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DISCLAIMER  

 

The opinions, findings, and conclusions expressed in this publication are those of the authors and 

not necessarily those of the State of Florida Department of Transportation. 
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METRIC CONVERSION TABLE 
 

U.S. UNITS TO SI* (MODERN METRIC) UNITS 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.400 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.610 kilometers km 

mm millimeters 0.039 inches in 

m meters 3.280 feet ft 

m meters 1.090 yards yd 

km kilometers 0.621 miles mi 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.200 square 

millimeters 

mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.590 square kilometers km2 

mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.470 acres ac 

km2 square kilometers 0.386 square miles mi2 

     

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.570 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

NOTE: volumes greater than 1,000 L shall be shown in m3. 

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply 

with Section 4 of ASTM E380. 
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EXECUTIVE SUMMARY 

 

This report describes a comprehensive study that aims to identify ways to reduce the frequency 

and severity of bicycle crashes in Florida. The objective is achieved through a detailed analysis of 

the roadway, behavioral, and spatial factors associated with bicycle crashes. An extensive literature 

review was first conducted. The review focuses on the methods to identify bicycle hot spots and 

findings on bicycle crash causes, crash contributing factors, and potential countermeasures. A 

descriptive trend analysis was then performed based on a total of 26,036 bicycle crashes that 

occurred during 2011-2014. A spatial analysis using ArcGIS was then performed to identify the 

top five bicycle crash hot spots in each Florida Department of Transportation (FDOT) district. 

These hot spots together experienced a total of 2,954 bicycle crashes during the four-year analysis 

period. Police reports of these bicycle crashes were reviewed in detail to identify specific bicycle 

crash types, their crash contributing factors and potential countermeasures. Macroscopic spatial 

analysis was performed to model the relation between demographic, socio-economic, roadway, 

traffic, and bicycle activity data at the census block group level and bicycle crash frequencies in 

Florida. Finally, a cross-sectional analysis was performed to develop Florida-specific Crash 

Modification Factors (CMFs) for bicycle crashes for different roadway segment and intersection 

facility types.  

 

Literature Review 
 

The review summarized existing studies in the following four areas: (1) risk factors that affect the 

frequency and severity of bicycle crashes; (2) bicycle crash causes, patterns, and contributing 

factors; (3) network screening methods used to identify and prioritize bicycle hot spots; and (4) 

safety performance of the most commonly implemented engineering countermeasures.  
 

Researchers preferred to differentiate the risk factors affecting bicycle safety for intersections and 

mid-block locations due to the obvious variability in the operational characteristics. Roadway 

traffic, geometric, and socio-economic variables were investigated to determine their impact on 

bicycle crash frequency and severity. Spatial analysis, especially the use of ArcGIS, has evolved 

as an effective tool to better understand and model bicycle crash frequencies. Moreover, spatial 

analysis using ArcGIS was found to be the most commonly used network screening approach. 

Several studies, however, used a combination of different methods to identify and rank bicycle 

high crash locations.  
  

In addition to the typical bicycle infrastructure such as bicycle lanes and bicycle slots, researchers 

have investigated the impact of several other roadway characteristics, including shared path width 

and separation, shoulder type, shoulder width, etc., on bicycle safety. One of the main challenges 

observed in improving bicycle safety is the lack of bicycle exposure data. Unlike traffic volumes, 

bicycle volumes are scarcely available, if at all. Researchers addressed this limitation by using 

surrogate measures of bicycle exposure such as number of transit stops in a region, population, etc. 

  

Statewide Bicycle Crash Causes and Patterns  
 

Statewide bicycle crash patterns and causes were identified based on a total of 26,036 bicycle 

crashes that occurred during 2011-2014. The descriptive trend analysis was based on temporal, 

environmental, bicyclist-related, crash location-related, and vehicle-related factors. The effect of 

roadway geometric features on the frequency and severity of bicycle crashes was also studied using 
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data from 9,884.3 miles of non-limited-access state roads in Florida, which experienced a total of 

10,546 bicycle crashes during the four-year analysis period. Some of the key findings include: 

 

 Bicycle fatal crashes accounted for 5.6% of all traffic fatal crashes, while they constituted 

only 1.9% of total crashes. 

 The majority of bicycle crashes occurred on urban roadways; only 1.2% of all crashes that 

occurred on state roads occurred in rural areas. In terms of crash severity, 16.9% of all 

bicycle crashes that occurred on rural facilities resulted in fatalities while only 2.5% of 

those that occurred on urban facilities resulted in fatalities.  

 Nighttime bicycle crashes resulted in more fatalities compared to daytime crashes.  

 Crashes involving elder bicyclists (≥ 65 years) resulted in more fatalities compared to 

crashes involving younger bicyclists (< 65 years).  

 Crashes involving male bicyclists resulted in more fatalities compared to crashes involving 

female bicyclists.  

 Over 10% of all bicyclists involved in crashes who were under the influence of alcohol 

were killed, and a high 27.6% of all bicyclists involved in crashes who were under the 

influence of drugs were killed. 

 Crashes involving bicyclists using helmets or protective pads were less severe compared 

to those involving bicyclists using reflective clothing or lighting.  

 Although bicyclists were frequently hit while cycling on the sidewalk, these crashes 

resulted in very few fatalities. 

 Crashes involving bicyclists cycling along the roadway against traffic were found to be 

more severe compared to those involving bicyclists cycling along the roadway with traffic. 

 In terms of bicyclist’s action at the time of the crash, failure to yield right-of-way was the 

most frequent contributing cause, resulting in about 15% of total crashes.  

 Among all types of vehicles, passenger cars were found to result in relatively less severe 

crashes. Medium and heavy trucks resulted in more severe crashes; a relatively high 14.5% 

of all crashes involving medium and heavy trucks were fatal.  

 

Bicycle Crash Patterns at Hot Spots 

 

A spatial analysis using ArcGIS was performed to identify the top five bicycle hot spots in each 

FDOT district. Police reports of all the 2,954 bicycle crashes that occurred at these hotspots were 

reviewed in detail to identify specific bicycle crash types and patterns. Some of the key findings 

from the police report review include: 

 

 Drivers were at-fault in 45.7% of the crashes, while bicyclists were at-fault in 30.2% of the 

crashes. 

 Crashes involving at-fault bicyclists resulted in a greater percentage of fatal crashes 

compared to those involving at-fault drivers.  

 Signalized intersections experienced a greater proportion of bicycle crashes compared to 

unsignalized locations.  

 Locations with bicycle lanes experienced a smaller proportion of fatal crashes compared 

to locations without bicycle lanes. 
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 Crossing the street was found to result in a greater proportion of fatal crashes compared to 

riding along the roadway.  

 Crashes involving bicyclists riding along the roadway facing traffic resulted in a greater 

proportion of fatal crashes compared to crashes involving bicyclists riding along with 

vehicles. 

 Crosswalk locations, although experienced a high frequency of bicycle crashes, 

experienced a relatively low proportion of fatal crashes.  

 

The crash pattern analysis identified the following four major bicycle crash types: 

 

 Motorist turns right while bicyclist is crossing the street 

 Motorist turns left facing bicyclist 

 Bicyclist rides out at intersection 

 Motorist drives out at stop sign 

 

In addition to these crash types, the following bicycle crash contributing factors and scenarios were 

also observed frequently: 

 

 Inadequate street lighting 

 Unconventional intersection geometry 

 Traffic violations by motorists and bicyclists 

 Bicyclists sideswipe vehicles 

 Driveways near intersections 

 U-turn maneuvers by bicyclists and motorists 

 Bicyclists hit the door of parked vehicle 

 Bicyclists ride opposite to the traffic 

 

Several engineering and education countermeasures were recommended for these crash types and 

scenarios. Engineering countermeasures, including signal optimization, turn restrictions, and sign 

and pavement marking improvements, could improve the overall safety situation for bicyclists. 

Agency-wide education campaigns on the laws pertaining to bicyclists and extensive driver 

education campaigns that focus on driver compliance with bicyclist right-of-way laws and stricter 

enforcement could improve bicycle safety.  
 

Macroscopic Analysis of Bicycle Crashes  
 

Bicycle crash trends are quite distinctive and are dependent on land use, existing bicycle 

infrastructure, socio-economic factors, etc. The impact of these factors on bicycle crash 

frequencies was therefore studied using spatial analysis. A macro-level spatial analysis was 

performed to determine the relation between bicycle crashes and independent variables, including 

demographic and socio-economic factors, roadway and traffic characteristics, and bicycle activity, 

while accounting for the effect of spatial correlation among census block groups. Separate models 

were developed for total and F+S bicycle crashes. 
 

Table E-1 provides an overview of the impact of different demographic and socio-economic, 

roadway and traffic, and bicycle activity data on the total and F+S bicycle crash models.  
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Table E-1: Impact of Variables on Bicycle Crash Models at Census Block Group Level 

Variable Description 
Total Crash 

Model 

F+S Crash 

Model 

Demographic and Socio-economic Characteristics 

Log of total population    

Proportion of households with no automobile    

Proportion of households with one automobile    

Proportion of male population  NC  

Proportion of Black or African American population   NC 

Proportion of Hispanic or Latino population   NC 

Proportion of population aged 18 - 29 years   NC 

Proportion of population aged 30 - 39 years  NC 

Proportion of population aged 40 - 49 years  NC  

Proportion of population aged 50 - 64 years   NC 

Proportion of population 25 years and above having high school 

diploma only  
  

Proportion of population 25 years and above having Associate’s degree 

or attended some college with no degree achieved 
  

Proportion of population 25 years and above having Associate’s degree 

or attended some college with no degree achieved  
  

Proportion of population 25 years and above having Bachelor’s degree 

or higher  
  

Roadway and Traffic Characteristics 

Density of rural collector roads per sq. mi. of area   

Density of rural local roads per sq. mi. of area   

Length of urban principal arterials per sq. mi. of area   

Length of urban collector roads per sq. mi. of area  NC 

Length of urban local roads per sq. mi. of area  NC 

Density of bicycle lane and bicycle slot per sq. mi. of area   

Log of daily vehicle miles traveled (DVMT) in thousands   

Log of number of bicycle commuters  NC 

Truck percentage   

Strava Users’ Ride Characteristics  

Bicycle trip miles: Medium    NC 

Bicycle trip miles: High     

Bicycle trip intensity: Medium    

Bicycle trip intensity: High   

Note:   indicates credible and increasing effect;  indicates credible and decreasing effect; NC is not credible. 
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Florida-Specific CMFs  

 

A cross-sectional analysis was performed to develop Florida-specific CMFs for bicycle crashes. 

Relevant multivariate regression models were developed using a generalized linear model (GLM) 

approach with negative binomial (NB) distribution. Only the variables that were significant at the 

80% confidence interval in the initial model were used to develop the final models. Finally, the 

CMFs were estimated based on these final models. For each facility type, the data and model 

coefficients were reviewed closely to identify reliable CMFs. Tables E-2 and E-3 provide the 

Florida-specific CMFs developed for total bicycle crashes for different roadway segment and 

intersection facility types, respectively. Similarly, Tables E-4 and E-5 list the Florida-specific 

CMFs developed for F+S bicycle crashes for different roadway segment and intersection facility 

types, respectively.  
 

Table E-2: Florida-Specific CMFs for Total Bicycle Crashes for Segment Facility Types 

Variable 

Urban Rural 

Divided Undivided Divided 

2La 4Lb 6Lc 4L2d 2Le 

Median Width -- 0.99 0.99 NA 0.84 

Presence of Bicycle Lane 1.69 0.86 -- 2.24 -- 

Presence of Shared Path  -- -- 0.75 -- -- 

Presence of Sidewalk  -- 1.78 1.87 -- -- 

Presence of Sidewalk Barrier 2.18 -- 1.99 0.33 -- 

Type of Parking (One Side)f -- -- -- -- -- 

Type of Parking (Both Sides)f 2.65 -- 0.48 -- -- 

Lane Width 0.64 0.77 0.75 -- -- 

Type of Median (Raised Traffic Separator)g 2.65 1.22 -- 

NA 

-- 

Type of Median (Vegetation)g -- 0.62 0.49 -- 

Type of Median (Curb & Vegetation)g 2.43 0.85 0.80 -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)h 0.51 -- 0.89 -- -- 

High Bicycle Activity (Annual Trips > 10,000)h 0.73 -- 0.73 -- -- 

-- Not significant; NA is not applicable. 
a Urban 2-Lane Divided Two-way Road; b Urban 4-Lane Divided Two-way Road;  

c Urban 6-Lane Divided Two-way Road; d Urban 4-Lane Undivided Two-way Road; 
e Rural 2-Lane Divided Two-way Road. 
f The base condition for type of parking is no parking allowed.  
g The base condition for type of median is paved. 

h The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

Table E-3: Florida-Specific CMFs for Total Bicycle Crashes for Intersection Facility Types 

Variables 
Urban 4-Leg 

Signalized 

Urban 3-Leg 

Stop-controlled 

1-2 Bus Stops within Intersection Influence Areaa -- × 

≥ 3 Bus Stops within Intersection Influence Areaa 1.90 × 

1-8 Alcohol Sales within Intersection Influence Areab 1.53 × 

≥ 9 Alcohol Sales within Intersection Influence Areab -- × 

Presence of Bicycle Facilities 1.27 1.36 

-- Not significant; × Excluded from modeling. 
a The base condition for bus stops is absence of bus stops within intersection influence area.  
b The base condition for alcohol sales establishments is absence of alcohol sales establishments within intersection 

influence area. 
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Table E-4: Florida-Specific CMFs for F+S Bicycle Crashes for Segment Facility Types 

Variable 

Urban 

Divided Undivided 

2La 4Lb 6Lc 2L2d 3L1e 4L2f 

Median Width -- 0.98 -- NA NA NA 

Presence of Sidewalk  0.41 -- 2.71 -- -- -- 

Presence of Sidewalk Barrier 4.20 -- -- 3.96 -- 0.36 

Type of Parking (One Side)g -- -- -- -- -- -- 

Type of Parking (Both Sides)g 4.62 -- -- -- -- -- 

Lane Width 0.52 -- 0.79 0.42 0.24 -- 

Type of Median (Raised Traffic Separator)h 5.9 -- -- 

NA NA NA Type of Median (Vegetation)h -- -- 0.45 

Type of Median (Curb & Vegetation)h -- 0.97 -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 

10,000)i 
0.47 1.63 -- -- -- -- 

High Bicycle Activity (Annual Trips > 10,000)i -- 1.43 0.76 -- -- -- 

-- Not significant; NA is not applicable. 
a Urban 2-Lane Divided Two-way Road; b Urban 4-Lane Divided Two-way Road;  

c Urban 6-Lane Divided Two-way Road; d Urban 2-Lane Undivided Two-way Road; 
e Urban 3-Lane Undivided One-way Road; f Urban 4-Lane Undivided Two-way Road.  
g The base condition for type of parking is no parking allowed.  
h The base condition for type of median is paved. 

i  The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

Table E-5: Florida-Specific CMFs for F+S Bicycle Crashes for Intersection Facility Types 
Variable Urban 4-Leg Signalized Intersection 

Number of Approaches with Right-Turn Lanes 0.82 

Presence of Bicycle Facilities 1.71 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background  

 

Bicyclists are vulnerable road users who are at greater risk for fatal or serious injury when involved 

in a crash with a motor vehicle. While bicycling accounts for only 1% of all trips taken in the 

United States (Pucher et al., 2011), bicycle fatalities constitute over 2% of all traffic fatalities. In 

2014, Florida led the nation with 139 bicyclist fatalities, representing approximately 20% of the 

nation’s total. From 2011 to 2014, the number of fatal and serious injury crashes involving a 

bicyclist increased by 30%, and reported crashes increased by 44%.  

 

Improving bicycle safety is a different challenge compared to improving the safety and mobility 

of motorized vehicular traffic because of the following reasons: bicycle crashes are rare and often 

severe; bicycle exposure is different from vehicle exposure and is difficult to quantify; and bicycle 

crash trends are quite distinctive and are dependent on land use, existing bicycle infrastructure, 

socio-economic factors, etc. A thorough analysis of the roadway, behavioral, and spatial factors 

associated with bicycle crashes is therefore required to improve bicycle safety.  

 

1.2 Project Goal and Objectives 

 

The goal of this research project is to conduct a comprehensive study to improve bicycle safety in 

Florida. This study considers a combination of analysis techniques, including descriptive trend 

analyses, area-wide spatial analyses, site-specific analyses, and statistical modeling. Descriptive 

statistics provide insights on bicycle crash patterns and causes. Spatial analyses provide the 

necessary tools to identify and rank bicycle hot spots and to investigate the contributing effects of 

socio-economic and demographic, roadway environment and infrastructure, bicycle activity, and 

traffic characteristics on bicycle crash frequency. Analysis of collision-condition diagrams and 

detailed review of police crash reports provide additional details on bicycle crashes and 

contributing factors that are not usually available in crash summary records. Lastly, statistical 

models help quantify the impact of different roadway characteristics and countermeasures on the 

frequency and severity of bicycle crashes.  

 

The specific project objectives include:  

 

1. Review and summarize existing literature on bicycle safety, including methods to identify 

bicycle hot spots and findings on bicycle crash causes, crash contributing factors, and 

potential countermeasures. 

 

2. Identify specific contributing causes and patterns of bicycle crashes. 

 

3. Identify and analyze bicycle hot spots for crash causes and potential countermeasures. 

 

4. Develop Florida-specific Crash Modification Factors (CMFs) to assess the safety effects 

of common engineering treatments on bicycle safety.  
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1.3 Report Organization 

 

The rest of this report is organized as follows: 

 

 Chapter 2 provides a review of existing literature on bicycle safety. It focuses on the risk 

factors affecting the frequency and severity of bicycle crashes; bicycle crash causes, 

patterns, and contributing factors; the network screening methods used to identify and 

prioritize bicycle hot spots; and safety performance of the most commonly implemented 

engineering-related bicycle crash countermeasures.   

 

 Chapter 3 discusses the overall statewide bicycle crash patterns and trends in Florida. The 

descriptive trend analysis is based on temporal, environmental, bicyclist-related, crash 

location-related, and vehicle-related factors. It also documents the effect of roadway 

geometric features on the frequency and severity of bicycle crashes.   

 

 Chapter 4 focuses on analyzing bicycle crashes using spatial applications. It identifies the 

top five bicycle crash hot spots in each Florida Department of Transportation (FDOT) 

district. It also includes collision-condition diagrams of locations with bicycle crash 

clusters in Florida. The chapter further discusses bicycle crash contributing factors and 

potential countermeasures.  

  

 Chapter 5 discusses the relation between demographic, socio-economic, roadway, and 

traffic variables at the census block group level and bicycle crash frequencies in Florida.  

 

 Chapter 6 presents the bicycle crash modification factors for total bicycle crashes and fatal 

and severe injury (F+S) bicycle crashes for different roadway segment and intersection 

facility types.  

 

 Chapter 7 provides a summary of this project effort and the relevant findings and 

conclusions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a brief review of the literature on bicycle safety. The chapter is divided into 

three major sections. The first section focuses on the risk factors affecting the frequency and 

severity of bicycle crashes. It also includes a brief discussion on bicycle crash causes, patterns, 

and contributing factors. The second section discusses the network screening methods used to 

identify and prioritize bicycle hot spots. Finally, the third section focuses on the safety 

performance of the most commonly implemented engineering-related bicycle crash 

countermeasures such as bicycle lanes, bicycle tracks, and raised bicycle crossings.  
 

2.1 Risk Factors Affecting Bicycle Safety 

 

This section includes a review of recent literature on different risk factors affecting bicycle crashes. 

It also includes studies that focus on the causes, patterns, and contributing factors associated with 

bicycle crashes. Researchers have used several statistical and spatial models to evaluate bicycle 

safety. This section is therefore organized according to the analytical methods applied in the 

reviewed literature.    

 

2.1.1 Statistical Methods  

 

In this section, studies that have applied statistical models including logit models, probit models, 

odds models, multivariate Poisson-lognormal models, and regression models are discussed.  

 

Logit Models 

 

Klassen et al. (2014) analyzed the severity of bicycle crashes using spatial mixed logit model for 

Edmonton. A total of 424 intersection-related and 147 mid-block-related bicycle crashes that 

occurred during 2006-2009 were investigated. Corridor design, human, temporal, and 

environmental factors were considered as covariate categories. The authors did not identify any 

common factor contributing to bicycle crash severity at intersections or mid-block locations. 

However, the interaction between roadway and approach-control type, the existence of partial 

crosswalks and bicycle signs, and the bicyclist’s gender and age were identified as significant 

factors for bicycle crash severities at intersections. On the contrary, roadway classification, on-

street parking, and driver’s age were found significant for mid-block bicycle crash severities.  

 

Moore et al. (2011) also differentiated the factors for intersection and non-intersection bicycle 

crashes. A total of 10,029 bicycle-related crashes that occurred from 2002-2008 in Ohio were 

considered for the study. Standard multinomial logit and mixed logit models were developed to 

estimate the injury severity factors. Roadway geometry (i.e., horizontal curve and vertical grade), 

vehicle type (i.e., van, heavy truck, etc.), bicyclist safety devices (i.e., helmet), drug and alcohol 

usage, and driver insurance played a significant role in determining the injury severity of bicycle 

crashes at intersections and mid-block sections.  

 

Zahabi et al. (2011) used an ordered logit model to investigate the effects of crash location, 

roadway type, vehicle movement, vehicle type, environmental conditions, population density, road 

connectivity, and land use mix on injury severity of pedestrians and bicyclists involved in collision 
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with motor vehicles in the City of Montreal. Crashes at signalized intersections were found to be 

more dangerous for bicyclists. Straight (i.e., through) movement of vehicles was found to have 

significant associations with sustaining an injury, i.e., increased the bicyclist’s injury severity in 

bicycle crashes. Transit access and median income were not statistically significant. The authors 

did not find population density and lighting to be significant factors in bicycle crashes. This result 

is contradictory to the result from a later study by Hamann et al. (2014) which considered these 

factors to be significant.  

 

Eluru et al. (2008) applied a mixed generalized ordered response logit model to analyze pedestrian 

and bicyclist injury severity using data from the 2004 General Estimates System (GES). Age (the 

elderly are more injury-prone), speed limit (higher speed limits lead to more severe injuries), crash 

location (crashes at signalized intersections are less severe compared to those that occurred 

elsewhere), and time-of-day (dark conditions experienced more severe injuries) were identified as 

influential variables affecting the non-motorist injury severity.   

 

Kim et al. (2007) used a multinomial logit model to identify the factors leading to the four injury 

severity levels in bicyclists (i.e., fatal injury, incapacitating injury, non-incapacitating injury, and 

possible or no injury). The authors used crash data from 1997-2002 from North Carolina. 

Inclement weather, no streetlights, morning peak hour (06:00 AM to 09:59 AM), head-on crashes, 

speeding involving vehicle speeds over 48.3 kmph (30 mph), truck involvement, drunk driver, 

bicyclist age 55 or over, and drunk bicyclist were found to double the probability of a fatal injury 

in a bicycle crash. An estimated pre-crash speed of vehicles of more than 80.5 kmph (50 mph) was 

found to increase the bicyclist’s probability of a fatal injury by more than 16 times. Compared to 

the bicycle crashes involving at-fault drivers, those involving at-fault bicyclists were identified to 

be more closely correlated with bicyclist injury severity.  

 

Probit Models 

 

Klop and Khattak (1999) examined the impacts of physical and environmental factors on the 

bicyclist injury severity in bicycle crashes. North Carolina Highway Safety Information System 

(HSIS) crash and inventory data from 1990-1993 for state-controlled, two-lane, undivided 

roadways were analyzed. Using the KABCO scale of injury severity distribution, two ordered 

probit models, one with all crashes and the other one restricted to only those in rural areas were 

estimated. Roadway characteristics such as speed limit, straight grades, and curved grades; driver- 

and bicyclist-related factors including impaired braking, acceleration, and maneuverability; 

environmental factors including fog and dark unlighted conditions showed increased severity 

trend, most probably due to their effect on driver reaction time and speed differentials at the time 

of impact. Average annual daily traffic (AADT), interaction between shoulder width and speed 

limit, and street lighting were found to be associated with decreased injury severity. Marginal 

effects of each factor on the likelihood of each injury severity class were identified. They 

highlighted the fact that in addition to vehicular traffic and scenery, decision makers should also 

review the frequency of straight grades and curved grades on roadway segments, the presence of 

a shoulder, and the presence of foggy conditions in selecting State Bicycle Routes. Reducing 

grades and curves in new two-lane roadway construction might have additional benefits in terms 

of reduced bicycle crash severity.  
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Odds Models 

 

Wang et al. (2015) investigated the factors associated with the severity of injuries sustained by 

bicyclists in bicycle crashes at unsignalized intersections. The study objective was to improve 

bicycle safety through site-specific countermeasures and interventions. Bicycle crash data were 

extracted from Kentucky State Police’s Kentucky Collision Database for the period 2002-2012. 

The authors employed a partial proportional odds model. Stop-controlled intersections, one-lane 

approaches, helmet usage, and lower speed limits were found to be associated with decreased 

injury severity. On the other hand, uncontrolled intersections, older drivers and bicyclists (age > 

55 years), child bicyclists (age < 16 years), foggy and rainy weather, inadequate use of lights in 

dark conditions, and wet road surfaces were found to be the triggering factors for increased injury 

severity. 

 

Multivariate Poisson-Lognormal Models 

 

Kaplan and Prato (2015) utilized a multivariate Poisson-lognormal model to analyze land use and 

network effects on frequency and severity of bicycle crashes in the Copenhagen region. A total of 

5,349 bicycle crashes from 2000-2013 were extracted for analysis from the National Crash 

Database compiled by the Danish Road Directorate. Traffic exposure of non-motorized and 

motorized transport modes was controlled for the model. The effect of infrastructure (e.g., the 

presence of bicycle lanes or paths, the presence of different types of intersections) and land use 

(e.g., the characteristics of the area where the roads were located and their interactions with the 

aforementioned infrastructure) was evaluated, and heterogeneity and spatial correlation across 

links was accounted in the model framework. The model resulted in reduced crash rates as bicycle 

traffic increased and this happened more for fatal and severe injury bicycle crashes.  

 

The study revealed that crash rates decreased with increasing traffic volume, and particularly 

severe crash rates reduced more with increasing level of congestion. Fatal and severe injury crashes 

were related to the presence of more heavy vehicles on the road. Bicycle lanes and segregated 

bicycle paths reduced the number of severe injury crashes, and the effects were more pronounced 

in suburban areas. Possible injury or no injury crashes were more concentrated at the Copenhagen 

city center; whereas, fatal and severe injury crashes were more associated with industrial zones. 

One-way streets were correlated with decreased number of crashes, although this relationship was 

found to be reversed for the city center. The model identified intersections to be more problematic 

than mid-block sections, and the difference was even more pronounced when located in suburban 

areas. Roundabouts were found to be the most problematic type of intersections. Giving the right-

of-way, crossing a traffic signal, and crossing a roundabout triggered more bicycle crashes (Kaplan 

and Prato, 2015).   

 

Regression Models  

 

Boufous et al. (2012) examined the risk factors associated with the injury severity of bicyclists 

involved in traffic crashes in Victoria, Australia during 2004-2008. A logistic regression was used 

to ascertain the predictors of serious injury and fatal crashes. About 34% of 6,432 police-reported 

bicycle crashes resulted in severe injury. The multivariate analysis identified age (50 years and 

above), not wearing helmet, dark unlit roadway conditions, 70 kmph or above speed zones (43.5 
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mph), curved roadway sections, rural locations, head-on collisions, run-off-road crashes due to 

loss of control, striking the door of a parked vehicle on paths as the main factors increasing the 

severity of injuries. 

 

Schepers et al. (2011) also investigated the safety of bicyclists at unsignalized intersections within 

built-up areas in Netherlands using crash data from 2005-2008. The study focused on the 

association between intersection design characteristics and bicycle crashes. The authors classified 

bicycle crashes into two types based on the movements of the involved motorists and bicyclists: 

type I - through bicycle-related crashes where the bicyclist had the right-of-way, i.e., bicycle on 

the priority road; and type II - through motor vehicle-related crashes where the motorist had the 

right-of-way, i.e., motorist on the priority road. Negative Binomial (NB) method was employed 

for the study. The probability of each crash type was found related to its relative flows and 

independent variables. Type I crashes were found to occur more at intersections with two-way 

bicycle tracks, well-marked, and reddish colored bicycle crossings; and these crashes are 

negatively related to raised bicycle crossings, i.e., speed humps and other speed-reducing 

measures. The intersections where the bicycle track approaches were 2-5 m away from the main 

carriageway were found to have lower crash probability. Roadway geometric factors such as raised 

medians did not have any significant impact on type II crashes. However, bicycle crashes were 

found to be less severe at intersections with speed-reducing devices.  

 

Bíl et al. (2010) evaluated the critical factors in fatal crashes involving adult bicyclists (over 17 

years) using multivariate regression analysis. The authors analyzed 1995-2007 crash data from the 

Traffic Police of Czech Republic. Inappropriate driving speeds, head-on collisions, and unlit 

roadways were identified as significant factors. Bicycle crashes were found to be more serious 

when associated with the consequence of bicyclist’s denial of right-of-way on crossroads. Male 

bicyclists were found to be more prone to fatal injuries compared to female bicyclists. The most 

vulnerable age group was found to be 65 years and older. The authors also found that more crashes 

where bicyclists were at-fault resulted in a fatal injury compared to those where drivers were at-

fault (598 vs. 370). 

 

Oh et al. (2008) developed bicycle crash prediction models for urban signalized intersections. The 

authors conducted field surveys at 151 intersections in Inchon, Korea to identify the potential 

variables affecting bicycle crashes. The study revealed Poisson regression model to be most suitable 

for predicting bicycle crashes. The primary and alternative models identified the following factors 

(and their direction of association) to be the most critical for bicycle crashes at urban signalized 

intersections: average daily traffic volume (+), presence of bus stops (-), sidewalk widths (-), number 

of driveways (+), presence of speed restriction devices (-), presence of crosswalks (+), and industrial 

land use (+). In addition, the study emphasized the need to incorporate driver characteristics, roadway 

geometric design, and operational features in the analysis.  

 

2.1.2 Spatial Frameworks 

 

A number of studies have spatially integrated and analyzed roadway characteristics, crash, and 

traffic data in Geographic Information System (GIS). Moreover, researchers have traditionally 

been using spatial analysis to study the influence of socio-economic and demographic factors such 

as population, median household income, vehicle ownership, etc. on bicycle crashes. This section 
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presents the newer studies that have analyzed bicycle safety spatially in ArcGIS. More specifically, 

studies focusing on the spatial analysis of bicyclist injury severity trends, bicycle crash clusters, 

and the spatial correlation between bicycle safety and several engineering, socio-economic and 

demographic factors are reviewed and summarized.  

 

Lawrence et al. (2015) conducted a geospatial analysis of bicyclist injury trends in Melbourne, 

Australia. The objective was to identify reduced bicyclist injury density areas. The study examined 

crash characteristics and cycling environment to better understand the factors associated with 

bicycle safety. Two methods were employed: (a) cycling injury severity was calculated using a 

kernel density estimation method for the period 2000-2011 to study patterns in injury density 

across Melbourne over an extended time period; and (b) the absolute change in injury density was 

calculated between 2005 and 2011, which helped identify a geographic area which experienced a 

relatively more significant reduction in injury density. Figure 2-1 displays the spatial analysis 

results. The crash characteristics were then analyzed to identify the changes to the cycling 

environment that were associated with reduced injury rate. As shown in Figure 2-1, a geographical 

area to the southeast of Melbourne was found to have experienced a significant reduction in injury 

rate. It appeared that a combination of behavior and road infrastructure change might be the 

contributing factors for such a reduction. However, the lack of cycling exposure data prevented 

more conclusive statements.  

 

 

Figure 2-1: Geographic Region in Melbourne, Australia, Selected for Detailed Case Study 

Based on Spatial Analysis (Source: Lawrence et al., 2015) 
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Chimba et al. (2014) also used GIS to geo-locate and cluster the pedestrian and bicycle crash 

locations on the roadway network in Tennessee. The study objective was to investigate 

demographic, socio-economic, roadway geometric, traffic, and land use characteristics affecting 

pedestrian and bicycle crash frequency. NB regression was employed to model the relationship 

between contributing factors and crashes. The findings were used to identify patterns of pedestrian 

and bicycle high crash locations in Tennessee. Population distribution by race, age group, mean 

household income, percentage in the labor force, poverty level, vehicle ownership, land use, 

number of lanes crossed by pedestrians or bicyclists, posted speed limit, and the presence of special 

speed zones were found to significantly influence the frequency of pedestrian and bicycle crashes. 

 

Siddiqui et al. (2012) applied a Bayesian spatial framework to model bicycle crashes to investigate 

the spatial correlation at Traffic Analysis Zones (TAZs) level in Hillsborough and Pinellas counties 

in Florida. Roadway characteristics, environmental, demographic and socio-economic variables 

associated with bicycle crashes were used to develop the aggregate (i.e., macroscopic) models. 

The Bayesian models were compared with the traditional NB models to assess the effect of spatial 

correlation. Two Bayesian models were developed, one with only the random effects which did 

not account for the spatial correlation, and the other with both the random effects and spatial 

correlation to compare the results and explicitly identify the effect of spatial correlation. A 

Heuristic approach, Bayesian Poisson-lognormal, was used along with the traditional forward and 

backward methods for variable selection while developing the non-Bayesian models. FDOT 

District Seven’s bicycle crash data for 2005-2006 was analyzed. It was found that variations 

contributed by spatial correlations are about 79% for bicycle crashes in the TAZs; thus, Bayesian 

models controlled for spatial correlation resulted in a better fit.  

 

The authors considered the following eleven significant variables for the non-Bayesian NB model: 

(1) the total length of roadways with 15 mph posted speed limit, (2) total length of roadways with 

35 mph posted speed limit, (3) total number of intersections per TAZ, (4) median household 

income per TAZ, (5) total number of dwelling units, (6) log of population per square mile of a 

TAZ, (7) percentage of households with non-retired workers but zero auto, (8) percentage of 

households with non-retired workers and one auto, (9) urban flag for a TAZ, (10) number of 

kindergarten through 12th grade enrollment, and (11) log of total employment number in a TAZ. 

The Bayesian model which did not account for spatial correlation identified similar variables as 

significant; whereas, median household income per TAZ, urban flag for a TAZ, and number of 

kindergarten through 12th grade enrollments were found statistically insignificant when spatial 

correlation was considered in the Bayesian model. Neighborhood-related variables did not reveal 

any significant difference in the two models.  

 

A similar conclusion was drawn by Kim et al. (2007) except for institutional areas (i.e., schools) 

which were found to be associated with higher possibilities of incapacitating injuries. Moran’s I 

statistics identified the spatial orientation of kindergarten through 12th grade school enrollment as 

‘random’ which explained the reason why it was not found significant in the model addressing the 

spatial relation by Siddiqui et al. (2012). Total roadway length with 15 mph posted speed limit was 

found as the only variable negatively associated with bicycle crashes. On the contrary, total 

roadway length with 35 mph posted speed limit was found to have positive association. A similar 

positive association between 30 mph and 40 mph was recognized by Kim et al. (2007). The number 

of intersections was also found to be highly associated with bicycle crashes. A study by Carter and 
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Council (2007) identified the similar relationship that about 48% of bicycle crashes are 

intersection-related in urban areas. The estimates for percent of households with non-retired 

workers with zero autos was found to be twice than that of non-retired workers with one auto in 

the model with spatial correlation, implying the latter is less critical than the former variable while 

other variables being controlled. Population density and total employment, the two possible 

surrogate measures for bicycle exposure, were also found to be positively associated with bicycle 

crashes. Siddiqui et al. (2012) concluded that Bayesian Poisson-lognormal models with spatial 

correlation to be the better one compared to other models that did not account for spatial correlation 

among TAZs. Quddus (2008) acknowledged the Bayesian framework as a more capable platform 

to account for spatial correlation and uncontrolled heterogeneity present in macro-level crash data.  

 

Loo and Tsui (2010) conducted a spatial, circumstantial, and epidemiological study on bicycle 

crashes in Hong Kong, where bicycle is a minor mode of transport. The Traffic Accident Database 

System (TRADS) of Hong Kong police from 2005-2007 and a hospital based Road Casualty 

Information Database (RoCIS) were used. Spatial and statistical tools including buffer analysis, 

chi-square tests, analysis-of-variance and binary logistic regression were used to analyze bicycle 

crashes. It was found that large proportion of crashes occurred on public roads near cycle tracks 

which triggered the careful consideration of fully integrated cycle tracks in the new territories and 

sufficient safe road network connecting the new cycle tracks. Majority of the bicycle crashes were 

found to have taken place on relatively simple road environment which highlighted the lack of 

sufficient training and practice. The bicycle safety problem was found to be more serious on roads 

outside the cycle tracks as these locations experienced bicycle crashes often resulting in serious 

and fatal injuries. These bicyclists were mainly middle-aged males (> 45 years) riding bicycles on 

public roads and were using bicycles as their mode of transport for daily trips. Proper education 

for all bicyclists focusing on the use of helmets and protective gears was stressed in the study.   

 

2.1.3 Descriptive Data Analysis  

 

Descriptive data analysis is one of the oldest and the most common techniques in crash data 

analyses. It provides an overall understanding about the safety situation and helps to identify the 

most probable predictors that affect crash frequency and severity. This section discusses several 

recent studies that have used the descriptive data analysis techniques to improve bicycle safety.   

 

Johnson et al. (2013) studied the crash characteristics and risk factors associated with bicyclists 

and open vehicle doors in Victoria, Australia. Three complementary data sources were used for 

the study: a total of 1,247 police-reported bicycle crashes from 2000-2011, a total of 401 hospitals’ 

emergency department presentations for the period 2000-2010, and a sample of video footage from 

a naturalistic study of commuter bicyclists in Melbourne during 2009-2010. Bicyclist-open vehicle 

door crashes accounted about 8.4% of the police-reported crashes, and 3.1% of the hospital-

recorded crashes. Male population (police report: 67.1%; hospital record: 65.8%) comprised the 

higher portion of the injured bicyclists. Adults aged 18 years or older (police report: 97.5%; 

hospital record: 96.3%) were found to be the most vulnerable age group for bicyclists. A high 

percentage (93.1%) of crashes took place within 60 kmph (37.3 mph) speed zones. The study 

identified 13 door-related events with a rate of 0.59 events per trip from the naturalistic cycling 

study data; most drivers were found to not look in the direction of the bicyclist before opening 

their vehicle doors. 
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Schepers and Wolt (2012) investigated the single-bicycle crash types and their characteristics 

using a questionnaire survey conducted in the Netherlands. The survey targeted bicycle crash 

victims treated at an Emergency Care Department. The questionnaire had two types of questions: 

open-ended questions about the crash, and closed-ended questions focusing on possible direct 

causes, crash characteristics, and circumstances. About half of all single-bicycle crashes were 

found to be related to infrastructure: collision with an obstacle, run-off-road, bicycle skidding due 

to slippery road surface, the bicyclist was unable to stabilize the bicycle or stay on the bicycle 

because of an uneven road surface. Loss of control at low speed, forcing on the front wheel, poor 

or risky riding behavior, bicycle defects, and gust of wind were the other main contributing factors.  
 

