Dynamic Flashing Yellow Arrow (FYA) A Study on Variable Left Turn Mode Operational and Safety Impacts Phase III

FLORIDA DEPARTMENT OF TRANSPORTATION FDOT Contract BDV24-977-21

FINAL REPORT

Submitted to
Research Center Research.Center@dot.state.fl.us
Business Systems Coordinator, (850) 414-4614
Florida Department of Transportation Research Center
605 Suwannee Street, MS30
Tallahassee, FL 32399
c/o Jim Stroz, P.E.
District 5 Traffic Operations Engineer

Submitted by
Dr. Hatem Abou-Senna, P.E. (PI), habousenna@ucf.edu
Dr. Essam Radwan, P.E. (Co-PI), Ahmed.Radwan@ucf.edu
Dr. Hesham Eldeeb, Hesham.Eldeeb@ucf.edu

Center for Advanced Transportation Systems Simulation (CATSS)
Department of Civil, Environmental \& Construction Engineering (CECE)
University of Central Florida
Orlando, FL 32816-2450
(407) 823-4738

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
LENGTH				
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
AREA				
in ${ }^{2}$	square inches	645.2	square millimeters	mm^{2}
ft^{2}	square feet	0.093	square meters	m^{2}
yd^{2}	square yard	0.836	square meters	m^{2}
ac	acres	0.405	hectares	ha
mi ${ }^{2}$	square miles	2.59	square kilometers	km ${ }^{2}$
VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft^{3}	cubic feet	0.028	cubic meters	m^{3}
yd^{3}	cubic yards	0.765	cubic meters	m^{3}
NOTE: volumes greater than 1000 L shall be shown in m^{3}				
MASS				
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short tons (2000 lb)	0.907	Mega grams (or "metric ton")	Mg (or "t")

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	No.
4. Title and Subtitle Dynamic Flashing Yellow Arrow (FYA) A Study on Variable Left Turn Mode Operational and Safety Impacts - Phase III		5. Report Date March 2019
7. Author(s) Hatem Abou-Senna, Essam Radwan, and Hesham Eldeeb		B. Performing Organization Report No.
9. Performing Organization Name and Address Center for Advanced Transportation Systems Simulation (CATSS) Department of Civil, Environmental \& Construction Engineering University of Central Florida 4000 Central Florida Blvd. Orlando, FL 32816-2450 (407) 823-0808		10. Work Unit No. (TRAIS) 11. Contract or Grant No. BDV24-977-21
12. Sponsoring Agency Name and Address Florida Department of Transportation Research Center 605 Suwannee Street, MS 30 Tallahassee, FL 32399 (850) 414-4615		13. Type of Report and Period Covere Final Report (Mar 2017- Mar 2019)
15. Supplementary Notes		
16. Abstract The four-section head Flashing Yellow Arrow (FYA) provided an opportunity to advance the operation of the left turn mode at intersections. In phase III of the project, the UCF team further enhanced the decision support system (DSS) by developing an exclusive hardware platform. The hardware platform was developed for two main objectives: first, to provide a generic device compatible with the different controller types used by different jurisdictions within the FDOT Districts and, second, to automate selection of the FYA left-turn modes based on available gaps in the opposing traffic at intersections acquired in real time from existing sensors in the field. Phase III provided conclusive offline testing using a peer-to-peer logic environment as well as online and field testing of the DSS. Peer-to-peer-logic offers the advantage of acquiring and analyzing real-time traffic data coupled with video feed, with the benefit of a safe environment. The testing verified that the system was able to accurately acquire real-time traffic conditions and react by switching between red and FYA modes in a rational manner consistent with driver expectations and left-turning gap acceptance thresholds. It was also concluded that coordinated signals with very long cycle lengths, 3 minutes and longer, help in providing adequate gaps even in heavy traffic patterns since most of the vehicle arrivals are in platoons and at the beginning of the cycle. However, short cycle lengths eliminate sufficient gap times even with coordination. Two methods were used to calculate the minimum gap: discrete and average approach. Although the average method provides a more conservative approach, the discrete approach was more accurate. The developed platform is applicable at any four-section head configuration to alter the left turn restriction throughout the day to maximize safety and efficiency of the intersections.		
17. Key Word Flashing Yellow Arrow (FYA), Four-Section Head, Decision Support System (DSS), Left Turn Mode, Time of Day, Peer-To-Peer Logic.		tement
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 120

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

The authors would like to express their sincere appreciation to the Florida Department of Transportation (FDOT) and acknowledge the cooperation and support of Mr. Jim Stroz (District 5 Traffic Operations Engineer) for serving as the Project Manager and providing guidance during the course of this research. The UCF research team would like also to express their deepest gratitude to all Seminole County Traffic Engineering Staff, especially Chad Dickson and Jared Zabele, for their tremendous help in providing the testing environment in the lab (Naztec Cabinet and Controller, four-section head) as well as in the field. The authors are also grateful to Orange County Traffic Engineering Staff, especially Roger Smith, for providing the Siemens Controller and field testing, Osceola County Traffic Engineering Kevin Krug for providing a traffic cabinet to UCF, and Volusia County Traffic Engineering Bobby Maddox and Karl Ewald for their help in providing the Econolite Controller and support during the field testing. The UCF research team would like to acknowledge the following personnel:

FDOT

Jim Stroz, P.E.
Ray Marlin

Seminole County Traffic Engineering:

Charles Wetzel, P.E.
Chad Dickson
Jared Zabele
Orange County Traffic Engineering
Hazem El-Assar, P.E.
Roger Smith
Michael Colon Rodriguez
Volusia County Traffic Engineering
Jon Cheney, P.E.
Bobby Maddox
Karl Ewald

EXECUTIVE SUMMARY

The four-section head flashing yellow arrow (FYA) provided an opportunity to advance the operation of the left turn mode at intersections. In Phase III of the project, the UCF team further enhanced the decision support system (DSS) by developing an exclusive hardware platform. The hardware platform was developed for two main objectives. The first objective was to provide a generic device that would be compatible with the different controller types used by different jurisdictions within the FDOT districts. The DSS model testing through the pilot study conducted in Phase II as a proof of concept revealed several technical hitches related to the type of traffic signal controller utilized, such as Siemens controllers in Orange County versus Naztec in Seminole County. The second objective was to automate selection of the FYA left-turn modes based on available gaps in the opposing traffic at intersections acquired in real time from existing sensors in the field. The board used in the lab testing environment in Phase II was a one-way communication device. The decision of the algorithm was only displayed in a text box on the screen. An input/output (I/O) device was needed to complete the process and relay the decision back to the controller. The hardware platform receives volume data as well as signal phasing and timing (SPaT) inputs for a given cycle and returns recommendations to the controller.

A general wiring scheme capable of communicating with all TS-2 hardware layouts and controller models was achieved. Furthermore, a custom communication software with the new I/O board was developed using C\# language. The software included various parameters required for a successful configuration of the hardware. The parameters included acquisition of signal timing, acquisition of mode, extracting arrival data from the input channels, and outputting data to the output channels. A user interface (UI) was also developed (1) to specify particular parameters pertinent to each intersection and also adjust parameters while the operation is in progress and (2) to visualize the input data and the output decision as they occur.

Offline testing was conducted using a peer-to-peer logic setup. Peer-to-peer logic offers the advantage of acquiring and analyzing real-time traffic data coupled with video feed with the benefit of a safe environment. Vehicle detection through loops or video detection is sensed in the field by the cabinet and the controller. Then, it is mapped in real-time mode from the intersection approach to the controller and cabinet in the lab. The algorithm analyzes the traffic data and makes a decision accordingly that is communicated back to the controller and generates a realtime log recording the events. Peer-to-peer logic was a crucial step to verify and validate the algorithm and the software prior to field testing.

Having proven the DSS in a virtual environment, the next step was to test it in the real world as part of the decision making at a traffic management center (TMC) with field intersections. The testing of the DSS and the hardware platform was conducted by connecting directly to various controller and cabinet types in an online mode while allowing for instant validation of the DSS. The DSS was tested at six different intersections located in Seminole, Orange, and Volusia counties. Field data were collected from the loop detectors in real-time mode on a second-bysecond basis while monitoring traffic in each lane and detecting the status of the opposing green phase. Based on the intersection conditions and the gap threshold pertinent to the study intersection, the DSS sends the decision back to the controller in the field to apply it to the foursection head FYA.

Several issues and challenges were experienced in the field in the wiring setup and connections with certain controllers and cabinet types, especially with Siemens controllers and TS2 Type 2 Hybrid cabinets. In general, Siemens controllers don't have an output logic. In other words, it doesn't allow mapping an input as an output function as in the other controllers. Therefore, to overcome this issue, a peer-to-peer function on the controller itself was used to activate special functions to act as I/O logic. Furthermore, in the Temple Type 2 Hybrid cabinets, the I/O connections are wired differently from Type 1 . The I/O connections are connected to the controller through pin connections (a, b, and c) and are broken out on the back panel and then connected to the load switches. However, they don't break out load switches; that's why a "Phase Check" function was used in lieu of the vehicle detector. Lastly, a relay was used to regulate the signal between the DSS I/O board and the controller.

Two approaches were tested to calculate the minimum gap: discrete and average approach. Overall, the DSS results using the discrete method, showed steady fluctuations between the red arrow and yellow arrow decisions throughout the testing periods, which is considered reasonable, especially for a driver's expectation. This also indicated that the thresholds were rational and practical. The decisions were also verified from the log file data, which showed the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. However, the average method showed very conservative decisions. The average method was mainly used to verify saturated conditions and heavy traffic patterns assuming that the minimum gap is achieved between every two arriving vehicles every cycle in order to switch to a flashing yellow arrow. Although the average method provides a more conservative approach than the discrete one, the discrete approach is more accurate than the average approach.

It was also concluded that coordinated signals with very long cycle lengths, such as 3 minutes and longer, help in providing sufficient gaps even in heavy traffic patterns and during the peak hours because most of the vehicle arrivals are in platoons, due to coordination and at the beginning of the cycle. Therefore, in order to test the sensitivity of the algorithm to changes in the cycle length and also the difference between long and short cycles at coordinated signals, the intersection cycle length was reduced for a period of approximately 30 min . Although coordination helps in providing a more steady traffic flow with uniform arrivals of vehicles and eliminating the random arrivals, the DSS results showed that reducing the cycle length affects the traffic flow during the reduced green phase and eliminates sufficient gap times even with coordination.

The DSS testing confirmed the applicability and validity of the developed algorithm as well as the aforementioned procedure, criteria, and logic. The algorithm developed in this project will allow traffic signal controllers to be designed so that the appropriate left turn restriction can alter throughout the day to maximize safety and efficiency of the intersections. The value of the DSS in making real-time traffic decisions is crucial to improving the performance of the left turn and is applicable at any four-section head configuration.

TABLE OF CONTENTS

DISCLAIMER ii
CONVERSION FACTORS iii
TECHNICAL REPORT DOCUMENTATION PAGE iv
ACKNOWLEDGEMENTS v
EXECUTIVE SUMMARY vi
LIST OF FIGURES x
LIST OF TABLES xi
I. INTRODUCTION 1
1.1 Overview 1
1.2 Objectives 1
1.3 Summary of Phase III Project Tasks 1
II. HARDWARE PROCUREMENT AND INTERFACE DESIGN 2
2.1 Selection and Procurement of Digital Input/output Board 2
2.1.1 Examination of Boards in the Market 2
2.1.2 National Instruments 2
2.1.3 CONTEC. 4
2.2 Wiring and Connection Testing 6
2.2.1 Wiring Method from I/O Board to Controller 10
2.3 General Wiring and Connection Interface 15
2.3.1 General Wiring 15
2.3.2 Connection Interface 15
2.3.3 Data Received and Analyzed in Real Time 16
2.4 Task 1 Conclusion 16
III. SOFTWARE DEVELOPMENT 17
3.1 Development of the Communication Layer 17
3.1.1 Custom Communication Software 17
3.1.2 Parameter Setting for Hardware Configuration 17
3.2 Development of the User Interface 17
3.2.1 Intuitive User Interface 18
3.2.2 Specification of Initial Parameters 19
3.2.3 Adaptation to Various Scenarios 21
3.3 Task 2 Conclusions 21
IV. OFFLINE TESTING 22
4.1 Overview 22
4.2 Peer-to-Peer Logic for Data Communication 24
4.3 Algorithm Logic 25
4.3.1 Discrete and Average Logic. 26
4.4 Offline Testing 26
4.4.1 SR 436 and CR 427 26
4.4.2 Decision Assessment and Field Data Validation 28
4.4.3 Log File Review. 28
4.5 Task 3 Conclusions 31
4.5.1 Iterative Development Process 31
V. ONLINE AND FIELD TESTING 32
5.1 Overview 32
5.2 Testing Scope and Specifications 32
5.3 Seminole County 35
5.3.1 Intersections Wiring and Challenges 35
5.3.2 Intersections Testing and DSS Results 38
5.4 Volusia County 45
5.4.1 Intersections Wiring and Challenges 45
5.4.2 Intersections Testing and DSS Results 47
5.5 Orange County 54
5.5.1 Intersections Wiring and Challenges 54
5.5.2 Intersections Testing and DSS Results 57
VI. CONCLUSIONS 64
APPENDIX A - Log File Excerpts for SR 436 at CR 427 (Offline Testing) 66
APPENDIX B - Intersection Photos 82
APPENDIX C - Team Photos 89
APPENDIX D - Log File Excerpts for JYP Intersection (Online Testing) 95

LIST OF FIGURES

Figure 2-1: NI-9375, PN: 785192-01 3
Figure 2-2: cDAQ-9171, PN: 781425-01 3
Figure 2-3: 782698-01 NI PS-10 power supply 24 VDC, 5A, 100-120/200-240 VAC 4
Figure 2-4: Digital I/O board with 16 input and 16 output channels 4
Figure 2-5: External power supply necessary for the board operation 5
Figure 2-6: External larger power supply to provide power for the output channels 5
Figure 2-7: Seminole County staff setting up the testing environment 6
Figure 2-8: Load switch (LS) panel for signal heads (top) and load resistor Panel (bottom) 7
Figure 2-9: The inside of a Naztec controller cabinet showing various modules 8
Figure 2-10: Detector channel outputs and bus interface unit (BIU) 9
Figure 2-11: The digital I/O board and its wiring to the controller 10
Figure 2-12: A close-up of the digital I/O board and its power supply 11
Figure 2-13: Wiring from five pre-emption Outputs to I/O Board 12
Figure 2-14: Connections to the detector Channel (L15) and logic ground (L27) 13
Figure 2-15: The output signal to the controller is wired through a relay. 13
Figure 2-16: A red light arrow module is included in the wiring setup 14
Figure 2-17: A flashing yellow arrow light module is included in the wiring setup. 14
Figure 2-18: Software interface between the computer and the controller 15
Figure 3-1: Main user interface. 18
Figure 3-2: Real-time traffic display. 19
Figure 3-3: Log file during real-time data acquisition. 20
Figure 4-1: Testing environment components 23
Figure 4-2: Peer-to-peer logic setup 24
Figure 4-3: SR 436 and CR 427 geometry 27
Figure 4-4: SR 436 at CR 427 CCTV camera feeds 27
Figure 4-5: Four-minute gap profile for SR 436 and CR 427 30
Figure 4-6: One-Minute gap profile for SR 436 and CR 427 30
Figure 4-7: Iterative development process 31
Figure 5-1: Naztec cabinet at CR 427 and Longwood Hills Road intersection. 36
Figure 5-2: Naztec cabinet with preemption inputs and outputs connected to DSS 37
Figure 5-3: DSS connections to detector Channel (L15) and logic ground (L27) 37
Figure 5-4: CR 427 and Longwood Hills Rd intersection 38
Figure 5-5: DSS results by cycle for CR 427 NBL 41
Figure 5-6: Howell Branch Road and Lake Howell Road intersection 42
Figure 5-7: DSS results by cycle for Howell Branch WBL 44
Figure 5-8: Econolite cabinet at Saxon Blvd and Threadgill Place intersection 45
Figure 5-9: Econolite cabinet with load switch sockets connected to DSS 46
Figure 5-10: DSS connected to Econolite back panel for ped call 46
Figure 5-11: Saxon Blvd and Threadgill Place intersection 47
Figure 5-12: DSS results by cycle for Saxon Blvd EBL 50
Figure 5-13: Saxon Blvd and Park and Ride intersection 51
Figure 5-14: DSS results by cycle for Saxon Blvd WBL 53
Figure 5-15: Temple cabinet at Orange Avenue and Office Court intersection 55
Figure 5-16: Relays to regulate the signal between the DSS I/O board and the controller 55
Figure 5-17: Temple cabinet with phase check terminal connected to DSS 56
Figure 5-18: DSS connected to temple back panel for ped call. 56
Figure 5-19: JYP and SR 408 EB ramps intersection 57
Figure 5-20: DSS results by cycle for JYP SBL 60
Figure 5-21: Orange Ave and Office Court intersection 61
Figure 5-22: DSS results by cycle for Orange Ave NBL 63
LIST OF TABLES
Table 3-1: Event signal logic 21
Table 4-1: FYA algorithm minimum headway criteria 25
Table 4-2: Short gap that did not meet the minimum threshold 29
Table 4-3: Long gap that exceeded the minimum threshold. 29
Table 5-1: List of intersections and characteristics 34
Table 5-2: DSS results by cycle for CR 427 NBL 40
Table 5-3: DSS results by cycle for Howell Branch Rd WBL 43
Table 5-4: DSS results by cycle for Saxon Blvd EBL 49
Table 5-5: DSS results by cycle for Saxon Blvd WBL 52
Table 5-6: DSS results by cycle for JYP SBL 59
Table 5-7: DSS results by cycle for Orange Ave NBL 62

I. INTRODUCTION

1.1 Overview

Driven by the Decision Support System (DSS) and the interactive model developed in Phases I \& II (BDK78 TWO 977-15, BDV24 TWO 977-10) for the selection of the flashing yellow arrow (FYA) left-turn phasing mode, changing based on current traffic conditions at intersections, the UCF research team is aiming at developing an exclusive hardware platform for the DSS for two main objectives. The first objective was to provide a generic device that would be compatible with the different controller types used by different jurisdictions within the FDOT districts. The DSS model testing, through the pilot study conducted in phase II as a proof of concept revealed several technical hitches related to the type of traffic signal controller utilized, such as Siemens controllers in Orange County versus Naztec in Seminole County. The second crucial objective was the automation of the decision process at the Traffic Management Center (TMC) as well as in the field. The board used in the field/lab testing environment in Phase II was a one-way communication device. The decision of the algorithm was only displayed in a text box on the screen. An input/output device is needed to complete the process and relay the decision back to the controller. The UCF research team developed a hardware platform, based on the DSS, which is connected to the controller in the field and automate the modification-selection process of the FYA mode on a cycle-by-cycle basis. The hardware platform receives volume data as well as signal phasing and timing (SPaT) inputs for a given cycle and returns recommendations back to the controller.

The proposed DSS is being developed with the goal of safely optimizing traffic operations. In the case of a red arrow signaled for a left turn, the opposing through traffic during the green phase is constantly analyzed in real time to determine whether it would be optimal to switch the red arrow to a flashing yellow arrow. The DSS would provide traffic engineers at the TMC with the tools to utilize the efficiency of the permissive left-turn phase at both peak and off-peak times and fine-tune time-of-day phasing to reduce the delay at approaches with low volumes. The result will be greater safety, higher throughput, and fewer delays at these intersections, producing greater convenience and efficiency for Florida drivers.

1.2 Objectives

The main project objectives are:
1- Select an appropriate I/O Data Logger Device
2- Develop a communication layer compatible with all FDOT controllers
3- Fine tune the DSS algorithm and criteria and its user interface
4- Offline testing and validation of the algorithm for safe operation
5- Online Field testing for different controller types

1.3 Summary of Phase III Project Tasks

Task 1: Hardware Procurement and Interface Design
Task 2: Software Development and Algorithm Fine Tuning
Task 3: Offline Testing
Task 4: Online Testing
Task 5: Draft and Final Report

II. HARDWARE PROCUREMENT AND INTERFACE DESIGN

2.1 Selection and Procurement of Digital Input/output Board

2.1.1 Examination of Boards in the Market

The first task in the project was to examine and study the available data logger hardware devices on the market. The goal is to procure a hardware board that is two-way communication and capable of connecting to the traffic controller on one side and to a computer on the other. The board used in the field/lab testing environment in phase II was a one-way communication device. The decision of the algorithm was only displayed in a text box on the screen. An input/output device is needed to complete the process and relay the decision back to the controller. The board is normally driven by a software interface that connects it to, and allows to be controlled by, the computer. This software is typically provided by the manufacturer to help developers interact with the hardware and build useful functionality into the system.

The project requirements for the hardware board are essentially the following:
i. Digital I/O board, i.e. capable of handling both digital input and output channels
ii. Has sufficient input and output channels to address multiple lanes and instructions
iii. Simple software interface compatible with Microsoft Visual Studio
iv. Portable

2.1.2 National Instruments

Our initial research choice led to National Instruments (www.ni.com). This is a company specializing in electronic test and measurement equipment. After consulting with their engineers, the following board and accessories were tentatively selected as shown in Figures 2-1 to 2-3.

Figure 2-1: NI-9375, PN: 785192-01

Figure 2-2: cDAQ-9171, PN: 781425-01

Figure 2-3: 782698-01 NI PS-10 power supply 24 VDC, 5A, 100-120/200-240 VAC

This board has the capability of handling 16 input and 16 output channels. It is compact and light weight which makes it ideal for the project. Unfortunately, after conducting significant research and effort with the company, it was found that the software provided was not easy to use, extremely bulky to install, and incapable of meeting the minimum requirements for our project. We had to look for another device.

2.1.3 CONTEC

We continued researching companies specializing in tests and measurements. A number of them were considered and our final choice was Contec (www.contec.com). Their subsidiary company is in Melbourne, FL (www.dtx.com). The software interface is relatively easy to install and use. The board is capable of handling 16 digital input and 16 digital output channels and it met the project requirements as shown in Figures 2-4 to 2-6.

Isolated Digital I/O Module for USB2.0
 DIO-16/16(USB)

Figure 2-4: Digital I/O board with 16 input and 16 output channels

AC-DC Power Adaptor(5VDC, 2A)

Figure 2-5: External power supply necessary for the board operation

CONPROSYS Series
24VDC AC-DC Power Supply Unit
CPS-PWD-90AW24-01

Figure 2-6: External larger power supply to provide power for the output channels

2.2 Wiring and Connection Testing

The UCF ITS laboratory is currently equipped with different traffic controllers and cabinets that were provided by Seminole and Orange County Traffic Engineering Staff to support the different controller types in the market such as Siemens and Naztec. Econolite controller will also be provided by Osceola County traffic engineering staff. Seminole County Traffic Engineering Staff were very helpful in setting up the testing environment as shown in Figure 2-7 and mapping the intersection loop detectors from the field to the cabinet in the lab through FDOT using a peer-topeer logic. A workstation was also setup to monitor vehicle detection in real-time mode by CCTV cameras through the Bosch Video Management Software (BVMS). The intersection vehicle detection system through the loop occupancy and the CCTV cameras are connected to the I/O board and the communication software to receive data signaling the traffic flow on a second by second basis. Figures 2-8 to 2-10 show the inside of a Naztec controller cabinet and the different panels and modules needed for the wiring process.

Figure 2-7: Seminole county staff setting up the testing environment

Figure 2-8: Load switch (LS) panel for signal heads (top) and load resistor panel (bottom)

Figure 2-9: The inside of a Naztec controller cabinet showing various modules

Figure 2-10: Detector channel outputs and bus interface unit (BIU)

2.2.1 Wiring Method from I/O Board to Controller

Traffic data received from, and the decision support system (DSS) logic instructions sent back to the controller are communicated through wiring connections to dedicated channels. Each traffic lane will use a separate input channel while other controller and/or traffic states will use one or more input channels. The logic instructions sent back to the controller will use one or more output channels. Additional wiring methods are used between the board and the controller to convert signals to and from the controller in order to accommodate various controller protocols. This task involves testing the wires and connections needed for the Siemens controllers in Orange County, Naztec controllers in Seminole County and Econolite controllers in Osceola/Volusia Counties to ensure compatibility. It should be noted that TS-2 controller cabinets are the only type approved by Traffic Engineering Research Lab (TERL) that supports the flashing yellow arrow (FYA) operation. TS-1 controllers are not capable of operating flashing yellow arrow signals. The following wiring technique is performed in the UCF ITS lab between the digital I/O board and a Naztec controller cabinet type TS-2 as an example for one of the intersection approaches and will be the standard for all other TS-2 controllers.

The digital I/O board was connected to the controller in a 2-way communication pattern; input and output as shown in Figures 2-11 and 2-12 showing the digital I/O board and its power supply.

Figure 2-11: The digital I/O board and its wiring to the controller

Figure 2-12: A close-up of the digital I/O board and its power supply
The wiring input needed to the board consist of 5 wires:
i) The left lane detection (vehicle detection in the left lane)
ii) The opposing through traffic lane detection (3 in this setting),
iii) The opposing through green phase status (red or green)

The wires were connected to the I/O board channels using the pre-emption outputs from the cabinet as shown in Figure 2-13. The preemption outputs were remapped and converted into detector inputs to be able to detect the signal drop low which indicates vehicle presence in each lane. The controller's input and output functions are hardwired to the Bus Interface Unit (BIU) which are communicated through the Synchronize Data Link Communication (SDLC) module. The detectors of the opposing through phases 2 and 6 will be used to activate the red arrow indication of the left turn (default mode) while phases 10 and 14 detectors will be utilized to activate the flashing yellow arrow indication.

