dead load for the bridge member excluding the weight of a future wearing surface is 

obtained as 𝐷𝐶𝑛 = 3650 𝑘𝑖𝑝. 𝑓𝑡   with a bias equal to 1.05 and a COV=10%.  Hence a mean dead 

load effect is calculated: 

𝐷𝐿തതതത = 𝐷𝐶𝑛 × 1.05 = 3833 𝑘𝑖𝑝. 𝑓𝑡   

The COV for the live load on a girder is obtained from: 

𝑉𝐷𝐿 = 10% 

The total load, including live and dead load its COV, are thus obtained as: 

 𝑆ҧ = 𝐿𝐿തതത
⬚ + 𝐷𝐿തതതത = 3437 + 3833 = 7270 𝑘𝑖𝑝. 𝑓𝑡 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 13% 

The reliability index for a box girder member designed to satisfy the AASHTO nominal 

resistance criteria using Lognormal Model assuming bending failure: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
13088
7270 ቁ

ξ10%2 + 13%2
= 3.59 

This value is based on the maximum 5-year one-lane loading and not that of the 75-year loading 

over the entire design life, and it assumes a distribution factor D.F.=0.928.   

On the other hand, the finite element analysis performed in this study has shown that, under the 

effect of one truck, the supports of the loaded girder in the intact configuration carried 85% of the 

load rather than the assumed 92.8% extracted from the AASHTO tables.  In this case, if one 

assumes that the moment in the girder is proportional to the reaction at the supports and a 

distribution factor D.F.=0.85 is used, the reliability index would have been equal to 3.88.  

Subsequent analyses of the moments at the critical cross-section as performed in Section 6.4 show 

that the moment carried by the critical section is 60% of the total moment, which would produce 
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a reliability index as high as =5.11.  It is noted that the 60% distribution factor is significantly 

lower than calculated from the AASHTO LRFD tables for box girder bridges.   

The above calculations were based on the maximum 5-year live load, which is appropriate for the 

operating rating period.  For the design of new bridges, the AASHTO LRFD was calibrated for 

the maximum 75-year live load.   Therefore, the data in Table 4-3 needs to be projected for a longer 

service period. Given that the maximum load usually follows a Gumbel Type I extreme value 

distribution as demonstrated by Sivakumar, Ghosn et al. [51], estimating the maximum 75-year 

live load can be done based on the maximum 5-year load.  According to Thoft-Cristensen and 

Baker [54], the maximum 75-year live load effect, Lmax-75 can be obtained for the 5-year maximum 

Lmax=1.74 LHS-20 using the relationship: 

𝐿𝑚𝑎𝑥−75 = 𝐿𝑚𝑎𝑥 +
ξ6

𝜋
× 𝐿𝑚𝑎𝑥 × 𝑉𝐿𝑚𝑎𝑥 × 𝑙𝑛 ቀ

75𝑦𝑟𝑠

5𝑦𝑟𝑠
ቁ                     (29) 

𝐿𝑚𝑎𝑥−75 = 1.74𝐿𝐻𝑆20 +
ξ6

𝜋
× 1.74𝐿𝐻𝑆20 × 9% × 𝑙𝑛 ൬

75𝑦𝑟𝑠

5𝑦𝑟𝑠
൰ = 𝐿𝑚𝑎𝑥−75 = 2.07𝐿𝐻𝑆20 

It is interesting to observe that the calculated 𝐿𝑚𝑎𝑥−75 = 2.07𝐿𝐻𝑆20 for one lane loading is very 

close to the value 𝐿𝑚𝑎𝑥−75 = 2.08 𝐿𝐻𝑆20 obtained by Nowak [26] during the calibration of the 

AASHTO LRFD specifications.  

This gives a mean 75-year live load after accounting for the distribution factor and the dynamic 

amplification: 

𝐿𝐿തതത = 3437 𝑘𝑖𝑝. 𝑓𝑡 ×
2.07   

1.74
= 4091 𝑘𝑖𝑝. 𝑓𝑡   

𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 4091 + 3833 = 7924 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 14% 

This leads to a reliability index: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
13088
7924 ቁ

ξ10%2 + 14%2
= 2.92 

Assuming that the distribution factor is equal to D.F.=0.928 as given in the AASHTO 

specifications, the calculated reliability index =2.92, is on the low side compared to the target set 

in the AASHTO specification for a 75-year design life target=3.50.  On the other hand, using a 
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distribution factor DF=0.85, which is observed from the distribution of the loads to the supports 

of the box girder bridge, the reliability index for the box girder under the effect of a single lane of 

loading is =3.24, which is closer to the target reliability.  When using a distribution factor equal 

to D.F.=0.60, which is extracted from the moment of the stresses at the critical cross-section of the 

bridge in its intact configuration, the reliability index becomes as high as =4.51.   

It is noted that the reliability calibration target=3.50 as executed for the AASHTO specifications 

considered only I-girder bridges, and the differences in the reliability index values calculated in 

this report from the target are due to the differences in the load distribution factors between the 

members of box girder bridges when compared to those for I-girder bridges and for the different 

dead load to live load ratios for the members of box girder bridges than for the members of I-girder 

bridges.   It is noted that the distribution factors calculated from the finite element analysis are 

significantly different than those in the AASHTO LRFD tables.   

 

8.8.2.2 Two-Lane Loading on Intact Bridge When Box Girder is Designed to Exactly Meet 

AASHTO’s Strength Limit State 

 

The WIM data from Florida was not analyzed for multiple lane loading.  Therefore, in this analysis, 

we will assume that the observations regarding the relation between one lane and two-lane loadings 

during the calibration of the AASHTO specifications are valid.  Nowak [26] found that when two 

lanes of the bridge are loaded, each lane will carry 0.85 of the maximum expected loaded projected 

for a single lane loading. The 0.85 factor accounts for the lower probability of having two very 

heavy trucks side-by-side on the bridge as compared to having a single heavy truck. Also, Nowak 

[26] uses a mean dynamic allowance for two-lane loading equal to 1.09 with a COV=5.5% rather 

than the mean of 1.13 and COV=9% used for one lane. The lower mean dynamic amplification for 

two lanes is due to the lower probability that trucks moving simultaneously in multiple lanes will 

have their maximum dynamic components occur at the same instant of time. Hence, the expected 

75-year live load in one lane of a bridge under the effect of multi-lane loading is estimated as: 

Moment on a girder due to two-lane: 

 𝐿𝐿തതത
𝑇 = 𝐿𝑚𝑎𝑥 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 0.85 × 2.07 × 1883.8 ×

1.09 × 1 × 1 × 1   = 3613 𝑘𝑖𝑝. 𝑓𝑡  

 

The distribution factor for the bridge with two lanes loaded is assumed to be equal to the one 

specified by AASHTO, D.F.=1.13.  A D.F. value slightly greater than 1.0 assumes that the two 

trucks on the bridge may be slightly shifted laterally to favor one of the two girders. 

𝐿𝐿തതത = 𝐿𝐿തതത
𝑇 × 𝐷. 𝐹.തതതതതത = 3613 × 1.113 = 4021 𝑘𝑖𝑝. 𝑓𝑡   
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Thus, the expected 75-year live load moment on one box girder of this bridge due to two-lane 

loading obtained as 4021 kip.ft is slightly lower than the mean 4096 kip.ft obtained earlier for one 

lane loading when we assume the AASHTO distribution factor equal to 0.928 for the single lane 

loading and a distribution factor equal to D.F.=1.113 when two lanes are loaded as implied in the 

AASHTO LRFD. The lower load is due to the lower probability of having two very heavily loaded 

trucks simultaneously on the bridge as compared to having a single heavy truck.    

 

The finite element analysis performed in this study did not consider two-lane loading of the bridge, 

but we compare the above expected to the results of the FEM one-lane loading, which observed a 

distribution factor equal to 0.60, then the mean load for one lane loading 2648 kip.ft is significantly 

lower than the moment carried by one girder under the effect of two-lane loading as calculated 

above.     

 

The total applied load on one beam is:  

𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 4021 + 3833 = 7854 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆 ҧ
= 14% 

This leads to a reliability index: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
13088
7854

ቁ

ξ10%2 + 14%2
= 2.97 

 

The reliability index for the most critical box girder in a 75-year service period is slightly higher 

than  =2.92 calculated for a single lane loading assuming the AASHTO distribution factors but 

still lower than the target reliability index target=3.5 used for calibration of the AASHTO LRFD.  

The increase from the single lane loading is primarily due to the difference between the multiple 

lane loading and the close to doubling of the capacity of the bridge members when both lanes are 

loaded.  However, the calculated  =2.97 is significantly lower than  =4.51 calculated when using 

a distribution factor equal to D.F.=0.60, which is extracted from the moment of the stresses at the 

critical cross-section of the bridge in its intact configuration.  

 

The above calculations were based on a total live load of COV=25% for both one-lane and two-

lane loadings. However, the AASHTO specifications were based on a COV=20% for two-lane 
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loading.  The lower COV for two lanes is justified because the site-to-site variability was found to 

be lower when studying the maximum 75-year in two lanes of traffic, as observed by Ghosn et al. 

[50].    Using a COV for live load equal to 20% leads to a higher reliability index =3.44 for the 

critical member of an intact twin steel box girder bridge under the effect of two-lane loading, which 

is closer to the target target=3.5.     

 

8.8.2.3 Scenario #1: Two-Lane Bridge Loading After Fracture of One Box Assuming the 

Girders are Designed to Exactly Meet the AASHTO Specifications 

While the main box girders of the bridge in its intact configuration are expected to safely carry the 

applied maximum single-lane and two-lane loadings, the question that arises is whether a box 

girder bridge will be able to safely withstand the total loads should one of the box girders fracture.  

To perform the reliability analysis, two scenarios are considered.  The first scenario is based on a 

commonly used model that assumes that the fractured bridge will be unable to carry any live load. 

The second scenario will use the load distribution observed from the finite element analysis 

performed in this study.  Both scenarios assume that the deck and secondary members will be able 

to transfer some of the loads applied over the fractured girder to the intact girder. In fact, the finite 

element analysis performed for this simply supported bridge shows that if one of the two boxes is 

fractured, the remaining intact girder is expected to carry a significant portion of loads that were 

originally carried by the fractured girder.  This section considers the first scenario, which assumes 

that the intact girder will carry all the live load in addition to its own dead weight.  The second 

scenario assumes that the critical section of the intact girder will carry the moment due to its own 

dead weight plus 50% of the weight of the fractured girder in addition to 66% of the live load that 

was originally on the lane directly over the fractured girder.  This means that the fractured girder 

will still be able to carry 34% of the moment of the live load traveling in the lane directly above 

it. The second scenario is analyzed in the next section (8.8.2.4). 