2.1.4 Combination of Methods  
 

This section focuses on recent studies that have applied a combination of spatial methods and 

regression techniques in analyzing crash frequency and severity, and identifying crash causes, 

patterns, and contributing factors. 
 

Hamann et al. (2014) examined bicycle crashes at intersections and non-intersections in Iowa for 

the period 2001-2011 to identify the influence of person, crash, environment, and population 

characteristics. The study employed descriptive statistics, GIS mapping, and multivariable logistic 

regression to examine factors associated with crash risk and crash location. These variables were 

identified as independent predictors of the crash location (i.e., intersection or non-intersection). It 

was found that young bicyclists (< 10 years old) were more prone to non-intersection bicycle 

crashes. Obscured vision was found to be a triggering factor for non-intersection crashes. Non-

intersection crashes were found to take place outside the city limits, i.e., in rural areas, probably 

due to variation in exposure or with reduced lighting. Failing to yield right-of-way was a less 

associated factor for non-intersection crashes. Densely populated, low income, and low education 

areas were found to be more crash prone; however, crash location did not make any difference on 

the crash statistics in these areas. Evans and Kantrowitz (2002) attributed bicycle crash issues to 

more traffic and/or poorer maintenance of these areas. On the other hand, Edwards et al. (2008) and 

Morency et al. (2012) recognized the socio-economic disparity inclusive of behavioral aspects as 

greater risk-taking likelihood for these bicycle crashes.  
 

As mentioned earlier in Section 2.1.2, Chimba et al. (2014) investigated demographic, socio-

economic, roadway geometric, traffic, and land use characteristics affecting pedestrian and bicycle 

crash frequency in Tennessee. In this study, GIS was used to geo-locate and cluster the crash 

locations, and NB regression was employed to model the relationship between contributing factors 

and crashes. Pedestrian and bicycle crash data for the period 2003-2009 from Tennessee 

Department of Transportation (TDOT) and Tennessee Department of Safety (TDOS) databases 

were used in the study. The crash data contained 5,360 pedestrian crashes and 2,558 bicycle 

crashes. TDOT’s geospatial data and U.S. census website’s demographic and socio-economic data 

at census tract level were also used for the GIS analysis. Population distribution by race, age group, 

mean household income, percentage in the labor force, poverty level, vehicle ownership, land use, 

number of lanes crossed by pedestrians or bicyclists, posted speed limit, and the presence of special 

speed zones were found to significantly influence the frequency of pedestrian and bicycle crashes. 

The findings were used to identify patterns of pedestrian and bicycle high crash locations in 

Tennessee. Emaasit (2013) recommended the similar approach to identify bicycle and pedestrian 

hot spots and identify the contributing factors for such crashes.    
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Rodgers (1997) evaluated the crash risk factors associated with adult bicyclists by comparing 

information on the characteristics and travel patterns of bicyclists who had crashed with those who 

had not. The logistics regression technique was used for the analysis. The analysis was based on 

data from a national survey of over 3,000 bicyclists of 18 years of age and older. The survey had 

the information on the characteristics and use patterns of the bicyclists and whether they had 

crashed or fallen from their bicycles during the preceding year. The crash risk was found higher 

for males than for females and was lower for bicyclists in the 25-64 year age group than it was for 

bicyclists younger than 25 years and older than 64 years. Risk was found to be directly proportional 

to the miles traveled. Furthermore, risk was found to be substantially higher for off-road bicyclists 

compared to on-road bicyclists; for those who race; for all-terrain style bicycles as opposed to 

general-purpose bicycles; and for Pacific Coast states compared to eastern, midwestern, southern, 

and mountain states. Hands-on training geared toward adults, improvement of riding environment 

through bicycle paths and bicycle lanes, use of helmets, and further research were emphasized as 

injury reduction strategies.  

 

2.2 Network Screening Methods  

 

This section includes a review of literature on the existing network screening methods to identify 

and prioritize bicycle hot spots. GIS was found to be the most commonly used network screening 

tool. Furthermore, several studies have used a combination of different methods to rank bicycle 

high crash locations.  

 

2.2.1 Traditional and Risk-Based Safety Planning Method 

 

Kittelson & Associates, Inc., (2014) developed a combination of two network screening methods 

to prioritize pedestrian and bicycle hot spots for Oregon Department of Transportation (ODOT). 

The first network screening method is based on ‘traditional’ metrics, i.e., reported crash frequency 

and severity to prioritize locations for safety improvement. This method used the most recent five 

years of crash data to identify locations across the state with frequent and/or severe crashes. The 

second method is based on a risk-based systemic safety planning process consistent with Federal 

Highway Administration (FHWA) guidance. The process identifies safety risk based on roadway 

characteristics that have contributed to pedestrian and bicycle crashes over the study period. This 

method is proactive in the sense that it may identify locations where crashes have not been 

reported. In this method, crash history is not excluded, but considered as one of many risk factors 

used to prioritize locations. Risk factors include a range of roadway or location characteristics such 

as road geometry (e.g., presence or absence of turn lanes, number of intersection legs, etc.); 

intersection traffic control (e.g., signalized, unsignalized, all-way stop control, etc.); and segment 

characteristics (e.g., number of access points per mile, presence of sidewalk or bicycle lane, 

presence of illumination, etc.). The two network screening methods resulted in a list of potential 

safety improvement projects for pedestrians and bicyclists within each ODOT region. 

 

2.2.2 Crash Reduction Factor-based Approach 
 

Ragland et al. (2011) developed a stand-alone tool based on an approach that used Crash Reduction 

Factors (CRFs). The tool can be applied in a differential manner to the various crashes occurring 

at a site, a set of sites, a corridor, or a zone to identify locations that have a potential for reduction 

in bicyclist and pedestrian injuries. The tool used standard formulae for benefit-cost calculations 
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from the Highway Safety Improvement Program (HSIP) guide and linked to extensive HSIP safety 

resources. The study was based on the principle that sites with the most potential for injury 

reduction are the sites where the most injuries can be prevented per dollar spent. These sites would 

result in highest expected number of injuries if nothing is done and everything else being the same. 

The study was funded by the California Department of Transportation (Caltrans). A 16.5-mile 

section of San Pablo Ave (SR 123) in the San Francisco East Bay was used as the study area. Crash 

data from 1998-2007 was analyzed. the following approaches were evaluated and compared to 

develop stable statistical estimates: extend the number years for both the baseline and follow-up 

periods, expand the size of the target sites considered, and apply Bayesian methods to include a 

modeled estimate of risk in the calculation. Finally, the authors discussed the strengths and 

weaknesses of each approach using the data from the study area. Table 2-1 summarizes these 

strengths and weaknesses.  

 

Table 2-1: Comparison of Strengths and Weaknesses of Different Site Selection Approaches 

(Source: Ragland et al., 2011) 

Approach Description Strengths Weaknesses Comment 

A. Choose 

Specific Sites 

using Past History 

Calculate 

benefit-cost for 

individual sites 

and rank. 

Intuitive, methods 

exist to identify 

sites. 

Instability of 

estimates of 

expected injuries, 

especially if injury 

rates are low. 

Traditional approach 

followed by many 

current jurisdictions 

and funding 

programs. 

B. Increasing 

Time Horizon for 

Events, either 

Years of History 

and/or Follow-up 

Same as 

Approach Abut 

increase years of 

history and/or 

years of follow-

up.  

Gain numbers and 

therefore increase 

stability of 

estimates of 

expected injuries.  

Potential bias if 

changes take place 

over time (i.e., 

greater chance of 

change with 

increasing time). 

Very effective in 

increasing stability 

of estimates if no 

reason to suspect 

historical change in 

conditions.  

C. Increasing 

Geographic Scale 

(from specific 

sites to corridors, 

zones, or entire 

network)  

Same as 

Approach A but 

increase scale of 

sites in order to 

increase 

numbers.  

Gain numbers and 

therefore increase 

stability of 

estimates of 

expected injuries.  

Need to spread 

countermeasures 

over a greater area 

or number of sites.  

Very effective if 

treatment costs per 

unit of area or 

number of sites can 

be kept low.  

D. Combining 

Sites with Similar 

Characteristics  

For example, 

combine mid-

block crossings.  

 

Gain numbers and 

therefore increase 

stability of 

estimates of 

expected injuries.  

The same 

countermeasures 

installed at all 

locations, possible 

economy of scale.  

Need to spread 

countermeasures 

over a greater 

distance or number 

of sites.  

Very effective if 

treatment costs per 

unit of area or 

number of sites can 

be kept low and there 

can be an advantage 

of consolidating 

engineering analyses.  

E. Creating 

Estimates Using 

the Bayesian 

Method  

Create model of 

the network and 

apply combined 

modeled estimate 

of injuries with 
history of injuries.  

Increase stability 

of estimates of 

expected injuries.  

Need for network 

database with 

relevant variables.  

Can be combined 

with any of the 

above if data is 

available.  
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2.2.3 GIS Crash Mapping 

 

Mid-Ohio Regional Planning Commission (MORPC) used GIS to identify bicycle and pedestrian 

hot spots. After importing the crash data into ArcGIS, Spatial Analyst tool was employed to 

identify and calculate the relative magnitude (or density) of pedestrian and bicycle crashes. First, 

a ten square foot grid was overlaid on top of the crash locations, and then a score was assigned to 

each grid based on the number of crashes within 500 feet of the corresponding grid cell. Spatial 

Join process was then employed to calculate the number of crashes within each of the highest-

crash clusters. Only bicycle and pedestrian crashes occurring within the clusters were counted. A 

list and a map were generated with bicycle or pedestrian crash clusters. The Kernel Density tool 

was next used to convert crash locations into high resolution raster images identifying high-crash 

clusters, which were then converted into polygon shapes. Because of the lower frequency of 

pedestrian and bicycle crashes, the analysis considered five years of crash data, instead of three 

years which is often used in identifying the top locations for all crash types (MORPC, 2015). 

Chimba et al. (2014) also utilized GIS to geo-locate and cluster the pedestrian and bicycle crash 

locations on the roadway network. Emaasit (2013) also recommended a similar approach to 

identify bicycle and pedestrian hot spots. 

 

Rybarczyk and Wu (2010) proposed a multi-criteria evaluation (MCE) analysis along with the use 

of GIS for bicycle facility planning. The MCE analysis facilitated incorporating variables from 

supply as well as demand side of bicycle planning models. Analysis was performed at two 

geographic levels: network level and neighborhood level. Network-level analysis addressed site 

specific issues and provided detailed information for further improvements. On the other hand, 

neighborhood-level analysis provided a strategic view of bicycle facilities, and facilitated policy 

development and implementations. A GIS-based Exploratory Spatial Data Analysis (ESDA) 

method was applied to explore the spatial patterns of bicycle facilities at the neighborhood level. 

This model was applied to Milwaukee City, Wisconsin. The researchers concluded that a 

combination of GIS and MCE analyses could serve as a better alternative to plan for optimal 

bicycle facilities, highlighting inadequacies of typical supply-side measures, and could meet 

multiple planning objectives of government agencies, planners, and bicyclists.  
 

Bejleri et al. (2007) presented a new crash mapping method that located bicycle and pedestrian 

crashes based on street intersections and offset distance using GIS. The authors developed a 

customized GIS crash mapping application. This application filled the gap of the standard GIS 

geocoding software. The application was able to map both property addresses and street 

intersections; and was also generic and flexible. The application resulted in accurate and high 

matching rates. The application utilized the standard geocoding method for matching the street 

addresses and employed a location-referencing system for the address with a distance from an 

intersection. The location-referencing system of the application did not require any pre-processed 

data as it applied street names as a reference to identify the intersection location. This process 

overcame the limitations of the node reference system used by Palm Beach County, Florida. The 

application was able to compare street names on a crash record with street names on a street map 

to identify an intersection without the node number. Crash analysis methodologies were applied 

to mapped crashes at different geographical levels. Cluster, trend, and proximity analyses were 

employed to understand the general spatial and temporal crashes patterns. Linear and area density 

indices were used to identify crash concentration areas at both intersection and mid-block levels. 

Figure 2-2 provides the study results.  
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Figure 2-2: Pedestrian and Bicycle Crash Distribution in Pinellas County, FL  

(Source: Bejleri et al., 2007) 

 

2.2.4 Logistic Model 

 

Allen-Munley et al. (2004) developed a logistic model for rating urban bicycle routes based on 

safety. The safety rating model was based on injury severity; and the rating was based on the 

principle that safe routes would produce less-severe crashes than unsafe routes. The modeled rating 

of bicycle routes’ relative safety was defined as the expected value of the predicted injury severity. 

Bicycle crash data from Jersey City, New Jersey from 1997-2000 was used to develop the model 

with a logistic transformation. Key operational and physical variables such as AADT, lane width, 

population density, highway functional classification, presence of vertical grades, one-way streets, 

and truck routes were evaluated, and the resulting model met a 90% confidence level. Urban adult 

commuting bicyclist was the focus group for this study because of this group’s predominant peak-

hour nondiscretionary trips during the highest hours of congestion, and thus had the greatest 

potential to reduce air pollution.     

 

2.3 Bicycle Crash Countermeasures 

 

This section includes a review of literature on the safety performance of the existing engineering-

related bicycle crash countermeasures. Particularly, the following countermeasures are discussed: 

 

 bicycle lanes,  
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 bicycle tracks,  

 bicycle boulevards, 

 wide curb lanes, 

 traffic calming measures such as speed humps and road diets (i.e., lane reductions), 

 roadway and intersection geometry related countermeasures such as raised medians, 

 crosswalks, 

 roadway lighting, and 

 on-street parking treatments. 

 

2.3.1 Bicycle Lanes  

 

Bicycle lanes are defined as a portion of the roadway designated for the preferential or exclusive 

use of bicyclists and are separated from motor vehicle traffic through the use of pavement markings 

(Mead et al., 2014). Figure 2-3 shows an example of bicycle lanes in Chicago, IL.  

 

 
Figure 2-3: Bicycle Lanes in Chicago, IL (Source: NACTO, 2012; Photo: CDOT) 

 

Park et al. (2015) determined the relationships between the safety effects of adding a bicycle lane 

and the roadway characteristics on urban arterial facilities in Florida. The authors used 

observational before-and-after with empirical Bayes (EB) and cross-sectional methods to develop 

the crash modification factors (CMFs). Adding a bicycle lane on urban arterials had positive safety 

effect (i.e., CMF < 1.0) for all crashes, and was more effective in reducing bicycle crashes (CMF 

of 0.439 with EB method and 0.422 with cross-sectional method). The CMFs were found to be 

varying across the sites with different roadway characteristics. AADT, number of lanes, AADT 

per lane, median width, bicycle lane width, and lane width were found to be the significant 

characteristics that affect the variation in safety effects for adding a bicycle lane. Socio-economic 

characteristics such as bicycle commuter rate and population density were also found to have 

significant effect on the CMFs variation. Full crash modification functions showed better model 

fit than simple crash modification functions since they account for the heterogeneous effects of 

multiple roadway and socio-economic characteristics.  
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Chen et al. (2012) evaluated the safety effects of bicycle lanes installed prior to 2007 in New York 

City on total crashes, bicycle crashes, pedestrian crashes, multi-vehicle crashes, and injury or fatal 

crashes. The impact of bicycle lane installation in a treatment group and a comparison group was 

studied using generalized estimation equation methodology. The study revealed that the number of 

bicyclists increased after the installation of bicycle lanes; however, the lanes did not increase bicycle 

crash frequency, most likely due to reduced vehicular speeds and fewer vehicle-bicycle conflicts. 

 

Nosal and Miranda-Moreno (2012) studied the bicyclist injury risk on bicycle lanes in Montreal 

using relative risk ratios. Most bicycle lanes were found to exhibit lower bicyclist injury rates than 

the corresponding control streets. Operation way, visibility, physical separation, presence and 

location of parking, vehicular traffic, and the direction of vehicular traffic were identified as the 

prominent factors affecting the bicyclist injury risk.  

 

Turner et al. (2011) analyzed three main safety studies undertaken in New Zealand and Adelaide, 

Australia. The authors applied generalized linear modeling and before-and-after, control-impact 

methods. Crash, traffic, and bicycle volumes and layout data were collected for urban road links, 

traffic signals, and roundabouts. A safety-in-numbers effect, i.e., crash risk per bicyclist, was 

shown to be lower as bicycle volumes increased was demonstrated by the flow-only models. 

Before-and-after analysis was employed to identify the presence of biasness toward the sites with 

bicycle facilities. The research findings on the impact of bicycle facilities on safety were mixed. 

The safety performance factor value with bicycle lane was 1.21, indicating a 21% increase in 

bicycle crashes after the bicycle lanes were constructed. However, a before-and-after study using 

the EB method showed a 10% reduction in bicycle crashes at treatment sites, which indicated bias 

in the sites that were selected for treatment. Colored bicycle lanes decreased bicycle crashes by 

39% in the before-and-after studies, and resulted in safety performance factors of less than 0.5 for 

most crash types. Thus, well-designed bicycle lane facilities with adequate width and color 

pavement appeared to perform best. 

 

Hunter et al. (2009) examined bicycle counts and speeds associated with the installation of bicycle 

lanes in St. Petersburg, Florida. The study showed a total of 17.1% increase in bicycle usage per 

day after installation of the bicycle lanes; however, one of the streets experienced almost no change 

in bicycle usage. The average bicycle speeds remained the same (approximately 11-12 mph) both 

prior to and after the construction of bicycle lanes. The study highlighted the fact that the addition 

of bicycle lanes alone on a street could not guarantee an immediate increase in bicycle volume 

and/or speed; rather other factors such as adjacent land use, convenient origins and destinations, 

and connectivity of bicycle lanes to other bicycle facilities within the street system were critical in 

encouraging bicycling.  

 

Hunter et al. (2008) studied the impact of green colored pavement and accompanying signing in a 

bicycle lane weaving area (Figure 2-4), where motor vehicles cross the bicycle lane near 

intersection on bicyclist’s and motorist’s behavior. The study was conducted in St. Petersburg, 

Florida. The authors compared the operational behavior of the bicyclists and motorists at selected 

locations using video footage recorded before and after the green pavement and signing treatments 

were installed. The authors found that 11.8% more motorists yielded to bicyclists, and 4% more 

motorists signaled their intention to turn right in the after-period. Overall, 6% more bicyclists 

scanned for proximate vehicles in the after-period; while the percentage of conflicts (i.e., sudden 
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changes in speed and/or direction) was lower in the after-period, the differences were not 

statistically significant. The significant increase in yielding behavior by motorists was similar to 

the study findings by Hunter et al. (2000) in Portland, Oregon. 
 

 

Figure 2-4: Green-colored Pavement and Accompanying Signing in a Bicycle Lane 

Weaving Area in St. Petersburg, FL (Source: Hunter et al., 2008) 

 

Jensen (2008) conducted an observational before-and-after study to evaluate the safety 

performance of bicycle lanes in Copenhagen, Denmark. A general comparison group in the 

observational study was incorporated to address the changes in traffic volumes and crash frequency 

and crash severity trends through correction factors. Bicycle lanes in the study resulted in a 5% 

increase in crashes and a 15% increase in injuries for urban areas. Thus, the study revealed that 

safety for bicyclist’s worsened at locations where bicycle lanes were constructed and safety was 

found to be the worst for bicyclists and moped riders with a 49% increase in injuries. The study 

findings are quite dissimilar to the findings from several other studies including Rodegerdts et al 

(2004), Chen et al. (2012), Nosal and Miranda-Moreno (2012), and Park et al. (2015). Rodegerdts 

et al. (2004) concluded that bicycle lanes reduced fatal, serious, and minor injury bicycle crashes 

by 35%, i.e., the study resulted in a CMF of 0.65 for bicycle lanes. 

 

2.3.2 Bicycle Tracks  

 

Bicycle track is a bicycle facility which is designated for the exclusive use of bicyclists. These are 

physically separated from the sidewalk and the roadway by curbs. Parked vehicles between the 

moving traffic and the bicycle track may offer an additional buffer from roadway traffic (Mead et 

al., 2014). Figure 2-5 depicts a schematic diagram of a bicycle track and a bicyclist using such a 

track in Copenhagen, Denmark. 
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Figure 2-5: Bicycle Track (Source: Mead et al., 2014)  

(Photo Courtesy: Lars Gemzøe and Gehl Architects, Member of the Cycling Embassy of 

Denmark) 

 

Nosal and Miranda-Moreno (2012) studied the bicyclist injury risk on bicycle lanes and also the 

effect of bicycle tracks in Montreal using relative risk ratios. The performance of bicycle track was 

found to be similar to the performance of bicycle lanes. Most bicycle tracks were found to result 

in lower bicyclist injury rates than the corresponding control streets. Similar to the bicycle lanes, 

direction of traffic operation (i.e., bidirectional or not), visibility, physical separation, presence and 

location of on-street parking, vehicular traffic, and the direction of vehicular traffic were identified 

as the prominent factors affecting the bicyclist injury risk on bicycle tracks.  

 

Schepers et al. (2011) also investigated the safety effects of bicyclists at intersections with two-

way bicycle tracks, well-marked, and reddish colored bicycle crossings in Netherlands. Bicycle 

crashes where the bicyclist had the right-of-way (i.e., bicyclist on the priority road) were found to 

be more prone to occur at these sites than where the motorist had the right-of-way (i.e., motorist 

on the priority road). Intersections where bicycle track approaches were 2-5 meters away from the 

main travel way were found to have decreased crash probability, with a CMF of 0.55. Similarly, 

bicycle tracks that were over 5 meters away from the main travel way also resulted in a decreased 

crash probability with a CMF of 0.93. However, the crash probability was found to be almost the 

same for bicycle lanes and bicycle paths when the distance between the bicycle track and the side 

of the main road is less than 2 meters. The red color and high quality markings did not improve 

the safety for bicyclists, and resulted in a CMF of 1.47 for red color, a CMF of 1.74 for high quality 

markings, and a CMF of 2.53 for the presence of both red color and high quality markings at 

bicycle crossings.  

 

Jensen (2008) conducted an observational before-and-after study to evaluate the safety 

performance of bicycle tracks in Copenhagen, Denmark. A general comparison group in the 

observational study was incorporated to address the changes in traffic volumes and crash and 

injury trends through correction factors. Bicycle tracks increased crashes and injuries by 10% in 

urban areas. Thus, the study revealed that safety for bicyclists worsened at locations with bicycle 

tracks. However, bicycle tracks resulted in a 20% increase in bicycle/moped traffic mileage and a 

10% decrease in AADT. The author calculated a CMF of 1.05 for all crash types and for all crash 

severities. The study also calculated the CMFs for different combinations of crash types and crash 

severities. 

   



  

19 

 

2.3.3 Bicycle Boulevards  

 

Bicycle boulevards are defined as traffic-calmed side streets signed and improved for bicyclists to 

provide a safer alternative to riding on arterials. Figure 2-6 gives an example of a bicycle 

boulevard. Minikel (2012) studied bicyclist safety on bicycle boulevards and parallel arterial routes 

in Berkeley, California. Police-reported bicycle crashes and manually collected bicyclist count 

data from bicycle boulevards and parallel arterial routes in Berkeley, California from 2003 to 2010 

were analyzed. The study identified that crash rates on Berkeley’s bicycle boulevards are two to 

eight times lower than those on parallel, adjacent arterial routes, and resulted in a CMF of 0.37.  

 

 

Figure 2-6: Bicycle Boulevard (Source: Williams, 2014) 

 

2.3.4 Wide Curb Lanes 

 

An alternative to the installation of a five-foot bicycle lane is to design the curb lane wide enough 

so that it can accommodate bicyclists. It is a good provision when there is right-of-way limitation. 

The wide curb lanes are often enhanced with shared lane markings to increase awareness of the 

presence and position of bicyclists. Figure 2-7 gives an example of a wide curb lane in Virginia.  

 

Sando et al. (2011) studied the motorists’ behavior when passing bicyclists on wide curb lanes. 

The authors video recorded 956 passing events at 10 sites in Tallahassee, St. Petersburg, and 

Brandon, Florida at peak traffic hours. A multivariate regression model was developed to identify 

and understand the significant variables influencing the passing behavior. The authors concluded 

that motorist passing distance is influenced by environmental factors, such as lane width; 

contextual factors, such as the presence or absence of vehicles in adjacent lanes; and bicyclist 

characteristics, such as gender. 

 

Hunter et al. (1999) conducted a comparative study of bicycle lanes versus wide curb lanes in 

Santa Barbara, California; Gainesville, Florida; and Austin, Texas. They video recorded motor 

vehicle-bicyclist interactions at 48 study sites and documented 276 conflicts between motor 

vehicles and bicyclists. It was found that while passing bicyclists on the left, a significantly higher 
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percentage of vehicles encroached into the adjacent traffic lane at locations with wide curb lanes 

(17%) than at locations with bicycle lanes (7%). Lane encroachments hardly caused any conflict 

with motor vehicles using the other lane. Where the bicycle lane width was 5.2 feet or less, the 

average bicyclist distance from the curb was less than for wide curb lanes; however, at locations 

where the bicycle lane width was greater than 5.2 feet, the average bicyclist distance from the curb 

was greater than for wide curb lanes. The authors concluded that bicycle lanes and wide curb lanes 

were both effective in improving bicyclist safety; however, they recommended the installation of 

bicycle lanes if right-of-way permits. 

 

 

Figure 2-7: Wide Curb Lane (Source: Mead et al., 2014) 

(Photo Courtesy: James and Gilbert, 2012) 

 

Harkey and Stewart (1997) examined motorist and bicyclist behavior on roadway segments with 

a bicycle lane, a wide curb lane, and a paved shoulder. The study revealed that motorists passed at 

a distance of approximately six feet irrespective of the facility type. Motorists tended to move 

about one foot laterally while passing a bicyclist in a bicycle lane, regardless of the width of the 

bicycle lane; whereas, motorists kept an additional 1.3 feet when passing bicyclists in a wide curb 

lane compared to bicycle lanes and paved shoulders. Moreover, bicyclists were more likely to ride 

further from the curb in a bicycle lane or paved shoulder than in a wide curb lane. The authors 

conducted an observational study and concluded that bicycle lanes and paved shoulders offered a 

safety advantage over wide curb lanes. 

 

2.3.5 Traffic Calming Measures 

 

Traffic calming consists of modifications to the roadway design and signing to slow down and/or 

reduce traffic, and to improve safety. Several traffic calming measures including speed-reducing 

measures (e.g., speed humps) and road diets (i.e., lane reductions) are proven to be effective in 

improving bicycle safety.  
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Speed-reducing Measures  

 

Schepers et al. (2011) studied the impacts of speed-reducing measures such as raised bicycle 

crossings and speed humps on bicycle safety. Similar to the findings of Gårder et al. (1998), 

Schepers et al. (2011) revealed that speed-reducing measures for drivers leaving or entering the 

main road (e.g., a raised bicycle path and/or exit construction) effectively improved safety and 

resulted in a CMF of 0.49. The authors stated that speed-reducing measures on the minor road are 

suitable for most cases as they do not require additional right-of-way, in contrast to the construction 

of a bicycle path or a bicycle track. However, for through motorized vehicles on the main road 

where the motorists had the right-of-way, installation of speed-reducing measures such as a raised 

bicycle crossing resulted in a CMF of 1.28. Elvik and Vaa (2004) also recognized such negative 

effect of a raised bicycle crossing in reducing bicycle crashes and serious and minor injuries. Their 

study resulted in a 9% increase in bicycle crashes after the construction of raised bicycle crossings. 

Oh et al. (2008) concluded that the presence of speed restriction devices such as speed bumps and 

red light cameras improved bicycle safety (CMF of 0.28).  

 

Lane Reduction  

 

Chen et al. (2013) evaluated the effectiveness of lane reduction at intersections on bicycle safety. 

The researchers applied a pretest-posttest methodology to compare crash statistics after the 

implementation of lane reduction at 324 intersections in New York City. Five-year crash data 

before the lane reduction strategy implementation and two-year crash data after the 

implementation were analyzed. Analysis of covariance (ANCOVA) was used to control for 

potential regression-to-the-mean effects. The study identified that bicyclist crash incidence 

increased by 5.9% at treatment intersections compared to a 25.6% reduction at comparison 

intersection sites. Thus, an ANCOVA adjusted increase of 21% bicyclist crashes at intersections 

was calculated; however, the results were not significant at the 5% significance level. The authors 

could not make a conclusive decision due to lack of bicycle volume data.   

 

Hamann & Peek-Asa (2013) examined the link between on-road bicycle facilities and bicycle 

crashes in Iowa during 2007-2010. A total of 147 crash sites were matched with 147 non-crash 

control sites, and conditional multivariate logistic regression was employed. It was found that for 

every 10-foot increase in the total roadway width, the odds of the roadway being the site of a 

bicycle crash increased by 38%. However, the researchers were not able to specify whether crashes 

took place when bicyclists were crossing the roadway or riding along the roadway. The results 

indicated that reducing the roadway width may be associated with a decreased crash risk for 

bicyclists. 

  

2.3.6 Roadway and Intersection Geometry 

 

Schepers et al. (2011) studied the effect of number of lanes and intersection geometry on bicycle 

safety. The authors did not identify any statistically significant relation for bicycle crashes 

involving through motor vehicles where motorists had the right-of-way (i.e., motorist on the 

priority road). However, the results were not conclusive because of the study’s limited scope. 

 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/detail.cfm?facid=4043
http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
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Räsäsen and Summala (1998) found that the provision of raised middle islands at intersections that 

enclosed a left-turn section for both vehicles and bicyclists on roadways with more than two lanes 

resulted in a CMF of 0.96; on the other hand, raised middle islands at intersections on roadways 

with two lanes resulted in a reduction in safety, with a CMF of 1.48. The authors found that 

enabling bicyclists to cross in two phases might lower the demands and increase safety on 

roadways with more than two lanes.  

 

Miranda-Moreno et al. (2011) concluded that the presence of medians produced a positive safety 

effect on bicycle crashes (CMF of 0.97), while a CMF of 1.67 was estimated for locations without 

the raised medians (Räsäsen and Summala, 1998). 

 

Turner et al. (2011) analyzed the effect of left-turn lanes at signalized intersections in Christchurch, 

New Zealand and Adelaide, Australia. In New Zealand, intersections with exclusive left-turn lanes 

resulted in a CMF of 0.97, and the intersections with shared left turn and through lanes resulted in 

a CMF of 0.60. However, bicycle safety worsened in Adelaide, Australia; intersections with 

exclusive left-turn lanes resulted in a CMF of 1.36, and those with shared left turn and through 

lanes resulted in a CMF of 1.40. Schepers et al. (2011) in their study observed a similar result. In 

their study, left-turn lane or left-turn section on the main road where bicyclists have right-of-way 

at the intersections in Netherlands resulted in a CMF of 1.12. 

 

Schepers et al. (2011) concluded that restricted visibility of vehicles on a minor road to 

approaching bicyclists at intersections with bicyclist priority worsened the safety condition. The 

study resulted in a CMF of 1.37. Surprisingly, the authors found that very poor visibility improved 

the safety situation and resulted in a CMF of 0.54 for the same scenario. The same study identified 

that three-legged intersections are more bicyclist friendly (CMF 0.83) than four-legged 

intersections (CMF 1.28). Miranda-Moreno et al. (2011) also supported this observation, the 

authors calculated a CMF of 0.86 for three-legged intersections in Montreal, Canada.   

 

Daniels et al. (2009) investigated the effect of converting intersections into roundabouts on bicycle 

safety. The study assumed that the effectiveness of roundabouts depend on the types of bicycles, 

bicycle facilities, and other geometric factors. Regression analyses on effectiveness-indices 

resulting from a before-and-after study of bicyclist injury crashes at 90 roundabouts in Flanders, 

Belgium were performed. Roundabouts with bicycle lanes performed significantly worse 

compared to three other design types (mixed traffic, separate bicycle paths, and grade-separated 

bicycle paths) for all injury crashes involving bicyclists. Conversion of traditional intersections 

into roundabouts with bicycle lanes resulted in a CMF of 1.93 for all injury crashes and a CMF of 

1.37 for fatal and severe injury crashes. Conversion of traditional intersections into roundabouts 

with separated bicycle paths however improved the overall bicycle safety (CMF 0.83); however, 

degraded the fatal and severe bicycle crash scenario (CMF 1.42). Conversion of traditional 

intersections into roundabouts with grade separated bicycle paths also improved safety with a CMF 

of 0.56 for all crash severities, and a CMF of 1.31 for fatal and severe injury crashes. Elvik and 

Vaa (2004) also recognized the negative effect of raised intersections in reducing crashes. Their 

study resulted in a 5% increase in serious and minor injury crashes and a 13% increase in property 

damage only (PDO) crashes.  

 

 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
http://www.cmfclearinghouse.org/study_detail.cfm?stid=259
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2.3.7 Crosswalks 

  

Oh et al. (2008) concluded that the presence of crosswalks is crucial in the prevention of bicycle 

crash probability at intersections. Their study for Korea indicated bicyclists might have a conflict 

with pedestrians and vehicles making a right turn when crossing an intersection. Permitting a 

RTOR (Right-Turn-On-Red) signal at signalized intersections increased the probability of crashes 

between pedestrians and bicyclists. Signs prohibiting a RTOR signal during certain hours could 

be more effective. The study also identified presence of bus stops as very favorable (CMF 0.18) 

in reducing bicycle crashes at intersections.  

 

2.3.8 Roadway Lighting  

 

Kim et al. (2007) investigated the factors that increase the probability of a severe or fatal injury in 

a bicycle crash using a multinomial logit model. The analysis was based on police-reported crash 

data from 1997-2002 from North Carolina. It was found that lack of street lights at night was 

associated with a 111% increase in the probability of a fatal injury. The researchers emphasized 

that lighting not only affected bicyclist visibility but also decreased the probability of a driver 

taking evasive action that would reduce injury severity. However, the study did not account for 

the presence or absence of illumination equipment on bicycles. 

 

Wanvik (2009) examined the safety effect of roadway lighting on crashes in darkness on Dutch 

roads. The author analyzed two decades of crash data. The study concluded that roadway lighting 

was associated with nearly 60% reduction in bicyclist injury crashes in dark conditions on rural 

roads. The observed safety effect was found to be significantly greater for bicyclists compared to 

vehicles. 

 

2.3.9 Parking Treatments 

 

The City of Toronto Transportation Services Division (2003) reported running into open car doors 

as the third most frequent type of bicycle crashes. The analysis was based on police-reported 

bicycle crashes that occurred from 1997-1998. The authors found that these crashes accounted for 

11.9% of the 2,574 reported crashes, and resulted in more severe injuries compared to other types 

of bicycle crashes.  

 

Duthie et al. (2010) studied the effects of on-street bicycle facility configuration on bicyclist and 

motorist behavior. Observational studies were conducted at 48 sites in three large Texas cities, 

Austin, Houston, and San Antonio. Bicyclist and motorist lateral position and motorist 

encroachment on an adjacent lane were observed. Two multivariate regression models were 

developed based on these observations. It was found that bicycle lanes created a safer and more 

predictable riding environment compared to wide outside lanes, and the provision of a buffer 

between parked vehicles and bicycle lanes was found to result in fewer conflicts between bicyclists 

and open car doors. Furthermore, the lateral position of bicyclists was found to be safer when 

riding next to a row of parked vehicles than riding next to only a few parked vehicles.  

 

Teschke et al. (2012) examined the route infrastructure on injury risk to bicyclists. A total of 690 

bicycle crashes in Toronto and Vancouver, Canada were analyzed, and the infrastructure of the 



  

24 

 

injury occurrence location was compared to a randomly selected control site from the same trip. A 

case-crossover methodology was adopted in this research. It was found that bicycle riding on a 

major street route without parked vehicles and with bicycle infrastructure decreased injury risk by 

37% when compared to the same type of road with on-street parking. Vancouver route preference 

survey also indicated a public preference for major streets without on-street parking and with 

shared lanes or bicycle lanes. 

 

2.4 Summary 

 

This chapter presented a review of recent bicycle safety literature. Specifically, studies in the 

following four areas are summarized: (1) risk factors that affect the frequency and severity of 

bicycle crashes; (2) bicycle crash causes, patterns, and contributing factors; (3) network screening 

methods used to identify and prioritize bicycle hot spots; and (4) safety performance of the most 

commonly implemented engineering countermeasures. The literature review revealed that 

researchers have used a number of different approaches to analyze bicycle crashes, depending on 

the study objectives and data availability.  
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CHAPTER 3 

STATEWIDE BICYCLE CRASH PATTERNS AND TRENDS 

 

This chapter focuses on identifying the overall statewide bicycle crash patterns and trends in 

Florida. Particularly, the general trends in bicycle crash data and roadway characteristics data are 

identified. The chapter is divided into four major sections. The first section focuses on the data 

preparation efforts. The second and third sections discuss the bicycle crash and roadway geometric 

characteristics, respectively. Finally, the fourth section summarizes the analysis results.  

 

3.1 Data  

  

The analysis was based on four years of crash and traffic data from 2011 to 2014 and the Roadway 

Characteristics Inventory (RCI) data from 2014. The following subsections discuss these data in 

detail.  

 

3.1.1 Crash Data 

 

The law enforcement agencies in Florida document traffic crash incidents using either a long-form 

or a short-form Florida Traffic Crash Report. The long-form report includes all the crash-specific 

information, and a narrative and a diagram, and is used during the following conditions:  

 

 a crash resulting in death of, personal injury to, or any indication of complaints of pain or 

discomfort by any of the parties or passengers involved in the crash;  

 a crash involving a driver leaving the scene involving damage to attended vehicles or 

property;  

 a crash involving a driver under the influence of alcohol and/or drugs;  

 a crash rendering a vehicle inoperable to a degree that required a wrecker to remove it from 

the scene of the crash; or 

 a crash involving a commercial motor vehicle. 