Figure 2-13: Wiring from five pre-emption outputs to I/O Board

During operation, the DSS algorithm is continuously receiving and analyzing traffic data from the field. Once the algorithm reaches a decision to safely switch from a red arrow to a flashing yellow arrow, the decision is communicated back to the traffic controller via the output protocol of the digital I/O board.

The output protocol needs two wires to send a signal back to the traffic controller that, when high, instructs it to switch to a flashing yellow arrow mode based on the DSS. The detector channel outputs were utilized and converted into detector inputs for this purpose as shown in Figure 2-14. The two wires are connected to the detector channel L15 and logic ground L27. The controller logic ground on L27 receives the signal from the I/O board and sends it to detector L15 to put in a call to activate phase 10 for a flashing yellow arrow mode and inhibits phase 2, which is protected-only mode.

It should be noted that, for safety purposes, at the beginning of each cycle, the default of the left turn mode will be a red arrow and, depending on the traffic conditions, the DSS will determine whether there are enough gaps to switch to a FYA mode or not.

The output from the digital I/O board to the controller is wired through a relay before being fed to the controller as shown in Figure 2-15. The relay is used as a test-bed integration to keep the power supply of the I/O board isolated from the cabinet power supply. The wiring setup also included the connection of actual red and yellow arrow LED light modules to indicate the status of the operation in real time as shown in Figures 2-16 and 2-17.

Figure 2-14: Connections to the detector channel (L15) and logic ground (L27)

Figure 2-15: The output signal to the controller is wired through a relay.

Figure 2-16: A red light arrow module is included in the wiring setup.

Figure 2-17: A flashing yellow arrow light module is included in the wiring setup.

2.3 General Wiring and Connection Interface

2.3.1 General Wiring

The general wiring and connections as well as the hardware described in the previous sections are selected and assembled in a manner that would facilitate the seamless communication with virtually any TS-2 traffic controller on the market which can accommodate different protocols \& signal conversion. At a minimum, the Advanced Traffic Controller (ATC) should support the following requirements to be able to establish the above connections:

- 16 phases
- 4 rings
- 32 channel detection
- Input/output Logic
- Peer to Peer Logic

2.3.2 Connection Interface

The 2-way information to and from the computer communicating with the traffic controller is routed through the digital I/O board and driven by a software interface. Figure 2-18 shows an initial software interface version that was used to operate and test the wiring and connections. The interface has the responsibility of acting as a translator between the algorithm running on the computer side and the traffic controller present in the field.

Figure 2-18: Software interface between the computer and the controller

2.3.3 Data Received and Analyzed in Real Time

The basic communications software that accompanied the I/O board was limited compared to what was required in this project. It essentially establishes connection with the board and receives the data through the input channels. However, the data is accessed manually. What was needed, however, was automatic real-time access to the channel data as it is received by the board so that the algorithm can analyze traffic information in real-time and make accurate decisions. No time lag or decision gaps are expected to occur during the operation of the algorithm or its decision based on the traffic status. That's why, a custom communication interface is needed on top of the basic software which has three main functions; control the hardware, display real-time status and execute the proposed FYA algorithm. In Task 2, the UCF research team will develop a specific code to retrieve instantaneous channel input data, synchronize opposing thru green phase, analyze traffic information, provide the algorithm decision, and generate a real-time log recording the events.

2.4 Task 1 Conclusion

What has been achieved is a general design capable of communicating with all TS-2 hardware layouts and controller models currently in operation. As mentioned earlier, Phase III aims at developing a common method to connect to any controller regardless of its make or model. The algorithm running on the computer side and the user do not need to know what hardware exists on the other side. This conversion is handled by the interface layer which is designed to seamlessly perform this operation.

III. SOFTWARE DEVELOPMENT

The software development task is conducted with two main goals; developing the communication layer and the user interface. These two sub-tasks are described in the next sections. The software is being developed in the C\# language under the Microsoft Visual Studio environment. It employs custom methods and functions as well as general libraries provided by the hardware manufacturer. These software components have been streamlined in a manner to achieve the initial project requirements.

3.1 Development of the Communication Layer

3.1.1 Custom Communication Software

A custom communication software has been developed that is capable of communicating with the new I/O hardware board in a bi-directional manner. Bi-directional communication means that the software is capable of both receiving data from and sending instructions to the hardware. This is crucial in the decision making process as traffic related commands will eventually be initiated to the controller in real-time. The software has three main functions; control the hardware, display real-time status and execute the proposed FYA algorithm. The UCF research team developed a specific code to retrieve instantaneous channel input data, synchronize opposing thru green phase, analyze traffic information, provide the algorithm decision, and generate a real-time log recording the events.

The software is currently collecting traffic data at the rate of 20 readings per second for each channel. This rate is more than sufficient to guarantee complete data reception in real-time without the possibility of missing traffic activity. The communication layer reception has been tested offline then online using the traffic controller in the UCF lab. The controller is connected to live traffic but, for safety reasons, it is not sending instructions to the field. However, live algorithm decisions will be conducted in Task 4. Field cameras mounted at the analyzed intersections were also used to corroborate the accuracy of the data communication.

3.1.2 Parameter Setting for Hardware Configuration

The software sets the required parameters for hardware configuration. It sets the number of lanes monitored, the data acquisition rate, and the channel configuration for sending and receiving data. The software is flexible enough to modify these parameters for different intersection settings. This capability allows for the analysis of virtually any traffic configuration at different intersections.

3.2 Development of the User Interface

A user interface (UI) has been developed to operate the software and establish a layer of communication with the user. The role of the user interface is to take commands from, and display information back to, the user. Some of the user interface development challenges are intuitiveness and user-friendliness. These criteria have been essential during the UI development phase.

3.2.1 Intuitive User Interface

The user interface developed for this project allows for monitoring the traffic lanes under analysis in real-time conditions. The main user interface is shown in Figure 3-1.

Figure 3-1: Main user interface

The interface is intuitive and very simple to operate. To start or stop the traffic monitoring process, the user presses the Start or Stop buttons, respectively. When the process is started, the real-time traffic activity is presented in a tabular scrolling list form where each traffic variable of interest is displayed. A time stamp and a record number are attached to each traffic activity which makes examining historical data straightforward. It should be noted that the sequential time stamp inside the log file is the incremental time starting from zero when the monitoring starts. However, the name of the file itself is the date and time of the analysis. The scrolling list allows the user to scroll back to previous records even when the system is running. Figure 3-2
shows a real time traffic display during the testing process. The interface was designed to be as user friendly as possible.

Figure 3-2: Real-time traffic display

3.2.2 Specification of Initial Parameters

Specification of the initial parameters has been implemented with the goal of maximizing user awareness of the traffic activity. For example, the rate of information displayed is set at a reasonable value for a human to comprehend. This rate is slower than that of the data acquisition. The software also specifies the value for the number of cycles used for dynamic traffic analysis. The incoming traffic information is displayed on the screen in a tabulated fashion. The user has the ability to scroll back to historical data while the system is operating and acquiring data.

Traffic decisions that are made in real-time are displayed to the user clearly. The user can examine the decisions versus the corresponding historical data for further analysis.
While carrying out real-time data acquisition, the software outputs the time stamped traffic data continuously to a log file for later analysis as shown in Figure 3-3. Offline examination of the traffic events and the corresponding decisions will help better understand traffic patterns and improve the decision algorithm.

- Monday, October 30, 2017 1.01.16 PM.txt - Notepad						-O x	
Eile Edit	Format View	Help					
	Left	Opp	In	Mid	Out	Time	\wedge
Record	Lane	Green	Lane	Lane	Lane	Stamp	
1	-	Red	Car	-	Car	00:00:00	
2	.	Red	Car	Car	Car	00:00:00	
3	-	Green	Car	Car	Car	00:00:02	
4	-	Green	Car	Car	.	00:00:09	
5	-	Green	.	Car	-	00:00:10	
6	Car	Green	Car	Car	Car	00:00:11	
7	Car	Green	Car	Car	Car	00:00:11	
8	Car	Green	Car	Car	Car	00:00:11	
9	Car	Green	.	.	.	00:00:13	
10	Car	Green	.	.	.	00:00:13	
11	Car	Green	-	-	-	00:00:13	
12	.	Green	Car	Car	Car	00:00:14	
13	-	Green	Car	Car	Car	00:00:14	
14	.	Green	Car	Car	Car	00:00:14	
15	-	Green	Car	Car	Car	00:00:14	
16	-	Green	.	.	Car	00:00:18	
17	-	Green	-	-	Car	00:00:18	
18	.	Green	Car	-	Car	00:00:19	
19	-	Green	.	Car	.	00:00:20	
20	-	Green	-	Car	-	00:00:20	
21	.	Green	-	Car	-	00:00:20	
22	-	Green	Car	Car	Car	00:00:21	
23	.	Green	Car	Car	Car	00:00:21	
24	.	Green	Car	Car	.	00:00:22	
25	-	Green	Car	.	Car	00:00:23	
26	.	Green	Car	-	Car	00:00:23	
27	.	Green	.	Car	Car	00:00:24	
28	-	Green	-	Car	Car	00:00:24	
1							

Figure 3-3: Log file during real-time data acquisition

3.2.3 Adaptation to Various Scenarios

The software allows for the adaptation of various scenarios and methods regarding various situations. For example, traffic data can be input in various logical formats based on the hardware. The software is flexible enough to allow for logical format variation in data logic signals. Currently, the software is configured to accommodate the following signal logic as shown in Table 3-1.

Table 3-1: Event signal logic

Event	Signal Logic
Car present	$\underline{\text { low }}$
No Car	$\underline{\text { high }}$
Opposing Green	$\underline{\text { low }}$
$\underline{\text { Opposing Red }}$	$\underline{\text { high }}$

Also, different intersections have different lane configurations. The software has the capability to configure different lane numbers and assignments based on the scenario under analysis. Currently, the software is configured for the following channels:

1. Left Lane under study with FYA
2. Opposing thru Green Phase (red or green)
3. Three opposing thru lanes:
[a] Inside Lane
[b] Middle Lane
[c] Outside Lane
Traffic data can follow many trends and have special cases. The software employs multiple approaches and techniques to examine the data and make a dynamic decision that best represents the real-time traffic.

3.3 Task 2 Conclusions

This task was mainly related to software development using C\# language. The main goal of this task is to enable is the custom software to communicate with the new digital I/O board to allow the software to set various parameters required for a successful configuration of the hardware. The parameters included acquisition of signal timing, acquisition of mode, extracting arrival data from the input channels, and outputting data to the output channels.

A User Interface (UI) was also developed to specify particular parameters pertinent to each intersection and also adjust parameters while the operation is in progress, and to visualize the input data and the output decision as they occur.

IV. OFFLINE TESTING

4.1 Overview

The main goal of this task is to be able to communicate with various traffic controller types in an offline mode while allowing for the algorithm verification and enhancement using real-time traffic data. Offline testing provides this goal while maintaining a safe testing environment. It assists in developing the methods and techniques needed to examine the data and make a dynamic decision accordingly that best represents the real-time traffic.

The testing was conducted at UCF lab where actual intersection field data was obtained through loop detector mapping to the controller in the lab in real-time mode. This process is called peer-to-peer logic where an actual traffic controller is needed along with a controller interface device (CID) such as the digital input/output board. This setup is used in offline testing methodologies where an executable code such as algorithms or even an entire controller strategy, usually written for a particular system, is tested within a field environment that can help prove a concept or test a software. The testing environment required the following different components as shown in Figure 4-1:

1- Traffic signal cabinet with different controller types (Siemens, Naztec, \& Econolite)
2- Four-Section signal display (Flashing Yellow Arrow Signal)
3- CCTV camera feeds connected to a computer to monitor intersection traffic flow
4- Digital input/output data logger device
5- Communications software
Seminole County Traffic Engineering Staff were very helpful in setting up the testing environment and mapping the intersection loop detectors from the field to the cabinet in the lab. The CCTV cameras were also setup to monitor both the study approach as well as the traffic signal indication. The intersection vehicle detection system through the loop occupancy and the CCTV cameras were connected to the digital I/O board and the communication software to receive data signaling the traffic flow on a second by second basis. The permissive green times and the opposing through traffic were determined on a cycle-by-cycle basis from the field by the data logger software. The logic was based on modeling the inter-arrival time of vehicles and calculating the minimum headway and gap time per lane for the opposing traffic from the loop detectors data for the first two cycles before recommending a decision for the left turn signal head, either flashing or not, for the next cycle. This iterative process is repeated constantly on a cycle-by-cycle basis.

TS2 Cabinets, Different Controller Types \& FYA Signal Head

Isolated Digital I/O Module for USB2.0
DIO-16/16(USB)

Digital I/O Board

Naztec 900 ATC Controller

Siemens M60 Controller

CCTV Camera Feeds

Econolite Cobalt Controller

Figure 4-1: Testing environment components

4.2 Peer-to-Peer Logic for Data Communication

As mentioned earlier, Offline testing was conducted using a peer-to-peer logic setup as shown in Figure 4-2. It should be noted that all District 5 counties will eventually be connected to the Florida Department of Transportation's (FDOT) fiber optics network as part of the statewide effort of updating Florida's Statewide ITS Architecture (SITSA), which charts the current and future course of ITS deployment. SITSA provides an integrated framework to ensure that various transportation technologies can work together smoothly and effectively on Florida's highways. Currently, Seminole, Orange and Volusia Counties are connected to FDOT's network which facilitated the communication with the three (3) main traffic controller types in District 5; Siemens, Naztec and Econolite shown in Figure 4-1.

Vehicle detection through loops or video detection is sensed in the field by the cabinet and the controller. Then it is mapped in real-time mode from the intersection approach to the controller and cabinet in the lab through an FDOT switch located at the UCF lab which communicates between the 2 controllers. The digital I/O board retrieve instantaneous channel input data in each lane through the lab cabinet. The algorithm analyzes the traffic data and makes a decision accordingly that is communicated back to the controller, and generate a real-time log recording the events. Peer-to-peer-logic offers the benefit of acquiring and analyzing real-time traffic data coupled with video feed with the benefit of a safe environment. The decision to switch to a red or a flashing yellow arrow is demonstrated by an actual left-turn traffic light with 4 -signal configuration installed in the lab. This makes the analysis intuitive and more realistic. Peer-to-peer-logic is a necessary step to verify and validate the algorithm and the software prior to field testing.

Figure 4-2: Peer-to-peer logic setup

4.3 Algorithm Logic

The original algorithm of the previous phase of the project helped achieve the proof of concept. It analyzed traffic data but without the ability to send back a decision to the controller. The decision reached after every analysis was only displayed to the user for verification. In this current phase, however, fine tuning and improving the algorithm and its accuracy are a natural progression in the development cycle. The algorithm decision is now communicated back to the controller for left turn mode adjustment. The decisions and the corresponding traffic data are stored in log files for further analysis and improvement.

The idea was to devise a technique that would predict traffic behavior in the short term based on historical data of the past few minutes using a moving average window. The method examines the traffic for a user defined number of cycles to predict the behavior for the following cycle. A decision is then made and the analysis window is updated by dropping the older cycle in the window and adding the current one. The process is then repeated continuously.

The algorithm applies a two-cycle window of historical traffic data for analysis at every cycle. During analysis, the algorithm constantly searches for gaps across all lanes of the traffic flow in the prior two cycles. Any gap meeting or exceeding the minimum headway threshold, shown in Table 4-1, is taken into account as a valid gap and stored in an accumulator. The decision to switch to a flashing yellow arrow is made when the cumulative valid gap(s) in the analysis window meet or exceed 6 times the minimum threshold, which is an average of 3 times per analysis cycle. As a safety precaution, the default and fallback decision is a red arrow.

The decision is made based on a number of parameters. These parameters include the number of opposing through lanes, the number of crossing lanes, the minimum headway in seconds corresponding to the number of lanes to cross, and the number of cycles in the analysis window. Table 4-1 shows the minimum headway (gap) in seconds corresponding to the number of lanes to cross. The thresholds used for different crossing number of lanes were obtained from the database of 30,000 cycles collected from the field.

Table 4-1: FYA algorithm minimum headway criteria

No. of Opposing Lanes Crossed	Min acceptable Gap Time	Comments
$\mathbf{1}$ Lane	3.0 s.	1 Thru lane
2 Lanes	3.5 s.	2 Thru lanes or 1 Thru + 1 RT
3 Lanes	4.0 s.	3 Thru lanes or 2 Thru + 1 RT
4 Lanes	4.5 s.	4 Thru lanes or 3 Thru + 1 RT

4.3.1 Discrete and Average Logic

Two approaches were tested to calculate the minimum gap; discrete and average approach. The discrete approach determines the time interval between the successive arrivals of vehicles for each lane independently and computes the lowest headway for each lane by cycle on a second by second basis. The algorithm then picks the minimum headway and compares it to the minimum acceptable gap shown in Table 4-1 needed for a vehicle to safely cross the given number of lanes. If the minimum headway for the corresponding number of lanes is achieved and repeated 3 times per cycle, the decision is made to switch to a flashing yellow mode. Otherwise, a red arrow is decided upon. The 3 time threshold was determined based on the statistical analysis of the cycle by cycle data collected from the field.

The average approach determines the heaviest lane of flow during the analysis period which is 2 cycles. It then determines the minimum gap duration by dividing the headway by the flow in the heaviest lane.

> Gap per Lane = Headway / Flow (Eq. 1)

If the minimum headway for the corresponding number of lanes is achieved and repeated 6 times in the 2 -cycles, the decision is made to switch to a flashing yellow mode. Otherwise, a red arrow is decided upon.

4.4 Offline Testing

The algorithm has been tested on a number of intersections in different counties (Seminole, Orange and Volusia) with different controller types, lane configurations and during different times of day using the peer-to-peer logic setup. The traffic data was streaming in real-time for the through lanes, the opposing green, and the left lane. Vehicle detection was in real-time mode and monitored by CCTV cameras through the Bosch Video Management Software (BVMS). Simultaneous video feed facilitated the visualization of the acquired data. The decision output by the algorithm only affected the controller in our lab and was inhibited from affecting the actual traffic. The following intersection and data provides an example of the testing procedure and results of the algorithm decision. The intersection is located in Seminole County at SR 436 (Semoran Blvd) and CR 427 (Ronald Reagan Blvd).

4.4.1 SR 436 and CR 427

One of the intersections used in testing the algorithm was the intersection of SR 436 and CR 427. The mainline SR 436 is a 6 lane divided arterial and CR 427 is a 2 lane road as shown in Figure $4-3$. There is a gas station on one of the corners and a small office space on the other corner. There is a rail road crossing on the east side of the intersection. The traffic gets heavier in the afternoon as shown in Figure 4-4. Due to the trees location which blocked part of the intersection view, a dual view was needed as shown in Figure 4-4. The intersection was monitored in the afternoon between 3:00 and 6:00 pm on a Thursday. As can be seen, the intersection is considered busy especially during the peak period. The study approach was the westbound left turn lane and the opposing eastbound 3 thru lanes. The testing was conducted during peak and off-peak times and using both approaches (discrete and average) to assess the sensitivity of the algorithm to traffic conditions.

Figure 4-3: SR 436 and CR 427 Geometry

Figure 4-4: SR 436 at CR 427 CCTV Camera Feeds

4.4.2 Decision Assessment and Field Data Validation

Tables 4-2 and 4-3 display the DSS log file and outputs for the intersection of SR 436 and CR 427 on a second by second basis for part of a cycle. The study approach has 3 opposing lanes to be crossed which correspond to a minimum acceptable gap time of 4.0 seconds as defined in Table 4-1. However, this minimum gap needs to be repeated at least 6 times, as specified in the algorithm, before deciding on a Flashing Yellow Arrow mode. As mentioned previously, the algorithm receives data for the first 2 cycles to calculate the minimum acceptable gap. Then the decision is provided in the third cycle and each cycle afterwards. Table 4-2 shows a short gap of 1.7 seconds that did not meet the minimum threshold of 4.0 seconds for the analyzed approach and, therefore, was not taken into account. Table 4-3, on the other hand, shows a longer gap of 6.1 seconds that exceeded the minimum threshold of 4.0 seconds and was counted as a valid gap. It should be noted that the gap time accuracy is in fraction of a second. The cycle length was around 230 seconds. The algorithm decision was to switch to a FYA mode most of the time between 3 and 5:00 pm based on the discrete approach. The average approach was recommending a red arrow all the time except during the SunRail passing due to the big gap created between the train and the intersection approach. However, approaching 5 pm , the algorithm decision was fluctuating from red arrow to FYA mode based on the discrete approach.

Figure 4-5 shows a 4-minute gap profile between $5: 56 \mathrm{pm}$ and 6:00 pm and displays about 12 gaps. Only one gap exceeded the minimum threshold (6.1 sec) which is highlighted in green in Figure 4-6. It should be noted that the gap is determined only when there are no vehicles in any lane (Y -axis $=0$ veh). More detailed log file is provided in Appendix A.

4.4.3 Log File Review

The software has been designed with continuous improvement in mind. All traffic data from all sensors and the corresponding algorithm decision are stored in real-time in a log file timestamped with the date and time of the start of the operation. This not only allows for offline verification of the existing software based on the rules and parameters currently implemented, but also helps pinpoint areas of improvement in efficiency and time saving. Log files can virtually be any size in length and are a great tool that provides for a thorough analysis and verification.

The log file for the above intersection is included in Appendix A. The log file shows vehicle arrival in fraction of second in each lane and the 2 methodologies used to calculate the minimum gap and their decisions (discrete and average decision) along with the cycle length.

Table 4-2: Short gap that did not meet the minimum threshold

Record	Left Lane	Opposing Green	Inside Lane	Middle Lane	Outside Lane	Time	Vehicle Count	Gap (Seconds)
14330	Car	Green	Car	\cdot	Car	$05: 57: 32.2$ PM	2	
14331	Car	Green	Car	\cdot	Car	$05: 57: 33.0$ PM	2	
14332	Car	Green	\cdot	\cdot	\cdot	$05: 57: 33.3$ PM	0	
14333	Car	Green	\cdot	\cdot	\cdot	$05: 57: 33.3$ PM	0	
14334	Car	Green	\cdot	\cdot	\cdot	$05: 57: 34.0$ PM	0	
14335	Car	Green	Car	\cdot	Car	$05: 57: 35.0$ PM	2	$00: 01.7$

Table 4-3: Long gap that exceeded the minimum threshold

Record	Left Lane	Opposing Green	Inside Lane	Middle Lane	Outside Lane	Time	Vehicle Count	Gap (seconds)
14481	Car	Green	\cdot	Car	\cdot	$05: 59: 00.2$ PM	1	
14482	Car	Green	\cdot	\cdot	\cdot	$05: 59: 01.2$ PM	0	
14483	Car	Green	\cdot	\cdot	\cdot	$05: 59: 01.3$ PM	0	
14484	Car	Green	\cdot	\cdot	\cdot	$05: 59: 02.2$ PM	0	
14485	Car	Green	\cdot	\cdot	\cdot	$05: 59: 03.2$ PM	0	
14486	Car	Green	\cdot	\cdot	\cdot	$05: 59: 04.2$ PM	0	
14487	Car	Green	\cdot	\cdot	\cdot	$05: 59: 05.3$ PM	0	
14488	Car	Green	\cdot	\cdot	\cdot	$05: 59: 06.3$ PM	0	
14489	Car	Green	\cdot	Car	\cdot	$05: 59: 07.3$ PM	1	$00: 06.1$

Figure 4-5: Four-minute gap profile for SR 436 and CR 427

Figure 4-6: One-minute gap profile for SR 436 and CR 427

4.5 Task 3 Conclusions

The algorithm is implemented with the goal of safely optimizing traffic operations. The Decision Support System was tested at different intersections located in Seminole, Orange and Volusia Counties. Field data was collected in real time mode using peer-to-peer logic in order to map the field controller to the lab controller. Video data was collected at the same time period as the algorithm was tested in order to validate the algorithm decisions. The DSS testing confirmed the applicability and validity of the developed algorithm as well as the aforementioned procedure, criteria and logic. It is concluded that the average methodology provided a more conservative approach than the discrete one. However, the discrete approach is more accurate than the average approach.

4.5.1 Iterative Development Process

The software development lifecycle in general, and algorithm development in particular, follow an iterative development process. It starts with intersection requirements, moves to analysis and design, implementation, testing, evaluation, then cycles back to requirements as shown in Figure 4-7. Algorithm development lends itself to the iterative nature of development because it is a heuristic process where there is no known direct path to optimality.

Figure 4-7: Iterative development process

V. ONLINE AND FIELD TESTING

5.1 Overview

The final task of this project involves field testing of the algorithm and the overall hardware platform developed throughout the project. The main goal was to connect directly to various controller and cabinet types in an online mode in the field while allowing for instant validation of the DSS. The system acquires and analyzes real-time traffic data, and the decisions are sent back to the controller, and at the same time, output is sent to the user's screen and saved to log files. The controller then applies the recommended decision to the four-section head display, whether in a flashing yellow arrow mode or red arrow, based on specific gap criteria reflecting intersection conditions. This task was performed on six intersections within the different counties in District 5 with the help of their traffic engineering staff. However, it is worth noting that Chad Dickson from Seminole County provided substantial help for Orange and Volusia County staff in the field wiring process and overcoming connection challenges. Field testing was executed at two intersections with Siemens controllers in Orange County, two intersections operated by Naztec controllers in Seminole County, and two intersections operated by Econolite controllers in Volusia County. The intersection photos are included in Appendix B, and the team photos are included in Appendix C. It should be noted that the intersection left turn approach required an actual four-section signal configuration instead of the five-section head display. The testing environment required the following components:

1- Traffic signal cabinet (TS2) with different controller types (Siemens, Naztec, \& Econolite)
2- Four-Section signal display (flashing yellow arrow signal)
3- Vehicle detection
4- Digital input/output data logger device
5- Communications software

The following sections explain in greater detail the testing procedure and provide an illustrative representation of how the system was connected in the field and the results of the Decision Support System (DSS) at each location.