 

To verify that a bridge whose members are designed to satisfy the current AASHTO strength limit 

state will be able to sustain the maximum live load expected on the bridge during a 5-year service 

period, the reliability analysis is repeated for the case when the entire two-lane load is to be carried 

by the only surviving box. The analysis is performed for a 5-year load because a fractured bridge 

must survive in its damaged configuration for a period of time until the fracture is detected and 

corrective actions are undertaken. The five-year period is consistent with the rating period used 

for the AASHTO LRFR calibration (Moses [55], Sivakumar and Ghosn [52]). The calculations 

are also repeated for a two-year service period, which would be consistent with the two-year 

biennial inspection cycle.  

    

Given a single lane maximum load equal to 1.74 𝐿𝐻𝑆20 and using a multiple presence =2×0.85 as 

indicated by Nowak [26] and an average dynamic amplification for two lanes 𝐼𝑀𝑓𝑎𝑐𝑡 = 1.09 , the 

projected 5-year maximum two-lane load is obtained as:  
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𝐿𝐿തതത
𝑇 = 𝑚𝑝 × 𝐿𝑚𝑎𝑥−𝑜𝑛𝑒 𝑙𝑎𝑛𝑒 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 2 × 0.85 × 1.74 × 1883.8 × 1.09 × 1 × 1 × 1   = 6074 𝑘𝑖𝑝. 𝑓𝑡 

 

In this first scenario, it is assumed that all the load is being carried by one box; the distribution for 

this case will be 𝐷. 𝐹. = 1.0.  Thus, 𝐿𝐿തതത = 6074 𝑘𝑖𝑝. 𝑓𝑡.  Also, in the first scenario, it is assumed 

that the fractured member will still be able to carry its own dead weight because the deck and 

secondary members will be able to bridge the gap over the fracture and transfer the load 

longitudinally to the cantilevered remaining parts of the box. Thus, this first scenario assumes that 

the surviving box will only need to carry its own dead weight.  

For this first scenario, it is assumed that the dead load over the fractured beams will still be carried 

by the slab and that the composite intact beam will have to carry the total live load and only its 

own dead load. Thus, the mean applied load on the intact beam and its COV become: 

 

 The total applied load on one beam is  

𝑆ҧ = 𝐿𝐿തതത
⬚ + 𝐷𝐿തതതത = 6074 + 3833 = 9907 𝑘𝑖𝑝. 𝑓𝑡 

And the COV is: 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 16% 

This leads to a reliability index for the five-year load assuming a COV=25% on live load: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
13088
9907 ቁ

ξ10%2 + 16%2
= 1.48 

When a COV=20% is assumed for the live load, the reliability index increases slightly to =1.70; 

this constitutes a significant reduction from =2.97 and 2.92 calculated for the 75-year reliability 

when the entire bridge is intact at its AASHTO strength limit state and is carrying two lanes of 

traffic. It is noted that the reliability index =1.48 is lower than the target target=2.50 used during 

the calibration of the AASHTO LRFR procedures [55].  

The reliability index =1.48 was based on using the maximum live load for a 5-year service period, 

which is the recommended service period between rating cycles as per Moses [55] and Sivakumar 

and Ghosn [52]. However, regular inspections are conducted at 2-year intervals, and one would 

expect that any severe damage as that assumed herein would be detected during the routine biennial 

inspection.  In such cases, as shown in Table 4-3, the projection of the maximum expected load in 
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a two-year period would reduce from 1.74 times an AASHTO truck load to 1.68 obtained by 

interpolating the results of Table 4-3 assuming 2000 trucks per day which, for a two-year period 

according to Table 4-3, would be equivalent to an ADTT=4000.  In that case, the total live load 

moment on the bridge is LLT=5865 kip.ft, and the reliability index increases respectively to 

for COV of live load equal to 25%.  

These reliability index values would be reached only if the box girders rate at R.F.=1.0 at the 

LRFR inventory level, which for the first scenario assumes that the deck remains sound and 

capable of transferring the live load to the intact girder while it simultaneously remains capable of 

carrying the weight of the fractured girder longitudinally to the supports rather than transferring 

those loads to the remaining intact girder.  It is also noted that the damaged system offers no 

additional reserve strength meaning that the bridge will collapse when the intact member reaches 

its limit capacity.    

To find what rating factor would be required to achieve the target reliability index target=2.5 set 

for the AASHTO LRFR and assuming this first load distribution scenario, a live load COV=25%, 

over a two-year service period, which produces a total applied moment equal to 9698 kip.ft rather 

than the 9907kip.ft associated with a five-year period, a reliability index =2.50 would be reached 

if the mean resistance 𝑅ത = 15378 𝑘𝑖𝑝. 𝑓𝑡 as obtained from the equation: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ൬
𝑅ത

9698൰

ξ10%2 + 16%2
= 2.50 

This corresponds to a nominal resistance Rn=13,730 kip.ft or a rating factor R.F.=1.29 at the LRFR 

Inventory level. 

Assuming a live load COV=20%, a reliability index =2.50 over a two-year service period would 

be reached when the nominal resistance Rn=13,047 kip.ft or a rating factor R.F.=1.19 at the LRFR 

Inventory level. 

8.8.2.4 Scenario #2: Two-Lane Bridge Loading After Fracture of One Box Assuming the 

Girders Are Designed to Exactly Meet the AASHTO Specifications 

In this scenario, it is assumed that the deck and secondary members will transfer an even more 

significant portion of the loads from the fractured girder to the intact girder. Specifically, the 

second scenario assumes that the critical section of the intact girder will carry the moment due to 

its own dead weight plus 50% of the weight of the fractured girder in addition to 100% of the load 

from the lane over the intact girder plus 66% of the live load that was originally on the lane directly 

over the fractured girder.  These distributions were inferred from the FEM analysis performed in 

this study on the Texas University bridge and are assumed to be valid for different lateral positions 

of the trucks and for different strengths of bridges having the same configuration as the Texas 

University bridge.   
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The analysis performed in this section is meant to verify that a bridge whose members are designed 

to satisfy the current AASHTO strength limit state will be able to sustain the maximum live load 

expected on the bridge during a 5-year service period.  The analysis is performed for a 5-year load 

because a fractured bridge must survive in its damaged configuration for a period of time until the 

fracture is detected and corrective actions are undertaken. The five-year period is consistent with 

the rating period used for the AASHTO LRFR calibration [55]. The calculations are also repeated 

for a two-year service period to be consistent with the two-year biennial inspection period.  

  

Given a single lane maximum load equal to 1.74 𝐿𝐻𝑆20 and using a multiple presence factor equal 

to 0.85 x 2 as inferred by the work of Nowak [26], and an average dynamic amplification for two 

lanes 𝐼𝑀𝑓𝑎𝑐𝑡 = 1.09 , the projected 5-year maximum two-lane load is obtained as:  

𝐿𝐿തതത
𝑇 = 𝑚𝑝 × 𝐿𝑚𝑎𝑥−𝑜𝑛𝑒 𝑙𝑎𝑛𝑒 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 2 × 0.85 × 1.74 × 1883.8 × 1.09 × 1 × 1 × 1   = 6074 𝑘𝑖𝑝. 𝑓𝑡 

 

In this second scenario, a large portion of this live load moment is assumed to transfer to the intact 

girder as shown from the finite element analysis, which showed that the deck in combination with 

the cross bracings were able to transfer only a portion of the moment longitudinally over the 

fractured section.  Following Nowak [26], it is assumed that the total load is caused by two 

correlated trucks such that each lane would produce a moment equal to 3037 kip.ft (6074/2). Thus, 

the intact girder will carry 5041 kip.ft (=3037+0.66x3037 kip.ft). Furthermore, in this second 

scenario, it is assumed that the intact girder will carry its own dead weight moment (3833 kip.ft) 

plus 50% of the moment that was originally on the fractured girder = 1916.5 kip.ft (=3833x0.5). 

Thus, the total applied load on the intact girder is:  

𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 5041 + 5750 = 10791 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 12% 

This leads to a reliability index: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
13088
10791ቁ

ξ10%2 + 12%2
= 1.24 



123 

 

This constitutes a further reduction from =1.48, which was obtained from scenario 1. It is noted 

that both these values are significantly lower than the target target=2.50 used during the calibration 

of the AASHTO LRFR procedures [52, 55].  

The calculations above are based on a COV for live load effect e1ual to 25%.  If a COV on live 

load is reduced to 20%, then the reliability index increases to =1.30. 

Furthermore, the reliability index =1.24 was calculated for a 5-year service period, which is the 

recommended service period between rating cycles as per Moses [55] and Sivakumar and Ghosn 

[52]. However, regular bridge inspections are conducted at 2-year intervals, and one would expect 

that any severe damage as that assumed herein would be detected during the routine biennial 

inspection.  In such cases, as shown in Table 4-3, the projection of the maximum expected load in 

a two-year period would reduce from 1.74 times an AASHTO truck load to 1.68 obtained by 

interpolating the results of Table 4-3 assuming 2000 trucks per day, which for a two-year period 

according to Table 4-3 would be equivalent to an ADTT=4000.  In that case, the reliability index 

increases slightly to =1.28 and 1.40 for COV of live load equal to 25% and 20%, respectively.  

These reliability index values would be reached only if the box girders rate at R.F.=1.0 at the 

LRFR inventory level, which for the first scenario assumes that the deck remains capable of 

transferring a significant portion of the live and dead loads to the intact girder while simultaneously 

the deck remains capable of carrying 50% of its own weight and 34% of the live load from one 

lane.  It is also noted that the damaged system offers no additional reserve strength meaning that 

the bridge will collapse when the intact member reaches its limit capacity.    

Assuming a live load COV=25%, a reliability index =2.50 over a five-year service period would 

be reached if the mean resistance 𝑅ത = 16260 𝑘𝑖𝑝. 𝑓𝑡 as obtained from the equation: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ൬
𝑅ത

10791൰

ξ10%2 + 12%2
= 2.50 

This corresponds to a nominal resistance Rn=14,518 kip.ft or a rating factor R.F.=1.40  at the LRFR 

Inventory level. 

 

Assuming a live load COV=25%, a reliability index =2.50 over a two-year service period would 

be reached when the nominal resistance Rn=14,285 kip.ft or a rating factor R.F.=1.36 at the LRFR 

Inventory level. 
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8.8.3 Reliability Analysis of Box Girder Bridge Analyzed in This Study  

The above analysis was performed assuming that the box girders were designed to exactly satisfy 

the AASHTO strength limit state.  In this section, we repeat the analyses by applying Equation 

(20) in combination with Equation (21) to calculate the reliability index for the 120-ft simple span 

bridge having the actual section properties of the bridge tested by the University of Texas and 

analyzed during this study.   