 

The short-form report is used to report other types of traffic crashes and usually does not include 

narratives and diagrams. The law enforcement agencies are required to report crashes recorded in 

both the long-form and the short-form reports to the Florida Department of Highway Safety and 

Motor Vehicles (DHSMV) within 10 days of investigation. The FDOT State Safety Office receives 

the long-form crash data from the DHSMV and uploads them into the Crash Analysis Reporting 

(CAR) database.  

 

The following CAR databases were used to identify bicycle crash patterns and trends: 

   

 Crash level data file  

 Non-motorist level data file  

 Vehicle, driver, and passenger level data file  

 

Non-motorist level data file was used to identify bicycle crashes based on the non-motorist type code 

(NON_MOTR_TYP_CD) 3 (bicyclist) or 4 (other cyclist). From 2011-2014, a total of 26,036 

crashes were identified as bicycle crashes. These crashes involved 26,462 bicyclists. Table 3-1 
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lists the crash data variables used in the analysis. It also provides the databases which include these 

variables. Note that all bicycle crashes were analyzed to identify crash-specific patterns, while 

only those that occurred on non-limited-access state roads were analyzed to study the effect of 

roadway characteristics on bicycle crashes.  

 

Table 3-1: Bicycle Crash Data Variables Used in the Analysis 

Variable Name Variable Description Database 

CRSH_NUM Crash Number 

 Crash  

 Non-motorist  

 Vehicle, driver, and passenger  

CAL_YR Calendar Year Non-motorist  

EVNT_CRSH_ TM               Event Crash Time Crash  

EVNT_CRSH_DT               Event Crash Date Crash  

DAYOWEEK Day Of Week Crash  

WRK_ZONE_REL_CD            Work Zone Related  Crash  

LGHT_COND_CD               Lighting Condition  Crash  

EVNT_WTHR_COND_CD          Event Weather Condition  Crash  

AGE3   Non-motorist Age  Non-motorist 

PERS_SEX_CD                Non-motorist Gender  Non-motorist 

INJSEVER Non-motorist Injury Severity  Non-motorist 

NON_MOTR_TYP_CD            Non-motorist Type  Non-motorist 

NON_MOTR_LOC_CD            Non-motorist Location  Non-motorist 

ACTN_BFR_CRSH_CD           Non-motorist Action Before Crash Non-motorist 

FRST_SAF_EQUIP_CD          Non-motorist First Safety Equipment  Non-motorist 

NONMOTR_ACTN_01_CD         First Non-Motorist Action  Non-motorist 

SUSP_ALC_USE_CD            Non-motorist Suspected Alcohol Use  Non-motorist 

SUSP_DRUG_USE_CD           Non-motorist Suspected Drug Use  Non-motorist  

VHCL_BDY_TYPE_CD Vehicle Body Type  Vehicle, driver, and passenger  

VHCL_MOVE_CD Vehicle Movement Code Vehicle, driver, and passenger 

HAR_CD Hit and  Run   Vehicle, driver, and passenger  

 

3.1.2 Roadway Characteristics Data 

 

The RCI database maintained by FDOT is the primary source of roadway geometric data. It is a 

comprehensive roadway inventory database which includes segments that are part of the state 

highway system (SHS), segments that are currently being constructed and yet to be added as part 

of the SHS, segments that are no longer maintained by the FDOT, historic roads, local roads, 

exclusive roads (ramps, frontages roads etc.), etc. Segments that are currently not part of the SHS 

do not have complete roadway traffic, geometric, and crash data. Therefore, only those segments 

that are part of the SHS were included in the analysis. FDOT’s State Roads GIS shapefile was used 

to identify the state road network in Florida. A total of 12,118.6 miles of roadways were identified 

as state roads in Florida. 

 

The following data variables were extracted from the RCI database (the name in the parentheses 

gives the description of the variable). Note that AADT data were extracted for the years 2011 
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through 2014 while data for all the other roadway features were extracted for the year 2014. The 

RCI data were reported to be current as of December 31 of each year (i.e., 2011 through 2014).  

 

 FUNCLASS (functional classification) 

 NOLANES (number of lanes) 

 MAXSPEED (posted speed limit) 

 BIKELANE (presence of bicycle lane) 

 AADT (annual average daily traffic) 

 

The crash summary records in the CAR system have crash location information including the 

roadway ID and the milepost at which the crash occurred. This information was used to identify 

crashes that occurred on state roads.   

 

3.2 Descriptive Trend Analysis – Crash Characteristics 

 

The descriptive trend analysis focused on the following factors: 

 

 Temporal Factors 

 Annual trend 

 Monthly trend 

 Day of week 

 Time of day 

 

 Environmental Factors 

 Lighting conditions  

 Weather conditions  

 

 Bicyclist-related Factors 

 Age 

 Gender 

 Impairment  

 Safety equipment  

 Action prior to the crash  

 Action at the time of the crash  

 Location at the time of the crash  

 

 Crash Location-related Factors  

 County 

 Work zone  

 

 Vehicle-related Factors 

 Vehicle type 

 Vehicle maneuver action 

 Hit and run 
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3.2.1 Temporal Factors 

 

Annual and Monthly Trend 

 

Table 3-2 provides annual bicycle crash frequency by crash severity for the years 2011-2014. 

Overall, during the four-year analysis period, a total of 503 fatal crashes and 22,146 injury crashes 

involved bicyclists. Bicycle fatal crashes accounted for 5.6% of all traffic fatal crashes, while they 

constituted only 1.9% of total crashes. These statistics prove that bicycle crashes are often severe. 

Table 3-3 gives the annual bicyclist fatality and injury rates based on population. On average, the 

annual bicyclist fatality and injury rates were 6.48 fatalities and 287.14 injuries per million 

population.  

 

Table 3-2: Annual Bicycle Crash Statistics by Crash Severity 

Year 
Bicycle Crashes All Crash Types 

Percent of  

Bicycle Crashes 

Fatal  Injury  All  Fatal  Injury All  Fatal Injury All  

2011 120 4,587 5,702 2,214 117,802 297,997 5.4% 3.9% 1.9% 

2012 117 5,961 6,857 2,238 128,794 345,957 5.2% 4.6% 2.0% 

2013 134 6,377 7,410 2,223 138,169 400,419 6.0% 4.6% 1.9% 

2014 132 5,221 6,067 2,289 113,817 362,964 5.8% 4.6% 1.7% 

Total 503 22,146 26,036 8,964 498,582 1,407,337 5.6% 4.4% 1.9% 

Average 126 5,537 6,509 2,241 124,646 351,834 5.6% 4.4% 1.9% 

 

Table 3-3: Annual Bicyclist Fatality and Injury Rates  

Year 

Population  

(in 

Thousands) 

Bicyclist 

Fatalities 

Bicyclist Fatality Rate 

per Million Population 

Bicyclist 

Injuries 

Bicyclist Injury Rate 

per Million Population 

2011 19,106 120 6.28 4,631 242.38 

2012 19,352 118 6.10 6,026 311.39 

2013 19,595 135 6.89 6,441 328.71 

2014 19,906 132 6.63 5,287 265.60 

Average 19,490 126 6.48 5,596 287.14 

Source: (U.S. Census Bureau, n.d.) 

 

Table 3-4 provides the monthly bicycle crash frequencies. It can be inferred that bicycle crash 

frequencies were relatively higher in the months of March to May and October to December.  

 

Day of Week 

 

Table 3-5 gives the bicycle crash statistics by day of week and crash severity. The percentage in 

parentheses gives the proportion of crashes by severity that occurred on each day of the week. It 

can be inferred from the table that fatal crashes were more frequent on Friday and Saturday.  
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Table 3-4: Monthly Bicycle Crash Statistics  

Month 2011 2012 2013 2014 Average 

January 343 517 688 442 497.5 

February 369 555 611 517 513.0 

March 497 653 604 545 574.8 

April 539 575 628 616 589.5 

May 509 545 606 549 552.3 

June 450 475 550 437 478.0 

July 444 517 572 440 493.3 

August 481 553 605 478 529.3 

September 516 573 621 474 546.0 

October 510 668 691 592 615.3 

November 508 603 579 466 539.0 

December 536 623 655 511 581.3 

Total 5,702 6,857 7,410 6,067 6,509.0 

 

Table 3-5: Statistics by Day of Week 

Day of Week Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

Monday 57 (11.3%) 3,350 (15.1%) 415 (14.3%) 3,897 (15.0%) 

Tuesday 69 (13.7%) 3,524 (15.9%) 480 (16.5%) 4,145 (15.9%) 

Wednesday 65 (12.9%) 3,599 (16.3%) 457 (15.7%) 4,197 (16.1%) 

Thursday 52 (10.3%) 3,360 (15.2%) 511 (17.6%) 3,994 (15.3%) 

Friday 93 (18.5%) 3,440 (15.5%) 447 (15.4%) 4,075 (15.7%) 

Saturday 91 (18.1%) 2,726 (12.3%) 332 (11.4%) 3,205 (12.3%) 

Sunday 76 (15.1%) 2,147 (9.7%) 260 (9.0%) 2,523 (9.7%) 

Total 503 (100%) 22,146 (100%) 2,902 (100%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

Time of Day  

 

Table 3-6 gives the bicycle crash statistics by time of day (divided into three-hour intervals) and 

crash severity. About one-quarter of all bicycle crashes (i.e., 23.9%) occurred from 3:00 PM to 

5:59 PM, while 20.3% of fatal crashes occurred from 6:00 PM to 8:59 PM.  
 

Table 3-6: Statistics by Time of Day 

Time of Day Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

Midnight - 2:59 AM 45 (8.9%) 1,561 (7.0%) 174 (6.0%) 1,788 (6.9%) 

3:00 AM - 5:59 AM 27 (5.4%) 321 (1.4%) 38 (1.3%) 391 (1.5%) 

6:00 AM - 8:59 AM 67 (13.3%) 2,695 (12.2%) 328 (11.3%) 3,156 (12.1%) 

9:00 AM - 11:59AM 56 (11.1%) 3,313 (15.0%) 383 (13.2%) 3,835 (14.7%) 

Noon - 2:59 PM 46 (9.1%) 4,015 (18.1%) 578 (19.9%) 4,739 (18.2%) 

3:00 PM - 5:59 PM 69 (13.7%) 5,316 (24.0%) 722 (24.9%) 6,233 (23.9%) 

6:00 PM - 8:59 PM 102 (20.3%) 3,548 (16.0%) 493 (17.0%) 4,217 (16.2%) 

9:00 PM - 11:59 PM 91 (18.1%) 1,377 (6.2%) 186 (6.4%) 1,677 (6.4%) 

Total 503 (100%) 22,146 (100%) 2,902 (100%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  



  

30 

 

3.2.2 Environmental Factors 

 

Environmental factors such as lighting condition and weather condition were examined to study 

the effect of these conditions on bicycle crash frequencies and severities. 

 

Lighting Condition 

 

Table 3-7 summarizes the bicycle crash statistics by lighting condition. Table 3-8 provides daytime 

and nighttime bicycle crash statistics. Although a majority of crashes occurred during daylight 

(75.2%), they resulted in a lower percentage of fatal crashes; only 1.1% of all bicycle crashes that 

occurred during daylight resulted in fatalities. Crashes at night were found to result in a 

disproportionately high percentage of fatal crashes. For example, 8.5% of all bicycle crashes that 

occurred during dark with no street light condition resulted in fatalities. The Z-test for proportions 

was used to compare the proportion of fatal crashes that occurred during daytime and nighttime. 

The following equation was used to calculate the Z-test statistic: 

 

                                          Z- test statistic= 
(P̂

1
- P̂2)

√(P̂(1-P̂) ×(
1

N1
+

1
N2

) 

; P̂= 
x1+ x2

N1+ N2

                     (3-1) 

where, 

P̂1 and P̂2  = proportion of fatal crashes that occurred during daytime and nighttime, 

respectively; 

N1 and N2 = total number of crashes that occurred during daytime and nighttime, 

respectively; and  

x1 and x2  = number of fatal crashes that occurred during daytime and nighttime, 

respectively.  

 

At a 5% significance level, there is sufficient evidence to conclude that there is a significant 

difference in the proportion of fatal crashes that occurred during daytime and nighttime. 

Additionally, at a 5% significance level, there is sufficient evidence to conclude that there is a 

significant difference in the proportion of fatal crashes that occurred during dark with street light 

and dark with no street light conditions.   

 

Table 3-7: Statistics by Lighting Condition 

Lighting Condition 
Fatal  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Total 

Crashes1 

Daylight 219 (1.1%) 16,764 (85.7%) 2,201 (11.2%) 19,571 (100%) 

Dusk 18 (1.8%) 824 (83.9%) 121 (12.3%) 982 (100%) 

Dawn 17 (4.1%) 350 (84.7%) 37 (9.0%) 413 (100%) 

Dark with Street Light 128 (3.6%) 3,001 (83.3%) 417 (11.6%)  3,604 (100%) 

Dark with No Street Light 115 (8.5%) 1,104 (82.0%) 117 (8.7%)  1,346 (100%) 

Dark with Unknown Light 5 (8.3%) 50 (83.3%) 4 (6.7%) 60 (100%) 

Unknown 1 (1.7%) 53 (88.3%) 5 (8.3%) 60 (100%) 

Total 503 (1.9%) 22,146 (85.1%) 2,902 (11.1%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
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Table 3-8: Daytime and Nighttime Bicycle Crash Statistics 

Lighting Condition 
Fatal  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Total 

Crashes1 

Daytime 219 (1.1%) 16,764 (85.7%) 2,201 (11.2%) 19,571 (100%) 

Nighttime2 283 (4.4%) 5329 (83.2%) 696 (10.9%)  6,405 (100%) 

Unknown 1 (1.7%) 53 (88.3%) 5 (8.3%) 60 (100%) 

Total 503 (1.9%) 22,146 (85.1%) 2,902 (11.1%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
2  Nighttime crashes include dusk, dawn, dark with street light, dark with no street light, and dark with 

unknown light condition.  

 

Weather Condition 

 

Table 3-9 provides bicycle crash statistics by weather condition. As expected, a majority of bicycle 

crashes occurred in clear weather condition. Only a very small proportion of fatal crashes occurred 

in adverse weather conditions. It can be inferred from the table that fog, smog, and smoke condition 

resulted in a high proportion of fatal crashes.  

 

Table 3-9: Statistics by Weather Condition 

Weather Condition Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

Clear 394 (1.9%) 17,843 (84.8%) 2,427 (11.5%) 21,053 (100%) 

Cloudy 89 (2.4%) 3,236 (86.5%) 346 (9.2%) 3,742 (100%) 

Rainy 14 (1.2%) 970 (86.5%) 115 (10.3%) 1,121 (100%) 

Fog, Smog, Smoke 5 (8.8%) 41 (71.9%) 8 (14.0%) 57 (100%) 

Severe Crosswinds 0 (0.0%) 1 (100%) 0 (0.0%) 1 (100%) 

Other 1 (1.7%) 53 (88.3%) 6 (10.0%) 60 (100%) 

Unknown 0 (0.0%) 2 (100%) 0 (0.0%) 2 (100%) 

Total 503 (1.9%) 22,146 (85.1%) 2,902 (11.1%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

3.2.3 Bicyclist-related Factors   

 

This section identifies the general trends based on the following bicyclist-related factors: 

 

 Age 

 Gender 

 Impairment  

 Safety equipment  

 Action prior to the crash  

 Action at the time of the crash  

 Location at the time of the crash  

   

Age 

 

Since bicyclist exposure data (e.g., bicycle volumes) are not readily available and is expensive to 

collect, researchers often rely on surrogate measures to estimate bicyclist exposure, such as 
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population or population density. In this study, bicycle crashes in each age group were normalized 

by population (i.e., crashes per million population). The 2009 travel survey data extracted from the 

National Household Travel Survey (NHTS) database were used to estimate population by age group. 

 

Table 3-10 gives the summary statistics of bicycle crashes by age group, population, and crash 

severity. The average age of bicyclists killed in crashes with motor vehicles was 43 years, while 

the average age of bicyclists involved in traffic crashes was 33.8 years. Among the different age 

groups, bicyclists between 45 and 54 years of age experienced the highest fatality rate of 19.76 

fatalities per year per million population, and those in 65-74 year age group experienced the highest 

injury rate of 875.43 injuries per year per million population. Note that the results from this table 

have to be interpreted with caution because the statistics are based on population, and they might 

not reflect the actual bicyclist exposure.  

 

The Z-test for proportions was used to compare the fatality rate of elder bicyclists (≥ 65 years) with 

the fatality rate of younger bicyclists (< 65 years). Based on the Z-test statistic, at a 5% significance 

level, there is sufficient evidence to conclude that there is a significant difference in the proportion 

of fatal crashes involving elder bicyclists compared to those involving younger bicyclists. 

 

Table 3-10: Statistics by Age Group 

Bicyclist  

Age Group 

(years) 

Population  

(in 

Thousands)1 

Bicyclist 

Fatalities 

Bicyclist Fatality Rate 

per Year 

per Million Population 

Bicyclist 

Injuries 

Bicyclist Injury Rate 

per Year  

per Million Population 

< 5 1,078 2 0.5 72 16.7 

5-9 1,106 3 0.7 590 133.4 

10-15 1,369 12 2.2 2,035 371.6 

16-20 1,198 43 9.0 2,615 545.7 

21-24 1,060 21 5.0 1,949 459.7 

25-34 2,440 57 5.8 3,322 340.4 

35-44 2,414 59 6.1 2,647 274.1 

45-54 2,748 113 10.3 3,762 342.2 

55-64 2,497 96 9.6 2,537 254.0 

65-74 1,935 39 5.0 4,055 523.9 

75-84 1,148 20 4.4 337 73.4 

85+ 495 8 4.0 75 37.9 

Unknown -- 32 -- 1,389 -- 

Total 19,488 505 6.5 22,385 287.2 

Source: (U.S. Census Bureau, n.d.) 
1Average population from 2011 to 2014. 

 

Gender 

 

Table 3-11 provides bicycle crash statistics by gender. Table 3-12 gives the summary statistics of 

bicycle crashes by gender, population, and crash severity. It is clear from these tables that crashes 

involving male bicyclists were more frequent and more severe compared to those involving female 

bicyclists. Again, Z-test for proportions was used to compare the proportion of fatal crashes that 

involved male and female bicyclists. Based on the Z-test statistic, at a 5% significance level, there 

is sufficient evidence to conclude that there is a significant difference in the proportion of fatal 

crashes involving male bicyclists compared to those involving female bicyclists. 
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Table 3-11: Statistics by Gender and Severity 
Bicyclist 

Gender 

Bicyclist  

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

Male 427 (84.6%) 16,794 (75.0%) 2,295 (74.5%) 19,881 (75.1%) 

Female 48 (9.5%) 4,426 (19.8%) 496 (16.1%) 5,058 (19.1%) 

Unknown 30 (5.9%) 1,165 (5.2%) 288 (9.4%) 1,523 (5.8%) 

Total   505 (100%) 22,385 (100%) 3,079 (100%) 26,462 (100%) 
1  Total bicyclists include bicyclists with unknown severity and non-traffic fatalities.  

 

Table 3-12: Statistics by Gender and Population 

Bicyclist 

Gender 

Population  

(in 

Thousands)1 

Bicyclist 

Fatalities 

Bicyclist Fatality Rate 

per Year per Million 

Population 

Bicyclist 

Injuries 

Bicyclist Injury Rate 

per Year per Million 

Population 

Male 9,526 427 11.2 16,794 440.7 

Female 9,963 48 1.2 4,426 111.1 

Unknown --- 30 --- 1,165 -- 

Total  19,489 505 6.5 22,385 287.1 

Source: (U.S. Census Bureau, n.d.) 
1Average population from 2011 to 2014. 

 

Impairment 

 

Table 3-13 provides statistics on impaired bicyclists. The table includes separate statistics for 

bicyclists influenced by alcohol and drugs. As can be inferred from the table, 3.3% of all bicyclists 

involved in crashes were under the influence of alcohol, and 0.4% of all bicyclists involved in 

crashes were under the influence of drugs. Over 10% of all bicyclists involved in crashes who were 

under the influence of alcohol were killed, and a high 27.6% of all bicyclists involved in crashes 

who were under the influence of drugs were killed. These proportions were found to be statistically 

significant at a 5% significance level.   

 

Table 3-13: Statistics on Impaired Bicyclists 

Impairment 
Bicyclist 

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

Alcohol 

Yes  89 (10.2%) 690 (79.4%)  70 (8.1%)  869 (100%)  

No 228 (1.0%) 20,332 (86.0%) 2,636 (11.2%) 23,633 (100%)  

Unknown 188 (9.6%) 1,363 (69.5%) 373 (19.0%) 1,960 (100%)  

Total  505 (1.9%)  22,385 (84.6%) 3,079 (11.6%) 26,462 (100%) 

Drugs 

Yes 29 (27.6%) 64 (61.0%) 10 (9.5%) 105 (100%) 

No 264 (1.1%) 20,633 (86.0%) 2,650 (11.0%) 23,993 (100%) 

Unknown 212 (9.0%) 1,688 (71.4%) 419 (17.7%) 2,364 (100%) 

Total  505 (1.9%)  22,385 (84.6%) 3,079 (11.6%) 26,462 (100%) 
1  Total bicyclists include bicyclists with unknown severity and non-traffic fatalities.  
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Safety Equipment  

 

Safety equipment plays a crucial role in reducing the frequency and severity of bicycle crashes. 

Safety equipment such as helmets, protective pads, etc., protect the bicyclists involved in a crash; 

while other equipment such as reflective clothing, lighting on bicycles, etc., make bicyclists more 

visible to the drivers. Table 3-14 provides bicycle crash statistics based on the safety equipment 

used by the bicyclists at the time of the crash. The Z-test for proportions was used to compare the 

proportion of fatal crashes that involved bicyclists using safety equipment versus bicyclists not 

using any type of safety equipment. Based on the Z-test statistic, at a 5% significance level, there 

is sufficient evidence to conclude that there is no significant difference in the proportion of fatal 

crashes involving bicyclists using safety equipment compared to those involving bicyclists without 

using any type of safety equipment. 

 

Table 3-14: Statistics by Safety Equipment Used 

Safety Equipment 
Bicyclist  

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

None 404 (1.9%) 18,292 (84.9%) 2,457 (11.4%) 21,549 (100%) 

Helmet 52 (1.7%) 2,665 (86.7%) 293 (9.5%) 3073 (100%) 

Protective Pads Used2 2 (5.3%) 31 (81.6%) 4 (10.5%) 38 (100%) 

Reflective Clothing3  5 (4.5%) 95 (85.6%) 9 (8.1%) 111 (100%) 

Lighting 31 (5.0%) 507 (82.2%) 71 (11.5%) 617 (100%) 

Not Applicable 1 (1.0%) 78 (78.8%) 16 (16.2%) 99 (100%) 

Other 1 (0.9%) 103 (88.0%) 9 (7.7%) 117 (100%) 

Unknown 9 (1.0%) 614 (71.6%) 220 (25.6%) 858 (100%) 

Total 505 (1.9%) 22,385 (84.6%) 3,079 (11.6%) 26,462 (100%) 
1  Total bicyclists include bicyclists with unknown severity and non-traffic fatalities. 
2  E.g., elbows, knees, etc.; 3 e.g., jacket, backpack, etc. 
 

Since the type of safety equipment impacts the severity of crashes, Z-test for proportions was again 

used to compare the proportion of fatal crashes that involved bicyclists using either helmets or 

protective pads and those using reflective clothing or lighting on bicycles. At a 5% significance 

level, there is sufficient evidence to conclude that there is a significant difference in the proportion 

of fatal crashes involving bicyclists using helmets or protective pads compared to those involving 

bicyclists using reflective clothing or lighting.  

 

Bicyclist’s Action Prior to the Crash  

 

Table 3-15 provides statistics based on bicyclist’s action prior to the crash. Over one-third of 

bicyclists (35.2%) were hit while crossing the road, 2.2% of these crashes resulted in fatalities. It 

is worth noting that although bicyclists were frequently hit while cycling on the sidewalk, these 

crashes resulted in very few fatalities; only 0.4% of all crashes involving bicyclists cycling on 

sidewalk resulted in fatalities.   

 

The Z-test for proportions was used to compare the proportion of fatal crashes that involved 

bicyclists crossing the roadway and those cycling along the roadway. At a 5% significance level, 

there is sufficient evidence to conclude that there is no statistically significant difference in the 
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proportion of fatal crashes involving bicyclists crossing the roadway compared to those involving 

bicyclists cycling along the roadway. The Z-test for proportions was again used to compare the 

proportion of fatal crashes that involved bicyclists cycling along the roadway with traffic and those 

cycling along the roadway against traffic. At a 5% significance level, there is sufficient evidence 

to conclude that the proportion of fatal crashes involving bicyclists cycling along the roadway with 

traffic is significantly greater than those involving bicyclists cycling along the roadway against 

traffic.  

 

Table 3-15: Statistics by Bicyclist’s Action Prior to the Crash 

Action Prior to the Crash 
Bicyclist  

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

Proportion  

of Total 

Bicyclists 

Crossing Roadway 209 7,845 1,055 9,303 35.2% 

Waiting to Cross Roadway 7 274 54 343 1.3% 

Cycling Along Roadway with Traffic  153 4,277 427 4,930 18.6% 

Cycling Along Roadway against Traffic  35 1,887 263 2,214 8.4% 

Cycling on Sidewalk 24 5,034 693 5,857 22.1% 

In Roadway (working, playing, etc.) 20 474 63 573 2.2% 

Adjacent to Roadway 15 300 43 367 1.4% 

Going to or from School  0 143 22 168 0.6% 

Working in Traffic Way  0 1 1 2 0.0% 

None 5 233 32 275 1.0% 

Other 23 1,485 277 1,831 6.9% 

Unknown 14 432 149 599 2.3% 

Total 505 22,385 3,079 26,462 100.0% 
1 Total bicyclists include bicyclists with unknown severity and non-traffic fatalities.  

  

Bicyclist’s Location at the Time of the Crash  

 

Table 3-16 gives bicyclist crash statistics by location at the time of the crash and crash severity. 

At a 5% significance level, there is sufficient evidence to conclude that there is a significant 

difference in the proportion of fatal crashes that occurred on segments compared to those that 

occurred at intersections. 

 

Bicyclist’s Action and Location at the Time of the Crash  

 

Table 3-17 gives statistics based on bicyclist’s action at the time of the crash. Note that no improper 

action was identified in 46% of crashes. Failure to yield right-of-way was found to be the most 

frequent contributing cause, resulting in about 15% of total crashes.  
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Table 3-16: Statistics by Bicyclist’s Location at the Time of the Crash 
Bicyclist’s Location 

at the Time of the Crash 

Bicyclist  

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

Intersection2 137 (1.2%) 9,882 (85.5%) 1,321 (11.4%) 11,563 (100%) 

Segment3 305 (2.8%) 9,260 (84.9%) 1,198 (11.0%) 10,910 (100%) 

Driveway/Access 4 (0.3%) 1,184 (83.9%) 163 (11.5%) 1,412 (100%) 

Shared-use Path or Trail 2 (1.9%) 91 (85.8%) 8 (7.5%) 106 (100%) 

Non-traffic Way Area 1 (1.6%) 46 (74.2%) 13 (21.0%) 62 (100%) 

Other 44 (2.4%) 1,515 (81.5%) 252 (13.6%) 1,859 (100%) 

Unknown 12 (2.2%) 407 (74.0%) 124 (22.5%) 550 (100%) 

Total 505 (1.9%) 22,385 (84.6%) 3,079 (11.6%) 26,462 (100%) 
1  Total bicyclists include bicyclists with unknown severity and non-traffic fatalities.  
2  Intersection location includes crashes that occurred at intersection-marked crosswalk, intersection-unmarked 

crosswalk, intersection-other locations. 
3  Segment location includes crashes that occurred at midblock-marked crosswalk, travel lane-other location, 

bicycle lane, shoulder/roadside, sidewalk, and median/crossing island. 

 

Table 3-17: Statistics by Bicyclist’s Action at the Time of the Crash 

Bicyclist’s Action at the Time of the 

Crash 

Bicyclist  

Fatalities 

Bicyclist  

Injuries 

Uninjured 

Bicyclists 

Total  

Bicyclists1 

Proportion  

of Total 

Bicyclists 

No Improper Action 

No Improper Action 124 10,436 1,417 12,180 46.0% 

Any Improper Action 

Dart/Dash 33 1,239 139 1,444 5.5% 

Failure to Yield Right-of-way 127 3,347 409 3,950 14.9% 

Failure to Obey Traffic Signs, Signals  33 1,180 140 1,388 5.2% 

In Roadway2  29 416 47 504 1.9% 

Disabled Vehicle Related3  0 14 0 14 0.1% 

Entering/Exiting Parked/Standing Vehicle 0 42 14 58 0.2% 

Inattentive4  1 221 33 260 1.0% 

Not Visible5 36 621 68 733 2.8% 

Improper Turn/Merge 8 181 18 215 0.8% 

Improper Passing 2 85 14 105 0.4% 

Wrong Way, Riding  18 1,447 192 1,709 6.5% 

Other 55 2,162 375 2,640 10.0% 

Any Improper Action6 342 10,955 1,449 13,020 49.2% 

Unknown Action 

Unknown 39 994 213 1,262 4.8% 

Total 

Total 505 22,385 3,079 26,462 100.0% 
1  Total bicyclists include bicyclists with unknown severity and non-traffic fatalities.  
2 E.g., standing, lying, working, etc.; 3 e.g., working on, pushing, leaving/approaching, etc.;  
4  e.g., talking, eating, etc.; 5 e.g., dark clothing, no lighting, etc. 
6  Any improper action includes dart/dash, failure to yield right-of-way, failure to obey traffic signs and signals, 

in roadway, disabled vehicle-related, entering/exiting parked/standing vehicle, inattentive, not visible, 

improper turn/merge, improper passing, wrong way, riding, and other. 
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3.2.4 Crash Location-related Factors  
 

County  
 

Table 3-18 lists the ten counties in Florida with the highest number of bicycle crashes during the 

years 2011-2014. Miami Dade County, followed by Broward County experienced the highest 

number of bicycle crashes. However, Pinellas and Brevard counties experienced a high 10.0 

bicyclist fatalities per year per million population. 
  
Table 3-18: Statistics in Top Ten Counties in Florida 

County  

Total  

Bicycle 

Crashes 

(2011-2014) 

Population  

(in 

Thousands)1 

Bicyclist 

Fatalities 

(2011-2014) 

Bicyclist 

Fatality 

Rate2 

Bicyclist 

Injuries 

(2011-2014) 

Bicyclist  

Injury 

Rate2 

Miami-Dade 3,589 2,626 40 3.8 2,897 275.8 

Broward 3,202 1,830 52 7.1 2,631 359.4 

Pinellas 2,082 927 37 10.0 1,762 475.2 

Palm Beach 2,066 1,368 30 5.5 1,814 331.5 

Orange 1,875 1,214 33 6.8 1,621 333.8 

Hillsborough 1,840 1,291 40 7.7 1,668 323.0 

Duval 1,108 885 21 5.9 937 264.7 

Volusia 782 500 16 8.0 672 336.0 

Brevard 765 550 22 10.0 649 295.0 

Lee 715 654 19 7.3 629 240.4 

Total 18,024 11,845 310 6.5 15,280 322.5 

Source: (U.S. Census Bureau, n.d.); 1 Average population from 2011 to 2014; 2  rate is per year per million 

population. 

 

Presence of Work Zone  

 

Of the 26,036 bicycle crashes that occurred during 2011-2014, 205 crashes (0.8%) were identified 

as work zone-related. Table 3-19 provides these statistics. The proportion of fatalities in work 

zone-related crashes was found to be slightly lower than the proportion of fatalities in non-work 

zone-related crashes. Note that this difference was not statistically significant. Statistics of work 

zone-related crashes by year revealed that the total bicyclists involved in work zone-related crashes 

reduced from 65 in 2013 to 39 in 2014. Moreover, work zone-related crashes were found to be 

more frequent during daytime (157 of 205) compared to nighttime (43 of 205).   

 

Table 3-19: Work Zone-related Crash Statistics  

Work Zone-related  Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

No 497 (1.9%) 21,898 (85.0%) 2,874 (11.2%) 25,752 (100%) 

Yes 3 (1.5%) 184 (89.8%) 16 (7.8%) 205 (100%) 

Unknown 3 (3.8%) 64 (81.0%) 12 (15.2%) 79 (100%) 

Total 503 (1.9%) 22,146 (85.1%) 2,902 (11.1%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
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3.2.5 Vehicle-related Factors  
 

Vehicle Type 
 

Table 3-20 provides bicycle crash statistics by vehicle type and crash severity. Overall, a total of 

26,766 vehicles were involved in bicycle crashes. As can be observed from the table, among all 

types of vehicles, passenger cars were found to result in relatively less severe crashes. Medium 

and heavy trucks resulted in more severe crashes; a relatively high 14.5% of all crashes involving 

medium and heavy trucks resulted in fatalities. The 214 bicycle crashes involving medium and 

heavy trucks were further analyzed to determine the reasons for high bicyclist fatality rate 

involving these vehicles. Analysis based on average vehicle speed, first harmful event, vehicle 

maneuver action, driver and bicyclist action at the time of the crash, bicyclist safety equipment, 

etc. was conducted. The average vehicle speed in all the bicycle crashes was found to be 12.4 mph, 

while the speed of medium and heavy trucks was found to be 14.1 mph. High speeds of these 

vehicles might have contributed to a higher proportion of fatal crashes compared to crashes 

involving other vehicles. Besides the average vehicle speed, no other obvious patterns that could 

potentially result in more severe crashes were identified.  
 

Table 3-20: Statistics by Vehicle Type 

Vehicle Type 
Vehicles Involved in 

Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

Passenger Car 248 (1.7%) 12,706 (84.6%) 1,798 (12.0%) 15,027 (100%) 

Sport Utility Vehicle 88 (2.2%) 3,394 (86.6%) 360 (9.2%) 3,917 (100%) 

Pickup Truck 85 (2.9%) 2,585 (86.7%) 260 (8.7%) 2,981 (100%) 

Passenger Van 46 (3.0%) 1,317 (85.9%) 151 (9.8%) 1,533 (100%) 

Light Truck2 12 (3.3%) 300 (82.2%) 39 (10.7%) 365 (100%) 

Medium/Heavy Trucks 31 (14.5%) 156 (72.9%) 20 (9.3%) 214 (100%) 

Bus 5 (2.5%) 160 (79.2%) 32 (15.8%) 202 (100%) 

Motorcycle 5 (2.7%) 144 (77.8%) 31 (16.8%) 185 (100%) 

Moped 0 (0.0%) 36 (78.3%) 10 (21.7%) 46 (100%) 

Motor Home 0 (0.0%) 21 (95.5%) 1 (4.5%) 22 (100%) 

Others3 13 (1.9%) 526 (78.9%) 98 (14.7%) 667 (100%) 

Unknown 25 (1.6%) 1,326 (82.5%) 235 (14.6%) 1,607 (100%) 

Total 558 (2.1%) 22,671 (84.7%) 3,035 (11.3%) 26,766 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
2 Light trucks include cargo van. 

3 Others include all-terrain vehicle, farm labor vehicle, low speed vehicle, motor coach, and “other” category. 
 

Vehicle Maneuver Action  
 

Table 3-21 provides statistics by vehicle maneuver action and crash severity. Overall, about 45% of 

all vehicles were traveling straight ahead at the time of the crash. Most severe crashes involved 

vehicles leaving traffic lane, followed by vehicles changing lanes and negotiating a curve.  
 

Hit-and-run Crashes 

 

Table 3-22 gives statistics of Hit-and-Run crashes. From 2011-2014, a total of 4,157 bicycle 

crashes were identified as Hit-and-Run. These constitute 16.0% of total bicycle crashes. In general, 

the severity of crashes involving hit and run vehicles was found to be similar to the severity of all 

bicycle crashes. In other words, involvement of hit and run drivers did not affect crash severity.  
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Table 3-21: Statistics by Vehicle Maneuver Action 

Vehicle 

Maneuver Action 

Vehicles Involved in 

Fatal 

Crashes 

Injury 

Crashes 
PDO Crashes Total Crashes1 

Straight Ahead 442 (3.7%) 10,114 (84.0%) 1,248 (10.4%) 12,038 (100%) 

Turning Right 33 (0.4%) 6,648 (86.2%) 892 (11.6%) 7,712 (100%) 

Turning Left  23 (0.8%) 2,538 (87.8%) 282 (9.8%) 2,890 (100%) 

Stopped in Traffic 2 (0.3%) 481 (80.0%) 112 (18.6%) 601 (100%) 

Backing 0 (0.0%) 303 (88.1%) 37 (10.8%) 344 (100%) 

Entering Traffic Lane 0 (0.0%) 296 (86.0%) 36 (10.5%) 344 (100%) 

Slowing 2 (0.7%) 239 (80.5%) 46 (15.5%) 297 (100%) 

Parked  1 (0.4%) 184 (74.5%) 60 (24.3%) 247 (100%) 

Overtaking/Passing 4 (2.2%) 159 (88.8%) 14 (7.8%) 179 (100%) 

Changing Lanes 10 (7.9%) 102 (80.3%) 14 (11.0%) 127 (100%) 

Negotiating a Curve 5 (5.2%) 84 (86.6%) 7 (7.2%) 97 (100%) 

Making U-turn 0 (0.0%) 59 (85.5%) 6 (8.7%) 69 (100%) 

Leaving Traffic Lane 5 (9.6%) 42 (80.8%) 3 (5.8%) 52 (100%) 

Other 9 (1.6%) 457 (79.2%) 90 (15.6%) 577 (100%) 

Unknown  22 (1.8%) 965 (81.0%) 188 (15.8%) 1,192 (100%) 

Total 558 (2.1%) 22,671 (84.7%) 3,035 (11.3%) 26,766 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

Table 3-22: Hit-and-Run Crash Statistics  

Hit-and-Run Involvement Fatal Crashes Injury Crashes PDO Crashes Total Crashes1 

Hit and Run  80 (1.9%)  3,286 (79.0%) 735 (17.7%) 4,157 (100%) 

Not Hit and Run 420 (2.0%) 18,429 (86.3%) 2,086 (9.8%) 21,352 (100%) 

Unknown 3 (0.6%) 431 (81.8%) 81 (15.4%) 527 (100%) 

Total 503 (1.9%) 22,146 (85.1%)  2,902 (11.1%) 26,036 (100%) 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

3.3 Descriptive Trend Analysis – Roadway Characteristics  

 

This section presents statewide bicycle crash characteristics based on the following roadway-

related factors: 
 

 functional classification 

 number of lanes 

 posted speed limit 

 presence of bicycle lane 

 traffic volume (i.e., AADT) 
 

During the analysis years 2011-2014, of the total 26,036 bicycle crashes, 10,580 crashes occurred 

on state roads, which include both limited-access facilities and non-limited-access facilities. 

