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SI (MODERN METRIC) CONVERSION FACTORS (from FHWA) 
 

Approximate Conversions to SI Units

Symbol When You Know Multiply By To Find Symbol 

Length 

in inches 25.4 millimeters mm 
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yd yards 0.914 meters m 
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Area 
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NOTE: volumes greater than 1000 L shall be shown in m3 

Mass 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

Temperature (exact degrees) 

°F Fahrenheit 5 (F-32)/9
or (F-32)/1.8

Celsius °C 

Illumination 

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 

Force and Pressure or Stress 

lbf poundforce 4.45 newtons N 

lbf/in2 poundforce per square inch 6.89 kilopascals kPa 
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Length 

mm millimeters 0.039 inches in 
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m meters 1.09 yards yd 
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mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 

Volume 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

Mass 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

Temperature (exact degrees) 

°C Celsius 1.8C+32 Fahrenheit °F 

Illumination 

lx lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

Force and Pressure or Stress 

N newtons 02.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square inch lbf/in2 

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with 
Section 4 of ASTM E380. (Revised March 2003)
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EXECUTIVE SUMMARY 

The settlement of soil is directly related to the compressibility of soil and is commonly defined by 
the compression index (Cc) and recompression index (Cr). However, consolidation testing for the 
Cc, Cr, Cv (coefficient of consolidation), and Cα (secondary compression index) is time consuming 
and there might be significant variability throughout a project site. There are two ways to determine 
soil compressibility: (1) direct measurement via lab test and (2) correlation to other soil data 
determined from lab tests. Many times, before confirming soil compressibility via laboratory 
testing, prediction models based on correlation analysis are useful for preliminary design and may 
also help to assess the variability of the site conditions. In addition, using those prediction models 
helps to select where the actual test samples should be obtained, which can help optimize the 
undisturbed sampling and performance-based testing.   

The main goal of this project was to provide the best performing statistical models that predict the 
compressibility of Florida’s soils. Three specific project objectives included: (1) to identify 
statistically significant affecting variables on soil compressibility (e.g., Cc and Cr), (2) to identify 
the most accurate prediction model of soil compressibility among existing correlations (from 
statistical analyses) for Florida’s soils, and (3) to develop the best performing statistical models to 
predict soil compressibility (Cc, Cr, Cv, and Cα) for Florida’s soils.  

In order to achieve the objectives above, the following main work tasks were performed. It is 
important to note that data were collected throughout the state of Florida, but most data are from 
the Central Florida region. First, all existing models to predict Cc, Cr, Cv, and Cα were identified 
through a comprehensive literature review. Second, those identified models were evaluated with 
respect to their accuracy. The accuracy of the models was compared in terms of key goodness-of-
fit characteristics, such as coefficient of determination (R2) and root mean square error (RMSE). 
Third, the correlation between key index parameters and soil compressibility were evaluated. The 
key index parameters that were used include: effective overburden pressure in kips/ft2 (ksf), wet 
density in lb/ft3(pcf), dry density (pcf), natural moisture (w) (%), automatic hammer blow count, 
fines (-200) (%), liquid limit (LL), plasticity index (PI), initial void ratio (eo), and specific gravity. 
The variables were ranked, and the top three variables (both positive and negative) were identified. 
Fourth, statistical prediction models for Florida’s soils were constructed through a machine 
learning technique. The construction procedure involves the steps of data imputation, 
preprocessing, classification, and model development. The best performing statistical models were 
constructed for the following classified soil types: high plasticity clay (CH), low plasticity clay 
(CL), high plasticity silt (MH), high plasticity organic (OH), low plasticity organic (OL), and peat 
(Pt). However, due to limited data, the Cv and Cα models are available only for clay, organic, and 
peat. Lastly, the correlation of CPT data and soil compressibility was investigated.  

Among existing correlations, in general, the Cr models seem more accurate than the Cc models for 
Florida’s data. For Cc, Al-Khafaji and Andersland’s model (1992), which is a function of eo and 
LL, exhibited the highest accuracy. For Cr, the model proposed by Azzouz et al. (1976), which is 
a function of w, appears to be the best model. The results of the classification analysis indicated 
that the assumed soil classes are valid for Cc and Cr models. The Cc and Cr models for each soil 
type was constructed. All models exhibited higher accuracy associated with R2 and RMSE when 
compared with the existing correlations. In addition, reduced models that minimize the number of 
variables without sacrificing the model accuracy were checked and constructed.  
 



For the correlation between CPT tip resistance (qc) and Cc or Cr, the general trend is that Cc and 
Cr decreases as CPT qc increases, but there is no strong correlation. This is mainly due to the 
limited dataset. In addition, the matching of CPT and Cc or Cr was extremely difficult because of 
different times and locations of testing between the CPT and sampling for lab consolidation test. 
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1. INTRODUCTION 

 

1.1. Problem Statement 

Soil settlement is directly related to the compressibility of soil. Hence, as compression index (Cc) 
and recompression index (Cr) increases, so does settlement. However, consolidation testing for the 
Cc, Cr, and Cv (coefficient of consolidation) is time consuming and there might be significant 
variability throughout a project site. On the other hand, the magnitude of primary soil settlement 
is dictated by a handful of variables (e.g., magnitude of loading, initial void ratio, thickness of soil 
layer, etc.), and most of these are relatively easy to obtain. Hence, there are two ways to determine 
Cc, Cr, and Cv: (1) direct measurement via lab test and (2) correlation to other soil data determined 
from lab tests. Many times, before confirming soil compressibility via laboratory testing, 
prediction models based on correlation analysis may be useful for preliminary design and may also 
help to assess the variability of the site conditions. In addition, using those prediction models help 
to select where the actual test samples should be obtained, which can help optimize the undisturbed 
sampling and performance-based testing.   

There have been many studies on development of prediction models of soil compressibility such 
as Cc, Cr, and Cv. International, national, and state agencies (e.g., Federal Highway Admiration 
(FHWA) and state departments of transportation (DOTs)) may have their own recommendation; 
however, those models may not be accurate enough for Florida’s soil conditions because the 
models are constructed based on local soils, and most existing models are based on a simple linear 
regression model. In addition, the level of uncertainty of the predicted Cc, Cr, and Cv is not 
available for the existing models. 

 

1.2. Project Objectives 

The goal of this study is to identify and develop the best statistical models that predict the 
compressibility of Florida’s soils; thus, the models can be used as a preliminary design means and 
help to assess the variability of the site conditions prior to the collection of undisturbed samples 
and consolidation lab testing. The specific research objectives are as follows: 

 To identify factors significantly affecting Cc and Cr and to evaluate their correlations, 

 To identify the most accurate existing models of soil compressibility (from statistical 
analyses) for Florida’s soils, 

 To develop the best statistical models to predict Cc, Cr, Cv, and Cα for Florida’s soils: 

‐ Using current state-of-the-art statistical techniques.  

‐ Developing models for specific soil types. 

 To find a correlation between soil compressibility and Cone Penetration Test (CPT) data.    
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1.3. Project Description  

To achieve the project objectives, the following main work tasks were performed. It is important 
to note that data were collected throughout the state of Florida but most data are from the central 
Florida region.  

1) All existing models to predict Cc, Cr, Cv, and Cα were identified through a comprehensive 
literature review.  

2) Those identified models were evaluated with respect to their accuracy. The accuracy of the 
models was compared in terms of key goodness-of-fit characteristics such as coefficient of 
determination (R2) and root mean square error (RMSE).  

3) The correlation between key index parameters and soil compressibility were evaluated. The 
key index parameters that were used include: effective overburden pressure in kips/ft2 (ksf), 
wet density in lb/ft3 (pcf), dry density (pcf), natural moisture (%), automatic hammer blow 
count, fines (-200) (%), liquid limit (LL), plasticity index (PI), initial void ratio (e), and 
specific gravity. The variables were ranked and the top three variables (both positive and 
negative) were identified.  

4) Statistical prediction models for Florida’s soils were constructed through a machine 
learning technique, with a support vector machine (SVM) classification and multi-variable 
regression. The construction procedure involves the steps of data imputation, preprocessing, 
classification, and model development. The best performing statistical models were 
constructed for the classified soil types: CH, CL, MH, OH, OL, and Pt. Due to limited data, 
the Cv and Cα models are available only for clay, organic, and peat.  

5) The correlation of CPT data and soil compressibility was investigated.  

 

1.4. Background 

1.4.1. Consolidation Theory and Test 

According to the widely accepted theory of 1-D consolidation (Terzaghi, 1925), dissipation of 
excess pore water pressure within a granular porous medium will result in a decrease in volume. 
For the case of soil, the volume change will result in a vertical settlement, identified as 
consolidation. Through the development and implementation of the consolidation test (or 
oedometer), Terzaghi determined that the consolidation of a soil specimen can be quickly 
characterized by two slopes from a e-logߪ’ plot; where ߪ’ is the applied effective vertical stress to 
the sample, and e is the resulting void ratio of the sample. Shown in Figure 1-1, the resulting slopes 
of the virgin consolidation line and the laboratory rebound curve are taken as the compression 
index (Cc) and recompression index (Cr), respectively.  
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 Figure 1-1. Typical consolidation curve of an over-consolidated clay 

The compression indexes, Cc and Cr, can be measured via a consolidation test. The schematic 
diagram of oedometer is shown in Figure 1-2. A consolidation test consists of one-dimensional 
compression where lateral movement and strains are restricted. The undisturbed sample of soil is 
prepared and loaded into a confining apparatus, called an oedometer, such that soil strain and water 
flow are restricted to the vertical direction (Das, 2002).   
 

 
Figure 1-2. Schematic design of an oedometer  
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The soil sample is then subjected to a series of incremental loads with the resulting deformations 
recorded with time. In a typical consolidation test, the incremental loads are applied at 24-hour 
intervals and will have a magnitude of twice the previously applied load. Deformation readings 
are usually noted throughout the 24-hour loading period at times such that the interval between 
readings approximately doubles (Das, 2002). A commonly used deformation reading schedule is 
2, 4, 8, and 24 hours after the application of the load. 
 
As soils encountered in the field have a tendency to be over-consolidated, where the soil has 
experienced a higher stress in its history than what is currently being experienced, a common 
practice in a consolidation test is to run an unload-reload cycle. This will capture the behavior of 
the soil as the subjected stress is reduced and the sample is allowed to recover. Unloading intervals 
are taken at decreasing installments similar to loading intervals, such that the next interval will be 
decreased by half of the existing loading. Since each loading and unloading cycle takes 24 hours, 
a typical consolidation test will have approximately a two-week duration.   
 
Consolidation test results are generally plotted in a graph that illustrates the sample’s compressive 
behavior throughout the loading sequence. As the sample gets loaded, the air voids will slowly 
decrease, and water will escape. The graph is typically plotted showing the variation of the void 
ratio (e) with the corresponding changes in applied pressure, in kips per square foot, on a 
semilogarithmic graph in which void ratio is plotted on the arithmetic scale and pressure on the 
log scale. 
 
Upon conclusion of the consolidation test, the engineer will usually note the compression indexes 
(Cc and Cr) and other descriptors of the sample such as the liquid and plastic limit of the soil, dry 
or moist density, moisture content, initial and final void ratios, USCS classification, location of 
undisturbed sample extraction (boring number and depth), sample description, and the maximum 
past pressure, σ’c, that the soil has experienced.  
 
The maximum past stress, σ’c, also commonly referred to as the preconsolidation pressure, Pc, is 
normally interpreted from the void ratio-to-pressure relationship. Consolidation tests performed 
on samples taken from the field generally show a change in slope at the preconsolidation pressure 
(Sabatini, Bachus, Mayne, Schneider, & T.E., 2002). Sampling disturbance will usually lower the 
overall e-log(σ) curve relative to that of actual field conditions in the soil’s natural state. As a result, 
the preconsolidation pressure is often underestimated from a routine testing. The Casagrande 
Method is used to reconstruct the e-log(σ) field curve to account for any disturbance during sample 
extraction from its natural state and during preparation for testing (Sabatini et al., 2002).    
 
There are four primary steps to determining this value from the consolidation test results. They are 
as follows (NAVFAC, 1982): 

1. Select the point of maximum curvature, 
2. Draw a tangent line at the point of maximum curvature defined in Step 1, 
3. Draw a horizontal line at the point of maximum curvature defined in Step 1, 
4. Bisect the lines drawn in Steps 2 and 3, 
5. Draw an extension of the line virgin compression zone. 
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The point of intersection between the bisector line in Step 4 and the extension line constructed, in 
Step 5, is the preconsolidation pressure, as noted in the Figure 1-3.   

 

 
Figure 1-3. Determination of maximum past stress (Source: NAVFAC, 1982) 

  

 
The compression indexes (Cc and Cr) can be determined from the slopes of various portions of the 
e-log(σ) curve. The Compression Index, Cc, is approximated as the slope of the e-log(σ) curve in 
the normally consolidated range. This is the behavior the soil exhibits when it’s loaded to a stress 
beyond what it has been subjected to in its history. The Recompression Index, Cr, is computed as 
the slope of the curve in which the soil was unloaded and reloaded. This portion of the curve 
captures the behavior when a loading has been removed from the soil and then subsequently 
reloaded. This mimics field conditions when new construction with various loading conditions are 
applied to a previously loaded soil.   
 
As can be seen in the settlement equations, the magnitude of the overall settlement depends on 
several variables such as the Compression Index, Cc, and Recompression Index, Cr. Due to the 
large amount of uncertainty for these parameters, engineers normally measure it directly via a 
consolidation test. This test is time consuming and can be relatively expensive. For this reason, 
correlations have been developed to approximate these compressibility indexes for preliminary 
design.   
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1.4.2. Settlement Prediction with Consolidation Theory 

The magnitude of settlement is dependent on the soil’s stress state, which can be either normally 
consolidated (NC) or over-consolidated (OC). Normally consolidated soils have never experienced 
a higher stress than the present stress; thus, are referred as “virgin” soils in their natural state. Over-
consolidated soils have experienced a higher stress in the past than the present stress (Hough, 1957). 
The settlement of NC soils can be determined from Equation (1.1) and the settlement for OC soils 
can be determined from Equations (1.2) and (1.3) (Das, 2002). 
 

Sୡ ൌ
େౙ	 ୌౙ
ଵାୣ౥

log ቀ
஢’౥	 ା୼஢’	

஢’౥
ቁ (1.1) 

 
Where Sc = settlement caused from the loading condition, Cc = compression index in the soil layer 
of interest, Hc = thickness of the soil layer of interest, eo = initial void ratio in the soil layer of 
interest, ߪ’o = initial vertical effective stress at the midpoint of the soil layer of interest, Δߪ’ = 
change in vertical stress due to loading. 

 
If a soil is over-consolidated, the computed settlement can be determined from one of two cases. 
If the initial stress, plus the change in stress from the loading, is less than the maximum past stress 
 :the following settlement equation applies ,(c’ߪ)
 

Sୡ ൌ
େ౨	 ୌౙ
ଵାୣ౥

log	ሺ
஢’౥	 ା୼஢’	

஢’౥
ሻ (1.2) 

 
Where Cr = recompression index in the soil layer of interest. 
 
If the initial stress, plus the change in stress from the loading, is greater than the maximum past 
stress (ߪ’c), the following settlement equation applies: 
 

Sୡ ൌ
େ౨	 ୌౙ
ଵାୣ౥

log ቀ
஢’ౙ	 	

஢’౥
ቁ ൅ 

େౙ	 ୌౙ
ଵାୣ౥

log	ሺ
஢’౥	 ା୼஢’	

஢’ౙ
ሻ  (1.3) 

 
For this study, the stress change in the settlement analysis will come in the form of a surcharge. 
The encountered stress change of the soil layer will be determined by the depth and spatial 
geometry in relation to the embankment surcharge dimensions (Das, 2002) and governed by the 
following equation: 

Δσ ൌ
௤೚
஠
∗ ቂ

஻భା஻మ
஻మ

∗ ሺߙଵ ൅ ଶሻߙ െ
஻భ
஻మ
∗  ଶቃ (1.4)ߙ

 
Where Δߪ = stress change in soil layer of interest, B1 = horizontal distance from beginning of full 
height of surcharge to point of interest, B2 = horizontal distance from toe of surcharge embankment 
to full height of surcharge, 1ߙ = angle from point of depth of interest to horizontal point B1 at the 
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ground surface (in radians), and 2ߙ = angle from point of depth of interest to horizontal point B2 at 
the ground surface (in radians).  The equations for α1 and α2 are defined below. 
 

	 ଵߙ ൌ ଵܤଵሺሺି݊ܽݐ ൅ ሻݖ/ଶሻܤ െ  ሻ (1.5)ݖ/ଵܤଵሺି݊ܽݐ

 
	 ଶߙ ൌ  ሻ (1.6)ݖ/ଵܤଵሺି݊ܽݐ

 
Where z = depth to point of interest (ft). 
 

	 ௢ݍ ൌ γ(1.7) ܪ 

 
Where ߛ	 = unit weight of embankment soil (pcf), and H = height of embankment (ft). 
 
Figure 1-4 illustrates the meaning of these variables. 
 

 
 

Figure 1-4. Embankment loading schematic  

The initial vertical effective stress, ߪ’o, is needed for each layer of interest. This is obtained by 
multiplying the height of the soil layer by its saturated unit weight (accounting for water table 
depth and hydrostatic water pressure) to the depth of interest and is governed by the Equation 1.8. 
 

	 ௢′ߪ ൌ ௦௔௧ߛሺܪ െ  ሻ (1.8)ݑ
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Where ߪ’o = initial vertical effective stress (psf), H = depth to point of interest (ft), ߛsat = saturated 
unit weight (pcf.), and u = hydrostatic porewater pressure (62.4 psf). The vertical effective stress 
will increase with depth.   
 
Correlations for determining wet unit weight from SPT blow counts can be used to simplify the 
process (Teng, 1962). The following tables provide an estimate for wet unit weight to SPT blow 
counts for granular and cohesive soils. 
 

Table 1-1. Granular soil correlation from SPT blow count to saturated unit weight 

SPT Blow Count (N) Compactness Saturated unit weight (pcf) 
0-4 Very Loose Less than 100 
5-10 Loose 101-110 
11-30 Medium 111-130 
31-50 Dense 131-140 

Above 50 Very Dense Greater than 140 
Source: Teng, 1962 
 

Table 1-2. Cohesive soil correlation from SPT blow count to saturated unit weight 

SPT Blow Count (N) Compactness Saturated unit weight (pcf) 
0-2 Very Soft Less than 100 
3-4 Soft 101-110 
5-8 Medium 111-120 
9-16 Stiff 121-130 
17-32 Very Stiff 131-140 

Above 32 Hard Greater than 140 
Source: Teng (1962) 
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2. EXISTING SOIL COMPRESSIBILITY MODELS 

 

2.1. Existing Soil Compressibility Models 

The research team reviewed numerous publications to identify existing prediction models of soil 
compressibility, including compression index (Cc), recompression index (Cr), coefficient of 
consolidation (Cv), and secondary compression index (Cα). Cc and Cr are used to predict the 
magnitude of settlement and Cv, as a rate parameter, is used to predict the rate of settlement. 
Existing prediction models are based on correlations between the consolidation properties and one 
or more physical or index properties of the soils. Those models provide a faster and more cost-
effective estimate of these parameters than the consolidation test. The summary of the existing 
models along with reference information is presented in Table 2-1. Soil indices, as dependent 
variables in those models, include natural moisture content (w), initial void ratio (eo), liquid limit 
(LL), plastic limit (PL), dry unit weight (ߛdry), activity (ACT), liquidity index (LI), plasticity index 
(PI), void ratio at the liquid limit (eLL), and shrinkage index (SI). 

There are numerous options for the correlations of consolidation parameters with different soil 
properties for different soils. The correlations of existing prediction models range from single 
parameter [e.g., void ratio (e), natural moisture content (w), plasticity index (PI)] to multiple 
parameters. The multiple parameter models incorporate a combination of different data from 
common lab tests for soil descriptors. The majority of Cc and all Cv prediction models were 
developed for clays, but several Cc and Cr models for peats and all soils also exist. It is important 
to note that some models are only applicable for specific soil types. 
 