 

The cross-section of one composite steel box is calculated to have a bending strength capacity 

R=19,027 kip-ft when considering the actual concrete strength f’c=6.23 ksi.  This calculated 

capacity when compared to the expected mean value of  𝑅ത = 13,088 𝑘𝑖𝑝. 𝑓𝑡 shows an 

overcapacity of 1.45 over the expected mean value that would be obtained if the bridge were to be 

designed to exactly meet the AASHTO specifications.  The overcapacity is by a ratio of 1.63 if 

compared to the design requirement  𝑅𝑛 = 11,686 𝑘𝑖𝑝. 𝑓𝑡  if the design requirement does not 

include the weight of a wearing, which the bridge analyzed in this study did not have.    

As shown in Figure 5-42, the finite element analysis of the Texas University Bridge, when still 

intact, indicates that the entire system’s capacity is about 1350 kips or 18.75 times the HS-20 truck 

load (18.75=1350/72 kips).  Given that the HS-20 truck gives a moment 𝐿𝐻𝑆20 = 1883.8 𝑘𝑖𝑝. 𝑓𝑡, 

the capacity of the entire intact bridge system to carry the live load, is found to be 18.75 ×

1883.8 = 35321 𝑘𝑖𝑝. 𝑓𝑡.  Given an estimated dead load moment per beam 𝐷𝐿തതതത = 𝐷𝐶𝑛 × 1.05 =

3833 𝑘𝑖𝑝. 𝑓𝑡, the total bridge system capacity is estimated to be 𝑅 = 35,321 + 2 × 3833 =

42,987 𝑘𝑖𝑝. 𝑓t.  This shows a bias in the system’s capacity equal to 1.13 =
42,987

2×19,027
.   This 1.13 

ratio is the bridge overstrength, which gives a measure of the actual capacity of the entire system 

as compared to the methods we use to find the capacity of each individual member.  The 1.13 ratio 

is very close to the bias bR=1.12 assumed during the reliability analysis performed above, as 

recommended by Nowak (1999).  Therefore, in these calculations, we assume that the mean 

strength capacity of the bridge members are each equal to 𝑅ത =
42,987

2
= 21,494 𝑘𝑖𝑝. 𝑓t.    

 

The results in Figure 5-42 for the analysis of the bridge with a fractured box shows that the 

damaged bridge can carry its own weight in addition to 430 kips before it fails.  Even though this 

analysis was performed when the truck was not placed at the extreme edge of the bridge and thus 

may not be for the most critical loading condition, it indicates that failure of the fractured bridge 

is due to deck failure rather than the failure of the intact box. The failure of the damaged bridge 

corresponds to 6 HS-20 trucks (=430 kips/72 kips).  When the truck is moved to the most critical 

lateral position, the analysis results shown in Figure 6-9 indicate that the deck fails at a load equal 

to 320 kips or 4.44 HS-20 trucks.   

 

The finite element analysis shows that the deck of this bridge fails first.  However, because the 

bridge is overdesigned, it would be of interest to study the reliability of the actual bridge and the 



125 

 

ability of the bridge members and that of the system to carry the entire live load before and after-

fracture if the deck capacity is so high that the deck itself does not fail and will remain capable of 

transferring the load between the members.  This is done to assess the reliability of the bridge 

system in cases where the deck is also overdesigned.  Specifically, the analysis assumes a mean 

box girder resistance equal to 21494 kip.ft, which is equivalent to an LRFR Inventory Rating equal 

to 2.38. If one removes the overstrength factor equal to 1.13, the Inventory rating based on its 

calculated nominal member capacity becomes 2.03.   

 

8.8.3.1 One-Lane Loading of Intact Texas Bridge  

Using a mean resistance 𝑅ത = 21,494 𝑘𝑖𝑝. 𝑓𝑡 as estimated from the finite element analysis, the 

reliability of the most critically loaded box girder when the bridge is loaded by the maximum 75-

year one-lane load and assuming the AASHTO load distribution factor equal to D.F. =0.928 is 

obtained as:  

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
21,494
7924 ቁ

ξ10%2 + 14%2
= 5.80 

This is close to double the reliability index that would have been obtained if the bridge members 

were designed to exactly meet the AASHTO strength design requirements, which were originally 

found to produce a reliability index = 2.92.  If we assume a COV for live load equal to 20%, the 

reliability index for the intact member is equal to =6.58.  

When using a distribution factor equal to D.F.=0.60, which is extracted from the moment of the 

stresses at the critical cross-section of the bridge in its intact configuration as obtained through the 

finite element analysis, the live load moment on the girder under the loaded lane becomes: 

𝐿𝐿തതത
𝑇 = 𝐿𝑚𝑎𝑥 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 1.74 × 1883.8 × 1.13 × 1 × 1 × 1   = 3704 𝑘𝑖𝑝. 𝑓𝑡 

𝐿𝐿തതത = 𝐿𝐿തതത
𝑇 × 𝐷. 𝐹.തതതതതത = 3704 × 0.60 = 2222 𝑘𝑖𝑝. 𝑓𝑡   

The COV for the live load on a girder is obtained from: 

The total load, including live and dead load its COV, are thus obtained as: 

 𝑆ҧ = 𝐿𝐿തതത
⬚ + 𝐷𝐿തതതത = 2222 + 3833 = 6055 𝑘𝑖𝑝. 𝑓𝑡 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 11% 
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The reliability index for the box girder member of the Texas University bridge assuming bending 

failure: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
21494
6055

ቁ

ξ10%2 + 11%2
= 8.52 

This is a very high-reliability index reflecting the over strength of the actual girders used in the 

Texas University bridge. 

 

8.8.3.2 Two-Lane Bridge Loading of the Intact Texas University Bridge 

As explained earlier, the moment on a girder due to two-lane loading is calculated as 

𝑡𝑤𝑜 𝑙𝑎𝑛𝑒 𝐿𝐿തതത
𝑇 = 𝐿𝑚𝑎𝑥 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 0.85 × 2.07 × 1883.8 × 1.09 × 1 × 1 × 1   = 3613 𝑘𝑖𝑝. 𝑓𝑡  

 

The distribution factor for the bridge with two lanes loaded is assumed to be equal to the one 

specified by AASHTO, D.F.=1.13.  A D.F. value slightly greater than 1.0 assumes that the two 

trucks on the bridge may be slightly shifted laterally to favor one of the two girders. 

𝐿𝐿തതത = 𝐿𝐿തതത
𝑇 × 𝐷. 𝐹.തതതതതത = 3613 × 1.113 = 4021 𝑘𝑖𝑝. 𝑓𝑡   

The total applied load on one beam is:  

𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 4021 + 3833 = 7854 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 14% 

This leads to a reliability index: 

If the bridge is analyzed for the 75-year two-lane loading, the reliability index of one box girder is 

obtained as: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
21,494
7854

ቁ

ξ10%2 + 14%2
= 5.85 
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This value is based on the maximum 75-year two-lane loading and is compared to the reliability 

=2.97, which was calculated for a bridge designed to exactly satisfy the AASHTO specifications 

for member strength. The higher reliability calculated herein reflects the over strength of the Texas 

University bridge as compared to a bridge that would have built to exactly meet the AASHTO 

strength limit state.  

 

8.8.3.3 Two-Lane Bridge Loading After the Fracture of One Box of the Texas University Bridge 

The analysis performed in this section is meant to verify that the Texas bridge would have been 

able to sustain the maximum live load expected on the bridge during a 5-year service period after 

the fracture of one of its two-box girders if the deck did not fail.  The analysis is first performed 

for a 5-year load because a fractured bridge must survive in its damaged configuration for a period 

of time until the fracture is detected and corrective actions are undertaken. The five-year period is 

consistent with the rating period used for the AASHTO LRFR calibration [55]. The calculations 

are also repeated for a two-year service period to be consistent with the two-year biennial 

inspection period.  

  

Given a single lane maximum load equal to 1.74 𝐿𝐻𝑆20 and using a multiple presence factor equal 

to 0.85 x 2 as inferred by the work of Nowak [26], and an average dynamic amplification for two 

lanes 𝐼𝑀𝑓𝑎𝑐𝑡 = 1.09 , the projected 5-year maximum two-lane load is obtained as:  

𝐿𝐿തതത
𝑇 = 𝑚𝑝 × 𝐿𝑚𝑎𝑥−𝑜𝑛𝑒 𝑙𝑎𝑛𝑒 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 2 × 0.85 × 1.74 × 1883.8 × 1.09 × 1 × 1 × 1   = 6074 𝑘𝑖𝑝. 𝑓𝑡 

 

In this second scenario, a large portion of this live load moment is assumed to transfer to the intact 

girder as shown from the finite element analysis, which showed that the deck in combination with 

the cross bracings were able to transfer only a portion of the moment longitudinally over the 

fractured section.  Following Nowak [26], it is assumed that the total load is caused by two 

correlated trucks such that each lane would produce a moment equal to 3037 kip.ft (6074/2). Thus, 

the intact girder will carry 5041 kip.ft (=3037+0.66x3037 kip.ft). Furthermore, in this second 

scenario, it is assumed that the intact girder will carry its own dead weight moment (3833 kip.ft) 

plus 50% of the moment that was originally on the fractured girder = 1916.5 kip.ft (=3833x0.5). 

Thus, the total applied load on the intact girder is:  

𝑆ҧ = 𝐿𝐿തതത
⬚ + 𝐷𝐿തതതത = 5041 + 5750 = 10791 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 12% 
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Taking a mean resistance value for the intact girder of the Texas University bridge 𝑅ത = 21,494 

This leads to a reliability index: 

𝛽 =
𝑙𝑛 ൬

𝑅ത

𝑆ҧ൰

ඥ𝑉𝑅
2 + 𝑉𝑆

2
=

𝑙𝑛 ቀ
21494
10791ቁ

ξ10%2 + 12%2
= 4.41 

This constitutes a high probability of survival in case of fracture of this over strength bridge.  

The calculations above are based on a COV for live load effect e1ual to 25% for the maximum 5-

year live load.  The reliability index is repeated for the 2-year maximum two-lane loading assuming 

that after the fracture of one box girder, the fractured member is still able to carry 50% of its own 

dead weight and that the weight of 83% one lane load plus 0.66 of the load of the lane immediately 

over the fracture box of the entire two-lane live load is shifted to the intact box.  