Although bicycles are prohibited on limited-access facilities, 34 bicycle crashes were found to 

have occurred on these facilities. These 34 crashes were excluded from further analysis. The 

statistics by number of lanes, posted speed limit, crash location, presence of bicycle lane, and 

traffic volume were provided for non-limited-access facilities which constitute 9,884.3 miles of 

state road network, and experienced 10,546 bicycle crashes from 2011 through 2014.  
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Functional Classification 

 

Table 3-23 provides bicycle crash statistics by functional classification of the road network and 

crash severity. The majority of bicycle crashes occurred on urban roadways; only 1.2% of all 

crashes that occurred on state roads occurred in rural areas. This is expected since traffic volumes 

and bicyclists are usually higher on urban roads as compared to rural roads. In terms of crash 

severity, 16.9% of all bicycle crashes that occurred on rural facilities resulted in fatalities while 

only 2.5% of those that occurred on urban facilities resulted in fatalities. 

 

Table 3-23: Statistics by Functional Class 

Functional Classification Miles 
Fatal 

Crashes 

Injury 

Crashes 

PDO 

Crashes 

Total 

Crashes1 

Total Crashes 

per Mile per 

Year 

R
u

ra
l 

F
ac

il
it

ie
s 

Rural Principal Arterial – 

Interstate 
717.3 

0  

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 
0.00 

Rural Principal Arterial – 

Freeways and Expressways 
175.0 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 
0.00 

Rural Principal Arterial – 

Other 
2,586.0 

17 

(15.6%) 

79 

(72.5%) 

12 

(11.0%) 

109 

(100%) 
0.01 

Rural Minor Arterial 1,761.2 
5 

(25.0%) 

12 

(60.0%) 

3 

(15.0%) 

20 

(100%) 
0.00 

Rural Major Collector 404.9 
0 

(0.0%) 

1 

(100%) 

0 

(0.0%) 

1 

(100%) 
0.00 

Rural Minor Collector  0.0 
0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 
-- 

Rural Local 0.3 
0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 

0 

(0.0%) 
0.00 

Total Rural Facilities 5,644.7 
22 

(16.9%) 

92 

(70.8%) 

15 

(11.5%) 

130 

(100%) 
0.01 

U
rb

an
 F

ac
il

it
ie

s 

Urban Principal Arterial – 

Interstate 
778.0 

1 

(12.5%) 

6 

(75.0%) 

1 

(12.5%) 

8 

(100%) 
0.00 

Urban Principal Arterial – 

Freeways and Expressways 
562.3 

2 

(7.7%) 

22 

(84.6%) 

2 

(7.7%) 

26 

(100%) 
0.01 

Urban Principal Arterial – 

Other 
3,466.9 

211 

(2.8%) 

6237 

(84.2%) 

803 

(10.8%) 

7,404 

(100%) 
0.53 

Urban Minor Arterial 1,499.4 
48 

(1.7%) 

2356 

(85.1%) 

298 

(10.8%) 

2,768 

(100%) 
0.46 

Urban Major Collector 158.0 
2 

(0.8%) 

208 

(87.4%) 

23 

(9.7%) 

238 

(100%) 
0.38 

Urban Minor Collector 3.7 
0 

(0.0%) 

2 

(100%) 

0 

(0.0%) 

2 

(100%) 
0.14 

Urban Local 3.9 
0 

(0.0%) 

3 

(75.0%) 

1 

(25.0%) 

4 

(100%) 
0.26 

Total Urban Facilities 6,472.2 
264 

(2.5%) 

8,834 

(84.5%) 

1,128 

(10.8%) 

10,450 

(100%) 
0.40 

Total 12,118.62 
286 

(2.7%) 

8,926 

(84.4%) 

1,143 

(10.8%) 

10,580 

(100%) 
0.22 

1 Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
2 Total miles include 1.7 miles of unknown facility type.  
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In particular, urban principal arterials excluding interstates, freeways, and expressways and urban 

minor arterials experienced over 95% of total bicycle crashes. The urban principle arterial other 

category experienced the highest bicycle crash rate of 0.53 bicycle crashes per mile per year. This 

was followed by urban minor arterials with 0.45 bicycle crashes per mile per year. Based on these 

statistics, it can be concluded that urban principal arterials other than interstates, freeways, and 

expressways and urban minor arterials experience a high frequency of bicycle crashes. 

 

Number of Lanes 

 

Table 3-24 provides bicycle crash statistics by number of lanes and crash severity. A majority of 

bicycle crashes occurred on either four-lane or six-lane facilities; these two facilities experienced 

more than 80% of all bicycle crashes. The six-lane facilities experienced the highest crash rate of 

0.97 bicycle crashes per mile per year, followed by facilities with more than six lanes and five 

lanes, respectively. On the other hand, the two-lane facilities experienced the highest proportion 

of fatal crashes; 4.4% of all bicycle crashes at two-lane facilities resulted in fatalities while 2.7% 

of crashes on all non-limited-access facilities were fatal. 

 

Table 3-24: Statistics by Number of Lanes 

Number 

of Lanes 
Miles 

Fatal 

Crashes 

Injury 

Crashes 

PDO 

Crashes 

Total 

Crashes1 

Total 

Crashes  

per Mile  

per Year 

1 11.8 0 (0.0%) 5 (83.3%) 1 (16.7%) 6 (100%) 0.13 

2 5,002.6 41 (4.4%) 781 (84.3%) 93 (10.0%) 927 (100%) 0.05 

3 151.7 1 (0.3%) 242 (84.6%) 41 (14.3%) 286 (100%) 0.47 

4 3,394.1 129 (3.0%) 3,654 (83.9%) 488 (11.2%) 4,355 (100%) 0.32 

5 88.9 4 (1.7%) 189 (79.7%) 37 (15.6%) 237 (100%) 0.67 

6 1,142.1 99 (2.2%) 3,771 (85.0%) 451 (10.2%) 4,436 (100%) 0.97 

≥ 7 91.4 9 (3.0%) 256 (85.6%) 29 (9.7%) 299 (100%) 0.82 

Unknown  1.7 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.00 

Total 9,884.3 283 (2.7%) 8,898 (84.4%) 1,140 (10.8%) 10,546 (100%) 0.27 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  
  

Posted Speed Limit 
 

Table 3-25 gives bicycle crash statistics by posted speed limit and crash severity. Overall, 

roadways with 40 mph posted speed limit experienced the highest bicycle crash rate of 0.86 crashes 

per mile per year. As expected, more severe crashes occurred on high-speed facilities. For example, 

a high 12.5% of all crashes that occurred on roadways with speed limit ≥ 55 mph resulted in 

fatalities, while on average, only 2.7% of all bicycle crashes on non-limited-access facilities were 

fatal. It can be inferred from the table that low-speed facilities experienced a greater number of 

bicycle crashes while high-speed facilities experienced a greater proportion of fatal crashes.  
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Table 3-25: Statistics by Posted Speed Limit 

1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

Crash Location 
 

Table 3-26 gives the bicycle crash statistics by crash location. A total of 48.2% all bicycle crashes 

occurred at non-intersections, followed by 37.5% at intersections, and 10.3% at driveways. A 

greater proportion of crashes at non-intersections (i.e., segments) were found to result in fatalities 

compared to the crashes at intersections, and this difference was found to be statistically significant 

at a 5% significance level.  

 

Table 3-26: Statistics by Crash Location 

1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

Presence of Bicycle Lane 

 

Table 3-27 presents the bicycle crash statistics by the presence or absence of bicycle lanes. Of the 

entire 9,884.3 miles of the non-limited-access facilities on the state road network in Florida, only 

1,160.9 miles (i.e., 11.7%) were found to have bicycle lanes. Facilities with bicycle lanes 

experienced 0.48 crashes per mile per year while those without bicycle lanes experienced 0.24 

crashes per mile per year. These statistics need to be interpreted with caution since bicycle 

Posted 

Speed 

Limit 

Miles 
Fatal  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Total  

Crashes1 

Total 

Crashes  

per Mile  

per Year 

≤ 35 mph 921.4 28 (1.0%) 2,353 (82.6%) 392 (13.8%) 2,850 (100%) 0.77 

40 mph 621.3 46 (2.1%) 1,819 (85.0%) 237 (11.1%) 2,140 (100%) 0.86 

45 mph 2,193.8 117 (2.6%) 3,844 (85.6%) 427 (9.5%) 4,491 (100%) 0.51 

50 mph 583.1 30 (5.6%) 454 (84.5%) 50 (9.3%) 537 (100%) 0.23 

≥ 55 mph 5,508.1 62 (12.5%) 397 (80.0%) 33 (6.7%) 496 (100%) 0.02 

Unknown 56.6 0 (0.0%) 31 (96.9%) 1 (3.1%) 32 (100%) 0.14 

Total 9,884.3 283 (2.7%) 8,898 (84.4%) 1,140 (10.8%) 10,546 (100%) 0.27 

Location 
Fatal  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Total   

Crashes1 

Non-intersection 178 (3.5%) 4,169 (82.0%) 574 (11.3%) 5,085 (100%) 

Intersection 85 (2.1%) 3,425 (86.6%) 408 (10.3%) 3,956 (100%) 

Driveway 7 (0.6%) 970 (89.3%) 93 (8.6%) 1,086 (100%) 

Railway Grade Crossing 0 (0.0%) 2 (100.0%) 0 (0.0%) 2 (100%) 

Entrance/Exit Ramp 0 (0.0%) 32 (88.9%) 4 (11.1%) 36 (100%) 

Crossover related 2 (10.5%) 12 (63.2%) 5 (26.3%) 19 (100%) 

Shared-use Path or Trail 1 (5.0%) 14 (70.0%) 4 (20%) 20 (100%) 

Through Roadway 4 (14.8%) 16 (59.3%) 4 (14.8%) 27 (100%) 

Other 5 (3.5%) 118 (82.5%) 18 (12.6%) 143 (100%) 

Unknown 1 (0.6%) 140 (81.4%) 30 (17.4%) 172 (100%) 

Total 283 (2.7%) 8,898 (84.4%) 1,140 (10.8%) 10,546 (100%) 
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exposure (e.g., bicycle volumes) is not taken into consideration. It is fair to assume that the 

facilities with bicycle lanes have higher exposure, and hence, could result in more crashes 

compared to the facilities without bicycle lanes. Bicycle crash severities at locations with and 

without bicycle lanes were found to be similar. In other words, crash severity was not affected by 

the presence of bicycle lanes. However, more in-depth analysis is required to understand the effect 

of bicycle lanes on the frequency and severity of bicycle crashes.  

 

Table 3-27: Statistics by Presence of Bicycle Lane 

Presence of 

Bicycle 

Lane 

Miles 
Fatal 

Crashes 

Injury 

Crashes 

PDO 

Crashes 

Total 

Crashes1 

Total  

Crashes  

per Mile 

 per Year 

Yes 1,160.9 58 (2.6%) 1,901 (84.8%) 213 (9.5%) 2,241 (100%) 0.48 

No 8,723.4 225 (2.7%) 6,997 (84.3%) 927 (11.2%) 8,305 (100%) 0.24 

Total 9,884.3 283 (2.7%) 8,898 (84.4%) 1,140 (10.8%) 10,546 (100%) 0.27 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

Traffic Volume  

 

Table 3-28 presents the bicycle crash statistics for different AADT ranges. As expected, low-

volume roads (i.e., with AADT ≤ 10,000 veh/day) experienced the lowest number of bicycle 

crashes per mile per year. However, a greater proportion of these crashes resulted in fatalities. The 

highest bicycle crash rate of 1.05 bicycle crashes per mile per year was observed on high volume 

roads (AADT > 50,000 veh/day). 

 

Table 3-28: Statistics by Traffic Volume 

AADT 

(veh/day) 
Miles 

Fatal 

Crashes 

Injury 

Crashes 
PDO Crashes 

Total 

Crashes1 

Total  

Crashes  

per Mile  

per Year 

≤ 10,000 4,916.2 31 (6.6%) 379 (80.6%) 55 (11.7%) 470 (100%) 0.02 

10,001-20,000 2,116.9 49 (2.9%) 1,448 (84.6%) 180 (10.5%) 1,712 (100%) 0.20 

20,001-30,000 1,153.2 65 (2.7%) 1,993 (83.6%) 275 (11.5%) 2,384 (100%) 0.52 

30,001-40,000 851.6 55 (2.1%) 2,282 (86.0%) 262 (9.9%) 2,652 (100%) 0.78 

40,001-50,000 443.5 46 (2.7%) 1,469 (85.1%) 174 (10.1%) 1,726 (100%) 0.97 

> 50,000 380.5 37 (2.3%) 1,325 (82.8%) 194 (12.1%) 1,600 (100%) 1.05 

Unknown 22.4 0 (0.0%) 2 (0.0%) 0 (0.0%) 2 (100%) 0.02 

Total 9,884.3 283 (2.7%) 8,898 (84.4%) 1,140 (10.8%) 10,546 (100%) 0.27 
1  Total crashes include crashes of unknown severity and crashes that resulted in a non-traffic fatality.  

 

3.4 Summary  

 

This chapter focused on identifying the overall statewide bicycle crash patterns in Florida. The 

general trends in bicycle crash data and roadway characteristics data were identified, and are 

summarized in the following sections.  
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3.4.1 Crash Characteristics 

 

The descriptive trend analysis was based on temporal, environmental, bicyclist-related, crash 

location-related, and vehicle-related factors. The analysis was based on a total of 26,036 bicycle 

crashes that occurred during 2011-2014. Some of the key findings include: 

 

 From 2011-2014, a total of 503 fatal crashes and 22,146 injury crashes involved bicyclists.  

 Bicycle fatal crashes accounted for 5.6% of all traffic fatal crashes, while they constituted 

only 1.9% of total crashes. 

 Nighttime bicycle crashes resulted in more fatalities compared to daytime crashes.  

 The majority of bicycle crashes occurred in clear weather condition. Additionally, only a 

very small proportion of fatal crashes occurred in adverse weather conditions.  

 The average age of bicyclists killed in traffic crashes was 43 years, while the average age 

of bicyclists involved in traffic crashes was 33.8 years.  

 Crashes involving elder bicyclists (≥ 65 years) resulted in more fatalities compared to 

crashes involving younger bicyclists (< 65 years).  

 Crashes involving male bicyclists resulted in more fatalities compared to crashes involving 

female bicyclists.  

 Over 10% of all bicyclists involved in crashes who were under the influence of alcohol 

were killed, and a high 27.6% of all bicyclists involved in crashes who were under the 

influence of drugs were killed. 

 Crashes involving bicyclists using helmets or protective pads were less severe compared 

to those involving bicyclists using reflective clothing or lighting.  

 Although bicyclists were frequently hit while cycling on the sidewalk, these crashes 

resulted in very few fatalities. 

 Crashes involving bicyclists cycling along the roadway against traffic were found to be 

more severe compared to those involving bicyclists cycling along the roadway with traffic. 

 In terms of bicyclist’s action at the time of the crash, failure to yield right-of-way was the 

most frequent contributing cause, resulting in about 15% of total crashes.  

 Miami Dade and Broward counties experienced the highest number of bicycle crashes in 

Florida.  

 Of the 26,036 bicycle crashes that occurred during 2011-2014, 205 crashes (0.8%) were 

identified as work zone-related. The proportion of fatalities in work zone-related crashes 

was slightly lower than the proportion of fatalities in non-work zone-related crashes.  

 Among all types of vehicles, passenger cars were found to result in relatively less severe 

crashes. Medium and heavy trucks resulted in more severe crashes; a relatively high 14.5% 

of all crashes involving medium and heavy trucks were fatal. The average vehicle speed of 

medium/heavy trucks was found to be 14.1 mph, while the average speed of all vehicles 

involved in bicycle crashes was found to be 12.4 mph. High speeds of these vehicles might 

have contributed to more fatal crashes compared to other vehicles.  

 In terms of vehicle maneuver action, a high proportion of severe crashes involved vehicles 

leaving traffic lane, followed by vehicles changing lanes and negotiating a curve.  

 About 16.0% of total bicycle crashes constituted hit and run crashes. However, 

involvement of hit and run drivers did not affect crash severity. 
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3.4.2 Roadway Characteristics 

 

The effect of roadway geometric features on the frequency and severity of bicycle crashes was 

studied using data from 9,884.3 miles of non-limited-access state roads in Florida, which 

experienced a total of 10,546 bicycle crashes during the four-year analysis period. Some of the key 

findings include:  

 

 The majority of bicycle crashes occurred on urban roadways; only 1.2% of all crashes that 

occurred on state roads occurred in rural areas. In terms of crash severity, 16.9% of all 

bicycle crashes that occurred on rural facilities resulted in fatalities while only 2.5% of 

those that occurred on urban facilities resulted in fatalities.  

 Urban principal arterials other than interstates, freeways, and expressways and urban minor 

arterials experienced a high frequency of bicycle crashes. 

 Six-lane facilities experienced the highest crash rate of 0.97 bicycle crashes per mile per 

year, while four-lane facilities experienced slightly greater proportion of fatal crashes.  

 Low-speed facilities experienced greater number of bicycle crashes while high-speed 

facilities experienced more severe crashes. 

  



  

46 

 

CHAPTER 4 

BICYLCLE HOT SPOT IDENTIFICATION AND ANALYSIS 

 

This chapter focuses on identifying and analyzing locations with high bicycle crash frequencies in 

Florida. The chapter is divided into five major sections. The first section discusses the approach 

used to identify bicycle crash hot spots using spatial analysis in ArcGIS. It also includes the list of 

top five bicycle crash hot spots in each FDOT district. The second section focuses on analyzing 

the bicycle hot spots. The police report review process to identify specific bicycle crash types and 

patterns is also discussed in this section. The third section provides the collision-condition 

diagrams of bicycle crash clusters. The crash contributing factors and relevant potential 

countermeasures are discussed in the fourth section. Finally, the chapter concludes with a summary 

of the analysis results.   

 

4.1 Identification of Bicycle Hot Spots 

 

4.1.1 Data 

 

The following shapefiles were used to identify bicycle hot spots in each of the seven FDOT districts: 

 

 2011-2014 crash data for both on-system and off-system roads 

 2014 NavStreets map 

 On-system road network 

 Off-system road network 

 

The crash data shapefiles for the years 2011-2014 were downloaded from the FDOT Unified 

Basemap Repository (UBR) for both on-system and off-system roads. The variable 

CNTOFCYCLS that provides information on the number of bicyclists involved in a crash was 

used to identify bicycle crashes. 

 

The 2014 NavStreets Map, also downloaded from the FDOT UBR, is a basemap with linear 

referencing system (LRS) for all public roadways in Florida. The on-system road network 

shapefile, maintained by the FDOT Transportation Statistics Office, provides spatial information 

on active main-line roads maintained by FDOT. Similarly, the off-system road network shapefile, 

also maintained by the FDOT Transportation Statistics Office, provides spatial information on city 

or county owned roads that are not maintained by FDOT. 

 

4.1.2 Methodology 

 

GIS techniques were used to identify the top five bicycle crash hot spots in each district. The 

process involved the following steps:  

 

Step 1: Create a network dataset from the NavStreets streets feature class using NavStreets 

Processing Tool (ArcGIS Team Network Analyst, 2015). 
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A network dataset incorporates an advanced connectivity model that can represent complex 

scenarios such as multimodal transportation networks. The 2014 NavStreets shapefile did not 

include a network dataset, and therefore, a network dataset was first created.  

 

The ArcGIS has a set of tools to automatically create a network dataset from the NavStreets 

shapefile. These tools are available in the Geoprocessing Model and Script Tool Gallery under 

Vendor Street Data Processing Tools for ArcGIS 10. Specifically, these tools process shapefile 

data from NavStreets into a file geodatabase network dataset. They import the street feature classes 

into the file geodatabase and add the appropriate fields to these feature classes for modeling 

overpasses/underpasses, one-way streets, travel times, hierarchy, and driving directions. They also 

create feature classes and tables for modeling turn restrictions and signpost guidance. Figure 4-1 

provides the screenshot of the function to create network dataset.  

 

 
Figure 4-1: Create Network Dataset 

 

Step 2: Make a service area network analysis layer and choose the following settings: 

 

 Use NavStreets network dataset 

 Impedance attribute: miles 

 Travel to and from 

 Default break value: 0.1 (miles) 

 Accumulators: miles 

 Hierarchy: uncheck (checking assumes higher capacity road is chosen) 

 Line generator: True Lines, Overlap Lines 

 Polygon generator: No polygons 

 Restrictions: 
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 Allow U-turns 

 Avoid carpool roads, express lanes, ferries, gates, limited access roads, private roads, 

toll roads, and walking  

 

Figure 4-2 shows the screenshot of the service area network analysis layer properties.  

 

 
Figure 4-2: Service Area Network Analysis Layer Properties: Analysis Settings 

 

Step 3: Add the 2011-2014 on-system and off-system crash shapefiles. Identify bicycle crashes by 

selecting crashes with CNTOFCYCLS > 0. From 2011-2014, there are a total of 24,765 bicycle 

crashes, as summarized in Table 4-1. Next, add the crash locations from the 2011-2014 crash data 

shapefiles and choose the following settings (see Figure 4-3): 

 

 Unit: Miles 

 Tolerance: 0.1 

 Find closest among all classes – checked 

 Append to existing locations 

 Exclude restricted portions of the network 
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Figure 4-3: Service Area Network Analysis Layer Properties: Network Locations 

 

Step 4: Add the crash locations as facilities. Figure 4-4 gives the spatial distribution of bicycle 

crashes in Florida. From Figure 4-4, it can be inferred that a majority of bicycle crashes occurred 

along the coastline, and in major urban areas including Jacksonville, Miami, Orlando, Tallahassee, 

and Tampa.  

 

Table 4-1: 2011-2014 Bicycle Crash Statistics 

Year 
Bicycle Crashes on  

On-System Roads 

Bicycle Crashes on  

Off-System Roads 

Total Bicycle 

Crashes 

2011 2,523 2,706 5,229 

2012 3,090 3,051 6,141 

2013 3,241 3,382 6,623 

2014 3,181 3,591 6,772 

Total (2011-2014) 12,035 12,730 24,765 
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Figure 4-4: Spatial Distribution of Bicycle Crashes in Florida 

 

Step 5: Run Solve tool to generate service areas. A total of 424,676 lines are generated. Figure 4-

5 gives the screenshot of the result after running Solve tool in ArcGIS.  
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Figure 4-5: Result after Running Solve Tool in ArcGIS 

  

Step 6: Export lines generated by Solve tool to a shapefile. Figure 4-6 shows the screenshot of the 

line-based service area shapefile (known as Crash Lines shapefile) generated in this step. 

  

 
Figure 4-6: Result after Exporting Lines Generated by Solve Tool to a Shapefile  

 

Step 7: Project the Crash Lines shapefile onto the projected coordinate system: UTM – NAD 83, 

as shown in Figure 4-7. 
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Figure 4-7: Change the Projected Coordinate System  

of the Crash Lines Shapefile to UTM-NAD 83 

 

Step 8: Add field “Length”, as shown in Figure 4-8. 

 

 
Figure 4-8: Add Length Field to the Crash Lines Attribute Table 

 

Step 9: Calculate the geometry in the length field, as shown in Figure 4-9. 
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Figure 4-9: Calculate the Length of Each Feature in the Crash Lines Shapefile 

 

Step 10: Use “Select By Attributes” function to select all records where ‘length’ = 0, as shown in 

Figure 4-10. A total of 1,392 lines are selected. 

 

 
Figure 4-10: Records with Zero Length in the Crash Lines Attribute Table 

 

Step 11: Delete all selected rows, as shown in Figure 4-11. The final table includes a total of 

423,284 records. 
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Figure 4-11: Final Crash Lines Attribute Table 

 

Step 12: Delete the “Length” field. 
 

Step 13: Use the “Select By Location” function to select all the features from the NavStreets 

shapefile which touch the boundary of the Crash Lines shapefile. A total of 554 records are 

selected. Figure 4-12 shows the “Select By Location” window and the NavStreets attribute table 

with the selected records.  
 

 
Figure 4-12: Features in the NavStreets Shapefile  

That Touch the Boundary of the Crash Lines Shapefile 
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Step 14: From the features selected in Step 13, remove those that have their centroid in the Crash 

Lines shapefile. A total of 480 features are selected, as shown in Figure 4-13. 

 

 
Figure 4-13: Features in the NavStreets Shapefile  

That Have Their Centroid in the Crash Lines Shapefile 

 

Step 15: Export the selected features to a new shapefile. As shown in Figure 4-14, a total of 480 

features are exported.  

 

 
Figure 4-14: New Shapefile with Features in the NavStreets Shapefile  

That Have Their Centroid in the Crash Lines Shapefile 
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Step 16: Use “Select by Attributes” function to select and delete records from the new shapefile 

created in Step 15 which match the following criteria: 

 

 CONTRACC = Y (controlled access) OR 

 RAMP = Y OR 

 AR_PEDEST = N (Access Restriction Pedestrian) 

 

This step removes records such as freeways and ramps that are access restricted. As shown in 

Figure 4-15, a total of 8 records are selected and removed.  

 

 
Figure 4-15: Select and Remove Segments with Restricted Access 

 

Step 17: Merge the shapefile exported from NavStreets with the Crash Lines shapefile exported 

from the Service Area layer. A total of 423,756 records are merged. Figure 4-16 shows the 

screenshot of the attribute table of the updated NavStreets shapefile.  
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Figure 4-16: Updated NavStreets Shapefile 

 

Step 18: Project the updated NavStreets shapefile onto the GCS_WGS_1984 geographic 

coordinate system, as shown in Figure 4-17. This step helps with running the buffer function. 

 

 
Figure 4-17: Change the Geographic Coordinate System  

of the Updated NavStreets Shapefile to GCS_WGS_1984 
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Step 19: Create a 10-ft buffer around the features in the Crash Lines shapefile. Select the Dissolve 

“ALL” buffers option (see Figure 4-18). 

   

 
Figure 4-18: 10-ft Buffers Created Around the Features in the Crash Lines Shapefile 

 

Step 20: Run Multi-part to Single-part tool on the buffer file to create a Single-part Crash Lines 

Buffer shapefile. A total of 10,831 buffer are generated (see Figure 4-19). 

 

 
Figure 4-19: Single-part Crash Lines Buffer Shapefile  
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Step 21: Add a field named “AREA_ID” in the Single-part Crash Lines Buffer shapefile. Calculate 

this field as FID field+1, as shown in Figure 4-20. This step updates the records such that the 

AREA_ID is a non-zero integer.  

 

 
Figure 4-20: Single-part Crash Lines Buffer Shapefile Attribute Table with New Area ID 

 

Step 22: Use the ‘Spatial Join’ function to spatially join the Single-part Crash Lines Buffer 

shapefile to the Crash Lines shapefile to select features in the Crash Lines shapefile which intersect 

the Single-part Crash Lines Buffer shapefile. Keep only the AREA_ID field. Run as a ‘one to 

many’ spatial join. As can be seen in Figure 4-21, a total of 423,284 lines are generated. 

 

 
Figure 4-21: Single-part Crash Lines Buffer Shapefile Attribute Table after Being Spatially 

Joined to the Crash Lines Shapefile  
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Step 23: Add the following fields to the Crash Location shapefile: “FSI_CRSH”, 

“OTHRINJCRSH”, and “PDO_CRSH”. These three fields represent fatal and serious injury (FSI) 

crashes, other injury crashes, and property damage only (PDO) crashes, respectively. Figure 4-22 

shows the screenshot of the crash location shapefile attribute table with the three new fields. 

 

 
Figure 4-22: Crash Location Shapefile Attribute Table with New Fields: FSI_CRSH, 

OTHRINJCRSH, and PDO_CRSH 

 

Step 24: Use the following queries within the “Select By Attributes” function in the Crash Location 

shapefile to populate FSI_CRSH, OTHRINJCRSH, and PDO_CRSH fields: 

 

 FSI_CRSH = “CNTOFFATL” >0 or “CNTOFSVINJ” >0 

 OTHRINJCRSH = “CNTOFINJ” >0 and !(“CNTOFFATL” >0 or “CNTOFSVINJ” >0)  

 PDO_CRSH = “CNTOFINJ” = 0 and “CNTOFFATL” = 0 

 

Figure 4-23 shows a sample query in the field calculator to populate FSI_CRSH field.  

 

Step 25: Use the “Spatial Join” function to spatially join the Crash Location shapefile to the Single-

part Crash Lines Buffer shapefile to identify crashes which are within 40 ft of the buffer. Run the 

join as a ‘one to many’ spatial join. Add the FSI_CRSH, OTHRINJCRSH, and PDO_CRSH fields; 

keep the AREA_ID, DISTRICT and DOTCOUNTY fields (see Figure 4-24). This step generated 

a total of 24,450 records. 
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Figure 4-23: Field Calculator to Populate FSI_CRSH Field 

 

 
Figure 4-24: Use “Spatial Join” to Join the Crash Location Shapefile  

to the Single-part Crash Lines Buffer Shapefile 
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Step 26: Add the “CNTOFCRSH” field to the Single-part Crash Lines Buffer shapefile. Calculate 

the CNTOFCRSH field using the following query: CNTOFCRSH = Join_Count. Delete the 

Join_Count field after using the field calculator. Figure 4-25 shows the attribute table of the Single-

part Crash Lines Buffer shapefile with the CNTOFCRSH field.  

 

 
Figure 4-25: Step 26 Result ‒ Attribute Table of Single-part Crash Lines Buffer Shapefile  

with CNTOFCRSH Field 

 

Step 27: Use “Join” function to join the Single-part Crash Lines Buffer and the Crash Lines 

shapefiles based on the AREA_ID field (see Figure 4-26). 

 

 
Figure 4-26: Single-part Crash Lines Buffer Shapefile Joined with Crash Lines Shapefile 
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Step 28: Export the result from Step 27 to a new shapefile, Joined Buffer and Crash Lines shapefile. 

 

Step 29: Run the Dissolve tool on this Joined Buffer and Crash Lines shapefile. Dissolve based on 

the AREA_ID field. Add the crash counts field, and retrieve the first value for each FDOT District 

and County (see Figure 4-27).   

 

 
Figure 4-27: Dissolved Joined Crash Buffer Shapefile  (Step 29 Result)  

 

Step 30: Add a new text field – MetaArea (see Figure 4-28). 

 

 
Figure 4-28: Crash Buffer Shapefile Attribute Table with New MetaArea Field  
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Step 31: Sort the locations by the FDOT District field in ascending order and the count of crashes 

(“SUM_CNTOFC”) field in descending order (see Figure 4-29). 

 

 
Figure 4-29: Advanced Table-sorting Window 

 

Step 32: For the first district, select the top crash location, as shown in Figure 4-30. 

 

 
Figure 4-30: Select the Highest Crash Location in District One 
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Step 33: Use “Select by Location” function to select features that are within 250 feet of the selected 

feature from the shapefile generated in Step 29 (Dissolved Joined Crash Buffer shapefile) (see 

Figure 4-31). 

 

 
Figure 4-31: Select-by-Location Window to Identify High Crash Locations 

 

Step 34: Repeat the selection until the number of locations selected does not increase. Figure 4-32 

shows a high crash location in District One. 

 

Step 35: Populate the MetaArea field for the selected records using the District.Rank format (e.g., 

1.1, 1.2, 1.3, etc.), as shown in Figure 4-33. For example, a MetaArea value of 1.1 means that this 

location is the top location (rank 1) in District One.  

 

Step 36: Repeat Steps 32-35 to identify top 5 locations. Again, repeat these steps for each district. 

 

Step 37: Remove all the records with missing MetaArea ID, using the following query: NOT 

MetaArea = ‘’. This step resulted in a total of 181 records. Figure 4-34 gives the screenshot of the 

attribute table with the final list of top five bicycle high crash locations in each district. 
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Figure 4-32: High Crash Location in District One 

 

 
Figure 4-33: Attribute Table with Populated MetaArea 
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Figure 4-34: Attribute Table with the Final List of  

Top Five High Crash Locations in Each District 

 

Step 38: Run the Dissolve tool based on the MetaArea ID field (see Figure 4-35). Add crash 

counts/stats field, get the first value for FDOT District and County. A total of 36 records are 

generated. 

 

 
Figure 4-35: Dissolve Tool Setting Window  
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Step 39: Add a field “EPDO_SCORE” and choose Double as the data type, as shown in Figure 4-

36.  

 

 
Figure 4-36: Add Field Window to Add EPDO_SCORE Field 

 

Step 40: Calculate the Equivalent Property Damage Only (EPDO) Weights. Table 4-2 gives the 

standard crash costs for the five injury severity levels.  

 

Table 4-2: Standard Crash Costs for Different Injury Severity Levels 

Injury Level Crash Count Standard Crash Cost Total Crash Cost  

PDO (PDO) 567,140 $7,600 $4,310,264,000 

Possible (C) 231,458 $96,600 $22,358,842,800 

Non-Incapacitating (B) 146,879 $155,480 $22,836,746,920 

Incapacitating (A) 52,433 $574,080 $30,100,736,640 

Fatal (K) 7,608 $10,120,000 $76,992,960,000 
Source: 2013 Statewide Segment Averages from FDOT Crash Analysis Reporting (CAR) System. 

 

The information given in Table 4-2 is used to obtain the weighting scores for PDO, other injury, 

and FSI crashes. The following steps are used to calculate the EPDO scores: 

 

 Calculate the Cost per Crash for each grouping using the following equations: 

 

                                     PDO Injury Crash Cost = 
Cost of PDO Crashes

# of PDO Crashes
                                                    (4-1) 

 

Note that this will equal the standard crash cost for PDO. 

 

Other Injury Crash Cost = 
Total Cost  of (B+C)  Crashes

Total # of (B+C) Crashes
                                           (4-2) 
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FSI Crash Cost = 
Total Cost of (K+A) Crashes

Total # of (K+A) Crashes
                                       (4-3) 

 

 Using the Cost per Crash calculated in Equations 1 through 3, calculate the ratio between 

the Other Injury and FSI crashes to the PDO crashes. Table 4-3 gives the final weighting 

scores for different injury severity levels. 

 

                                                PDO Weight = 
PDO Crash Cost 

PDO Crash Cost
= 1.0                                                     (4-4) 

 

                                         Other Injury Weight = 
Other Injury  Crash Cost 

PDO Crash Cost
                                               (4-5) 

 

                                                        FSI Weight = 
FSI Crash Cost 

PDO Crash Cost
                                                        (4-6) 

  

Table 4-3: Weighting Scores for Different Injury Severity Levels 

Injury Weight Crash Count Crash Cost – Total Cost Per Crash Weight 

PDO 567,140 $4,310,264,000 $7,600.00 1.0000 

Other Injury 378,337 $45,195,589,720 $119,458.55 15.7182 

Fatal and Serious Injury 60,041 $107,093,696,640 $1,783,676.09 234.6942 

 

Step 41: Calculate the EPDO_SCORE field using the following Python code in the field calculator: 

 

EPDO_SCORE = (!FSI_CRSH!*FSI Weight) + (OTHRINJCRSH*Other Injury Weight) + 

(!PDO_CRSH!) 

 

Figure 4-37 shows the screenshot of the attribute table with the final EPDO scores for the five high 

crash locations in each district.  

 

 
Figure 4-37: Attribute Table with the Final EPDO_SCORE Values  

for the Top Five High Crash Locations in Each District  
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4.2 Analysis of Bicycle Hot Spots 

 

Table 4-4 gives the final list of bicycle high crash locations in each district. For each location, it 

also includes the total number of crashes by severity and the final EPDO score. Appendix A 

provides the satellite images of these locations.  

 

Table 4-4: District-wide List of Bicycle Hot Spots  

Meta 

Area 

Final Rank 

In Each 

District 

District County 
Total FSI 

Crashes 

Total  

Other Injury 

Crashes 

Total  

PDO 

Crashes 

Total 

Crashes 

EPDO  

Score 

1.1 1 

1 

13 14 74 4 92 4,452.87 

1.2 3 03 9 66 6 81 3,155.65 

1.3 2 17 14 68 8 90 4,362.56 

1.4 4 17 2 27 3 32 896.78 

1.5 5 17 7 19 3 29 1,944.51 

2.1 1 

2 

26 15 159 25 199 6,044.61 

2.2 3 71 1 46 8 55 965.73 

2.3 2 72 14 56 4 74 4,169.94 

2.4 4 26 5 28 2 35 1,615.58 

2.5 5 72 2 18 0 20 752.32 

3.1 1 

3 

55 0 29 3 32 458.83 

3.2 2 55 4 20 3 27 1,256.14 

3.3 3 57 4 8 1 13 1,065.52 

3.4 3 48 2 10 1 13 627.57 

3.5 3 48 1 11 1 13 408.59 

4.1 1 

4 

86 22 167 43 232 7,831.21 

4.2 5 93 8 51 6 65 2,685.18 

4.3 3 93 12 62 11 85 3,801.86 

4.4 4 93 10 56 5 71 3,232.16 

4.5 2 86 12 78 14 104 4,056.35 

5.1 4 

5 

75 3 32 2 37 1,209.07 

5.2 2 75 14 61 12 87 4,256.53 

5.3 5 75 3 26 3 32 1,115.76 

5.4 1 79 8 72 11 91 3,020.26 

5.5 3 75 12 30 7 49 3,294.88 

6.1 1 

6 

87 27 232 68 327 1,0051.37 

6.2 2 90 45 186 31 262 13,515.82 

6.3 3 87 15 122 42 179 5,480.03 

6.4 5 87 5 55 8 68 2,045.97 

6.5 4 87 14 79 22 115 4,549.46 

7.1 1 

7 

10 15 69 11 95 4,615.97 

7.2 2 10 11 55 5 71 3,451.14 

7.3 3 15 10 50 10 70 3,142.85 

7.4 5 15 7 41 4 52 2,291.31 

7.5 4 15 12 37 7 56 3,404.90 

Total 359 2,201 394 2,954 119,244.98 

Note: The final rank in each district in based on total crashes.  
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4.2.1 Data Preparation  

  

The bicycle hot spots listed in Table 4-4 experienced a total of 2,954 bicycle crashes during the 

four year analysis period. Police Crash Report Review System (PCRRS), a web-based application, 

was used to review police crash reports of these 2,954 bicycle crashes to collect information that is 

not typically available in the crash summary records. The following information was collected for 

each bicycle crash: 

 

 Bicycle Crash 

 Yes 

 No 

 

 At-Fault Road User  

 Bicyclist 

 Driver 

 None 

 

 Crash Location 

 Signalized intersections 

 Unsignalized locations (including unsignalized intersections and mid-block sections) 

 Not on roadway 

 

 Presence of Bicycle Lanes 

 

 Bicyclist’s Maneuver at the Time of the Crash  

 Bicyclist was crossing the street  

 Bicyclist was riding along the roadway 

  

 Bicyclist’s Trip Direction at the Time of the Crash 

 Bicyclist was riding with traffic 

 Bicyclist was riding against traffic  

 

 Presence of Sidewalk 

 

 Presence of On-Street Parking 

 

 Position of Bicyclist at the Time of the Crash 

 Sidewalk 

 Crosswalk 

 Travel lane 

 Bicycle lane 

 Driveway 

 Paved shoulder 

 Non-roadway 

 

 Crash Cause 
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 Bicyclist ride-out at stop sign 

 Motorist drive-out at stop sign 

 Bicyclist ride-out at intersection 

 Motorist drive-out at mid-block section 

 Motorist turns left facing bicyclist 

 Bicyclist ride-out at residential driveway 

 Bicyclist turns left in front of traffic 

 Motorist turns right at intersection 

 Other 

   

Note that all the above information was collected by reviewing descriptions and illustrative 

sketches in the police reports and the aerial images of crash locations. The following sections 

discuss the bicycle crash patterns identified from reviewing the police crash reports. 