Table 2-1. Summary of existing correlations 

Independent 
variable 

Dependent 
variable 

Equation Reference Soil Type 

Cc 

w Cc = 0.01w – 0.05 
Azzouz, Krizek, and 
Corotis (1976) 

Not Specified 
(N/S) 

Cc = 0.01w Koppula (1981) Clays 

Cc = 0.01w – 0.075 Herrero (1983) Clays 

Cc = 0.013w – 0.115 Park and Seung (2011) Clays 

Cc = 0.0075w Miyakawa (1960) Peat 

Cc = 0.011w Cook (1956) Peat 

eo Cc = 0.54eo – 0.19 Nishida (1956) Clays 

Cc = 0.43eo – 0.11 Cozzolino (1961) Clays 

Cc = 0.75eo – 0.38 Sowers and Sowers (1979) Clays 

Cc = 0.49eo – 0.11 Park and Seung (2011) Clays 

Cc = 0.4(eo -0.25) Azzouz et al. (1976) (N/S) 

Cc = 0.15eo + 0.01077 Bowles (1989) Clays 
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Table 2-2. Continued. Summary of existing correlations (continued) 

Cc 

eo Cc = 0.287eo – 0.015 
Ahadiyan, Ebne, and 
Bajestan (2008) 

Clays 

Cc = 0.6eo Sowers and Sowers (1979) Peat 

Cc = 0.3(eo - 0.27) Hough (1957) Clays 

LL Cc = 0.006(LL-9) Azzouz et al. (1976) Clays 

Cc = (LL-13)/109 P. W. Mayne (1980) Clays 

Cc = 0.009(LL-10) Terzaghi and Peck (1967)  Clays 

Cc = 0.014LL-0.168 Park and Seung (2011) Clays 

Cc = 0.0046(LL-9) Bowles (1989) Clays 

Cc = 0.011(LL-16) McClelland (1967) Clays 

w, LL Cc = 0.009w + 0.005LL Koppula (1981) Clays 

Cc = 0.009w + 0.002LL – 0.01 Azzouz et al. (1976) Clays 

eo, w Cc = 0.4(eo + 0.001w – 0.25) Azzouz et al. (1976) (N/S) 

eo, LL Cc = -0.156 + 0.411eo – 0.00058LL 
Al-Khafaji and Andersland 
(1992)  

Clays 

Cc = -0.023 + 0.271eo + 0.001LL Ahadiyan et al. (2008) Clays 

eo, w, LL Cc = 0.37(eo + 0.003LL +).0004w – 0.34) Azzouz et al. (1976) Clays 

Cc = -0.404 + 0.341eo + 0.006w + 
0.004LL 

Yoon and Kim (2006) Clays 

w, LL, eo, 
γdry 

Cc = 0.1597(w-0.0187)(1 + eo)1.592(LL-

0.0638)(γdry
-0.8276) 

Ozer et al. (2008) Clays 

Cc = 0.151 + 0.001225w + 0.193eo – 
0.000258LL – 0.0699γdry 

Ozer et al. (2008) Clays 

Cr 

eo Cr = 0.156eo + 0.0107 Elnaggar and Krizek (1970) Clays 

Cr = 0.208eo + 0.0083 Peck and Reed (1954) Clays 

Cr = 0.14(eo + 0.007) Azzouz et al. (1976) (N/S) 

w Cr = 0.003(w + 7) Azzouz et al. (1976) (N/S) 

LL Cr = 0.002(LL + 9) Azzouz et al. (1976) (N/S) 

eo, w Cr = 0.142(eo – 0.009w + 0.006) Azzouz et al. (1976) (N/S) 

w, LL Cr = 0.003w + 0.0006LL + 0.004 Azzouz et al. (1976) (N/S) 

eo, LL Cr = 0.126(eo + 0.003LL - 0.06) Azzouz et al. (1976) (N/S) 

eo, w, LL Cr = 0.135(eo + 0.1LL-0.002w – 0.06) Azzouz et al. (1976) (N/S) 

Cv 

LL Cv = 116.45LL-2.8784 US Navy (1971) Clays 

Cv = 4258LL-1.75 (m2/s) Asma and Abbas (2011) Clays 

ACT, LI, 
PI 

Cv = [9.09×10-7(1.192+ACT-

1)6.993(4.135LI+1)4.29]/[PI(2.04LI+1.192+
ACT-1)7.993] (m2/s) 

Carrier (1985) Clays 

eLL, σv Cv = [1+ eLL (1.23-0.276logσv)]/ eLL 
×[1/σv

0.353]×10-3 (cm2/s) 
Narasimha, Pandian, and 
Nagaraj (1995)  

Clays 

SI=LL-SL Cv = 3/[100(SI)3.54] (m2/s) 
Sridharan and Nagaraj 
(2004)  

Clays 

PI Cv = 7.7525PI-3.1021 (cm2/s) Solanki (2011) Clays 

Cα Cα = 0.00168 + 0.00033PI 
Nakase, Kamei, and 
Kusakabe (1988) 

(N/S) 
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Table 2-3. Continued. Summary of existing correlations (continued) 

Cα 

w Cα = 0.0001w NAVFAC (1982)  (N/S) 

Cα = 0.00018w Simons and Menzies (2000)  (N/S) 

Cc Cα = 0.032Cc 
G. Mesri and Godlewski 
(1977) 

0.025 < Cఈ < 
0.1 

Cα = 0.06 to 0.07Cc G.  Mesri (1986) 
Peats and 
organic soil 

Cα = 0.015 to 0.03Cc 
G. Mesri, Feng, and Benak 
(1990) 

Sandy clays 

Cc, LL, PL, 
w 

Cα = 0.001Cc·LL·PL-1.571·w 
Anagnostopoulos and 
Grammatikopoulos (2011) 

Silts and Clay 

2.2. Accuracy Evaluation of the Existing Soil Compressibility Models 

The accuracy of the existing correlations was investigated through analysis and regression of 
Florida-specific consolidation test results. Each correlation model was used with locally collected 
data to determine if the existing models were sufficiently accurate for Florida’s soil conditions. 
The detailed description of the database used in this accuracy check analysis is presented in Section 
3.2. Excluding data of coarse-grained soils, the total numbers of data points of Cc, Cr, Cv, and Cα 
are 551, 490, 440, and 113, respectively. It is important to note that only data corresponding to the 
specific soil type of existing correlations were used to evaluate the model accuracy.   

The results of this analysis were then used to identify the most suitable models to be used for 
particular soil conditions in Florida. The accuracy of those existing models was compared in terms 
of key goodness of fit characteristics such as coefficient of determination (R2) and root mean 
square error (RMSE). The coefficient of determination (R2) is the square of the correlation between 
the response values and the predicted response values. It measures how successful the fit is in 
explaining the variation of the data, and takes on any value between 0 and 1, with a value closer 
to 1 indicating that a greater proportion of variance is accounted for by the model. The formula to 
determine the R2 of a data-group is shown below in equation (2.1).  

 

ܴଶ ൌ 1 െ
ௌௌா

ௌௌ்ை
    (2.1) 

where: 
ܧܵܵ ൌ 	 ∑ ሺݕ௜ െ పෝሻଶݕ

௡
௜ୀଵ  (SSE is the "error sum of squares" and quantifies how much the data points, yi, 

vary around the estimated regression line, ŷi) 

ܱܵܵܶ ൌ	 ∑ ሺݕ௜ െ തሻଶ௡ݕ
௜ୀଵ   (SSTO is the "total sum of squares" and quantifies how much the data 

points, yi, vary around their mean) 

The Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction errors). 
Residuals are a measure of how far from the regression line data points are and the RMSE is a 
measure of how spread out these residuals are. In other words, it tells you how concentrated the 
data is around the line of best fit. The formula is shown in equation (2.2). 
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ܧܵܯܴ ൌ 	 ඥሺ݂ െ  ሻଶ    (2.2)݋

 
where f is forecasts (expected values or unknown results) and o is observed values (known results). 
Values closer to zero indicate a better fit. 
 
It is important to note that R2 is a relative measure of fit while RMSE is an absolute measure of fit. 
As the square root of a variance, RMSE can be interpreted as the standard deviation of the 
unexplained variance and has the usefu l property of being in the same units as the response 
variable. Lower values of RMSE indicate better fit. Therefore, RMSE was chosen in this analysis 
to rank the model accuracy.  
 
A total of 551 consolidation test data were used for this analysis. The majority of the data collected 
is from the Florida Department of Transportation’s (FDOT’s) District Five, which includes the 
counties of Volusia, Seminole, Orange, Osceola, Brevard, Lake, Marion, Sumter, and Flagler. The 
soil types in Florida were assumed to fall into one of three categories, namely fine-grained, organic 
peat, and organic silt, and organic clay. Fine-grained soils are primarily composed of clays and 
silts. Organic peat soils compose of decaying plant life and other degradable materials containing 
large deposits of organics. Organic silt and organic clay type is fine-grained soils with traces of 
organic materials.  

Table 2-2 shows the statistical strength of existing Cc and Cr correlation models. To search for the 
best prediction model for Florida’s soil conditions, the RMSE values for each consolidation 
parameter were arranged in ranked order (smallest to largest) in Table 2-3, because the practical 
accuracy of a model is better determined by its RMSE than by the value of R2.  

Table 2-4. Accuracy check of existing Cc and Cr correlations  

Consolidation 
parameter 

Equation Reference Notes R2 RMSE 

Cc 

Cc = 0.01w – 0.05 Azzouz et al. (1976) All soils 0.7448 0.8359 

Cc = 0.01w Koppula (1981) Clays 0.5202 0.4191 

Cc = 0.01w – 0.075 Herrero (1983) Clays 0.5189 0.4336 

Cc = 0.013w-0.115 
Park and Seung 
(2011) 

Clays 0.6729 0.3953 

Cc = 0.0075w Miyakawa (1960) Peat 0.5784 1.5194 

Cc = 0.011w Cook (1956) Peat 0.6611 1.9601 

Cc = 0.54eo – 0.19 Nishida (1956) Clays 0.7236 0.3945 

Cc = 0.43eo – 0.11 Cozzolino (1961) Clays 0.6120 0.4046 

Cc = 0.75eo – 0.38 
Sowers and Sowers 
(1979) 

Clays 0.7362 0.5552 

Cc = 0.49eo – 0.11 
Park and Seung 
(2011) 

Clays 0.6847 0.3924 

Cc = 0.4(eo – 0.25) Azzouz et al. (1976) All soils 0.5676 0.7501 

Cc = 0.15eo + 0.01077 Bowles (1989) Clays 0.3157 0.7536 

Cc = 0.287eo – 0.015 
Ahadiyan et al.  
(2008) 

Clays 0.3847 0.7692 
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Table 2-5. Continued, Accuracy check of existing Cc and Cr correlations (continued) 

Cc 

Cc = 0.6eo 
Sowers and Sowers 
(1979) 

Peat 0.6715 1.7876 

Cc = 0.3(eo - 0.27) Hough (1957) Clays 0.4081 0.5425 

Cc = 0.006(LL – 9) Azzouz et al. (1976) Clays 0.2857 0.6213 

Cc = (LL-13)/109 Mayne (1980) Clays 0.4323 0.5638 

Cc = 0.009(LL -10) 
Terzaghi and Peck 
(1967) 

Clays 0.4236 0.5641 

Cc = 0.014LL – 0.168 
Park and Seung 
(2011) 

Clays 0.5569 0.7921 

Cc = 0.0046(LL-9) Bowles (1989) Clays 0.2780 0.6989 

Cc = 0.011(LL-16) McClelland (1967) Clays 0.5094 0.5991 

Cc = 0.009w + 0.005LL Koppula (1981) Clays 0.5701 0.5518 

Cc = 0.009w + 0.002LL – 0.01 Azzouz et al. (1976) Clays 0.5866 0.4875 

Cc = 0.4(eo + 0.001w – 0.25) Azzouz et al. (1976) All soils 0.7057 0.7414 

Cc = -0.156 + 0.411eo – 0.00058LL 
Al-Khafaji and 
Andersland (1992)  

Clays 0.5276 0.3881 

Cc = -0.023 + 0.271eo + 0.001LL 
Ahadiyan et al.  
(2008) 

Clays 0.3400 0.4597 

Cc = 0.37(eo + 0.003LL +).0004w – 0.34) Azzouz et al. (1976) Clays 0.5014 0.3888 

Cc = -0.404 + 0.341eo + 0.006w + 0.004LL 
Yoon and Kim 
(2006) 

Clays 0.6805 0.4991 

Cc = 0.1597(w-0.0187)(1 + eo)1.592(LL-0.0638)(γdry
-

0.8276) 
Ozer, Isik, and 
Orhan (2008) 

Clays 0.6824 0.5886 

Cc = 0.151 + 0.001225w + 0.193eo – 
0.000258LL – 0.0699γdry 

Ozer et al. (2008) Clays 0.3006 0.5204 

Cr 

Cr = 0.156eo + 0.0107 
Elnaggar and Krizek 
(1970) 

Clays 0.5330 0.2536 

Cr = 0.208eo + 0.0083 
Peck and Reed 
(1954) 

Clays 0.5419 0.3643 

Cr = 0.14(eo + 0.007) Azzouz et al. (1976) All soils 0.6016 0.3369 

Cr = 0.003(w + 7) Azzouz et al. (1976) All soils 0.5780 0.4415 

Cr = 0.002(LL + 9) Azzouz et al. (1976) All soils 0.5485 0.1682 

Cr = 0.142(eo – 0.009w + 0.006) Azzouz et al. (1976) All soils 0.6089 0.1802 

Cr = 0.003w + 0.0006LL + 0.004 Azzouz et al. (1976) All soils 0.5674 0.2344 

Cr = 0.126(eo + 0.003LL-0.06) Azzouz et al. (1976) All soils 0.5808 0.2109 

Cr = 0.135(eo + 0.1LL-0.002w – 0.06) Azzouz et al. (1976) All soils 0.5548 0.3131 
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Table 2-6. Statistical strength ranks by existing Cc correlations 

Consolidation 
parameter 

Equation Reference Notes RMSE Rank 

Cc 

Cc = -0.156 + 0.411eo – 0.00058LL 
Al-Khafaji and 
Andersland (1992)  

Clays 0.3881 1 

Cc = 0.37(eo + 0.003LL + 0.0004w – 0.34) Azzouz et al. (1976) Clays 0.3888 2 

Cc = 0.49eo – 0.11 
Park and Seung 
(2011) 

Clays 0.3924 3 

Cc = 0.54eo – 0.19 Nishida (1956) Clays 0.3945 4 

Cc = 0.013w - 0.115 
Park and Seung 
(2011) 

Clays 0.3953 5 

Cc = 0.43eo – 0.11 Cozzolino (1961) Clays 0.4046 6 

Cc = 0.01w Koppula (1981) Clays 0.4191 7 

Cc = 0.01w – 0.075 Herrero (1983) Clays 0.4336 8 

Cc = -0.023 + 0.271eo + 0.001LL 
Ahadiyan et al.  
(2008) 

Clays 0.4597 9 

Cc = 0.009w + 0.002LL – 0.01 Azzouz et al. (1976) Clays 0.4875 10 

Cc = -0.404 + 0.341eo + 0.006w + 0.004LL 
Yoon and Kim 
(2006) 

Clays 0.4991 11 

Cc = 0.151 + 0.001225w + 0.193eo – 
0.000258LL – 0.0699γdry 

Ozer et al. (2008) Clays 0.5204 12 

Cc = 0.3(eo - 0.27) Hough (1957) Clays 0.5425 13 

Cc = 0.009w + 0.005LL Koppula (1981) Clays 0.5518 14 

Cc = 0.75eo – 0.38 
Sowers and Sowers 
(1979) 

Clays 0.5552 15 

Cc = (LL-13)/109 Mayne (1980) Clays 0.5638 16 

Cc = 0.009(LL -10) 
Terzaghi, Peck 
(1967) 

Clays 0.5641 17 

Cc = 0.1597(w-0.0187)(1 + eo)1.592(LL-0.0638)(γdry
-

0.8276) 
Ozer et al. (2008) Clays 0.5886 18 

Cc = 0.011(LL-16) McClelland (1967) Clays 0.5991 19 

Cc = 0.006(LL – 9) Azzouz et al. (1976) Clays 0.6213 20 

Cc = 0.0046(LL-9) Bowles (1989) Clays 0.6989 21 

Cc = 0.4(eo + 0.001w – 0.25) Azzouz et al. (1976) All soils 0.7414 22 

Cc = 0.4(eo – 0.25) Azzouz et al. (1976) All soils 0.7501 23 

Cc = 0.15eo + 0.01077 Bowles (1989) Clays 0.7536 24 

Cc = 0.287eo – 0.015 
Ahadiyan et al.  
(2008) 

Clays 0.7692 25 

Cc = 0.014LL – 0.168 
Park and Seung 
(2011) 

Clays 0.7921 26 

Cc = 0.01w – 0.05 Azzouz et al. (1976) All soils 0.8359 27 

Cc = 0.0075w Miyakawa (1960) Peat 1.5194 28 

Cc = 0.6eo 
Sowers and Sowers 
(1979) 

Peat 1.7876 29 

Cc = 0.011w Cook (1956) Peat 1.9601 30 
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Table 2-7. Statistical strength ranks by existing Cr correlations 

Consolidation 
parameter 

Equation Reference Notes RMSE Rank 

Cr 

Cr = 0.002(LL + 9) Azzouz et al. (1976) All soils 0.1682 1 

Cr = 0.142(eo – 0.009w + 0.006) Azzouz et al. (1976) All soils 0.1802 2 

Cr = 0.126(eo + 0.003LL-0.06) Azzouz et al. (1976) All soils 0.2109 3 

Cr = 0.003w + 0.0006LL + 0.004 Azzouz et al. (1976) All soils 0.2344 4 

Cr = 0.156eo + 0.0107 
Elnaggar and Krizek 
(1970) 

Clays 0.2536 5 

Cr = 0.135(eo + 0.1LL-0.002w – 0.06) Azzouz et al. (1976) All soils 0.3131 6 

Cr = 0.14(eo + 0.007) Azzouz et al. (1976) All soils 0.3369 7 

Cr = 0.208eo + 0.0083 
Peck and Reed 
(1954) 

Clays 0.3643 8 

Cr = 0.003(w + 7) Azzouz et al. (1976) All soils 0.4415 9 

 
 

 

 

Table 2-8. Statistical strength ranks for the existing Cv correlations 

Consolidation 
parameter 

Equation Reference 
Soil 
type 

RMSE Rank 

Cv 

Cv = 4258LL-1.75 (m2/s) 
Asma and Abbas 
(2011) 

Clays 0.819 1 

Cv = 116.45LL-2.8784 US Navy (1971) Clays 0.837 2 

Cv = [1+ eLL (1.23-0.276logσv)]/ eLL 
×[1/σv

0.353]×10-3 (cm2/s) 
Narasimha et al. 
(1995) Clays 0.850 3 

Cv = [9.09×10-7(1.192+… 
…+ACT-1)6.993(4.135LI+1)4.29] 
/[PI(2.04LI+1.192+ACT-1)7.993] (m2/s) 

Carrier (1985) Clays 0.860 4 

Cv = 7.7525PI-3.1021 (cm2/s) Solanki (2011) Clays 0.868 5 

Cv = 3/[100(SI)3.54] (m2/s) 
Sridharan and 
Nagaraj (2004) Clays n/a n/a 
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Table 2-9. Statistical strength ranks for the existing Cα correlations 

Consolidation 
parameter 

Equation Reference Soil type RMSE Rank 

Cα 

Cα = 0.0001w NAVFAC (1982) All soils 0.0049 1 

Cα = 0.00018w 
Simons and 
Menzies (2000)  

All soils 0.0101 2 

Cα = 0.00168 + 0.00033PI 
Nakase et al. 
(1988) 

All soils 0.0245 3 

 
As discussed above, RMSE was used to rank the accuracy of the existing models because the 
practical usefulness of a model is better determined by its RMSE than by the value of R2. The 
analysis results are presented in Tables 2-2 through 2-6. These tables summarize the accuracy of 
the models and the ranking of the Cc, Cr, Cv, and Cα models. According to the RMSE values, in 
general, the Cr models seem more accurate than the Cc models for Florida’s data. For Cc, Al-Khafaji, 
Andersland’s model (1992), which is a function of eo and LL, exhibited the highest accuracy. For 
Cr, the model propsed by Azzouz et al. (1976), which is a function of w, appears to be the best 
model. For Cv, Asma and Abba’s model (2011) seems more accurate than the others, but the RMSE 
is quite high at 0.8193. Therefore, the authors recommended that none of models are suitable for 
Florida’s soil conditions. For Cα, NAVFAC’s model (1982), which is a function w, exhibits the 
highest accuracy. This model exhibits a very low RMSE value (0.0049), but one should note that 
the number of data points were limited (about 20 data points).    
 