Given a live load for two loaded lanes 

𝐿𝐿തതത
𝑇 = 𝑚𝑝 × 𝐿𝑚𝑎𝑥−𝑜𝑛𝑒 𝑙𝑎𝑛𝑒 × 𝐿𝐻𝑆20 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

𝐿𝐿തതത
𝑇 = 2 × 0.85 × 1.68 × 1883.8 × 1.09 × 1 × 1 × 1   = 5864 𝑘𝑖𝑝. 𝑓𝑡 

 

The live load per one lane is 2932 kip.ft (=5864/2). The live load on the intact girder becomes 

4867 kip.ft (=2932+0.66x2932 kip.ft). Furthermore, the intact girder will carry its own dead weight 

moment (3833 kip.ft) plus 50% of the moment that was originally on the fractured girder = 1916.5 

kip.ft (=3833x0.5). Thus, the total applied load on the intact girder is:  

𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 4867 + 5750 = 10617 𝑘𝑖𝑝. 𝑓𝑡 

And a COV 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 13% 

Taking a mean resistance value for the intact girder of the Texas University bridge 𝑅ത = 21,494 

This leads to a reliability index:𝛽 =
𝑙𝑛ቀ

𝑅ഥ

𝑆ഥ
ቁ

ට𝑉𝑅
2+𝑉𝑆

2
=

𝑙𝑛ቀ
21,494

10617
ቁ

ඥ10%2+13%2
= 4.30 

This reliability value =4.30 is significantly higher than the reliability index =1.28 that would 

have been obtained if the bridge members were designed to exactly meet the AASHTO strength 

design requirements. Actually, the bridge tested by Texas University and analyzed in this study 

would have rated at R.F. = 2.05 if the nominal capacity Rn=19191 kip.ft is used to find the rating 

at the AASHTO LRFR Inventory level. 
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𝑅. 𝐹. =
𝑅𝑛−1.25𝐷𝐶𝑛

1.75𝐿𝑛
=

19,191−1.25×3650

1.75×4071
 = 2.05 

 

8.8.4 Generalization to Two-Lane Loading of 120-Ft Twin Steel Box Girder Bridges After 

the Fracture of One Box  

The analysis of fractured bridges is repeated for two scenarios.  The first scenario assumes, as done 

earlier that the fractured bridge will still be able to carry its own dead weight but transfers all the 

live load to the intact girder.  The second scenario assumes that the fractured girder will be able to 

transfer longitudinally 50% of its own weight away from the critical cross-section while the 

remaining 50% of its weight is transferred laterally to the intact girder’s section. Similarly, 34% 

of the live load traveling in the lane over the fractured girder will transfer longitudinally away 

from the fractured section, while the remaining 66% of the live load is transferred laterally to the 

adjacent box girder section.   The load transfer mechanism of scenario two was based on the 

nonlinear finite element analysis conducted in this study. 

Table 8-1 gives for the first scenario, the LRFR Inventory Rating Factors required for the box 

girder members to ensure that the bridge will be able to sustain the fracture of one box girder and 

yet be able to support sufficient live of loading over a two-year or a 5-year service period until the 

damage is detected and necessary rehabilitation actions are undertaken.  The table shows that an 

LRFR Inventory Rating on the order of R.F.=1.28 to 1.33 is required to meet a target reliability 

index target=2.50 should one of the two box girders fractures.   

 
Table 8-1. LRFR inventory rating factors for box girders necessary for the fractured bridge to meet different target reliabilities, 

assuming that all the live load is transferred laterally to the intact girder but none of the dead load. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.73 1.67 

3.00 1.52 1.46 

2.50 1.33 1.28 

2.25 1.24 1.19 

2.00 1.16 1.11 

1.75 1.07 1.03 

1.50 1.00 0.96 

1.25 0.92 0.89 

1.00 0.85 0.82 

Table 8-2 gives for the second scenario, the LRFR Inventory Rating Factors required for the box 

girder members to ensure that the bridge will be able to sustain the fracture of one box girder and 

yet be able to support sufficient live of loading over a two-year or a 5-year service period until the 

damage is detected and necessary rehabilitation actions are undertaken.  The results shown in Table 
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8-2 require more conservative section strengths because, for these box girder bridges, the dead 

load is higher than that of a one-lane live load.  In this case, an Inventory Rating on the order of 

R.F.=1.00 is required to meet a target reliability index  target on the order of 1.25.  A target  target 

= 2.50 would require an inventory rating on the order of 1.34 to 1.38.   
 

Table 8-2. LRFR inventory rating factors for box girders necessary for the fractured bridge to meet different target reliabilities, 
assuming that all 50% of the dead load is transferred laterally to the intact girder along with 66% of the live load that was 

originally carried by the fractured girder. 

Target Reliability 

index, target 

R.F. Inventory 

Rating for 5-year 

service life  

R.F. Inventory 

Rating for 2-year 

service life  

3.50 1.74 1.69 

3.00 1.55 1.51 

2.50 1.38 1.34 

2.25 1.30 1.27 

2.00 1.23 1.19 

1.75 1.15 1.12 

1.50 1.08 1.05 

1.25 1.01 0.98 

1.00 0.95 0.92 

 

8.8.5 Deck Strength Reliability Analysis 

The finite element analysis as summarized in Figure 6-9 indicates that the bridge, after the fracture 

of one girder, was able to carry 4.44 HS-20 trucks before its deck fails when it is no longer able to 

transfer the applied load to the intact girder.  At failure, the finite element analysis showed that the 

fractured girder was able to transfer 34% of its live load longitudinally across the fracture and 50% 

of its own weight.  This means that up to this point, the intact girder carried at least 11,220 kip.ft 

in bending (11,220 𝑘𝑖𝑝. 𝑓𝑡 = 4.4 × 0.66 × 𝐿𝐻𝑆20 + 1.5 × 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 = 4.4 × 0.66 ×

1883.8 + 1.5 × 3833 𝑘𝑖𝑝. 𝑓𝑡). This value is significantly lower than the actual capacity of each 

of the box girders in the analyzed bridge but is only slightly lower than the nominal resistance 

Rn=11,686 kip.ft by a margin of only 4%.  On the other hand, the applied load remains lower than 

the expected value 𝑅ത = 13,088 𝑘𝑖𝑝. 𝑓𝑡 which would have been obtained if the girder were 

designed to exactly meet the AASHTO strength limit state. But, the margin of safety would have 

been extremely low 

 

In this section, a simplified reliability analysis of the deck is performed to estimate the minimum 

criteria that the deck should satisfy in order to ensure that it will be able to transfer a minimum 

level of the load from the fractured box girder to the intact box.   

 

The calculations are performed assuming that the load-carrying capacity of the deck is modeled 

using the yield line analysis approach described in Chapter 6, which is similar to the one proposed 
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earlier by the University of Texas.  Based on a very limited number of checks, it is observed that 

the proposed yield line analysis provides a conservative estimate of the deck capacity when 

compared to the values obtained from the nonlinear finite element analysis.  However, the level of 

conservativeness was inconsistent and depended on the applied truck configuration. Nevertheless, 

lacking any additional data, it is herein assumed that the yield line analysis would be applicable 

for the most heavily loaded trucks that could potentially cross a Florida two-box girder bridge that 

has sustained a severe fracture to one of its box girders. 

As explained in Chapter 6, the yield line analysis process consists of the following steps:  

 

a) Choosing a representative truck 

b) Assigning yield lines based on the truck configuration. The yield lines are traced along the 

edge of the intact box closest to the fractured girder for a distance equal to the truck length 

and then connecting the two ends of that line to the center of gravity of the truck. Another 

set of two lines flare from the two ends of the line that runs along the intact box at 35o 

angles towards the damaged box to enclose three triangular areas within which the truck 

falls. This yield line pattern was inferred from the nonlinear finite element analysis of the 

bridge, including the concrete deck, as explained in Chapter 6.   

c) Applying the dead weight and a truck load on the deck.  

d) Incrementing the truck’s load until a yield line failure takes place when the internal work 

from the yield line hinge rotations is equal to the work done by the weight of the portion 

of the deck inscribed within the yield lines and the incremented truck load.    

 

 
Figure 8-2. Representative semi-trailer truck. 

The yield analysis was performed for several representative truck configurations.  In these 

reliability calculations, we adopt the yield line pattern for Florida C5 load rating truck shown in 

Figure 8-2.  This truck is selected because semi-trailer trucks are known to represent the vast 

majority of trucks on US highways.  It is herein assumed that the maximum 5-year truck load and 

the maximum 2-year truck load are due to trucks having the C5 truck configuration. This truck 

produces a maximum moment equal to 1994.8 kip.ft on the simple 120-ft bridge.  This means that 

the 5-year Lmax=1.74 LHS-20=1.74×1883.8=3278 kip.ft maximum load effect as projected from the 

WIM data by the Auburn University team is equivalent to 1.64 times the weight of one C5 truck.  

On the other hand, the 2-year Lmax=1.68 LHS-20=1.68×1883.8=3165 kip.ft maximum load effect as 
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projected from the WIM data by the Auburn University team is equivalent to 1.59 times the weight 

of one C5 truck.   

 

The yield line analysis indicates that the work done by one C5 truck is equal to 34.35 kip-ft/ft and 

that it is linearly related to the load factor.   This indicates that the total work done by the maximum 

5-year projected load is 𝐿𝑚𝑎𝑥 = 1.64 × 34.35 = 56.33 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡.  For the two-year load, 

𝐿𝑚𝑎𝑥 = 1.59 × 34.35 = 54.62 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡 This applied work done by the truck weight is then 

entered along with a mean value for the dynamic amplification  𝐼𝑀𝑓𝑎𝑐𝑡 = 1.13 to find the mean 

applied load.  

𝐿𝐿തതത = 𝐿𝑚𝑎𝑥 × 𝐼𝑀𝑓𝑎𝑐𝑡 × 𝜆𝑚𝑎𝑥 × 𝜆𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒 × 𝜆𝑑𝑎𝑡𝑎 = 

The five-year load gives:𝐿𝐿തതത = 56.33 × 1.13 × 1 × 1 × 1   = 63.7 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡  

The two-year load gives: 𝐿𝐿തതത = 54.62 × 1.13 × 1 × 1 × 1   = 61.7 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡  

The COV for the applied random live load effect: 

𝑉𝐿𝑇 = ට𝑉𝐿𝑚𝑎𝑥
2 + 𝑉𝑠𝑖𝑡𝑒−𝑡𝑜−𝑠𝑖𝑡𝑒

2 + 𝑉𝑑𝑎𝑡𝑎
2 + 𝑉𝐼𝑀

2 = ඥ9%2 + 20%2 + 5%2 + 9%2 = 24% 

No statistical information is available on the accuracy and variability in the yield line analysis 

process.  The few sensitivity analysis performed in Chapter 6 show very large variations depending 

on the truck configuration.  As a minimum, one can apply the same COV adopted above for the 

load distribution factor and account for these using: 

The COV for the live load on a girder is obtained from: 

𝑉𝐿𝐿 = ට𝑉𝐿𝑇
2 + 𝑉𝐷𝐹

2 = ඥ24%2 + 8%2 = 25% 

The work done by the weight of the 8-in deck is found to be 22.1 kip.ft/ft when the concrete weighs 

0.15 kip/ft3, and it varies linearly with the weight. The work done by the weight of the railing is 

found to be 10.3 kip.ft/ft for a total work due to the nominal dead weight equal to DCn=32.4 kip.ft/ft. 