 

4.2.2 Bicycle Crash Statistics at Hot Spots  

 

Of the 2,954 bicycle crashes that occurred at the bicycle hot spots identified in Table 4-4, only 

2,888 crashes were found to be bicycle-related. In other words, 66 crashes (i.e., 2.2%) were 

incorrectly identified in the crash summary records as bicycle crashes. The rest of the analysis is 

based on the 2,888 bicycle crashes that occurred during 2011-2014 at the bicycle hot spots 

identified in Section 4.1.  

 

4.2.3 At-Fault Road User 

 

For each bicycle crash, the at-fault road user (i.e., driver, or bicyclist, or both) was identified by 

reviewing the descriptions in the police reports. Table 4-5 provides these statistics. Drivers were 

found to be at-fault in 45.7% (1,321 of 2,888 bicycle crashes) of the crashes while bicyclists were 

at-fault in 30.2% (871 of 2,888 bicycle crashes) of the crashes. Both bicyclists and drivers were 

found to be at-fault in very few crashes (0.8%, 22 of 2,888 bicycle crashes). Note that at-fault road 

users could not be determined for about 22% of crashes (637 of 2,888 bicycle crashes) as the police 

crash reports did not provide enough information. It can be inferred from the table that crashes 

involving at-fault bicyclists resulted in a slightly greater percentage of fatal crashes compared to 

those involving at-fault drivers.  

 

Table 4-5: Statistics by At-Fault Road User 

At-fault Road User Fatal Crashes Injury Crashes Total Crashes1 

Driver 4 (0.3 %) 1,157 (87.6 %) 1,321 (100%) 

Bicyclist 7 (0.8 %) 742 (85.2 %) 871 (100%) 

Bicyclist and Driver 0 (0.0 %) 21 (95.4 %) 22 (100%) 

None 0 (0.0 %) 32 (86.5 %) 37 (100%) 

Not Sure 6 (0.9 %) 535 (84.0 %) 637 (100%) 

Total 17 (0.6 %) 2,487 (86.1 %) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

When the driver was found to be at-fault, the following were the most frequent contributing causes: 

 failed to yield right-of-way to bicyclists, 
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 disregarded traffic signal or other traffic control, and 

 careless driving.  

 

When the bicyclist was found to be at-fault, the most frequent contributing causes were:  

 disregarded traffic signal or other traffic control, and 

 failed to yield right-of-way to drivers. 

 

4.2.4 Crash Locations 

 

Table 4-6 gives bicycle crash statistics by crash location and crash severity. As can be observed 

from the table, bicycle crash locations were divided into two broader groups: signalized locations 

(i.e., signalized intersections), and unsignalized locations (i.e., unsignalized intersections and mid-

block sections). Bicycle crashes were found to be more frequent at signalized intersections, 

constituting about 54% (1,553 of 2,888) of all bicycle crashes that occurred at hot spots. 

Unsignalized locations experienced a greater proportion of fatal crashes (0.8%, 10 of 1,302) 

compared to signalized locations (0.5%, 7 of 1,553).   

 

Table 4-6: Statistics by Crash Location 

Crash Location Fatal Crashes Injury Crashes Total Crashes1 

Signalized Intersection 7 (0.5%) 1,309 (84.3%) 1,553 (100%) 

Unsignalized Location 10 (0.8%) 1,148 (88.2%) 1,302 (100%) 

Not Roadway 0 (0. 0%) 9 (81.8%) 11 (100%) 

Not Sure 0 (0. 0%) 21 (95.5%) 22 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.2.5 Presence of Bicycle Lanes 

 

Table 4-7 provides bicycle crash statistics by presence of bicycle lanes and crash severity. A 

majority of bicycle crashes (77.1%, 2,227 of 2,888) occurred at locations with no bicycle lanes. It 

can be inferred from the table that bicycle crashes at locations with no bicycle lanes (0.6%, 14 of 

2,227) resulted in a greater proportion of fatalities compared to the bicycle crashes at locations 

with bicycle lanes (0.3%, 2 of 614).  

 

Table 4-7: Statistics by Presence of Bicycle Lanes  

Presence of Bicycle Lane Fatal Crashes Injury Crashes Total Crashes1 

No 14 (0.6%) 1,911 (85.8%) 2,227 (100%) 

Yes 2 (0.3%) 532 (86.6%) 614 (100%) 

Not Sure 1 (2.1%) 44 (93.6%) 47 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 
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4.2.6 Bicyclist’s Maneuver at the Time of the Crash  

 

Crossing a roadway was found to be a critical maneuver for bicyclists; 73% of bicyclists (2,103 of 

2,888) were hit while crossing the streets, and 13 out of 2,103 crashes resulted in fatalities. Riding 

along the roadway also constituted about 25% of bicycle crashes (717 of 2,888). Crossing the street 

was found to result in a greater proportion of fatal crashes compared to riding along the roadway. 

Table 4-8 summarizes these results.    

 

Table 4-8: Statistics by Bicyclist’s Maneuver at the Time of the Crash  

Bicyclist Maneuver at the 

Time of the Crash 
Fatal Crashes  Injury Crashes Total Crashes1 

Crossing the Street 13 (0.6%) 1,816 (86.4%) 2,103 (100%) 

Riding along the Roadway 3 (0.4%) 615 (85.8%) 717 (100%) 

Not Sure 1 (1.5%) 56 (82.4%) 68 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.2.7 Bicyclist’s Trip Direction  

 

Bicycles are considered as vehicles and therefore the law requires bicyclists to ride along the 

roadway with traffic. Bicyclist’s crash proportion when riding along the roadway with traffic was 

found to be three times higher compared to riding along the roadway facing traffic. This could be 

because of the fact that a majority of bicyclists follow the law and ride along the roadway in the 

same direction as other vehicles on the road. However, as is evident from the statistics provided in 

Table 4-9, crashes involving bicyclists riding along the roadway facing traffic are severe compared 

to those involving bicyclists riding with traffic.  

 

Table 4-9: Statistics by Bicyclist’s Trip Direction When Riding along the Roadway  

Bicyclist’s Trip Direction when 

Riding along the Roadway 
Fatal Crashes Injury Crashes Total Crashes1 

With Traffic 2 (0.4%) 464 (85.9%) 540 (100%) 

Facing Traffic 1 (0.7%) 133 (85.8%) 155 (100%) 

Not Sure 0 (0.0%) 18 (81.9%) 22 (100%) 

Total 3 (0.4%) 615 (85.8%) 717 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.2.8 Presence of Sidewalk  

 

Table 4-10 provides the bicycle crash statistics by presence of sidewalk and crash severity. 

Locations with sidewalks experienced a smaller percentage of fatal crashes compared to locations 

without sidewalks. In terms of bicycle crash frequency, a majority of bicycle crashes were found 

to occur at locations with sidewalk. However, these statistics need to be interpreted with caution 

as exposure is not reflected in these statistics.  
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Table 4-10: Statistics by Presence of Sidewalk  

Presence of Sidewalk Fatal Crashes Injury Crashes Total Crashes1 

Yes 16 (0.6%) 2,411 (86.1%) 2,799 (100%) 

No 1 (1.5%) 53 (81.5%) 65 (100%) 

Not Sure 0 (0.0%) 23 (95.8%) 24 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.2.9 Presence of On-Street Parking 

 

As can be observed from Table 4-11, a majority of bicycle crashes occurred at locations with no 

on-street parking. As very few crashes occurred at locations with on-street parking, no conclusion 

could be made on the impact of on-street parking on bicycle crash severity.  

 

Table 4-11: Statistics by Presence of On-Street Parking  

Presence of On-Street 

Parking 
Fatal Crashes Injury Crashes Total Crashes1 

No 17 (0.7%) 2,131 (86.1%) 2,474 (100%) 

Yes 0 (0.0%) 294 (85.5%) 344 (100%) 

Not Sure 0 (0.0%) 62 (88.6%) 70 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.2.10 Position of Bicyclists at the Time of the Crash 

 

Table 4-12 presents the statistics based on the position of bicyclists at the time of the crash. Almost 

56% (1,607 of 2,888) of bicycle crashes occurred at crosswalks. Travel lane and driveways are the 

next two locations where bicycle crashes occurred frequently. More fatal crashes occurred at 

driveways compared to other locations. Although crosswalks experienced a majority of bicycle 

crashes, they resulted in a smaller proportion of fatal crashes.  

 

Table 4-12: Statistics by Bicyclist’s Position at the Time of the Crash 

Bicyclist’s Position During Crash Fatal Crashes Injury Crashes Total Crashes1 

Crosswalk 5 (0.3%) 1,382 (86.0%) 1,607 (100%) 

Travel Lane 4 (0.6%) 539 (85.0%) 634 (100%) 

Driveway 6 (1.9%) 285 (88.2%) 323 (100%) 

Bicycle Lane 1 (0.7%) 135 (88.8%) 152 (100%) 

Sidewalk 1 (0.8%) 110 (86.6%) 127 (100%) 

Paved Shoulder 0 (0.0%) 3 (100.0%) 3 (100%) 

Non-Roadway 0 (0.0%) 1 (100.0%) 1 (100%) 

Other 0 (0.0%) 19 (76.0%) 25 (100%) 

Unknown 0 (0.0%) 13 (81.3%) 16 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 
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4.2.11 Crash Type 

 

Table 4-13 provides the statistics by bicycle crash type and crash severity. Bicycle crashes 

involving motorists turning right (17%, 477 of 2,888) were found to be the most frequent bicycle 

crash type. Bicycle crashes occurring at an intersection, signalized or unsignalized, where the 

bicyclist failed to yield (i.e., ride out at intersection) was found to be the second most frequent 

bicycle crash scenario. Furthermore, these crashes were found to be relatively more severe, with 

1.09% of them resulted in fatalities.  

 

Table 4-13: Statistics by Bicycle Crash Type  

Crash Type Fatal Crashes Injury Crashes Total Crashes1 

Motorist Right Turn       2 (0.4%) 426 (89.3%) 477 (100%) 

Ride out at Intersection  4 (1.1%) 315 (85.6%) 368 (100%) 

Drive out at Stop Sign       0 (0.0%) 244 (89.4%) 273 (100%) 

Motorist Left Turn - Facing Bicyclist       0 (0.0%) 123 (90.4%) 136 (100%) 

Ride out at Stop Sign       0 (0.0%) 90 (88.2%) 102 (100%) 

Drive out at Midblock       0 (0.0%) 61 (87.1%) 70 (100%) 

Bicyclist Left Turn in front of Traffic      0 (0.0%) 25 (89.3%) 28 (100%) 

Ride out at Residential Driveway       0 (0.0%) 6 (85.7%) 7 (100%) 

Other       11 (0.8%) 1,150 (80.6%) 1,427 (100%) 

Total 17 (0.6%) 2,487 (86.1%) 2,888 (100%) 
1 Total crashes include crashes with no injury and unknown injury. 

 

4.3 Collision-Condition Diagrams 

 

The bicycle hot spots identified in Table 4-4 experienced a total of 2,954 bicycle crashes. Locations 

of these crashes were reviewed closely to identify crash clusters. Top four clusters that experienced 

at least five bicycle crashes in each district from 2011-2014 were identified. A total of 28 crash 

clusters were identified and analyzed. Table 4-14 lists the bicycle crash clusters by district ranked 

based on total bicycle crash frequency during 2011-2014. 
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Table 4-14: Bicycle Crash Clusters  

No. Location 
Roadway 

ID 
Dist. 

Crash Severity 

Fatal/ 

Severe 
Injury 

No 

Injury 

Total 

Crashes 

1 Cortez Rd W near 26th St W in Bradenton  13040000 D1 4 4 0 8 

2 Estey Ave near Airport Pulling Rd S in Naples  03000000 D1 1 5 0 6 

3 17th St near N Washington Blvd in Sarasota  17120000 D1 2 4 1 7 

4 Bee Ridge Rd near S Beneva Rd in Sarasota  17008000 D1 0 6 0 6 

5 NW 13th St near NW 10th Ave in Gainesville  26010000 D2 0 7 0 7 

6 SW 34th St near SW Archer Rd in Gainesville  26250000 D2 1 5 0 6 

7 NW 13th St near W University Ave in Gainesville 26070000 D2 1 3 1 5 

8 W University Ave near SW 2nd Ave in Gainesville 26070168 D2 0 6 0 6 

9 N 9th Ave near Springhill Dr in Brent 48003000 D3 1 5 1 7 

10 
Racetrack Rd NW near Richpien Rd in Fort Walton 

Beach 
57003000 D3 2 3 2 7 

11 W Call St near Conradi St in Tallahassee 55000000 D3 0 5 1 6 

12 N Macomb St near W Tennessee St in Tallahassee 55000000 D3 0 5 0 5 

13 
Forest Hill Blvd near S Military Trail in West Palm 

Beach 

93070000 D4 0 9 0 9 

14 S Ocean Blvd near E Atlantic Ave in Delray Beach 93060000 D4 2 5 1 8 

15 S Military Trail near Cresthaven Blvd in Lake Worth 93070000 D4 1 5 1 7 

16 S Military Trail near Clemens St in Lake Worth 93070000 D4 1 4 0 5 

17 N Alafaya Trail near Lokanotosa Trail in Orlando  75037000 D5 2 2 2 6 

18 N Alafaya Trail near Challenger Pkwy in Orlando  75037000 D5 2 2 2 6 

19 W Michigan St near S Orange Ave in Orlando 75040000 D5 0 7 0 7 

20 
N Nova Rd near W International Speedway Blvd in 

Daytona Beach 
79060000 D5 1 5 0 6 

21 Duval St near Angela St in Key West 90000000 D6 1 4 1 6 

22 Washington Ave near 9th St in Miami Beach 87000000 D6 0 5 1 6 

23 N Roosevelt Blvd near 5th St in Key West 90010000 D6 1 4 0 5 

24 5th St near Washington Ave in Miami Beach 87060000 D6 1 3 2 6 

25 34th St N near 62nd Ave N in St. Petersburg  15150000 D7 0 10 0 10 

26 34th St N near 70th Ave N in Pinellas Park  15150000 D7 0 4 3 7 

27 E Floribraska Ave near N Nebraska Ave in Tampa 10040000 D7 2 2 2 6 

28 E Busch Blvd near N Nebraska Ave in Tampa 10040000 D7 2 4 0 6 

 

Figures 4-38 through 4-65 plot the collision-condition diagrams of the 28 bicycle crash clusters in 

Florida. In these diagrams, the locations of all bicycle crashes were plotted on the satellite images. 

The figures also provide additional information on the injury severity of the bicyclist using the 

following color codes:  

  

 red – bicyclist fatality/severe injury 

 yellow – injury to bicyclist 

 green – no injury to bicyclist 
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Figure 4-38: Cortez Rd W near 26th St W in Bradenton  

(Roadway ID 13040000) (Map) 

 

 
Figure 4-39: Estey Ave near Airport Pulling Rd S in Naples  

(Roadway ID: 03000000) (Map) 
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Figure 4-40: 17th St near N Washington Blvd in Sarasota  

(Roadway ID: 17120000) (Map) 

 

 
Figure 4-41: Bee Ridge Rd near S Beneva Rd in Sarasota  

(Roadway ID: 17008000) (Map) 
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Figure 4-42: NW 13th St near NW 10th Ave in Gainesville  

(Roadway ID: 26010000) (Map) 

 

 
Figure 4-43: SW 34th St near SW Archer Rd in Gainesville (Roadway ID: 26250000) (Map) 
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Figure 4-44: NW 13th St near W University Ave in Gainesville (Roadway ID: 26070000 

(Map) 

 

 
Figure 4-45: W University Ave near SW 2nd Ave in Gainesville  (Roadway ID: 26070168) 

(Map) 
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Figure 4-46: N 9th Ave near Springhill Dr in Brent (Roadway ID: 48003000 ) (Map) 

 

 
Figure 4-47: Racetrack Rd NW near Richpien Rd in Fort Walton Beach   

(Roadway ID: 57003000 ) (Map) 
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Figure 4-48: W Call St near Conradi St in Tallahassee (Roadway ID: 55000000) (Map) 

 

 
Figure 4-49: N Macomb St near W Tennessee St in Tallahassee (Roadway ID: 55000000) 

(Map) 
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  Figure 4-50: Forest Hill Blvd near S Military Trail in West Palm Beach 

(Roadway ID: 93070000) (Map) 

 

 
Figure 4-51: S Ocean Blvd near E Atlantic Ave in Delray Beach (Roadway ID: 93060000) 

(Map) 
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Figure 4-52: S Military Trail near Cresthaven Blvd in Lake Worth (Roadway ID: 

93070000)(Map) 

 

 
Figure 4-53: S Military Trail near Clemens St in Lake Worth (Roadway ID: 93070000) 

(Map) 
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Figure 4-54: N Alafaya Trail near Lokanotosa Trail in Orlando   

(Roadway ID: 75037000) (Map) 

 

 
Figure 4-55: N Alafaya Trail near Challenger Pkwy in Orlando  

(Roadway ID: 75037000) (Map) 
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Figure 4-56: W Michigan St near S Orange Ave in Orlando (Roadway ID: 75040000) 

(Map) 
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Figure 4-57: N Nova Rd near W International Speedway Blvd in Daytona Beach   

(Roadway ID: 79060000) (Map) 

 

 
Figure 4-58: Duval St near Angela St in Key West (Roadway ID: 90000000) (Map) 
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Figure 4-59: Washington Ave near 9th St in Miami Beach (Roadway ID: 87000000) (Map) 

 

 
Figure 4-60: N Roosevelt Blvd near 5th St in Key West (Roadway ID: 90010000) (Map) 
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Figure 4-61: 5th St near Washington Ave in Miami Beach (Roadway ID: 87060000) (Map) 

 

 
Figure 4-62: 34th St N near 62nd Ave N in St. Petersburg (Roadway ID: 15150000) (Map) 
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Figure 4-63: 34th St N near 70th Ave N in Pinellas Park (Roadway ID: 15150000) (Map) 

 

 
Figure 4-64: E Floribraska Ave near N Nebraska Ave in Tampa  (Roadway ID: 10040000) 

(Map) 
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Figure 4-65: E Busch Blvd near N Nebraska Ave in Tampa (Roadway ID: 10040000) (Map) 

 

4.4 Crash Contributing Factors and Potential Countermeasures 

 

This section focuses on reviewing the police crash reports of bicycle crashes to identify factors 

that adversely affect the safety of bicyclists. The illustrative sketches and descriptions in the police 

reports of 2,888 bicycle crashes that occurred at the bicycle hot spots were reviewed, and the crash 

contributing factors related to these crashes were analyzed. The analysis identified the following 

major bicycle crash types:  

 

 Motorist turns right while bicyclist is crossing the street 

 Motorist turns left facing bicyclist 

 Bicyclist rides out at intersection 

 Motorist drives out at stop sign 

 

It can be inferred from Table 4-13 that the first two crash types resulted in relatively more fatal 

crashes, while the other two types resulted in injury crashes. The following sections discuss these 

four crash types in detail. A discussion on potential countermeasures for each of these four crash 

types is also provided. It is worth noting that countermeasures included in this section would 

benefit both bicyclists and pedestrians.   

 

4.4.1 Crashes Involving Right-Turning Vehicles 

 

This crash type has two different scenarios: bicyclist riding parallel to the motorist, and bicyclist 

riding perpendicular to the motorist (i.e., bicyclist crossing the motorist). When bicyclists ride 

parallel to the motorists, especially at intersections, motorists often make a right turn unaware of 

https://www.google.com/maps/@28.03261,-82.450559,199m/data=!3m1!1e3
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the presence of bicyclists. Figure 4-66 illustrates this crash scenario. In this scenario, bicyclists are 

often found riding in the bicycle lane and crossing the road when they have the right of way. 

Drivers are found to be at-fault as they fail to yield to bicyclists. 

 

 
Figure 4-66: Bicycle Crash Involving Right-Turning Vehicle  

(Crash No. 821185140) 

   

Bicycle crashes involving right-turning vehicles at unsignalized intersections were observed 

frequently. These crashes were found to often involve a motorist turning right from a side street or 

a driveway, and a bicyclist riding on the major street. At minor-road stop controlled and signalized 

intersections, motorists often make a right turn unaware of the bicyclist on the main street. Figure 

4-67 illustrates this crash scenario. Drivers are considered to be at-fault in these scenarios as the 

driver is required to wait and look for bicyclists, pedestrians and traffic on the main street before 

making the right turn. In these scenarios, bicyclists are found to typically ride in the bicycle lane 

and cross the road when they have the right-of-way, thus hit the passenger side door of the vehicle 

during the crash.   

 

 
Figure 4-67: Driver Turns Right from Side Street While Bicyclist Rides along Main Street 

(Crash No. 836875880) 

 

The right-turning vehicles are required to yield to bicyclists and pedestrians before making the 

turn; however, not all motorists comply with this traffic regulation. Sometimes the drivers do not 

expect other road users at these locations during their turn movements. A right-turn signal light 

could address this issue. However, turn restrictions could improve safety at locations where both 

the motorist turning proportion, and bicyclist and pedestrian volumes crossing the street are high.  
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At intersections with high right-turning traffic and pedestrian volumes, a leading pedestrian 

interval (LPI) could improve pedestrian safety. The LPI, also known as “Pedestrian Head Start” or 

“Delayed Vehicle Green” provides the “Walk” signal for additional 3-5 seconds before the 

adjacent through movement phase. This strategy gives pedestrians a head start while crossing the 

intersection, reducing conflicts between pedestrians in the crosswalk and the right-turning 

vehicles. At most intersections, since bicyclists and pedestrians use the same path, LPI could help 

improve bicycle safety as well. 

 

Signal timing could be optimized to accommodate bicyclists. For example, minimum green 

intervals, red clearance, and extension time could be provided to ensure that bicyclists have 

sufficient opportunities to safely cross intersections. Bicycle activated signal detection could be 

used to minimize delay while facilitating safe crossing for the bicyclists. Other improvements 

including proper signage, colored pavement, curb radius reduction where feasible, sight distance 

and lighting improvements, speed tables/humps/cushions, etc. also have the potential to improve 

bicycle safety.    

 

Bicyclists and motorists may not be familiar with all the traffic regulations, and this ignorance 

could lead to risky and reckless behavior. Traffic safety education targeting both bicyclists and 

drivers could help change the risk taking behavior of both drivers and bicyclists. Nonetheless, 

failure of motorists and bicyclists to follow traffic regulations often lead to crashes. Therefore, 

proper enforcement may increase road users’ awareness and improve safety of all road users.   

 

4.4.2 Crashes Involving Left-Turning Vehicles  

 

This scenario where a motorist makes a left turn and finds bicyclist on the motorist’s path is very 

common. The situation is similar to multi-vehicle crashes when drivers make a left turn and fail to 

yield to oncoming traffic. Typically, the bicyclist gets the green signal to cross the road at the same 

time when the motorist is permitted to turn left; however, the motorist is required to yield to 

bicyclists, pedestrians, and other oncoming traffic. Several crashes were however observed at night 

where motorists often did not see bicyclists as the bicyclists failed to make themselves visible 

through reflective clothing and bicycle lights. Figure 4-68 illustrates this scenario. 

 

 
Figure 4-68: Driver Turns Left While Bicyclist Rides along Main Street  

(Crash No. 840177340) 



  

95 

 

At signalized intersections with permissive or protected-permissive left-turn phasing, the left-

turning traffic has to yield to bicyclists and opposing through traffic prior to accepting the gap and 

turn. In such scenarios, the left-turning vehicles sometimes fail to yield to bicyclists crossing the 

street.  
 

Intersections with permissive or protected-permissive left-turn phasing could potentially have a 

high number of conflicts involving bicyclists, pedestrians, oncoming traffic and left-turning 

vehicles. These conflicts could be eliminated with a protected left-turn phase. At intersections with 

a high frequency of bicycle and pedestrian crashes involving left-turning vehicles, the feasibility 

of providing protected left-turn signal phasing has to be considered. Although the locations may 

not warrant installation of protected left-turn signal phasing, their installation is recommended at 

locations with high bicycle and pedestrian activity such as at school zones and near special-event 

facilities. Furthermore, adding special bicycle-pedestrian signal phasing, such as exclusive 

protected bicycle-pedestrian signal could improve the overall safety of the location. 

 

At unsignalized intersections and at midblock locations, motorists making left turn onto the side 

street could potentially hit a bicyclist riding on the major street. Figure 4-69 illustrates this scenario 

where a vehicle was making a left turn onto a driveway from opposite side of the major roadway, 

and hit the bicyclist who was riding along the major roadway. As can be observed from this 

scenario, mid-block openings encourage drivers to make a left turn from the far side of the road, 

but could increase the probability of bicycle or pedestrian crashes, especially at locations with high 

bicyclist and pedestrian activity.  

 

 
Figure 4-69: Left-turning Vehicle Resulted in Crash (Crash No. 813370290) 

 

4.4.3 Crashes Involving Bicyclists Riding Out at Intersections  

 

Crashes involving bicyclists riding out at intersections (i.e., bicyclists improperly crossing the 

streets) were found to occur frequently. Two common scenarios regarding this crash type include: 

bicyclist crossing the intersection from an unexpected location, and bicyclist crossing the 

intersection when they do not have the right of way. Figure 4-70 illustrates the crash scenario 

where the bicyclist crossed the intersection suddenly from an unexpected location. Figure 4-71 

gives an example of a crash scenario when the bicyclist did not have the right of way. Motorists 
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do not expect bicyclists to cross the street suddenly from unexpected locations, and definitely not 

when the bicyclists do not have the right of way. Even if the motorists notice the bicyclist, most 

of the time it is too late for the motorists to stop their vehicles to avoid the crash.  

 

 
Figure 4-70: Crash Scenario When  

Bicyclist Rides Out Suddenly from Unexpected Location  

(Crash No. 519496080) 

 

 

 
Figure 4-71: Crash Scenario When Bicyclist Rides Out at an Intersection  

(Crash No. 835116180) 

 

These specific crash types could be attributed to bicyclist’s inattention, bicyclist’s lack of 

perceived understanding of speed, and lack of enforcement. Bicyclists are often unaware of the 

rules and right-of-way at bicycle-vehicle conflict points. Strict and consistent enforcement could 

change the bicyclist’s behavior. Sign and pavement marking improvements and traffic calming 

measures could improve both bicyclist and pedestrian safety.  
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4.4.4 Crashes Involving Motorists Driving Out at Stop Signs  

 

Disregarding a stop sign by drivers often result in crashes with bicyclists. Figure 4-72 illustrates 

this scenario. Review of the police crash reports revealed that bicyclists are often hit by drivers 

who disregard the stop signs. At a minor-road stop-controlled intersection, bicyclist riding along 

the main street has the right of way, and the driver on the minor approach has to yield to bicyclists, 

pedestrians, and vehicles on the main street. However, in several crashes, drivers on the minor 

approach did not yield to the bicyclists riding on the major street, resulting in often severe bicycle-

motor vehicle crashes. In these scenarios, drivers are considered to be at-fault.  

 

Bicycle crashes that involve motorists driving out at a stop sign could be due to lack of drivers’ 

perceived expectancy, understanding, education, and lack of proper enforcement. Therefore, 

colored pavements, placement of proper signage, speed humps, which can alert drivers to stay 

cautious might improve bicycle safety. Drivers and bicyclists are often unaware of the rules and 

right-of-way, especially at unsignalized intersections. Strict and consistent enforcement may 

change the drivers’ behavior and improve bicycle safety.  

 

 
Figure 4-72: Crash at Minor-road Stop-controlled Intersection  

Where Driver Disregarded a Stop Sign (Crash No. 519551710) 

 

4.4.5 Additional Contributing Factors  

 

In addition to the above-discussed crash types, the following factors and crash types were also 

observed frequently. Note that the potential countermeasures for these scenarios are similar to what 

are discussed earlier, and therefore, are not presented again in this section. 

  

 Inadequate Street Lighting: Visibility of bicyclists is a serious concern, especially at night. 

Inadequate street lighting, and lack of reflective gear on bicyclists were found to be one of 

the major reasons for bicycle crashes at night. Improving street lighting, and encouraging 

bicyclists to make themselves visible at night by wearing reflective clothing could 

minimize crash risks involving bicyclists at night.  
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 Unconventional Intersection Geometry: Uncommon intersection geometry sometimes 

confuses road users, making it difficult to clearly follow the signs and signals. Figure 4-73 

gives an example of a bicycle crash at an unconventional intersection.  

 

 Traffic Violations: Disregarding traffic rules was found to be a major contributing factor 

in several bicycle crashes. Both bicyclists and motorists were found to disregard traffic 

signals. Figure 4-74 shows an example of a crash where the bicyclist was riding against the 

traffic, made an improper crossing maneuver, and most importantly ignored the traffic 

signal, resulting in a serious crash. Again, these crashes could be attributed to lack of 

bicyclist’s understanding of the rules of the road, and bicyclist’s inattention.    
 

 Bicyclists Sideswipe Vehicles: Bicyclists, when they share the road with motor vehicles, 

sometimes lose control and sideswipe other vehicles (see Figure 4-75). Narrow lanes, high 

speeds, wide vehicles, and distracted drivers were found to be some of the factors 

contributing to these types of crashes.  

 

 Driveways Near Intersections: Drivers sometimes make sudden lane changing or turning 

maneuvers when they want to access the driveways (e.g., gas station) in close proximity to 

intersections. Such sudden maneuvers are not perceived or expected by bicyclists, and 

often result in crashes.  

 

 U-turn Maneuvers: U-turn maneuvers at intersections and also at mid-block openings 

resulted in crashes involving bicyclists. Figure 4-76 illustrates one such scenario. In this 

case, both the driver and the bicyclist were attempting to make a U-turn, and resulted in a 

crash.   

 

 Bicyclists Hit the Door of Parked Vehicle: This scenario is quite common, especially at 

locations with high bicycle activity and availability of on street parking. Drivers often open 

driver-side doors, and sometimes result in bicyclists hitting the vehicle door (see Figure 4-

77).  

 

 Bicyclists Ride Opposite to the Traffic: Bicycling on the wrong-way, against the traffic, 

was found to be one of the leading causes of bicycle crashes. Bicyclists often consider 

riding against the traffic to be safer as bicyclists could see approaching vehicles, and the 

drivers could see the bicyclists. However, drivers pulling out of driveways or turning from 

intersections do not expect traffic coming the wrong way, increasing the possibility of 

crashes, particularly the more severe head-on crashes. Moreover, these crashes are often 

serious because of the speed differential between the bicyclist and approaching traffic. 

Figure 4-78 gives an example of this scenario. 
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Figure 4-73: Bicycle Crash at an 

Unconventional Intersection (Crash No. 846913640) 

 

 
Figure 4-74: Crash Where Bicyclist 

 Violated Traffic Signs (Crash No. 846908950) 

 

 
Figure 4-75: A Sideswipe Bicycle Crash (Crash No. 843286450) 
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Figure 4-76: Bicycle Crash Involving U-turn Maneuvers (Crash No. 836247400) 

 

 
Figure 4-77: Bicycle Crash Involving Parked Vehicle (Crash No. 843282080) 

 

 
Figure 4-78: A Head-on Bicycle Crash (Crash No. 813392340) 
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4.5 Summary 

 

This chapter focused on identifying and analyzing locations with high bicycle crash frequencies in 

Florida. Top five bicycle hot spots in each district were identified using spatial analysis in ArcGIS. 

Police reports of all the 2,954 bicycle crashes that occurred at these hotspots were reviewed in 

detail to identify specific bicycle crash types and patterns. The key findings include: 

 

 Drivers were at-fault in 45.7% of the crashes, while bicyclists were at-fault in 30.2% of the 

crashes. 

 Crashes involving at-fault bicyclists resulted in a greater percentage of fatal crashes 

compared to those involving at-fault drivers.  

 Signalized intersections experienced a greater proportion of bicycle crashes compared to 

unsignalized locations.  

 Locations with bicycle lanes experienced a smaller proportion of fatal crashes compared 

to locations without bicycle lanes. 

 Crossing the street was found to result in a greater proportion of fatal crashes compared to 

riding along the roadway.  

 Crashes involving bicyclists riding along the roadway facing traffic resulted in a greater 

proportion of fatal crashes compared to crashes involving bicyclists riding along with 

vehicles. 

 Crosswalk locations, although experienced a high frequency of bicycle crashes, 

experienced a relatively low proportion of fatal crashes.  

 

The crash pattern analysis identified the following four major bicycle crash types: 

 

 Motorist turns right while bicyclist is crossing the street 

 Motorist turns left facing bicyclist 

 Bicyclist rides out at intersection 

 Motorist drives out at stop sign 

 

These four crash types were analyzed in detail, and a discussion on potential countermeasures was 

provided. Engineering countermeasures, including signal optimization, turn restrictions, and sign 

and pavement marking improvements, could improve the overall safety situation for bicyclists. 

Agency-wide education campaigns on the laws pertaining to bicyclists could improve bicycle 

safety. Furthermore, extensive driver education campaigns that focus on driver compliance with 

bicyclist right-of-way laws and stricter enforcement could prevent bicycle crashes that were due 

to driver error. 
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CHAPTER 5 

MACROSCOPIC ANALYSIS OF BICYCLE CRASHES 

 

This chapter focuses on analyzing demographic and socio-economic factors affecting bicycle 

safety. It first introduces the spatial analysis framework, and then explains the Bayesian modeling 

approach developed to predict the relation between variables at the census block group level and 

bicycle crash frequencies in Florida. The chapter then discusses the demographic, socio-economic, 

roadway, traffic, and bicycle activity data preparation efforts. The model results along with 

detailed discussion are then provided.  

 

5.1 Background 

 

The relationship between crash occurrence and its contributing factors is investigated using crash 

frequency models. The models can be divided into two broad categories: micro-level or 

disaggregate models, and macro-level or aggregate models. In micro-level crash analysis, crashes 

are analyzed along the roadway segments, ramps, and intersections with an intent to determine 

geometric design features and traffic attributes contributing to crashes, identify hot spots, and 

suggest countermeasures to reduce crashes. On the other hand, in macro-level analysis, crashes are 

aggregated over some geographic areas and analyzed with an intent to identify socio-demographic, 

land use, infrastructure-related contributing factors, which can shape long-term planning and 

policy implications in improving safety within an area.  

 

Analyzing bicycle crashes in the context of disaggregate modeling has the following issues: 

bicycle crashes are rare and often severe (e.g., bicyclists are more likely to be severely injured) 

compared to other motor-vehicle crashes; bicycle exposure is different from vehicle exposure and 

is difficult to quantify; and bicycle crash trends are quite distinctive and are dependent on land use, 

bicycle infrastructure, socio-economic and demographics factors, etc. Macro-level crash 

prediction models are therefore more popular in analyzing bicycle crashes (Amoh-Gyimah et al., 

2016; Lee et al., 2015; Wedagama et al., 2006; Wei and Lovegrove, 2013). In this study, bicycle 

crash frequencies were analyzed at the macro-level.  

 

Previous research on macro-level crash analysis used a wide array of areal units such as block 

groups (Abdel-Aty et al., 2013), census tracts (Abdel-Aty et al., 2013; Ukkusuri et al., 2011; Wang 

and Kockelman, 2013), cities (Moeinaddini et al., 2014), counties (Aguero-Valverde and Jovanis, 

2006, Amoros et al., 2003; Huang et al., 2010; Noland and Oh, 2004 ), districts (Haynes et al., 

2007), enumeration districts (Wedagama et al., 2006), local health areas (MacNab, 2004), 

statistical area level zones (Amoh-Gyimah et al., 2016), traffic analysis zones (Abdel-Aty et al., 

2013;  Ladron de Guevara et al., 2004; Lee et al., 2015; Siddiqui et al., 2012; Wei & Lovegrove 

(2013), traffic safety analysis zones (Lee et al., 2014b), uniform grid structures (Kim et al., 2006), 

wards (Quddus, 2008), and zip codes (Lee et al., 2014a). There is no single consensus on which 

neighborhood design should be adopted. In this study, analysis was conducted at the census block 

group level. A census block group is the smallest geographic entity for which the United States 

Census Bureau publishes data decennially (United States Census Bureau, 2012).  

 

http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0210
http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0210
http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0095
http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0080
http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0080
http://www.sciencedirect.com/science/article/pii/S0001457509000827#bib25
http://www.sciencedirect.com/science/article/pii/S0966692316303222#bb0175
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5.2 Methodology 

 

The following approaches were undertaken in this study to analyze the presence and effect of 

spatial correlation in bicycle crashes among census block groups in Florida: 

 

 Global Index of Spatial Autocorrelation 

 Hierarchical Bayesian Analysis 

 

5.2.1 Global Index of Spatial Correlation 

 

A measure of global index assesses the spatial pattern of the data over the entire geographic area. 

The two most commonly used global indices to measure spatial correlation are Moran’s I, and 

Geary’s C, which are defined as follows (Serra-Sogas et al., 2008): 

 

Global Moran's I :     IG = 
n ∑ ∑ ωij (y

i
 - y̅ ) (y

j
 - y̅)ji
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Global Geary's C :    C
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                            (5-2) 

 

where, 

 

n  = number of spatial units indexed by i and j, 

ωij  = weight assigned to the pair of spatial units i and j (i ≠ j) depending on spatial 

adjacency between the units; ωij = 1 if spatial units 𝑖 and 𝑗 are neighbors (i.e., share 

a common boundary), ωij = 0 for non-neighbors; 

y
i
, y

j
 = observed value of the variable 𝑦 at spatial units i and j, respectively; and 

y̅  = mean of the variable y. 