5.2 Testing Scope and Specifications

The first step in the testing procedure is to select an intersection with specific characteristics, including the number of approach lanes for the left and through movements, type of signal head display, type of vehicle detection, traffic signal cabinet type, and controller type. The number of approach lanes is an essential component in determining the minimum gap time needed for the left-turning vehicles to safely cross the opposing through lanes. Furthermore, a single left turn lane is required for the permissive mode operation. Dual left turn lanes operate in a protected
mode only. Also, a 4-section configuration with the flashing yellow arrow (FYA) is needed instead of the 5-section display. As mentioned earlier, traffic signal cabinets TS2 are approved by the Traffic Engineering Research Lab (TERL) for the operation of the flashing yellow arrow. However, there exist TS2 type 1, type 2 and hybrid cabinets in the field which are acceptable but each one requires a different wiring setup as will be explained later. Vehicle detection through loop detectors or video detection is another requirement to determine the number of vehicles and inter-arrival times at the intersection approaches. Lastly, the three main controller types utilized in Florida; Siemens, Naztec and Econolite are also essential for the testing environment. The next sections describe the methods, techniques, issues and challenges faced during the field testing at each intersection in the different Counties.

The DSS communication software receives real-time data from the loop detectors signaling the traffic flow during the green phase on a second by second basis. The algorithm applies a twocycle window of historical traffic data for analysis at every cycle. During analysis, the algorithm constantly searches for gaps across all lanes of the traffic flow in the prior two cycles. Any gap meeting or exceeding the minimum headway threshold which is defined at each intersection, is taken into account as a valid gap and stored in an accumulator. The decision to switch to a flashing yellow arrow is made when the cumulative valid gap(s) in the analysis window meet or exceed 6 times the minimum threshold, which is an average of 3 times per analysis cycle. As a safety precaution, the default and fallback decision is a red arrow. This iterative process is repeated constantly on a cycle by cycle basis and is defined as the "Discrete" method. An additional method was also used and defined as the "Average" method. The average method determines the heaviest lane of flow and determines the average gap duration by dividing the amount of green time in each cycle by the flow in the heaviest lane and compares it to the minimum gap time. This method is similar to the saturation headway and provides an average gap time assuming a uniform arrival of vehicles. It doesn't take into account the stochastic nature of vehicle arrival or the actual arrival rate. However, it provides a more conservative approach by ensuring that the minimum gap is achieved between every two arriving vehicles every cycle in order to switch to a flashing yellow arrow.

In order to examine the sensitivity of the FYA DSS algorithm to the changes in traffic conditions during off peak and peak hours, the testing period was chosen from 2:00 to 5:00 pm which starts after the end of the mid-day peak hour and continues until the evening peak hour. Table 5-1 summarizes the list of intersections selected for testing in each County according to the above criteria as well as the cabinet type, controller type, study approaches, number of opposing lanes to cross, minimum acceptable gap time and the date when the site was visited.

Table 5-1: List of intersections and characteristics

County	Intersection	Cabinet Type	Controller Type	Study App	No of opp. Thru Lanes Crossed	Min acceptable Gap Time (Sec)	Date Site Visited
Seminole	CR427 @ Longwood Hills Rd	TS2-Type 1 Naztec Trafficware	Naztec Series ATC900 Trafficware	NBL $\&$ SBT	$2+1$ RT	4.0	Sept 10, Seminole Howell Branch Road $@$ Lake Howell Road
TS2-Type 1 Naztec Trafficware	Naztec Series ATC900 Trafficware	WBL $\&$ EBT	2018				

5.3 Seminole County

5.3.1 Intersections Wiring and Challenges

Seminole County Traffic Engineering Staff (Chad Dickson and Jared Zabele) were extremely helpful in setting up the testing environment and wiring the connections to the cabinet and controller. The DSS I/O board requires specific input data from the cabinet and controller before sending a decision back to the controller. Input data include vehicle detection from each of the thru lanes as well as the left turn lane and status of the opposing thru phase. These data are needed as an output from the cabinet and the controller.

Seminole County utilizes Naztec Controllers and TS2 Type 1 Cabinets from Trafficware as shown in Figure 5-1. In a TS2 Type 1 cabinet, the Naztec controller’s input and output (I/O) functions are hardwired to the Bus Interface Unit (BIU) and directly connected to the Load Switches (LS) which are communicated through the Synchronize Data Link Communication (SDLC) module. However, the back panel provides an additional I/O functions for testing purposes which were used to connect to the DSS I/O board. The preemption outputs shown in Figure 5-2 were remapped and converted into detector inputs to the DSS board to be able to detect the low signal which indicates vehicle presence in each lane and also to detect the status of the opposing thru phase.

On the other hand, the output protocol from the DSS needs special wiring to send a signal back to the traffic controller which instructs it to switch to a flashing yellow arrow mode based on the available gaps. The detector channel outputs were utilized and converted into detector inputs for this purpose as shown in Figure 5-3. Two (2) wires are connected to the detector channel L15 and logic ground L27. The controller logic ground on L27 receives the signal from the DSS board and sends it to detector L15 to put in a call to activate phase 10 for a flashing yellow arrow mode and inhibits phase 2 which is protected only mode.

It should be noted that, for safety purposes, at the beginning of each cycle the default of the left turn mode is a red arrow and depending on the traffic conditions, the DSS determines whether there are enough gaps to switch to a FYA mode or not. Therefore, the detectors of the opposing through phases 2 and 6 are used for the red arrow indication of the left turn (default mode) while phases 10 and 14 detectors are used to activate the flashing yellow arrow indication.

Figure 5-1: Naztec cabinet at CR 427 and Longwood Hills Road intersection

Figure 5-2: Naztec cabinet with preemption inputs and outputs connected to DSS

Figure 5-3: DSS connections to detector channel (L15) and logic ground (L27)

5.3.2 Intersections Testing and DSS Results

As mentioned earlier, the two intersections selected for testing in Seminole County were:
1- CR 427 (Ronald Reagan Blvd) at Longwood Hills Road
2- Howell Branch Road at Lake Howell Road.
1- CR427 and Longwood Hills Road Intersection
CR 427 (Ronald Reagan Blvd) is a four lane divided principle arterial in Seminole County running in the north-south direction with a posted speed limit of 45 mph . Longwood Hills Road is an east-west two lane two way collector with a posted speed limit of 30 mph . Residential land uses exist on the east side of the intersection while a power plant and a commercial building exist on the northwest and southwest quadrants respectively as shown in Figure 5-4. The intersection has an exclusive northbound (NB) and southbound (SB) left turn lanes. The NB and SB left turn lanes have a four-section head display which operate in a protected permissive mode throughout the day. However, the side streets on Longwood Hills Rd/Shomate Drive have split phase operation. The traffic gets heavier in the southbound direction during the PM peak hour.

The study approaches were the northbound left turn (NBL) and southbound opposing thru (SBT). The southbound has 2 through lanes with loop detectors and an exclusive right turn lane without a loop detector as shown in Figure 5-3. Therefore, the DSS was setup to receive data from 2 lanes while the minimum gap time was set to cross 3 lanes. The intersection was running in a free mode and not coordinated. The cycle length varied according to the demand but was fluctuating between 80 and 130 seconds during the testing period.

Figure 5-4: CR 427 and Longwood Hills Rd intersection

Decision Results and Assessment

Table 5-2 provides a summary of the log file and the DSS decisions in each cycle during the testing period for the NBL at CR 427. The study approach has 3 opposing lanes to be crossed which correspond to a minimum threshold of 24 second before deciding on a Flashing Yellow Arrow mode based on the discrete method. The 2-hour testing period resulted in 75 cycles with a majority of red arrow decisions (47 cycles) which shows a heavy traffic pattern even before the peak hour which started around 4:00 pm. Approaching the peak hour around 4 pm , the algorithm decision was red arrow for 29 cycles except for 5 cycles. The results also show steady fluctuations between the red arrow and yellow arrow decisions which are considered reasonable especially for driver's expectation. This also indicates that the threshold is rational and practical. Figure 5-5 shows a graphical representation of the gaps and the threshold. As can be seen on Figure 5-5, the max total gaps achieved were almost 50 seconds and the minimum gap was 0 seconds. The decisions can also be verified from the rest of the data which shows the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. For example, at 4:06 pm, the decision was to inhibit FYA due to absence of gaps which can be verified by the 54 vehicles, in the heaviest lane, that arrived during 47 seconds of green phase. The average method calculates the saturation headway and proves that the approach was operating at capacity. As mentioned earlier, the average method is more conservative and is looking for the minimum gap to be achieved between every two arriving vehicles. It is important to note that the discrete method is more accurate and reflects actual traffic conditions on a second-by-second basis.

Table 5-2: DSS results by cycle for CR 427 NBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green		Green Phase (sec)	Cycle Length (sec)
						Lane 1	Lane 2		
1	02:50:36.41 PM	27.1	Yellow Arrow	2.5	Red Arrow	17	15	40.4	124.3
2	02:52:10.81 PM	18.2	Red Arrow	1.9	Red Arrow	22	10	40.5	94.4
3	02:53:38.12 PM	29.5	Yellow Arrow	3.4	Red Arrow	13	12	40.6	87.3
4	02:55:10.14 PM	38.5	Yellow Arrow	2	Red Arrow	14	21	40.4	92
5	02:56:45.29 PM	44.1	Yellow Arrow	5	Yellow Arrow	9	4	40.2	95.2
6	02:58:27.13 PM	42.8	Yellow Arrow	2.7	Red Arrow	16	8	40.6	101.8
7	03:00:06.67 PM	38.6	Yellow Arrow	3.3	Red Arrow	13	10	39.9	99.5
8	03:01:56.09 PM	43.8	Yellow Arrow	1.9	Red Arrow	25	24	45.8	109.4
9	03:03:28.97 PM	41.9	Yellow Arrow	2.5	Red Arrow	16	19	45.4	92.9
10	03:04:50.06 PM	30.6	Yellow Arrow	1.8	Red Arrow	24	13	40.3	81.1
11	03:06:07.83 PM	15.9	Red Arrow	1.4	Red Arrow	29	9	40	77.8
12	03:07:38.59 PM	17.1	Red Arrow	3.1	Red Arrow	14	12	40.5	90.8
13	03:09:04.53 PM	29.8	Yellow Arrow	2	Red Arrow	9	21	40.2	85.9
14	03:10:48.53 PM	38.9	Yellow Arrow	2.3	Red Arrow	19	16	40.8	104
15	03:12:16.70 PM	17.5	Red Arrow	1	Red Arrow	42	19	40.7	88.2
16	03:13:48.12 PM	10.2	Red Arrow	1.7	Red Arrow	25	21	39.9	91.4
17	03:15:13.42 PM	29.6	Yellow Arrow	4	Yellow Arrow	11	10	40	85.3
18	03:16:33.64 PM	19.4	Red Arrow	1.2	Red Arrow	36	29	41.2	80.2
19	03:18:07.24 PM	10.9	Red Arrow	2.1	Red Arrow	20	6	40.4	93.6
20	03:19:34.57 PM	19.7	Red Arrow	1.7	Red Arrow	25	18	40.6	87.3
21	03:20:57.64 PM	8.8	Red Arrow	1.7	Red Arrow	25	15	40.5	83.1
22	03:22:27.48 PM	6	Red Arrow	1.7	Red Arrow	25	12	40.1	89.8
23	03:24:17.55 PM	18.9	Red Arrow	1.8	Red Arrow	26	22	45.7	110.1
24	03:25:40.31 PM	32.3	Yellow Arrow	1.6	Red Arrow	29	18	45.3	82.8
25	03:27:07.37 PM	47.1	Yellow Arrow	3.8	Red Arrow	6	13	45.2	87.1
26	03:28:34.30 PM	41.8	Yellow Arrow	1.6	Red Arrow	19	29	44.9	86.9
27	03:30:20.92 PM	35.3	Yellow Arrow	2.3	Red Arrow	21	9	45.1	106.6
28	03:31:51.32 PM	25.5	Yellow Arrow	1.6	Red Arrow	30	22	45.2	90.4
29	03:33:26.12 PM	16.6	Red Arrow	2.3	Red Arrow	19	21	45.8	94.8
30	03:35:07.95 PM	12.1	Red Arrow	1.6	Red Arrow	30	17	45.1	101.8
31	03:36:56.04 PM	13.3	Red Arrow	1.7	Red Arrow	28	4	45.7	108.1
32	03:38:30.54 PM	18.4	Red Arrow	1.6	Red Arrow	29	23	45.6	94.5
33	03:40:04.33 PM	15.8	Red Arrow	1.3	Red Arrow	31	37	45.4	93.8
34	03:41:38.62 PM	31.7	Yellow Arrow	1.7	Red Arrow	23	27	45.4	94.3
35	03:43:05.95 PM	21	Red Arrow	1	Red Arrow	32	46	45.5	87.3
36	03:44:56.64 PM	22	Red Arrow	2.2	Red Arrow	23	9	47.7	110.7
37	03:46:21.40 PM	49.1	Yellow Arrow	3.6	Red Arrow	14	14	47.3	84.8
38	03:48:03.24 PM	48.3	Yellow Arrow	2.5	Red Arrow	19	7	45.7	101.8
39	03:49:34.54 PM	43.8	Yellow Arrow	2.2	Red Arrow	11	22	45.8	91.3
40	03:51:02.82 PM	35.7	Yellow Arrow	2.1	Red Arrow	23	20	45.8	88.3
41	03:52:36.86 PM	28.3	Yellow Arrow	1.8	Red Arrow	27	8	45.5	94
42	03:54:18.64 PM	20.5	Red Arrow	1.2	Red Arrow	40	35	44.9	101.8
43	03:55:47.07 PM	15.1	Red Arrow	1.6	Red Arrow	29	12	45.1	88.4
44	03:57:22.53 PM	13.8	Red Arrow	2	Red Arrow	25	25	47.3	95.5
45	03:59:10.53 PM	4.1	Red Arrow	1.5	Red Arrow	32	28	45.8	108
46	04:00:52.21 PM	14.1	Red Arrow	2.5	Red Arrow	20	17	47.1	101.7
47	04:02:32.86 PM	28.8	Yellow Arrow	2.3	Red Arrow	21	6	45.3	100.7
48	04:04:12.87 PM	14.6	Red Arrow	1	Red Arrow	26	48	44.9	100
49	04:06:03.65 PM	0	Red Arrow	0.9	Red Arrow	54	42	47.3	110.8
50	04:07:51.54 PM	10.3	Red Arrow	2	Red Arrow	25	25	47.6	107.9
51	04:09:57.45 PM	10.3	Red Arrow	1.3	Red Arrow	39	21	47.8	125.9
52	04:11:56.21 PM	0	Red Arrow	1.6	Red Arrow	30	16	46.9	118.8
53	04:13:52.15 PM	8.5	Red Arrow	1	Red Arrow	48	35	47.3	115.9
54	04:15:49.65 PM	32.5	Yellow Arrow	2.2	Red Arrow	22	18	47.1	117.5
55	04:17:38.55 PM	24	Red Arrow	1.4	Red Arrow	33	14	45.5	108.9
56	04:18:54.49 PM	10.6	Red Arrow	2.5	Red Arrow	19	15	45.4	75.9
57	04:20:27.52 PM	20.1	Red Arrow	1.4	Red Arrow	29	33	45.1	93
58	04:22:08.59 PM	18.7	Red Arrow	2.2	Red Arrow	22	16	45.8	101.1
59	04:23:40.61 PM	28.1	Yellow Arrow	2.7	Red Arrow	18	10	45.6	92
60	04:25:07.12 PM	18.9	Red Arrow	1.3	Red Arrow	36	12	44.9	86.5
61	04:26:46.07 PM	40.6	Yellow Arrow	11.9	Yellow Arrow	4	5	47.5	99
62	04:28:14.60 PM	40.6	Yellow Arrow	1.1	Red Arrow	26	42	45.8	88.5
63	04:30:04.11 PM	14.5	Red Arrow	1.4	Red Arrow	33	16	45.8	109.5
64	04:32:08.94 PM	14.5	Red Arrow	1.2	Red Arrow	37	38	45.1	124.8
65	04:34:20.70 PM	0	Red Arrow	1.2	Red Arrow	41	38	46.8	131.8
66	04:36:13.75 PM	0	Red Arrow	1.2	Red Arrow	37	41	47.3	113.1
67	04:38:02.00 PM	4.7	Red Arrow	1.5	Red Arrow	34	20	51.1	108.3
68	04:40:04.82 PM	10.9	Red Arrow	1.8	Red Arrow	29	22	51.3	122.8
69	04:41:54.13 PM	15.9	Red Arrow	1.1	Red Arrow	46	17	51	109.3
70	04:43:56.89 PM	9.7	Red Arrow	0.9	Red Arrow	42	57	51.1	122.8
71	04:46:02.33 PM	0	Red Arrow	0.9	Red Arrow	58	62	54.9	125.4
72	04:47:50.32 PM	13.2	Red Arrow	1.8	Red Arrow	25	31	55.4	108
73	04:49:47.15 PM	13.2	Red Arrow	1.8	Red Arrow	26	20	45.4	116.8
74	04:51:42.75 PM	5.9	Red Arrow	1.1	Red Arrow	42	40	45.6	115.6
75	04:53:31.50 PM	19.2	Red Arrow	2.4	Red Arrow	24	20	54.8	108.8

Figure 5-5: DSS results by cycle for CR 427 NBL

2- Howell Branch and Lake Howell Road Intersection

At the vicinity of the intersection, Howell Branch is a four-lane divided arterial running eastwest with a posted speed limit of 45 mph , connecting Goldenrod Road and US 17-92. Lake Howell Road is a two-lane road running north-south, connecting between SR 436 in the north to the County Line in the south with posted speed limit of 35 mph . Commercial land uses exist on all quadrants of the intersection as shown in Figure 5-6. The intersection has exclusive eastbound (EB) and westbound (WB) left turn lanes. The EB and WB left turn lanes have a four-section head display, which operates in a protected permissive mode throughout the day. The side streets on Lake Howell Rd also have exclusive left turn lanes with four-section head display. The traffic gets heavier in the eastbound direction during the PM peak hour.

The study approaches were the westbound left turn lane (WBL) and eastbound through lane (EBT). The eastbound has two through lanes with loop detectors. Therefore, the DSS was set up to receive data from two lanes, and the minimum gap time was set to cross two lanes as well. The intersection was running in a coordinated mode. The cycle length was almost steady throughout the testing period and was around 170 seconds.

Figure 5-6: Howell Branch Road and Lake Howell Road intersection

Decision Results and Assessment

Table 5-3 provides a summary of the log file and the DSS decisions in each cycle during the testing period for the WBL along Howell Branch Road. The study approach has 2 opposing lanes to be crossed which correspond to a minimum threshold of 21 second before deciding on a Flashing Yellow Arrow mode based on the discrete method. The 2.5 hours testing period resulted in 49 cycles with a majority of yellow arrow decisions (31 cycles) which shows a light to moderate traffic pattern from 3:00 to 4:30 pm before the peak hour which started after 4:30 pm. Approaching the peak hour around 4:40 pm, the algorithm decision was red arrow for 11 cycles except for 3 cycles. The results also show steady fluctuations between the red arrow and yellow arrow decisions which are considered reasonable and indicate that the threshold is rational and practical. Figure 5-6 shows a graphical representation of the gaps and the threshold. As can be seen on Figure 5-7, the max total gaps reached 112 seconds and the minimum gap was 0 seconds at $5: 15 \mathrm{pm}$. The decisions was also verified from the rest of the data which shows the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. For example, at 4:06 pm, the decision was to inhibit FYA due to absence of gaps which can be verified by the 88 vehicles, in the heaviest lane, that arrived during 88 seconds of green phase. The average method calculates the saturation headway and proves that the approach was operating at capacity.

Table 5-3: DSS results by cycle for Howell Branch Rd WBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green		Green Phase	Cycle Length
						Lane 1	Lane 2		
1	02:53:37.88 PM	93.9	Yellow Arrow	2.7	Red Arrow	37	37	95.4	169.8
2	02:56:27.92 PM	62.6	Yellow Arrow	1.7	Red Arrow	53	42	87	170
3	02:59:18.51 PM	60.4	Yellow Arrow	2.5	Red Arrow	36	32	88.3	170.6
4	03:02:08.08 PM	95.7	Yellow Arrow	2.5	Red Arrow	41	31	99.7	169.6
5	03:04:58.52 PM	92.7	Yellow Arrow	2	Red Arrow	47	47	92.7	170.4
6	03:07:48.56 PM	86.5	Yellow Arrow	2.7	Red Arrow	30	34	90.3	170
7	03:10:38.28 PM	90.1	Yellow Arrow	2.4	Red Arrow	37	39	92.7	169.7
8	03:13:28.61 PM	101.2	Yellow Arrow	3.7	Yellow Arrow	27	29	102.9	170.3
9	03:16:18.70 PM	112.2	Yellow Arrow	3.4	Red Arrow	31	31	100.6	170.1
10	03:19:08.74 PM	99.4	Yellow Arrow	2.5	Red Arrow	38	21	92.1	170
11	03:21:58.16 PM	74.6	Yellow Arrow	2.5	Red Arrow	35	22	84.1	169.4
12	03:24:48.00 PM	52.9	Yellow Arrow	2	Red Arrow	44	40	84.6	169.8
13	03:27:37.83 PM	56.3	Yellow Arrow	2.4	Red Arrow	35	37	85.1	169.8
14	03:30:27.76 PM	57.5	Yellow Arrow	1.8	Red Arrow	50	38	88.7	169.9
15	03:33:17.84 PM	67	Yellow Arrow	2.1	Red Arrow	48	45	99.6	170.1
16	03:36:08.08 PM	61.2	Yellow Arrow	1.6	Red Arrow	53	45	84.3	170.2
17	03:38:58.17 PM	62	Yellow Arrow	3.2	Red Arrow	27	27	83	170.1
18	03:41:47.78 PM	66.9	Yellow Arrow	2.1	Red Arrow	39	40	80.2	169.6
19	03:44:37.78 PM	62	Yellow Arrow	1.9	Red Arrow	56	58	109.3	170
20	03:47:28.32 PM	40	Yellow Arrow	1.4	Red Arrow	54	53	74	170.5
21	03:50:18.39 PM	19.9	Red Arrow	1.8	Red Arrow	33	42	73.7	170.1
22	03:52:28.13 PM	31.2	Yellow Arrow	1.7	Red Arrow	22	31	50.3	129.7
23	03:54:17.40 PM	22.2	Yellow Arrow	1.6	Red Arrow	25	28	44	109.3
24	03:55:50.01 PM	13.1	Red Arrow	2.2	Red Arrow	17	16	35.2	92.6
25	03:57:47.11 PM	16.5	Red Arrow	1.4	Red Arrow	26	33	43.8	117.1
26	03:59:53.02 PM	14.5	Red Arrow	1.3	Red Arrow	26	36	47	125.9
27	04:01:52.48 PM	18.7	Red Arrow	1.6	Red Arrow	22	32	49.9	119.5
28	04:04:16.83 PM	14.5	Red Arrow	1.4	Red Arrow	34	30	46.2	144.4
29	04:06:43.66 PM	21	Yellow Arrow	1.6	Red Arrow	32	20	50	146.8
30	04:08:45.51 PM	32.5	Yellow Arrow	1.5	Red Arrow	21	30	43.1	121.9
31	04:11:36.09 PM	43	Yellow Arrow	2.5	Red Arrow	23	34	81.9	170.6
32	04:15:40.00 PM	92.3	Yellow Arrow	2.1	Red Arrow	61	60	125	243.9
33	04:32:47.90 PM	15.7	Red Arrow	1	Red Arrow	77	89	88.1	169.9
34	04:35:37.99 PM	21.9	Yellow Arrow	1.7	Red Arrow	52	39	87.9	170.1
35	04:38:27.97 PM	21.9	Yellow Arrow	1.1	Red Arrow	81	81	87.5	170
36	04:41:17.90 PM	20.6	Red Arrow	1.7	Red Arrow	47	54	88.1	169.9
37	04:44:08.08 PM	20.6	Red Arrow	1.1	Red Arrow	75	84	87.9	170.2
38	04:46:58.01 PM	4	Red Arrow	1	Red Arrow	78	85	87.5	169.9
39	04:49:48.10 PM	4	Red Arrow	1.2	Red Arrow	61	74	87.4	170.1
40	04:52:37.78 PM	12.2	Red Arrow	1.1	Red Arrow	54	81	88.6	169.7
41	04:55:27.76 PM	26	Yellow Arrow	1.3	Red Arrow	52	66	87.2	170
42	04:58:17.74 PM	13.9	Red Arrow	0.9	Red Arrow	83	97	87.8	170
43	05:01:07.78 PM	21.6	Yellow Arrow	1.4	Red Arrow	62	58	88	170
44	05:03:57.83 PM	25.6	Yellow Arrow	1.1	Red Arrow	61	78	88.2	170.1
45	05:06:47.89 PM	4	Red Arrow	1	Red Arrow	84	91	87.9	170.1
46	05:09:37.77 PM	7.9	Red Arrow	1.1	Red Arrow	65	82	92.5	169.9
47	05:12:27.70 PM	7.9	Red Arrow	1.1	Red Arrow	83	71	88	169.9
48	05:15:17.79 PM	0	Red Arrow	1	Red Arrow	67	88	87.8	170.1
49	05:18:08.78 PM	0	Red Arrow	1.1	Red Arrow	77	82	88.4	171

Figure 5-7: DSS results by cycle for Howell Branch WBL

5.4 Volusia County

5.4.1 Intersections Wiring and Challenges

Volusia County Traffic Engineering Staff (Bobby Maddox and Karl Ewald) were very helpful in selecting the intersections and conducting the testing. It should be noted that Chad Dickson and Jared Zabele from Seminole County were also available for setting up the wiring and connections to the cabinet and controller. The same input and output data was needed.