2.3. Statewide Survey 

A statewide survey was sent to consultants to identify the most commonly used correlations for 
estimating the soil compressibility among the professional community. The team conducted the 
first survey in January 2018; however, insufficient number of responses was received. Thus, a 
second-round survey (with web-based survey link) was conducted. A summary of the two survey 
results is presented in Tables 2-7 through 2-10. According to the survey result, the most used 
correlation is (Eq. 2.3) Terzaghi and Peck (1967) and the second one is (Eq. 2.2) Koppula (1981). 
The two correlations are presented below.  
 

Cc = 0.009(LL-10) (Terzaghi and Peck, 1967)    (2.3) 

Cc = 0.009w + 0.005LL (Koppula, 1981)     (2.4) 

For other correlations, several consultants responded with following models.  
 

Cr = 0.003w + 0.0006LL + 0.004  (Azzouz et al., 1976)   (2.5) 

Cv = 116.45LL-2.8784  (US Navy, 1971)     (2.6) 

Cα = 0.06 to 0.07Cc  (G.  Mesri, 1986)     (2.7) 
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Table 2-10. Results of survey responses – Cc 

Independent 
variable 

Dependent 
variable 

Equation Reference Notes 
# of 
Responses 

Cc 

w 

Cc = 0.01w – 0.05 
Azzouz et al. 
(1976) 

All soils 1 

Cc = 0.0054(2.6w – 35) Nishida (1956) Clays 1 

Cc = 0.01w Koppula (1981) Clays 2 

Cc = 0.01w – 0.075 Herrero (1983) Clays  

Cc = 0.013w – 0.115 
Park and Seung 
(2011) 

Clays  

Cc = 0.0075w Miyakawa (1960) Peat 1 

Cc = 0.011w Cook (1956) Peat 2 

Cc = 0.0102(w – 9.15) Hough (1957) Clays 1 

Cc = 0.0074w – 0.007 
Kalantary and 
Kordnaeij (2012) 

Clays  

eo 

Cc = 0.54eo – 0.19 Nishida (1956) Clays 1 

Cc = 0.5217(eo – 0.2) Nishida (1956) Clays 1 

Cc = 0.43eo – 0.11 Cozzolino (1961) Clays  

Cc = 0.75eo – 0.38 
Sowers and 
Sowers (1979) 

Clays  

Cc = 0.49eo – 0.11 
Park and Seung 
(2011) 

Clays  

Cc = 0.4(eo - 0.25) 
Azzouz et al. 
(1976) 

All soils 1 

Cc = 0.15eo + 0.01077 Bowles (1989) Clays 2 

Cc = 0.287eo – 0.015 
Ahadiyan et al.  
(2008) 

Clays  

Cc = 0.6eo 
Sowers and 
Sowers (1979) 

Peat 1 

Cc = 0.3(eo - 0.27) 
Rendon-Herrero 
(1980) 

Clays 1 

Cc = 0.4049(eo - 0.3216) Hough (1957) Clays 1 

Cc = 0.3608eo – 0.0713 
Kalantary and 
Kordnaeij (2012) 

Clays  

LL 

Cc = 0.006(LL-9) 
Azzouz et al. 
(1976) 

Clays 2 

Cc = (LL-13)/109 Mayne (1980) Clays 1 

Cc = 0.009(LL-10) 
Terzaghi and Peck 
(1967) 

Clays 10 

Cc = 0.014LL-0.168 
Park and Seung 
(2011) 

Clays 1 

Cc = 0.0046(LL-9) Bowles (1989) Clays 2 

Cc = 0.011(LL-16) McClelland (1967) Clays  

w, LL 
Cc = 0.009w + 0.005LL Koppula (1981) Clays 4 

Cc = 0.009w + 0.002LL – 0.01 
Azzouz et al. 
(1976) 

Clays 2 

eo, w Cc = 0.4(eo + 0.001w – 0.25) 
Azzouz et al. 
(1976) 

All soils 1 
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Table 2-11. Continued, Results of survey responses – Cc (continued) 

Cc 

eo, LL 

Cc = -0.156 + 0.411eo – 
0.00058LL 

Al-Khafaji and 
Andersland (1992) 

Clays 1 

Cc = -0.023 + 0.271eo + 0.001LL 
Ahadiyan et al.  
(2008) 

Clays  

eo, w, LL 

Cc = 0.37(eo + 0.003LL +).0004w 
– 0.34) 

Azzouz et al. 
(1976) 

Clays 1 

Cc = -0.404 + 0.341eo + 0.006w + 
0.004LL 

Yoon and Kim 
(2006) 

Clays  

w, LL, eo, 
γdry 

Cc = 0.1597(w-0.0187)(1 + 
e)1.592(LL-0.0638)(γdry

-0.8276) 
Ozer et al. (2008) Clays  

Cc = 0.151 + 0.001225w + 
0.193eo – 0.000258LL – 
0.0699γdry 

Ozer et al. (2008) Clays  

Gs, PI Cc = 0.5Gs*[PI(%)]/100 
Wroth and Wood 
(1978) 

Clays 1 

 

 

 

 Table 2-12. Results of survey responses – Cr 

Independent 
variable 

Dependent 
variable 

Equation Reference Notes 
# of 

Responses 

Cr 

eo 

Cr = 0.156eo + 0.0107 
Elnaggar and 
Krizek (1970) 

Clays  

Cr = 0.208eo + 0.0083 
Peck and Reed 
(1954) 

Clays 2 

Cr = 0.14(eo + 0.007) 
Azzouz et al. 
(1976) 

All soils 1 

w 
Cr = 0.003(w + 7) 

Azzouz et al. 
(1976) 

All soils 2 

Cr = w/1,000 
Samtani and 
Nowatzki (2006) 

All soils 2 

LL Cr = 0.002(LL + 9) 
Azzouz et al. 
(1976) 

All soils 1 

eo, w Cr = 0.142(eo – 0.009w + 0.006) 
Azzouz et al. 
(1976) 

All soils 1 

w, LL Cr = 0.003w + 0.0006LL + 0.004 
Azzouz et al. 
(1976) 

All soils 3 

eo, LL Cr = 0.126(eo + 0.003LL - 0.06) 
Azzouz et al. 
(1976) 

All soils 1 

eo, w, LL 
Cr = 0.135(eo + 0.1LL-0.002w – 
0.06) 

Azzouz et al. 
(1976) 

All soils 1 

Cc Cr = (0.05 to 0.2)* Cc No reference? All soils? 1 

PI Cr = PI/370 
Kulhawy and 
Mayne (1990) 

Clays 1 
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Table 2-13. Results of survey responses – Cv  

Independent 
variable 

Dependent 
variable 

Equation Reference Notes 
# of 

Responses 

Cv 

LL 
Cv = 116.45LL-2.8784 US Navy (1971) Clays 2 

Cv = 4,258LL-1.75 (m2/s) 
Asma and Abbas 
(2011) 

Clays 1 

ACT, LI, PI 
Cv = [9.09×10-7(1.192+ACT-

1)6.993(4.135LI+1)4.29]/[PI(2.04LI+1
.192+ACT-1)7.993] (m2/s) 

Carrier (1985) Clays 1 

eLL, σv  
Cv = [1+ eLL (1.23-0.276logσv)]/ 
eLL ×[1/σv

0.353]×10-3 (cm2/s) 
Narasimha et al. 
(1995) 

Clays  

SI=LL-SL Cv = 3/[100(SI)3.54] (m2/s) 
Sridharan and  
Nagaraj (2004) 

Clays  

PI Cv = 7.7525PI-3.1021 (cm2/s) Solanki (2011) Clays  

 

 

 

 

 

 Table 2-14. Results of survey responses – Cα 

Independent 
variable 

Dependent 
variable 

Equation Reference Notes 
# of 

Responses 

Cα 

PI Cα = 0.00168 + 0.00033PI 
Nakase et al. 
(1988) 

All soils? 2 

w 
Cα = 0.0001w NAVFAC (1982) All soils? 3 

Cα = 0.00018w 
Simons and 
Menzies (2000)  

All soils?  

Cc 

Cα = 0.032Cc 
Mesri and 
Godlewski (1977) 

0.025 < Ca 
< 0.1 

 

Cα = 0.06 to 0.07Cc Mesri (1986) 
Peats and 
organic soil 

3 

Cα = 0.015 to 0.03Cc Mesri et al. (1990) 
Sandy 
clays 

1 

Cα = (0.03 to 0.09)*Cc No reference? All soils? 1 

Cc, LL, PL, 
w 

Cα = 0.001Cc·LL·PL-1.571·w 
Anagnostopoulos, 
Grammatikopoulo 
(2011) 

Silts/Clay  
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2.4. Summary and Conclusion 

The goals of this chapter were to first, to identify the accuracy of the existing correlations used 
internationally to estimate soil compressibility parameters using the Florida soil consolidation 
database (discussed in more detail in Chapter 3) and, second, to determine the most popularly used 
correlations in the Florida geotechnical consultant community. When comparing the information 
presented in this chapter, it is interesting to note that the model with the highest accuracy for the 
Florida soils database (i.e., Azzouz et al. 1976) did not have a majority of responses from the 
survey. Rather, the overwhelmingly most used correlation was from Terzaghi and Peck’s famous 
Theoretical Soil Mechanics textbook from 1967. With the capability now to statistically develop 
models using a Florida specific database of soils, empirical models will be developed in the 
following chapters, relating compressibility parameters to soil index parameters obtained from 
split spoon samples in the lab.  
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3. DATA COLLECTION AND PARAMETER CORRELATION ANALYSIS 

 

3.1. Florida’s Geological Formation 

Florida’s geology is unique from the Panhandle in the north, to the Central Highlands and Coastal 
Lowlands in the south. The Panhandle contains much of Florida’s clayey sands and gravels, while 
the Central Highlands and Coastal Lowlands are composed mainly of medium to fine sands and 
silts, shelly sands and clays, and large deposits of limestone, as noted in Figure 3-1. A large portion 
of Florida’s soils are clayey sands, defined as SC in the USCS. Due to the compressive nature of 
clay particles in this particular soil and the sand particle’s propensity for rearrangement during 
loading, there is a high settlement potential for these soils; however, the project mainly focused on 
clay, organic, and peat soils.  

 

 

 
 

Figure 3-1: Map outlining environmental geology of Florida 

source: Anderson, Krafft, and Remington (1981) 
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Over-consolidation of soil can be observed due to several reasons. It could be that a greater depth 
of past overburden has eroded away over the course of time, commonly due to land shifts over 
many years and glacial movements. Cycles of wetting and drying could subject the soil to 
shrinkage and swelling (Bowles, 1989). As Florida has very wet and dry seasons, moisture 
intrusion/drying is very likely. The soil could also be exposed to cycles of wetting and drying in 
the presence of certain sodium, calcium, and magnesium salts, and there could be effective pressure 
changes from water table fluctuations (Bowles, 1989).   
 
A brief look into Florida’s geologic history will illustrate how unique the state really is. Florida’s 
history begins out of the break-up of a supercontinent called Rodinia around 700 Ma (million years 
ago) into a new land mass called Gondwana. This process is composed of two parts: rifting and 
seafloor spreading. Rifting is the initial splitting apart of the continental mass and seafloor 
spreading is the formation of a new ocean basin (Hine, 2013). What is now North America was a 
separate land mass that collided with Gondwana approximately 350 Ma. When this occurred, it 
formed what we know as Florida today. The shifting and movement that occurred throughout this 
process displaced what is now Florida from the South Pole to its present location (Hine, 2013).   
 
If one examines the topography of the state, the presence of numerous former beaches, scarps 
(steep slopes), and shorelines can be observed. This suggests that sediment movement was very 
likely (Hine, 2013). This occurred from the north to south orientation from peninsular Florida and 
must have occurred by breaking waves transporting soils from one location to another, much like 
how sand is moved in modern beaches today. This transport occurred when sea levels were at a 
higher elevation. When sea levels were lower, local streams and small rivers probably eroded into 
the former shorelines and moved various amounts of sediments from the east to west (Hine, 2013).   
 
During the peak of the Middle Miocene era (18 Ma), approximately 300 feet of water covered 
south-central Florida, linking the Gulf of Mexico with the northern Straits of Florida (Hine, 2013).  
During this time, sea levels fluctuated with great regularity, leaving portions of Florida to become 
shallower and, at times, were emergent, which allowed rivers to flow overland to estuaries and 
coastlines. There were, however, many time periods during this time in which Florida was high 
and dry. This provided an environment where land animals and terrestrial creatures thrived due to 
the rich soils left behind from receding oceans. This sea level history of repeated flooding and 
exposing of land created one of the great fossil hunting locations in the world, mixing the remains 
of an abundance of land and marine organisms (Hine, 2013).   
 
Given the geologic history of Florida, it is reasonable to assume that much of Florida’s soils are 
over-consolidated to some degree, as large portions of Florida have been subjected to rising and 
lowering water tables and sediment transport, and there have been thousands of cycles of wetting 
and drying throughout the state’s history. For this reason, when the soil is subjected to a change in 
stress and settlement ensues, it is reasonable to assume that a portion of the soil’s behavior can be 
described by the unload-reload cycle of the consolidation curve. When this occurs, the 
recompression index, Cr, will be a factor in the primary consolidation settlement. Existing 
correlations for the recompression index, Cr, are not as abundant as for the compression index, Cc, 
particularly for fine-grained and coarse-grained soils.   
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The existing correlations utilize soil descriptors such as liquid limit (LL), initial void ratio (eo), 
moisture content (w), and dry unit weight (ߛ dry). While these soil descriptors are useful and 
relatively easy to obtain, there are several other parameters that also meet these criteria and could 
have as much, if not more, influence on the parameters that are influencing primary consolidation 
settlement. These parameters include the saturated unit weight (ߛୱୟ୲), automatic hammer SPT blow 
count (N), overburden stress (ߪ ), plasticity index (PI), and fine content (-200). Having a full 
spectrum of soil parameters to develop new correlations could yield stronger predictions of 
settlement. 
 

3.2. Data Collection 

A total of 644 consolidation test data conducted on soils throughout the state of Florida was 
collected. The status of data collection is shown in Table 3-1. Each consolidation test has an 
accompanying SPT boring to provide a description of the soil’s stiffness. The majority of the data 
collected is from the Florida Department of Transportation’s (FDOTs) District Five which includes 
the counties of Volusia, Seminole, Orange, Osceola, Brevard, Lake, Marion, Sumter, and Flagler. 

Table 3-1. Data collection numbers 

Soil type 
# of Data points 

Cc Cr 

Fine-grained 
clays 396 380 
silts 31 21 

Organic soils   124 89 
Coarse-grained*   93 93 

Total 644 583 
*Not included in model development for this study  

 

Stress Level Stress Range (psf)
# of Data points 
Cv Cα 

Low < 2000 150 38 
Intermediate 2000 ≤ σ ≤ 4000 147 38 

High > 4000 143 37 
Total 440 113 

 

The soil types are assumed to fall into one of four categories. The first category is “fine-grained” 
materials, which is primarily composed of clays and silts. Fine-grained materials are classified by 
having over half of the sample’s particle diameter smaller than 0.074 mm, or the #200 sieve. Fine-
grained materials are then broken into separate classes of silts and clays. These will be analyzed 
separately from the fine-grained classification. The next category is assumed to be soils with large 
deposits of organics and is called “Organic Peat”. These fibrous soils are composed of decaying 
plant life and other degradable materials that are classified by visual inspection. They are often 
referred to as “muck” and are normally over-saturated with water. The last category is coarse-
grained materials, which is primarily composed of sands with varying amounts of clays and silts 
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intermingled. Coarse-grained materials are classified by having more than half of the sample’s 
particle diameter larger than 0.074 mm, or the #200 sieve. For this study, however, the coarse-
grained material data will not be included in any model development presented in Chapter 4 due 
to the concerns regarding consolidation test results because of sample disturbance when retrieving 
Shelby tubes.  

The value of the coefficient of consolidation (Cv) and coefficient of secondary consolidation (Cα), 
are contingent on experienced stress. As there are a variety of different stressors that can be 
encountered on a roadway construction project (surcharge, live load, construction equipment, 
structural footings, etc.), it was decided to model different stress levels for examination, these 
being the low stress range (less than 2,000 psf), intermediate stress range (between 2,000 and 4,000 
psf), and high stress range (over 4,000 psf). Each stress range will be examined to determine if a 
reliable correlation can be developed for Cv and Cα. 

Table 3-2 shows an example data set of Cc and Cr and Table 3-3 shows an example data set of Cv 
and Cα. A Microsoft Access database was created to store and sort the existing data for quick 
analysis. This database houses the general information of where the sample was taken (project 
numbers and description, FDOT District and County, etc.), specific information of where the 
sample was taken (latitude and longitude, boring number, sample depth), sample description (soil 
type, USCS Classification, fines content (-200), moisture content (w), initial void ratio (eo), 
Atterberg limits (LL and PL), SPT automatic hammer blow count (N), and specific gravity (Gs)), 
and stress state of the soil (compression index (Cc), recompression index (Cr), coefficient of 
consolidation (Cv), coefficient of secondary consolidation (Cα), effective overburden pressure (ߪ௢ᇱሻ, 
and preconsolidation pressure (Pc)). 

Overburden pressure was computed using the correlation for SPT blow count to saturated unit 
weight of soil (Teng, 1962). This is determined for each soil strata above the depth from which the 
sample was taken and each unit weight is then multiplied by the height of each respective soil 
strata, taken from the SPT boring. The seasonal high-water table was used to account for the 
effective overburden pressure computation.  

The SPT borings were also used to help identify some of the missing data from the consolidation 
test report. If the moisture content (w) or fines content (-200) were not included on the 
consolidation test report, they were accounted for via lab tests within the same soil strata and close 
proximity to where the undisturbed sample was taken. 
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Table 3-2. Example data set of Cc and Cr 

 

 

Table 3-3. Example data set of Cv and Ca 

 

 

Project    County 
Soil 
Type  USCS 

Natural 
Moisture 

(%) 

 dryࢽ

(pcf) 
 satࢽ
(pcf) 

Gs 
Fines   
(‐200) 
(%) 

Liquid 
Limit 
(LL) 

Plasticity 
Index (PI) 

Organic 
Content 
(%) 

Initial 
void 
Ratio 
(eo) 

 o'࣌
(ksf) 

Cc  Cr 

SR 223 over 
CR 100A and 

CSX RR 
Bradford 

Fine-
grained 

CH 82 50.3 91.6 2.64 98 133 99  2.28 2.28 1.05 0.24 

SW 42nd St. 
Flyover 

Marion 
Fine-

grained 
CH 55 67.0 103.9 2.66 95 157 118  1.48 3.08 0.35 0.10 

SR 10 at 
Little 

Pottsburg 
Creek 

Duval 
Organic 

Peat 
PT 414 12.7 65.4 2.19 1   87 9.76 1.85 6.41 0.63 

Soil Type  (USCS) 
 o'࣌
(ksf) 

 dryࢽ

(pcf) 
 satࢽ
(pcf) 

Natural 
Moisture 

(%) 

Fines   
(‐200) 
(%) 

Liquid 
Limit 
(LL) 

Plasticity 
Index (PI) 

Initial 
Void 
Ratio 
(e) 

Specific 
Gravity  Cv   ࢻ࡯   Stress Range 

Fine-grained CH 1.12 71.6 104.6 46.1 58 61 44 1.35 2.7 0.01 0.009 High 

Fine-grained CH 1.12 71.6 104.6 46.1 58 61 44 1.35 2.7 0.05 0.003 Intermediate 

Fine-grained CH 1.49 52.8 95.3 80.4 88 108 75 2.24 2.74 0.11 0.001 Low 

Organic Peat PT 0.09 11.3 62.8 456 59 - - 8.08 1.64 0.07 0.024 Intermediate 

Organic Peat PT 0.15 5.4 55.8 934 94 - - 12.68 1.18 0.0001 0.015 Low 
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3.3. Correlation Between Index Parameters and Soil Compressibility 

The research team evaluated the correlation between key index parameters and soil compressibility, 
which include Cc, Cr, Cv, and Cα. The key index parameters that were used include Effective 
Overburden Pressure (ksf), Wet Density (pcf), Dry Density (pcf), Natural Moisture (%), Automatic 
Hammer Blow Count, Fines (-200) (%), Liquid Limit (LL), Plasticity Index (PI), Initial Void Ratio 
(eo), and Specific Gravity. 