 

The values of IG typically range between -1 and 1. A positive value of IG indicates a pattern of 

spatial clustering, a negative value of IG indicates a pattern of spatial dispersion, and a value of IG 

close to zero indicates no spatial association. On the other hand, the values of CG range from 0 to 

2, where values less than 1 imply positive correlation or a pattern of clustering, values greater than 

1 imply negative association or a pattern of spatial dispersion, and values close to 1 indicate no 

spatial association (Serra-Sogas et al., 2008). The statistical significance test, irrespective of IG or 

CG, is based on the null hypothesis that the variable of interest has no spatial association over the 

geographic region of the study area.  

 

The statistical significance of Moran’s I and Geary’s C was tested using the Monte Carlo 

simulation procedure in this study, as recommended by Banerjee et al. (2004). The Monte Carlo 

approach requires no pre-assumption about the distribution of data; rather it generates a reference 

distribution of IG by computing its value a number of times by randomly permuting the observed 

values of the variable of interest around the spatial units. An empirical p-value is then determined 
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by locating the actual IG computed from the data as given (i.e., with no permutation) within the 

generated distribution of IG under the null hypothesis of no spatial association. Note that the use 

of these indices must be restricted for preliminary assessment of spatial association (Banerjee et 

al., 2004).  

 

5.2.2 Hierarchical Bayesian Modeling 

 

Earlier studies (e.g., Noland and Quddus, 2004; Wedagama et al., 2006; Lovegrove and Sayed, 

2006) applied traditional NB models to analyze macro-level bicycle crashes. NB regression is a 

widely used approach in developing crash frequency models as it accounts for overdispersion 

present in crash data. The regression is based on the assumption that observations are independent. 

In reality, crash aggregation over contiguous areas tends to introduce spatial autocorrelation 

between the observations. Spatial autocorrelation is said to exist when spatial units that are 

adjacent to one another in space have similar data values (Dale and Fortin, 2002). The assumption 

of full independence among the observations is thus violated in traditional NB models for macro-

level crash analysis. In other words, ignoring the possible effect of spatial autocorrelation among 

neighborhoods in macro-level data might lead to inaccurate results. As a remedy, Aguero-Valverde 

and Jovanis (2006), Huang et al. (2010), Quddus (2008), Siddiqui et al. (2012), and Wang and 

Kockelman (2013) used hierarchical Bayesian model that is capable to capture the effects of spatial 

correlation and unobserved heterogeneity (i.e., overdispersion) in data. 

 

Hierarchical Bayesian modeling is the most popular approach to take account of spatial correlation 

in the data. Bayesian inference provides a comprehensive and robust estimates of model 

parameters by a probability distribution rather than a point estimate provided by the classical 

regression model. Within a Bayesian framework, a data model is specified using a probability 

distribution such as p(y|Θ) that represents the likelihood of the observed data y = (y
1
,y

2
, ... , y

n
) 

given a set of unknown parameters Θ = (Θ1,Θ2, … , Θk). Next, each of the parameters is specified 

with a probability distribution based on knowledge obtained from previous research or experience.  

Such a setting of probability distribution is known as prior distribution or simply prior. The prior, 

p(Θ|λ), is conditioned on hyperparameters λ. The posterior distribution of model parameters is then 

computed as follows (Saha et al., 2017): 

 

  𝑝(Θ|y, λ) = 
p(y|Θ)p(Θ|λ)

∫ p(y|Θ)p(Θ|λ)dΘ
                                               (5-3) 

 

In most cases, 𝜆 is unknown and an additional distribution about 𝜆, known as hyperpriors ℎ(𝜆), is 

required. Equation 5-3 then takes the following form: 

 

 p(Θ|y, λ) = 
p(y|Θ)p(Θ|λ)h(λ)

∫ p(y|Θ)p(Θ|λ)h(λ)dΘdλ
                                       (5-4) 

 

A Poisson-lognormal model is typically employed in Bayesian hierarchical structure to replicate 

the underlying non-negative distribution of crash data in the NB model, while accounting for 

unobserved heterogeneity and spatial correlation. The specification of the Poisson-lognormal 

model for spatial analysis of bicycle crashes is as follows (Quddus, 2008; Siddiqui et al., 2012): 
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 The crash counts data by spatial units (e.g., census block groups), Yi, are assumed to have 

a Poisson distribution with the mean parameter λ, also called risk of crash outcome y at the 

census block group i: 

 

Yi ~ Poisson(λi)                                                       (5-5) 

 The risk 𝜆𝑖 is modeled as a function of the intercept, the covariates, and random effects 

using a “log” link function: 

 

 log(λi) = β
0
 + βXi + ui + si                                            (5-6) 

 

where, β
0
 is the intercept, β = (β

1
,β

2
, …, β

K
) is a vector of parameters associated with K 

covariates (e.g., demographic and socio-economic factors, traffic-related features, etc.), ui 

and  si are two random effects. Note that the parameters β are modeled as fixed effects. The 

random effect ui is known as unobserved heterogeneity that accounts for extra-Poisson 

variability (i.e., overdispersion) in the data and varies globally, i.e., over the entire spatial 

area. On the other hand, si is the random effect for spatial correlation (i.e., correlated 

heterogeneity) that varies locally. In other words, it accounts for spatial association such 

that adjacent spatial units are likely to have similar outcomes.  

 

 The following priors were assigned for the intercept β
0
, the set of parameters β

k
, and the 

random effect for unobserved heterogeneity ui:  

     

       β
0
 ~ N(0, 0)                                                                    (5-7)           

 

β
k
 ~ N(0, 0.001) for k = 1, 2, …, K                               (5-8)  

 

ui ~ N (0, 
1

τu

)                                                                  (5-9) 

 

where τu is the precision. The prior distribution for spatial correlation 𝑢𝑖 is specified by a 

conditional autoregressive (CAR) prior, as recommended by Besag (1974). Based on the 

conditional independence property of Markov random field, the CAR prior can be 

expressed as: 

 

si|s-i ~ N (
1

∑ wiji~j

∑ wijsj

i~j

, 
1

τs ∑ wiji~j

)                                    (5-10) 

where wij is the element of the adjacency matrix W and is equal to 1 if i and j are neighbors 

and is 0 otherwise, and τs is the precision.  

 

 The following non-informative hyperpriors are specified for the hyperparameters τu and τs: 
 

τu ~ Gamma(0.001, 0.001)                                           (5-11) 
 

τs ~ Gamma(0.1, 0.1)                                           (5-12) 



  

106 

 

5.3 Data Preparation 

 

The U.S. Census Bureau divided the state of Florida into 11,442 census block groups in its latest 

decennial census in 2010. Florida’s census block groups data were obtained in GIS layers from the 

Florida Geographic Data Library (FGDL), which is a warehouse of geospatial data collected from 

local, state, federal, and private agencies. The dataset was scrutinized to make sure that census 

block groups met the following two criteria: (i) no census block groups should have zero 

population, and (ii) all the census block groups must have at least one neighbor. It was found that 

that several census block groups represent water body only, while several others have land area 

without any population. These census block groups were therefore excluded from analysis. To 

identify neighbors between census block groups, the common boundary definition of 

neighborhood was followed: if a pair of census block groups share a common boundary, they are 

called neighbors. Note that areas in contact with each other only at their corners were not 

considered neighbors. A single census block group was found to be in complete isolation from the 

rest of the census block groups and therefore, was excluded from analysis. Finally, a total of 11,355 

census block groups were included in the analysis.  

 

A square neighborhood matrix was formed based on the adjacency information, where each 

element 𝑐𝑖𝑗 has the value 1 if 𝑖 and 𝑗 are neighbors; otherwise, the value is zero including the 

diagonal elements 𝑐𝑖𝑖.  

 

Four years (2011-2014) of crash data were obtained in GIS layers from FDOT’s Unified Basemap 

Repository (UBR) for both on-system and off-system roads in Florida. Bicycle crashes were 

identified from the binary variable FL_VRU_BIK; the value “Y” of this variable indicates that a 

bicyclist was involved in a crash. Bicycle crashes were then mapped to census block groups. An 

inherent problem of such mapping is associated with crashes those are located on the boundary 

between two or more neighboring areas, which may lead to over-counting of crashes 

(Fotheringham and Wegner, 2000; Lovegrove and Sayed, 2006). Another problem was associated 

with crash location errors when crashes were mapped outside the bordering census block groups 

(i.e., beyond the state boundary). To circumvent both issues, a near analysis was performed using 

ArcGIS tool. No radius was specific in the near analysis to assign crashes to the nearest census 

block group and thereby ensuring single as well as no omitted count of bicycle crashes. The 

number of bicycle-related crashes in each census block group was then counted for all crash 

severity levels. This study investigated census block group-level bicycle crashes for the following 

two injury levels: total crashes, and F+S crashes. Total crashes included crashes with severities 

reported as fatal, incapacitating injury, non-incapacitating injury, possible injury, property damage 

only, non-fatal traffic casualty, and unknown. F+S crashes were defined as those that resulted in 

either fatality (injury level = 5) or incapacitating injury (i.e., injury level = 4). Figures 5-1 and 5-2 

show the spatial distribution of total and F+S bicycle crashes, respectively, at census block groups 

in Florida.  
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Figure 5-1: Spatial Distribution of Total Bicycle Crashes (2011-2014)  

at Census Block Groups in Florida 

 

The explanatory variables considered in this study to perform spatial analysis of bicycle crashes 

could broadly be grouped into the following three categories (see Table 5-1): 

 

 demographic and socio-economic characteristics,  

 roadway and traffic characteristics, and 

 Strava users’ ride characteristics.   
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Figure 5-2: Spatial Distribution of Fatal and Severe Injury Bicycle Crashes (2011-2014)  

at Census Block Groups in Florida  

 

5.3.1 Demographic and Socio-economic Characteristics 

 

The demographic and socio-economic characteristics of census block groups for the state of 

Florida were obtained from the U.S. Census Bureau’s 2010-2014 American Community Survey 

(ACS).  The ACS data are released annually and reflect recent updates from the 2010 decennial 

census data. The 2014 ACS data were retrieved from the FGDL data library. The dataset contains 

more than 150 variables. Since it is not practical to consider all the 150 variables in developing 

models, only the variables that could potentially affect bicycle safety were extracted. Table 5-1 

lists the variables considered in the analysis.  
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5.3.2 Roadway and Traffic Characteristics 

 

The following roadway and traffic data variables were extracted from the 2014 RCI database (the 

name in the parentheses gives the description of the variable). 
 

 FUNCLASS (functional classification) 

 AADT (annual average daily traffic) 

 AVGTFACT (section average truck factor) 

 BIKELANE (presence of bicycle lane) 

 BIKESLOT (presence of bicycle slot) 

 

The 2014 RCI database included bicycle lane information for approximately 1,100 miles of road 

network. However, the GIS shapefile for bicycle lanes included this information for nearly 1,600 

miles. Since the GIS shapefile provided a more complete inventory of the road network with 

bicycle lanes, the bicycle lane shapefile was used in the analysis. Similarly, since the GIS shapefile 

for bicycle slots provided a more complete information compared to the RCI database, GIS 

shapefile for bicycle slot was used in the analysis. Both the Bicycle Lanes and Bicycle Slots 

shapefiles were separately intersected with the census block group layer to estimate the miles of 

bicycle lanes and bicycle slots in each census block group. The combined length of bicycle 

facilities (i.e., bicycle lanes and bicycle slots) was obtained and included in the analysis.  
 

Finally, only the functional classification, AADT, and truck factor variables were extracted from 

the 2014 RCI database. Since geographical coordinates of these features were not available, the 

following steps were performed to locate them within census block groups.  
 

 Step 1: Functional Classification GIS shapefile for the year 2016 was downloaded from 

FDOT’s GIS data library.  

 

 Step 2: Segments that are part of rural and urban principal arterials - interstate, freeways, 

and expressways were excluded.  

 

 Step 3: The generated non-freeway roadway segments layer was used to create routes for 

linear referencing. Individual RCI roadway features for the year 2014 were located along 

linearly referenced routes based on roadway ID, begin milepost, and end milepost. After 

performing linear referencing, each of the attributes was saved as layer files.   

 

 Step 4: A geometric intersection between the individual roadway characteristics layer and 

the census block group layer was performed to locate features within census block groups. 

Note that because of proximity error near to the boundaries, a few road segments (< 0.5% 

of road network) could not be included in the analysis.  

 

As shown in Table 5-1, rural arterials consist of roadway segments under rural principal arterial – 

other and rural minor arterial, rural collectors consist of rural major collector and rural minor 

collector roads, urban arterials consist of urban principal arterial – other and urban minor arterial, 

and urban collectors consist of urban major collector and urban minor collector. Roadway length 

is obtained by adding roadway lengths of rural arterials, rural collectors, rural local roads, urban 

arterials, urban collectors, and urban local roads.  
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Table 5-1: Descriptive Statistics per Census Block Group 
Variable  Min Max Mean Std. Dev. 

Crash Characteristics 

Total number of bicycle crashes 0 52 2.45 3.71 

Number of fatal and severe crashes involving bicyclists 0 11 0.38 0.86 

  Demographic and Socio-economic Characteristics 

Log of total population   1.95 10.48 7.25 0.63 

Log of population density per sq. mi. of area -5.17 11.81 7.54 1.57 

Log of households 0 9.86 6.27 0.65 

Log of households density per sq. mi. of area -5.75 10.98 6.57 1.60 

Household income in thousands 0 250 51.19 27.27 

Proportion of population below poverty line  0 100 17.47 14.54 

Proportion of households with no automobile  0 100 7.93 10.07 

Proportion of households with one automobile  0 100 41.54 16.28 

Proportion of male population  0 100 48.79 7.08 

Non-Hispanic White population  0 100 59.58 30.87 

Black or African American population  0 100 15.91 23.37 

Hispanic or Latino population  0 100 21.02 24.53 

Asian population  0 51.12 2.12 3.82 

Proportion of population of other races: American Indian and Alaska Native, 

Native Hawaiian and Other Pacific Islander, Multiracial, and others  
0 63.15 4.70 5.92 

Proportion of population aged 5 - 17 years  0 52.35 13.92 7.59 

Proportion of population aged 18 - 29 years  0 100 14.79 10.26 

Proportion of population aged 30 - 39 years  0 100 11.45 6.60 

Proportion of population aged 40 - 49 years 0 72.46 13.11 6.14 

Proportion of population aged 50 - 64 years 0 100 20.93 7.96 

Proportion of population aged 65 years and above  0 100 20.62 16.68 

Proportion of population 16 years and above employed 0 100 42.53 12.45 

Proportion of population 3 years and above enrolled in school  0 100 22.15 10.76 

Proportion of population 25 years and above having no school diploma  0 89.73 14.11 11.76 

Proportion of population 25 years and above having high school diploma only  0 100 30.07 11.94 

Proportion of population 25 years and above having Associate’s degree or 

attended some college with no degree achieved  
0 100 29.57 9.53 

Proportion of population 25 years and above having Bachelor’s degree or higher  0 100 26.26 17.60 

Roadway and Traffic Characteristics 

Density of rural arterials per sq. mi. of area 0 3.26 0.026 0.11 

Density of rural collector roads per sq. mi. of area 0 2.42 0.03 0.12 

Density of rural local roads per sq. mi. of area 0 13.09 0.02 0.202 

Length of urban principal arterials per sq. mi. of area 0 17.16 1.11 1.51 

Length of urban collector roads per sq. mi. of area 0 15.42 1.11 1.51 

Length of urban local roads per sq. mi. of area 0 18.64 0.18 0.67 

Density of all roads per sq. mi. of area 0 26.88 2.46 2.32 

Density of bicycle lane and bicycle slot per sq. mi. of area 0 13.72 0.30 0.77 

Log of daily vehicle miles traveled (DVMT) in thousands -8.52 6.67 2.45 1.49 

Log of number of bicycle commuters 0 5.77 0.53 1.18 

Traffic intensity as DVMT in thousands /road length 0 82.0 14.42 11.59 

Truck percentage 0 74.07 6.45 4.84 

Strava Users’ Ride Characteristics 

Bicycle trip miles from Strava data (number of bicycle trips × trip length in 

miles: Low [≤ 150], Medium [>150 & ≤ 1,000], and High [>1,000] 

Low: 4,256 obs. 

Medium: 4,029 obs. 

High: 3,070 obs. 

Bicycle trip intensity (number of bicycle trips from Strava data /road length: 

Low [≤ 1,000], Medium [>1,000 & ≤ 10,000], and High [>10,000] 

Low: 3,663 obs. 

Medium: 5,046 obs. 

High: 2,646 obs.  
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Log of daily vehicle miles traveled (DVMT) for a census block group was estimated by taking a 

logarithmic function of the product of segment AADT and the corresponding segment length for 

those segments located in a census block group. Traffic intensity in the census block group was 

computed by a length-weighted average of AADT, as follows: 

  

                 Traffic Intensity at a census block group =  
∑ AADTi× SLi

n
i=1

∑ SLi
n
i=1

                                (5-13) 

 

where AADTi is AADT on segment i, SLi is the length of segment i, and n is the number of 

segments in the particular census block group. Similarly, truck percentage was measured by 

multiplying truck factor with corresponding segment length and then normalizing for the total 

length of all segments within a census block group. 

 

5.3.3 Strava Users’ Ride Characteristics  

 

Strava is a smartphone application to facilitate bicyclists keep track of their rides. Strava users’ 

ride characteristics data for 2014 were obtained from FDOT’s UBR system. Strava data were 

presented on a road network level, which included, among others, count of bicycle trips on a street 

segment. To locate the bicycle trips within a census block group, the Strava road layer shapefile 

was intersected with the census block group shapefile.  Once the segments and associated bicycle 

trips on those segments within a census block group were identified,  bicycle trip miles and bicycle 

trip intensity for each census block group were calculated as follows: 

 

 Bicycle trip miles at a census block group =  ∑ BTi× SLi

n

i=1

                              (5-14) 

 

Bicycle Intensity at a census block group =  
∑ BTi× SLi

n
i=1

∑ SLi
n
i=1

                              (5-15) 

 

where BTi is the count of bicycle trips on the street segment 𝑖 regardless of the direction of travel, 

SLi is the length of segment i, and n is the number of segments in the particular census block group. 

It was well understood that the variables do not represent the overall population of bicyclists, and 

therefore, just a sample of the bicyclists’ data on roads. Therefore, the direct numeric values of 

these variables were not used in model development. Instead, the variables were categorized based 

on the distribution of their values (see Table 5-1).     
 

5.4 Results and Discussions 

 

5.4.1 Exploratory Analysis 

 

Table 5-2 presents the results of Moran’s I and Geary’s C indices. The tests were based on 1,000 

samples (i.e., 999 simulations and one given sample). Moran’s I index for both total and F+S 

bicycle crashes were positive, indicating clustering of bicycle crashes at neighborhoods. Similarly, 

Geary’s C index for both cases had values less than 1.0, indicating positive correlation and spatial 

clustering of bicycle crashes. Lower p-values in all the estimates indicate statistically significant 
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results. In summary, spatial autocorrelation was found to be present in bicycle crash data at census 

block group level.  

 

Table 5-2: Exploratory Analysis of Spatial Correlation for Bicycle Crashes 

Index Crash Type Estimate p-value Spatial Correlation 

𝐼𝐺 
Total bicycle crashes 0.3210 0.001 Clustered 

F+S bicycle crashes 0.1647 0.001 Clustered 

𝐶𝐺 
Total bicycle crashes 0.8497 0.001 Clustered 

F+S bicycle crashes 0.9657 0.012 Clustered 

 

5.4.2 Bayesian Inference 

 

Prior to model development, correlations among variables were investigated to identify the highly 

correlated variables as their inclusion in models might yield biased results. Pearson’s correlation 

coefficients were computed to determine the level of correlation present between variable pairs 

and then to select those variables that did not exhibit strong interdependence and multicollinearity. 
This also aids to reduce the number of explanatory variables in the models (MacNab, 2004). A 

value of Pearson’s correlation coefficient equal to 0.5 was considered the threshold for strong 

correlation. This means that both variables of a pair that had a correlation coefficient greater than 

0.50 were not included together in the models.  

 

The models were fit using the Integrated Nested Laplace Approximation (INLA) algorithm 

proposed by Rue et al. (2009). This method provides accurate approximations (deterministic) of 

the posterior marginals of the parameters of interest of latent Gaussian models. Since spatial CAR 

models are incorporated into this class of latent Gaussian models, the INLA approach can be used 

for parameter estimations of the hierarchical Bayesian models. A major advantage of the INLA 

procedure is that it is computationally fast and it can be used through the R library INLA (Schrödle 

et al., 2010).  

 

Bayesian inference is based on a density interval, commonly known as Bayesian credible interval 

(BCI), of the posterior distribution from which the credibility of a parameter could be determined. 

A 95% BCI is typically adopted; every point inside the 95% interval is more credible than any 

point outside it (Saha et al., 2017). Therefore, if the posterior distribution of the parameter does 

not include zero within its 95% density interval, the parameter is deemed credible. Table 5-3 

presents the Bayesian estimation of model parameters for total and F+S bicycle crashes at census 

block groups in Florida. The results show that both the random factors, one measuring the effect 

of unobserved heterogeneity and the other measuring the effect of spatial autocorrelation, were 

credible.  

 

As shown in Table 5-3, a total of 22 variables were credible in the total bicycle crash model and 

17 variables were credible in the F+S bicycle crash model. The variables that were credible in the 

two models include: 

 

 log of total population,  

 log of daily vehicle miles traveled (DVMT),  

 proportion of households with no automobile,  
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 proportion of households with one automobile,  

 proportion of population aged 18-29 years,  

 proportion of population 25 years and above having high school diploma only, 

 proportion of population 25 years and above having Associate’s degree or attended some 

college with no degree achieved, 

 proportion of population 25 years and above having Bachelor’s degree or higher,  

 density of rural collector roads, 

 density of rural local roads, 

 density of urban arterials,  

 density of bicycle facilities,  

 truck percentage,  

 bicycle trip miles, and  

 bicycle trip intensity in a census block group.  

 

Variables that were found to be credible only in the total bicycle crash model are:  

 

 log of number of bicycle commuters,  

 proportion of Black or African American population, 

 proportion of Hispanic or Latino population, 

 proportion of population aged 30-39 years, 

 proportion of population aged 50-64 years, 

 density of urban collector roads, and  

 density of urban local roads. 

 

Variables that were found to be credible only in the F+S bicycle crash model are:  

 

 proportion of male population, and  

 proportion of population aged 40-49 years.  

 

The variables log of population, log of DVMT, and log of bicycle commuters can be considered 

as surrogate measures for bicycle exposure. All the three variables were found to be credible in 

the total bicycle crash model, while only log of population and log of DVMT were found to be 

credible in the F+S bicycle crash model. As expected, these variables had positive coefficients. 

These results were found to be consistent with previous studies (Amoh-Gyimah et al., 2016; and 

Lee et al., 2015).   

 

The variables representing household vehicle ownership, including proportion of households with 

no automobile and proportion of households with one automobile, were found to have credible 

associations with both the total and F+S bicycle crash models. The positive coefficients of these 

variables imply that census block groups with growing proportion of households owning either 

zero or one automobile tend to experience more bicycle crashes. The effect of the proportion of 

households with no automobile was found to be approximately twice and 1.5 times the effect of 

the proportion of households with one automobile on total and F+S bicycle crashes, respectively. 

Household members who do not have any automobile are likely to use bicycle as one of the means 

of transportation and, therefore, have a greater probability to get involved in a crash. Again, one 
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vehicle per household might not adequately serve all the members of the household, and therefore, 

some of the household members may use bicycles and have chances to get involved in a crash. 

Therefore, the risk of bicycle crashes was found to be credible in census block groups with high 

proportion of households with one automobile; intuitively, the risk will be lower than that for 

census block groups with high proportion of households with no automobile. Siddiqui et al. (2012) 

also reported credible and positive coefficients to describe the effect of households with no 

automobile and households with one automobile on bicycle crashes at TAZs. 

 

Two ethnicity variables were found to be credible in the total bicycle crash model, while no 

ethnicity variable was found to be credible in the F+S bicycle crash model. The credible ethnicity 

variables, including proportion of Black or African American population and proportion of 

Hispanic or Latino population, had positive coefficients. The results indicate a higher propensity 

of bicycle crashes at census block groups with increasing population of these ethnic groups. The 

results are consistent with previous studies; for example, Yasmin and Eluru (2016) found positive 

coefficients for Hispanic population while investigating TAZ-level bicycle crashes in Montreal 

and Toronto in Canada.  

 

The variables representing proportions of population aged 18-29 years, 30-39 years, and 50-64 

years had credible positive associations with total bicycle crashes.  In addition to the proportion of 

population aged 18-29 years, the variable representing proportion of population aged 40-49 years 

had credible and positive impact on F+S bicycle crashes. Population age cohorts, therefore, were 

found to have a significant impact on the occurrences of bicycle crashes at census block groups.  

 

Among the other demographic and socio-economic variables, education related variables had 

shown credible impacts on the likelihood of bicycle crashes at census block groups. Population 

aged 25 years and above having at least a school diploma (i.e., consisting of population having a 

school diploma, an Associate’s degree, some college education with no degree, a Bachelor’s 

degree, a Master’s degree, a Professional school degree, or a Doctoral degree) were found to have 

negative associations with both total and F+S bicycle crashes. This could be because educated 

people are more likely to learn about safety behaviors while riding bicyclists. Proportion of male 

population was the other demographic variable that was found to be credible in the F+S bicycle 

crash model. This suggests that census block groups with a greater proportion of males may 

experience a greater number of F+S bicycle crashes.  

 

Several roadway characteristics variables were found to have credible associations with bicycle 

crashes at census block groups. In the total bicycle crash model, density of rural roads by functional 

class, including rural collector roads and rural local roads, had negative coefficients, and density 

of urban roads by functional class, including urban arterials, urban collector roads, and urban local 

roads, had positive coefficients. In the F+S bicycle crash model, density of rural collector roads 

and rural local roads were found to have negative coefficients, and density of urban arterials was 

found to have a positive coefficient. This indicates that census block groups with greater 

concentration of urban facilities are likely to experience more bicycle crashes, and those with 

greater concentration of rural facilities are likely to experience fewer bicycle crashes. This is 

expected since urban facilities have closely spaced intersections and driveways, which pose greater 

risk to bicyclists.  
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Density of bicycle facilities (bicycle lanes and bicycle slots) was found to be credible in both the 

total and F+S bicycle crash models. The coefficients for the density of bicycle facilities were found 

to have positive signs, which imply that census block groups with greater density of bicycle lanes 

and bicycle slots have high risk propensity of experiencing bicycle crashes. This is not surprising 

as bicycle lanes and bicycle slots along a roadway encourage more bicyclists to use the facilities, 

which in turn increases the bicyclists’ exposure to motorized traffic, and hence, increase the 

likelihood of bicycle crashes.  

 

Truck percentage had negative coefficients in both the crash models, which contradicts the results 

in Lee et al. (2015). One possible explanation could be that census block groups with high volume 

of truck traffic mostly represent rural areas, which generally experience fewer bicycle crashes.  

 

The Strava user’s ride characteristics variables, including bicycle trip miles and bicycle trip 

intensity, were found to be credible with positive coefficients for the total bicycle crash model. 

Census block groups with at least medium bicycle trip miles and medium bicycle trip intensity 

were found to have a higher propensity of bicycle crashes compared to the census block groups 

with low bicycle trip miles and low bicycle trip intensity. Similarly, for the F+S bicycle crash 

model, both bicycle trip miles and bicycle trip intensity were found to be credible. Medium and 

high bicycle trip intensity, and high bicycle trip miles were found to have positive association with 

F+S bicycle crashes.  

 

5.5 Summary 

 

This chapter presented a comprehensive analysis of bicycle crashes at the macro-level for the state 

of Florida. Data at the census block group level were used to investigate the impact of socio-

economic and demographic, roadway environment and infrastructure, bicycle activity, and traffic 

characteristics on bicycle crash frequency. Separate models were developed for total bicycle 

crashes and F+S bicycle crashes. Based on the Moran’s I index and the Geary’s C index values, 

spatial autocorrelation was found to be present in bicycle crash data at census block group level.  

 

A macro-level spatial analysis was conducted to determine the relation between bicycle crashes 

and independent variables, including demographic and socio-economic factors, roadway and 

traffic characteristics, and bicycle activity, while accounting for the effect of spatial correlation 

among census block groups. Table 5-4 summarizes the analysis results. It provides the association 

of the credible variables to total and F+S bicycle crashes.  
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Table 5-3: Bayesian Inference 

Variable Description 

Total Crashes Fatal and Severe Crashes 

Mean SD 
BCI 

Mean SD 
BCI 

2.5% 97.5% 2.5% 97.5% 

Intercept -4.2973 0.2116 -4.7134 -3.8828 -6.1026 0.3847 -6.8613 -5.3510 

Log of total population 0.2632 0.0214 0.2213 0.3052 0.2847 0.0363 0.2137 0.3562 

Log of DVMT 0.3174 0.0108 0.2963 0.3385 0.3831 0.0210 0.3420 0.4246 

Log of number of bicycle commuters 0.0224 0.0087 0.0053 0.0394 -- -- -- -- 

Proportion of households with no automobile 0.0112 0.0013 0.0086 0.0137 0.3221 0.0104 0.0022 0.0060 

Proportion of households with one automobile 0.0048 0.0008 0.0033 0.0063 -0.0046 0.0067 0.0014 0.0040 

Proportion of male population  -- -- -- -- 0.0061 0.0028 0.0005 0.0116 

Proportion of Black or African American population  0.0037 0.0008 0.0021 0.0052 -- -- -- -- 

Proportion of Hispanic or Latino population  0.0048 0.0010 0.0029 0.0068 -- -- -- -- 

Proportion of population aged 18 - 29 years  0.0082 0.0013 0.0057 0.0107 0.0060 0.0021 0.0019 0.0101 

Proportion of population aged 30 - 39 years  0.0064 0.0019 0.0027 0.0100 -- -- -- -- 

Proportion of population aged 40 - 49 years  -- -- -- -- 0.0072 0.0035 0.0002 0.0142 

Proportion of population aged 50 - 64 years  0.0047 0.0016 0.0016 0.0079 -- -- -- -- 

Proportion of population 25 years and above having high school 

diploma only  
-0.0056 0.0016 -0.0088 -0.0024 -0.0084 0.0028 -0.0139 -0.0029 

Proportion of population 25 years and above having Associate’s 

degree or attended some college with no degree achieved 
-0.0073 0.0016 -0.0103 -0.0042 -0.0130 0.0026 -0.0182 -0.0078 

Proportion of population 25 years and above having Bachelor’s degree 

or higher  
-0.0097 0.0014 -0.0125 -0.0070 -0.0159 0.0022 -0.0202 -0.0115 

Density of rural collector roads  -0.8646 0.1723 -1.2069 -0.5300 -0.7127 0.2811 -1.2783 -0.1736 

Density of rural local roads  -0.8633 0.3315 -1.5428 -0.2400 -1.3880 0.6097 -2.6481 -0.2516 

Length of urban principal arterials  0.0933 0.0088 0.0760 0.1107 0.0626 0.0155 0.0321 0.0930 

Length of urban collector roads  0.0248 0.0079 0.0092 0.0403 -- -- -- -- 

Length of urban local roads  0.0391 0.0161 0.0074 0.0705 -- -- -- -- 

Density of bicycle lane and bicycle slot  0.0365 0.0138 0.0094 0.0636 0.0609 0.0231 0.0153 0.1060 

Truck percentage -0.0172 0.0037 -0.0244 -0.0100 -0.0143 0.0067 -0.0274 -0.0013 

Bicycle trip miles: Medium 0.1155 0.0317 0.0533 0.1776 0.0933 0.0538 -0.0181 0.2049 

Bicycle trip miles: High 0.2711 0.0455 0.1818 0.3603 0.2782 0.0799 0.1213 0.4351 

Bicycle trip intensity: Medium 0.2095 0.0321 0.1466 0.2724 0.1228 0.0576 0.0099 0.2358 

Bicycle trip intensity: High 0.5265 0.0454 0.4373 0.6157 0.3306 0.0833 0.1671 0.4942 

τu 3.4710 0.2294 3.0439 3.9440 2.3980 0.2297 1.9813 2.8840 

τs 1.0810 0.0769 0.9369 1.2390 1.1170 0.1330 0.8793 1.4010 
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Table 5-4: Summary of Results from the Macroscopic Spatial Analysis 

Variable Description 
Total Crash 

Model 

F+S Crash 

Model 

Demographic and Socio-economic Characteristics 

Log of total population    

Proportion of households with no automobile    

Proportion of households with one automobile   

Proportion of male population  NC  

Proportion of Black or African American population   NC 

Proportion of Hispanic or Latino population   NC 

Proportion of population aged 18 - 29 years   NC 

Proportion of population aged 30 - 39 years  NC 

Proportion of population aged 40 - 49 years  NC  

Proportion of population aged 50 - 64 years   NC 

Proportion of population 25 years and above having high school 

diploma only  
  

Proportion of population 25 years and above having Associate’s degree 

or attended some college with no degree achieved 
  

Proportion of population 25 years and above having Associate’s degree 

or attended some college with no degree achieved  
  

Proportion of population 25 years and above having Bachelor’s degree 

or higher  
  

Roadway and Traffic Characteristics 

Density of rural collector roads per sq. mi. of area   

Density of rural local roads per sq. mi. of area   

Length of urban principal arterials per sq. mi. of area   

Length of urban collector roads per sq. mi. of area  NC 

Length of urban local roads per sq. mi. of area  NC 

Density of bicycle lane and bicycle slot per sq. mi. of area   

Log of daily vehicle miles traveled (DVMT) in thousands   

Log of number of bicycle commuters  NC 

Truck percentage   

Strava Users’ Ride Characteristics  

Bicycle trip miles: Medium    NC 

Bicycle trip miles: High     

Bicycle trip intensity: Medium    

Bicycle trip intensity: High   

Note:   indicates credible and increasing effect;  indicates credible and decreasing effect; NC is not credible. 
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CHAPTER 6 

CRASH MODIFICATION FACTORS  

 

This chapter presents the CMFs for bicycle crashes in Florida. It first discusses the segment, 

intersection, crash, and bicycle activity data preparation efforts. The approach used to develop 

CMFs is described next. The Florida-specific CMFs for different roadway segment and intersection 

facility types are then provided.  

 

6.1 Data 

 

6.1.1 Roadway Segment Data  

 

The following data were used to develop CMFs:  
 

 2014 RCI data 

 GIS shapefiles for: 

 Bicycle lane 

 Bicycle slot 

 Shared path 

 Sidewalk barrier 

 Sidewalk width and separation 

 State roads 

 Intersections 
 

Detailed roadway characteristics information was extracted from the 2014 FDOT’s RCI database. 

Of over 200 variables that are available in the RCI database, only those that could potentially affect 

bicycle safety were extracted. Table 6-1 lists these variables.  
 

Table 6-1: RCI Variables Extracted for CMF Development  

RCI Variable RCI Code 

Section Average Annual Daily Traffic SECTADT 

Number of Lanes NOLANES 

Median Width MEDWIDTH 

Bicycle Lane BIKELNCD 

Bicycle Slot BIKSLTCD 

Shared Path Width and Separation SHARDPTH 

Sidewalk Width and Separation SIDWLKWD 

Sidewalk Barrier SDWLKBCD 

Type of Road TYPEROAD 

Type of Parking TYPEOP 

Maximum Speed Limit MAXSPEED 

Pavement Surface Width SURWIDTH 

Type of Median RDMEDIAN 

Shoulder Type SHLDTYPE 

Functional Classification of Roadways FUNCLASS 
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These variables are discussed below in detail.  

 

 Section AADT: It is an estimate of the AADT traveled on the roadway section. The natural 

logarithm of AADT was considered in developing the regression models.  

 

 Number of Lanes: Information on number of lanes was used to categorize segments into 

different facility types. When the roadway is divided, the RCI provides number of through 

lanes for each direction of travel. On the other hand, when the roadway is undivided, the 

RCI provides number of through lanes for both directions of travel combined. Since the 

total number of lanes for both directions of travel was considered for model fitting, the 

number of lanes information on undivided sections was used directly. However, when 

roadway is divided, the number of through lanes in each direction of travel was added to 

obtain the total number of through lanes along both directions of travel.  

 

 Median Width: It denotes the width of the median in feet. The actual value of median width 

varied from 2 ft to over 100 ft. Since this level of detail is not required, the measured 

median width was rounded per the recommendations provided in the Highway Safety 

Manual (HSM). Table 6-2 presents the HSM guidance in rounding the median widths. 

 

Table 6-2: HSM Recommended Rounded Median Widths (Source: AASHTO, 2010)

Measured Median Width Rounded Median Width 

1 to 14 ft 10 ft 

15 to 24 ft 20 ft 

25 to 34 ft 30 ft 

35 to 44 ft 40 ft 

45 to 54 ft 50 ft 

55 to 64 ft 60 ft 

65 to 74 ft 70 ft 

75 to 84 ft 80 ft 

85 to 94 ft 90 ft 

95 ft or more 100 ft 

 

 Bicycle Lane: The 2014 RCI database included bicycle lane information for approximately 

1,100 miles of road network. However, the GIS shapefile for bicycle lanes included this 

information for nearly 1,600 miles. Since the GIS shapefile provided a more complete 

inventory of the road network with bicycle lanes, the bicycle lane shapefile was appended 

to the RCI database. Although the shapefile includes different categories for bicycle lanes 

such as designated, colored, etc., only presence or absence of bicycle lane was considered 

in the analysis.  

 

 Bicycle Slot: Bicycle slot data was prepared in the same manner as the bicycle lane data. 

However, since bicycle slots are always located at or near intersections, this variable was 

considered only when analyzing intersections.  
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 Shared Path Width and Separation: Shared path width and separation provides information 

about the actual width of the shared path in feet. Because of lack of variability in this data, 

only the presence or absence of shared path was considered while developing the regression 

models. Similar to bicycle lane and bicycle slot data, this variable was extracted from 

FDOT’s GIS shapefile.  

 

 Sidewalk Width and Separation: Similar to shared path width and separation, only the 

presence or absence of sidewalk was considered in the analysis. Since the FDOT GIS 

shapefile has more complete information about sidewalks compared to the RCI, this 

variable was extracted from the FDOT’s GIS shapefile.   

 

 Sidewalk Barrier: Information on sidewalk barrier was also extracted from the GIS 

shapefile, and the presence or absence of sidewalk barrier was considered in developing 

the regression models.   