Volusia County study intersections utilized Econolite Controllers ASC/3-2100 and TS2 Type 1 Cabinets from Econolite as shown in Figure 5-8. As mentioned earlier, the controller's input and output (I/O) functions in TS2 Type 1 cabinets are hardwired to the Bus Interface Unit (BIU) and directly connected to the Load Switches (LS) which are communicated through the Synchronize Data Link Communication (SDLC) module. However, the Econolite cabinet didn’t breakout the detectors or load switch drivers on a back panel such as Naztec Cabinets. Therefore, to overcome this issue, vehicle detection from the inductive loops for the left turn (Phase 1) and the opposing thru (Phase 2) as well as the green status of the opposing thru (Phase 2) were interfaced through spare (empty) Load Switch sockets (24v side) in the cabinet and remapped with the Controller's I/O logic processor as shown in Figure 5-9. It is worth mentioning that Econolite controllers were the easiest of all controllers to setup a logic statement. The control wire for the DSS to determine a protected or FYA operation was input through Ped call 1 on the back panel of the cabinet to allow or omit FYA overlap using I/O Logic statements within the controller as in Figure 5-10.

Figure 5-8: Econolite cabinet at Saxon Blvd and Threadgill Place intersection

Figure 5-9: Econolite cabinet with load switch sockets connected to DSS

Figure 5-10: DSS connected to Econolite back panel for ped call

5.4.2 Intersections Testing and DSS Results

As mentioned earlier, the two intersections selected for testing in Volusia County were:
3- Saxon Blvd at Threadgill Place
4- Saxon Blvd at Park and Ride Pl

3- Saxon Blvd and Threadgill Place Intersection

Saxon Blvd is a six-lane divided principle arterial in Volusia County running in the east-west direction with a posted speed limit of 45 mph . Threadgill Place is a minor local road running in the northbound direction. The area is predominantly commercial land uses and offices such as Lowe's, Five Guys and Jena Medical and Daytona Heart group as shown in Figure 5-11. The intersection has an exclusive eastbound (EB) and westbound (WB) left turn lanes. The EB and WB left turn lanes have a four-section head display which operate in a protected permissive mode throughout the day. The side street also on Threadgill Place has exclusive left turn lanes but with three section head display which operates in a permissive mode. It was expected that the traffic gets heavier in the westbound direction during the PM peak hour for drivers coming off of I-4. However, the traffic pattern stayed light to moderate throughout the testing period 3-5 pm.

The study approaches were the eastbound left turn (EBL) and westbound opposing thru (WBT). The westbound has 3 through lanes with loop detectors. Therefore, the DSS was setup to receive data from 3 lanes and the minimum gap time was set to cross 3 lanes as well. The intersection was running in a free mode and was not coordinated. The cycle length was fluctuating based on the demand throughout the testing period.

Figure 5-11: Saxon Blvd and Threadgill Place intersection

Decision Results and Assessment

Table 5-4 provides a summary of the DSS decisions in each cycle during the testing period for the EBL along Saxon Blvd. The study approach has 3 opposing lanes to be crossed which correspond to a minimum threshold of 24 seconds before deciding on a Flashing Yellow Arrow mode based on the discrete method. The testing period lasted for 1.5 hours only due to the time taken for the wiring setup and connections. A total of 60 cycles with a majority of yellow arrow decisions (49 cycles) were observed which show a very light traffic pattern even during the peak hour until 5 pm . What was more interesting is the average method decisions which included a lot of yellow arrows. As mentioned before, the average method is a very conservative approach which requires that the minimum gap be available between every arriving vehicle. It assumes a uniform distribution of the vehicle's arrival without taking into account actual arrival patterns. Results also show steady fluctuations between the red arrow and yellow arrow decisions which are considered reasonable and indicate that the threshold is rational and practical. Figure 5-12 shows a graphical representation of the gaps and the threshold. As can be seen on Figure 5-12, the max total gaps reached 145 seconds and the minimum gap was 0 seconds at $4: 30 \mathrm{pm}$. The decisions was also verified from the rest of the data which shows the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. For example, at $4: 30 \mathrm{pm}$, the decision was to inhibit FYA due to absence of gaps which can be verified by the 75 vehicles, in the heaviest lane, that arrived during 55 seconds of green phase.

Table 5-4: DSS results by cycle for Saxon Blvd EBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green			Green Phase	Cycle Length
						Lane 1	Lane 2	Lane 3		
1	03:27:10.87 PM	0	Red Arrow	0.6	Red Arrow	86	20	20	54.2	80.1
2	03:29:07.02 PM	6.4	Red Arrow	1.3	Red Arrow	48	46	48	61.9	116.2
3	03:31:10.02 PM	25.8	Yellow Arrow	2.6	Red Arrow	13	13	22	54.1	123
4	03:32:48.62 PM	36.9	Yellow Arrow	2.3	Red Arrow	15	15	18	39.1	98.6
5	03:35:39.15 PM	118.9	Yellow Arrow	7.8	Yellow Arrow	11	11	17	125.5	170.5
6	03:37:11.07 PM	134.8	Yellow Arrow	4.1	Yellow Arrow	15	15	7	57.2	91.9
7	03:38:37.73 PM	80.6	Yellow Arrow	10.1	Yellow Arrow	3	3	7	60.7	86.7
8	03:40:33.98 PM	86.4	Yellow Arrow	9	Yellow Arrow	4	4	7	54.2	116.3
9	03:42:12.92 PM	76.9	Yellow Arrow	19.8	Yellow Arrow	3	3	3	39.6	98.9
10	03:43:58.23 PM	52.4	Yellow Arrow	1.6	Red Arrow	29	29	36	57.7	105.3
11	03:46:01.25 PM	14.6	Red Arrow	1	Red Arrow	56	56	58	55	123
12	03:48:04.26 PM	0	Red Arrow	1	Red Arrow	55	55	55	54.3	123
13	03:50:07.33 PM	12.7	Red Arrow	1.5	Red Arrow	33	33	38	54.7	123.1
14	03:51:55.78 PM	34.9	Yellow Arrow	2.2	Red Arrow	6	6	25	52.6	108.5
15	03:53:17.28 PM	48.9	Yellow Arrow	2.2	Red Arrow	26	26	12	55	81.5
16	03:54:59.61 PM	61.4	Yellow Arrow	9.2	Yellow Arrow	3	3	6	45.8	102.3
17	03:56:22.43 PM	68	Yellow Arrow	12.8	Yellow Arrow	3	3	4	38.4	82.8
18	03:57:56.17 PM	49.2	Yellow Arrow	3.1	Red Arrow	15	15	12	42.9	93.7
19	03:58:43.61 PM	25.5	Yellow Arrow	7.1	Yellow Arrow	2	2	3	14.3	47.4
20	04:00:35.68 PM	52.8	Yellow Arrow	4.7	Yellow Arrow	17	17	13	75.9	112.1
21	04:02:33.29 PM	85.4	Yellow Arrow	6.8	Yellow Arrow	10	10	6	61.4	117.6
22	04:04:16.39 PM	106.7	Yellow Arrow	11	Yellow Arrow	7	7	1	66.2	103.1
23	04:06:12.11 PM	114.7	Yellow Arrow	3.7	Red Arrow	10	10	22	77.4	115.7
24	04:08:06.93 PM	73.4	Yellow Arrow	2.2	Red Arrow	17	17	26	54.3	114.8
25	04:09:57.81 PM	46.1	Yellow Arrow	3.4	Red Arrow	15	15	17	54.7	110.9
26	04:11:47.39 PM	86.9	Yellow Arrow	23.7	Yellow Arrow	4	4	3	71	109.6
27	04:13:21.31 PM	96.2	Yellow Arrow	3.1	Red Arrow	15	15	20	58.4	93.9
28	04:15:25.09 PM	97.4	Yellow Arrow	7.2	Yellow Arrow	8	8	13	86.9	123.8
29	04:16:13.12 PM	79.5	Yellow Arrow	14.3	Yellow Arrow	1	1	1	14.3	48
30	04:17:52.77 PM	27.2	Yellow Arrow	3.1	Red Arrow	8	8	17	50.1	99.7
31	04:19:35.71 PM	77.1	Yellow Arrow	9.2	Yellow Arrow	5	5	9	73.9	102.9
32	04:20:42.50 PM	75.4	Yellow Arrow	2.6	Red Arrow	11	11	9	26.1	66.8
33	04:22:42.27 PM	18.1	Red Arrow	1.6	Red Arrow	14	14	38	58.7	119.8
34	04:24:39.32 PM	16	Red Arrow	1.2	Red Arrow	46	46	45	55	117.1
35	04:26:42.39 PM	9.1	Red Arrow	0.9	Red Arrow	59	59	2	54.4	123.1
36	04:28:45.40 PM	0	Red Arrow	0.8	Red Arrow	66	66	19	54.7	123
37	04:30:34.10 PM	0	Red Arrow	0.7	Red Arrow	75	75	23	54.9	108.7
38	04:32:24.72 PM	0	Red Arrow	0.7	Red Arrow	75	75	13	55	110.6
39	04:34:42.76 PM	53.9	Yellow Arrow	7	Yellow Arrow	11	11	13	84.6	138
40	04:36:30.92 PM	93.6	Yellow Arrow	11	Yellow Arrow	6	6	4	54.8	108.2
41	04:38:21.99 PM	75.5	Yellow Arrow	2.1	Red Arrow	10	10	25	51.3	111.1
42	04:40:20.85 PM	92.4	Yellow Arrow	3.3	Red Arrow	8	8	26	82.4	118.9
43	04:41:41.75 PM	88.2	Yellow Arrow	7.9	Yellow Arrow	6	6	7	47.2	80.9
44	04:43:33.29 PM	80	Yellow Arrow	19.5	Yellow Arrow	4	4	4	58.4	111.5
45	04:45:08.23 PM	91.7	Yellow Arrow	3.7	Red Arrow	9	9	19	67.2	94.9
46	04:47:00.97 PM	77.9	Yellow Arrow	6.8	Yellow Arrow	9	9	9	54.2	112.7
47	04:47:51.84 PM	52.9	Yellow Arrow	18.8	Yellow Arrow	1	1	1	18.8	50.9
48	04:49:30.44 PM	68.3	Yellow Arrow	8.1	Yellow Arrow	10	10	6	72.8	98.6
49	04:51:13.88 PM	102.9	Yellow Arrow	8.2	Yellow Arrow	10	9	8	73.9	103.4
50	04:52:58.29 PM	115	Yellow Arrow	11.5	Yellow Arrow	5	5	7	69.1	104.4
51	04:54:02.14 PM	96.5	Yellow Arrow	35.3	Yellow Arrow	1	1	2	35.3	63.9
52	04:55:40.81 PM	64.4	Yellow Arrow	4.9	Yellow Arrow	15	15	11	68	98.7
53	04:57:25.81 PM	60.4	Yellow Arrow	6.2	Yellow Arrow	9	9	10	55.4	105
54	04:59:00.81 PM	73	Yellow Arrow	4.5	Yellow Arrow	3	3	13	54.1	95
55	05:00:09.17 PM	55.7	Yellow Arrow	2.4	Red Arrow	8	8	15	34.2	68.4
56	05:01:50.58 PM	76.8	Yellow Arrow	33.3	Yellow Arrow	2	2	3	66.7	101.4
57	05:03:38.63 PM	82.9	Yellow Arrow	3.1	Red Arrow	5	5	15	43.9	108.1
58	05:05:29.16 PM	57.8	Yellow Arrow	2.6	Red Arrow	19	19	30	75.3	110.5
59	05:06:56.67 PM	54.1	Yellow Arrow	3.6	Red Arrow	11	11	8	36.1	87.5
60	05:08:37.85 PM	83	Yellow Arrow	10.3	Yellow Arrow	3	3	8	72.4	101.2

Figure 5-12: DSS results by cycle for Saxon Blvd EBL

4- Saxon Blvd and Park and Ride Intersection

Saxon Blvd is a six lane divided principle arterial in Volusia County running in the east-west direction with a posted speed limit of 45 mph . Park and Ride is just west of I-4 interchange ramps. The Park and Ride lot offers a central location where commuters can park their cars and make the transfer to a carpool or transit. The Saxon Boulevard Park and Ride is serviced by Votran via the SunRail Connector service. This location was selected due to its close proximity to I-4 interchange ramps and the fact that the previous intersection along Saxon Blvd didn't experience any congestion even during the peak hour. The main purpose was to test the DSS algorithm on a heavily congested six lane roadway and to capture any traffic heading towards I-4 during the peak hour. The area is predominantly service land uses such as Deltona Memorial Funeral Home, Race Track gas station and Park and Ride as shown in Figure 5-13. The intersection has an exclusive eastbound (EB) and westbound (WB) left turn lanes. The EB and WB left turn lanes have a four-section head display which operate in a protected permissive mode throughout the day. The side street also on Park and Ride has exclusive left turn lanes but with three section head display which operates in a permissive mode.

The study approaches were the westbound left turn (WBL) and eastbound opposing thru (EBT). The eastbound direction has 3 through lanes with loop detectors. Therefore, the DSS was setup to receive data from 3 lanes and the minimum gap time was set to cross 3 lanes as well. The intersection was running in a coordinated mode which was recently modified from running in a free mode. The cycle length was 150 seconds.

Figure 5-13: Saxon Blvd and Park and Ride intersection

Decision Results and Assessment

Table 5-5 provides a summary of the DSS decisions in each cycle during the testing period for the WBL along Saxon Blvd. The study approach has three opposing lanes to be crossed, which corresponds to a minimum threshold of 24 seconds before deciding on a flashing yellow arrow mode based on the discrete method. The testing period lasted for 1.5 hours only due to the time taken for the wiring setup and connections, especially to map the loop detectors. A total of 42 cycles display a majority of yellow arrow decisions (26 cycles), suggesting a light to moderate traffic pattern, even during the peak hour. The average method also included several yellow arrow decisions. It was expected that the traffic would get heavier in the eastbound direction during the PM peak hour for drivers heading towards I-4. However, the traffic pattern stayed light to moderate throughout the testing period. In order to test the sensitivity of the algorithm to changes in the cycle length and also the difference between coordinated and uncoordinated signals, the intersection cycle length was reduced for a period of approximately 30 min between 3:40 and 4:10 pm as shown on Table 5-5. Although coordination helps in providing a more steady traffic flow with uniform arrivals of vehicles and eliminating the random arrivals, the DSS results showed that reducing the cycle length affects the traffic flow during the reduced green time and eliminates sufficient gap times even with coordination.

Table 5-5: DSS results by cycle for Saxon Blvd WBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green			Green Phase	Cycle Length
						Lane 1	Lane 2	Lane 3		
1	03:13:01.88 PM	84.6	Yellow Arrow	9	Yellow Arrow	13	10	5	108.3	150.1
2	03:15:31.89 PM	118.9	Yellow Arrow Yellow Arrow	2.7	Red Arrow	43	23	48	125.4	150
3	03:18:01.90 PM	107.1		3.1	Red Arrow	35	15	13	104.1	150
4	03:20:31.91 PM	130.5		4.9	Yellow Arrow	23	9	22	107.1	150
5	03:23:01.87 PM	124.9	Yellow Arrow Yellow Arrow	4.4	Yellow Arrow	26	11	10	109	150
6	03:25:31.88 PM	140.5		5.2	Yellow Arrow	24	6	15	119	150
7	03:28:01.89 PM	147.2	Yellow Arrow	5	Yellow Arrow	24	15	9	113.9	150
8	03:30:31.85 PM	117.3	Yellow Arrow	2.3	Red Arrow	55	28	10	122.7	150
9	03:33:01.86 PM	108.9	Yellow Arrow	5.9	Yellow Arrow	17	11	18	99.5	150
10	03:35:31.83 PM	101.9	Yellow Arrow Yellow Arrow	1.8	Red Arrow	70	51	14	124.8	150
11	03:37:49.40 PM	50.3		1.6	Red Arrow	51	32	54	86.9	137.6
12	03:39:51.60 PM	11.7	Red Arrow Red Arrow	1.2	Red Arrow	62	42	46	71.2	122.2
13	03:40:43.58 PM	6.3		1.9	Red Arrow	13	6	1	22.8	52
14	03:42:11.25 PM	20.5	Red Arrow	3.1	Red Arrow	21	19	8	61.8	87.7
15	03:45:07.45 PM	69.7	Yellow Arrow Yellow Arrow Yellow Arrow	3.1	Red Arrow	36	33	8	109.2	176.2
16	03:46:55.14 PM	75.4		1.7	Red Arrow	51	16	27	83.1	107.7
17	03:48:15.54 PM	37.5		1.7	Red Arrow	33	29	12	55	80.4
18	03:49:54.52 PM	17.5	Red Arrow	1.4	Red Arrow	36	31	9	48.5	99
19	03:51:31.03 PM	6.1	Red Arrow	1.3	Red Arrow	18	23	12	29.4	96.5
20	03:53:12.63 PM	0	Red Arrow	0.9	Red Arrow	55	50	50	50.9	101.6
21	03:54:49.15 PM	0	Red Arrow	0.9	Red Arrow	51	49	43	46	96.5
22	03:56:29.30 PM	0	Red Arrow	1	Red Arrow	36	32	25	33.6	100.2
23	03:57:49.79 PM	0	Red Arrow	1.1	Red Arrow	28	27	18	30	80.5
24	03:59:26.92 PM	0	Red Arrow	1	Red Arrow	47	38	12	46	97.1
25	04:01:09.26 PM	0	Red Arrow	1.1	Red Arrow	35	34	18	35.7	102.3
26	04:02:50.48 PM	0	Red Arrow	0.9	Red Arrow	55	46	21	49.8	101.2
27	04:04:38.72 PM	0	Red Arrow	1	Red Arrow	38	36	36	36.3	108.2
28	04:06:00.52 PM	0	Red Arrow	1.1	Red Arrow	37	32	30	40	81.8
29	04:08:20.53 PM	8.9	Red Arrow	2.2	Red Arrow	42	37	28	90.8	140
30	04:09:44.35 PM	8.9	Red Arrow	1.3	Red Arrow	39	22	36	47.9	83.8
31	04:12:39.85 PM	51.7	Yellow Arrow Yellow Arrow Yellow Arrow Yellow Arrow	2.3	Red Arrow	67	19	18	150.4	175.5
32	04:15:31.50 PM	87.4		1.8	Red Arrow	75	56	49	135.5	171.7
33	04:18:01.51 PM	46.5		1.5	Red Arrow	56	42	23	80.6	150
34	04:20:33.77 PM	38.7		1.6	Red Arrow	66	47	8	101.1	152.3
35	04:23:01.55 PM	61.8	Yellow Arrow Yellow Arrow	2.1	Red Arrow	47	38	29	98.8	147.8
36	04:25:31.60 PM	69	Yellow Arrow Yellow Arrow	2.5	Red Arrow	40	24	11	98.8	150.1
37	04:28:01.61 PM	61.8		2	Red Arrow	51	21	23	98.7	150
38	04:30:31.62 PM	46	Yellow Arrow	1.6	Red Arrow	53	37	45	83.4	150
39	04:33:01.63 PM	70.2		4.6	Yellow Arrow	19	13	12	83.4	150
40	04:35:31.70 PM	65.1	Yellow Arrow Yellow Arrow	1.5	Red Arrow	53	37	18	80.3	150.1
41	04:38:01.67 PM	66.8	Yellow Arrow Yellow Arrow	3.6	Red Arrow	29	17	4	99.5	150
42	04:40:31.61 PM	77.7		2.4	Red Arrow	31	23	35	81.1	149.9

On the other hand, providing very long cycle lengths due to coordination increases available gaps in the traffic stream. The results also showed steady fluctuations between the red arrow and yellow arrow decisions which are considered reasonable and indicates that the threshold is rational and practical. Figure 5-14 shows a graphical representation of the gaps and the threshold. As can be seen on Figure 5-14, the max total gaps reached 147 seconds with the 150 coordinated cycle length. However, after reducing the cycle length, the minimum gap reached 0 seconds continuously for almost 9 cycles. The decisions was also verified from the rest of the data which shows the number of vehicles that arrived during the green phase along with the amount of green
time in each cycle and the cycle length. For example, at $3: 59 \mathrm{pm}$, the decision was to inhibit FYA due to absence of gaps which can be verified by the 47 vehicles, in the heaviest lane, that arrived during 46 seconds of green phase.

Figure 5-14: DSS results by cycle for Saxon Blvd WBL

5.5 Orange County

5.5.1 Intersections Wiring and Challenges

Orange County Traffic Engineering Staff (Roger Smith and Michael Colon Rodriguez) were very helpful in selecting the intersections, setting up the connections and conducting the testing. It should be noted that Chad Dickson and Jared Zabele from Seminole County were also available for setting up the wiring and connections to the cabinet and controller. The same input and output data from the controller and cabinet was needed for the DSS. Orange County study intersections utilized Siemens Controllers M60 which is the latest version from Siemens to accommodate FYA and peer to peer logic. However, the two intersections selected for testing had different cabinet types. The intersection at John Young Parkway had a Naztec cabinet TS2 Type 1 as shown previously in Figure 5-1. The intersection at Orange Avenue had a TS2 Type 2 Hybrid Temple Cabinet as shown in Figure 5-15. Both locations experienced several challenges in the wiring setup. First, Siemens controllers don't have an output logic. In other words, it doesn't allow mapping an input as an output function such as in the other controllers. Therefore, to overcome this issue, we used peer-to-peer functions on the controller itself to activate special functions to act as I/O logic. Second, in the Temple Type 2 Hybrid cabinets, the I/O connections are wired differently from Type 1 . They are connected to the controller through pin connections ($\mathrm{a}, \mathrm{b} \& \mathrm{c}$). Then they are broken out on the back panel and then connected to the load switches. However, they don't break out call switches that's why we had to use "Phase Check" function in lieu of vehicle detector. Third, a relay was used to regulate the signal between the DSS I/O board and the controller. The following is a summary of the connections at each location.

- John Young Pkwy @ SR408 EB Ramps: The Cabinet was Trafficware (Naztec) TS2 Type 1 but the intersection operating with Siemens M60 controller. Phases $1 \& 6$ utilize video detection while Phase 2 had inductive loop detectors. Vehicle detection was interfaced through loop panel output terminals. A relay was used for Phase 1 (FYA Phase) due to issues with Video detection holding a call while the interface unit was installed as shown in Figure 5-16. Using the controller's Peer to Peer functions to act as I/O logic, green status of opposing thru (phase 2) was mapped to Special function 2. The control wire to determine protected or FYA operation was input through Loop Panel detector 16 and remapped within controller Peer to Peer to call Special Function 1.
- Orange Ave @ Office Court: The Cabinet was Temple brand TS2 type 2 hybrid. Intersection operating with Siemens M60 controller. Vehicle detection was through inductive loops for all directions which was interfaced through back panel "Phase Check" terminal for Phase 1 for the left turn demand (FYA Phase) and Special Functions 2 \& 3 were remapped within controller's Peer to Peer I/O Logic for Phase 2 (opposing thru) as shown in Figure 517. Green status of opposing thru (Phase 2) is interfaced directly on back panel phase 2 green terminal. The control wire to determine protected or FYA operation was input through a relay into Ped call 1 and remapped within controller Peer to Peer to call Special Function 1 as shown in Figure 5-18.

Figure 5-15: Temple cabinet at Orange Avenue and Office Court intersection

Figure 5-16: Relays to regulate the signal between the DSS I/O board and the controller

Figure 5-17: Temple cabinet with phase check terminal connected to DSS

Figure 5-18: DSS connected to temple back panel for ped call

5.5.2 Intersections Testing and DSS Results

As mentioned earlier, the two intersections selected for testing in Orange County were:
5- John Young Parkway at SR 408 EB Ramps
6- Orange Avenue at Office Court

5- John Young Parkway and SR 408 EB Ramps Intersection

John Young Parkway (JYP) is a north-south six lane divided principle arterial in Orange County with a posted speed limit of 45 mph . Within the vicinity of the intersection and between the SR 408 ramps, JYP has 8 lanes. The additional lane is used as an auxiliary lane for the westbound on ramp. SR 408 is an east-west expressway with 8 lanes and posted speed limit of 60 mph . JYP intersects with the eastbound off ramp and on ramp which is considered as T intersection. The area is predominantly residential on the west side and commercial land uses are on the east side as shown in Figure 5-19. The intersection has an exclusive southbound (SB) left turn lane. The EB approach has dual left turn lanes and single right turn lane. The SB left turn lane has a foursection head display which operates in a protected permissive mode throughout the day. This was considered a key location to test the DSS while crossing 4 lanes of traffic. The testing period lasted for 2 hours from 3:00 to 5:00 pm. It should be noted that due to the wiring issues and challenges mentioned above, we had to visit the site couple of times.

The study approaches were the southbound left turn (SBL) and northbound opposing thru (NBT). The northbound has 4 through lanes with loop detectors. Therefore, the DSS was setup to receive data from 4 lanes and the minimum gap time was set to cross 4 lanes as well. The intersection was running in a coordinated mode with Cycle length of 180 seconds.

Figure 5-19: JYP and SR 408 EB ramps intersection

Decision Results and Assessment

Table 5-6 provides a summary of the DSS decisions in each cycle during the testing period for the SBL along JYP. The study approach has 4 opposing lanes to be crossed which corresponds to a minimum threshold of 27 seconds before deciding on a Flashing Yellow Arrow mode based on the discrete method. The testing period lasted for 2 hours only due to the time taken for the wiring setup and connections especially to use the relays and special functions. A total of 38 cycles with a majority of yellow arrow decisions (28 cycles) was observed, although there was heavy traffic pattern especially during the peak hour. The traffic pattern stayed moderate to heavy throughout the testing period. However, as mentioned earlier, coordinated signals with very long cycle lengths such as the 3 minute cycle help in providing sufficient gaps especially when most of the vehicle arrivals are in platoons due to coordination. The average method showed only one yellow arrow decision which shows that there was heavy traffic patterns.