The soil types that were evaluated include fine-grained and organic soils. The fine-grained soils 
were subdivided into silt, high plasticity clay, and low plasticity clay. Tables 3-4 through 3-13 
contain the calculated Pearson’s Correlation Coefficient values, Coefficient of Determination (R2) 
values and Root Mean Square Error values (RMSE) for the above soil types. Pearson’s Correlation 
Coefficient analysis was used to identify “better” performing parameters in predicting the Cc and 
Cr of specific soil. A high (positive) correlation coefficient indicates that there is a strong uphill 
relationship between key index parameters and soil compressibility (Cc and Cr). Such a 
relationship implies that as an index parameter increases, the Cc and Cr of a specific soil will 
increase as well. On the contrary, a low (negative) correlation coefficient indicates that there is a 
strong downhill relationship between key index parameters and soil compressibility. Such a 
relationship indicates that as an index parameter increases, the Cc and Cr of a specific soil will 
decrease and vice versa. Coefficient of Determination and Root Mean Square Error values were 
calculated to quantify the performance level of the key index parameters. A perfect correlation 
yields an R2 value of 1.0, and an RMSE value of zero.  

The analysis results for the fine-grained soils including silts and clays are shown in Tables 3-4 and 
3-5. The subdivision of fine-grained soils (the results of silts, low plasticity clays, and high 
plasticity clays) are summarized in Tables 3-6 through 3-11. The analysis results of organic soils 
are presented in Tables 3-12 and 3-13. Within the following tables, Pearson’s Correlation 
Coefficients highlighted in red denote the three largest negative correlations (i.e., the most inverse 
proportional). Adversely, the cells highlighted in green represent the three highest correlation 
coefficients (i.e., the most directly proportional), for each soil type data group analyzed.  
 

Table 3-4. Correlation of Cc for fine-grained soils 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
 

Cc  Effective Overburden Pressure (ksf)  0.051  0.003  0.621 

Cc  Wet Density (pcf)  ‐0.629  0.395  0.484 

Cc  Dry Density (pcf)  ‐0.689  0.474  0.451 

Cc  Natural Moisture (%)  0.765  0.585  0.401 

Cc  Automatic Hammer Blow Count  ‐0.235  0.055  0.605 

Cc  Fines (‐200) (%)  0.057  0.003  0.621 

Cc  Liquid Limit (LL)  0.533  0.284  0.526 

Cc  Plasticity Index (PI)  0.454  0.206  0.554 

Cc  Initial Void Ratio (eo)  0.764  0.584  0.401 

Cc  Specific Gravity  ‐0.075  0.006  0.620 



27 

 

 

Table 3-5. Correlation of Cr for fine-grained soils 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
 

Cr  Effective Overburden Pressure (ksf)  ‐0.066  0.004  0.085 

Cr  Wet Density (pcf)  ‐0.426  0.182  0.077 

Cr  Dry Density (pcf)  ‐0.476  0.227  0.075 

Cr  Natural Moisture (%)  0.576  0.332  0.069 

Cr  Automatic Hammer Blow Count  ‐0.131  0.017  0.084 

Cr  Fines (‐200) (%)  ‐0.062  0.004  0.085 

Cr  Liquid Limit (LL)  0.491  0.241  0.074 

Cr  Plasticity Index (PI)  0.395  0.156  0.078 

Cr  Initial Void Ratio (eo)  0.524  0.274  0.072 

Cr  Specific Gravity  ‐0.129  0.017  0.084 

 

 

Table 3-6. Correlation of Cc for silts 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Silts 
 

Cc  Effective Overburden Pressure (ksf)  0.057  0.003  0.886 

Cc  Wet Density (pcf)  ‐0.568  0.323  0.730 

Cc  Dry Density (pcf)  ‐0.611  0.373  0.702 

Cc  Natural Moisture (%)  0.739  0.546  0.598 

Cc  Automatic Hammer Blow Count  ‐0.057  0.003  0.886 

Cc  Fines (‐200) (%)  ‐0.670  0.450  0.658 

Cc  Liquid Limit (LL)  0.747  0.558  0.590 

Cc  Plasticity Index (PI)  0.735  0.540  0.602 

Cc  Initial Void Ratio (eo)  0.570  0.325  0.729 

Cc  Specific Gravity  ‐0.715  0.512  0.620 

 

 

 

 

 

 



28 

 

 

Table 3-7. Correlation of Cr for silts 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Silts 
 

Cr  Effective Overburden Pressure (ksf)  0.004  0.000  0.197 

Cr  Wet Density (pcf)  ‐0.551  0.303  0.165 

Cr  Dry Density (pcf)  ‐0.575  0.331  0.162 

Cr  Natural Moisture (%)  0.718  0.515  0.138 

Cr  Automatic Hammer Blow Count  ‐0.268  0.072  0.190 

Cr  Fines (‐200) (%)  ‐0.635  0.403  0.153 

Cr  Liquid Limit (LL)  0.616  0.379  0.156 

Cr  Plasticity Index (PI)  0.634  0.401  0.153 

Cr  Initial Void Ratio (eo)  0.538  0.289  0.166 

Cr  Specific Gravity  ‐0.743  0.551  0.132 

 

 

Table 3-8. Correlation of Cc for low plasticity clays 

 Type 
 

 Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Clays – (CL) 
 

Cc  Effective Overburden Pressure (ksf)  0.180  0.033  0.424 

Cc  Wet Density (pcf)  ‐0.489  0.239  0.376 

Cc  Dry Density (pcf)  ‐0.551  0.304  0.360 

Cc  Natural Moisture (%)  0.617  0.380  0.339 

Cc  Automatic Hammer Blow Count  ‐0.207  0.043  0.422 

Cc  Fines (‐200) (%)  0.146  0.021  0.426 

Cc  Liquid Limit (LL)  0.155  0.024  0.426 

Cc  Plasticity Index (PI)  0.008  0.000  0.431 

Cc  Initial Void Ratio (eo)  0.645  0.417  0.329 

Cc  Specific Gravity  0.036  0.001  0.431 
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Table 3-9. Correlation of Cr for low plasticity clays 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Clays – (CL) 
 

Cr  Effective Overburden Pressure (ksf)  0.032  0.001  0.049 

Cr  Wet Density (pcf)  ‐0.233  0.054  0.048 

Cr  Dry Density (pcf)  ‐0.324  0.105  0.047 

Cr  Natural Moisture (%)  0.381  0.145  0.046 

Cr  Automatic Hammer Blow Count  ‐0.089  0.008  0.049 

Cr  Fines (‐200) (%)  0.050  0.003  0.049 

Cr  Liquid Limit (LL)  0.221  0.049  0.048 

Cr  Plasticity Index (PI)  0.091  0.008  0.049 

Cr  Initial Void Ratio (eo)  0.374  0.140  0.046 

Cr  Specific Gravity  0.064  0.004  0.049 

 

 

 

Table 3-10. Correlation of Cc for high plasticity clays 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Clays – (CH) 
 

Cc  Effective Overburden Pressure (ksf)  ‐0.021  0.000  0.716 

Cc  Wet Density (pcf)  ‐0.702  0.494  0.510 

Cc  Dry Density (pcf)  ‐0.789  0.622  0.441 

Cc  Natural Moisture (%)  0.815  0.664  0.415 

Cc  Automatic Hammer Blow Count  ‐0.336  0.113  0.675 

Cc  Fines (‐200) (%)  ‐0.116  0.013  0.712 

Cc  Liquid Limit (LL)  0.460  0.212  0.636 

Cc  Plasticity Index (PI)  0.361  0.130  0.668 

Cc  Initial Void Ratio (eo)  0.829  0.687  0.401 

Cc  Specific Gravity  ‐0.047  0.002  0.716 
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Table 3-11. Correlation of Cr for high plasticity clays 

 Type  Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Clays – (CH) 
 

Cr  Effective Overburden Pressure (ksf)  ‐0.079  0.006  0.089 

Cr  Wet Density (pcf)  ‐0.423  0.179  0.081 

Cr  Dry Density (pcf)  ‐0.467  0.218  0.079 

Cr  Natural Moisture (%)  0.454  0.206  0.079 

Cr  Automatic Hammer Blow Count  ‐0.167  0.028  0.088 

Cr  Fines (‐200) (%)  ‐0.131  0.017  0.088 

Cr  Liquid Limit (LL)  0.439  0.193  0.080 

Cr  Plasticity Index (PI)  0.255  0.065  0.086 

Cr  Initial Void Ratio (eo)  0.436  0.190  0.080 

Cr  Specific Gravity  ‐0.099  0.010  0.088 

 

Table 3-12. Correlation of Cc for organic soils 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic Peat 
 

Cc  Effective Overburden Pressure (ksf)  ‐0.261  0.068  2.116 

Cc  Wet Density (pcf)  ‐0.374  0.140  2.033 

Cc  Dry Density (pcf)  ‐0.602  0.363  1.750 

Cc  Natural Moisture (%)  0.706  0.499  1.552 

Cc  Automatic Hammer Blow Count  ‐0.162  0.026  2.163 

Cc  Fines (‐200) (%)  ‐0.187  0.035  2.154 

Cc  Organic Content (%)  0.436  0.190  1.973 

Cc  Initial Void Ratio (eo)  0.716  0.513  1.530 

Cc  Specific Gravity  ‐0.197  0.039  2.149 

 

Table 3-13. Correlation of Cr for organic soils 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic Peat 
 

Cr  Effective Overburden Pressure (ksf)  ‐0.222  0.049  0.297 

Cr  Wet Density (pcf)  ‐0.273  0.074  0.293 

Cr  Dry Density (pcf)  ‐0.467  0.218  0.269 

Cr  Natural Moisture (%)  0.541  0.293  0.256 

Cr  Automatic Hammer Blow Count  ‐0.182  0.033  0.300 

Cr  Fines (‐200) (%)  ‐0.181  0.033  0.300 

Cr  Organic Content (%)  0.255  0.065  0.295 

Cr  Initial Void Ratio (eo)  0.823  0.677  0.173 

Cr  Specific Gravity  ‐0.007  0.000  0.305 
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The team also evaluated the correlation between key index parameters and coefficient of 
consolidation (Cv) and secondary compression index (Cα). The key index parameters that were 
used include effective overburden pressure (ksf), wet density (pcf), dry density (pcf), natural 
moisture (%), sutomatic hammer blow count (N), fines (-200) (%), organic content (%), liquid 
limit (LL), plasticity index (PI), initial void ratio (eo), and specific gravity. The soil types that were 
evaluated are, fine-grained soils, organic soils. Since Cv and Cα are a function of stress level, three 
categories of stress levels were selected: (1) low stress level in the range of 500-1,000 psf, (2) mid-
stress level in the range of 2,000-3,000 psf, and (3) high stress level in the range of 5,000-6,000 
psf. Thus, a total of nine data sets were prepared. Tables 3-14 through 3-25 contain the calculated 
Pearson’s Correlation Coefficient values, Coefficient of Determination (R2) values and Root Mean 
Square Error values (RMSE) for the above soil types.  
 

Table 3-14. Correlation of Cv for fine-grained soil (at high stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(High) 

Cv  Effective Overburden Pressure (ksf)  ‐0.323  0.104  0.294 

Cv  Wet Density (pcf)  0.053  0.003  0.311 

Cv  Dry Density (pcf)  0.106  0.011  0.309 

Cv  Natural Moisture (%)  ‐0.159  0.025  0.307 

Cv  Automatic Hammer Blow Count  ‐0.020  0.000  0.311 

Cv  Fines (‐200) (%)  ‐0.180  0.033  0.306 

Cv  Liquid Limit (LL)  ‐0.047  0.002  0.311 

Cv  Plasticity Index (PI)  ‐0.107  0.012  0.309 

Cv  Initial Void Ratio (eo)  ‐0.140  0.020  0.308 

Cv  Specific Gravity  ‐0.047  0.002  0.311 

 

 

Table 3-15. Correlation of Cα for fine-grained soil (at high stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(High) 

Cα  Effective Overburden Pressure (ksf)  ‐0.202  0.041  0.016 

Cα  Wet Density (pcf)  ‐0.592  0.351  0.013 

Cα  Dry Density (pcf)  ‐0.670  0.449  0.012 

Cα  Natural Moisture (%)  0.787  0.619  0.010 

Cα  Automatic Hammer Blow Count  ‐0.270  0.073  0.015 

Cα  Fines (‐200) (%)  ‐0.254  0.065  0.015 

Cα  Liquid Limit (LL)  0.740  0.548  0.010 

Cα  Plasticity Index (PI)  0.726  0.527  0.011 

Cα  Initial Void Ratio (eo)  0.675  0.456  0.012 

Cα  Specific Gravity  ‐0.672  0.451  0.012 
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Table 3-16. Correlation of Cv for fine-grained soil (at intermediate stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(intermediate) 

Cv  Effective Overburden Pressure (ksf)  0.296  0.088  0.438 

Cv  Wet Density (pcf)  0.100  0.010  0.457 

Cv  Dry Density (pcf)  0.154  0.024  0.454 

Cv  Natural Moisture (%)  ‐0.182  0.033  0.451 

Cv  Automatic Hammer Blow Count  0.068  0.005  0.458 

Cv  Fines (‐200) (%)  ‐0.100  0.010  0.457 

Cv  Liquid Limit (LL)  ‐0.077  0.006  0.458 

Cv  Plasticity Index (PI)  ‐0.096  0.009  0.457 

Cv  Initial Void Ratio (eo)  ‐0.157  0.025  0.453 

Cv  Specific Gravity  ‐0.014  0.000  0.459 

 

 

Table 3-17. Correlation of Cα for fine-grained soil (at intermediate stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(intermediate) 

Cα  Effective Overburden Pressure (ksf)  ‐0.299  0.089  0.004 

Cα  Wet Density (pcf)  ‐0.625  0.391  0.003 

Cα  Dry Density (pcf)  ‐0.678  0.459  0.003 

Cα  Natural Moisture (%)  0.708  0.502  0.003 

Cα  Automatic Hammer Blow Count  ‐0.201  0.041  0.004 

Cα  Fines (‐200) (%)  0.010  0.000  0.004 

Cα  Liquid Limit (LL)  0.559  0.313  0.004 

Cα  Plasticity Index (PI)  0.533  0.284  0.004 

Cα  Initial Void Ratio (eo)  0.668  0.446  0.003 

Cα  Specific Gravity  ‐0.516  0.267  0.004 
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Table 3-18. Correlation of Cv for fine-grained soil (at low stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(low) 

Cv  Effective Overburden Pressure (ksf)  0.341  0.116  0.424 

Cv  Wet Density (pcf)  0.075  0.006  0.450 

Cv  Dry Density (pcf)  0.104  0.011  0.449 

Cv  Natural Moisture (%)  ‐0.106  0.011  0.449 

Cv  Automatic Hammer Blow Count  0.026  0.001  0.451 

Cv  Fines (‐200) (%)  ‐0.095  0.009  0.449 

Cv  Liquid Limit (LL)  ‐0.020  0.000  0.451 

Cv  Plasticity Index (PI)  ‐0.044  0.002  0.451 

Cv  Initial Void Ratio (eo)  ‐0.090  0.008  0.449 

Cv  Specific Gravity  ‐0.009  0.000  0.451 

 

 

Table 3-19. Correlation of Cα for fine-grained soil (at low stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Fine‐grained 
(low) 

Cα  Effective Overburden Pressure (ksf)  ‐0.191  0.036  0.003 

Cα  Wet Density (pcf)  ‐0.303  0.092  0.003 

Cα  Dry Density (pcf)  ‐0.388  0.151  0.003 

Cα  Natural Moisture (%)  0.450  0.203  0.003 

Cα  Automatic Hammer Blow Count  ‐0.298  0.089  0.003 

Cα  Fines (‐200) (%)  0.097  0.010  0.003 

Cα  Liquid Limit (LL)  0.071  0.005  0.003 

Cα  Plasticity Index (PI)  0.089  0.008  0.003 

Cα  Initial Void Ratio (eo)  0.332  0.110  0.003 

Cα  Specific Gravity  ‐0.435  0.189  0.003 
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Table 3-20. Correlation of Cv for organic peat (at high stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(high) 

Cv  Effective Overburden Pressure (ksf)  ‐0.152  0.023  0.707 

Cv  Wet Density (pcf)  0.007  0.000  0.715 

Cv  Dry Density (pcf)  ‐0.028  0.001  0.715 

Cv  Natural Moisture (%)  0.042  0.002  0.715 

Cv  Automatic Hammer Blow Count  ‐0.203  0.041  0.701 

Cv  Fines (‐200) (%)  ‐0.270  0.073  0.689 

Cv  Organic Content (%)  0.411  0.169  0.652 

Cv  Initial Void Ratio (eo)  0.251  0.063  0.693 

Cv  Specific Gravity  0.250  0.063  0.693 

 

Table 3-21. Correlation of Cα for organic peat (at high stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(high) 

Cα  Effective Overburden Pressure (ksf)  ‐0.853  0.728  0.006 

Cα  Wet Density (pcf)  ‐0.316  0.100  0.010 

Cα  Dry Density (pcf)  ‐0.517  0.267  0.009 

Cα  Natural Moisture (%)  0.206  0.043  0.010 

Cα  Automatic Hammer Blow Count  ‐0.923  0.852  0.004 

Cα  Fines (‐200) (%)  ‐0.927  0.859  0.004 

Cα  Organic Content (%)  ‐0.308  0.095  0.010 

Cα  Initial Void Ratio (eo)  0.409  0.167  0.010 

Cα  Specific Gravity  0.555  0.308  0.009 

 

Table 3-22. Correlation of Cv for organic peat (at intermediate stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(intermediate) 

Cv  Effective Overburden Pressure (ksf)  0.040  0.002  1.140 

Cv  Wet Density (pcf)  ‐0.092  0.009  1.137 

Cv  Dry Density (pcf)  ‐0.124  0.016  1.132 

Cv  Natural Moisture (%)  0.089  0.008  1.137 

Cv  Automatic Hammer Blow Count  ‐0.020  0.000  1.141 

Cv  Fines (‐200) (%)  ‐0.374  0.140  1.059 

Cv  Organic Content (%)  0.416  0.173  1.038 

Cv  Initial Void Ratio (eo)  0.235  0.055  1.109 

Cv  Specific Gravity  0.102  0.010  1.135 
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Table 3-23. Correlation of Cα for organic peat (at intermediate stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(high) 

Cα  Effective Overburden Pressure (ksf)  ‐0.853  0.728  0.006 

Cα  Wet Density (pcf)  ‐0.316  0.100  0.010 

Cα  Dry Density (pcf)  ‐0.517  0.267  0.009 

Cα  Natural Moisture (%)  0.206  0.043  0.010 

Cα  Automatic Hammer Blow Count  ‐0.923  0.852  0.004 

Cα  Fines (‐200) (%)  ‐0.927  0.859  0.004 

Cα  Organic Content (%)  ‐0.308  0.095  0.010 

Cα  Initial Void Ratio (eo)  0.409  0.167  0.010 

Cα  Specific Gravity  0.555  0.308  0.009 

 

Table 3-24. Correlation of Cv for organic peat (at low stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(low) 

Cv  Effective Overburden Pressure (ksf)  ‐0.141  0.020  2.522 

Cv  Wet Density (pcf)  ‐0.091  0.008  2.537 

Cv  Dry Density (pcf)  ‐0.142  0.020  2.522 

Cv  Natural Moisture (%)  0.078  0.006  2.540 

Cv  Automatic Hammer Blow Count  ‐0.095  0.009  2.536 

Cv  Fines (‐200) (%)  ‐0.411  0.169  2.322 

Cv  Organic Content (%)  0.380  0.144  2.357 

Cv  Initial Void Ratio (eo)  0.204  0.042  2.494 

Cv  Specific Gravity  0.205  0.042  2.493 

 

Table 3-25. Correlation of Cα for organic peat (at low stress level) 

 Type   Var1  Var2 
Pearson’s Correlation 

Coefficient   
R‐Squared  RMSE 

Organic peat 
(low) 

Cα  Effective Overburden Pressure (ksf)  ‐0.949  0.900  0.003 

Cα  Wet Density (pcf)  ‐0.592  0.351  0.007 

Cα  Dry Density (pcf)  ‐0.785  0.616  0.005 

Cα  Natural Moisture (%)  0.534  0.286  0.007 

Cα  Automatic Hammer Blow Count  ‐0.969  0.939  0.002 

Cα  Fines (‐200) (%)  ‐0.722  0.522  0.006 

Cα  Organic Content (%)  ‐0.022  0.001  0.008 

Cα  Initial Void Ratio (eo)  0.732  0.536  0.006 

Cα  Specific Gravity  0.455  0.207  0.007 
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3.4. Summary 

The information presented in this chapter is crucial in the development of the regression models 
presented in Chapter 4. The provided datasets were analyzed for authenticity and application for 
the model development, and the following conclusions and data exclusions were drawn before 
model development commenced.  