The mean value of the dead load is thus: 

𝐷𝐿തതതത = 𝐷𝐶𝑛 × 1.05 = 34.0 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡   

The COV for the live load on a girder is obtained from: 

𝑉𝐷𝐿 = 10% 

The total work done by the applied load, including live and dead load and its COV, are thus 

obtained as: 
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For the five-year load:  𝑆 ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 63.7 + 34 = 97.7 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 17% 

For the two-year load:  𝑆ҧ = 𝐿𝐿തതത + 𝐷𝐿തതതത = 61.7 + 34 = 95.7 𝑘𝑖𝑝. 𝑓𝑡/𝑓𝑡 

𝑉𝑠 =
ඥ(𝑉𝐿𝐿 × 𝐿𝐿തതത)2 + (𝑉𝐷𝐿 × 𝐷𝐿തതതത)2

𝑆ҧ
= 17% 

The analysis of the capacity of the yield line to carry the applied load is based on the moment 

capacity of the reinforced concrete deck.  No statistical data is currently available on the moment 

capacity of concrete decks.  Therefore, in this analysis, we will adopt the bias and COV used by 

Nowak [26] during the calibration of the AASHTO LRFD specifications. 

 

Bending of reinforced concrete beams;     

It has been recommended that an engineer interested in verifying the ability of a concrete deck to 

transfer the applied vehicular load to the intact box girder of a two-girder bridge whose one of its 

two girders has fractured to perform a yield analysis similar to the one developed by this study 

after applying an adequate live load, dead load and resistance factors.  The object of the yield 

analysis would be to verify that the external work done by the factored applied loads is lower than 

the factored internal work that would be done by the concrete deck.  Based on the data provided 

in Chapter 6, this indicates that for this particular bridge configuration, the external work can be 

calculated following the steps a) through d) listed above with the understanding that a live load 

factor LL, yet to be determined, be applied on the nominal live load represented by the truck shown 

in Figure 8-2 after applying an impact factor IM=1.3. The engineer should also apply a dead load 

factor DL= 1.25 and a resistance factor =0.90. 

Using the models developed in this study for this particular bridge and the C5 Class 9 truck shown 

in Figure 8-2, the safety check will be based on ensuring that the external work done by the factored 

applied loads exceeds the internal work done by the factored deck moment capacity. This safety 

check takes the form: 

𝐼𝑊 ≥ 𝐸𝑊  

𝐸𝑊 = 𝛾𝐿𝐿 × 𝐼𝐶𝐿𝐿  × 𝐼𝑀 +  𝛾𝐷𝐿 × 𝐼𝐶𝑑𝑒𝑐𝑘 × 𝜔𝑑𝑒𝑐𝑘 + 𝛾𝐷𝐿 × 𝑊𝑟𝑎𝑖𝑙𝑖𝑛𝑔 × 𝐼𝐶𝑟𝑎𝑖𝑙𝑖𝑛𝑔 

Where LL is to be determined, ICLL=34.35 is the influence coefficient for the C5 nominal truck 

configuration, IM=1.33 for consistency with AASHTO LRFD, DL=1.25 is permanent load factor 

to be consistent with AASHTO LRFD, ICdeck=147.2 is the influence coefficient for the deck, deck 

nRR 14.1 %13RV
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is the specific weight of reinforced concrete which is usually equal to 0.15 kip/ft3. ICdeck=147.2 is 

the influence coefficient for the deck, Wrailing is the total weight of the railing over the area within 

the contours of the yield lines and is 20.6, ICrailing is the influence coefficient for the railing taken 

as 0.5.  Thus, for a typical bridge, the external work is equal to:  

𝐸𝑊 = 𝛾𝐿𝐿 × 34.35 × 1.33 +  1.25 × 147 × 0.15 + 1.25 × 20.6 × 0.5 

The beam is considered to be safe if the internal work done by the concrete deck is equal to:  

IW=EW/ 

where the resistance factor =0.90 for the reinforced concrete deck in bending is used for 

consistency with the AASHTO LRFD.  

𝐼𝑊 =
(𝛾𝐿𝐿 × 34.35 × 1.33 +  1.25 × 147 × 0.15 + 1.25 × 20.6 × 0.5)

0.9
 

𝐼𝑊 = 𝛾𝐿𝐿50.76 + 44.93 

The mean bending capacity is  

𝐼𝑊തതതത = 1.14 × 𝐼𝑊 = 𝛾𝐿𝐿 × 57.87 + 51.22 

The reliability index for a box girder member designed to satisfy the AASHTO nominal resistance 

criteria using Lognormal Model assuming bending failure: 

𝛽 =
𝑙𝑛 ൬

𝐼𝑊തതതത

𝐸𝑊തതതതത൰

ඥ𝑉𝐼𝑊
2 + 𝑉𝐸𝑊

2
=

𝑙𝑛 ቀ
𝛾𝐿𝐿 × 57.87 + 51.22

97.7 ቁ

ξ13%2 + 17%2
 

To achieve a reliability target=2.5 when 𝑆ҧ = 97.7 𝑘𝑖𝑝. 𝑓𝑡 calculated for the 5-year load as currently 

adopted for the AASHTO LRFR, we should require a live load factor LL=2.0. 

For a two-year reliability target=2.5 when 𝑆ҧ = 95.7 𝑘𝑖𝑝. 𝑓𝑡, the live load factor can be reduced to 

LL=1.94. 

𝛽 =
𝑙𝑛 ൬

𝐼𝑊തതതത

𝐸𝑊തതതതത൰

ඥ𝑉𝐼𝑊
2 + 𝑉𝐸𝑊

2
=

𝑙𝑛 ቀ
𝛾𝐿𝐿 × 57.87 + 51.22

95.7
ቁ

ξ13%2 + 17%2
 

Table 8-3 gives the different live load factors necessary to achieve different reliability levels for 

the deck.  Results for both a five-year rating period and a two-year bridge inspection cycle are 

given.  As mentioned earlier, to achieve the target reliability, in addition to applying the 
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recommended live load factor, LL given in Table 8-3, the yield line analysis implies the application 

of a dynamic amplification factor IM=1.33, a dead load factor DL=1.25 and a moment resistance 

factor for the concrete deck equal to =0.9.  

The analysis of the bridge deck for the 120-ft bridge studied in Chapter 6 indicates that the bridge 

deck in its current configuration and concrete strength will fail at a live load factor LL=1.71. This 

indicates that its reliability index is on the order of =2.0 for a five-year service period, or slightly 

higher than that for a two-year service period.   

 
Table 8-3. Live load factors for deck analysis necessary to meet different target reliabilities. 

Target 

Reliability index 

5-year live load 

factor, LL 

2-year live load 

factor, LL 

3.50 2.69 2.61 

3.00 2.32 2.26 

2.50 2.00 1.94 

2.25 1.85 1.79 

2.00 1.71 1.65 

1.50 1.44 1.39 

1.00 1.21 1.16 
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 Chapter 9 Summary and Discussion 

In steel girder bridges, fatigue cracking is one of the most important phenomena affecting 

structural performance and integrity. In general, fatigue cracks are the result of out-of-plane 

distortion or other unanticipated secondary stresses at low fatigue resistance members. 

Development of fatigue cracking may lead in time to a full-depth fracture of one girder without 

noticeable bridge profile changes. It is critical to ensure that the bridge will have adequate capacity 

to prevent collapse until the next cycle of inspection discovers the damage. Bridges that a failure 

in an individual member could result in the total collapse of the structure are classified as fracture 

critical by AASHTO. It is required that inspection of these bridges be carried out using “arms-

length” approach, which is costly and is a drain on the state’s total bridge budget.  

Currently, twin steel box girder bridges are classified as bridges with fracture critical members. 

However, recent research results indicate that these bridges could be redundant because of their 

high torsional resistance even after a full-depth fracture of one girder. The most notable study is 

the series of full-scale tests carried out by the University of Texas-Austin that demonstrated a high 

level of internal redundancy of twin steel box girder bridges. The main question as to what load 

level should be used and established using a scientific approach still remains as a task to be 

accomplished. Further, many questions remain on the expected failure mode of the damaged twin 

steel box girder bridges and the methods for assessing the bridge performance, before these bridges 

could be removed from the non-redundant list. An upcoming specification developed by Purdue 

researchers establishes a set of requirements for redundancy of twin steel box girder bridges that 

could be considered at the design stage to assure redundancy.  This specification applies only to 

bridges with continuous spans.   

The objective of this project is to establish a design target performance and safety level for twin 

steel box girder bridges, and outline a methodology and approach for assessing the redundancy of 

these bridges of simple and continuous spans. The Florida Bridge Inventory was statistically 

analyzed to determine the available range of each functional and geometric parameter like span 

length, number of spans, number of lanes, deck width, and radius of curvature in existing twin 

steel box girder bridges, and at the end, the bridge tested at the University of Texas with the span 

length of 120 ft was selected as a baseline model for developing information for preliminary 

reliability analysis of twin steel box girder bridges. Furthermore, Weight-in-Motion (WIM) data 

from 32 stations collected throughout four years (2013-2016) in the state of Florida was used to 

develop a live load model the bridge would be subjected to during two-year inspection intervals. 

The data left after filtering out vehicles less than 20-kip gross vehicle weight (GVW) were used 

for further analysis.  

 

Since the controlling design criteria in the design are moments and shears, the load effects, i.e., 

moment and shear created by these vehicles, are important. Each vehicle in the database was run 

over an influence line for the considered span length of 120 ft, and moment and shear were 
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calculated. For a better interpretation of results, the moment and shear produced by each vehicle 

were divided by the corresponding load effects of the HS-20 design truck. It was assumed that 32 

WIM stations in Florida have representative truck traffic for Florida. The statistical parameters of 

mean maximum and coefficient of variation (CV) of live load (moment) were presented and were 

used for reliability analysis calculations. 