On the other hand, the results showed steady fluctuations between the red arrow and yellow arrow decisions which are considered reasonable and indicates that the threshold is rational and practical. Figure 5-20 shows a graphical representation of the gaps and the threshold. As can be seen on Figure 5-20, the max total gaps reached 125 seconds and the minimum gap was 0 seconds at $4: 25 \mathrm{pm}$. The decisions was also verified from the rest of the data which shows the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. For example, at $4: 25$ pm, the decision was to inhibit FYA due to absence of gaps which can be verified by the 108 vehicles, in the heaviest lane, that arrived during 108 seconds of green phase. Excerpts from the log file for the above intersection is included in Appendix D.

Table 5-6: DSS results by cycle for JYP SBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green				Green Phase	$\begin{gathered} \text { Cycle } \\ \text { Length } \end{gathered}$
						Lane 1	Lane 2	Lane 3	Lane 4		
1	03:21:45.33 PM	66.3	Yellow Arrow Yellow Arrow Yellow Arrow	3.9	Red Arrow	29	26	25	5	110.2	180
2	03:23:54.35 PM	64.1		5.4	Yellow Arrow	11	8	1	1	53.7	129
3	03:23:57.33 PM	33.1		1.9	Red Arrow	2	1	1	1	1.9	3
4	03:24:45.32 PM	8.1	Red Arrow	2.2	Red Arrow	18	22	4	1	46.9	48
5	03:27:45.36 PM	20.3	Red Arrow	2.9	Red Arrow	31	34	11	4	96.1	180
6	03:30:45.36 PM	35.8	Yellow Arrow Yellow Arrow	3.1	Red Arrow	33	29	29	2	97.6	180
7	03:33:45.35 PM	46.3		2.7	Red Arrow	36	32	19	5	94.1	180
8	03:36:45.34 PM	69.3		3.1	Red Arrow	38	43	20	4	132.1	180
9	03:39:45.33 PM	102.4		2.9	Red Arrow	42	36	19	5	120.5	180
10	03:42:45.39 PM	112.4		2.9	Red Arrow	54	40	33	11	152.5	180.1
11	03:45:45.37 PM	100.3		2.1	Red Arrow	51	53	38	17	107.4	180
12	03:48:45.37 PM	57.6		1.9	Red Arrow	55	51	26	7	100.8	180
13	03:51:45.36 PM	22.1	Red Arrow	1.5	Red Arrow	56	58	23	4	87.1	180
14	03:54:45.36 PM	50.1	Yellow Arrow	2	Red Arrow	48	64	44	4	127.2	180
15	03:57:45.40 PM	114.3		2.6	Red Arrow	60	55	11	11	153.1	180
16	04:00:45.40 PM	98.6		1.8	Red Arrow	74	73	54	11	132.3	180
17	04:03:45.39 PM	54.4		1.6	Red Arrow	53	66	44	7	101.4	180
18	04:06:45.38 PM	41.8		1.3	Red Arrow	93	93	49	7	124.2	180
19	04:09:45.38 PM	61.2		1.8	Red Arrow	63	73	53	11	129.8	180
20	04:12:45.42 PM	47.5		1.3	Red Arrow	89	77	47	13	113.1	180
21	04:15:45.37 PM	15.2	Red Arrow Red Arrow Red Arrow Red Arrow Red Arrow	1.3	Red Arrow	77	74	83	12	109.5	180
22	04:18:45.41 PM	15.2		1	Red Arrow	98	120	61	20	117.2	180
23	04:21:45.44 PM	0		0.9	Red Arrow	88	102	78	11	93.4	180
24	04:24:45.39 PM	0		1	Red Arrow	99	108	66	4	108.1	180
25	04:27:45.43 PM	9.2		1.4	Red Arrow	86	83	59	7	121.8	180
26	04:30:45.43 PM	44.4	Yellow Arrow	1.8	Red Arrow	65	66	26	17	115.2	180
27	04:33:45.43 PM	53.4		2	Red Arrow	44	51	32	22	98.5	180
28	04:36:45.42 PM	45		1.8	Red Arrow	53	64	48	33	110.5	180
29	04:39:45.41 PM	86.2		2.3	Red Arrow	51	38	33	6	113.7	180
30	04:42:45.46 PM	125.6		4.2	Red Arrow	32	28	22	18	129.5	180.1
31	04:45:45.45 PM	117.7		2.5	Red Arrow	47	55	39	21	136.1	180
32	04:48:45.45 PM	80.9		1.9	Red Arrow	57	43	35	12	107.2	180
33	04:51:45.44 PM	59.3		1.8	Red Arrow	70	61	45	14	122.9	180
34	04:54:45.44 PM	50.5		2	Red Arrow	58	60	42	14	119.4	180
35	04:57:45.48 PM	41.8		2.1	Red Arrow	61	59	52	7	125	180
36	05:00:45.47 PM	26.5	Red Arrow	1.5	Red Arrow	62	72	32	18	109.3	180
37	05:03:45.47 PM	18.9	Red Arrow	1.7	Red Arrow	65	64	40	13	109.8	180
38	05:06:45.46 PM	58.6	Yellow Arrow	2.2	Red Arrow	40	55	47	10	117.4	180

Figure 5-20: DSS results by cycle for JYP SBL

6- Orange Avenue and Office Court Intersection

Orange Avenue is a five lane major arterial in Orange County running in the north-south direction with a posted speed limit of 45 mph . Office Court is a local road for the offices surrounding the site. The area is predominantly offices on the west side and there is a US post office on the east side as shown in Figure 5-21. This is a T intersection with an exclusive northbound (NB) left turn lane. The EB approach has single lane. The NB left turn lane has a four-section head display which operates in a protected permissive mode throughout the day. The testing period lasted for 2 hours from 3:00 to 5:00 pm.

The study approaches were the northbound left turn (NBL) and southbound opposing thru (SBT). The southbound has 2 through lanes with loop detectors. Therefore, the DSS was setup to receive data from 2 lanes and the minimum gap time was set to cross 2 lanes as well. The intersection was running in a coordinated mode with Cycle length of 150 seconds and sometimes reaching 300 seconds when there was no calls from the side street.

Figure 5-21: Orange Ave and Office Court intersection

Decision Results and Assessment

Table 5-7 provides a summary of the DSS decisions in each cycle during the testing period for the NBL along Orange Avenue. The study approach has two opposing lanes to be crossed, which corresponds to a minimum threshold of 21 seconds before deciding on a flashing yellow arrow mode based on the discrete method. The testing period lasted for 2 hours due to the connection wiring to use the relays and special functions as explained earlier. A total of 43 cycles display a majority of yellow arrow decisions (27 cycles), despite a heavy traffic pattern, especially during the peak hour, which could be inferred from the decreasing gap, as shown in Figure 5-22. The traffic pattern stayed moderate to heavy throughout the testing period. However, as mentioned earlier, coordinated signals with very long cycle lengths, such as the 5-minute cycle, help in providing sufficient gaps, especially when most of the vehicle arrivals are in platoons due to coordination. The average method showed only two yellow arrow decisions, which shows that there was a heavy traffic pattern. A majority of the congestion was due to shockwaves from the downstream signal at Sand Lake Road, which brought the intersection to a halt. On the other hand, the results showed steady fluctuations between the red arrow and yellow arrow decisions, which was considered reasonable and indicated that the threshold was rational and practical. Figure 5-22 shows a graphical representation of the gap and the threshold. As can be seen on Figure 5-22, the maximum total gap reached 165 seconds and the minimum gap reached 0 seconds three times (Fig. 4-22). Figure 5-22 also shows a decreasing trend in the gaps when approaching the peak hour. The decisions were also verified from the rest of the data, which showed the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. At $4: 48 \mathrm{pm}$, the decision was to inhibit FYA due
to absence of gaps, which was verified by the 116 vehicles, in the heaviest lane, that arrived during 149 seconds of green phase. Furthermore, the 0 gap was also due to the backups and queues from the downstream intersection which affected the traffic flow at the study intersection.

Table 5-7: DSS results by cycle for Orange Ave NBL

Cycle No	Time Stamp	Discrete Gap (sec)	Discrete Decision	Average Gap (sec)	Average Decision	No of Veh/Green		Green Phase	Cycle Length
						Lane 1	Lane 2		
1	02:58:04.72 PM	114.4	Yellow Arrow	2.4	Red Arrow	117	66	281.2	299.9
2	03:00:35.60 PM	165.8	Yellow Arrow	4.8	Yellow Arrow	22	22	100.5	150.9
3	03:03:04.69 PM	118.2	Yellow Arrow	3.4	Red Arrow	24	35	116.8	149.1
4	03:05:54.72 PM	90.9	Yellow Arrow	2	Red Arrow	37	66	129.6	170
5	03:08:24.74 PM	74.1	Yellow Arrow	2.5	Red Arrow	53	43	130.6	150
6	03:10:54.75 PM	69.7	Yellow Arrow	1.9	Red Arrow	70	33	130.5	150
7	03:13:24.71 PM	51.3	Yellow Arrow	1.7	Red Arrow	79	40	130.4	150
8	03:15:54.72 PM	73.6	Yellow Arrow	2.6	Red Arrow	51	23	130.4	150
9	03:18:04.71 PM	112.8	Yellow Arrow	4	Yellow Arrow	29	13	111.3	130
10	03:20:54.74 PM	119.1	Yellow Arrow	2.9	Red Arrow	48	20	135.3	170
11	03:23:04.73 PM	94.2	Yellow Arrow	2.5	Red Arrow	45	25	111.2	130
12	03:25:34.74 PM	82.2	Yellow Arrow	2.6	Red Arrow	45	24	114.1	150
13	03:28:04.86 PM	76.9	Yellow Arrow	2.1	Red Arrow	63	19	128.4	150.1
14	03:30:34.87 PM	61.9	Yellow Arrow	2	Red Arrow	64	33	125.3	150
15	03:33:04.82 PM	25	Yellow Arrow	1.2	Red Arrow	109	64	131.2	150
16	03:40:36.78 PM	33.3	Yellow Arrow	1.3	Red Arrow	329	173	425	452
17	03:45:36.75 PM	49.1	Yellow Arrow	1.5	Red Arrow	188	159	279.8	300
18	03:48:07.68 PM	29.4	Yellow Arrow	1.5	Red Arrow	75	58	112.4	150.9
19	03:50:36.77 PM	17.9	Red Arrow	1.5	Red Arrow	74	60	111.4	149.1
20	03:53:26.76 PM	26.6	Yellow Arrow	1.5	Red Arrow	93	35	137.4	170
21	03:55:36.80 PM	37.5	Yellow Arrow	1.4	Red Arrow	80	19	111.3	130
22	03:58:06.86 PM	68.4	Yellow Arrow	2.4	Red Arrow	57	12	132.5	150.1
23	04:00:36.87 PM	98.2	Yellow Arrow	2.6	Red Arrow	52	18	130.5	150
24	04:03:06.88 PM	45	Yellow Arrow	0.8	Red Arrow	170	29	132.4	150
25	04:05:36.79 PM	0	Red Arrow	0.8	Red Arrow	137	44	106.9	149.9
26	04:08:06.80 PM	3.5	Red Arrow	1	Red Arrow	123	48	116	150
27	04:10:36.82 PM	22.3	Yellow Arrow	1.5	Red Arrow	71	55	106.8	150
28	04:13:06.78 PM	32.7	Yellow Arrow	1.3	Red Arrow	96	75	118.9	150
29	04:15:36.79 PM	13.9	Red Arrow	1.3	Red Arrow	85	53	112.7	150
30	04:18:06.81 PM	3.9	Red Arrow	1.1	Red Arrow	109	59	118.7	150
31	04:20:36.80 PM	3.9	Red Arrow	1.5	Red Arrow	73	67	110.5	150
32	04:23:06.82 PM	0	Red Arrow	1.3	Red Arrow	95	69	118.6	150
33	04:25:36.83 PM	12.4	Red Arrow	1.5	Red Arrow	61	80	118.5	150
34	04:28:06.80 PM	31.9	Yellow Arrow	1.3	Red Arrow	93	74	120.5	150
35	04:30:36.81 PM	25.1	Yellow Arrow	1.2	Red Arrow	95	67	113.3	150
36	04:33:06.92 PM	9.6	Red Arrow	1.1	Red Arrow	126	78	132.6	150.1
37	04:35:36.83 PM	7.9	Red Arrow	1.2	Red Arrow	88	58	107.1	149.9
38	04:38:07.75 PM	7.6	Red Arrow	1.2	Red Arrow	83	48	99.8	150.9
39	04:40:36.85 PM	11.3	Red Arrow	1.3	Red Arrow	90	59	114.1	149.1
40	04:43:06.82 PM	14.5	Red Arrow	1.3	Red Arrow	89	92	115	150
41	04:45:37.73 PM	6.9	Red Arrow	1.1	Red Arrow	94	70	99.6	150.9
42	04:48:06.84 PM	0	Red Arrow	1.1	Red Arrow	109	80	115.9	149.1
43	04:50:36.84 PM	19.1	Red Arrow	1.4	Red Arrow	79	61	110.7	150

Figure 5-22: DSS results by cycle for Orange Ave NBL

VI. CONCLUSIONS

The four section head flashing yellow arrow (FYA) provided an opportunity to advance the operation of the left turn mode at intersections. In phase 3 of the project, the UCF team further enhanced the decision support system (DSS) by developing an exclusive hardware platform. The hardware platform was developed for two main objectives. First, to provide a generic device that would be compatible with the different controller types used by different jurisdictions within the FDOT Districts. The second objective is to automate selection of the FYA left-turn modes based on available gaps in the opposing traffic at intersections acquired in real time from existing sensors in the field.

A general wiring scheme capable of communicating with all TS-2 hardware layouts and controller models was achieved. Furthermore, a custom communication software with the new I/O board was developed using C\# language. The software includes various parameters required for a successful configuration of the hardware. The parameters included acquisition of signal timing, acquisition of mode, extracting arrival data from the input channels, and outputting data to the output channels. A User Interface (UI) was also developed to specify particular parameters pertinent to each intersection and also adjust parameters while the operation is in progress, and to visualize the input data and the output decision as they occur.

Offline testing was conducted using a peer-to-peer logic setup. Peer-to-peer-logic offers the advantage of acquiring and analyzing real-time traffic data coupled with video feed with the benefit of a safe environment. Vehicle detection through loops or video detection is sensed in the field by the cabinet and the controller. Then it is mapped in real-time mode from the intersection approach to the controller and cabinet in the lab. The algorithm analyzes the traffic data and makes a decision accordingly that is communicated back to the controller, and generate a realtime log recording the events. Peer-to-peer-logic was a crucial step to verify and validate the algorithm and the software prior to field testing.

The final step of this research was to test the DSS and the hardware platform in the field by connecting directly to various controller and cabinet types in an online mode while allowing for instant validation of the DSS. The DSS was tested at 6 different intersections located in Seminole, Orange and Volusia Counties. Field data was collected from the loop detectors in real time mode on a second by second basis while monitoring traffic in each lane and detecting the status of the opposing green phase. Based on the intersection conditions and the gap threshold, the DSS sends the decision back to the controller in the field to apply it to the four section head FYA. Several issues and challenges were experienced in the field in the wiring setup and connections with certain controllers and cabinet types especially with Siemens controllers and TS2 Type 2 Hybrid cabinets. In general, Siemens controllers don't have an output logic. In other words, it doesn't allow mapping an input as an output function as in the other controllers. Therefore, to overcome this issue, a peer-to-peer function on the controller itself was used to activate special functions to act as I/O logic. Furthermore, in the Temple Type 2 Hybrid cabinets,
the I/O connections are wired differently from Type 1. They are connected to the controller through pin connections ($\mathrm{a}, \mathrm{b} \& \mathrm{c}$). They are broken out on the back panel and then connected to the load switches. However, they don't break out load switches, that's why a "Phase Check" function was used in lieu of the vehicle detector. Lastly, a relay was used to regulate the signal between the DSS I/O board and the controller.

Overall, the DSS results through the discrete method, showed steady fluctuations between the red arrow and yellow arrow decisions throughout the testing periods which are considered reasonable especially for driver's expectation. This also indicated that the thresholds were rational and practical. The decisions were also verified from the log file data which showed the number of vehicles that arrived during the green phase along with the amount of green time in each cycle and the cycle length. However, the average method showed very conservative decisions. The average method was mainly used to verify saturated conditions and heavy traffic patterns assuming that the minimum gap is achieved between every two arriving vehicles every cycle in order to switch to a flashing yellow arrow. Although the average method provides a more conservative approach than the discrete one, the discrete approach is more accurate than the average approach.

It was also concluded that coordinated signals with very long cycle lengths such as 3 minutes and longer help in providing sufficient gaps even in heavy traffic patterns and during the peak hours since most of the vehicle arrivals are in platoons due to coordination and at the beginning of the cycle. Therefore, in order to test the sensitivity of the algorithm to changes in the cycle length and also the difference between long and short cycles at coordinated signals, the intersection cycle length was reduced for a period of approximately 30 min . Although coordination helps in providing a more steady traffic flow with uniform arrivals of vehicles and eliminating the random arrivals, the DSS results showed that reducing the cycle length affects the traffic flow during the reduced green phase and eliminates sufficient gap times even with coordination.

The DSS testing confirmed the applicability and validity of the developed algorithm as well as the aforementioned procedure, criteria and logic. The algorithm developed in this project will allow traffic signal controllers to be designed so that the appropriate left turn restriction can alter throughout the day to maximize safety and efficiency of the intersections. The value of the DSS in making real-time traffic decisions is crucial to improving the performance of the left turn and is applicable at any four section head configuration.

APPENDIX A - Log File Excerpts for SR 436 at CR 427 (Offline Testing)

Recorv	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sde } \\ \text { LaVe } \end{gathered}$	MVIdle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	$\begin{array}{r} \text { \#of } \\ \text { eh } \end{array}$	AveraVe Healway	Cycle LeV th
13329	Car	R		Car	Car	:44: 1 PM							
1333	Car	R		Car	Car	:44: 2 PM							
13331	Car	R		Car	Car	:44: 3 PM							
13332	Car	R		Car	Car	:44: 4 PM							
13333	Car	R		Car	Car	:44: PM							
13334	Car	R		Car	Car	:44: 6 PM							
1333	Car	R		Car	Car	:44: 76 PM							
13336	Car	R		Car	Car	:44: 86 PM							
13337	Car	R		Car	Car	:44: 96 PM							
13338	Car	R		Car	Car	:4: 6 PM							
13339	Car	R		Car	Car	:4: 16 PM							
1334	Car	R		Car	Car	:4: 26 PM							
13341	Car	R		Car	Car	:4:36 PM							
13342		R		Car	Car	:4:43PM							
13343		R		Car	Car	:4:46 PM							
13344	Car	R		Car	Car	:4: 7 PM							
1334		R		Car	Car	:4:63 PM							
13346		R		Car	Car	:4:67PM							
13347		R		Car	Car	:4:77PM							
13348	Car	R		Car	Car	:4:87PM							
13349	Car	R		Car	Car	:4:97PM							
133	Car	R		Car	Car	:4 :1 7 PM							
1331	Car	R		Car	Car	:4 :117 PM							
1332		R		Car	Car	:4 :12 2 PM							
1333		R		Car	Car	:4 :128PM							
1334		R		Car	Car	:4 :138 PM							
133	Car	R		Car	Car	:4 :14 8 PM							
1336		R		Car	Car	:4:1 3PM							
1337		R		Car	Car	:4:1 8PM							
1338		R		Car	Car	:4 :168 PM							
1339	Car	R		Car	Car	:4 :178 PM							
1336		R		Car	Car	:4 :183 PM							
13361		R		Car	Car	:4 :188 PM							
13362	Car	R		Car	Car	:4 :199 PM							
13363		R		Car	Car	:4:2 3 PM							
13364		R		Car	Car	:4 :2 9PM							
1336		R		Car	Car	:4 :219 PM							
13366		R		Car	Car	:4 :229 PM							
13367	Car	R		Car	Car	:4 :239 PM							
13368	Car	R		Car	Car	:4 :249PM							
13369	Car	R		Car	Car	:4:2 9PM							
1337		R		Car	Car	:4 :263PM							
13371		R		Car	Car	:4 :27 PM							
13372	Car	R		Car	Car	:4 :28 PM							
13373	Car	R		Car	Car	:4 :29 PM							
13374	Car	R		Car	Car	:4 :3 PM							
1337	Car	R		Car	Car	:4 :31 PM							
13376		R		Car	Car	:4 :313 PM							
13377		R		Car	Car	:4 :32 PM							
13378	Car	R		Car	Car	:4 :33 PM							
13379		R		Car	Car	:4 :33 3 PM							
1338		R		Car	Car	:4 :341 PM							
13381		R		Car	Car	:4 :3 1 PM							
13382	Car	R		Car	Car	:4 :361 PM							
13383	Car	R		Car	Car	:4 :371 PM							
13384		R		Car	Car	:4 :373 PM							
1338		R		Car	Car	:4 :381 PM							
13386	Car	R		Car	Car	:4 :39 1 PM							
13387		R		Car	Car	:4 :39 3 PM							
13388		R		Car	Car	:4 :4 1 PM							
13389	Car	R		Car	Car	:4 :412 PM							
1339		R		Car	Car	:4 :413 PM							
13391		R		Car	Car	:4 :42 2 PM							
13392		R		Car	Car	:4 :432 PM							
13393		R		Car	Car	:4 :442 PM							
13394		R		Car	Car	:4 :4 2 PM							
1339		R		Car	Car	:4 :462 PM							
13396	Car	R		Car	Car	:4 :472 PM							
13397		R		Car	Car	:4 :473 PM							
13398		R		Car	Car	:4 :48 2 PM							
13399		R		Car	Car	:4 :49 3 PM							
134		R		Car	Car	:4: 3 PM							
1341		R		Car	Car	:4: 13 PM							
1342		R		Car	Car	:4: 23 PM							
1343		Gr n		Car	Car	:4:3 3 PM	2						
1344		Gr n		Car	Car	:4:43PM	2						
134		Gr n		Car	Car	:4: 3 PM	2						
1346		Gr n		Car	Car	:4: 64 PM	2						
1347		Gr n		Car	Car	:4:74PM	2						

Recorv	Left LaVe	Oppo Gre		$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Ga	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Heałway	Cycle LeV th
1348		Gr	n		Car	Car	:4: 84 PM	2						
1349		Gr	n		Car	Car	:4:94PM	2						
1341	Car	Gr	n		Car	Car	:46: 4 PM	2						
13411	Car	Gr	n		Car	Car	:46: 14 PM	2						
13412	Car	Gr	n	Car	Car	Car	:46: 24 PM	3						
13413	Car	Gr	n	Car		Car	:46: 33 PM	2						
13414	Car	Gr	n	Car		Car	:46: 3 PM	2						
1341	Car	Gr	n	Car	Car	Car	:46: 4 PM	3						
13416	Car	Gr	n		Car	Car	:46: 3 PM	2						
13417	Car	Gr	n		Car	Car	:46: PM	2						
13418	Car	Gr	n		Car	Car	:46: 6 PM	2						
13419	Car	Gr	n	Car		Car	:46: 73 PM	2						
1342	Car	Gr	n	Car		Car	:46: 7 PM	2						
13421	Car	Gr	n	Car			:46: 83 PM	1						
13422	Car	Gr	n	Car			:46: 8 PM	1						
13423	Car	Gr	n			Car	:46: 93 PM	1						
13424	Car	Gr	n			Car	:46: 9 PM	1						
1342	Car	Gr	n		Car	Car	:46:1 6 PM	2						
13426	Car	Gr	n	Car	Car		:46:11 3 PM	2						
13427	Car	Gr	n	Car	Car		:46:11 6 PM	2						
13428	Car	Gr	n				:46:12 3 PM							
13429	Car	Gr	n				:46:12 3 PM							
1343	Car	Gr	n				:46:12 6 PM							
13431	Car	Gr	n	Car		Car	:46:13 6 PM	2	: 13					
13432	Car	Gr	n	Car		Car	:46:14 6 PM	2						
13433	Car	Gr	n	Car	Car		:46:1 3 PM	2						
13434	Car	Gr	n	Car	Car		:46:1 6 PM	2						
1343	Car	Gr	n	Car			:46:16 3 PM	1						
13436	Car	Gr	n	Car			:46:16 6 PM	1						
13437	Car	Gr	n	Car		Car	:46:17 7 PM	2						
13438	Car	Gr	n	Car		Car	:46:18 7 PM	2						
13439	Car	Gr	n		Car		:46:19 3 PM	1						
1344	Car	Gr	n		Car		:46:19 4 PM	1						
13441	Car	Gr	n		Car		:46:19 7 PM	1						
13442	Car	Gr	n	Car		Car	:46:2 3 PM	2						
13443	Car	Gr	n	Car		Car	:46:2 7 PM	2						
13444	Car	Gr	n		Car	Car	:46:21 3 PM	2						
1344	Car	Gr	n		Car	Car	:46:21 7 PM	2						
13446	Car	Gr	n			Car	:46:22 3 PM	1						
13447	Car	Gr	n			Car	:46:22 7 PM	1						
13448	Car	Gr	n		Car		:46:23 3 PM	1						
13449	Car	Gr	n		Car		:46:23 7 PM	1						
134	Car	Gr	n		Car		:46:24 8 PM	1						
1341	Car	Gr	n		Car		:46:2 8 PM	1						
1342	Car	Gr	n		Car		:46:26 8 PM	1						
1343	Car	Gr	n	Car		Car	:46:27 3 PM	2						
1344	Car	Gr	n	Car		Car	:46:27 8 PM	2						
134	Car	Gr	n	Car	Car		:46:28 3 PM	2						
1346	Car	Gr	n	Car	Car		:46:28 8 PM	2						
1347	Car	Gr	n	Car	Car	Car	:46:29 8 PM	3						
1348	Car	Gr	n	Car		Car	:46:3 3 PM	2						
1349	Car	Gr	n	Car		Car	:46:3 8 PM	2						
1346	Car	Gr	n				:46:31 3 PM							
13461	Car	Gr	n				:46:31 3 PM							
13462	Car	Gr	n				:46:31 9 PM							
13463	Car	Gr	n		Car		:46:32 9 PM	1	: 16					
13464	Car	Gr	n			Car	:46:33 3 PM	1						
1346	Car	Gr	n			Car	:46:33 9 PM	1						
13466	Car	Gr	n		Car	Car	:46:34 9 PM	2						
13467	Car	Gr	n				:46:3 3 PM							
13468	Car	Gr	n				:46:3 3 PM							
13469	Car	Gr	n				:46:3 9 PM							
1347	Car	Gr	n		Car	Car	:46:36 9 PM	2	: 16					
13471	Car	Gr	n		Car	Car	:46:37 9 PM	2						
13472	Car	Gr	n		Car		:46:38 3 PM	1						
13473	Car	Gr	n		Car		:46:39 PM	1						
13474	Car	Gr	n				:46:39 3 PM							
1347	Car	Gr	n				:46:4 PM							
13476	Car	Gr	n				:46:41 PM							
13477	Car	Gr	n				:46:42 PM							
13478	Car	Gr	n	Car			:46:43 PM	1	: 37					
13479	Car	Gr	n		Car	Car	:46:43 3 PM	2						
1348	Car	Gr	n		Car	Car	:46:44 PM	2						
13481	Car	Gr	n		Car		:46:44 3 PM	1						
13482	Car	Gr	n		Car		:46:4 PM	1						
13483	Car	Gr	n	Car		Car	:46:4 3 PM	2						
13484	Car	Gr	n	Car		Car	:46:46 PM	2						
1348	Car	Gr	n	Car		Car	:46:47 1 PM	2						
13486	Car	Gr	n	Car		Car	:46:48 1 PM	2						