1) Coarse-grained material data set was not included in the final data set. Although the coarse-
grained data set (i.e., fines < 50%) accounted for nearly 16% of both the collected Cc and 
Cr database, the utilization of coarse-grained material in the models were deemed not 
applicable. Coarse-grained material will generally be governed by elastic settlement and 
developed pore-water pressures will dissipate much quicker, therefore not following the 
mechanisms of consolidation settlement. Therefore, developing models for this soil group 
will inherently be inaccurate due to the inaccuracy of the input variables. Also, truly 
“undisturbed” sample retrieval of coarse-grained material is much more difficult causing 
concerns regarding the quality of the lab test results. Due to these factors, the authors did 
not include any coarse-grained models in this presented study.  

2) Generally, within the provided datasets, natural moisture content (w%) and initial void ratio 
(eo) showed the strongest Pearson correlation to the consolidation parameters. This finding 
is apparent when comparing the information presented in Tables 3-4 through 3-25. This is 
also somewhat expected since both parameters can be directly related to the mechanics of 
consolidation settlement (i.e., dissipation of water pressure and subsequent decrease in void 
ratio). However, since the void ratio cannot be measured through simple index testing, and 
within the dataset was either determined through consolidation testing or correlations, it 
will be excluded from the models developed in the next chapter. This is again due to the 
overall goal of this research to bypass the reliance on high-quality sample retrieval and 
time-exhausting consolidation testing.  

Although the authors believe each of the conclusions above may warrant additional study to fully 
characterize the effects of each, they are not included in the scope of this study. The following 
chapter presents the methodology implemented to create the statistical models to be used in 
prediction of consolidation parameters specific for Florida soils.   
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4. DEVELOPMENT OF SOIL COMPRESSIBILITY MODELS 

 

4.1. Methodology 

The application of a machine learning approach was implemented to develop soil compressibility 
prediction models for Florida’s soil data. The concept of machine learning, in the form of 
classification, is the process of estimating the category of a previously unknown object, out of a 
finite set of predefined categories based on a set of objects whose category is known (Bishop, 
2006). A pool of objects that are pre-labeled, are used as the training set for machine learning 
algorithms. The training set is used to infer a mapping function. The mapping function is then used 
to predict the category of new objects/observations (O. P. Panagopoulos, Pappu, Xanthopoulos, & 
Pardalos, 2016; Pappu, Panagopoulos, Xanthopoulos, & Pardalos, 2015).  

Applications of machine learning in civil engineering include but are not limited to: the prediction 
of tunnel support stability using artificial neural networks (Leu, Chen, & Chang, 2001), predicting 
the remaining service life of bridge decks (Melhem & Cheng, 2003), predicting the ground surface 
settlement induced by deep excavation using artificial neural networks (Sou-Sen & Hsien-Chuang, 
2004), optimizing the energy efficiency of buildings and their cooperation (Alam, Panagopoulos, 
Rogers, Jennings, & Scott, 2014; A. A. Panagopoulos, Alam, Rogers, & Jennings, 2015; A. A. 
Panagopoulos, Jennings, Maleki, Rogers, & Venanzi, 2017), and predicting and optimizing 
building-integrated renewable energy resources.  

The data was assumed to fall into different classifications and was tested to determine if different 
models for each soil type was necessary. In addition to the correlated parameters summarized in 
Tables 3-2 and 3-3, this study accounted for other soil descriptors such as automatic hammer 
Standard Penetration Test (SPT) blow count (N), plasticity index (PI), overburden stress (σ), and 
fines content (-200) of the soil, defined as the portion of the soil sample that has a particle diameter 
smaller than 0.074 mm (Bowles, 1989). Including these parameters may increase the predictive 
capability of models generated. As part of the study, existing correlations were tested to determine 
their predictive capability and compared to the new models that were generated from the data 
collected.   
 

4.2. Model Development Procedure 

In this chapter, the procedure to develop the soil compressibility prediction models is explained in 
detail, including the theoretical background of the model development, and the model validation 
procedure and results.  

Figure 4-1 presents an overview of the methodology used for the data analysis. First, the collected 
data was evaluated for completeness. The difference in number between the total dataset (with 
some missing parameters) and the full dataset is significant. For example, the total and full datasets 
of clay contain 396 and 254 data points, respectively. The total and full datasets of silts are 31 and 
16 data points, respectively. Thus, data will be brought to a form that has no missing values through 
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data imputation, which will also reduce the effect of outliers. During the preprocessing step, data 
is normalized and prepared for the next step, which is classification. In this stage, the number of 
distinct groups of soil that exist is determined for classification purposes. A regression model was 
then developed for each distinct group during the model development phase. Details of each step 
are presented below.  

 

4.2.1. Data Imputation 

The total number of Cc and Cr data points collected throughout the state of Florida are 551 and 
490, respectively. The full dataset includes values of specific soil and site conditions such as: 
effective overburden pressure (so’ in ksf), wet density (ߛ in pcf), dry density (ߛௗin pcf), natural 
moisture content (w in %), automatic hammer blow count (N in blows/ft), fine content (-200 in %), 
initial void ratio (eo), specific gravity (Gs), and Atterberg plasticity testing (LL, PI, in %). Also 
with each data point includes the results from a consolidation test, thus providing a corresponding 
value for compression index (Cc), recompression index (Cr), coefficient of consolidation (Cv), and 
coefficient of secondary compression (C஑). It is important to note that safety SPT N-values were 
converted to an automatic hammer blow count by the conversion factor of 1.24, as recommended 
by the FDOT’s Soil and Foundation Handbook (Florida Department of Transportation, 2019). In 
addition, the initial void ratio was not included in the model because it is obtained directly from 
the consolidation test. Both wet and dry density values were estimated by either Standard 
Penetration Test blow count or moisture-related equations, thus both will also not be included in 
the models.  

 

Figure 4-1. Standard methodology used for data analysis 

 

Not all individual datasets had complete information. Some of the information (referred as 
descriptors or attributes in the statistical analysis) was missing and those are referred to as “missing 
dataset” herein. The numbers of missing datasets for Cc and Cr were 551 and 490, respectively. 
Therefore, the issue of missing attributes was addressed using two different approaches. Any 
missing descriptor values was substituted with the best-approximated values. The samples for 
which some of the soil compressibility parameters were missing were planned to be discarded. 
However, this time the samples for which some of the descriptors were missing will be completed 
with approximation values. Several methods were trialed to approximate the missing attributes, 
including: mean value imputation, interpolation, and k-Nearest Neighbor imputation. It was 

Data 
Imputation Preprocessing Classification Model 

Development
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determined that the k-nearest neighbor imputation method achieved the best results. The steps for 
this method are below.  

Missing values are imputed from samples with similar characteristics to the incomplete samples.  
If an incomplete sample had a missing value of a particular attribute, the missing value (k) was 
determined from other samples which had a value present on that of that attribute with values more 
similar (in terms of their Euclidean distance, shown in equation 4.1) to that incomplete sample. 
The missing value of the incomplete sample was calculated as the result of average the values of 
the missing attribute from the k of the nearest neighbors to the incomplete sample.   

,ሺܽܦ ܾሻ ൌ 	 ඥ∑ ሺݔ௜ െ ௜ሻଶ௡ݕ
௜ୀଵ     (4.1) 

Figure 4-2 and Table 4-1 show an arbitrary example of the aforementioned steps. The sample that 
appears in red has a missing value on specific gravity. The values of all samples as well as their 
distances to the red sample appear in Table 4-1. We set the value of k equal to three. We will then 
seek to find three other samples (highlighted by red circle), which have a value present on Specific 
Gravity with values closest to that incomplete sample (i.e., wet density and dry density) without 
missing values. The missing value for specific gravity of the incomplete sample (red in Figure 4-
2) will be calculated as the result of averaging the values of specific gravity from the three nearest 
neighbors to the incomplete sample. The calculated missing value appears in Table 4-2. 

 

 

Figure 4-2. Illustrative example of samples with three variables and using Euclidean distance to 
estimate missing variable of one data point.  
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Table 4-1. Numerical example of imputation processes calculating Euclidean distance  
(from Figure 4-2).  

 Specific 
Gravity 

Wet Density 
(pcf) 

Dry Density 
(pcf) 

Euclidean Distance, D 

Green Sample  2.71  97.0  61.0  ඥሺ97 െ 91.2ሻଶ ൅ ሺ61 െ 53ሻଶ ൌ 9.88 

Green Sample  2.69  85.94  59.9  8.67 

Green Sample  2.55  96.84  47.0  8.23 

Blue Sample  1.90  88.03  95.0  42.11 

Blue Sample  2.89  90.5  93.0  40.00 

Blue Sample  2.20  93.9  85.0  32.11 

Blue Sample  1.95  79.9  89.9  38.59 

Blue Sample  2.35  78.0  91.0  40.22 

Red Sample  ?  91.2  53.0   

 

Table 4-2. Numerical example of imputation and interpolation of missing Gs parameter from 
values with smallest Euclidean distance (shown with *). 

 
Specific Gravity 

Wet Density 
(pcf) 

Dry Density 
(pcf) 

Euclidean 
Distance 

Green Sample  2.71  97.0  61.0  *9.88 

Green Sample  2.69  85.94  59.9  *8.67 

Green Sample  2.55  96.84  47.0  *8.23 

Blue Sample  1.90  88.03  95.0  42.11 

Blue Sample  2.89  90.5  93.0  40.00 

Blue Sample  2.20  93.9  85.0  32.11 

Blue Sample  1.95  79.9  89.9  38.59 

Blue Sample  2.35  78.0  91.0  40.22 

Red Sample  ൌ
2.71 ൅ 2.69 ൅ 2.55

3
ൌ ૛. ૟૞ 

91.2  53.0   
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When k-nearest neighbor imputation is applied the dimensionality of the dataset will be higher 
than that of the samples shown in the previous illustrative example. For instance, a clay will have 
a dimensionality of ten since it has the following ten descriptors: pressure, wet density, dry density, 
natural moisture, automatic hammer blow count, fines, liquid limit, plasticity index, initial void 
ratio, and specific gravity. Since the algorithm uses distance to learn, data will be rescaled through 
normalization before k-nearest neighbor is applied.  An example of the calculated missing value 
and distances for a normalized clay sample is shown in Table 4-3. The missing value for pressure 
of the incomplete sample (sample 4) is calculated as the result of averaging the values of pressure 
from the three nearest neighbors that appear in bold. 

The Euclidean distance (D) of all samples to sample 4 for this example was calculated as: 

ܦ ൌ	 ඩ
ሺܹ1ܦ െܹ2ܦሻଶ ൅ ሺ1ܦܦ െ 2ሻଶܦܦ ൅	 ሺ1ݓ െ 2ሻଶݓ ൅	 ሺܰ1 െ ܰ2ሻଶ …

൅	 ሺ1ܨ െ 2ሻଶܨ ൅ ሺ1ܮܮ െ 2ሻଶܮܮ ൅ …ሺܲ1ܫ െ 2ሻଶܫܲ ൅ ሺ݁௢1 െ ݁௢2ሻଶ ൅	 ሺܩ௦1 െ ௦2ሻଶܩ

	
 

 

Table 4-3. Arbitrary example of how to calculate missing parameter with ten attributes, using 
Euclidean distance equation above. 

  Pressure  WD  DD  w    N  F  LL  PI  eo  Gs  D 

Sample 
1 

0.06  0.15  0.42  0.02  0.76  0.01  0.85  0.98  0.74  0.13  0.76 

Sample 
2 

0.04  0.19  0.92  0.05  0.74  0.06  0.82  0.22  0.45  0.13  0.80 

Sample 
3 

0.02  0.30  0.45  0.02  0.85  0.03  0.45  0.32  0.89  0.47  0.24 

Sample 
4 

1
3
ሺ0.04 ൅ 0.06 ൅ 0.02ሻ	

ൌ 0.04 
 

0.36  0.49  0.09  0.88  0.07  0.64  0.42  0.90  0.50   

 

After applying the k-Nearest Neighbor imputation method, the resulting dataset has the same 
number of attributes as the full dataset (i.e., the samples without missing values). High values of 
parameter k are chosen when using the method to make it more robust and to decrease the effect 
of outliers on the dataset. 
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4.3. Theoretical Background 

An automatic classification approach called Support Vector Machines (SVM) was employed to 
determine the number of distinct groups of soil that exist and require separate statistical models. A 
theoretical explanation of the SVM data processing process is presented herein. 

4.3.1. Support Vector Machine (SVM) 

The classification model was developed such that it assisted in determining the number of distinct 
groups of soil that exist. Through this process, the goal was to confirm or reject the hypothesis that 
each soil type requires a different statistical model. The data were divided into two sets: the training 
set and the testing set. The training set is composed of data used to teach the supervised learning 
algorithm, while the testing set will remain a set of unclassified data used to evaluate the accuracy 
and predictability of the trained algorithm. The collected data indicate that the classes are highly 
variant in terms of size. The discrepancy in size between the classes has the potential to affect the 
efficient training of our model and thus needs to be taken into consideration. To that end, when 
building the model, a class weighting scheme was utilized in the optimization process.  This was 
done to address the issue of having a different number of samples from each soil type.  The class 
weighting scheme that was followed is a one-verse-all approach of SVM. The multiclass problem 
will be decomposed into four binary classification scenarios. In particular, four binary classifiers 
were built where the nth classifier separates the nth class from the rest. The class of a new point is 
then determined according to a majority voting principle. The trained model is then evaluated using 
the remaining data, which encompasses the test set. The classification results of the test set will 
aid in the confirmation or rejection of the hypothesis that each soil type requires a different 
statistical model.  

If data can be separated with a hyperplane or decision surface in the trained SVMs, that will be an 
early indication that a regression model is needed for each distinct classification (e.g., fine-grained 
vs. organic peat). Figure 4-3 demonstrates instances of trained SVMs. The straight line represents 
the two-dimensional decision surface. The figure depicts an instance in which data are separable, 
and thus, a regression model will need to be developed for each classification of data (i.e., blue 
filled circle vs. green empty).  
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Figure 4-3. Theoretical example of regression model development for two distinct classifications 
of data. 
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Figure 4-4, on the other hand, demonstrates an inseparable dataset. This example suggests that the 
organic silt/clay class and fine-grained class will need to be grouped together when it comes to the 
development of the regression models. That is, there lacks a significant differentiation between the 
two data sets and a single regression model should be developed to represent the group of samples 
that encompasses both organic silt/clay and fine-grained samples. Once the necessary number of 
distinct groups were determined, the corresponding Cc, Cr, Cv, and Cα models were developed for 
each classification group; presented in Section 4.4.  

 

 

Figure 4-4. Theoretical example of an inseparable dataset. Suggesting that datasets of organic 
silt/clay and fine-grained will need to be grouped together for accurate regression model. 

 

4.3.2. Multi-Variate Regression Model 

The forward selection stepwise regression procedure was used to minimize the term-trusted 
“goodness of fit” measure Bayesian Information Criterion (BIC). The variable selection procedure 
used during the forward selection stepwise regression takes into consideration the correlation 
coefficients of the participating variables to minimize multicollinearity. At the first step of the 
process, the initial regression model for every group of samples will contain no variables. At each 
iteration, the present independent variable in the equation will be help fixed and only the variable 
that is the most highly correlated with the response variable (i.e., Cc, Cr, Cv and Cα) enters the 
regression model. This procedure leads to the most parsimonious model while trying to eliminate 
multicollinearity. The multicollinearity refers to the problems that arise in regression models when 
some of the predictors are highly correlated with each other. Although multicollinearity by itself 
does not affect the predictive performance of the model, it may negatively influence the 
determination of which factors are the most significant. Multicollinearity essentially obstructs the 
effective choosing of the right predictors to include in the predictive model, making it hard to 
obtain a parsimonious model. Parsimony is an essential property of every effective prediction 
model. We obtain more insight into the influence of the predictors in models with few parameters. 
Moreover, using predictors that are uncorrelated with the response variable may result in instability 

Organic Silt/Clay
Organic Silt/Clay & 
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of the developed regression. That in turn might influence the ability of the model to generalize 
correctly. In practice, this means that we cannot make accurate predictions with data that was not 
used to train the model, neglecting the whole purpose for these statistically developed prediction 
models. The forward selection stepwise regression procedure that was used in this study leads to 
models that are based only on the most influential parameters, thus bypassing the previously 
mentioned limitations.   

4.4. Soil Compressibility Models 

Eight variables were analyzed to determine their potential impact on the correlations to the four 
soil compressibility characteristic parameters (i.e., Cc, Cr, Cv and Cα) for CH, CL, MH, OH, OL, 
and Pt soil classification types. It is noted that the data for the ML classification was not sufficient 
for the model development. These parameters include the moisture content (w), automatic hammer 
SPT blow count (N), overburden stress (σ), fines content (-200), liquid limit (LL), Percent organic 
content (OC %), plasticity index (PI), and specific gravity (Gs).   

Strength of correlation parameters, such as root mean square error values, coefficient of 
determination and adjusted coefficient of determination values, were noted. A perfect correlation 
yields an R2 value of 1.0 and an RMSE value of 0.0. Models with an R2

adj value of 0.5 or higher 
were used for predictions. 

It is important to note that some of the datasets had limited number of data points (less than 20). 
These limited datasets included the MH and OL models for Cc and Cr, and the organic soil model 
for Cα. High R2 values are shown for the MH and Cc, OL and Cr, and Organic and Cα models. 
Therefore, it is recommended that the MH and OL models need additional validation. 

  



46 

 

4.4.1. Cc Models 

Table 4-4 presents the developed Cc models for the classified soil types of CH, CL, MH, OH, OL, 
Pt. The table includes the information of model equation, soil type, input variables, the model 
accuracy (e.g., R2 and RMSE). Both full and reduced models were constructed and the CH, CL, 
OH, OL, and Pt models have the same results. The reduced models include minimum number of 
required variables but have similar prediction accuracy from a statistical point of view.  

Table 4-4. Statistical strength of developed correlations – Cc 

Equation  Notes 
Input 

variables 
R2  R2

adj  RMSE 

Cc = ‐ 1.4045 + 0.0155 * w + 0.0005 * LL + 0.398 * 
Gs 

‐ 0.00003 * [(w ‐ 68.837) * (LL ‐105.48)] 
‐ 0.00002 * [(w ‐ 68.837) * (w ‐ 68.837)] 

CH  w, LL, Gs  0.731  0.726  0.375 

Reduced Cc ‐> Same as Cc  CH  w, LL, Gs       

Cc = ‐ 1.6912 + 0.0118 * w + 0.5919 * Gs
 

CL  w, Gs  0.525  0.495  0.174 

Reduced Cc ‐> Same as Cc  CL  w, Gs       

CC = ‐ 8.4424 + 0.0077 * w 
+ 0.0085 * Fines (‐200) + 0.0143 * PI 

+ 2.7149 * Gs 
+ 0.0828 * [(w ‐ 89.8) * (Gs – 2.664)] 

 

MH 
w, Fines, 
PI, Gs 

0.984 
 

0.975  0.075 

Reduced CC = ‐ 9.2573 + 0.0087 * w 
+ 0.009 * PI + 3.337 * Gs 

+ 0.1095 * [(w ‐ 89.8) * (Gs – 2.6635)] 
 

MH  w, PI, Gs  0.935  0.906  0.145 

CC = ‐0.4799 + 0.076 * σo’(ksf) 
+ 0.0098 * w + 0.0046 * PI 

+ 0.0005 * [(σo’(ksf) – 1.445) * (w – 123.02)] 
+ 0.0036 * [(σo’(ksf) – 1.445) * (PI – 81.879)] 

 

OH  σo’, PI, w  0.793  0.779  0.439 

Reduced CC ‐> Same as Cc  OH  σo’, PI, w       

CC = 0.8164 + 0.0096 * w ‐ 0.0145 * Fines (‐200)  OL  w, Fines  0.488  0.428  0.564 

Reduced CC ‐> Same as CC  OL  w, Fines       

Cc = ‐ 10.7737 + 0.0078 * w + 0.0772 * OC
+ 2.8672 * Gs + 0.0074 * [(w – 481.673) * (Gs ‐ 

1.5677)] 
‐ 0.2644 * [(OC – 83.0208) * (Gs ‐ 1.5677)] 

+ 0.0075 * [(OC – 83.0208)2] 

Pt  w, OC, Gs  0.795  0.765  1.284 

Reduced Cc ‐> Same as Cc  Pt  w, OC, Gs       
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4.4.2. Cr Models 

Table 4-5 presents the developed Cr modes for each respective soil classification. Both full and 
reduced models were constructed. The CL and Pt models have the same results.  