 

A detailed finite element model was developed to simulate the local and global behavior of bridge 

superstructure using steel girder made composite with concrete deck slabs. The model was 

validated with a series of available test results on full-scale and scaled bridges.  These included 

the full-scale, University of Nebraska bridge consisting of three I-shaped steel girders and the FIU 

scaled twin steel box girders.  The finite element models were shown to simulate very well both 

the global and local behavior of the tested bridges in their intact condition as well as after one 

girder fracture (FIU bridge).  The University of Texas bridge was then modeled to investigate the 

failure mode and ultimate load-carrying capacity of the bridge subjected to truck loading after a 

full-depth fracture in one of the girders. Material nonlinearity and concrete damage plasticity were 

used to consider tensile cracking and compressive crushing of the concrete deck in the model. 

Contact surface was used for defining the surface contact between the railings and also to consider 

the possibility of support uplift during the loading. Moreover, according to the results of available 

tests and analyses, shear studs between girders and deck slab may influence the onset of failure in 

the deck, and therefore shear studs were also modeled. A large number of analyses were performed 

on this bridge chosen as a case study for reliability analysis. 

 

Three tests were conducted by the University of Texas on the full-scale bridge. The first test was 

performed to evaluate the behavior of the bridge under loading simulated by the weight of concrete 

blocks (slightly over HS-20 loading and equal to 76 kips total) after a sudden fracture at the bottom 

flange of the exterior girder.  The second test was conducted by cutting the bottom flange and 83% 

web of the exterior girder to study the fractured bridge behavior under the same loading as Test 1. 

And finally, the ultimate load test was performed to investigate the ultimate load-carrying capacity 

of the fractured bridge. The ultimate test was performed by increasing a uniform load applied using 

sand over the HS-20 truck outline area until the bridge collapsed. The finite element model was 

validated against these available experimental test results conducted by the University of Texas. 

In addition to global behavior, the model was capable of simulating the local behavior, including 

the development of the deck yield line pattern. 

 

After verification of the FE model, the bridge was analyzed for two scenarios of the intact and 

fractured bridge. The bridge was loaded in terms of the HS-20 design truck positioned at the mid-

span over the fractured girder to generate maximum moment at the section with fracture (one lane 

loading). In order to study the effect of truck position on the failure mode and the ultimate load-

carrying capacity, the HS-20 truck was positioned in four different locations across the bridge 

width. The results showed that concrete deck failure is the governing failure mode of the fractured 
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bridge subjected to truck loading at different positions. The sensitivity analysis indicated that one-

way shear is the bridge failure mode when the truck is positioned closest to the intact girder, and 

concrete deck bending is the bridge failure mode when the truck position transversely is farthest 

from the intact girder. Nevertheless, the truck position at farthest from the intact girder with the 

concrete deck bending failure resulted in the lowest bridge load carrying capacity and was 

considered as the dominant failure mode. 

 

In order to consider the effect of variation in bridge configurations and material properties, as well 

as truck loading configuration on the bridge failure mode, sensitivity analysis for the deck concrete 

compressive, deck thickness, and truck configuration was conducted. Different concrete 

compressive strength and deck thickness varying from 4 ksi to 6.2 ksi and 7.5 in. to 8.5 in., 

respectively, and three trucks with loading configurations other than HS-20 truck were selected 

for this purpose. The C5 truck that weighs a total of 80 kips and with a total length of 36 feet that 

is longer and heavier than the HS-20 design truck configuration and EV3 truck with a total weight 

of 86 kips (14 kips heavier than HS-20 Truck) and a total length of 19 feet (9 feet shorter than the 

HS-20 truck configuration used in this study) that creates larger longitudinal and transverse 

bending moment in the bridge were selected as Florida legal and emergency vehicles. Moreover, 

WIM data in the state of Florida was also used for selecting a typical truck, which creates a larger 

moment and shear for a 120 ft simple span bridge. The selected truck, which is called here WIM 

Data-FL, has a gross vehicle weight of 120 kips distributed over seven axles (Class 13 based on 

FHWA vehicle category classification).  

 

The results showed that variation in material properties and truck loading configuration would not 

change the dominant mode of failure for the twin steel box girder bridge considered in this study 

after a fracture in one girder. Therefore, to simplify the process and avoid the need for FE analysis 

for each loading case, a simple and unified yield line analysis based on the concrete deck damage 

pattern observed in the FE analysis to determine the bridge load carrying capacity subjected to 

different truck configurations.  This model is an improvement to a model proposed earlier by the 

University of Texas that was developed based on limited test and analysis results.  In this newly 

proposed pattern, the truck is positioned closest to the railing, where its center of gravity coincides 

with the mid-span over the fracture. The length of the longitudinal yield line (b) is considered 

equal to the truck length. To find the angle of the diagonal lines ( in Figure 6-18), a parametric 

analysis was conducted to find an angle that results in capacity in agreement with patterns and 

capacity obtained from FE analysis. The results show that the simplified method with the 35o gives 

the best average capacity ratio compared to the FE analysis. This unified pattern, however, 

provides a conservative estimate of the deck capacity when compared to the values obtained from 

nonlinear finite element analysis. 

 

Moreover, a series of analyses were conducted on the bridge to investigate the behavior of the 

bridge in intact and damaged scenarios under dead and increasing live load. The goal was to 



139 

 

determine the distribution of dead and live loads before and after the fracture of one girder. 

According to the results, the dead load moment on the intact girder increases by about 50 percent 

once a fracture occurs. The fractured girder has a very small stiffness at the middle (one can assume 

hinge or very weak spring), so it attracts only a negligible moment compared to the intact girder. 

The live load moment analysis for the intact bridge shows that the left girder (loaded) carries 60%, 

and the right girder carries 40% of the live load. However, after the fracture, the right girder (intact) 

carries most of the live load (66%) because of a decrease in stiffness of the fractured girder.  

Nevertheless, the fractured girder is undamaged through most of its length. Since the truck loads 

are applied through its wheel footprints, and rear and front wheels are at a distance from the middle, 

the fracture girder can transfer some portion of live load (34%) through those segments as a 

cantilever beam. Unlike the live load, the dead load is distributed along the bridge, and the 

fractured girder is able to transfer a noticeable portion through its undamaged end segments. 

  

A simplified reliability analysis of a twin steel box girder bridge superstructure and its deck was 

presented to estimate the minimum criteria that a deck should satisfy in order to ensure that it can 

transfer a minimum level of load between the box girders, which one of the girders sustain a severe 

fracture.  The recommendation was made based on meeting a reliability index target, target=2.5 

over a five-year service period.  In addition, a list of live load factors was provided for different 

target reliability levels for the case of the two-year service period. The calculations are performed 

assuming that the load-carrying capacity of the deck is modeled using the yield line analysis 

approach presented in this study that provides a conservative estimate of the deck capacity 

compared to FE analysis. Nevertheless, lacking any additional data, it is herein assumed that the 

yield line analysis would be applicable for the most heavily loaded trucks that could potentially 

cross a Florida twin steel box girder bridge that has sustained a severe fracture to one of its box 

girders. In addition to applying the recommended live load factor, the yield line analysis implies 

the application of a dynamic amplification factor IM=1.33, a dead load factor DL=1.25 and a 

moment resistance factor for the concrete deck equal to =0.9. 

A reliability analysis was carried out to estimate the reliability index corresponding to various live 

load levels based on the simplified yield line bending failure of the deck only. The analysis of the 

bridge deck for the 120-ft bridge studied in this report, therefore, indicates that the bridge deck in 

its current configuration and concrete strength and ignoring the possible contribution of the railings 

to help carry some of the load will fail at a live load factor LL=1.71 when the deck’s concrete 

strength is set at f’c=6.23 ksi as determined from the tests. This indicates that its reliability index 

is on the order of =2.0 for a five-year service period, or slightly higher than that for a two-year 

service period. However, For the bridge to provide sufficient reliability to sustain the possible 

fracture of one of its two-box girders, it is important that the remaining box girder has sufficient 

load carrying capacity to withstand the entire live load that may cross the damaged bridge with 

one fractured box.  This can be ensured if the bridge’s box girders outside of fracture can satisfy a 

minimum Rating Factor.  
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The analysis of fractured bridges was repeated for two scenarios.  The first scenario assumes that 

the fractured bridge will still be able to carry its own dead weight but transfers all the live load to 

the intact girder. The second scenario assumes that the load distribution follows the nonlinear FE 

analysis conducted in this study that the bending moment of the intact girder will increase by 50% 

under dead load, and 66% of the live load in the lane over the fractured girder will transfer to the 

intact girder.  Based on the assumed scenarios, the LRFR Inventory Rating Factors required for 

the box girder members to ensure that the bridge will be able to sustain the fracture of one box 

girder and yet be able to support sufficient live of loading over a two-year or a 5-year service 

period until the damage is detected. The results show that an LRFR Inventory Rating on the order 

of R.F.=1.28 to 1.33 and R.F.= 1.34 to 1.38 is required for scenarios I and II, respectively, to meet 

a target reliability index target=2.50 should one of the two box girders fractures.   

The bridge analyzed in this study has an LRFR Inventory Rating of R.F.=2.05. Thus, the intact 

box girder is capable of sustaining a significant level of the live load as well as a large proportion 

of the dead load that was originally carried by the fractured girder, and that the bridge failure is 

definitely expected to be due to the failure of the deck as explained earlier. It should be noted that 

in simple span steel bridges, service limit states are normally the governing design limit states, and 

the strength LRFR Inventory Rating is considerably greater than one and in the order of the bridge 

considered in this study.  

 

9.1 Reliability and Safety Analysis of Twin Steel Box Girder Bridges with One 

Fractured Girder: Case Study 

The objectives of this study included developing a simple analytical method for estimating the 

capacity of twin steel box girder bridges following the fracture of one girder and estimating the 

reliability index associated with the system after the fracture of one girder. The methodology 

described here uses one particular case study. It should be noted that aspects of the methodology 

described below are universal and apply to all twin steel box girder bridges. As it is described in 

the report, the methodology involves three major steps as elaborated below; 

 

1- Determining the loading expected on the bridge in the time interval between routine 

inspections. For the case of bridges in Florida, this was performed according to the analysis 

of WIM data from 32 stations across the state for the time frame between 2013-2016.  The 

results were presented in the form of Cumulative Distribution Functions (CDF) per Gross 

Vehicle Weights (GVW).  The CDFs were translated into CDFs per multiple HS-20 truck 

weights that would generate the same moment in the bridge under consideration.  Calculate 

statistical data as mean and coefficient of variation for various ADTT for a two-year 

interval. 