Recorv	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVAde LaVe	```OutsV e LaVe```	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Heallway	Cycle LeV th
13487	Car	Gr n		Car	Car	:46:48 3 PM	2						
13488	Car	Gr n		Car	Car	:46:49 1 PM	2						
13489	Car	Gr n		Car		:46:49 3 PM	1						
1349	Car	Gr n		Car		:46: 1 PM	1						
13491	Car	Gr n		Car	Car	:46: 11 PM	2						
13492	Car	Gr n	Car		Car	:46: 12 PM	2						
13493	Car	Gr n	Car		Car	:46: 21 PM	2						
13494	Car	Gr n	Car	Car		:46: 23 PM	2						
1349	Car	Gr n	Car	Car		:46: 31 PM	2						
13496	Car	Gr n	Car			:46: 33 PM	1						
13497	Car	Gr n	Car			:46: 42 PM	1						
13498	Car	Gr n	Car			:46: 2 PM	1						
13499	Car	Gr n	Car	Car	Car	:46: 62 PM	3						
13	Car	Gr n				:46: 63 PM							
131	Car	Gr n				:46: 63 PM							
132	Car	Gr n				:46: 63 PM							
133	Car	Gr n				:46: 72 PM							
134	Car	Gr n	Car	Car	Car	:46: 82 PM	3	: 19					
13	Car	Gr n			Car	:46: 83 PM	1						
136	Car	Gr n			Car	:46: 83 PM	1						
137	Car	Gr n			Car	:46: 92 PM	1						
138	Car	Gr n		Car	Car	:47: 2 PM	2						
139	Car	Gr n		Car	Car	:47: 3 PM	2						
131	Car	Gr n	Car			:47: 13 PM	1						
1311	Car	Gr n	Car			:47: 13 PM	1						
1312	Car	Gr n	Car			:47: 13 PM	1						
1313	Car	Gr n			Car	:47: 23 PM	1						
1314	Car	Gr n			Car	:47: 23 PM	1						
131	Car	Gr n	Car	Car		:47: 33 PM	2						
1316	Car	Gr n	Car	Car		:47: 33 PM	2						
1317	Car	Gr n	Car	Car	Car	:47: 43 PM	3						
1318	Car	Gr n	Car	Car	Car	:47: 3 PM	3						
1319	Car	Gr n				:47: 63 PM							
132	Car	Gr n				:47: 63 PM							
1321	Car	Gr n				:47: 64 PM							
1322	Car	Gr n				:47: 64 PM							
1323	Car	Gr n			Car	:47: 73 PM	1	: 1					
1324	Car	Gr n				:47: 83 PM							
132	Car	Gr n				:47: 84 PM							
1326	Car	Gr n				:47: 94 PM							
1327	Car	Gr n	Car		Car	:47:1 4 PM	2	: 21					
1328	Car	Gr n			Car	:47:11 3 PM	1						
1329	Car	Gr n			Car	:47:11 4 PM	1						
133	Car	Gr n				:47:12 3 PM							
1331	Car	Gr n				:47:12 4 PM							
1332	Car	Gr n		Car		:47:13 4 PM	1						
1333	Car	Gr n				:47:14 2 PM							
1334	Car	Gr n				:47:14 4 PM							
133	Car	Gr n		Car		:47:1 PM	1						
1336	Car	Gr n			Car	:47:16 3 PM	1						
1337	Car	Gr n			Car	:47:16 PM	1						
1338	Car	Gr n	Car			:47:17 3 PM	1						
1339	Car	Gr n	Car			:47:17 PM	1						
134	Car	Gr n				:47:18 2 PM							
1341	Car	Gr n				:47:18 PM							
1342	Car	Gr n		Car		:47:19 PM	1						
1343	Car	Gr n		Car		:47:2 PM	1						
1344	Car	Gr n		Car		:47:21 PM	1						
134	Car	Gr n		Car		:47:22 6 PM	1						
1346	Car	Gr n		Car		:47:23 6 PM	1						
1347	Car	Gr n				:47:24 3 PM							
1348	Car	Gr n				:47:24 6 PM							
1349	Car	Gr n				:47:2 6 PM							
13	Car	Gr n			Car	:47:26 6 PM	1	: 23					
131	Car	Gr n		Car	Car	:47:27 6 PM	2						
132	Car	Gr n		Car		:47:28 3 PM	1						
133	Car	Gr n		Car		:47:28 6 PM	1						
134	Car	Gr n	Car			:47:29 3 PM	1						
13	Car	Gr n	Car			:47:29 7 PM	1						
136	Car	Gr n				:47:3 3 PM							
137	Car	Gr n				:47:3 7 PM							
138	Car	Gr n			Car	:47:31 7 PM	1						
139	Car	Gr n				:47:32 3 PM							
136	Car	Gr n				:47:32 7 PM							
1361	Car	Gr n				:47:33 7 PM							
1362	Car	Gr n				:47:34 7 PM							
1363	Car	Gr n	Car			:47:3 7 PM	1	: 34					
1364	Car	Gr n	Car			:47:36 8 PM	1						
136	Car	Gr n			Car	:47:37 3 PM	1						

Recorv	Left LaVe	OpposV GreeV	$\begin{gathered} \text { s de } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Gap		D screte Dec soV		AveraVe Dec soV	\#of eh	AveraVe Healiway	Cycle LeV th
1366	Car	Gr n			Car	:47:37 8 PM	1								
	Car	Gr n		Car		:47:38 3 PM	1								
	Car	Gr n		Car		:47:38 8 PM	1								
1369	Car	Gr n		Car		:47:39 8 PM	1								
137	Car	Gr n	Car	Car	Car	:47:4 8 PM	3								
1371	Car	Gr n	Car		Car	:47:41 3 PM	2								
	Car	Gr n	Car		Car	:47:41 8 PM	2								
	Car	Gr n				:47:42 3 PM									
	Car	Gr n				:47:42 3 PM									
137	Car	Gr n				:47:42 8 PM									
	Car	Gr n				:47:43 8 PM									
	Car	R				:47:44 3 PM		: 2	R	Arrow	R	Arrow	1,2	3	231
	Car	R				:47:449 PM									
	Car	R				:47:4 9 PM									
138	Car	R				:47:46 9 PM									
	Car	R				:47:47 9 PM									
	Car	R	Car	Car		:47:489 PM									
	Car	R		Car		:47:49 3 PM									
	Car	R		Car		:47:49 9 PM									
138	Car	R				:47: 2 PM									
	Car	R				:47: 9 PM									
	Car	R				:47: 2 PM									
	Car	R				:47: 3 PM									
1389	Car	R				:47: 4 PM									
139	Car	R				:47: PM									
	Car	R				:47: 6 PM									
	Car	R				:47: 7 PM									
	Car	R				:47: 8 PM									
	Car	R				:47: 91 PM									
139	Car	R				:48: 1 PM									
1396	Car	R				:48: 11 PM									
1397	Car	R				:48: 21 PM									
1398	Car	R				:48: 31 PM									
1399	Car	R				:48: 41 PM									
136	Car	R				:48: 1 PM									
1361	Car	R				:48: 62 PM									
1362	Car	R				:48: 72 PM									
1363	Car	R				:48: 82 PM									
1364	Car	R				:48: 92 PM									
136	Car	R				:48:1 2 PM									
1366	Car	R				:48:11 2 PM									
1367	Car	R				:48:12 2 PM									
1368	Car	R				:48:13 3 PM									
1369	Car	R				:48:14 3 PM									
1361	Car	R				:48:1 3 PM									
13611	Car	R				:48:16 3 PM									
13612	Car	R				:48:17 3 PM									
13613	Car	R				:48:18 3 PM									
13614	Car	R				:48:19 3 PM									
1361	Car	R				:48:2 4 PM									
13616	Car	R				:48:21 4 PM									
13617	Car	R				:48:22 4 PM									
13618	Car	R				:48:23 4 PM									
13619	Car	R				:48:24 4 PM									
1362	Car	R				:48:2 4 PM									
13621	Car	R				:48:26 4 PM									
13622	Car	R				:48:27 4 PM									
13623	Car	R				:48:28 PM									
13624	Car	R				:48:29 PM									
1362	Car	R				:48:3 PM									
13626	Car	R				:48:31 PM									
13627	Car	R				:48:32 PM									
13628	Car	R				:48:33 PM									
13629		R				:48:34 3 PM									
1363		R				:48:34 PM									
13631	Car	R				:48:3 6 PM									
13632	Car	R				:48:36 6 PM									
13633		R				:48:37 3 PM									
13634		R				:48:37 6 PM									
1363	Car	R				:48:38 6 PM									
13636	Car	R				:48:39 6 PM									
13637	Car	R				:48:4 6 PM									
13638		R				:48:41 3 PM									
13639		R				:48:41 6 PM									
1364	Car	R				:48:42 7 PM									
13641		R				:48:43 3 PM									
13642		R				:48:43 7 PM									
13643	Car	R				:48:44 7 PM									
13644		R				:48:4 3 PM									

RecorV	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVAde LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	$\begin{array}{r} \text { \#of } \\ \text { eh } \end{array}$	AveraVe Healway	Cycle LeV th
1364		R				:48:4 7 PM							
13646	Car	R				:48:46 7 PM							
13647		R				:48:47 3 PM							
13648		R				:48:47 7 PM							
13649		R				:48:48 7 PM							
136	Car	R				:48:49 8 PM							
	Car	R				:48: 8 PM							
1362		R				:48: 13 PM							
1363		R				:48: 18 PM							
1364		R				:48: 28 PM							
136	Car	R				:48: 38 PM							
1366		R				:48: 43 PM							
1367		R				:48: 48 PM							
1368		R				:48: 8 PM							
1369		R				:48: 69 PM							
1366	Car	R				:48: 79 PM							
13661		R				:48: 82 PM							
13662		R				:48: 89 PM							
13663	Car	R				:48: 99 PM							
13664	Car	R				:49: 9 PM							
1366	Car	R				:49: 19 PM							
13666	Car	R				:49: 29 PM							
13667	Car	R				:49: 4 PM							
13668		R				:49: 43 PM							
13669		R				:49: PM							
1367	Car	R				:49: 6 PM							
13671	Car	R				:49: 7 PM							
13672		R				:49: 72 PM							
13673		R				:49: 8 PM							
13674	Car	R				:49: 9 PM							
1367	Car	R				:49:1 PM							
13676		R				:49:1 3 PM							
13677		R				:49:11 1 PM							
13678	Car	R				:49:12 1 PM							
13679		R				:49:12 3 PM							
1368		R				:49:13 1 PM							
13681	Car	R				:49:14 1 PM							
13682		R				:49:14 3 PM							
13683		R				:49:1 1 PM							
13684		R				:49:16 1 PM							
1368	Car	R	Car			:49:17 1 PM							
13686	Car	R				:49:17 3 PM							
13687	Car	R				:49:18 1 PM							
13688	Car	R			Car	:49:19 2 PM							
13689		R				:49:19 3 PM							
1369		R				:49:19 3 PM							
13691		R				:49:2 2 PM							
13692	Car	R				:49:21 2 PM							
13693		R				:49:21 3 PM							
13694		R				:49:22 2 PM							
1369	Car	R		Car		:49:23 2 PM							
13696		R		Car	Car	:49:23 3 PM							
13697		R	Car		Car	:49:24 2 PM							
13698		R	Car		Car	:49:24 3 PM							
13699		R			Car	:49:2 3 PM							
137		R			Car	:49:2 3 PM							
1371		R				:49:26 3 PM							
1372		R				:49:26 3 PM							
1373		R				:49:27 3 PM							
1374		R				:49:28 3 PM							
137		R				:49:29 3 PM							
1376		R				:49:3 3 PM							
1377		R				:49:31 3 PM							
1378		R				:49:32 3 PM							
1379		R				:49:33 4 PM							
1371		Gr n				:49:34 4 PM							
13711		Gr n				:49:3 4 PM							
13712		Gr n				:49:36 4 PM							
13713		Gr n				:49:37 4 PM							
13714		Gr n				:49:38 4 PM							
1371		Gr n	Car			:49:39 4 PM	1	:					
13716		Gr n	Car			:49:4 PM	1						
13717		Gr n	Car			:49:41 PM	1						
13718		Gr n	Car			:49:42 PM	1						
13719		Gr n			Car	:49:43 2 PM	1						
1372		Gr n			Car	:49:43 PM	1						
13721		Gr n			Car	:49:44 PM	1						
13722		Gr n				:49:4 3 PM							
13723		Gr n				:49:4 PM							

RecorV	Left LaVe	Oppos Gree		sV e LaVe	MVddle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Headway	Cycle LeV th
13724		Gr	n				:49:46 PM							
1372		Gr	n				:49:47 6 PM							
13726		Gr	n				:49:48 6 PM							
13727		Gr	n				:49:49 6 PM							
13728		Gr	n			Car	:49: 6 PM	1	: 3					
13729		Gr	n				:49: 12 PM							
1373		Gr	,				:49: 16 PM							
13731		Gr	n				:49: 26 PM							
13732		Gr	,				:49: 36 PM							
13733		Gr	n	Car	Car		:49: 47 PM	2	: 3					
13734		Gr	,		Car		:49: 2 PM	1						
1373		Gr	,		Car		:49: 7 PM	1						
13736		Gr	-				:49: 62 PM							
13737		Gr					:49: 67 PM							
13738		Gr	n				:49: 77 PM							
13739		Gr	n				:49: 87 PM							
1374		Gr	n				:49: 97 PM							
13741		Gr	n				: : 7 PM							
13742		Gr	n				: : 18 PM							
13743		Gr	n	Car	Car		: : 28 PM	2	: 66					
13744		Gr	n	Car		Car	: : 33 PM	2						
1374		Gr	n	Car		Car	: : 38 PM	2						
13746		Gr	n	Car	Car		: : 42 PM	2						
13747		Gr	n	Car	Car		: : 48 PM	2						
13748	Car	Gr	,		Car		: : 2 PM	1						
13749	Car	Gr	n		Car		: : 8 PM	1						
137	Car	Gr	-		Car		: : 68 PM	1						
1371	Car	Gr	n	Car			: : 73 PM	1						
1372	Car	Gr	n	Car			: : 78 PM	1						
1373	Car	Gr	n	Car			: : 89 PM	1						
1374	Car	Gr	n		Car		: : 92 PM	1						
137	Car	Gr	n		Car		: : 99 PM	1						
1376	Car	Gr	n				: :1 2 PM							
1377	Car	Gr	n				: 119 PM							
1378	Car	Gr	n	Car		Car	: :119PM	2	: 17					
1379	Car	Gr	n		Car	Car	: :123 PM	2						
1376	Car	Gr	n		Car	Car	: :129 PM	2						
13761	Car	Gr	n	Car			: :132 PM	1						
13762	Car	Gr	n	Car			: :133 PM	1						
13763	Car	Gr	n	Car			: :139 PM	1						
13764	Car	Gr	n	Car			: :149PM	1						
1376	Car	Gr	n	Car			: :1 9 PM	1						
13766	Car	Gr	n		Car		: :163 PM	1						
13767	Car	Gr	n		Car		: :17 PM	1						
13768	Car	Gr	n	Car	Car	Car	: :18 PM	3						
13769	Car	Gr	n	Car			: :182 PM	1						
1377	Car	Gr	n	Car			: :183 PM	1						
13771	Car	Gr	n	Car			: :19 PM	1						
13772	Car	Gr	n	Car	Car	Car	: :2 PM	3						
13773	Car	Gr	n	Car		Car	: :2 3 PM	2						
13774	Car	Gr	n	Car		Car	: :21 PM	2						
1377	Car	Gr	n	Car	Car	Car	: :22 PM	3						
13776	Car	Gr	n	Car			: :222PM	1						
13777	Car	Gr	n	Car			: :223PM	1						
13778	Car	Gr	n	Car			: :23 PM	1						
13779	Car	Gr	n	Car	Car		: :241PM	2						
1378	Car	Gr	n		Car	Car	: :243PM	2						
13781	Car	Gr	n		Car	Car	: :2 1 PM	2						
13782	Car	Gr	n	Car			: :2 3 PM	1						
13783	Car	Gr	n	Car			: :2 3 PM	1						
13784	Car	Gr	n	Car			: :261PM	1						
1378	Car	Gr	n		Car		: :263 PM	1						
13786	Car	Gr	n		Car		: : 271 PM	1						
13787	Car	Gr	n		Car		: :281PM	1						
13788	Car	Gr	n				: :282 PM							
13789	Car	Gr	n				: :291PM							
1379	Car	Gr	n	Car			: :3 1 PM	1	: 19					
13791	Car	Gr	n	Car	Car	Car	: :312 PM	3						
13792	Car	Gr	n	Car			: :312 PM	1						
13793	Car	Gr	n	Car			: :313 PM	1						
13794	Car	Gr	n	Car			: : 322 PM	1						
1379	Car	Gr	n	Car	Car		: : 332 PM	2						
13796	Car	Gr	n		Car	Car	: $: 333 \mathrm{PM}$	2						
13797	Car	Gr	n		Car	Car	: : 342 PM	2						
13798	Car	Gr	n		Car	Car	: :3 2 PM	2						
13799	Car	Gr	n		Car	Car	: :362 PM	2						
138	Car	Gr	n		Car	Car	: :372 PM	2						
1381	Car	Gr			Car	Car	: :383 PM	2						
1382	Car	Gr	n		Car		: :39 3 PM	1						

RecorV	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Headway	Cycle LeV th
1383	Car	Gr n		Car		: :39 3 PM	1						
1384	Car	Gr n	Car		Car	: :4 2 PM	2						
138	Car	Gr n	Car		Car	: :4 3 PM	2						
1386	Car	Gr n	Car	Car		: :412 PM	2						
1387	Car	Gr n	Car	Car		: :413 PM	2						
1388	Car	Gr n	Car		Car	: :42 3 PM	2						
1389	Car	Gr n	Car		Car	: :42 3 PM	2						
1381	Car	Gr n			Car	: :43 3 PM	1						
13811	Car	Gr n			Car	: :433 PM	1						
13812	Car	Gr n	Car		Car	: :443 PM	2						
13813	Car	Gr n		Car	Car	: :4 2 PM	2						
13814	Car	Gr n		Car	Car	: $: 44 \mathrm{PM}$	2						
1381	Car	Gr n	Car	Car	Car	: :464 PM	3						
13816	Car	Gr n		Car	Car	:473 PM	2						
13817	Car	Gr n		Car	Car	: :47 4 PM	2						
13818	Car	Gr n			Car	: :483 PM	1						
13819	Car	Gr n			Car	: :484 PM	1						
1382	Car	Gr n			Car	: :49 4 PM	1						
13821	Car	Gr n	Car	Car		: : 2 PM	2						
13822	Car	Gr n	Car	Car		: : 4 PM	2						
13823	Car	Gr n	Car	Car		: : 14 PM	2						
13824	Car	Gr n	Car	Car		: : 2 PM	2						
1382	Car	Gr n	Car		Car	: : 33 PM	2						
13826	Car	Gr n	Car		Car	: : 3 PM	2						
13827	Car	Gr n		Car		: : 42 PM	1						
13828	Car	Gr n		Car		: : 43 PM	1						
13829	Car	Gr n		Car		: : 4 PM	1						
1383	Car	Gr n				: : 2 PM							
13831	Car	Gr n				: : PM							
13832	Car	Gr n	Car	Car		: : 6 PM	2	: 13					
13833	Car	Gr n	Car	Car	Car	: : 7 PM	3						
13834	Car	Gr n	Car	Car		: : 82 PM	2						
1383	Car	Gr n	Car	Car		: : 8 PM	2						
13836	Car	Gr n		Car		: : 92 PM	1						
13837	Car	Gr n		Car		: : 96 PM	1						
13838	Car	Gr n			Car	: 1: 3 PM	1						
13839	Car	Gr n			Car	: 1: 6 PM	1						
1384	Car	Gr n	Car		Car	: 1: 16 PM	2						
13841	Car	Gr n	Car	Car	Car	: 1: 26 PM	3						
13842	Car	Gr n	Car	Car		: 1:32 PM	2						
13843	Car	Gr n	Car	Car		: 1: 36 PM	2						
13844	Car	Gr n	Car	Car	Car	: 1: 46 PM	3						
1384	Car	Gr n	Car	Car	Car	: 1: 6 PM	3						
13846	Car	Gr n	Car		Car	: 1: 63 PM	2						
13847	Car	Gr n	Car		Car	: 1: 66 PM	2						
13848	Car	Gr n	Car			: 1: 73 PM	1						
13849	Car	Gr n	Car			: 1: 77 PM	1						
138	Car	Gr n	Car	Car		: 1: 87 PM	2						
1381	Car	Gr n	Car			: 1: 93 PM	1						
1382	Car	Gr n	Car			: 1: 97 PM	1						
1383	Car	Gr n				: 1:1 3 PM							
1384	Car	Gr n				: 1:1 7 PM							
138	Car	Gr n		Car		: 1:117 PM	1	: 14					
1386	Car	Gr n			Car	: 1:122 PM	1						
1387	Car	Gr n			Car	: 1:127 PM	1						
1388	Car	Gr n		Car		: 1:13 2 PM	1						
1389	Car	Gr n		Car		: 1:137 PM	1						
1386	Car	Gr n		Car	Car	: 1:148 PM	2						
13861	Car	Gr n		Car	Car	: 1:1 8 PM	2						
13862	Car	Gr n			Car	: 1:16 3 PM	1						
13863	Car	Gr n			Car	: 1:168 PM	1						
13864	Car	Gr n	Car	Car		: 1:172 2 PM	2						
1386	Car	Gr n	Car	Car		: 1:178 8 PM	2						
13866	Car	Gr n	Car	Car	Car	: 1:188 PM	3						
13867	Car	Gr n		Car	Car	: 1:193 3 PM	2						
13868	Car	Gr n		Car	Car	: 1:198 8 PM	2						
13869	Car	Gr n		Car	Car	: 1:2 8 PM	2						
1387	Car	Gr n				: 1:212 PM							
13871	Car	Gr n				: 1:213 PM							
13872	Car	Gr n				: 1:219 PM							
13873	Car	Gr n			Car	: 1:22 9 PM	1	: 17					
13874	Car	Gr n				: 1:23 3 PM							
1387	Car	Gr n				: 1:239 PM							
13876	Car	Gr n			Car	: 1:249 PM	1						
13877	Car	Gr n			Car	: 1:2 9 PM	1						
13878	Car	Gr n		Car		: 1:26 2 PM	1						
13879	Car	Gr n		Car		: 1:26 9 PM	1						
1388	Car	Gr n				: 1:27 3 PM							
13881	Car	Gr n				: 1:27 9 PM							