 

Table 4-5. Statistical strength of developed correlations – Cr 

Equation  Notes 
Input 

variables 
R2  R2

adj  RMSE 

Cr = ‐ 0.0057 ‐ 0.00069 * σo’ (ksf) + 0.0012 * w + 0.0015 * 
N 

+ 0.00007 * LL ‐ 0.0196 * LI 
‐ 0.0014 * [(σo’(ksf) ‐1.986) * (w ‐ 68.175)] 
+ 0.0009 * [(σo’(ksf) ‐1.986) * (LL ‐ 105.323)] 
+ 0.0603 * [(σo’(ksf) ‐1.986) * (LI – 0.520)] 
+ 0.00008 * [(w ‐ 68.175) * (N ‐ 5.473)] 

+ 0.000009 * [(w ‐ 68.175) * (LL ‐ 105.323)] 
+ 0.0005 * [(w ‐ 68.175) * (LI – 0.520)] 

CH 
 

σo’, w, N, 
LL, LI 

0.608  0.590  0.069 

Reduced Cr = ‐ 0.0136 ‐ 0.0023 * σo’(ksf) + 0.0014 * w 
+ 0.0001 * LL ‐ 0.0004 * [(σo’(ksf) ‐1.986) * (w ‐ 68.175)] 

+ 0.0002 * [(σo’(ksf) ‐1.986) * (LL‐ 105.323)] 
+ 0.000007 * [(w ‐ 68.175) * (LL‐ 105.323)]] 

CH  σo’, w, LL  0.527  0.516  0.076 

Cr = ‐ 0.05 + 0.0021 * w + 0.0018 * N  CL  w, N  0.312  0.269  0.047 

Reduced Cr ‐> Same as Cr  CL  w, N       

Cr = ‐ 3.5505 + 0.0014 * w
‐ 0.009 * N + 0.0006 * PI + 1.324 * Gs 

‐ 0.00002 * [(w – 100.99) * (PI – 48.0397)] 
+ 0.0254 * [(w – 100.99) * (Gs – 2.656)] 

MH 
w, N, PI, 

Gs, 
0.100  0.999  0.002 

Reduced Cr = ‐3.0434 + 0.0014 * w 
‐0.0063 * N + 1.1368 * Gs 

+ 0.0244 * [(w – 100.99) * (Gs – 2.656)] 
MH  w, N, Gs  0.940  0.892  0.022 

Cr = ‐0.1101 + 0.0485 * σo’(ksf)
+ 0.0019 * w ‐ 0.0042 * N 

‐ 0.0000002 * LL ‐ 0.0022 * OC + 0.0004 * PI 
+ 0.0051 * [(σo’(ksf) ‐ 1.4864) * (OC‐21.652)] 

‐ 0.0008 * [(N ‐ 3.05) * (OC ‐21.6517)] 
‐0.00003 * [(LL ‐ 150.138) * (OC ‐ 21.6517)] 

OH 
σo’, w, N, 
LL, OC, PI 

0.742  0.703  0.077 

Reduced Cr = ‐ 0.0667 + 0.0326 * σo’(ksf) + 0.002 * w 
‐ 0.0036 * OC + 0.0029 * [(σo’(ksf) – 1.4864) * (OC – 21.6517)] 

OH 
σo’, w, 
OC 

0.565  0.538  0.096 

Cr = 0.8808 + 0.0346 * σo’(ksf) + 0.0002 * w + 0.0048 * 
OC 

– 0.048 * PI + 0.0121 * [(σo’(ksf) ‐ 1.015) * (PI ‐ 20.2964)] 
‐ 0.0069 * [(OC – 17.8) * (PI ‐ 20.2964)] 

‐ 0.0188 * [(σo’(ksf) ‐ 1.015) * (σo’(ksf) ‐ 1.015)] 
+ 0.0006 * [(OC – 17.8)2] 

OL 
σo’, w, 
OC, PI 

0.100  0.998  0.002 
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Table 4-6. Continued, Statistical strength of developed correlations – Cr (continued) 

Reduced Cr = 2.3651 + 0.0039 * σo’(ksf) + 0.011 * OC
– 0.1212 * PI + 0.0586 * [(σo’(ksf) ‐ 1.015) * (PI – 

20.2964)] 
‐ 0.0167 * [(OC – 17.8) * (PI – 20.2964)] 

‐ 0.0263 * [(σo’(ksf) ‐ 1.015) * (σo’(ksf) ‐ 1.015)] 
+ 0.0009 * [(OC – 17.8)2] 

OL 
σo’, OC, 

PI 
0.991  0.961  0.008 

Cr = ‐ 0.5938 + 0.0009 * w + 0.3356 * Gs + 
0.5344 * [(Gs ‐ 1.4373)2] + 

0.0017 * [(w ‐ 472.835) * (Gs ‐ 1.4373)] 
Pt  w, Gs  0.768  0.739  0.182 

Reduced Cr ‐> Same as Cr  Pt  W, Gs       

4.4.3. Cv Models 

Table 4-6 presents the developed Cv models for the classified soil types. Due to the limited number 
of data points, the models are constructed on three soil types of clay, organic, and peat. Both full 
and reduced models were constructed. Overall R2 values are low and the models with R2 > 0.5 are 
recommended and considered to have reasonable accuracy.  

Table 4-7. Statistical strength of developed correlations – Cv 

Equation  Notes 
Input 

variables 
R2  R2

adj  RMSE 

Cv = ‐ 3.3179 + 0.121 * σo’(ksf) + 0.0023 * w – 0.0283 * 
N 

‐ 0.0099 * Fines – 0.8108 * Gs – 0.00003 * Stress Level 
‐ 0.0592 * [(σo’(ksf) ‐ 1.5932) * (N – 4.5071)] 
+ 0.0024 * [(w ‐ 57.1574) * (N – 5.5071)] 

‐ 0.0074 * [(N – 4.5071)) * (Fines(‐200) – 82.1046)] 
+ 0.151 * [(σo’(ksf) ‐ 1.5932) * (σo’(ksf) ‐ 1.5932)] 

+ 0.0000000009 * [(Stress Level – 4,909.97 * (Stress 
Level – 4,909.97)] 

Clay 

σo’, w, N, 
Fines, Gs, 
Stress 
level 

0.226  0.215  0.914 

Reduced Cv = 0.788 + 0.1213 * σo’(ksf) 
– 0.02 * N ‐ 0.0058 * Fines(‐200) 

– 0.0718 * [(σo’(ksf) ‐ 1.5932) * (N – 4.5071)] 
‐ 0.0043 * [(N – 4.5071)) * (Fines(‐200) – 82.1046)] 

+ 0.1231 * [(σo’(ksf) ‐ 1.5932)2] 

Clay 
σo’, N, 
Fines 

0.146  0.139  0.957 

Cv = 1.1395 – 0.0022 * w + 0.0556 * N 
+ 0.0018 * PI + 0.00001 * Stress Level 

– 0.4432 * Gs 
Organic  w, N, PI  0.090  0.047  0.333 

Reduced Cv = 1.1959 – 0.0625 * N + 0.002 * PI 
+ 0.000009 * Stress Level 

 

Organic 
N, PI, 
Stress 
level 

0.068  0.042  0.334 
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Table 4-8. Continued, Statistical strength of developed correlations – Cv (continued) 

Cv = 11.7596 + 0.0815 * N ‐ 0.0762 * Fines(‐200) + 
0.0317 * OC 

‐ 3.1765 * Gs ‐ 0.0002 * Stress Level 
‐ 0.0024 * [(Fines(‐200) ‐ 56.9176) * (OC – 59.522)] 

‐ 0.1156 * [(OC ‐ 59.522) * (Gs – 1.9426)] 
‐ 0.00001 * [(OC ‐ 59.522) * (Stress Level – 2391.88)] 
‐ 0.0005 * [(Gs ‐ 1.9426) * (Stress Level – 2391.88)] 

‐ 0.4487 * [(N ‐ 2.1618)2 ] 
– 0.0004 * [(Fines (‐200) ‐ 56.9176)2] 

Peat 

N, Fines, 
OC, Gs, 
Stress 
level, 

0.522 
 

0.491  1.519 

Reduced Cv = 7.7106 + 0.0644 * N ‐ 0.0647 * Fines (‐
200) 

+ 0.0415 * OC ‐ 2.014 * Gs 
‐ 0.0019 * [(Fines (‐200) ‐ 56.9176) * (OC – 59.522)] 

– 0.1051 * [(OC ‐ 59.522) * (Gs – 1.9426)] 
‐ 0.3782 * [(N ‐ 2.1618)2 ] ‐ 0.0005 * [(Fines(‐200) ‐ 

56.9176)2] 

Peat 
N, Fines, 
OC, Gs 

0.433  0.407  1.640 

*Note: Stress level = lb/ft2 (psf) 

 

4.4.4. Ca Models 

Table 4-7 presents the developed Cα models for the soil types of clay, organic and peat. Both full 
and reduced models were constructed. The clay and peat models have the same results.  

Table 4-9. Statistical strength of developed correlations – Cα. 

Equation  Notes 
Input 

variables 
R2  R2

adj  RMSE 

Cα = ‐ 0.0077 + 0.0001 * w + 0.000002 * PI + 0.0000006 
* Stress Level ‐ 0.000000009 * [(w ‐ 60.3376) * (Stress 

Level – 10,084.8)] 
+ 0.000004 * [(PI ‐ 70.5461)2] 

‐ 0.000000000002 * [(Stress Level – 10,084.8)2] 

Clay 
 

w, PI, 
Stress 
level 

0.545  0.525  0.007 

Reduced Cα ‐> Same as Cα  Clay 
w, PI, 
Stress 
level 

     

Cα = ‐ 0.09 + 0.0001 * w + 0.0002 * Fines(‐200)
+ 0.0001 * PI + 0.0185 * Gs + 0.000002 * Stress Level 

+ 0.00000002 * [(w ‐ 95.9455) * (Stress Level – 
5,674.24)] 

+ 0.00000003 * [(Fines(‐200) ‐ 60.0606) * (Stress Level 
– 5,674.24)] 

+ 0.00000004 * [(PI ‐ 92.455) * (Stress Level ‐ 5674.24)] 
+ 0.000008 * [(Gs ‐ 2.4) * (Stress Level – 5,674.24)] 

 

Organic 

w, Fines, 
PI, Gs, 
Stress 
level 

0.952  0.933  0.005 
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Table 4-10. Continued, Statistical strength of developed correlations – Cα (continued) 

Reduced Cα = ‐ 0.0436 + 0.0002 * PI + 0.0097 * Gs + 
0.000001 * Stress Level + 0.00000006 * [(PI ‐ 92.455) * 

(Stress Level ‐ 5674.24)] + 0.000004 * [(Gs ‐ 2.4) * 
(Stress Level ‐ 5674.24)] 

 

Organic 
PI, Gs, 
Stress 
level 

0.840 
 

0.810  0.008 

Cα = ‐ 0.0660 + 0.00005 * w + 0.0006 * OC + 0.000008 * 
Stress Level + 0.00000002 * [(w – 575.783) * (Stress 
Level – 2,020.6)] + 0.0000004 * [(OC (%) – 64.933) * 

(Stress Level – 2,020.6)] 
 

Peat 
w, OC, 
Stress 
level 

0.778  0.732  0.009 

Reduced Cα ‐> Same as Cα  Peat 
w, OC, 
Stress 
level 

     

*Note: Stress level = lb/ft2 (psf) 

 

4.5. Delineation Analysis 

A specific range of input variables may have a higher influence on the soil compressibility 
parameters. A process to develop segmented regression models was introduced that was able to 
capture and express the variations of Cc and Cr and their corresponding model input variables. The 
breakpoints of influential factors (e.g., LL, PI, OC) on Cc and Cr from the dataset were determined 
so that the prediction accuracy of the proposed correlation models was evaluated.  

4.5.1. Methodology 

The overall process framework is shown in Figure 4-5. For the segmented regression models, the 
first step is the discovery of a particular value (or breakpoint) of a parameter for which its influence 
on the response variable (Cc or Cr) drastically changes. Secondly, two regression models were 
developed that fit the two different segments of data. The publicly-available computer program 
(SegReg) was used to perform the calculations and to find the breakpoint.  A regression model 
was fit to the entire dataset and its resulting R2 value was recorded.  

Data was then sorted in increasing order with respect to the influential parameter of interest and 
split into two groups. The first group consisted of a small number (k) of data points which present 
a low-value influential parameter while the second group contained those data points having a 
high-value influential parameter (i.e., the rest ݊ െ ݇ data points). The two regression models were 
fit to the two groups and their R2 values were recorded. 

Data were then split into two new groups at a different breakpoint such that the first group had 
݇ ൅ 1 data points, while the second contained ݊ െ ݇ െ 1 data points. The data point that was 
transferred to from the second group to the first one was that with the lowest value influential 
parameter among the data points of the second group. Two new regression models were fit to the 
two groups and their R2 values were recorded. The aforementioned process was repeated until the 
first group contained ݇ ൅ ݊ െ ݈ points and the second group contained a small number of points. 
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The values of k and l are chosen by the user, are dataset specific, and depend on the number of 
samples one has access to.  

The highest achieved R2 value was identified and compared to the R2 that was recorded when a 
regression model was fit to the entre dataset at the beginning of the process. If any of the 
coefficients of determination values of the regression lines that were fit to the segmented data were 
higher than the R2 value of the regression line that was fit to the entire dataset then the 
corresponding breakpoint was recorded. That particular recorded value (breakpoint) of the 
influential parameters for which its influence on the response changes, was used in the second step 
of the process.  

At the second step of the process, a piecewise regression model was developed that fit the two 
different segments of data. At this step, the developed models considered all the attributes 
(variables) of the dataset as potential predictors for the response. 

 

Figure 4-5. Process utilized for development of piecewise regression and delineation 
determination. 

 

 

4.5.2. Delineation Analysis Results 

For clays and silts, the Atterberg limits (LL, PL, and PI) were used to check the breakpoints. For 
the organic soil data group, the organic content (OC) of soil was used. Tables 4-8 and 4-9 present 
the analysis results and respective breakpoints and resulting R2

adj factor for each range of data 
shown (i.e., breakpoint). In this way, the accuracy of the model in segmented data was checked. 
For some cases, (e.g., organic soils with Cc model) the resulting R2

adj values were virtually the 
same, meaning the model accuracy was similar through the whole range of data (diverse). Other 
cases (e.g., silt model with Cc in Table 4-8) showed that the developed model (see Table 4-4) had 
a higher accuracy when the LL value was less than 69.8%. 
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An interesting conclusion from the breakpoint analysis was that the organic soils seem to show a 
significant change in Cr-model accuracy when the breakpoint is at roughly 75% organic content 
(OC). This supports the suggested classification differentiation between “Peat” soils and “Organic” 
soils, as suggested in the FDOT’s Soils and Foundation Handbook (Florida Department of 
Transportation, 2019). All other fine-grained soils (i.e., clays and silts) showed little change in 
model accuracy for between the breakpoint values, suggesting that the specific degree of LL and 
PI does not affect the soils resulting compressibility indices. This initial finding suggests that the 
dataset of Florida soils tested may not strictly adhere to the traditional classification of the soils’ 
level of plasticity that is Casagrande’s plasticity chart (i.e., LL=50%) (1948). The initial statistics 
(albeit based on limited dataset) suggests there may be a different break-point to distinguish 
between soils following a “high” and “low” plasticity characteristic, which in turn would provide 
to better way of estimating compressibility parameters through correlations. . Although the 
breakpoints determined for clays and silts are near the suggested threshold of plasticity (i.e., LL = 
50%) for both Cr and Cc models, the resulting R2

adj. shows little change in model. This finding, 
however, could simply be a result of insufficient number of data points in the lower plasticity 
ranges, and additional data collection and analysis would be required to draw further conclusions.     

 

Table 4-11. Delineation analysis results for Cc models 

Cc Models – See Table 4‐4 

Notes  Breakpoint  R2
adj 

Clays  LL < 85.6  0.482 

Clays  LL > 85.6  0.427 

Clays  PI < 33.3  0.155 

Clays  PI > 33.3  0.386 

Organic  OC < 66.9  0.794 

Organic  OC > 66.9  0.763 

Silts  LL < 69.8  0.855 

Silts  LL > 69.8  0.689 

Silts  PI ‐ No Breakpoint was found  N/A 
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Table 4-12. Delineation analysis results for Cr models 

Cr Models – See Table 4‐5 

Notes  Breakpoint  R2
adj 

Clays  LL ‐ No Breakpoint was found  N/A 

Clays  PI < 70.4  0.129 

Clays  PI > 70.4  0.236 

Organic  OC < 74.6  0.632 

Organic  OC > 74.6  0.840 

Silts  LL < 92.9  0.619 

Silts  LL > 92.9  0.625 

Silts  PI < 48.0  0.558 

Silts  PI > 48.0  0.665 
 

4.6. Summary 

This chapter of the report presents the background and results of the statistical regression models 
used to estimate the soils compressibility characteristic parameters (Cc, Cr, Cv, and Cα) through 
simple lab index parameters or site characteristics (i.e., overburden pressure). The benefit of these 
models (presented in Tables 4-4 through 4-7) is that 1) they are developed specifically from a 
database of Florida soils, and 2) the consolidation characteristics can be estimated quickly without 
obtaining undisturbed samples via Shelby tube or other methods. Although the models are lengthy 
equations, they can quickly be input into a spreadsheet for quick analysis during preliminary design. 
However, the authors stress that discretion should always be employed when using the proposed 
models. Even though the accuracy of each model is presented (i.e., R2, R2

adj., and RMSE), it is 
important to remember these models are only as accurate as their input variables (e.g., moisture 
content, Atterberg limits, organic content, etc.). Individual test error will add error to the model 
due to the testing procedure and subsequent input error, particularly the determination of moisture 
and material-related properties such as LL, PI and OC. Therefore, careful lab testing and soil 
sample retrieval and handling must be employed for the accuracy of the proposed statistical models.   
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5. CORRELATION BETWEEN CONE PENETRATION TEST (CPT) and SOIL 
COMPRESSIBILITY 

 

The models presented in the previous chapters are functions of laboratory-determined soil index 
properties and are designed to be used in conjunction with the standard penetration test (SPT) and 
split spoon sampling. Although the SPT is considered to be the most popular subsurface 
exploration method for geotechnical engineers, its inherent limitations in soft soils and thinly 
stratified soil making it less than ideal in all geologic settings. Therefore, the cone penetration test 
(CPT) is becoming more popular as its technology and applications techniques have diversied in 
the recent decade.  

Unlike the SPT, the standard CPT process does not allow for retrieval of physical soil samples, 
enabling further index testing in a lab setting. Rather, the CPT records the soil’s response to the 
penetrating of a cone through the soil matrix, measuring the tip resistance (qc) and sleeve friction 
(fs) along the probe every 0.8 inches (2 cm). Although the lack of physical sample is a significant 
limitation, the CPT benefits from its ability to detect discrete soil stiffness changes and better 
characterize stiffness of relatively softer soil matrices, such as clays, silts, and organics. Therefore, 
if correlations can be drawn between CPT output parameters and soil compressibility, a much 
better understanding of the compressibility characteristics of the entire soil layer in question can 
be made. This chapter explores the application of CPT to estimate the consolidation parameters 
discussed earlier (i.e., Cc and Cr) through a presentation of existing models and a preliminary 
empirical study of Florida soils.     

5.1. Review of Previous Studies 

An extensive literature review of existing models and techniques implementing the CPT to 
estimate soil consolidation behavior parameters was performed. The researchers briefly present 
two of the fundamental theories and practices when relating such parameters. To best understand 
the methods used to estimate consolidation, a brief overview of the cone penetration test, 
dissipation test, behavior of clay, and consolidation is presented.  

The CPT is a method used to determine the geotechnical properties of soils by pushing a conically-
tipped probe (i.e., penetrometer) into the earth and recording the resulting tip resistance and sleeve 
friction. Specialized techniques can also be used for the measurement of excess pore water pressure, 
shear wave velocity, and various other parameters at designated intervals of depth. The general 
CPT provides continuous and repeatable data which can be related to many important soil 
parameters, including soil behavior type. The CPT has strong theoretical interpretations because it 
very closely follows cavity expansion theory (Vesić, 1972).  