 

 Type of Road: This variable denotes whether a roadway is undivided, divided, or one-way. 

The same classification was used to divide the road network into different facility types.  

 

 Type of Parking: This variable includes the following information: no parking allowed, 

parking permitted on one side, and parking permitted on both sides. The same information 

was considered in developing the regression models.   

 

 Maximum Speed Limit: Information on maximum speed limit was provided for each 

direction of travel on divided roads and for both directions of travel on undivided roads. If 

the maximum speed limit was different for each direction of travel, the highest value was 

taken as the maximum speed limit of the roadway. The maximum speed limit value was 

used directly for undivided sections.  
 

 Pavement Surface Width: Surface width is the total width of all through lanes. For divided 

roadway segments, the surface widths on each direction of travel were summed up to obtain 

the total surface width of the roadway segment. The surface width for undivided segments 

was used directly. Note that lane width, instead of surface width, was considered in 

developing the regression models. Lane widths were calculated by dividing the total surface 

width with the total number of lanes for each roadway segment.  Furthermore, the calculated 

lane widths were rounded per the recommendations provided in the HSM (see Table 6-3). 
 

Table 6-3: HSM Recommended Rounded Lane Widths (Source: AASHTO, 2010)

Measured Lane Width Rounded Lane Width 

9.2 ft or less 9 ft or less 

9.3 to 9.7 ft 9.5 ft 

9.8 to 10.2 ft 10 ft 

10.3 to 10.7 ft 10.5 ft 

10.8 to 11.2 ft 11 ft 

11.3 to 11.7 ft 11.5 ft 

11.8 or more 12 ft or more 
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 Type of Median: Table 6-4 lists the different types of medians included in the RCI. The 

codes were redefined to yield longer and more homogeneous segments. The table also 

provides the modified median types considered in this analysis.  

 

Table 6-4: Codes for Median Type  

Highway Median Type Original RCI Code Modified Code 

Paved 01 01 

Raised Traffic Separator 02 02 

Vegetation 08 08 

Curb & Vegetation 17 17 

Other 20 20 

Counted Roundabout 41 20 

Non-counted Roundabout 42 20 

Counted Traffic Circle 43 20 

Non-counted Traffic Circle 44 20 

Non-counted Managed Lane 50 20 

 

 Shoulder Type: The RCI includes information about three shoulder types based on offset 

direction (left, right, and both left and right): highway shoulder type, highway shoulder 

type2, and highway shoulder type3. Each type has ten different codes. The codes were also 

re-categorized to generate longer homogeneous segments. Table 6-5 presents both the 

original and the modified codes for shoulder type. Note that when the same segment has 

different codes for the three shoulder types (shoulder type, shoulder type2, and shoulder 

type3), the shoulder type was coded as “mixed”.  

 

Table 6-5: Codes for Shoulder Type, Shoulder Type2, and Shoulder Type3 

RCI Code Description Original RCI Code Modified Code 

Raised Curb 0 0 

Paved (including paved parking and bicycle slots) 1 12 

Paved with Warning Device (any device that 

serves to warn, guide, or regulate the motorist) 
2 12 

Lawn (number of feet to support roadbed) 3 345 

Gravel/Marl 4 345 

Valley Gutter (not a barrier) 5 345 

Curb & Gutter 6 68 

Other 7 7 

Curb with Resurfaced Gutter 8 68 

 

 Functional Classification of Roadways: Since bicyclists are not expected on limited-access 

facilitates, interstates, freeways, and expressways were excluded from the analysis. The 

following roadway functional classifications are included in this analysis. Note that the 

number in parentheses is the RCI code.  

 

o Rural – Principal Arterial – Other (04) 

o Rural – Minor Arterial (06) 

o Rural – Major Collector (07) 

o Rural – Minor Collector (08) 



  

122 

 

o Urban – Principal Arterial – Other (14) 

o Urban – Minor Arterial (16) 

o Urban – Major Collector (17) 

o Urban – Minor Collector (18) 
 

The entire road network was divided into the following facility types. Table 6-6 presents the 

descriptive statistics for these facility types. 

 

 Urban Two-lane Divided Segments 

 Urban Four-lane Divided Segments 

 Urban Six-lane Divided Segments 

 Urban Two-lane Undivided Segments 

 Urban Three-lane Undivided Segments 

 Urban Four-lane Undivided Segments 

 Rural Two-lane Undivided Segments 

 Rural Two-lane Divided Segments 

 Rural Four-lane Divided Segments 

 

Table 6-6: Descriptive Statistics of Segment Facility Types 

Attribute 
Attribute 

Category 

Urban Rural 

Divided Undivided Divided Undivided 

2L 4L 6L 2L 3L 4L 2L 4L 2L 

Roadway 

Length (mi.) 
-- 509.2 2,328.9 1,209 1,050 85.3 107.6 234.5 1,029.4 3,771.5 

Crash Freq. 

(2011-2014) 

Total 215 1,764 2,049 262 108 135 14 44 46 

F+S  50 296 344 60 12 18 3 24 21 

Roadway 

Length (mi.) 

with No Crashes 

-- 452.1 1,717.3 726.7 964.9 63.8 72.6 230.6 974.2 3,691.4 

Section 

AADT 

(veh/day)a 

Min 600 600 5,700 600 2,700 2,700 400 450 180 

Max 50,500 120,000 98,500 50,500 83,000 47,000 20,500 36,500 23,000 

Mean 11,704 24,545 42,085 10,046 14,594 16,868 6,352 10,837 4,610 

SD 5,474 10,290 13,303 5,576 7,488 7,922 3804.8 6,004 3,111 

Bicycle 

Activity (total 

No. of trips 

per year)  

Low  

(≤ 2,000) 
132.5 525.6 271.1 264.3 22.6 30.8 108.3 444.1 1,858.3 

Medium  

(> 2,000 and  

≤ 10,000) 

149.2 828.2 454.8 298.8 19.9 31.3 64.5 263.2 1,110 

High  

(> 10,000) 
227.3 975 482.9 486.8 42.8 45.4 61.6 322 803.2 

No. of Lanes -- 2 4 6 2 3 4 2 4 2 

Median Width 

(ft)a 

Min 10 10 10 

NA NA NA 

10 10 

NA 
Max 100 100 100 100 100 

Mean 12.42 26.43 25.97 13 38.57 

SD 8.12 15.14 11.28 9.54 18.3 

Bicycle Lane 

(mi.)b 

No 383.4 1,715.2 831.8 880.9 67.7 102.8 222.9 939.2 3,662.2 

Yes 125.7 616.7 377.1 169.1 17.6 4.8 11.6 90.2 109.4 

Shared Path  

(mi.)b 

No 495.1 2,275.1 1,171.2 1,017.4 84.6 107.2 230.7 1,005 3,714.2 

Yes 14.06 53.8 37.7 32.6 0.6 0.3 3.7 24.3 57.3 

Sidewalk 

(mi.)b 

No 278.7 881.7 210.8 713.7 12.3 16.8 213.4 952.2 3,667.5 

Yes 230.4 1,447.2 998.2 336.3 73 90.8 21 77.1 104 

Sidewalk 

Barrier (mi.)b 

No 280.7 883.8 216.8 727.6 14.3 18.2 212.8 950.8 3,646.2 

Yes 228.5 1,445 992.2 322.4 71 89.3 21.6 78.5 125.3 

Type of Road Undivided NA NA NA 934.9 7.2 98.4 NA NA 3,766 
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Attribute 
Attribute 

Category 

Urban Rural 

Divided Undivided Divided Undivided 

2L 4L 6L 2L 3L 4L 2L 4L 2L 

(in miles) Divided 509.2 2,328.9 1,209 NA NA NA 234.5 1029.4 NA 

One-way NA NA NA 115.1 78.1 9.1 NA NA 5.5 

Type of 

Parkingb 

No 83.5 447.5 208.6 194.1 7.3 17 4.08 23.2 69.86 

One Side 1 5.8 0.9 7.6 0 2.2 0 0 0 

Both Side 10.6 52 11.22 41.4 1.7 2.5 0 0 2.03 

NULL 414 1,823.5 988.2 806.8 76.2 85.8 230.4 1,006.2 3,699.7 

Maximum 

Speed Limit 

(mph)a 

Min -- -- -- -- -- -- -- -- -- 

Max 60 65 65 60 55 50 60 65 60 

Mean 41.97 43.68 44.07 40.6 33.35 34.4 50.57 53.4 49.6 

SD 11.67 9.08 8.5 12.9 11.03 7.52 10.37 9.59 13.01 

Pavement 

Surface Width 

(ft)a 

Min 18 35 59 19 26 34 20 40 18 

Max 54 75 81 44 42 54 50 72 44 

Mean 24 47 69.5 24 34.5 44 24.5 48 24 

SD 2 2.5 3.5 2 2.5 3.5 2 1 1.5 

Type of 

Medianb 

 

 

Paved 476.2 517.1 73.3 

NA NA NA 

219.4 37.41 

NA 

Raised Traffic 

Separator 
9.7 181.2 256.2 2.49 3.98 

Vegetation 4.5 927.7 78.4 4.77 912.2 

Curb & 

Vegetation 
18.3 697.3 794.1 7.76 74.56 

Other 0.4 5.4 6.8 0.04 1.27 

Shoulder  

Typeb 

Raised Curb 0 0 0 0 0 0 0 0 0 

Paved 0 0 0 0.3 0 0 0 0 0 

Lawn, Gravel 

/Marl, alley 

Gutter 

0.5 5.9 0.9 29.8 0.3 0 0.11 0 14.2 

Curb & Gutter 0.4 0.9 0 14.8 14.7 5.8 0 0 1.56 

Mixed 507.9 2,322.1 1,208 1,002.6 70.3 101.8 233.9 1029.4 3,746.2 

 Functional 

Classification 

of Roadways 

-- 
Principal Arterial, Minor Arterial, Major Collector, and 

 Minor Collector 

Principal Arterial, Minor 

Arterial, Major Collector, and 

Minor Collector 

Note: NA is not applicable; the sub-category lengths may not add up to facility length due to rounding issues; 
a 

numerical attribute; 
b 

categorical attribute. 

 

6.1.2 Intersection Data 

 

Intersection data were difficult to obtain directly from the existing FDOT databases. Therefore, 

intersection data collected for a recently completed FDOT project BDK80-977-37 titled “Improved 

Processes for Meeting the Data Requirements for Implementing the Highway Safety Manual 

(HSM) and Safety Analyst in Florida” were used to develop the models. The following 

intersection-related variables were included in the analysis:  

 

 Major road AADT 

 Minor road AADT 

 Intersection skew angle 

 Presence of lighting 

 Number of bus stops within intersection influence area (i.e., within 1,000 ft of the 

intersection) 

 Presence of schools within intersection influence area (i.e., within 1,000 ft of the 

intersection)  



  

124 

 

 Number of alcohol sales establishments within intersection influence area (i.e., within 

1,000 ft of the intersection) 

 Number of approaches with left-turn lanes 

 Number of approaches with right-turn lanes 

 Number of approaches with protected signal control 

 Number of approaches with permitted signal control 

 Number of approaches with protected-permitted signal control 

 Number of approaches with no Right-Turn-on-Red 

 Presence of red light running camera 

 

In addition to the intersection data retrieved from project BDK80-977-37, GIS shapefiles for 

bicycle slot and bicycle lane were also included. If either bicycle slot or bicycle lane was located 

within 250 ft of an intersection, the intersection was considered to have a bicycle facility.  

 

Due to sample size limitations, only urban four-leg signalized and urban three-leg stop-controlled 

intersections were analyzed. Table 6-7 presents the descriptive statistics for these two facility types. 

 

Table 6-7: Descriptive Statistics of Intersection Facility Types  

Attribute 
Attribute 

Category 

Urban Four-leg 

Signalized 

Urban Three-leg  

Stop-controlled 

Number of Sites --- 397 317 

Total Bicycle Crashes (2011-2014) --- 380 71 

Number of Sites with Zero Crashes --- 276 280 

AADT on Major Road
a
 

Minimum value 1,500 725 

Maximum value 74,500 61,750 

Average/Mean 31,829 19,268 

Standard deviation 14,214 12,655 

AADT on Minor Road
a
 

Minimum value 1,025 110 

Maximum value 55,250 30,000 

Average/Mean 18,532 3,486 

Standard deviation 11,708 3,176 

Intersection Skew Angle
b
 

No (No skew angle) --- 212 

Yes (Presence of skew angle) --- 105 

Presence of Lighting
b
 

No 27 96 

Yes 370 221 

No. of Bus Stops within 

Intersection Influence Area
b
 

0 127 257 

1-2 72 25 

≥ 3 198 35 

Presence of Schools within 

Intersection Influence Area
b
 

No 330 292 

Yes 67 25 

No. of Alcohol Sales 

Establishments within Intersection 

Influence Area
b
 

0 40 3 

1-8 355 112 

≥ 9 2 202 

No. of Approaches with Left Turn 

Lanes
a
 

0 2 114 

1 10 160 

2 20 43 

3 31 0 

4 334 --- 

0 77 244 

1 95 68 
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Attribute 
Attribute 

Category 

Urban Four-leg 

Signalized 

Urban Three-leg  

Stop-controlled 

No. of Approaches with Right-

Turn Lanes
a
 

2 80 5 

3 77 0 

4 68 --- 

No. of Approaches with Protected 

Signal Control
a
 

0 328 

--- 

1 28 

2 23 

3 10 

4 8 

No. of Approaches with Permitted 

Signal Control
a
 

0 159 

--- 

1 32 

2 62 

3 13 

4 131 

No. of Approaches with Protected-

Permitted Signal Control
a
 

0 163 

--- 

1 28 

2 70 

3 31 

4 105 

No. of Approaches with No Right- 

Turn-on-Red Sign
a
 

0 387 

--- 

1 8 

2 1 

3 1 

4 0 

Presence of Red Light Camera
b
 

No 300 
--- 

Yes 97 

Presence of Bicycle Facility
b
 

No 194 213 

Yes 203 104 

--- Not Applicable; 
a 

numerical attribute; 
b 

categorical attribute. 

 

6.1.3 Crash Data 

 

Crash data for the years 2011-2014 were obtained from FDOT’s CAR repository. The CAR 

database includes files for the following three data levels: 

 

 crash level file, 

 vehicle-driver-passenger level file, and 

 non-motorist level file.  
 

Crash level file includes crash related information such as crash number, roadway ID where the crash 

occurred, milepost of the crash location, crash severity, etc. The vehicle-driver-passenger file 

includes the road user related information for each crash record; thus it has information on crash 

number, all vehicles involved in the crash, all drivers and passengers involved in the crash, etc. Non-

motorist level data file includes information about each non-motorist involved in a crash such as 

crash number, type of non-motorist, non-motorist location, non-motorist injury severity, etc.  

 

As discussed in Section 3.1.1, bicycle crashes from 2011-2014 were identified first from the non-

motorist level data file using the following codes for non-motorist type code variable 

(NON_MOTR_TYP_CD): 3 (bicyclist), and 4 (other cyclist).  
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Since multiple bicyclists could be involved in a single crash, only the information of the bicyclist 

with highest severity in each crash was retrieved, and included in the analysis. Once bicycle 

crashes were identified from the non-motorist data file, the records were linked to the crash level 

data file using crash number. The bicycle crash data were then merged with the roadway segment 

and intersection database such that each site had the total number of bicycle crashes that occurred 

during 2011-2014.  

 

6.1.4 Bicycle Activity Data 

 

The bicycle activity data were retrieved from the 2014 Strava dataset which included distance of 

bicycle rides, time, pace, trail routes, and other geographic information data (collectively called 

“Activity Data”). This information was collected from the Strava smartphone application users 

who were biking in Florida. Since bicycle exposure provided in the Strava dataset is a sample and 

is dependent on the number of Strava smartphone application users in the area, the variables do 

not represent the overall population of bicyclists. Therefore, the raw Strava data representing the 

actual bicycle trips on each segment was processed to obtain a more representative bicycle 

exposure data. Bicycle volumes in each census block group were estimated by counting the number 

of bicycle trips made on the roadway segments in each census block group. The bicycle activity 

was then categorized into the following three classes. The roadway segments in each census block 

group were then assigned the bicycle activity of its census block group.   

 

 Low Bicycle Activity (total bicycle trips per year ≤ 2,000)  

 Medium Bicycle Activity (total bicycle trips per year > 2,000 and ≤ 10,000) 

 High Bicycle Activity (total bicycle trips per year > 10,000) 

 

6.2 Methodology 

 

A CMF is a multiplicative factor which is used to compute the expected number of crashes when 

a particular countermeasure is implemented at a specific site. A CMF greater than 1.0 indicates an 

expected increase in crashes, while a CMF less than 1.0 indicates an expected reduction in crashes 

when a particular countermeasure is implemented. For example, a CMF of 0.8 indicates a 20% 

expected reduction in crashes, while a CMF of 1.1 indicates a 10% expected increase in crashes 

(Gross et al., 2010). 

 

Cross-sectional analysis was used to develop CMFs for bicycle crashes in Florida. Cross-sectional 

studies are useful for CMF estimation when before-after studies cannot be conducted due to 

insufficient before and after crash data when a particular engineering countermeasure is 

implemented; or the date of the implemented treatment is unknown; or when it is difficult to 

distinguish the effect of a countermeasure from confounding factors. For example, there may be 

too few projects where lane width is reduced from 12 ft to 11 ft; but there may be many road 

segments with 11 ft lanes and 12 ft lanes. Before-after study might be impractical for credible 

results in such cases if enough before-after data are not available. Considering the datasets for this 

study, and the methodological pros and cons, cross-sectional study was identified as the best suited 

approach to develop CMFs.  
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In cross-sectional studies, crash experience at locations with and without a specific feature is 

studied; and then the difference in safety is attributed to that feature. The CMF can be estimated 

from the ratio of average crash frequency for sites with and without the treatment (or, 

countermeasure). To obtain reliable results from cross-sectional studies, it is critical that all 

locations are similar to each other in all other factors affecting crash risk. However, in practice, it 

is difficult to collect data for enough locations that are similar in all other factors affecting crash 

risk. Therefore, cross-sectional studies are often conducted through multivariate regression 

models.   

 

The multivariate regression models attempt to address all the variables that have the potential for 

safety improvement. The models are developed using crash data from sites both with and without 

the treatment (or, countermeasure). The change in crashes from a unit change in a specific variable 

can be estimated from regression model. The CMFs are then deduced from the model parameters 

(Gross et al., 2010). This research used a generalized linear model (GLM) approach with NB 

distribution to develop the relevant multivariate regression models. The models have crash 

frequency as the dependent variable, i.e., response variable, and the roadway characteristics as 

independent variables, i.e., explanatory variables. Equation 6-1 illustrates the basic form of a 

multivariate regression model.   

 

                          Yi=exp (β
0
+ β

1
× ln AADTi + β

2
×LWi+ β

3
×BLi+…+ β

k
×Xik)                          (6-1)   

 

where, 

 

Yi  = crash frequency on a road section i (crashes), 

AADTi  = average annual daily traffic on a road section i (vehicle/day), 

LWi  = lane width of a road section i (ft), 

BLi  = presence of bicycle lane along a road section i (0 if absent, 1 if present), 

Xik  = roadway characteristic k (i.e., countermeasure) of a road section i, 

β0  = model intercept/constant, and 

β 1, β2,…, βk = model coefficients. 

 

CMFs can be inferred from the estimated model parameters, i.e., coefficients; and as the model 

form is log-linear, the CMFs can be calculated as the exponent of the associated coefficient of the 

countermeasure variable as follows (Lord and Bonneson, 2007; Stamatiadis et al., 2009; Carter et 

al., 2012; Abdel-Aty et al., 2014): 

 

                                               CMF = exp (β
k
×(X

kt
- Xku))  = exp(β

k
)                                                 (6-2) 

 

where Xkt is roadway characteristic k (i.e., countermeasure) of a treated site, and Xku is roadway 

characteristic k (i.e., countermeasure) of an untreated site. For example, according to Equation 6-

1, the CMF for increasing lane width (LW) by one foot is equal to exp (β2).  

 

The regression coefficients and over-dispersion parameter were estimated using the glm.nb 

function of MASS package in the statistical software R (R Core Team, 2016). An offset term was 

added to the regression equation to predict the crash frequency in crashes per mile per year, as 

shown in Equation 6-3.    
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      Yi = exp(β0+ β1× ln AADTi + β2×LWi+ β3×BLi+…+ βk×Xik +OFFSET)       (6-3)   
 

where, 

 

Yi  = crash frequency on a road section i, 

AADTi  = average annual daily traffic on a road section i (vehicle/day), 

LWi  = lane width of a road section i (ft), 

BLi  = presence of bicycle lane along a road section i (0 if absent, 1 if present), 

Xik  = roadway characteristic k (i.e., countermeasure) of road section i, 

β0  = model intercept/constant, 

β 1, β2,…, βk = model coefficients, and 

OFFSETi = ln(4 × (section length of road section i, i.e., SLi)) for segments and ln(4) for 

intersections. Note that the number 4 was used in the offset term because 

this study considered four years of crash data.  

 

6.3 Crash Modification Factors for Roadway Segments 

 

This section discusses the Florida-specific bicycle CMFs for total crashes and fatal and severe 

injury (F+S) crashes for the different segment facility types. As a first step in developing the 

CMFs, NB models for all roadway facilities were developed by considering all the following 12 

variables: 

 

1. section AADT, 

2. median width,  

3. bicycle lane,  

4. shared path width and separation,  

5. sidewalk width and separation,  

6. sidewalk barrier,  

7. type of road,  

8. type of parking,  

9. maximum speed limit,  

10. lane width,  

11. median type, and  

12. shoulder type.  

 

Only the variables that were significant at the 80% confidence interval in the initial model were 

used to develop the final models. The CMFs were estimated based on these final models. Table 6-

8 lists the different segment facility types for which the NB regression models were developed for 

total and F+S bicycle crashes. The table also provides the reasons for not developing the models 

for some of the facility types.  
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Table 6-8: Overview of NB Models Developed for Different Segment Facility Types 

Facility Type 
NB Models for  

Total Bicycle Crashes 

NB Models for  

F+S Bicycle Crashes 

Urban Two-lane Divided Yes Yes 

Urban Four-lane Divided Yes Yes 

Urban Six-lane Divided Yes Yes 

Urban Two-way Two-lane Undivided No1 No3 

Urban One-way Two-lane Undivided No1 No3 

Urban Two-way Three-lane Undivided No1 No1 

Urban One-way Three-lane Undivided No1 Yes 

Urban Two-way Four-lane Undivided Yes Yes 

Urban One-way Four-lane Undivided No2 No2 

Rural Two-way Two-lane Undivided Yes No4 

Rural One-way Two-lane Undivided No2 No2 

Rural Two-lane Divided Yes No4 

Rural Four-lane Divided No3 No3 
1 none of the variables were found significant; 2 inadequate sample size; 3 inadequate variability within the 

variables; 4 inadequate crash frequencies. 

 

The following sections present the CMFs for total and F+S bicycle crashes for the different segment 

facility types. For each facility type, the data and model coefficients were reviewed closely to 

identify reliable CMFs. Note that the CMFs developed using small sample size are not considered 

to be reliable, and should be used with caution.   

 

6.3.1 Urban Two-lane Divided Segments 

 

Table 6-9 presents the model coefficients and CMFs for total bicycle crashes developed for urban 

two-lane divided roadways in Florida. The CMFs can be interpreted as one unit increase in the 

predictor variable results in an increase or decrease of certain percentage of bicycle crashes per 

mile per year. For example, Table 6-9 presents a CMF of 1.69 for the presence of bicycle lane; it 

can be inferred from this CMF that, the presence of bicycle lane increases the probability of bicycle 

crashes by 69% per year per mile on urban two-lane divided roadways in Florida. The reliable 

CMFs for total bicycle crashes for urban two-lane divided roadways in Florida are: 
 

 Presence of sidewalk barrier increases the bicycle crash probability by 118%. 

 Presence of parking on both sides increases the bicycle crash probability by 165% 

compared to the locations where parking is not allowed.  

 One foot increase in lane width decreases the bicycle crash probability by 36%. 

 Locations with raised traffic separator in the median increases the bicycle crash probability 

by 165% compared to the locations with paved medians.  

 Locations with curb and vegetation in the median increases the bicycle crash probability 

by 143% compared to the locations with paved medians.  

 Locations with medium bicycle activity decrease the bicycle crash probability by 49% 

compared to the locations with low bicycle activity. 
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 Locations with high bicycle activity decrease the bicycle crash probability by 27% 

compared to the locations with low bicycle activity.   

 

Table 6-9: CMFs for Total Bicycle Crashes on Urban Two-lane Divided Segments 

Variable Coefficient CMF 

Intercept -11.25582 Not Applicable 

Section AADT 1.50264a Not Applicable 

Presence of Bicycle Lane 0.52859 1.69 

Presence of Sidewalk Barrier 0.77943 2.18 

Type of Parking (Permitted One Side)b -- -- 

Type of Parking (Permitted Both Sides)b 0.97526 2.65 

Maximum Speed Limit -0.01784 0.98e 

Lane Width -0.43912 0.64 

Type of Median (Raised Traffic Separator)c 0.97701 2.65 

Type of Median (Vegetation)c -- -- 

Type of Median (Curb & Vegetation)c 0.88938 2.43 

Type of Median (Other)c -- -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)d -0.66810 0.51 

High Bicycle Activity (Annual Trips > 10,000)d -0.30984 0.73 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for type of parking is no parking allowed. 
c The base condition for type of median is paved. 
d The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
e The CMF is not reliable due to inadequate variability within the speed limit data. 
  

Table 6-10 presents the model coefficients and CMFs for F+S bicycle crashes on urban two-lane 

divided roadways in Florida. The reliable CMFs for F+S bicycle crashes are: 

 

 Presence of sidewalk decreases the F+S bicycle crash probability by 59%. 

 Presence of sidewalk barrier increases the F+S bicycle crash probability by 320%. 

 One foot increase in lane width decreases the F+S bicycle crash probability by 48%. 

 Locations with medium bicycle activity decreases the F+S bicycle crash probability by 

53% compared to the locations with low bicycle activity. 
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Table 6-10: CMFs for F+S Bicycle Crashes on Urban Two-lane Divided Segments 

Variable Coefficient CMF 

Intercept -9.9291 Not Applicable 

Section AADT 1.4228a Not Applicable 

Presence of Sidewalk -0.9032 0.41 

Presence of Sidewalk Barrier 1.4374 4.20 

Type of Parking (Permitted One Side)b -- -- 

Type of Parking (Permitted Both Sides)b 1.5318 4.62c 

Lane Width -0.6597 0.52 

Type of Median (Raised Traffic Separator)d 1.7761 5.90c 

Type of Median (Vegetation)d -- -- 

Type of Median (Curb & Vegetation)d -- -- 

Type of Median (Other)d -- -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)e -0.7459 0.47 

High Bicycle Activity (Annual Trips > 10,000)e -- -- 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for type of parking is no parking allowed. 
c The CMF is not reliable due to low sample size. 
d The base condition for type of median is paved. 
e The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
 

6.3.2 Urban Four-lane Divided Segments 
 

Table 6-11 presents the model coefficients and CMFs for total bicycle crashes developed for urban 

four-lane divided roadways in Florida. The reliable CMFs for total bicycle crashes are: 
 

 One foot increase in median width decreases the probability of bicycle crashes by 1% per 

year per mile on urban four-lane divided roadways in Florida. 

 Presence of bicycle lane decreases the bicycle crash probability by 14%.  

 Presence of sidewalk increases the bicycle crash probability by 78%. 

 One foot increase in lane width decreases the bicycle crash probability by 33%. 

 Locations with raised traffic separator in the median increases the bicycle crash probability 

by 22% compared to the locations with paved medians.  

 Locations with vegetation in the median decreases the bicycle crash probability by 38% 

compared to the locations with paved medians.  

 Locations with curb and vegetation in the median decreases the bicycle crash probability 

by 15% compared to the locations with paved medians.  

 

Table 6-12 presents the model coefficients and CMFs for F+S bicycle crashes developed for urban 

four-lane divided roadways in Florida. The reliable CMFs for F+S bicycle crashes are: 

 

 One foot increase in median width decreases the F+S bicycle crash probability by 2%. 

 Locations with curb and vegetation in the median decreases the F+S bicycle crash 

probability by 3% compared to the locations with paved medians.  



  

132 

 

 Locations with medium bicycle activity increases the F+S bicycle crash probability by 63% 

compared to the locations with low bicycle activity. 

 Locations with high bicycle activity increases the F+S bicycle crash probability by 43% 

compared to the locations with low bicycle activity. 
 

Table 6-11: CMFs for Total Bicycle Crashes on Urban Four-lane Divided Segments 

Variable Coefficient CMF 

Intercept -5.593448 Not Applicable 

Section AADT 0.836457a Not Applicable 

Median Width -0.004565 0.99 

Presence of Bicycle Lane -0.152452 0.86 

Presence of Sidewalk 0.578128 1.78 

Type of Parking (Permitted One Side)b -1.102343 0.33c 

Type of Parking (Permitted Both Sides)b -- -- 

Maximum Speed Limit -0.036162 0.96d 

Lane Width -0.260731 0.77 

Type of Median (Raised Traffic Separator)e 0.204150 1.22 

Type of Median (Vegetation) e -0.485550 0.62 

Type of Median (Curb & Vegetation) e -0.157041 0.85 

Type of Median (Other) e 1.001926 2.72f 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for type of parking is no parking allowed. 
c The CMF is not reliable due to low sample size. 
d The CMF is not reliable due to inadequate variability within the speed limit data. 
e The base condition for type of median is paved. 

f The CMF is not meaningful because the “Other” category is not explicitly defined. 

 

Table 6-12: CMFs for F+S Bicycle Crashes on Urban Four-lane Divided Segments 

Variable Coefficient CMF 

Intercept -8.31560 Not Applicable 

Section AADT 0.57413a Not Applicable 

Median Width -0.01209 0.98 

Maximum Speed Limit -0.01831 0.98b 

Type of Median (Raised Traffic Separator)c -- -- 

Type of Median (Vegetation)c -- -- 

Type of Median (Curb & Vegetation)c -0.30456 0.97 

Type of Median (Other)c 1.04973 2.85d 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)e 0.48972 1.63 

High Bicycle Activity (Annual Trips > 10,000)e 0.35828 1.43 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The CMF is not reliable due to inadequate variability within the speed limit data. 
c The base condition for type of median is paved. 
d The CMF is not meaningful because the “Other” category is not explicitly defined. 
e The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
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6.3.3 Urban Six-lane Divided Segments 
 

Table 6-13 presents the model coefficients and CMFs developed for urban six-lane divided 

roadways. The reliable CMFs for total bicycle crashes are: 
 

 One foot increase in median width decreases the bicycle crash probability by 1%. 

 Presence of shared path decreases the bicycle crash probability by 25%. 

 Presence of sidewalk increases the bicycle crash probability by 87%. 

 Presence of sidewalk barrier increases the bicycle crash probability by 99%. 

 Presence of parking on both sides decreases the bicycle crash probability by 52% compared 

to the locations where parking is not allowed.  

 One foot increase in lane width decreases the bicycle crash probability by 25%. 

 Locations with vegetation in the median decreases the bicycle crash probability by 51% 

compared to the locations with paved medians.  

 Locations with curb and vegetation in the median decreases the bicycle crash probability 

by 20% compared to the locations with paved medians.  

 Locations with medium bicycle activity decrease the bicycle crash probability by 11% 

compared to the locations with low bicycle activity. 

 Locations with high bicycle activity decrease the bicycle crash probability by 27% 

compared to the locations with low bicycle activity. 

 

Table 6-13: CMFs for Total Bicycle Crashes on Urban Six-lane Divided Segments 

Variable Coefficient CMF 

Intercept -4.399824 Not Applicable 

Section AADT 0.804120a Not Applicable 

Median Width -0.007534 0.99 

Presence of Shared Path  -0.293190 0.75 

Presence of Sidewalk  0.629530 1.87 

Presence of Sidewalk Barrier 0.690807 1.99 

Type of Parking (Permitted One Side)b -- -- 

Type of Parking (Permitted Both Sides)b -0.743806 0.48 

Maximum Speed Limit -0.010892 0.99c 

Lane Width -0.291003 0.75 

Type of Median (Raised Traffic Separator)d -- -- 

Type of Median (Vegetation)d -0.722819 0.49 

Type of Median (Curb & Vegetation)d -0.219630 0.80 

Type of Median (Other)d -1.453537 0.23e 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)f -0.111178 0.89 

High Bicycle Activity (Annual Trips > 10,000)f -0.315020 0.73 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for type of parking is no parking allowed. 
c The CMF is not reliable due to inadequate variability within the speed limit data. 
d The base condition for type of median is paved. 
e The CMF is not meaningful because the “Other” category is not explicitly defined. 
f The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
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Table 6-14 presents the model coefficients and CMFs for F+S bicycle crashes developed for urban 

six-lane divided roadways in Florida. The reliable CMFs for F+S bicycle crashes are: 
 

 Presence of sidewalk increases the F+S bicycle crash probability by 171%. 

 One foot increase in lane width decreases the F+S bicycle crash probability by 21%. 

 Locations with vegetation in the median decreases the F+S bicycle crash probability by 

55% compared to the locations with paved medians.  

 Locations with high bicycle activity decrease the F+S bicycle crash probability by 24% 

compared to the locations with low bicycle activity. 
 

Table 6-14: CMFs for F+S Bicycle Crashes on Urban Six-lane Divided Segments  

Variable Coefficient CMF 

Intercept -5.191890 Not Applicable 

Section AADT 0.733848a Not Applicable 

Presence of Sidewalk  0.999177 2.71 

Lane Width -0.231726 0.79 

Type of Median (Raised Traffic Separator)b -- -- 

Type of Median (Vegetation)b -0.803647 0.45 

Type of Median (Curb & Vegetation)b -- -- 

Type of Median (Other)b -0.831556 0.44c 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)d -- -- 

High Bicycle Activity (Annual Trips > 10,000)d -0.267017 0.76 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for type of median is paved. 
c The CMF is not meaningful because the “Other” category is not explicitly defined. 
d The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

6.3.4 Urban One-way Three-Lane Undivided Segments 

 

None of the model coefficients were found to be significant at 80% confidence level for total 

bicycle crashes on one-way three-lane undivided urban roadway segments. Table 6-15 presents 

the model coefficients and CMFs for F+S bicycle crashes for urban one-way three-lane undivided 

roadway segments. As can be observed from the table, one foot increase in lane width decreases 

the F+S bicycle crash probability by 76% for this facility type.  

 

Table 6-15: CMFs for F+S Bicycle Crashes on Urban One-way Three-lane Undivided 

Segments 

Variable Coefficient CMF 

Intercept -0.85734 Not Applicable 

Section AADT 1.21122a Not Applicable 

Maximum Speed Limit -- -- 

Lane Width -1.40944 0.24 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
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6.3.5 Urban Two-way Four-lane Undivided Segments 

 

Table 6-16 presents the model coefficients and CMFs for total bicycle crashes on urban four-lane 

undivided roadway segments. Similarly, Table 6-17 presents the model coefficients and CMFs for 

F+S bicycle crashes. The reliable CMFs for bicycle crashes are: 

 

 Presence of bicycle lane increases the total bicycle crash probability by 124% 

 Presence of sidewalk barrier decreases the total bicycle crash probability by 67%, and the 

F+S bicycle crash probability by 64%. 

  

Table 6-16: CMFs for Total Bicycle Crashes on Urban Two-way Four-lane Undivided 

Segments 

Variable Coefficient CMF 

Intercept -8.8486 Not Applicable 

Section AADT 0.5883a Not Applicable 

Presence of Bicycle Lane 0.8098 2.24 

Presence of Sidewalk  3.0935 -- 

Presence of Sidewalk Barrier -1.1183 0.33 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT).  

 

Table 6-17: CMFs for F+S Bicycle Crashes on Urban Two-way Four-lane Undivided Segments 

Variable Coefficient CMF 

Intercept -9.04834 Not Applicable 

Section AADT 0.60829a Not Applicable 

Presence of Sidewalk  2.92332 -- 

Presence of Sidewalk Barrier -1.00935 0.36 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)b -- -- 

High Bicycle Activity (Annual Trips > 10,000)b -- -- 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT).  
b The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

6.3.6 Rural Two-way Two-lane Undivided Segments 

 

Tables 6-18 presents the model coefficients and CMFs developed for rural two-way two-lane 

undivided roadway segments for total bicycle crashes. Note that CMFs were not developed for 

F+S bicycle crashes as there were very few F+S crashes on these facilities. 
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Table 6-18: CMFs for Total Bicycle Crashes on Rural Two-way Two-lane Undivided Segments 

Variable Coefficient CMF 

Intercept -13.80986 Not Applicable 

Section AADT 1.07412a Not Applicable 

Maximum Speed Limit -0.02111 0.98b 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)c 0.55784 1.74d 

High Bicycle Activity (Annual Trips > 10,000)c -- -- 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT).  
b The CMF is not reliable due to inadequate variability within the speed limit data. 
c The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
d The CMF is not reliable due to inadequate variability within bicycle activity data. 

 

6.3.7 Rural Two-lane Divided Segments 

 

Table 6-19 presents the model coefficients and CMFs developed for total bicycle crashes on rural 

two-lane divided roadway segments. One foot increase in median width was found to decrease the 

bicycle crash probability by 16% on this roadway facility. Note that CMFs were not developed for 

F+S bicycle crashes as there were very few F+S crashes on these facilities.  

 

Table 6-19: CMFs for Total Bicycle Crashes on Rural Two-lane Divided Segments 

Variable Coefficient CMF 

Intercept -9.0403 Not Applicable 

Section AADT 0.7153a Not Applicable 

Median Width -0.1753 0.84 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)b -- -- 

High Bicycle Activity (Annual Trips > 10,000)b 1.2522 3.5c 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT).  
b The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
c The CMF is not reliable due to inadequate variability within bicycle activity data. 

 

6.4 Crash Modification Factors for Intersections 

 

This section discusses the Florida-specific CMFs for the urban four-leg signalized and urban three-

leg stop-controlled intersections. As discussed in Section 6.3, the NB models for intersections were 

first developed by considering all the variables listed in Table 6-7. Only the variables significant 

at the 80% confidence interval in the first model were used to develop the final models. These final 

models were then used to estimate the CMFs. The following sections present the CMFs for urban 

four-leg signalized and urban three-leg stop-controlled intersections. For each facility type, the data 

and model coefficients were reviewed closely to identify reliable CMFs. Note that the CMFs 

developed using small sample size are not considered to be reliable, and should be used with 

caution.   