2- Estimating the load-carrying capacity of the bridge after fracture of on girder. Based on the 

results of experiments performed by others and finite element analysis, it was determined 

that the dominant failure mechanism after fracture of one girder is deck bending failure. A 
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simple method for determining the yield line pattern for bending failure of the deck was 

developed that is an improvement to the existing model proposed by the University of 

Texas.  The simple model can predict the bridge deck capacity after the fracture of one 

girder for various truck configurations, with or without the contribution of the railing.  It 

was shown that truck configuration, deck thickness, and concrete material properties would 

not change the dominant failure mechanism.  

3- Reliability analysis for the safety of the bridge after the fracture of the girder. A 

representative truck configuration was first selected for reliability analysis.  The reliability 

index was calculated in the range of 1 to 3.5 for variation of live load factor that would fail 

the bridge deck.  The live load factor was calculated using the simple analytical method for 

bridge deck bending capacity and AASHTO LRFD factors.  The Live load factor can then 

be used to determine the reliability index for bridge deck failure.  For the bridge considered 

in this study, the live load factor was calculated to be 1.71 that corresponds to a reliability 

index of 2.1 when a 2-year interval is considered.  To assure that the intact girder will not 

fail before the bridge deck, reliability analysis was performed considering the potential for 

bending failure of the intact girder.  Reliability index in the range of 1 to 3.5 was calculated 

for variation of inventory rating factor for the intact girder.  Distribution of dead and live 

load after fracture of one girder was assumed to follow two scenarios, the more 

conservative and straight forward of which anticipating for the intact girder to carry its own 

dead weight and all the live load. For the bridge under consideration, the inventory rating 

factor was 2.05, corresponding to a reliability index higher than 3.5, indicating that the 

girder is capable of sustaining a significant level of live load and allowing for deck failure 

to occur first.  For the bridge under consideration with its 120-ft span length, one truck in 

each lane and two trucks side-by-side was considered as the critical case for the moment 

capacity of the intact girder. 

Application of the three general steps described above to one particular case study was achieved 

using the following ten steps;  

 

1- As-built drawings for the bridge under consideration were obtained and reviewed. 

2- Information on truck live loading was gathered, and CDFs per GVW were developed.  

Representative truck configuration was identified and translated the CDF for a multiple of 

representative truck weights that would produce equivalent bending moments.  Mean and 

coefficient of variation for various ADTT for a two-year interval were calculated (Section 

4.1.5). 

3- Using the simple analysis method developed in this study for yield line bending capacity, 

the bridge deck capacity after fracture of one girder was estimated for the representative 

truck configuration (Section 6.3). 

4- Using AASHTO LRFD factors, the live load factor that would result in the failure of the 

deck was calculated. 

5- Using the reliability analysis method, as described in Section 8.8.5 of the report or Table 

8-3, the reliability index controlled by the bridge deck capacity was calculated.  
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6- The critical loading configuration was determined for the moment along the span in the 

bridge in the form of single or multiple truck loading, or truck and uniform loading in each 

lane, and/or truck in one lane or multiple lanes transversely.   

7- It was assumed that after the fracture of one girder, the intact girder has to carry its self-

weight and all the live load, and calculated the moment acting on the intact girder (Section 

8.8.2.3). 

8- The reliability index for the intact girder after one girder fracture was calculated using the 

procedure described in Section 8.8.4 of the report.   

9- The least of reliability index between the index for the intact girder (calculated in Item 8) 

and that for the deck capacity (calculated in Item 5) is controlling.   

10- In this case, the controlling reliability indexes are deemed to be indicating the bridge will 

be safe after the fracture of one girder until the next inspection period, and the bridge can 

be taken as redundant or not fracture critical.   

Among the conclusions of this study obtained by conducting experimental, numerical, and 

analytical investigations is that simple-span twin steel box girder bridges have a reserve capacity 

to carry the traffic loads following the complete fracture of one girder.  

The steps described above are also illustrated in Figure 9-1. 
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Figure 9-1. Reliability and safety analysis of twin steel box girder bridges with one fractured girder: A case study.  
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Appendix A. Florida Bridge Inventory 

Table A- 1. Florida Bridge Inventory. 

Brkey 
Year 

built 

Year 

recon. 

Design 

Load 

Service 

Type 

No. 

Main 

Spans 

Max. 

Span 

(ft) 

Length 

(ft) 
Skew 

Deck 

Width 

(ft) 

Level 

service 
Lanes 

Road 

Width 

(ft) 

No. of 

Box 

Girders 

Radius of Curvature (ft) 

870725 1991 0 HS 20+ Mod Highway 5 113.19 1605.2 99 44.6 Ramp 2 41.9 2 440.74 

860521 1989 0 HS 20 Overpass 3 120 272 13 29.5 Ramp 1 27 2 F3-3,778.719 ft /F4-5770.578 ft 

755926 1989 0 HS 20 Highway 3 125 309.3 12 47.4 Service 2 44.9 2 300 

170113 1980 0 HS 20+ Mod Highway 7 131.89 850.1 44 42.6 Mainline 2 39.6 2 unknown 

860526 1990 0 HS 20 3rd Level 5 132 623.6 99 38.8 Ramp 1 36 2 11385.156 

860527 1990 0 HS 20 3rd Level 5 132 625.8 99 38.9 Ramp 2 36 2 5729.578 

874643 2008 0 A Highway 5 136 610 0 44.1 Ramp 2 36 2 175 

480159 1979 0 HS 20 Highway 5 140.1 649.9 0 38.7 Mainline 2 36 2 1968.5 

480165 1979 0 HS 20 Highway 10 144 1343 0 29.8 Ramp 1 30 2 430 

480163 1980 0 HS 20 Highway 10 150 7746 0 42.7 Spur 2 40.2 2 1809.859 

480162 1979 0 HS 20 Highway 8 152 984 0 29.7 Ramp 1 27 2 8094.224 

750724 2012 0 Railroad Highway 2 153.5 301.9 99 36.1 Ramp 1 32.7 2 694.49 

720580 1991 0 HS 20+ Mod Highway 7 154.86 1631.89 0 79.72 Ramp 4 70.87 2 
Spans 1 - 3, 5729.58; ; Spans 4 - 

7, 280.14 

480164 1980 0 HS 20 Highway 16 156 8136 0 42.8 Spur 2 40 2 880 

750589 2010 0 Railroad Highway 2 160.2 272.2 99 35.1 Ramp 1 32 2 286.48 

860563 1990 0 HS 20+ Mod Overpass 3 163.44 780.8 0 46.6 Ramp 2 44 2 C1-11459.16  / C2 440.74  

860525 1990 0 A Overpass 2 164.3 302.3 17 29.8 Ramp 1 27 2 not available 

755929 1989 0 HS 20 Highway 1 166.7 166.7 0 43 Service 2 40 2 400 

750729 2007 0 Railroad Highway 2 172 292 10 36 Ramp 1 33 2 5560 

860628 1994 0 A Overpass 9 175 1275 0 31.1 Ramp 1 28 2 C1-205  / C2-320  

860523 1990 0 HS 20 Overpass 1 175 175 16 71.3 Mainline 4 68.5 2 18093.404 

860540 1988 0 HS 20+ Mod Overpass 6 177.8 830.2 0 42.8 Ramp 2 40 2 954.9297 
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Brkey 
Year 

built 

Year 

recon. 

Design 

Load 

Service 

Type 

No. 

Main 

Spans 

Max. 

Span 

(ft) 

Length 

(ft) 
Skew 

Deck 

Width 

(ft) 

Level 

service 
Lanes 

Road 

Width 

(ft) 

No. of 

Box 

Girders 
Radius of Curvature (ft) 

860561 1990 0 HS 20+ Mod 3rd Level 7 181.1 1077 0 46.5 Ramp 2 44 2 C1-11459.16  / C2 440.74  

860539 1990 0 HS 20+ Mod Overpass 5 183.3 769.8 0 42.8 Ramp 2 40 2 716.1972 

720706 2007 0 HS 20 Highway 2 186.25 325.9 0 36.1 Ramp 1 33 2 775 

750402 1990 0 HS 20 Overpass 8 186.5 1249 0 29.8 Ramp 1 27 2 1150 

871007 2006 0 HS 20 Highway 3 186.5 454.5 0 45 Ramp 2 42 2 1146 

720701 2007 0 HS 20 Highway 2 186.6 353.5 0 36.1 Ramp 1 32.9 2 775 

720697 2004 0 HS 20+ Mod Highway 2 188.46 364.67 11 43.08 Mainline 2 40 2 straight 

720698 2004 0 HS 20+ Mod Highway 2 188.46 364.67 11 43.08 Mainline 2 40 2 straight 

750515 2006 0 Railroad Highway 10 190 1629 0 45.6 Ramp 2 42 2 432.42 

720502 1982 0 HS 20 Highway 4 191.93 574.15 0 41.99 Alternative 2 39.7 2 1647.168 

720503 1982 0 HS 20 Highway 4 195.87 576.12 0 41.99 Mainline 2 39.7 2 1647.168 

100634 2015 0 A Overpass 2 196 392 0 36.5 Ramp 1 33 2 424 

720705 2007 0 HS 20 Highway 2 196.6 353.3 0 36.1 Ramp 1 32.6 2 775 

720702 2007 0 HS 20 Highway 2 198.4 346.7 0 36.1 Ramp 1 33 2 775 

720519 1999 0 HS 20+ Mod Highway 3 199.48 399 0 43.31 Mainline 2 40 2 straight 

720520 1999 0 HS 20+ Mod Highway 3 199.48 399 0 43.31 Mainline 2 40 2 straight 

871008 2006 0 Railroad Highway 4 200 724.5 0 29.75 Ramp 1 26.8 2 1869 

874641 2006 0 A Highway 4 200 606.6 0 42 Ramp 2 39 2 520.87 

754128 2003 0 HS 20+ Mod Highway+p 5 201 946.8 99 42 Mainline 2 30.5 2 400 

750730 2007 0 Railroad Highway 1 201.5 201.5 0 36.1 Mainline 1 33 2 440.74 

860542 1990 0 HS 20 3rd Level 12 203.7 1964.8 0 42.6 Ramp 2 40 2 1145.9156 

860541 1990 0 HS 20+ Mod 3rd Level 10 206.3 1639 99 42.8 Ramp 2 40 2 818.5111 

860667 2012 0 A Highway 3 206.3 579.5 99 62.5 Ramp 3 59.5 2 C1-620  / C2-14714  

861000 1998 –1 HS 20+ Mod Overpass 3 208 525 99 43 Ramp 2 40 2 440.737 

860598 1994 0 HS 20 3rd Level 9 210 1458.5 0 31.1 Ramp 1 28 2 
C1-1145.92  / C2-352.95 / C3-

694.49  

930469 2001 0 HS 20+ Mod Highway 5 210.8 863.1 0 36.3 Ramp 1 33.1 2 492 
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Brkey 
Year 

built 

Year 

recon. 