RecorV	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sde } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV		AveraVe Dec soV	\#of eh	AveraVe Headway	Cycle LeV th
13882	Car	Gr n				: 1:29 PM								
13883	Car	Gr n				: 1:3 PM								
13884	Car	Gr n				: 1:31 PM								
1388	Car	Gr n				: 1:32 PM								
13886	Car	Gr n				: 1:33 PM								
13887	Car	R				: 1:33 3 PM		6	Y llow Arrow	R	Arrow	1,163	31	229
13888	Car	R				: 1:34 PM								
13889	Car	R				: 1:3 PM								
1389	Car	R				: 1:361 PM								
13891	Car	R				: 1:371 PM								
13892	Car	R				: 1:381 PM								
13893	Car	R		Car		: 1:39 1 PM								
13894	Car	R		Car		: 1:4 1 PM								
1389	Car	R				: 1:4 2 PM								
13896	Car	R				: 1:411 PM								
13897	Car	R				: 1:42 1 PM								
13898	Car	R				: 1:43 2 PM								
13899	Car	R				: 1:442 PM								
139	Car	R				: 1:4 2 PM								
1391	Car	R			Car	: 1:462 PM								
1392	Car	R			Car	: 1:472 PM								
1393	Car	R				: 1:473 PM								
1394	Car	R				: 1:482 PM								
139	Car	R				: 1:49 2 PM								
1396	Car	R				: 1: 3 PM								
1397	Car	R				: 1: 13 PM								
1398	Car	R				: 1: 23 PM								
1399	Car	R				: 1:33 PM								
1391	Car	R				: 1: 43 PM								
13911	Car	R				: 1: 3 PM								
13912	Car	R				: 1: 63 PM								
13913	Car	R				: 1: 73 PM								
13914	Car	R				: 1: 84 PM								
1391	Car	R				: 1: 94 PM								
13916	Car	R				: 2: 4 PM								
13917	Car	R				: 2: 14 PM								
13918	Car	R				: 2: 24 PM								
13919	Car	R				: 2: 34 PM								
1392	Car	R				: 2: 44 PM								
13921	Car	R				: 2: PM								
13922	Car	R				: 2: 6 PM								
13923	Car	R				: 2: 7 PM								
13924	Car	R				: 2: 8 PM								
1392	Car	R				: 2: 9 PM								
13926	Car	R				: 2:1 PM								
13927	Car	R				: 2:11 PM								
13928	Car	R				: 2:12 6 PM								
13929	Car	R				: 2:136 PM								
1393	Car	R				: 2:14 6 PM								
13931	Car	R				: 2:1 6 PM								
13932	Car	R				: 2:16 6 PM								
13933	Car	R				: 2:176 PM								
13934	Car	R				: 2:186 PM								
1393	Car	R				: 2:197 7 PM								
13936	Car	R				: 2:2 7 PM								
13937	Car	R				: 2:217 PM								
13938	Car	R			Car	: 2:22 7 PM								
13939	Car	R			Car	: 2:237 PM								
1394	Car	R				: 2:24 2 PM								
13941	Car	R				: 2:247 PM								
13942	Car	R				: 2:2 7 PM								
13943	Car	R				: 2:268 PM								
13944	Car	R				: 2:278 PM								
1394	Car	R				: $2: 288 \mathrm{PM}$								
13946	Car	R				: 2:298 8 PM								
13947	Car	R				: 2:3 8 PM								
13948	Car	R				: 2:31 8 PM								
13949	Car	R				: 2:32 8 PM								
139	Car	R				: 2:339 PM								
1391	Car	R				: 2:349 PM								
1392	Car	R				: 2:3 9 PM								
1393		R	Car		Car	: 2:36 3 PM								
1394		R	Car		Car	: 2:369 PM								
139	Car	R	Car			: 2:37 3 PM								
1396	Car	R	Car			: 2:379 PM								
1397	Car	R				: 2:382 2 PM								
1398	Car	R				: 2:389 PM								
1399		R				: 2:39 2 PM								
1396		R				: 2:39 9 PM								

RecorV	$\begin{aligned} & \text { Left } \\ & \text { LaVe } \end{aligned}$	OpposV GreeV	$\begin{gathered} \text { sde } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Headway	Cycle LeV th
13961	Car	R				: 2:41 PM							
13962	Car	R				: 2:42 PM							
13963		R				: 2:42 2 PM							
13964		R				2:43 PM							
1396	Car	R				: 2:44 PM							
13966		R				: 2:44 3 PM							
13967		R				: 2:4 PM							
13968		R				2:46 PM							
13969	Car	R				: 2:47 PM							
1397		R				: 2:47 2 PM							
13971		R				: 2:481 PM							
13972		R			Car	: 2:49 1 PM							
13973	Car	R	Car			2:49 3 PM							
13974	Car	R	Car			2: 1 PM							
1397		R	Car		Car	: 2: 3 PM							
13976		R	Car		Car	: 2: 11 PM							
13977		R		Car	Car	: 2: 12 PM							
13978		R		Car	Car	: 2: 21 PM							
13979	Car	R		Car		: 2: 22 PM							
1398	Car	R		Car		: 2: 31 PM							
13981		R	Car			: 2: 33 PM							
13982		R	Car			: 2: 33 PM							
13983		R	Car			: 2: 41 PM							
13984	Car	R		Car		: 2: 43 PM							
1398	Car	R		Car		: 2: 1 PM							
13986	Car	R	Car	Car		: 2: 62 PM							
13987		R	Car		Car	: 2: 62 PM							
13988		R	Car		Car	: 2: 63 PM							
13989		R	Car		Car	: 2: 72 PM							
1399	Car	R			Car	: 2: 72 PM							
13991	Car	R			Car	: 2: 82 PM							
13992		R				: 2: 83 PM							
13993		R				2: 83 PM							
13994		R				: 2: 92 PM							
1399		R		Car		: 3: 2 PM							
13996		R		Car		: 3: 3 PM							
13997	Car	R				: 3: 12 PM							
13998	Car	R				: 3: 13 PM							
13999		R				: 3: 22 PM							
14		R				: 3: 23 PM							
141	Car	R	Car			: 3: 33 PM							
142		R	Car			: 3: 42 PM							
143		R	Car			: 3: 43 PM							
144	Car	R				: 3: 2 PM							
14	Car	R				: 3: 3 PM							
146		R			Car	: 3: 62 PM							
147		R			Car	: 3: 63 PM							
148	Car	R	Car		Car	: 3: 73 PM							
		R			Car	: 3: 83 PM							
141		R			Car	: 3: 83 PM							
1411		R			Car	: 3: 84 PM							
	Car	R			Car	: 3: 93 PM							
1413		R	Car		Car	: 3:1 2 PM							
1414		R	Car		Car	: 3:1 4 PM							
141		R	Car		Car	: 3:114 PM							
		R			Car	: 3:12 3 PM							
		R			Car	: 3:12 4 PM							
1418		R	Car		Car	: 3:134 PM							
1419		R			Car	: 3:142 PM							
142		R			Car	: 3:144 PM							
1421		R			Car	: 3:1 4 PM							
1422		R			Car	: 3:164 PM							
1423		R			Car	: 3:17 PM							
1424		R			Car	: 3:18 PM							
142		R		Car	Car	: 3:19 PM							
1426		R		Car	Car	: 3:2 PM							
1427		R			Car	: 3:21 3 PM							
1428		R			Car	: 3:21 PM							
1429		Gr n			Car	: 3:22 PM	1						
143		Gr n			Car	: 3:23 PM	1						
1431		Gr n			Car	: 3:24 6 PM	1						
1432		Gr n			Car	: 3:2 6 PM	1						
1433		Gr n			Car	: 3:26 6 PM	1						
1434		Gr n			Car	: 3:276 PM	1						
143		Gr n			Car	: 3:286 PM	1						
1436		Gr n		Car	Car	: 3:29 6 PM	2						
1437		Gr n		Car		: 3:3 3 PM	1						
1438		Gr n		Car		: 3:3 6 PM	1						
1439		Gr n				: 3:31 2 PM							

RecorV	Left LaVe	$\begin{array}{r} \text { OpposV } \\ \text { GreeV } \end{array}$	$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	G screte Gap \quad Dec soV	AveraVe Dec soV	\#of eh	AveraVe Healway	Cycle LeV th
144		Gr n				3:317 PM						
1441		Gr n				3:327 PM						
1442		Gr n				: 3:337 PM						
1443		Gr n				: 3:347 7 PM						
1444		Gr n			Car	: 3:3 7 PM	1	4				
144		Gr n			Car	: 3:367 PM	1					
1446		Gr n				: 3:372 2 PM						
1447		Gr n				: 3:377 PM						
1448		Gr n			Car	: 3:387 7 PM	1					
1449		Gr n			Car	: 3:39 8 PM	1					
14		Gr n				: 3:4 2 PM						
		Gr n				: 3:4 8 PM						
$14 \quad 2$	Car	Gr n				: 3:41 8 PM						
		Gr n				: 3:422 PM						
144		Gr n				: 3:42 8 PM						
14		Gr n				: 3:438 PM						
146		Gr n		Car		: 3:448 PM	1	: 46				
147		Gr n				: 3:4 2 PM						
		Gr n				: 3:4 8 PM						
		Gr n				: 3:469 PM						
146		Gr n		Car		: 3:479 PM	1					
1461		Gr n				: 3:48 3 PM						
1462		Gr n				: 3:489 PM						
1463		Gr n				: 3:499 PM						
1464		Gr n				: 3: 9 PM						
146		Gr n				: 3: 19 PM						
1466		Gr n				: 3: 29 PM						
1467		Gr n				: 3: 4 PM						
1468		Gr n				: 3: PM						
1469		Gr n				: 3: 6 PM						
147		Gr n				: 3: 7 PM						
1471		Gr n				: 3: 8 PM						
1472		Gr n				: 3: 9 PM						
1473		Gr n				: 4: PM						
1474		Gr n				: 4: 11 PM						
147		Gr n				: 4: 21 PM						
1476		Gr n				4: 31 PM						
1477		Gr n				: 4: 41 PM						
1478		Gr n				: 4: 1 PM						
1479		Gr n				: 4: 61 PM						
148		Gr n				: 4: 71 PM						
1481		Gr n				4: 82 PM						
1482		Gr n				: 4: 92 PM						
1483		Gr n				: 4:1 2 PM						
1484		Gr n				: 4:112 PM						
148		Gr n				: 4:122 PM						
1486		R				: 4:132 2 PM		:249 Y llow Arrow	Y llow Arrow	27	133	16
1487		R				: 4:13 3 PM						
1488		R				: 4:14 2 PM						
1489		R				: 4:1 3 PM						
149		R				: 4:16 3 PM						
1491		R				: 4:173 3 PM						
1492		R				: 4:183 3 PM						
1493		R				: 4:19 3 PM						
1494	Car	R				: 4:2 3 PM						
149	Car	R				: 4:213 PM						
1496	Car	R				: 4:22 4 PM						
1497	Car	R				: 4:23 4 PM						
1498	Car	R				: 4:24 4 PM						
1499	Car	R				: 4:2 4 PM						
141	Car	R				: 4:26 4 PM						
1411	Car	R				: 4:27 4 PM						
1412	Car	R				: 4:284 4 PM						
1413	Car	R				4:29 PM						
1414	Car	R				: 4:3 PM						
141	Car	R				: 4:31 PM						
1416	Car	R				: 4:32 PM						
1417	Car	R				: 4:33 PM						
1418	Car	R				: 4:34 PM						
1419	Car	R				: 4:3 PM						
1411	Car	R				: 4:36 PM						
14111	Car	R				4:37 6 PM						
14112	Car	R				4:38 6 PM						
14113	Car	R				: 4:39 6 PM						
14114	Car	R				: $4: 46 \mathrm{PM}$						
1411	Car	R				: 4:416 PM						
14116	Car	R				: $4: 426 \mathrm{PM}$						
14117	Car	R				: 4:436 PM						
14118	Car	R				: 4:447 PM						

Recorv	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sde } \\ \text { LaVe } \end{gathered}$	MVAdle LaVe	OutsV e Lave	T me Stamp	ehicle Count	Gap	D screte Dec sov	AveraVe Dec sov	\#of eh	AveraVe Healdway	Cycle LeV th
14119	Car	R				: 4:4 7 PM							
1412	Car	R				: 4:467 PM							
14121	Car	R				: 4:477 PM							
14122	Car	R				: 4:487 PM							
14123		R				: 4:49 2 PM							
14124		R				: 4:49 7 PM							
1412		R				: 4: 7 PM							
14126	Car	R				: 4: 18 PM							
14127		R				: 4: 22 PM							
14128		R				: 4: 28 PM							
14129	Car	R				: 4: 38 PM							
1413		R				: 4: 42 PM							
14131		R				: 4: 48 PM							
14132		R				: 4: 8 PM							
14133		R				: 4: 68 PM							
14134		R				: 4: 78 PM							
1413		R				: 4: 89 PM							
14136		R				: 4: 99 PM							
14137		R				: : 9PM							
14138		R				: : 19 PM							
14139		R				: : 29 PM							
1414		R				: : 39 PM							
14141		R				: : 49 PM							
14142		R				: : 6 PM							
14143		R				: : 7 PM							
14144		R				: : 8 PM							
1414		R				: : 9 PM							
14146		R				: :1 PM							
14147		R				: :11 PM							
14148		R				: :12 PM							
14149		R				: :131 PM							
141		R				: :141PM							
1411		R				: :1 1 PM							
1412		R				: :161PM							
1413		R				: :171 PM							
1414		R				: :181 PM							
141		R				: :191 PM							
1416		R				: :2 2 PM							
1417		R				: : 212 PM							
1418		R				: :22 2 PM							
1419		R				: :232 PM							
1416		R				: :242PM							
14161		R				: :2 2 PM							
14162		R				: : 262 PM							
14163		R				: :272 PM							
14164		R				: :283 PM							
1416		R				: : 293 PM							
14166		R				: :3 3 PM							
14167		R				: : 313 PM							
14168		R				: : 323 PM							
14169		R				: : 333 PM							
1417		R				: :34 3 PM							
14171		R				: :3 4 PM							
14172		R				: : 364 PM							
14173		R				: :374 PM							
14174		R				: : 384 PM							
1417		R				: :394PM							
14176		R				: $: 44 \mathrm{PM}$							
14177		R				: : 414 PM							
14178		R				: :42 PM							
14179		R				: :43 PM							
1418		R				: :44 PM							
14181		R				: :4 PM							
14182		R				: :46 PM							
14183		R				: :47 PM							
14184		R				: :48 PM							
1418		R				: :496 PM							
14186		R				: : 6 PM							
14187		R				: : 16 PM							
14188		R				: : 26 PM							
14189		R				: : 36 PM							
1419		R				: : 46 PM							
14191		R				: : 6 PM							
14192		R				: : 67 PM							
14193		R				: : 77 PM							
14194		R				: : 87 PM							
1419		R				: : 97 PM							
14196		R				: 6: 7 PM							
14197		R				: 6: 17 PM							

Recorv	Left LaVe	OpposV GreeV	$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Heałway	Cycle LeV th
14198		R				: 6: 27 PM							
14199		R				: 6: 38 PM							
142		R				: 6: 48 PM							
1421		R				: 6: 8 PM							
1422		R				: $6: 68 \mathrm{PM}$							
1423		R	Car	Car	Car	: 6: 78 PM							
1424		R	Car	Car	Car	: 6: 88 PM							
142		R		Car	Car	: 6: 92 PM							
1426		R		Car	Car	: 6: 98 PM							
1427		R	Car		Car	: 6:1 2 PM							
1428		R	Car		Car	: 6:1 9 PM							
1429		R			Car	: 6:11 2 PM							
1421		R			Car	: 6:119 PM							
14211		R		Car		: 6:12 3 PM							
14212		R		Car		: 6:12 9 PM							
14213		R	Car	Car	Car	: 6:139 PM							
14214		R	Car		Car	: 6:142 PM							
1421		R	Car		Car	: 6:149 PM							
14216		R				: 6:1 2 PM							
14217		R				: 6:1 3 PM							
14218		R				: 6:1 9 PM							
14219		R		Car	Car	: 6:16 9 PM							
1422		R	Car	Car	Car	: 6:179 PM							
14221		R	Car	Car		: 6:182 2 PM							
14222		R	Car	Car		: 6:19 PM							
14223		R	Car	Car		: 6:2 PM							
14224		R	Car	Car		: 6:21 PM							
1422		R	Car	Car	Car	: 6:22 PM							
14226		R		Car	Car	: 6:22 3 PM							
14227		R		Car	Car	: 6:23 PM							
14228		R			Car	: 6:23 2 PM							
14229		R			Car	: 6:24 PM							
1423		R	Car	Car	Car	: 6:2 PM							
14231		R	Car	Car	Car	: 6:261 PM							
14232		R	Car	Car	Car	: 6:27 1 PM							
14233		R	Car	Car	Car	: 6:281 PM							
14234		R	Car	Car	Car	: 6:291 PM							
1423		R	Car	Car		: 6:29 2 PM							
14236		R	Car	Car		: 6:3 1 PM							
14237		R	Car	Car		: 6:311 PM							
14238		R	Car	Car		: 6:32 1 PM							
14239		R	Car	Car		: 6:33 2 PM							
1424		R	Car	Car		: 6:34 2 PM							
14241		R	Car	Car		: 6:3 2 PM							
14242		R	Car	Car		: 6:36 2 PM							
14243		Gr n	Car	Car		: 6:372 2 PM	2						
14244		Gr n		Car		: 6:382 2 PM	1						
1424		Gr n		Car		: 6:38 3 PM	1						
14246		Gr n	Car	Car		: 6:39 2 PM	2						
14247		Gr n	Car	Car		: 6:4 3 PM	2						
14248		Gr n	Car	Car		: 6:41 3 PM	2						
14249		Gr n	Car	Car		: 6:42 3 PM	2						
142		Gr n	Car	Car		: 6:43 3 PM	2						
1421		Gr n	Car	Car		: 6:44 3 PM	2						
1422		Gr n	Car	Car		: 6:4 3 PM	2						
1423		Gr n	Car	Car		: 6:46 3 PM	2						
1424		Gr n	Car	Car		: 6:47 4 PM	2						
142		Gr n	Car	Car		: 6:484 PM	2						
1426		Gr n	Car	Car		: 6:49 4 PM	2						
1427		Gr n		Car	Car	: 6: 2 PM	2						
1428		Gr n		Car	Car	: 6: 4 PM	2						
1429		Gr n			Car	: 6: 12 PM	1						
1426		Gr n			Car	: 6: 14 PM	1						
14261		Gr n			Car	: 6: 24 PM	1						
14262		Gr n	Car			: 6: 33 PM	1						
14263		Gr n	Car			: 6: 34 PM	1						
14264		Gr n	Car		Car	: 6: 4 PM	2						
1426		Gr n		Car	Car	: 6: 2 PM	2						
14266		Gr n		Car	Car	: 6: PM	2						
14267		Gr n		Car	Car	: 6: 6 PM	2						
14268		Gr n	Car	Car	Car	:6:7 PM	3						
14269		Gr n	Car	Car		: 6: 82 PM	2						
1427		Gr n	Car	Car		:6:8 PM	2						
14271		Gr n			Car	: 6: 92 PM	1						
14272		Gr n			Car	: 6: 93 PM	1						
14273		Gr n			Car	:6:9 PM	1						
14274		Gr n		Car		: 7: 2 PM	1						
1427		Gr n		Car		: 7: PM	1						
14276		Gr n	Car	Car	Car	: 7: 16 PM	3						

RecorV	Left LaVe	Oppo Gre		sV e LaVe	MVddle LaVe	OutsV e LaVe	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Headway	Cycle LeV th
14277		Gr	n	Car	Car	Car	: 7: 26 PM	3						
14278		Gr	n			Car	: 7: 32 PM	1						
14279		Gr	n			Car	: 7: 33 PM	1						
1428		Gr	n			Car	: 7: 36 PM	1						
14281		Gr	n	Car	Car	Car	: 7: 46 PM	3						
14282		Gr	n	Car	Car	Car	: 7: 6 PM	3						
14283		Gr	n		Car	Car	: 7: 63 PM	2						
14284		Gr	n		Car	Car	: 7: 66 PM	2						
1428	Car	Gr	n	Car	Car	Car	: 7: 76 PM	3						
14286	Car	Gr	n			Car	: 7: 82 PM	1						
14287	Car	Gr	n			Car	: 7: 83 PM	1						
14288	Car	Gr	n			Car	: 7: 86 PM	1						
14289	Car	Gr	,	Car	Car	Car	: 7: 97 PM	3						
1429	Car	Gr		Car	Car	Car	: 7:1 7 PM	3						
14291	Car	Gr	n	Car	Car		: 7:11 3 PM	2						
14292	Car	Gr	n	Car	Car		: 7:117 PM	2						
14293	Car	Gr	n	Car		Car	: 7:12 2 PM	2						
14294	Car	Gr	n	Car		Car	: 7:12 7 PM	2						
1429	Car	Gr	n	Car	Car		: 7:132 2 PM	2						
14296	Car	Gr	n	Car	Car		: 7:13 7 PM	2						
14297	Car	Gr	n		Car	Car	: 7:142 2 PM	2						
14298	Car	Gr	n		Car	Car	: 7:14 7 PM	2						
14299	Car	Gr	n	Car			: 7:1 3 PM	1						
143	Car	Gr	n	Car			: 7:1 3 PM	1						
1431	Car	Gr	n	Car			: 7:1 7 PM	1						
1432	Car	Gr	n		Car	Car	: 7:16 2 PM	2						
1433	Car	Gr	n		Car	Car	: 7:16 8 PM	2						
1434	Car	Gr	n			Car	: 7:17 2 PM	1						
143	Car	Gr	n			Car	: 7:17 8 PM	1						
1436	Car	Gr	n	Car	Car	Car	: 7:188 PM	3						
1437	Car	Gr	n	Car	Car		: 7:19 3 PM	2						
1438	Car	Gr	n	Car	Car		: 7:19 8 PM	2						
1439	Car	Gr	n	Car		Car	: 7:2 3 PM	2						
1431	Car	Gr	n	Car		Car	: 7:2 8 PM	2						
14311	Car	Gr	n	Car	Car		: 7:21 2 PM	2						
14312	Car	Gr	n	Car	Car		: 7:21 8 PM	2						
14313	Car	Gr	n		Car	Car	: 7:22 2 PM	2						
14314	Car	Gr	n		Car	Car	: 7:22 8 PM	2						
1431	Car	Gr	n	Car	Car	Car	: 7:23 9 PM	3						
14316	Car	Gr	n				: 7:24 3 PM							
14317	Car	Gr	n				: 7:24 3 PM							
14318	Car	Gr	n				: 7:24 4 PM							
14319	Car	Gr	n				: 7:249 PM							
1432	Car	Gr	n			Car	: 7:2 9 PM	1	: 16					
14321	Car	Gr	n	Car		Car	: 7:26 9 PM	2						
14322	Car	Gr	n	Car		Car	: 7:27 9 PM	2						
14323	Car	Gr	n	Car	Car	Car	: 7:289 9 PM	3						
14324	Car	Gr	n		Car	Car	: 7:29 3 PM	2						
1432	Car	Gr	n		Car	Car	: 7:29 9 PM	2						
14326	Car	Gr	n	Car			: 7:3 2 PM	1						
14327	Car	Gr	n	Car			: 7:3 3 PM	1						
14328	Car	Gr	n	Car			: 7:31 PM	1						
14329	Car	Gr	n	Car	Car	Car	: 7:32 PM	3						
1433	Car	Gr	n	Car		Car	: 7:32 2 PM	2						
14331	Car	Gr	n	Car		Car	: 7:33 PM	2						
14332	Car	Gr	n				: 7:33 3 PM							
14333	Car	Gr	n				: 7:33 3 PM							
14334	Car	Gr	n				: 7:34 PM							
1433	Car	Gr	n	Car		Car	: 7:3 PM	2	: 17					
14336	Car	Gr	n	Car			: 7:3 2 PM	1						
14337	Car	Gr	n	Car			: 7:36 PM	1						
14338	Car	Gr	n		Car		: 7:36 2 PM	1						
14339	Car	Gr	n		Car		: 7:37 PM	1						
1434	Car	Gr	n	Car			: 7:37 3 PM	1						
14341	Car	Gr	n	Car			: 7:381 PM	1						
14342	Car	Gr	n	Car		Car	: 7:39 1 PM	2						
14343	Car	Gr	n	Car	Car		: 7:39 2 PM	2						
14344	Car	Gr	n	Car	Car		: 7:4 1 PM	2						
1434	Car	Gr	n	Car		Car	: 7:4 2 PM	2						
14346	Car	Gr	n	Car		Car	: 7:411 PM	2						
14347	Car	Gr	n		Car		: 7:41 2 PM	1						
14348	Car	Gr	n		Car		: 7:41 3 PM	1						
14349	Car	Gr	n		Car		: 7:42 1 PM	1						
143	Car	Gr	n	Car	Car		: 7:43 1 PM	2						
1431	Car	Gr	n	Car	Car		: 7:44 1 PM	2						
1432	Car	Gr	n	Car	Car		: 7:4 2 PM	2						
1433	Car	Gr	n	Car			: 7:4 2 PM	1						
1434	Car	Gr		Car			: 7:46 2 PM	1						
143	Car	Gr					: 7:46 3 PM							