Consolidation is a time-dependent settlement mode which occurs in cohesive material (clay). 
Cohesive material has a nonlinear stress-strain relationship, a visco-elastic response, both 
recoverable and unrecoverable deformation, as well as a memory of previous stress. It is important 
to understand that this material does not abide by elastic theory. Consolidation is the process of 
stress transfer from pore pressure to the soil skeleton via the dissipation of water from the voids. 
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This release of water allows the soil to compress into a denser configuration which is seen as 
settlement on the surface. This dissipation depends on the soil properties, which through extensive 
research, may be predicted from a cost effective and continuous in-situ test.  

5.1.1. Theoretical Background: 

Deformation characteristics of soils are generally expressed by one-dimensional constrained 
modulus (M), undrained Young’s modulus in compression loading (Eu), and small-strain shear 
modulus (Go). One-dimensional consolidation settlement is based on the assumption that the lateral 
strain is equal to zero. Hence, the appropriate parameter to define the deformation characteristics 
of soils in the consolidation process is the one-dimensional constrained modulus, M. One-
dimensional constrained modulus is defined in equation (5.1)  

ܯ ൌ
ௗఙ౬
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In which ߪ୴ᇱ is the vertical effective stress, ߝ୴ is the vertical strain, and mv is the coefficient of 
volume compressibility. The settlement due to consolidation (Sc) can then be calculated through 
the relationships of the change of influence of stress and constrained modulus. Hence, the 
following equation can be formulated (5.2), where ∆ߪᇱ represents the increase in effective stress 
at target soil layer depth, and H is the thickness of soil layer in question.  
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5.1.2. Estimation of Constrained Modulus using CPT 

The estimated constrained modulus (M) can be estimated for a given soil layer through correlation 
with the soil behavior type index (Ic), presented by Robertson (1990). The constrained modulus is 
the inverse of the coefficient of volume change, which can quantify how susceptible a soil is to 
compressibility. Robertson’s contribution of the Ic makes it simple to determine the soils behavior 
and transition zones from the CPT. The SBTn chart also allows the soil behavior type to be used 
when relating CPT data to soil parameters, in this case the constrained modulus. It is important to 
note that the normalization factor is used to convert parameters between SBTn graph and un-
normalized cone tip resistance and sleeve friction. The process Robertson follows to relate the CPT 
and constrained modulus is as follows. First, a relation between CPT and shear wave velocity is 
determined, which is related directly to the small shear modulus. The small shear modulus is then 
related to the constrained modulus.   

A set of normalized shear wave velocity (Vsl) contours is plotted on the SBTn chart from over 100 
SCPT profiles. Then a function that best approximates the Vsl contours is used to relate shear wave 
velocity to cone tip resistance and soil type. Shear wave velocity is the first soil stiffness parameter 
in this process determined from the CPT because shear wave velocity and cone tip resistance are 
both dependent on the soil’s relative density, effective stress state, age and cementation.  



56 

 

The small strain shear modulus (Go) is a soil stiffness parameter that describes the materials 
response to shear stress. The shear modulus is directly related to the shear wave velocity. Using 
this direct relationship, normalized Go can be contoured on the SBTn chart and become a function 
of tip resistance, sleeve friction ratio and soil type. Since the shear modulus is a stiffness parameter 
for elastic materials, there could be small error in the results when these contours are extended into 
the plastic region of the SBTn chart.  

Mayne (2006) suggested the small strain shear modulus is related to constrained modulus through 
a simple ratio of net cone tip resistance (i.e., ݍ௧ െ  ୴୭ሻ . Using a similar method as above theߪ
constrained modulus can be contoured on the SBTn chart and be written as a function of tip 
resistance, sleeve friction ratio, and soil type. This equation is shown below (5.3), where ߙெ is a 
constrained modulus cone factor, qt is the cone tip resistance and ߪ୴୭ is the in-situ total vertical 
stress at the depth at which qt is measured (in same units as qt).  

ܯ ൌ	 ௧ݍெሺߙ െ  ୴୭ሻ     (5.3)ߪ

The constrained modulus calculated from the CPT has a strong correlation to the constrained 
modulus determined in the laboratory. The accuracy of this relationship is apparent in Figure 5-1, 
recreated from data presented by Robertson (2009). Through accumulation of CPT and lab data 
from 13 soft clay sites, Robertson developed guidelines for estimating ߙெ with CPT normalized 
tip resistance (Qtn) and soil behavior type index (Ic); which is a function of Qtn and normalized 
Friction Ratio, FR (Robertson & Wride, 1998). 

 

Figure 5-1. Predicted 1D constrained modulus (M) derived from Qtn and ߙெ 

[Modified from Robertson 2009] 
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5.1.3. Mathematical Derivation from Elastic Theory 

The method discussed in this section is a mathematical derivation based on assumptions to relate 
compressibility and cone tip resistance. This was most notably first performed by Buisman (1936), 
whom expanded upon the Dutch’s work focused on estimating the compressibility constant (C). 
This research resulted in the well-known semi-empirical Terzaghi-Buismans settlement equation, 
shown in equation (5.4). Where, Δh/h is taken as the relative settlement, ∆ߪ is the increase in 
stress due to loading at the specified depth, and ߪ௢represents the in situ vertical stress at the target 
depth at which the settlement is being investigated.  
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Buisman’s derivation is founded upon several assumptions. These assumptions are that the volume 
decrease occurring at the point of the penetrometer qc is only a function of soil compression, as 
well as the oedometric modulus is constant due to the small loading area and the shape of cone tip 
being half a sphere. Another assumption is that stress at a certain distance from the cone can be 
calculated from Bousinesq’s method to estimate the increase in stress at a given depth (z). Finally, 
Buisman also assumes that the soil is elastic because this derivation was initially for loose sands. 
The solution when tested with actual results, for sands, was proven to be the upper bounds of 
settlement and is a conservative estimation, shown in equation (5.5).  
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Sanglerat (1972) proposed altering Buisman’s solution for cohesive soils by replacing 3/2 with a 
constant dependent on soil type, denoted as alpha (see Equation 5.6). Therefore, the 
compressibility coefficient is a function of cone tip resistance and soil type. This alteration still 
assumes that the soil is elastic. It is also important to note that the equation is only valid within the 
virgin region on the consolidation curve. The National Institute of Applied Sciences of Lyons 
(NIASL) determined the values of alpha for different types of soils through extensive data 
collection. 

ܥ ൌ 	 ߙ ቀ௤೎
ఙ೚
ቁ            (5.6) 

 

5.1.4. Relationship Between CPT (qc) and Soil Compressibility (Cc) 

NIASL followed a reliable process to recommend appropriate alpha values for soil types. The 
institute determined the compressibility constant from consolidation tests and the tip resistance 
from the cone penetration test. An alpha for the corresponding soil type is then assigned by using 
the above equation, since alpha is now the only unknown. The Institute’s research used 600 
comparative couples for fine-grained soils (>50% fines) to create tables of alpha values for 
different soil types, which also includes information on water content. 
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The NIASL database was also used to graph tip resistance versus measured compressibility index. 
The data was categorized based on the range of water content measured (w) and the results can be 
found in the recreated scatter plot in Figure 5-2. From these results, there is no recommended 
function to accurately describe this relation, but two hyperbolic boundary curves can be fitted 
(shown in the figure as the dashed lines). Also, the results show that regions of weak qc (less than 
10 bars) reveal that the compression index is highly dependent on moisture content. This was not 
the main purpose of the research by the NIASL, and therefore does not receive extensive analysis 
of results. 

Figure 5-3 presents the averaged data of each water content soil range. Also shown by the error 
bars of each data point are the respective standard deviation ranges in Cc values and qc values. 
Through plotting the data in this format, the 600 data points can be easily viewed along with their 
trend of moisture content. To compare the data presented in Sanglerat (1972) with the database 
collected in this study for Florida sites, the theoretical data limits and water content dividing lines 
were constructed on the figure. These lines are strictly for comparison purposes and no statistical 
regression was used in their development. 

 

Figure 5-2. Empirical relationship of CPT cone tip resistance (qc), Cc, and soil moisture content 
(w) 

[Modified from Sanglerat 1972] 
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Figure 5-3. Summary of Sanglerat (1972) data with theoretical data limits and conceptual soil 
moisture content (w) trends used for comparison in this study. 

 

5.2. Correlation Between Soil Compressibility and CPT – Florida Case Study 

5.2.1. Methodology for Collection of Florida Soil Data 

To achieve the tasks of this section, a database for Florida soil and consolidation testing was 
developed. Corresponding cone penetration testing data was collected to identify which CPT 
parameters (if any) can be used to develop a correlation to the respective soil consolidation indices. 
The researchers have accumulated a database of CPT soundings performed near borings with 
Shelby tube samples used for consolidation testing. Several sites were also chosen for additional 
CPTs to be performed to collect resistance data within layers with previous consolidation testing 
results. The oedometer tests will determine the compressible constant and the cone penetrometer 
will determine the corresponding cone tip and friction resistance. The following section will 
present the data collection and filtering process used to obtain the database of Florida CPT and 
consolidation parameters.  
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Couples of consolidation data and cone penetrometer data were formed. The couples were then 
filtered based on location, time and soil stratum between the standard penetration test used to 
obtain the sample and the cone penetration test, as well as the quality of the consolidation test. Soil 
profiles from the two in-situ tests are compared and checked for similar stratum, especially within 
the Shelby tube area. The next step was to select an appropriate tip resistance and friction ratio 
from the Cone Penetration Test to represent the soil type in the Shelby tube, used for the 
consolidation test. Once this data collection has been completed, the data sets (i.e., qc, fs, Rf, Cc, 
Cr, index parameters) was added to the comprehensive data base. The total database used in this 
study consisted of 14 sites and is presented in Tables 5-1 and 5-2.  A total of thirteen excess pore-
water pressure dissipation tests were also performed in 7 of the CPTu locations. However, due to 
inconsistencies in data and anticipated error in test performance, the resulting tests yielded 
inconclusive results. The CPTu resistance profiles and dissipation results are shown in the 
Appendix.  

 

 

Example of Data Processing 

This section will provide an example of the filtering process mentioned above for one of the 
accepted data points. The site used in this example is SR-46 (TB-12). The Shelby tube sample was 
obtained in 2012 and the cone penetration test was performed in 2018. A fill was added in between 
the two points, which is why the cone penetration test is located far north of the standard 
penetration test. An outline of the general data processing steps is visualized in Figure 5-4. 

 

Figure 5-4. Flow chart outlining data processing steps 
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Step 1) Check the boring locations for excessive distance, changes in the area due to construction, 
and borings performed in a probable muck area or elevated zones. Google satellite imaging was 
utilized in this step, with the ability to view images from previous years. When google imaging 
was inconclusive, a site visit and roadway plan comparison was performed. When it could be 
verified that no significant change in ground surface elevation or other geologic and hydrologic 
deviations had occurred since the retrieval of the Shelby tube, then a CPT was performed at the 
site within 3 meters of the original boring location.   

Step 2) Compare in-situ soil data obtained from the Standard Penetration Test and Cone 
Penetration Test: the soil boring log and blow counts will be compared to soil type (Robertson 
1990) and the tip and sleeve friction resistance. Figure 5-5 shows the soil boring log, blow counts, 
tip resistance, friction resistance and soil type. The initial fitting method used was to relate the 
blow count and tip resistance profiles. Therefore, depths of high blow counts should match areas 
of high tip resistances and sleeve frictions, and vice-versa. This initial matching, combined with 
site information above, allowed for slight manipulation of the CPT “zero depth” datum to account 
for differences in locations and profiles over time. In this example about 4 feet of fill was added 
after the SPT but before the CPT, and this additional soil was accounted for by “shifting” the CPT 
data up 4 feet. If the effects of space and time have been properly accounted for, the layer in which 
the Shelby tube was taken should match up to a clay soil on the soil behavior type. In this case the 
shifting of 4 feet up causes the Shelby tube layer to correspond to a clay soil type above the refusal 
layer. This is noted as a good match and no further manipulation or filtering of data was needed.  

Step 3) The consolidation test performed on the Shelby tube sample must be checked for quality. 
If the test is poor-quality then the compressibility coefficients obtained won’t be representative of 
the soil and the data couple was removed. Since previous checks removed most of the data points, 
this step was not performed; otherwise, there would have been too few data points available for 
comparison.  
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Figure 5-5. Comparison of SPT and CPT to determine depth at which CPT data range will correlate with consolidation test 
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Table 5-1. Summary of consolidation test data used for this study 

Project I.D. 
Sample Type 

(USCS) 
Depth (ft) 

‐200 
(%) 

w (%)  LL (%)  PI (%)  s' (tsf) 
Pc 
(tsf) 

OCR    eo  Cc  Cr 

WPV_S1  CH  40 ‐ 42 96 50 98 79 1.38  4.75 3.4 1.35 0.420 0.070
WPV_S2  SM  55 ‐ 57 13 38 NP NP 1.81  1.01 ‐ 1.08 0.200 0.020
SR‐100A  CH  30 ‐ 32 99 68 117 96 0.96  6.10 6.4 2.52 0.940 0.130

i4 Ult_B204‐2  CH  57 ‐ 59 96 72 58 37 1.10  3.85 3.5 2.08 0.820 0.075
i4 Ult_B201‐2  CH  40 ‐ 42 97 67 89 61 1.01  3.45 3.4 1.84 1.000 0.138
i4 Ult B204‐2*  OH (44%)  30 ‐ 32 96 123 61 22 0.96  3.63 3.8 2.17 1.390 0.060
SR415_TB6  CH  5.5 91 51 110 29 0.14  1.00 7.0 1.40 0.490 0.100
SR44_Dep1  MH  66 76 105 184 121 2.14  0.32 ‐ 7.60 3.070 0.110
HospVill_2  CL  50.5 56 68 48 24 1.75  1.47 0.8 1.87 0.730 0.150
UCF_ST1  CL‐ML  40 ‐ 42 67 40 22 5 0.99  2.72 2.7 1.09 0.400 0.044
SR46_TB1  CH*  50 ‐ 52 50 59 81 33 2.50  0.52 ‐ 1.33 0.251 0.027
SR46_TB10  SC  42 ‐ 45 48 58 64 34 2.35  0.25 ‐ 1.16 0.144 0.033
SR46_TB12  CH  32 ‐ 35 74 65 126 64 1.90  2.85 1.5 1.90 1.247 0.016
CR‐100 A‐3  CH  40 ‐ 42 77 97 140 103 1.24  2.05 1.7 2.84 1.360 0.050

 
Table 5-2. Summary of CPT data from layer corresponding to consolidation data 

Project I.D.  Data count 
Tip Resistance, qc (tsf) Sleeve Friction, fs (tsf) Friction Ratio, Rf (%)
Avg. Std. dev.  Avg. Std. dev.  Avg. Std. dev. 

WPV_S1  6  15.84 8.81 1.07 0.20 7.04 1.53
WPV_S2  5  71.22 16.28 0.54 0.09 0.80 0.11
SR‐100A  8  5.15 3.07 0.11 0.08 2.28 1.13

i4 Ult_B204‐1  8  36.81 7.05 N/A N/A N/A N/A
i4 Ult_B201‐2  8  54.56 4.09 0.31 0.10 0.58 0.23
i4 Ult B204‐2  7  13.86 1.26 0.28 0.03 2.00 0.11
SR415_TB6  12  4.87 0.72 0.30 0.05 6.18 0.51
SR44_Dep.  10  7.93 2.81 0.29 0.19 3.79 1.52
HospVill_2  6  31.48 16.95 0.43 0.14 1.48 0.29
UCF_ST1  6  10.15 6.26 0.16 0.08 1.69 0.14
SR46_TB1  14  20.91 6.82 0.61 0.06 2.99 0.95
SR46_TB10  13  14.60 7.94 0.49 0.24 3.11 0.43
SR46_TB12  15  16.77 2.12 0.34 0.09 1.81 0.32
CR‐100 A‐3  13  11.07 0.89 0.34 0.09 2.99 0.50
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5.3. Analysis Results 

Figure 5-6 shows the 14 datasets from the Florida sites, overlain on the resulting thresholds of data 
presented by Sanglerat (1972). Each data point shows the average value of qc with their respective 
Cc value. Since qc is measured every 0.8 inches (2 cm), and the exact depth of sample taken for 
the consolidation test was not known, the average was taken over the entire depth at which the 
Shelby tube was obtained from (~2 ft). Therefore, the standard deviation of qc was also calculated 
and is presented in Figure 5-6 as error bars for each data point. Also shown above each point is the 
soil samples’ respective measured natural moisture content; obtained when preparing the samples 
for the consolidation testing. Although the tip resistance data does not fall within the threshold 
lines of the Sanglerat’s data, a similar trend in moisture content can be identified (i.e., moisture 
content increases as qc decreases and Cc increases). Figures 5-7 through 5-12 presents the dataset 
comparison of Cc and Cr with CPT determined qc, fs, and Rf.   

 

 

Figure 5-6. CPT (qc) and consolidation (Cc) data presented on the trends derived from Sanglerat 
data (see figure 5-3) 
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Figure 5-7. Comparison of Cc and CPT tip resistance values 

 

 

Figure 5-8. Comparison of Cc and CPT sleeve friction values 
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Figure 5-9. Comparison of Cc and CPT friction ratio values 

 

 

Figure 5-10. Comparison of Cr and CPT tip resistance values  

50%

38%

68%

67%

123%

51%

105%

68%
40%

59%

58%

65%

0.1

1

10

0 2 4 6 8 10

Friction ratio, Rf (%)

C
o

m
p

re
ss

io
n

 i
n

d
ex

, C
c

50%

38%

68%

72%

67%

123%

51%

105%

68%

40%

59%

58%

65%

0

0.04

0.08

0.12

0.16

0 25 50 75 100
Cone tip resistance, qc (tsf)

R
ec

o
m

p
re

ss
io

n
 i

n
d

ex
, 

C
r



67 

 

 

Figure 5-11. Comparison of Cr and CPT sleeve friction values 

 

 

Figure 5-12. Comparison of Cr and CPT friction ratio values 

50%

38%

68%
67%

123%

51%

105%

68%

40%

59%

58%

65%

0

0.04

0.08

0.12

0.16

0 0.5 1 1.5

Sleeve friction, fs (tsf)

R
ec

o
m

p
re

ss
io

n
 i

n
d

ex
, 

C
r

50%

38%

68%
67%

123%

51%

105%

68%

40%

59%

58%

65%
0

0.04

0.08

0.12

0.16

0 2 4 6 8 10
Friction Ratio, Rf (%)

R
ec

o
m

p
re

ss
io

n
 i

n
d

ex
, 

C
r



68 

 

5.4. Discussion 

According to Terzaghi’s consolidation theory, the soil compressibility is not directly related to soil 
resistance (or stiffness and strength). However, the elasticity theory can explain the correlation 
between constrained modulus and soil compressibility. According to the literature review analysis 
(see Figure 5-3), there seems a general trend that qc increases as the soil compressibility decreases. 
Using this general correlation trend is not accurate enough to predict the soil compressibility from 
CPT tests.  

From the limited dataset and preliminary analysis performed with Florida’s data, it appears there 
is no strong correlation between CPT resistance parameters and Cc or Cr variables (see Figures 5-
7 through 5-12). However, the authors could attribute this poor correlation to multiple factors. The 
database was of insufficient quality due to the magnitude of variables present in the data collection 
heavily impacting the results. More specifically, first, the limited number of data points available 
are of concern. Second, the soil samples used for the consolidation tests and the CPTs were 
performed at different times. Although the CPTs were performed in virgin ground away from any 
construction which may have occurred post-sample retrieval it is still likely in situ stress conditions 
may have deviated over time through natural consolidation or through other unanticipated 
anthropogenic affects. Third, changes in the ground surface elevations were also encountered, 
making it extremely difficult to prescribe the correct CPT parameters to the exact depths at which 
the soil was obtained for use in the consolidation test. Therefore, the researchers believe higher 
quality data collected from controlled sites (i.e., no time gap between consolidation test and CPT) 
will greatly increase the reliability of the results.  

This analysis was conducted for preliminary purposes and the authors are aware that the reliability 
of data must be improved upon for any conclusive remarks. However, the researchers checked the 
relationship between Cc, Cr and the calculated moisture content (w) for the dataset used in this task 
and can verify that there is a strong correlation between w and compression index (Cc) for clay and 
silt soil. The complete dataset used in this study consists of soils classified as silty fine sands (SM), 
clayey fine sands (SC), and organic silts (OH). The relationship between the complete dataset can 
be seen in Figure 5-13A, with the data points highlighted in red being a soil type which may not 
follow the conventional consolidation theory mechanics. Once these points are filtered out, there 
is a very strong correlation between w and Cc (Figure 5-13B). Interestingly, the correlation between 
Cr and w showed very low accuracy (R2 < 0.2) for the filtered and non-filtered case.  