  

6.4.1 Urban Four-leg Signalized Intersections 

 

Table 6-20 presents the model coefficients and CMFs for total bicycle crashes on urban four-leg 

signalized intersections in Florida. The reliable CMFs are: 
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 Presence of three or more bus stops within intersection influence area increases the 

probability of bicycle crashes by 90%. 

 Presence of up to eight alcohol sales establishments within intersection influence area 

increases the probability of bicycle crashes by 53%. 

 Presence of bicycle facilities (i.e., either bicycle lane, or bicycle slot, or both) at 

intersections increases the probability of bicycle crashes by 27%. 
 

Table 6-20: CMFs for Total Bicycle Crashes on Urban Four-leg Signalized Intersections 

Variable Coefficient CMF 

Intercept -13.02980 Not Applicable 

AADT on Major Road  1.03716a Not Applicable 

1-2 Bus Stops within Intersection Influence Areab 0.05416 -- 

≥ 3 Bus Stops within Intersection Influence Areab 0.64057 1.90 

1-8 Alcohol Sales Establishment within Intersection Influence Areac 0.42557 1.53 

≥ 9 Alcohol Sales Establishment within Intersection Influence Areac 0.78981 -- 

No. of Approaches with Right-Turn Lanes -0.05595 -- 

Presence of Bicycle Facilities 0.24263 1.27 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The base condition for bus stops is absence of bus stops within intersection influence area.  
c The base condition for alcohol sales establishments is absence of alcohol sales establishments within 

intersection influence area. 

 

Table 6-21 presents the model coefficients and CMFs for F+S bicycle crashes on urban four-leg 

signalized intersections in Florida. The reliable CMFs for F+S bicycle crashes are: 
 

 Presence of a right-turn lane on an approach reduces the F+S bicycle crash probability by 

18%. 

 Presence of bicycle facilities at intersections increases the probability of F+S bicycle 

crashes by 71%. 

 

Table 6-21: CMFs for F+S Bicycle Crashes on Urban Four-leg Signalized Intersections 

Variable Coefficient CMF 

Intercept -20.7679 Not Applicable 

AADT on Major Road  1.0046a Not Applicable 

AADT on Minor Road 0.6716a Not Applicable 

1-8 Alcohol Sales Establishment within Intersection Influence Area 0.4279 -- 

≥ 9 Alcohol Sales Establishment within Intersection Influence Area 1.9535 7.05b 

No. of Approaches with Right-Turn Lanes -0.1951 0.82 

No. of Approaches with No-Right-Turn-on-Red 0.8113 2.25c 

Presence of Bicycle Facilities 0.5368 1.71 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
b The CMF is not reliable because the data are skewed.  
c  The CMF is not reliable due to low sample size. 

 

6.4.2 Urban Three-leg Stop-controlled Intersections 
 

Table 6-22 presents the model coefficients and CMFs for total bicycle crashes developed for urban 

three-leg stop-controlled intersections in Florida. Presence of bicycle facilities at three-leg stop-

controlled urban intersections increases the probability of bicycle crashes by 36%. Note that CMFs 
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were not developed for F+S bicycle crashes because none of the variables except AADT on major 

road were found to be significant at 80% confidence level.  

 

Table 6-22: CMFs for Total Bicycle Crashes on Urban Three-leg Stop-controlled 

Intersections 

Variable Coefficient CMF 

Intercept -18.3443 Not Applicable 

AADT on Major Road 1.5402a Not Applicable 

Presence of Bicycle Facilities 0.3077 1.36 

-- Not significant at 80% confidence level; a The coefficient is for ln (Section AADT). 
 

6.5 Summary 
 

Tables 6-23 and 6-24 summarize Florida-specific CMFs developed for total bicycle crashes for 

different roadway segment and intersection facility types, respectively. Similarly, Tables 6-25 and 

6-26 summarize Florida-specific CMFs developed for F+S bicycle crashes for different roadway 

segment and intersection facility types, respectively.  
 

Table 6-23: Summary of CMFs for Total Bicycle Crashes for Segment Facility Types 

Variable 

Urban Rural 

Divided Undivided Divided Undiv. 

2L 4L 6L 2L2a 2L1b 3L2c 3L1d 4L2e 2L 4L 2L2f 

Median Width -- 0.99 0.99 NA NA NA NA NA 0.84 -- NA 

Presence of Bicycle Lane 1.69 0.86 -- -- -- -- -- 2.24 -- -- -- 

Presence of Shared Path  -- -- 0.75 -- -- -- -- -- -- -- -- 

Presence of Sidewalk  -- 1.78 1.87 -- -- -- -- -- -- -- -- 

Presence of Sidewalk Barrier 2.18 -- 1.99 -- -- -- -- 0.33 -- -- -- 

Type of Parking (One Side)g -- -- -- -- -- -- -- -- -- -- -- 

Type of Parking (Both Sides)g 2.65 -- 0.48 -- -- -- -- -- -- -- -- 

Lane Width 0.64 0.77 0.75 -- -- -- -- -- -- -- -- 

Type of Median (Raised Traffic 

Separator)h 
2.65 1.22 -- 

NA NA NA NA NA 

-- -- 

NA Type of Median (Vegetation)h -- 0.62 0.49 -- -- 

Type of Median (Curb & 

Vegetation)h 
2.43 0.85 0.80 -- -- 

Shoulder Type (Paved)i -- -- -- -- -- -- -- -- -- -- -- 

Shoulder Type (Lawn, 

Gravel/Marl, Valley Gutter)i 
-- -- -- -- -- -- -- -- -- -- -- 

Shoulder Type (Curb & Gutter)i -- -- -- -- -- -- -- -- -- -- -- 

Medium Bicycle Activity 

(Annual Trips > 2,000 and ≤ 

10,000)j 

0.51 -- 0.89 -- -- -- -- -- -- -- -- 

High Bicycle Activity (Annual 

Trips > 10,000) j 
0.73 -- 0.73 -- -- -- -- -- -- -- -- 

-- Not significant; NA is not applicable.  
a Urban 2-Lane Undivided Two-way Road; b Urban 2-Lane Undivided One-way Road;  

c Urban 3-Lane Undivided Two-way Road; d Urban 3-Lane Undivided One-way Road; 
e Urban 4-Lane Undivided Two-way Road; f Rural 2-Lane Undivided Two-way Road. 
g The base condition for type of parking is no parking allowed.  
h The base condition for type of median is paved. 

i  The base condition for shoulder type is raised curb.  
j  The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
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Table 6-24: Summary of CMFs for Total Bicycle Crashes for Intersection Facility Types 

Variables 
Urban 4-Leg 

Signalized 

Urban 3-Leg 

Stop-controlled 

Skew Angle of the Intersection -- -- 

Presence of Lighting -- -- 

1-2 Bus Stops within Intersection Influence Areaa -- × 

≥ 3 Bus Stops within Intersection Influence Areaa 1.90 × 

Presence of Schools within Intersection Influence Area -- × 

1-8 Alcohol Sales within Intersection Influence Areab 1.53 × 

≥ 9 Alcohol Sales within Intersection Influence Areab -- × 

No. of Approaches with Left-Turn Lanes -- -- 

No. of Approaches with Right-Turn Lanes -- -- 

No. of Approaches with Protected Signal Control -- × 

No. of Approaches with Permitted Signal Control -- × 

No. of Approaches with Protected-Permitted Signal Control -- × 

No. of Approaches with No-Right-Turn-on-Red Sign -- × 

Presence of Red Light Camera -- × 

Presence of Bicycle Facilities 1.27 1.36 

-- Not significant; × Excluded from modeling. 
a The base condition for bus stops is absence of bus stops within intersection influence area.  
b The base condition for alcohol sales establishments is absence of alcohol sales establishments within 

intersection influence area. 
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Table 6-25: Summary of CMFs for F+S Bicycle Crashes for Segment Facility Types 

Variable 

Urban Rural 

Divided Undivided Divided Undiv. 

2L 4L 6L 2L2a 2L1b 3L2c 3L1d 4L2e 2L 4L 2L2f 

Median Width -- 0.98 -- NA NA NA NA NA -- -- NA 

Presence of Bicycle Lane -- -- -- -- -- -- -- -- -- -- -- 

Presence of Shared Path  -- -- -- -- -- -- -- -- -- -- -- 

Presence of Sidewalk  0.41 -- 2.71 -- -- -- -- -- -- -- -- 

Presence of Sidewalk Barrier 4.20 -- -- 3.96 -- -- -- 0.36 -- -- -- 

Type of Parking (One Side)g -- -- -- -- -- -- -- -- -- -- -- 

Type of Parking (Both Sides)g 4.62 -- -- -- -- -- -- -- -- -- -- 

Lane Width 0.52 -- 0.79 0.42 -- -- 0.24 -- -- -- -- 

Type of Median (Raised 

Traffic Separator)h 
5.9 -- -- -- 

NA NA NA NA 

-- -- 

NA Type of Median (Vegetation)h -- -- 0.45 -- -- -- 

Type of Median (Curb & 

Vegetation)h 
-- 0.97 -- -- -- -- 

Shoulder Type (Paved)i -- -- -- -- -- -- -- -- -- -- -- 

Shoulder Type (Lawn, 

Gravel/Marl, Valley Gutter)i 
-- -- -- -- -- -- -- -- -- -- -- 

Shoulder Type (Curb & Gutter)i -- -- -- -- -- -- -- -- -- -- -- 

Medium Bicycle Activity 

(Annual Trips > 2,000 and ≤ 

10,000)j 

0.47 1.63 -- -- -- -- -- -- -- -- -- 

High Bicycle Activity (Annual 

Trips > 10,000)j 
-- 1.43 0.76 -- -- -- -- -- -- -- -- 

-- Not significant; NA is not applicable. 
a Urban 2-Lane Undivided Two-way Road; b Urban 2-Lane Undivided One-way Road;  

c Urban 3-Lane Undivided Two-way Road; d Urban 3-Lane Undivided One-way Road; 
e Urban 4-Lane Undivided Two-way Road; f Rural 2-Lane Undivided Two-way Road.  
g The base condition for type of parking is no parking allowed.  
h The base condition for type of median is paved. 

i  The base condition for shoulder type is raised curb.  
j  The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 
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Table 6-26: Summary of CMFs for F+S Bicycle Crashes for Intersection Facility Types 

Variable 
Urban 4-Leg 

Signalized 

Urban 3-Leg 

Stop-controlled 

Skew Angle of the Intersection -- -- 

Presence of Lighting -- -- 

1-2 Bus Stops within Intersection Influence Areaa -- × 

≥ 3 Bus Stops within Intersection Influence Areaa -- × 

Presence of Schools within Intersection Influence Area -- × 

1-8 Alcohol Sales within Intersection Influence Areab -- × 

≥ 9 Alcohol Sales within Intersection Influence Areab -- × 

No. of Approaches with Left-Turn Lanes -- -- 

No. of Approaches with Right-Turn Lanes 0.82 -- 

No. of Approaches with Protected Signal Control -- × 

No. of Approaches with Permitted Signal Control -- × 

No. of Approaches with Protected-Permitted Signal Control -- × 

No. of Approaches with No-Right-Turn-on-Red Sign -- × 

Presence of Red Light Camera -- × 

Presence of Bicycle Facilities 1.71 -- 

-- Not significant; × Excluded from modeling. 
a The base condition for bus stops is absence of bus stops within intersection influence area.  
b The base condition for alcohol sales establishments is absence of alcohol sales establishments within 

intersection influence area. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

The goal of this research project was to conduct a comprehensive study to improve bicycle safety 

in Florida. The objective is achieved through a detailed analysis of the roadway, behavioral, and 

spatial factors associated with bicycle crashes. An extensive literature review was first conducted. 

The review focuses on the methods to identify bicycle hot spots and findings on bicycle crash 

causes, crash contributing factors, and potential countermeasures. A descriptive trend analysis was 

then performed based on a total of 26,036 bicycle crashes that occurred during 2011-2014. A 

spatial analysis using ArcGIS was then performed to identify the top five bicycle crash hot spots 

in each Florida Department of Transportation (FDOT) district. These hot spots together 

experienced a total of 2,954 bicycle crashes during the four-year analysis period. Police reports of 

these bicycle crashes were reviewed in detail to identify specific bicycle crash types, their crash 

contributing factors and potential countermeasures. Macroscopic spatial analysis was performed 

to model the relation between demographic, socio-economic, roadway, traffic, and bicycle activity 

data at the census block group level and bicycle crash frequencies in Florida. Finally, a cross-

sectional analysis was performed to develop Florida-specific Crash Modification Factors (CMFs) 

for bicycle crashes for different roadway segment and intersection facility types.  

 

7.1 Literature Review 
 

The review summarized existing studies in the following four areas: (1) risk factors that affect the 

frequency and severity of bicycle crashes; (2) bicycle crash causes, patterns, and contributing 

factors; (3) network screening methods used to identify and prioritize bicycle hot spots; and (4) 

safety performance of the most commonly implemented engineering countermeasures.  

 

Researchers preferred to differentiate the risk factors affecting bicycle safety for intersections and 

mid-block locations due to the obvious variability in the operational characteristics. Traffic, 

geometric, and socio-economic variables were investigated to determine their impact on bicycle 

crash frequency and severity. Spatial analysis, especially the use of ArcGIS, has evolved as an 

effective tool to better understand and model bicycle crash frequencies. Moreover, spatial analysis 

using ArcGIS was found to be the most commonly used network screening approach. Several 

studies however used a combination of different methods to identify and rank bicycle high crash 

locations.  

  

In addition to the typical bicycle infrastructure such as bicycle lanes and bicycle slots, researchers 

have investigated the impact of several other roadway characteristics including shared path width 

and separation, shoulder type, shoulder width, etc. on bicycle safety. One of the main challenges 

observed in improving bicycle safety is the lack of bicycle exposure data. Unlike traffic volumes, 

bicycle volumes are scarcely available, if at all. Researchers addressed this limitation by using 

surrogate measures of bicycle exposure such as number of transit stops in a region, population, etc. 
 

7.2 Statewide Bicycle Crash Causes and Patterns  
 

Statewide bicycle crash patterns and causes were identified based on a total of 26,036 bicycle 

crashes that occurred during 2011-2014. The descriptive trend analysis was based on temporal, 

environmental, bicyclist-related, crash location-related, and vehicle-related factors. The effect of 
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roadway geometric features on the frequency and severity of bicycle crashes was also studied using 

data from 9,884.3 miles of non-limited-access state roads in Florida, which experienced a total of 

10,546 bicycle crashes during the four-year analysis period. Some of the key findings include: 

 

 Bicycle fatal crashes accounted for 5.6% of all traffic fatal crashes, while they constituted 

only 1.9% of total crashes. 

 The majority of bicycle crashes occurred on urban roadways; only 1.2% of all crashes that 

occurred on state roads occurred in rural areas. In terms of crash severity, 16.9% of all 

bicycle crashes that occurred on rural facilities resulted in fatalities while only 2.5% of 

those that occurred on urban facilities resulted in fatalities.  

 Nighttime bicycle crashes resulted in more fatalities compared to daytime crashes.  

 Crashes involving elder bicyclists (≥ 65 years) resulted in more fatalities compared to 

crashes involving younger bicyclists (< 65 years).  

 Crashes involving male bicyclists resulted in more fatalities compared to crashes involving 

female bicyclists.  

 Over 10% of all bicyclists involved in crashes who were under the influence of alcohol 

were killed, and a high 27.6% of all bicyclists involved in crashes who were under the 

influence of drugs were killed. 

 Crashes involving bicyclists using helmets or protective pads were less severe compared 

to those involving bicyclists using reflective clothing or lighting.  

 Although bicyclists were frequently hit while cycling on the sidewalk, these crashes 

resulted in very few fatalities. 

 Crashes involving bicyclists cycling along the roadway against traffic were found to be 

more severe compared to those involving bicyclists cycling along the roadway with traffic. 

 In terms of bicyclist’s action at the time of the crash, failure to yield right-of-way was the 

most frequent contributing cause, resulting in about 15% of total crashes.  

 Among all types of vehicles, passenger cars were found to result in relatively less severe 

crashes. Medium and heavy trucks resulted in more severe crashes; a relatively high 14.5% 

of all crashes involving medium and heavy trucks were fatal.  
 

7.3 Bicycle Crash Patterns at Hot Spots 
 

Spatial analysis in ArcGIS was used to identify top five bicycle hot spots in each FDOT district. 

Police reports of all the 2,954 bicycle crashes that occurred at these hotspots were reviewed in 

detail to identify specific bicycle crash types and patterns. Some of the key findings from the police 

report review include: 
 

 Drivers were at-fault in 45.7% of the crashes, while bicyclists were at-fault in 30.2% of the 

crashes. 

 Crashes involving at-fault bicyclists resulted in a greater percentage of fatal crashes 

compared to those involving at-fault drivers.  

 Signalized intersections experienced a greater proportion of bicycle crashes compared to 

unsignalized locations.  

 Locations with bicycle lanes experienced a smaller proportion of fatal crashes compared 

to locations without bicycle lanes. 
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 Crossing the street was found to result in a greater proportion of fatal crashes compared to 

riding along the roadway.  

 Crashes involving bicyclists riding along the roadway facing traffic resulted in a greater 

proportion of fatal crashes compared to crashes involving bicyclists riding along with 

vehicles. 

 Crosswalk locations, although experienced a high frequency of bicycle crashes, 

experienced a relatively low proportion of fatal crashes.  

 

The crash pattern analysis identified the following four major bicycle crash types: 

 

 Motorist turns right while bicyclist is crossing the street 

 Motorist turns left facing bicyclist 

 Bicyclist rides out at intersection 

 Motorist drives out at stop sign 

 

In addition to these crash types, the following bicycle crash contributing factors and scenarios were 

also found to be more frequent: 

 

 Inadequate street lighting 

 Unconventional intersection geometry 

 Traffic violations 

 Bicyclists sideswipe vehicles 

 Driveways near intersections 

 U-turn maneuvers by bicyclists and motorists 

 Bicyclists hit the door of parked vehicle 

 Bicyclists ride opposite to the traffic 

 

Several engineering and education countermeasures were recommended for these crash types and 

scenarios. Engineering countermeasures, including signal optimization, turn restrictions, and sign 

and pavement marking improvements, could improve the overall safety situation for bicyclists. 

Agency-wide education campaigns on the laws pertaining to bicyclists and extensive driver 

education campaigns that focus on driver compliance with bicyclist right-of-way laws and stricter 

enforcement could improve bicycle safety.  
 

7.4 Macroscopic Analysis of Bicycle Crashes  
 

Bicycle crash trends are quite distinctive and are dependent on land use, existing bicycle 

infrastructure, socio-economic factors, etc. The impact of these factors on bicycle crash 

frequencies was therefore studied using spatial analysis. The preliminary analysis with Moran's I 

and Geary' C, two measures of Global index of spatial correlation, indicated that spatial clustering 

of bicycle crashes was prevalent among census block groups. A macro-level spatial analysis was 

conducted to determine the relation between bicycle crashes and independent variables, including 

demographic and socio-economic factors, roadway and traffic characteristics, and bicycle activity, 

while accounting for the effect of spatial correlation among census block groups. Separate models 

were developed for total bicycle crashes and F+S bicycle crashes. 
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Table 7-1 provides a quick overview of the impact of different demographic and socio-economic, 

roadway and traffic, and bicycle activity data on total and F+S bicycle crash models.  

 

Table 7-1: Impact of Variables on Bicycle Crash Models at Census Block Group Level 

Variable Description 
Total Crash 

Model 

F+S Crash 

Model 

Demographic and Socio-economic Characteristics 

Log of total population    

Proportion of households with no automobile    

Proportion of households with one automobile    

Proportion of male population  NC  

Proportion of Black or African American population   NC 

Proportion of Hispanic or Latino population   NC 

Proportion of population aged 18 - 29 years   NC 

Proportion of population aged 30 - 39 years  NC 

Proportion of population aged 40 - 49 years  NC  

Proportion of population aged 50 - 64 years   NC 

Proportion of population ≥ 25 years having high school diploma only    

Proportion of population ≥ 25 years having Associate’s degree or 

attended some college with no degree achieved 
  

Proportion of population ≥ 25 years having Associate’s degree or 

attended some college with no degree achieved  
  

Proportion of population ≥ 25 years having Bachelor’s degree or higher    

Roadway and Traffic Characteristics 

Density of rural collector roads per sq. mi. of area   

Density of rural local roads per sq. mi. of area   

Length of urban principal arterials per sq. mi. of area   

Length of urban collector roads per sq. mi. of area  NC 

Length of urban local roads per sq. mi. of area  NC 

Density of bicycle lane and bicycle slot per sq. mi. of area   

Log of daily vehicle miles traveled (DVMT) in thousands   

Log of number of bicycle commuters  NC 

Truck percentage   

Strava Users’ Ride Characteristics  

Bicycle trip miles: Medium    NC 

Bicycle trip miles: High     

Bicycle trip intensity: Medium    

Bicycle trip intensity: High   

 

Note:   indicates credible and increasing effect;  indicates credible and decreasing effect; NC is not credible. 
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7.5 Florida-Specific CMFs  

 

Cross-sectional analysis was conducted to develop Florida-specific CMFs for bicycle crashes. 

Multivariate regression models were developed using a generalized linear model (GLM) approach 

with negative binomial (NB) distribution. Only the variables that were significant at the 80% 

confidence interval in the initial model were used to develop the final models. Finally, the CMFs 

were estimated based on these final models. For each facility type, the data and model coefficients 

were reviewed closely to identify reliable CMFs. Table 7-2 and 7-3 provide the Florida-specific 

CMFs developed for total bicycle crashes for different roadway segment and intersection facility 

types, respectively. Similarly, Tables 7-4 and 7-5 list the Florida-specific CMFs developed for F+S 

bicycle crashes for different roadway segment and intersection facility types, respectively.  

 

Table 7-2: Florida-Specific CMFs for Total Bicycle Crashes for Segment Facility Types 

Variable 

Urban Rural 

Divided Undivided Divided 

2La 4Lb 6Lc 4L2d 2Le 

Median Width -- 0.99 0.99 NA 0.84 

Presence of Bicycle Lane 1.69 0.86 -- 2.24 -- 

Presence of Shared Path  -- -- 0.75 -- -- 

Presence of Sidewalk  -- 1.78 1.87 -- -- 

Presence of Sidewalk Barrier 2.18 -- 1.99 0.33 -- 

Type of Parking (One Side)f -- -- -- -- -- 

Type of Parking (Both Sides)f 2.65 -- 0.48 -- -- 

Lane Width 0.64 0.77 0.75 -- -- 

Type of Median (Raised Traffic Separator)g 2.65 1.22 -- 

NA 

-- 

Type of Median (Vegetation)g -- 0.62 0.49 -- 

Type of Median (Curb & Vegetation)g 2.43 0.85 0.80 -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 10,000)h 0.51 -- 0.89 -- -- 

High Bicycle Activity (Annual Trips > 10,000)h 0.73 -- 0.73 -- -- 

-- Not significant; NA is not applicable. 
a Urban 2-Lane Divided Two-way Road; b Urban 4-Lane Divided Two-way Road;  

c Urban 6-Lane Divided Two-way Road; d Urban 4-Lane Undivided Two-way Road; 
e Rural 2-Lane Divided Two-way Road. 
f The base condition for type of parking is no parking allowed.  
g The base condition for type of median is paved. 

h The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

Table 7-3: Florida-Specific CMFs for Total Bicycle Crashes for Intersection Facility Types 

Variables 
Urban 4-Leg 

Signalized 

Urban 3-Leg 

Stop-controlled 

1-2 Bus Stops within Intersection Influence Areaa -- × 

≥ 3 Bus Stops within Intersection Influence Areaa 1.90 × 

1-8 Alcohol Sales within Intersection Influence Areab 1.53 × 

≥ 9 Alcohol Sales within Intersection Influence Areab -- × 

Presence of Bicycle Facilities 1.27 1.36 

-- Not significant; × Excluded from modeling. 
a The base condition for bus stops is absence of bus stops within intersection influence area.  
b The base condition for alcohol sales establishments is absence of alcohol sales establishments within intersection 

influence area. 
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Table 7-4: Florida-Specific CMFs for F+S Bicycle Crashes for Segment Facility Types 

Variable 

Urban 

Divided Undivided 

2La 4Lb 6Lc 2L2d 3L1e 4L2f 

Median Width -- 0.98 -- NA NA NA 

Presence of Sidewalk  0.41 -- 2.71 -- -- -- 

Presence of Sidewalk Barrier 4.20 -- -- 3.96 -- 0.36 

Type of Parking (One Side)g -- -- -- -- -- -- 

Type of Parking (Both Sides)g 4.62 -- -- -- -- -- 

Lane Width 0.52 -- 0.79 0.42 0.24 -- 

Type of Median (Raised Traffic Separator)h 5.9 -- -- 

NA NA NA Type of Median (Vegetation)h -- -- 0.45 

Type of Median (Curb & Vegetation)h -- 0.97 -- 

Medium Bicycle Activity (Annual Trips > 2,000 and ≤ 

10,000)i 
0.47 1.63 -- -- -- -- 

High Bicycle Activity (Annual Trips > 10,000)i -- 1.43 0.76 -- -- -- 

-- Not significant; NA is not applicable; 
a Urban 2-Lane Divided Two-way Road; b Urban 4-Lane Divided Two-way Road;  

c Urban 6-Lane Divided Two-way Road; d Urban 2-Lane Undivided Two-way Road; 
e Urban 3-Lane Undivided One-way Road; f Urban 4-Lane Undivided Two-way Road.  
g The base condition for type of parking is no parking allowed.  
h The base condition for type of median is paved. 

i  The base condition for bicycle exposure is low bicycle activity (Annual Trips ≤ 2,000). 

 

Table 7-5: Florida-Specific CMFs for F+S Bicycle Crashes for Intersection Facility Types 
Variable Urban 4-Leg Signalized Intersection 

No. of Approaches with Right-Turn Lanes 0.82 

Presence of Bicycle Facilities 1.71 
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APPENDIX A: 

SATELLITE IMAGES OF BICYCLE HOT SPOTS IN EACH DISTRICT  
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Figure A-1: Hot Spot 1 in District 1 (Total Crashes: 92) (Map) 

  

https://www.google.com/maps/@27.4662582,-82.5845907,3910m/data=!3m1!1e3


  

159 

 

 
Figure A-2: Hot Spot 2 in District 1 (Total Crashes: 90) (Map) 

 

https://www.google.com/maps/@27.3452121,-82.5222915,3765m/data=!3m1!1e3
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Figure A-3: Hot Spot 3 in District 1 (Total Crashes: 81) (Map) 

 

 

 

https://www.google.com/maps/@26.1379776,-81.7684388,3913m/data=!3m1!1e3
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Figure A-4: Hot Spot 4 in District 1 (Total Crashes: 32) (Map) 

https://www.google.com/maps/@27.3001419,-82.4996923,1586m/data=!3m1!1e3
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Figure A-5: Hot Spot 5 in District 1 (Total Crashes: 29) (Map) 

https://www.google.com/maps/@27.3153131,-82.5260345,3776m/data=!3m1!1e3
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Figure A-6: Hot Spot 1 in District 2 (Total Crashes: 199) (Map) 

https://www.google.com/maps/@29.6516635,-82.3395146,3623m/data=!3m1!1e3
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Figure A-7: Hot Spot 2 in District 2 (Total Crashes: 74) (Map) 

 

https://www.google.com/maps/place/Beach+Blvd,+Jacksonville,+FL/@30.289277,-81.4085907,4880m/data=!3m1!1e3!4m5!3m4!1s0x88e5b52a943d7e75:0x6a04d223b737d7d3!8m2!3d30.2871509!4d-81.5133993
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Figure A-8: Hot Spot 3 in District 2 (Total Crashes: 55) (Map) 

 

 

https://www.google.com/maps/place/Kingsley+Ave,+Orange+Park,+FL+32073/@30.1680577,-81.7415905,4354m/data=!3m1!1e3!4m5!3m4!1s0x88e5c5dae49a430b:0x4aa08be4178d3a85!8m2!3d30.1652121!4d-81.721763
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Figure A-9: Hot Spot 4 in District 2 (Total Crashes: 35) (Map) 

 

https://www.google.com/maps/place/Old+Archer+Rd,+Gainesville,+FL+32608/@29.6271139,-82.3733045,2186m/data=!3m1!1e3!4m5!3m4!1s0x88e8a31655721ffb:0x4afe9924907cb623!8m2!3d29.6306145!4d-82.3643861
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Figure A-10: Hot Spot 5 in District 2 (Total Crashes: 20) (Map) 

 

https://www.google.com/maps/place/Fleet+Landing/@30.3546765,-81.4165421,2171m/data=!3m1!1e3!4m13!1m7!3m6!1s0x88e44ea462f4cedd:0xe16b3162893ed0b4!2sAssisi+Ln,+Jacksonville,+FL+32233!3b1!8m2!3d30.3534725!4d-81.4196282!3m4!1s0x0:0x726517e16dcd949f!8m2!3d30.3538087!4d-81.4105475
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Figure A-11: Hot Spot 1 in District 3 (Total Crashes: 32) (Map) 

https://www.google.com/maps/place/W+Brevard+St,+Tallahassee,+FL/@30.449401,-84.315128,1817m/data=!3m1!1e3!4m5!3m4!1s0x88ecf50a86f4c11b:0xdfb6fde3d2780921!8m2!3d30.4490476!4d-84.2935753
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Figure A-12: Hot Spot 2 in District 3 (Total Crashes: 27) (Map) 

https://www.google.com/maps/place/N+Meridian+St,+Tallahassee,+FL/@30.4479097,-84.2917632,2212m/data=!3m1!1e3!4m5!3m4!1s0x88ecf578e4778a01:0x27ad173c2d9fc42d!8m2!3d30.4458761!4d-84.2770802
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Figure A-13: Hot Spot 3 in District 3 (Total Crashes: 13) (Map) 

https://www.google.com/maps/place/Verb+St,+Fort+Walton+Beach,+FL+32547/@30.4496208,-86.6234243,1292m/data=!3m1!1e3!4m5!3m4!1s0x88913e4e862040bb:0x6fa5308d0228ebaf!8m2!3d30.4530822!4d-86.6257543
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Figure A-14: Hot Spot 4 in District 3 (Total Crashes: 13) (Map)

https://www.google.com/maps/place/Royce+St,+Pensacola,+FL+32503/@30.4709384,-87.2160605,1546m/data=!3m1!1e3!4m5!3m4!1s0x8890c0762ca792bb:0x4bf7b3897410256f!8m2!3d30.467276!4d-87.222812


  

172 

 

 
Figure A-15: Hot Spot 5 in District 3 (Total Crashes: 13) (Map) 

 

https://www.google.com/maps/@30.4037336,-87.2791203,1292m/data=!3m1!1e3
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Figure A-16: Hot Spot 1 in District 4 (Total Crashes: 232) (Map) 

https://www.google.com/maps/place/Sheridan+St,+Hollywood,+FL/@26.0185351,-80.1347347,9595m/data=!3m1!1e3!4m5!3m4!1s0x88d9aadf9f983257:0xb0291110de891d2b!8m2!3d26.0302785!4d-80.2739458
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Figure A-17: Hot Spot 2 in District 4 (Total Crashes: 104) (Map) 

https://www.google.com/maps/place/N+Gordon+Rd,+Fort+Lauderdale,+FL+33301/@26.1165524,-80.1516328,3393m/data=!3m1!1e3!4m5!3m4!1s0x88d9004b1deaaf1f:0xe2ab03dbc6124ed8!8m2!3d26.1248723!4d-80.123445
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Figure A-18: Hot Spot 3 in District 4 (Total Crashes: 85) (Map)

https://www.google.com/maps/place/Swain+Blvd,+Greenacres,+FL+33463/@26.6333207,-80.1112319,3186m/data=!3m1!1e3!4m5!3m4!1s0x88d927c39c1f41d1:0x640cb01bd973262!8m2!3d26.626135!4d-80.125036
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Figure A-19: Hot Spot 4 in District 4  (Total Crashes: 71) (Map)

https://www.google.com/maps/place/Linton+Blvd,+Delray+Beach,+FL/@26.4543758,-80.0775893,4513m/data=!3m1!1e3!4m5!3m4!1s0x88d91f930bc13be3:0xaeb48a6892b60813!8m2!3d26.4393849!4d-80.1250797
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Figure A-20: Hot Spot 5 in District 4 (Total Crashes: 65) (Map)

https://www.google.com/maps/place/Sunny+Ln,+West+Palm+Beach,+FL+33415/@26.6562342,-80.1161016,3781m/data=!3m1!1e3!4m5!3m4!1s0x88d9283b7054e343:0xe9e5d35d9b98ae4f!8m2!3d26.6700177!4d-80.1123424
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Figure A-21: Hot Spot 1 in District 5 (Total Crashes: 91) (Map)

https://www.google.com/maps/place/Maley+St,+Daytona+Beach,+FL+32114/@29.2069999,-81.0351134,4393m/data=!3m1!1e3!4m5!3m4!1s0x88e6d9784512e591:0x744ffb596449e560!8m2!3d29.200219!4d-81.0332817
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Figure A-22: Hot Spot 2 in District 5 (Total Crashes: 87) (Map)

https://www.google.com/maps/place/Iroquois+Trail,+Orlando,+FL/@28.5844576,-81.22178,5274m/data=!3m1!1e3!4m5!3m4!1s0x88e7662dcd4e4efd:0x3974aee2dd570bca!8m2!3d28.5650872!4d-81.2117691
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Figure A-23: Hot Spot 3 in District 5 (Total Crashes: 49) (Map) 

 

https://www.google.com/maps/place/Holden+Ridge+Ave,+Orlando,+FL+32839/@28.5055039,-81.4004157,4429m/data=!3m1!1e3!4m5!3m4!1s0x88e77b87823edebb:0x22dd2df3ebe16ccf!8m2!3d28.4940132!4d-81.3922748
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Figure A-24: Hot Spot 4 in District 5 (Total Crashes: 37) (Map)

https://www.google.com/maps/place/E+Kaley+St,+Orlando,+FL/@28.5166509,-81.3848703,3727m/data=!3m1!1e3!4m5!3m4!1s0x88e77b15ff86b957:0xad40559228453264!8m2!3d28.5209156!4d-81.3439121
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Figure A-25: Hot Spot 5 in District 5 (Total Crashes: 32) (Map) 

https://www.google.com/maps/place/N+Terry+Ave,+Orlando,+FL+32801/@28.5360921,-81.4005583,2209m/data=!3m1!1e3!4m5!3m4!1s0x88e77a5435fc3af3:0x36723af62821c610!8m2!3d28.5438426!4d-81.3870096
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Figure A-26: Hot Spot 1 in District 6 (Total Crashes: 327) (Map) 

 

https://www.google.com/maps/place/Venetian+Way,+Miami+Beach,+FL+33139/@25.799143,-80.155015,6994m/data=!3m1!1e3!4m5!3m4!1s0x88d9b4703f4a7953:0x346a4bfeb1bbe840!8m2!3d25.7910668!4d-80.1555147
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Figure A-27: Hot Spot 2 in District 6 (Total Crashes: 262) (Map)

https://www.google.com/maps/place/Front+St,+Key+West,+FL+33040/@24.5576405,-81.7831702,3331m/data=!3m1!1e3!4m5!3m4!1s0x88d1b6eb91c3c57b:0x1dfd3d75db1ddfb7!8m2!3d24.558171!4d-81.8066678
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Figure A-28: Hot Spot 3 in District 6 (Total Crashes: 179) (Map) 

https://www.google.com/maps/place/Venetian+Way,+Miami+Beach,+FL+33139/@25.7857928,-80.2004342,6591m/data=!3m1!1e3!4m5!3m4!1s0x88d9b4703f4a7953:0x346a4bfeb1bbe840!8m2!3d25.7910668!4d-80.1555147
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Figure A-29: Hot Spot 4 in District 6 (Total Crashes: 115) (Map)

https://www.google.com/maps/place/W+Flagler+St,+Miami,+FL/@25.7732272,-80.2276455,3815m/data=!3m1!1e3!4m5!3m4!1s0x88d9b9ce50c13d81:0x3ef384e65dbb20b0!8m2!3d25.7708101!4d-80.2898452
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Figure A-30: Hot Spot 5 in District 6 (Total Crashes: 68) (Map) 

 

https://www.google.com/maps/place/Normandy+Dr,+Miami+Beach,+FL+33141/@25.8538076,-80.1335106,5718m/data=!3m1!1e3!4m5!3m4!1s0x88d9b2fb8d3e5455:0xaba8045fda8df323!8m2!3d25.8532757!4d-80.135848
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Figure A-31: Hot Spot 1 in District 7 (Total Crashes: 95) (Map) 

https://www.google.com/maps/place/W+Columbus+Dr,+Tampa,+FL/@27.9691768,-82.4646122,5296m/data=!3m1!1e3!4m5!3m4!1s0x88c2c39019640417:0x87c6b91fd2882af0!8m2!3d27.9667025!4d-82.4869489
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Figure A-32: Hot Spot 2 in District 7 (Total Crashes: 71) (Map)

https://www.google.com/maps/place/E+Castle+N+Ct,+Tampa,+FL+33612/@28.023371,-82.4405037,3733m/data=!3m1!1e3!4m5!3m4!1s0x88c2c6e714349ba5:0x14571f47cb50131a!8m2!3d28.0377894!4d-82.4512984
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Figure A-33: Hot spot 3 in District 7 (Total Crashes: 70) (Map)

https://www.google.com/maps/place/Mirror+Lake+Dr+N,+St.+Petersburg,+FL+33701/@27.7696864,-82.6534499,2652m/data=!3m1!1e3!4m5!3m4!1s0x88c2e1823828e339:0x6cff88a090a0fcb5!8m2!3d27.7732506!4d-82.6413067
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Figure A-34: Hot Spot 4 in District 7 (Total Crashes: 56) (Map) 

  

https://www.google.com/maps/place/Goodman+St,+St.+Petersburg,+FL+33714/@27.8225474,-82.6821228,3746m/data=!3m1!1e3!4m5!3m4!1s0x88c2e38b62fbaf49:0x588a3bfad6dc08ac!8m2!3d27.8187042!4d-82.6718468
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Figure A-35: Hot Spot 5 in District 7 (Total Crashes: 52) (Map) 

 

https://www.google.com/maps/place/Sunnydale+Ln+N,+St.+Petersburg,+FL+33709/@27.8200616,-82.7328496,5301m/data=!3m1!1e3!4m5!3m4!1s0x88c2e34d4bb214cb:0xc72017d32bfe0862!8m2!3d27.8146523!4d-82.7345006