Design 

Load 

Service 

Type 

No. 

Main 

Spans 

Max. 

Span 

(ft) 

Length 

(ft) 
Skew 

Deck 

Width 

(ft) 

Level 

service 
Lanes 

Road 

Width 

(ft) 

No. of 

Box 

Girders 
Radius of Curvature (ft) 

860538 1990 0 HS 20+ Mod 4th Level 21 210.8 4055.3 0 42.8 Ramp 2 39.8 2 2864.789 

920169 1996 0 HS 20+ Mod Overpass 4 212.93 627.62 0 49.5 Ramp 2 46.5 2 1273.24 

860537 1989 0 HS 20+ Mod Overpass 5 213 695 0 42.8 Ramp 2 40 2 716.1972 

920195 2007 0 HS 20 Highway 9 215.8 1678 15 36.6 Mainline 1 36.6 2 818.51 

750723 2012 0 Railroad Highway 5 217 877.1 99 36.1 Ramp 1 32.8 2 1320 

874639 2008 0 HS 20 Highway 6 217 1248.5 0 43.1 Ramp 2 40 3,4,2 395.14 

720707 2007 0 HS 20 Highway 10 217 1777.7 0 49.1 Ramp 2 45.6 2 775 

860393 1989 0 HS 20 3rd Level 4 223 779 0 29.8 Ramp 1 27 2 690 

860337 1982 0 HS 20 Overpass 2 225.07 438.6 0 42.6 Ramp 2 39.6 2 2864.789 

860338 1982 0 HS 20 Overpass 2 225.07 438.65 0 42.6 Mainline 2 39.6 2 852 

750571 2008 –1 A Highway 7 230 1447 0 36.6 Ramp 1 33.8 2 710 

874640 2007 0 HS 20+ Mod Highway 5 230 968.1 0 36.6 Ramp 1 27 2 545.67 

860390 1989 2013 A 3rd Level 5 233 976.3 0 29.8 Ramp 1 27 2 600 

920602 2006 0 HS 20+ Mod Overpass 7 233 1167.8 0 49.1 Ramp 1 46 2 1120 

860652 2013 0 A Highway 2 239.1 400.9 0 59.6 Ramp 4 56.6 2 855.16 

550122 1997 0 HS 20+ Mod Highway 6 243 994 0 43 Bypass 2 40 2 5729.578 

750561 2010 0 A Highway 3 246.3 518.9 34 58.6 Mainline 3 47.5 2 6000 

750804 2016 0 A Highway 4 246.9 957.3 0 43.3 Ramp 2 40 2 1145.916 

860601 1994 0 A Overpass 8 250 1275 0 31.1 Ramp 1 28 2 C1-205  / C2-320  

720685 2007 0 HS 20 Highway 2 251 420 0 35.59 Ramp 1 32.4 2 578.576 

480201 2007 0 HS 20 Highway 8 251.3 1685.5 0 47.1 Ramp 2 44 2 954.93 

860638 1995 0 HS 20 Overpass 7 255 1305 0 31.1 Ramp 1 28 2 
C1-22963.31  / C2-600  / C3-

330  

920601 2006 –1 HS 20+ Mod 3rd Level 5 255.4 1038 99 49.1 Ramp 1 46 2 1359 

750560 2010 –1 A Highway 3 258.3 518.75 34 58.5 Mainline 3 47.5 2 6000 

870972 2005 0 HS 20 Highway 3 262.47 682.41 42 33.63 Mainline 1 30.51 2 150 

871024 2008 0 A Highway 11 265.5 2167.5 0 27 Ramp 1 27 2 4584 
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Brkey 
Year 

built 

Year 

recon. 

Design 

Load 

Service 

Type 

No. 

Main 

Spans 

Max. 

Span 

(ft) 

Length 

(ft) 
Skew 

Deck 

Width 

(ft) 

Level 

service 
Lanes 

Road 

Width 

(ft) 

No. of 

Box 

Girders 
Radius of Curvature (ft) 

100491 1985 0 HS 20+ Mod Overpass 1 266 266 0 43.6 Ramp 2 40 2 3,819.72 

870996 2004 0 A Highway 2 273 528 32 75.08 Ramp 4 72 2 11459 

860600 1995 0 HS 20 Overpass 7 275 1305 0 31.1 Ramp 1 28 2 
C1-22963.31  / C2-600  / C3-

330  

750825 2012 0 A Overpass 7 281 1564 99 46.5 Ramp 2 43 2 890 

720704 2007 0 HS 20 Highway 8 282.5 1714.7 0 36.1 Ramp 1 33.06 2 775 

100498 1987 0 HS 20+ Mod Overpass 1 285.9 285.9 0 43.3 Ramp 2 40.3 2 1,145.92 

930493 2004 0 HS 20+ Mod Highway 3 297.8 657 0 33.6 Ramp 1 30.5 2 656 

860654 2013 0 A Overpass 7 301 1691 0 36.1 Ramp 1 33 2 855.16 

860653 2013 –1 A Highway 9 304 2092.9 0 36.1 Ramp 1 33 2 C1-22918  / 1145.92  

100712 2008 –1 Railroad 3rd Level 7 324 1759 99 49.5 Ramp 2 46 2 774.00 

720686 2007 0 HS 20 Highway 5 372 1552 0 33.6 Ramp 1 30.5 2 
Span 1, Straight; Spans 2 & 3, 
531.988; Spans 4 & 5 , straight 

 

 

 



151 

 

Appendix B. Design of the University of Texas Twin Steel Box Girder 

Bridge Based on AASHTO LRFD 

 
In this section, the University of Texas bridge is designed based on AASHTO LRDF speciation 

for different limit states to determine the level of overdesign and compare the reliability of the 

bridge main box girder members as built to the reliability if it were to be designed to exactly meet 

the AASHTO Specifications’ strength limit state criteria. According to the AASHTO 

specifications, the nominal resistance, Rn, of a box girder should meet the criterion set in the 

following equation: 

 

Strength I: 

𝑅𝑛 ≥ 1.25𝐷𝐶𝑛 + 1.5 𝐷𝑊𝑛 + 1.75𝐿𝐿𝑛           (B-1) 

where the nominal live load, LLn, is calculated based on the moment effect of the HS-20 truck, 

which for this 120-ft span bridge is found to be 𝐿𝐻𝑆20 = 1883.8 𝑘𝑖𝑝. 𝑓𝑡 times the dynamic 

allowance IM=1.33 plus the effect of a lane load 𝜔𝑙𝑎𝑛𝑒= 0.64 kip/ft, which produces a lane load 

moment 𝐿𝑙𝑎𝑛𝑒 = 1152 𝑘𝑖𝑝. 𝑓𝑡 .  The total live load is multiplied by the lane distribution factor 

(D.F.) so that: 

 

𝐿𝐿𝑛 = (𝐿𝐻𝑆20 × 𝐼𝑀 + 𝐿𝑙𝑎𝑛𝑒) × 𝐷. 𝐹.                      (B-2) 

which for box girder bridges is calculated based on the number of loaded lanes, NL, and the number 

of box girders, Nb, using the equation: 

 

𝐷. 𝐹. = 0.05 + 0.85
𝑁𝐿

𝑁𝑏
+

0.425

𝑁𝐿
                                              (B-3) 

which produces a lane distribution factor 𝐷. 𝐹. = 1.113.   

 

The final nominal live load is found to be 𝐿𝑛 = 4071 𝑘𝑖𝑝. 𝑓𝑡 which when combined with a dead 

load moment 𝐷𝐶𝑛 = 3649.8 𝑘𝑖𝑝. 𝑓𝑡 , 𝐷𝑊𝑛 = 553 𝑘𝑖𝑝. 𝑓𝑡 and implemented in Equation (B-1) 

produces a nominal moment capacity 𝑅𝑛 = 12516.2 𝑘𝑖𝑝. 𝑓𝑡. Thus, the nominal moment capacity 

of the particular bridge analyzed in this study, which is Rn=17972.2 kip-ft is 1.44 times the value 

that is required by the AASHTO specifications.  The bridge is design for the following limit states: 

Demand/Capacity ratio: 12516.2/17972.2=0.69 

 

Strength IV: 

𝑅𝑛 ≥ 1.5𝐷𝐶𝑛 + 1.5 𝐷𝑊𝑛             (B-4) 

1.5 × 3649.8 + 1.5 × 553 = 6304.4 𝑘𝑖𝑝. 𝑓𝑡 

Demand/Capacity ratio: 6304.4/17972.2= 0.35 
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Service I: 

The girder must be checked for service limit state control of permanent deflection. This check is 

intended to prevent objectionable permanent deflections due to expected severe traffic loadings.  

 

Δ allowable= (Span/800)×(12 in./1ft)=1.8 in.          (B-5) 

 

The bridge deflection is taken as the larger of the deflection resulting from the design truck alone 

(1.24 in.) and the deflection resulting from 25 percent of the design truck taken together with the 

design lane load (1.18 in.). 

The live load portion of Load Combination Service I is used, including the dynamic load 

allowance. 

 

Demand/Capacity ratio: 1.24/1.8= 0.69 

 

Service II: 

The flange stresses for both steel flanges of composite sections must satisfy the following 

requirement: 

 

f f ≤ 0.95RhFyf              (B-6) 

 

f bot-girder = 43.17 ksi  

f top-girder = -37.9 ksi 

0.95RhFyf = 47.5 

Demand/Capacity ratio: 43.17/47.5= 0.91 

 
Table A- 2. The University of Texas bridge design summary. 

 Demand/Capacity Ratio 

Limit 

State 
Strength I 

Strength 

IV 

Service 

I 

Service 

II 

UT bridge 0.69 0.35 0.69 0.91 

 

 

Dead load assumptions for calculating the moments: 

D Railing = 653.4 kip.ft 

D Girder and Diaphragms= 761.4 kip.ft 

D Concrete Slab= 2235 kip.ft 

The total dead load of structural components and Non-structural attachments (DC) = 3649.8 

Future wearing surface: Wfws = 0.140 kcf  

Future wearing surface thickness: tfws = 2.5 in. (assumed) 

Dw= 553 kip.ft 