The authors should note that the relationship shown in Figure 5-13 is not a recommended model 
for actual analysis due to the limited data points used in its creation (n = 9). Rather, the point is to 
reinforce the controlling factor of natural moisture content on a soil’s respective compression index 
value, for silts and clays in Florida. Therefore, using a specialized CPT probe to estimate soil 
moisture content or directly measure soil moisture content (such as CPTu or probe equipped with 
a dielectric reflectometer or resistivity) may greatly increase the ability to directly estimate the 
compression index values of a soil layer with high resolution.  
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Figure 5-13. Relationship between Cc and soil moisture content for: A) all Florida sites (14), and 
B) clays and silts (10)  
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6. CONCLUSION 

 

6.1. Summary of Proposed Correlation Models 

The primary result of this project was the development of several statistical models correlating 
consolidation parameters (i.e., Cc, Cr, Cv and Cα) to various soil index properties (e.g., moisture 
content, liquid limit, fines content, etc.). These models were developed using a database of 551 
consolidation test results and were categorized based on the soils’ USCS (Unified Soil 
Classification System) classification (e.g., CH, CL, MH, OH, OL, Pt). The following section 
presents the best performing models to be used for each soil type. As previously discussed in 
Chapter 4, a larger database of primary consolidation parameters (Cc and Cr) enables the 
discretization of models for ranges of plasticity. Models for secondary plasticity parameters (Cv 
and Cα) were only created for generic soil groups of clays, organics, and peat (i.e., fibrous and OC 
>75%). The following models for each classification of soil are recommended by the authors and 
can be considered statistically accurate for geotechnical engineering standards by holding an R2 > 
0.5 or a RMSE value near zero. The comprehensive list of models and their accuracy (in terms of 
regression values) can be found in Section 4.4. Engineering judgment must always be used when 
performing calculations based on statistical correlations. These models are intended to suppleme
nt but not eliminate a geotechnical sampling and testing program. An explanation for each 
of the possible input variables for the models is presented in Table 6-1. 

 

Table 6-1. List of input variables for proposed correlations 

Input 
Variable  Parameter Explanation  Units 

(example) 

w  Soil moisture content (ASTM D2216)  percent % 

Gs  Specific Gravity (ASTM D854)    unitless 

LL  Liquid Limit (ASTM D4318)  % 

PI  Plasticity Index (i.e., LL – PL)    (ASTM D4318)    % 

Fines  %passing No.200 Sieve (ASTM D1140)  % 

σo’  In situ effective stress at depth of sample retrieval  kips/ft2 

OC  Organic Content (ASTM D2974)  percent % 

N 
Average SPT automatic hammer blow count at sample 
depth (ASTM D1586) 

average blows/ft 

Stress Level  Post‐construction (i.e., design) in situ stress    lb/ft2 
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6.1.1. High plasticity Clays (CH)  

 Compression Index: 

ࢉ࡯ ൌ 1.405 ൅ ሺ0.016 ൈ ሻ࢝ ൅ ሺ0.0005 ൈ ሻࡸࡸ ൅ ሺ0.398 ൈ ሻ࢙ࡳ െ 0.00003
ൈ ሾሺ࢝ െ 68.837ሻ ൈ ሺࡸࡸ െ 105.48ሻሿ െ 0.00002
ൈ ሾሺ࢝ െ 68.837ሻ ൈ ሺ࢝ െ 68.837ሻሿ 

 Recompression (swell) index: 

࢘࡯ ൌ െ0.0136 െ ሺ0.0023 ൈ ᇱ࢕࣌ ሻ ൅ ሺ0.0014 ൈ ሻ࢝ ൅ ሺ0.0001 ൈ ሻࡸࡸ െ 0.0004
ൈ ሾሺ࢕࣌ᇱ െ 1.986ሻ ൈ ሺ࢝ െ 68.176ሻሿ ൅ 0.0002
ൈ ሾሺ࢕࣌ᇱ െ 1.986ሻ ൈ ሺࡸࡸ െ 105.323ሻሿ ൅ 0.000007
ൈ ሾሺ࢝ െ 68.175ሻ ൈ ሺࡸࡸ െ 105.323ሻሿ 

 

6.1.2. Low plasticity Clays (CL)  

 Compression Index: 

ࢉ࡯ ൌ െ1.6912 ൅ ሺ0.0118 ൈ ሻ࢝ ൅ ሺ0.5919 ൈ  ሻ࢙ࡳ

 Recompression (swell) index*: 

࢘࡯ ൌ െ0.05 ൅ ሺ0.0021 ൈ ሻ࢝ ൅ ሺ0.0018 ൈ  ሻࡺ
        *Note: R2 = 0.3 but RMSE = 0.05 

 

6.1.3. High plasticity Silts (MH) 

 Compression Index: 

ࢉ࡯ ൌ െ8.442 ൅ ሺ0.0077 ൈ ሻ࢝ ൅ ሺ0.0085 ൈ ሻ࢙ࢋ࢔࢏ࢌ ൅ ሺ0.0143 ൈ ሻࡵࡼ ൅ ሺ3.337 ൈ ሻ࢙ࡳ
൅ ሺ0.0828 ൈ ሾሺ࢝ െ 89.8ሻ ൈ ሺ࢙ࡳ െ 2.664ሻሿ	  

 Recompression (swell) Index: 

࢘࡯ ൌ 	 െ3.551 ൅ ሺ0.0014 ൈ ሻ࢝ െ ሺ0.009 ൈ ሻࡺ ൅ ሺ0.0006 ൈ ሻࡵࡼ ൅ ሺ1.324 ൈ ሻ࢙ࡳ
െ 0.00002 ൈ ሾሺ࢝ െ 100.99ሻ ൈ ሺࡵࡼ െ 48.034ሻሿ ൅ 0.0254 ൈ ሾሺ࢝ െ 100.99ሻ
ൈ ሺ࢙ࡳ െ 2.656ሻሿ 
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6.1.4. High plasticity Organic soils (OH) 

 Compression Index: 

ࢉ࡯ ൌ െ0.480 ൅ ሺ0.076 ൈ ᇱ࢕࣌ ሻ ൅ ሺ0.0098 ൈ ሻ࢝ ൅ ሺ0.0046 ൈ ሻࡵࡼ ൅ 0.0005
ൈ ሾሺ࢕࣌ᇱ െ 1.445ሻ ൈ ሺ࢝ െ 123.02ሻሿ ൅ 0.0036 ൈ ሾሺ࢕࣌ᇱ െ 1.445ሻ ൈ ሺࡵࡼ െ 81.879ሻሿ 

 Recompression (swell) Index: 

࢘࡯ ൌ 0.0667 ൅ ሺ0.0326 ൈ ᇱ࢕࣌ ሻ ൅ ሺ0.002 ൈ ሻ࢝ െ ሺ0.0036 ൈ ሻ࡯ࡻ ൅ 0.029
ൈ ሾሺ࢕࣌ᇱ െ 1.486ሻ ൈ ሺ࡯ࡻ െ 21.652ሻሿ 

 

6.1.5. Low plasticity Organic Soils (OL) 

 Compression Index: 

ࢉ࡯ ൌ 0.8164 ൅ ሺ0.0096 ൈ ሻ࢝ െ ሺ0.0145 ൈ  ሻ࢙ࢋ࢔࢏ࢌ

 Recompression (swell) Index: 

࢘࡯ ൌ 2.365 ൅ ሺ0.0039 ∗ ᇱ࢕࣌ ሻ ൅ ሺ0.011 ൈ ሻ࡯ࡻ െ ሺ0.1212 ൈ ሻࡵࡼ ൅ 0.0586
ൈ ሾሺ࢕࣌ᇱ െ 1.015ሻ ൈ ሺࡵࡼ െ 20.297ሻሿ െ 0.0167
ൈ ሾሺ࡯ࡻ െ 17.8ሻ ൈ ሺࡵࡼ െ 20.297ሻሿ െ 0.0264
ൈ ሾሺ࢕࣌ᇱ െ 1.015ሻ ൈ ሺ࢕࣌ᇱ െ 1.015ሻሿ ൅ 0.0009 ൈ ሺ࡯ࡻ െ 17.8ሻଶ 

 

6.1.6. Peat (Pt) 

 Compression Index: 

ࢉ࡯ ൌ 	 െ10.774 ൅ ሺ0.0078 ൈ ሻ࢝ ൅ ሺ0.0772 ൈ ሻ࡯ࡻ ൅ ሺ2.867 ൈ ሻ࢙ࡳ ൅ 0.0074
ൈ ሾሺ࢝ െ 481.673ሻ ൈ ሺ࢙ࡳ െ 1.5677ሻሿ െ 0.2644 ൈ ሾሺ࡯ࡻ െ 83.021ሻ
ൈ ሺ࢙ࡳ െ 1.5677ሻሿ ൅ 0.0075 ൈ ሾሺ࡯ࡻ െ 83.021ሻሿଶ 

 Recompression (swell) Index: 

࢘࡯ ൌ െ0.5938 ൅ ሺ0.0009 ൈ ሻ࢝ ൅ ሺ0.3356 ൈ ሻ࢙ࡳ ൅ 0.5344
ൈ ሾሺ࢙ࡳ െ 1.4373ሻଶሿ ൅ 0.0017 ൈ ሾሺ࢝ െ 472.835ሻ
ൈ ሺ࢙ࡳ െ 1.4373ሻሿ 

 

6.1.7. Secondary Consolidation (Clays) 
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 Coefficient of secondary compression: 

હ࡯ ൌ 	 െ0.0077 ൅ ሺ0.0001 ൈ ሻ࢝ ൅ ሺ2 ∗ 10ି଺ 	 ൈ 	ሻࡵࡼ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ൅ሺ6 ∗ 10ି଻ ൈ 	࢙࢙ࢋ࢚࢙࢘ ሻ࢒ࢋ࢜ࢋ࢒ െ ሺ9 ∗ 10ିଽሻ

ൈ ሾሺ࢝ െ 60.3376ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 10,084.8ሻሿ
൅ ሺ4 ∗ 10ି଺ሻ ൈ ሾሺࡵࡼ െ 70.5461ሻଶሿ െ ሺ2 ∗ 10ିଵଶሻ
ൈ ሾሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 10,084.8ሻଶሿ	  

 

6.1.8. Secondary Consolidation (Organics) 

 Coefficient of secondary compression: 

હ࡯ ൌ െ0.09 ൅ ሺ0.0001 ൈ ሻ࢝ ൅ ሺ0.002 ∗ ሻ࢙ࢋ࢔࢏ࢌ ൅ ሺ0.0001 ൈ ሻࡵࡼ
൅ ሺ0.0185 ൈ ሻ࢙ࡳ ൅ ሾሺ2 ∗ 10ି଺ሻ ൈ 	࢙࢙ࢋ࢚࢙࢘ ሿ࢒ࢋ࢜ࢋ࢒
൅ ሺ2 ∗ 10ି଼ሻ
ൈ ሾሺ࢝ െ 95.95ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 5,674.24ሻሿ
൅ ሺ3 ∗ 10ି଼ሻ
∗ ሾሺ࢙ࢋ࢔࢏ࢌ െ 60.061ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 5,674.24ሻሿ
൅ ሺ4 ∗ 10ି଼ሻ ൈ ሾሺࡵࡼ െ 92.4545ሻ
ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 5,674.24ሿ ൅ ሺ8 ∗ 10ି଺ሻ
ൈ ሾሺࡳ௦ െ 2.4ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 5,674.24ሻሿ 

 

6.1.9. Secondary Consolidation (Peat) 

 Coefficient of consolidation: 

ܞ࡯ ൌ 11.7596 ൅ ሺ0.0815 ൈ ሻࡺ െ ሺ0.0762 ൈ ሻ࢙ࢋ࢔࢏ࢌ ൅ ሺ0.0317 ൈ ሻ࡯ࡻ െ ሺ3.1765
ൈ ሻ࢙ࡳ െ ሺ0.0002 ൈ 	࢙࢙ࢋ࢚࢙࢘ ሻ࢒ࢋ࢜ࢋ࢒ െ 0.0024
ൈ ሾሺ࢙ࢋ࢔࢏ࢌ െ 56.918ሻ ൈ ሺ࡯ࡻ െ 59.522ሻሿ െ 0.1156
ൈ ሾሺ࡯ࡻ െ 59.522ሻ ൈ ሺ࢙ࡳ െ 1.9426ሻሿ െ 0.00001
ൈ ሾሺ࡯ࡻ െ 59.522ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 2,391.88ሻሿ െ 0.0005
ൈ ሾሺ࢙ࡳ െ 1.9426ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 2,391.88ሻሿ െ 0.4487
ൈ ሾሺࡺ െ 2.162ሻଶሿ െ 0.0004 ൈ ሾሺ࢙ࢋ࢔࢏ࢌ െ 56.918ሻଶሿ 

 

 

 

 Coefficient of secondary compression: 
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હ࡯ ൌ െ0.0660 ൅ ሺ0.00005 ൈ ሻ࢝ ൅ ሺ0.0006 ൈ ሻ࡯ࡻ ൅ ሾሺ8 ∗ 10ି଺ሻ ൈ 	࢙࢙ࢋ࢚࢙࢘ ሿ࢒ࢋ࢜ࢋ࢒
൅ ሺ2 ∗ 10ି଼ሻ ൈ ሾሺ࢝ െ 575.783ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 2,020.6ሻሿ ൅ ሺ4 ∗ 10ି଻ሻ
ൈ ሾሺ࡯ࡻ െ 64.933ሻ ൈ ሺ࢙࢙ࢋ࢚࢙࢘	 ࢒ࢋ࢜ࢋ࢒ െ 2,020.6ሻሿ 

6.2. Recommendations  

As with any empirically-based model, caution should be used when applying proposed correlations 
to actual design situations. For the most accurate representation of the in situ consolidation 
settlement, consolidation testing or field settlement testing is always recommended when high 
quality undisturbed soil samples are feasible or available. However, the authors believe the 
proposed correlations are still valuable assessment tools for preliminary design stages or for 
decision making when evaluating the severity of anticipated settlement due to consolidation. The 
authors stress, however, that the input soil parameters must be of sufficient quality to ensure the 
accuracy of the correlations. Since the majority of the input parameters are a function of soil 
moisture content (e.g., w, LL, PI, OC), it is imperative that soil samples be properly sealed after 
retrieval via split spoon, to ensure no loss of moisture during transportation or time between field 
retrieval and lab testing. Also, the soil samples must not contain any drilling fluid, such as bentonite 
slurry, which will greatly increase the measured moisture content if accidently included with the 
sample. All sampling and lab testing must be in strict accordance with international, and state 
standards, and adhere to the FDOT’s Soils and Foundation Handbook.  

 

6.3. Conclusions 

The following conclusions can be made to summarize the findings presented in this report. 

 Results from a statewide survey to geotechnical practitioners shows that correlations 
between soil lab index testing and consolidation parameters are used for preliminary 
design and estimating. However, the primary correlation used is one developed by 
Terzaghi and Peck (1967) and is not specific to Florida soils.  

 The authors created a database of Florida soil laboratory testing with consolidation results, 
consisting of 551 datasets of clayey, silty, and organic soils. This dataset was used to create 
several statistical models, relating primary and secondary consolidation parameters to 
several soil index parameters. All input variables for the developed models can be obtain 
via disturbed methods (e.g., SPT and split-spoon sampling). By doing so, the 
consolidation parameters can be effectively estimated with accuracy, and minimizing the 
number of high-quality sampling and lengthy oedometer testing.  

 Statistical regression modeling was used to formulate multi-variate models shown in the 
previous sections. These models are specific to the classification type of soil in which the 
input data was obtained (i.e., CH, CL, MH, OH, OL, Pt). The authors cannot guarantee 
accuracy of the models if the input soil variables are from a different soil classification 
(e.g., the models developed for CH soils are not validated for Peat soils).   
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 Correlations from Cone Penetration Test (CPT) outputs to consolidation parameters were 
inconclusive at the time of this study due to the limited data available. The strong 
correlation between moisture content and the compressibility index (Cc) for clayey soils, 
coupled with the ability to directly estimate soil moisture with high resolution of depth 
from the CPT, suggests that this testing procedure would yield a viable way to estimate 
consolidation parameters. However, future analysis and collection of high-quality CPT 
results and lab consolidation datasets would be necessary to create more accurate 
statistical models and draw further conclusions.  

 

6.4. Recommended Future Work 

Recommended future work is summarized below. Concepts and approaches based on valid 
reasoning are presented herein.  

 Field validation of the developed soil compressibility models is recommended. The models 
are used to estimate settlement in the field with the equation below.  

ܵ௣ ൌ
஼೎ு

ଵା௘೚
log ቀఙ೚

ᇲା∆ఙᇱ

ఙ೚
ᇲ ቁ       (6.1) 

ܵ௣ ൌ
஼ೝு

ଵା௘೚
log ቀ

ఙ೛೎ᇲ

ఙ೚
ᇲ ቁ ൅

஼೎ு

ଵା௘೚
log ൬

ఙ೚ᇲା∆ఙᇱ

ఙ೛೎
ᇲ ൰     (6.2) 

The validation can be accomplished through comparison of measured field settlement data 
to settlement predictions derived from measured compression indexes and the predicted 
compression indexes from the developed models. Instrumentation and settlement 
monitoring under controlled environment would be necessary for more accurate 
comparison. In order for this to be achieved with any level of confidence, sites must be 
chosen with a known soil stratigraphy, measured settlement from a known source, etc.  

 The current study exhibits that CPT qc does not have a strong correlation with Cc and Cr. 
The poor correlation is mainly due to poor “quality” data and no accurate depth information 
for consolidation test and CPT. It is important to note that the time difference between soil 
sampling and CPT sounding test is up to around 10-15 years, which cause varied surface 
elevation over time. This caused extremely high variability in digitizing the CPT qc and fs 
data for the matched consolidation data. The researchers strongly believe that the 
correlation should be much improved if the test data under controlled environment are 
obtained. Therefore, the researchers recommend conducting field experiments including 
the sampling (for consolidation test) and CPT with the same depth matched. CPTu and 
dissipation tests are encouraged to be performed because hydraulic properties of 
surrounding soils can be characterized, which will improve the accuracy of the prediction. 
Particularly, these hydraulic properties can estimate Cv.  
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 The researchers believe that the recompression index is more related to particle re-
arrangement or particle densification while the compression index is more strongly related 
to water dissipation out of soil grains during consolidation test. This postulation is derived 
from the author’s many discussions with experts of CPT and consolidation. Continuous 
profiling of water content along the depth during CPT sounding will provide a better 
estimate of soil compressibility. To accomplish this, di-electrical and conductivity module 
can be added to existing electric CPT cone.  

Estimating the soil compressibility characteristics from CPT sounding tests is very attractive and 
beneficial to engineers. More in-depth studies under controlled environment will be able to 
improve the accuracy and enable the development of CPT-based prediction models of soil 
compressibility.    
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APPENDIX A: CPTu AND DISSIPATION TEST RESULTS   
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Depth of dissipation test
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SR-100A-Starke 
CPT#1 
Depth = 38ft 
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SR-100A-Starke 
CPT#1 
Depth = 41 ft 
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Depth of dissipation test
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SR-100A-Starke 
CPT#2a 
Depth = 30.68ft 
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Depth of dissipation test
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SR100-Starke 
CPT#3 
Depth = 27.56 ft 
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Wekiva SR46 East 
CPT#1 (TB10) 

Depth of dissipation test
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WekivaSR46 East 
CPT#1 (TB-10) 
Depth = 43.98 ft 
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 WekivaSR46 East 
CPT#1 (TB-10) 
Depth = 43.80 ft 
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Wekiva SR46 East 
CPT#2 (TB-12) 
 

Depth of dissipation test
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WekivaSR46 East 
CPT#2 (TB-12) 
Depth = 31.66 ft 
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WekivaSR46 East 
CPT#2 (TB-12) 
Depth = 33.14 ft 
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WekivaSR46 East 
CPT#2 (TB-12) 
Depth = 35.93ft 
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Depth of dissipation test

Wekiva SR46 East 
CPT#3 (TB-1) 
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WekivaSR46 East 
CPT#3 (TB-1) 
Depth = 44.77 ft 
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WekivaSR46 East 
CPT#3 (TB-1) 
Depth = 49.86 ft 
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 Depth of dissipation test

SR44 Near SJR 
CPT#4 (WB-5) 
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SR44 Near SJR 
CPT#4 (WB-5) 
Depth = 25.75 ft 
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SR44 Near SJR 
CPT#4 (WB-5) 
Depth = 29.85 ft 