Recorv	Left LaVe	$\begin{aligned} & \text { Oppos } \\ & \text { Gre } \end{aligned}$		$\begin{gathered} \text { sVe } \\ \text { LaVe } \end{gathered}$	MVddle LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV	AveraVe Dec soV	\#of eh	AveraVe Heallway	Cycle LeV th
1436	Car	Gr	n				: 7:47 2 PM							
1437	Car	Gr	n	Car	Car		: 7:48 2 PM	2	: 19					
1438	Car	Gr	n	Car	Car		: 7:49 2 PM	2						
1439	Car	Gr	n	Car	Car		: 7:49 3 PM	2						
1436	Car	Gr	n			Car	: 7: 2 PM	1						
14361	Car	Gr	n			Car	: 7: 3 PM	1						
14362	Car	Gr	n			Car	: 7: 3 PM	1						
14363	Car	Gr	n	Car	Car		: 7: 12 PM	2						
14364	Car	Gr	n	Car	Car		: 7: 13 PM	2						
1436	Car	Gr	n		Car	Car	: 7: 22 PM	2						
14366	Car	Gr	n		Car	Car	: 7: 23 PM	2						
14367	Car	Gr	n	Car	Car		: 7: 32 PM	2						
14368	Car	Gr	n	Car	Car		: 7: 33 PM	2						
14369	Car	Gr	n		Car		: 7: 42 PM	1						
1437	Car	Gr	n		Car		: 7: 43 PM	1						
14371	Car	Gr	n	Car		Car	: 7: 2 PM	2						
14372	Car	Gr	n	Car		Car	: 7: 3 PM	2						
14373	Car	Gr	n	Car	Car	Car	: 7: 63 PM	3						
14374	Car	Gr	n				: 7: 72 PM							
1437	Car	Gr	n				: 7: 73 PM							
14376	Car	Gr	n				: 7: 73 PM							
14377	Car	Gr	n				: 7: 74 PM							
14378	Car	Gr	n	Car		Car	: 7: 83 PM	2	: 11					
14379	Car	Gr	n		Car		: 7: 92 PM	1						
1438	Car	Gr	n		Car		: 7: 93 PM	1						
14381	Car	Gr	n		Car		: 7: 94 PM	1						
14382	Car	Gr	n		Car	Car	: 8: 4 PM	2						
14383	Car	Gr	n	Car			: 8: 12 PM	1						
14384	Car	Gr	n	Car			: 8: 13 PM	1						
1438	Car	Gr	n	Car			: 8: 14 PM	1						
14386	Car	Gr	n				: 8: 22 PM							
14387	Car	Gr	n				: 8: 24 PM							
14388	Car	Gr	n	Car		Car	: 8: 34 PM	2	: 12					
14389	Car	Gr	n			Car	: 8: 42 PM	1						
1439	Car	Gr	n			Car	: 8: 44 PM	1						
14391	Car	Gr	n		Car	Car	: 8: 4 PM	2						
14392	Car	Gr	n	Car	Car	Car	: 8: 64 PM	3						
14393	Car	Gr	n			Car	: 8: 72 PM	1						
14394	Car	Gr	n			Car	: 8: 73 PM	1						
1439	Car	Gr	n			Car	: 8: 7 PM	1						
14396	Car	Gr	n		Car		: 8: 82 PM	1						
14397	Car	Gr	n		Car		: 8: 8 PM	1						
14398	Car	Gr	n		Car	Car	: 8: 9 PM	2						
14399	Car	Gr	n		Car	Car	: 8:1 PM	2						
144	Car	Gr	n		Car		: 8:112 PM	1						
1441	Car	Gr	n		Car		: 8:11 PM	1						
1442	Car	Gr	n	Car		Car	: 8:12 2 PM	2						
1443	Car	Gr	n	Car		Car	: 8:12 PM	2						
1444	Car	Gr	n	Car	Car		: 8:13 2 PM	2						
144	Car	Gr	n	Car	Car		: 8:13 PM	2						
1446	Car	Gr	n	Car		Car	: 8:14 2 PM	2						
1447	Car	Gr	n	Car		Car	: 8:14 6 PM	2						
1448	Car	Gr	n	Car	Car	Car	: 8:1 6 PM	3						
1449	Car	Gr	n		Car	Car	: 8:16 2 PM	2						
1441	Car	Gr	n		Car	Car	: 8:16 6 PM	2						
14411	Car	Gr	n	Car			: 8:17 2 PM	1						
14412	Car	Gr	n	Car			: 8:17 3 PM	1						
14413	Car	Gr	n	Car			: 8:17 6 PM	1						
14414	Car	Gr	n	Car	Car		: 8:186 PM	2						
1441	Car	Gr	n	Car	Car		: 8:19 6 PM	2						
14416	Car	Gr	n	Car	Car	Car	: 8:2 6 PM	3						
14417	Car	Gr	n	Car		Car	: 8:21 2 PM	2						
14418	Car	Gr	n	Car		Car	: 8:217 PM	2						
14419	Car	Gr	n	Car		Car	: 8:22 7 PM	2						
1442	Car	Gr	n		Car	Car	: 8:23 2 PM	2						
14421	Car	Gr	n		Car	Car	: 8:23 7 PM	2						
14422	Car	Gr	n	Car	Car	Car	: 8:24 7 PM	3						
14423	Car	Gr	n	Car	Car	Car	: 8:2 7 PM	3						
14424	Car	Gr	n				: 8:26 2 PM							
1442	Car	Gr	n				: 8:26 3 PM							

RecorV	Left LaVe	Oppos Gree		sVe LaVe	MVAde LaVe	$\begin{gathered} \text { OutsV e } \\ \text { LaVe } \end{gathered}$	T me Stamp	ehicle Count	Gap	D screte Dec soV		AveraVe Dec soV	\#of eh	AveraVe Healdway	Cycle LeV th
14426	Car	Gr	n				: 8:264 PM								
14427	Car	Gr	n				: 8:267 7 PM								
14428	Car	Gr	n	Car	Car	Car	: 8:27 7 PM	3	: 1						
14429	Car	Gr	n			Car	: 8:28 2 PM	1							
1443	Car	Gr	n			Car	: 8:28 3 PM	1							
14431	Car	Gr	n			Car	: 8:288 8 PM	1							
14432	Car	Gr	n	Car	Car	Car	: 8:298 PM	3							
14433	Car	Gr	n	Car	Car	Car	: 8:3 8 PM	3							
14434	Car	Gr	n		Car	Car	: 8:31 2 PM	2							
1443	Car	Gr	n		Car	Car	: 8:31 8 PM	2							
14436	Car	Gr	n	Car	Car		: 8:322 2 PM	2							
14437	Car	Gr	n	Car	Car		: 8:32 8 PM	2							
14438	Car	Gr	n	Car	Car		: 8:33 8 PM	2							
14439	Car	Gr	n		Car		: 8:34 2 PM	1							
1444	Car	Gr	n		Car		: 8:34 8 PM	1							
14441	Car	Gr	n	Car	Car		: 8:3 9 PM	2							
14442	Car	Gr	n	Car			: 8:36 3 PM	1							
14443	Car	Gr	n	Car			: 8:36 9 PM	1							
14444	Car	Gr	n				: 8:372 2 PM								
1444	Car	Gr	n				: 8:379 9 PM								
14446	Car	Gr	n	Car	Car		: 8:389 9 PM	2	: 17						
14447	Car	Gr	n			Car	: 8:39 2 PM	1							
14448	Car	Gr	n			Car	: 8:39 3 PM	1							
14449	Car	Gr	n			Car	: 8:39 9 PM	1							
144	Car	Gr	n	Car		Car	: 8:4 9 PM	2							
1441	Car	Gr	n		Car	Car	: 8:41 2 PM	2							
1442	Car	Gr	n		Car	Car	: 8:419 PM	2							
1443	Car	Gr	n		Car		: 8:42 2 PM	1							
1444	Car	Gr	n		Car		: 8:43 PM	1							
144	Car	Gr	n			Car	: 8:43 2 PM	1							
1446	Car	Gr	n			Car	: 8:44 PM	1							
1447	Car	Gr	n	Car			: 8:44 2 PM	1							
1448	Car	Gr	n	Car			: 8:4 PM	1							
1449	Car	Gr	n	Car	Car	Car	: 8:46 PM	3							
1446	Car	Gr	n	Car	Car		: 8:46 2 PM	2							
14461	Car	Gr	n	Car	Car		: 8:47 PM	2							
14462	Car	Gr	n	Car	Car	Car	: 8:48 PM	3							
14463	Car	Gr	n	Car	Car		: 8:48 2 PM	2							
14464	Car	Gr	n	Car	Car		: 8:49 PM	2							
1446	Car	Gr	n	Car	Car		: 8: 1 PM	2							
14466	Car	Gr	n		Car		: 8: 2 PM	1							
14467	Car	Gr	n		Car		: 8: 11 PM	1							
14468	Car	Gr	n	Car		Car	: 8: 12 PM	2							
14469	Car	Gr	n	Car		Car	: 8: 21 PM	2							
1447	Car	Gr	n	Car		Car	: 8: 31 PM	2							
14471	Car	Gr	n				: 8: 32 PM								
14472	Car	Gr	n				: 8: 33 PM								
14473	Car	Gr	n				: 8: 41 PM								
14474	Car	Gr	n	Car			: 8: 1 PM	1	: 19						
1447	Car	Gr	n	Car			: 8: 61 PM	1							
14476	Car	Gr	n	Car	Car		: 8: 71 PM	2							
14477	Car	Gr	n	Car	Car		: 8: 82 PM	2							
14478	Car	Gr	n				: 8: 82 PM								
14479	Car	Gr	n				: 8: 83 PM								
1448	Car	Gr	n				: 8: 92 PM								
14481	Car	Gr	n		Car		: 9: 2 PM	1	: 2						
14482	Car	Gr	n				: 9: 12 PM								
14483	Car	Gr	n				: 9: 13 PM								
14484	Car	Gr	n				: 9: 22 PM								
1448	Car	Gr	n				: 9: 32 PM								
14486	Car	Gr	n				: 9: 42 PM								
14487	Car	Gr	n				: 9: 3 PM								
14488	Car	Gr	n				: 9: 63 PM								
14489	Car	Gr	n		Car		: 9: 73 PM	1	: 61						
1449	Car	Gr	n				: 9: 82 PM								
14491	Car	Gr	n				: 9: 83 PM								
14492	Car	Gr	n				: 9: 93 PM								
14493	Car	Gr	n	Car	Car		: 9:1 3 PM	2	: 21						
14494	Car	Gr	n	Car	Car	Car	: 9:113 PM	3							
1449	Car	Gr	n				: 9:122 PM								
14496	Car	Gr	n				: 9:12 3 PM								
14497	Car	Gr	n				: 9:123 PM								
14498	Car	Gr	n				: 9:124 PM								
14499	Car	Gr	n				: 9:134 PM								
14	Car	Gr	n				: 9:14 4 PM								
141	Car	R					: 9:1 2 PM		: 3 Y	Y llow Arrow	R	Arrow	1,	23	32
142	Car	R					: 9:1 4 PM								

APPENDIX B - INTERSECTION PHOTOS

B-1 CR 427 @ Longwood Hills Road NBL (Seminole County) 83
B-2 CR 427 @ Longwood Hills Road SBT (Seminole County) 83
B-3 Howell Branch Road @ Lake Howell Road WBL (Seminole County) 84
B-4 Howell Branch Road @ Lake Howell Road EBT (Seminole County) 84
B-5 Saxon Blvd @ Threadgill Place EBL (Volusia County) 85
B-6 Saxon Blvd @ Threadgill Place WBT (Volusia County) 85
B-7 Saxon Blvd @ Park \& Ride WBL (Volusia County) 86
B-8 Saxon Blvd @ Park \& Ride EBT (Volusia County). 86
B-9 JYP @ SR 408 EB Ramps SBL (Orange County) 87
B-10 JYP @ SR 408 EB Ramps NBT (Orange County) 87
B-11 Orange Ave @ Office Court NBL (Orange County) 88
B-12 Orange Ave @ Office Court SBT (Orange County) 88

B-1 CR 427 @ Longwood Hills Road NBL (Seminole County)

B-2 CR 427 @ Longwood Hills Road SBT (Seminole County)

B-3 Howell Branch Road @ Lake Howell Road WBL (Seminole County)

B-4 Howell Branch Road @ Lake Howell Road EBT (Seminole County)

B-5 Saxon Blvd @ Threadgill Place EBL (Volusia County)

B-6 Saxon Blvd @ Threadgill Place WBT (Volusia County)

B-7 Saxon Blvd @ Park \& Ride WBL (Volusia County)

B-8 Saxon Blvd @ Park \& Ride EBT (Volusia County)

B-9 JYP @ SR 408 EB Ramps SBL (Orange County)

B-10 JYP @ SR 408 EB Ramps NBT (Orange County)

B-11 Orange Ave @ Office Court NBL (Orange County)

B-12 Orange Ave @ Office Court SBT (Orange County)

APPENDIX C - Team Photos

C-1 @ JYP \& SR 408 EB Ramps Intersection 90
C-2 @ Orange Avenue and Office Court Intersection 91
C-3 @ Orange Avenue and Office Court Intersection 92
C-4 @ Saxon Blvd \& Park and Ride Intersection 93
C-5 @ Saxon Blvd \& Threadgill Place Intersection. 94

C-1 @ JYP \& SR 408 EB Ramps Intersection - Left to right:

> Roger Smith (Orange County) Jim Stroz (FDOT)
> Hatem Abou-Senna (UCF) Chad Dickson (Seminole County) Jared Zabele (Seminole County)

C-2 @ Orange Avenue and Office Court Intersection - Left to right
Michael Colon Rodriguez (Orange County)
Jared Zabele (Seminole County)
Chad Dickson (Seminole County)
Hesham Eldeeb (UCF)

C-3 @ Orange Avenue and Office Court Intersection - Left to right
Michael Colon Rodriguez (Orange County)
Jared Zabele (Seminole County)
Chad Dickson (Seminole County)
Hatem Abou-Senna (UCF)

Phase III - Developing A DSS Hardware Platform

C-4 @ Saxon Blvd \& Park and Ride Intersection - Left to right
Bobby Maddox (Volusia County)
Chad Dickson (Seminole County)
Ray Marlin (FDOT)
Jared Zabele (Seminole County)
Hesham Eldeeb (UCF)

C-5 @ Saxon Blvd \& Threadgill Place Intersection - Left to right
Bobby Maddox (Volusia County)
Chad Dickson (Seminole County)
Hatem Abou-Senna (UCF)
Ray Marlin (FDOT)
Jared Zabele (Seminole County)

APPENDIX D - Log File Excerpts for JYP Intersection (Online Testing)

ThroughLanes: 4
LanesToCross: 4
MinimumHeadway: 4.5
Threshold: 27

Left	Opp	In	Mid	Out	4th		Discrete	Average	\#fof	Average
Record										
Lane	Green	Lane	Lane	Lane	Lane	Time Stamp	Decision	Decision	VPH	Headway
Length										

57 Car	Green		.	.		03:14:21.49 PM
58 Car	Green	Car	.	Car		03:14:22.50 PM
59 Car	Green	.	.	Car		03:14:22.62 PM
60 Car	Green	.	.	.		03:14:22.69 PM
61 Car	Green	Car	.	Car		03:14:23.51 PM
62 Car	Green	Car	.	.		03:14:23.63 PM
63 Car	Green	.	Car	.		03:14:24.24 PM
64 Car	Green	.	Car	.	.	03:14:24.53 PM
65 Car	Green	Car	Car	.	.	03:14:25.40 PM
66 Car	Green	Car	Car	.	.	03:14:25.54 PM
67 Car	Green	Car	.	.	.	03:14:25.81 PM
68 Car	Green	03:14:25.87 PM
69 Car	Green	03:14:26.56 PM
70 Car	Green	.	.	Car	.	03:14:27.57 PM
71 Car	Green	03:14:27.83 PM
72 Car	Green	Car	.	.	.	03:14:28.58 PM
73 Car	Green	03:14:29.04 PM
74 Car	Green	03:14:29.60 PM
75 Car	Green	Car	.	.	.	03:14:30.62 PM
76 Car	Green	03:14:30.77 PM
77 Car	Green	Car	.	Car	.	03:14:31.63 PM
78 Car	Green	03:14:32.38 PM
79 Car	Green	03:14:32.40 PM
80 Car	Green	.	.	-	.	03:14:32.64 PM
81 Car	Green	.	.	Car	.	03:14:33.60 PM
82 Car	Green	.	-	Car		03:14:33.66 PM
83 Car	Green	.	Car	.	.	03:14:34.25 PM
84 Car	Green	.	Car	.		03:14:34.67 PM
85 Car	Green	.	Car	.	.	03:14:35.68 PM
86 Car	Green	03:14:36.17 PM
87 Car	Green	03:14:36.70 PM
88 Car	Green	Car	Car	.	.	03:14:37.69 PM
89 Car	Green	Car	Car	.	.	03:14:37.76 PM
90 Car	Green	Car	.	Car	.	03:14:38.40 PM
91 Car	Green	.	.	Car	.	03:14:38.50 PM
92 Car	Green	.	.	Car	.	03:14:38.72 PM
93 Car	Green	03:14:38.80 PM
94 Car	Green	Car	.	.	.	03:14:39.74 PM
95 Car	Green	.	.	Car	.	03:14:40.27 PM
96 Car	Green	.	.	Car	.	03:14:40.76 PM
97 Car	Green	03:14:41.03 PM
98 Car	Green	03:14:41.77 PM
99 Car	Green	03:14:42.78 PM
100 Car	Green	03:14:43.80 PM
101 Car	Green	03:14:44.81 PM
102 Car	Green	03:14:45.82 PM
103 Car	Green	03:14:46.83 PM
104 Car	Green	03:14:47.85 PM
105 Car	Green	03:14:48.87 PM
106 Car	Green	03:14:49.88 PM
107 Car	Green	03:14:50.89 PM
108 Car	Green	03:14:51.91 PM
109 Car	Green	03:14:52.92 PM
110 Car	Green	03:14:53.93 PM
111 Car	Green	03:14:54.95 PM
112 Car	Green	03:14:55.97 PM
113 Car	Green	03:14:56.98 PM
114 Car	Green	03:14:58.00 PM
115 Car	Green	03:14:59.01 PM
116 Car	Green	03:15:00.02 PM
117 Car	Green	.	.	.		03:15:01.03 PM
118 Car	Green	.	-	.	.	03:15:02.05 PM
119 Car	Green	Car	Car	.		03:15:03.06 PM
120 Car	Green			.		03:15:03.48 PM

121 Car	Green	03:15:03.53 PM
122 Car	Green	03:15:04.07 PM
123 Car	Green	.	Car	.		03:15:05.09 PM
124 Car	Green	03:15:05.45 PM
125 Car	Green	Car	.	.		03:15:06.11 PM
126 Car	Green	03:15:06.56 PM
127 Car	Green	03:15:07.12 PM
128 Car	Green	03:15:08.14 PM
129 Car	Green	03:15:09.15 PM
130 Car	Green	Car	Car	.	.	03:15:10.16 PM
131 Car	Green	Car	.	.	.	03:15:10.30 PM
132 Car	Green	03:15:10.45 PM
133 Car	Green	03:15:11.17 PM
134 Car	Green	03:15:12.12 PM
135 Car	Green	03:15:12.20 PM
136 Car	Green	.	.	.		03:15:13.20 PM
137 Car	Green	03:15:14.21 PM
138 Car	Green	03:15:15.24 PM
139 Car	Green	03:15:16.25 PM
140 Car	Green	.	Car	.	.	03:15:17.26 PM
141 Car	Green	03:15:17.69 PM
142 Car	Green	03:15:18.27 PM
143 Car	Green	.	.	Car	.	03:15:19.29 PM
144 Car	Green	03:15:19.71 PM
145 Car	Green	.	Car	.	.	03:15:20.31 PM
146 Car	Green	03:15:20.92 PM
147 Car	Green	03:15:21.31 PM
148 Car	Green	Car	.	Car	.	03:15:22.33 PM
149 Car	Green	.	.	Car	.	03:15:22.69 PM
150 Car	Green	03:15:22.79 PM
151 Car	Green	.	-	.	.	03:15:23.34 PM
152 Car	Green	.	Car	.	.	03:15:24.36 PM
153 Car	Green	03:15:24.81 PM
154 Car	Green	Car	Car	.	.	03:15:25.38 PM
155 Car	Green	.	Car	.	.	03:15:25.63 PM
156 Car	Green	03:15:26.03 PM
157 Car	Green	.	.	Car	.	03:15:26.39 PM
158 Car	Green	.	Car	.	.	03:15:27.04 PM
159 Car	Green	03:15:27.14 PM
160 Car	Green	03:15:27.40 PM
161 Car	Green	Car	.	.	.	03:15:28.25 PM
162 Car	Green	03:15:28.35 PM
163 Car	Green	03:15:28.41 PM
164 Car	Green	Car	Car	.	.	03:15:29.43 PM
165 Car	Green	.	.	.		03:15:29.76 PM
166 Car	Green	03:15:29.79 PM
167 Car	Green	Car	.	.	.	03:15:30.44 PM
168 Car	Green	03:15:30.50 PM
169 Car	Green	.	.	.		03:15:31.38 PM
170 Car	Green	03:15:31.46 PM
171 Car	Green	.	.	.		03:15:32.29 PM
172 Car	Green	03:15:32.46 PM
173 Car	Green	.	Car	.	.	03:15:33.20 PM
174 Car	Green	03:15:33.48 PM
175 Car	Green	03:15:33.51 PM
176 Car	Green	03:15:34.21 PM
177 Car	Green	.	Car	.	.	03:15:34.49 PM
178 Car	Green	03:15:34.98 PM
179 Car	Green	Car	Car	Car	.	03:15:35.51 PM
180 Car	Green	Car	.	Car	.	03:15:35.63 PM
181 Car	Green	Car	.	.	.	03:15:35.74 PM
182 Car	Green	03:15:35.89 PM
183 Car	Green	.	.	Car	.	03:15:36.53 PM
184 Car	Green	Car	.	.		03:15:37.10 PM

185 Car	Green	03:15:37.35 PM			
186 Car	Green	03:15:37.54 PM			
187 Car	Green	.	Car	.	-	03:15:38.55 PM			
188 Car	Green	03:15:39.02 PM			
189 Car	Green	Car	.	.	-	03:15:39.57 PM			
190 Car	Green	03:15:39.98 PM			
191 Car	Green	.	-	.	.	03:15:40.58 PM			
192 Car	Green	Car	Car	Car	.	03:15:41.59 PM			
193 Car	Green	.	Car	Car	.	03:15:41.67 PM			
194 Car	Green	.	.	Car	.	03:15:41.95 PM			
195 Car	Green	03:15:42.01 PM			
196 Car	Green	Car	.	.	.	03:15:42.61 PM			
197 Car	Green	03:15:43.16 PM			
198 Car	Green	-	.	Car	.	03:15:43.62 PM			
199 Car	Green	Car	.	.	.	03:15:43.97 PM			
200 Car	Green	.	.	Car	.	03:15:44.48 PM			
201 Car	Green	.	.	Car	.	03:15:44.63 PM			
202 Car	Green	Car	.	.	.	03:15:44.84 PM			
203 Car	Red	Car	Car	.	.	03:15:45.34 PM Not Compl Not Compl	0	0	0
204 Car	Red	.	Car	.	.	03:15:45.50 PM			
205 Car	Red	.	Car	.	.	03:15:45.65 PM			
206 Car	Red	03:15:46.10 PM			
207 Car	Red	03:15:46.67 PM			
208 Car	Red	03:15:47.68 PM			
209 Car	Red	Car	.	.	.	03:15:48.70 PM			
210 Car	Red	03:15:49.04 PM			
211 Car	Red	-	.	.	.	03:15:49.71 PM			
212 Car	Red	.	-	.	.	03:15:50.72 PM			
213 Car	Red	.	Car	.	.	03:15:51.73 PM			
214 Car	Red	03:15:52.62 PM			
215 Car	Red	.	.	.	-	03:15:52.75 PM			
216 Car	Red	03:15:53.76 PM			
217 Car	Red	03:15:54.77 PM			
218 Car	Red	03:15:55.79 PM			
219 Car	Red	.	.	.	Car	03:15:56.81 PM			
220 Car	Red	.	Car	.	.	03:15:57.82 PM			
221 Car	Red	03:15:58.69 PM			
222 Car	Red	03:15:58.84 PM			
223 Car	Red	Car	.	.	.	03:15:59.85 PM			
224 Car	Red	03:16:00.41 PM			
225 Car	Red	.	.	Car	.	03:16:00.86 PM			
226 Car	Red	.	Car	.	.	03:16:01.57 PM			
227 Car	Red	.	Car	.	.	03:16:01.87 PM			
228 Car	Red	03:16:02.68 PM			
229 Car	Red	03:16:02.89 PM			
230 Car	Red	Car	.	.	.	03:16:03.90 PM			
231 Car	Red	.	Car	.	.	03:16:04.75 PM			
232 Car	Red	.	Car	.	.	03:16:04.92 PM			
233 Car	Red	.	Car	.	.	03:16:05.93 PM			
234 Car	Red	03:16:06.12 PM			
235 Car	Red	03:16:06.95 PM			
236 Car	Red	.	Car	.	.	03:16:07.96 PM			
237 Car	Red	.	Car	Car	.	03:16:08.98 PM			
238 Car	Red	.	.	Car	.	03:16:09.46 PM			
239 Car	Red	03:16:09.76 PM			
240 Car	Red	.	.	\cdot	.	03:16:09.98 PM			
241 Car	Red	.	Car	Car	.	03:16:11.00 PM			
242 Car	Red	.	Car	Car	.	03:16:12.01 PM			
243 Car	Red	.	Car	.	.	03:16:12.04 PM			
244 Car	Red	03:16:12.74 PM			
245 Car	Red	03:16:13.03 PM			
246 Car	Red	.	-	.	.	03:16:14.04 PM			
247 Car	Red	.	Car	.	Car	03:16:15.05 PM			
248 Car	Red	.	Car	.	Car	03:16:16.07 PM			

249 Car	Red	.	Car	.	.	03:16:17.08 PM
250 Car	Red	.	Car	.	.	03:16:18.10 PM
251 Car	Red	.	Car	.	.	03:16:19.11 PM
252 Car	Red	.	Car	Car	.	03:16:20.13 PM
253 Car	Red	.	Car	Car	.	03:16:21.14 PM
254	Red	.	Car	Car	.	03:16:21.60 PM
255	Red	.	Car	Car	.	03:16:22.16 PM
256	Red	.	Car	Car	.	03:16:23.11 PM
257	Red	.	Car	Car	.	03:16:23.18 PM
258 Car	Red	.	Car	Car	.	03:16:24.19 PM
259 Car	Red	.	Car	Car	Car	03:16:25.19 PM
260 Car	Red	.	Car	.	Car	03:16:25.43 PM
261 Car	Red	.	Car	.	.	03:16:26.21 PM
262 Car	Red	.	Car	.	.	03:16:27.22 PM
263 Car	Red	.	Car	.	.	03:16:28.24 PM
264 Car	Red	.	Car	.	.	03:16:29.25 PM
265 Car	Red	.	Car	.	.	03:16:30.27 PM
266 Car	Red	.	Car	.	.	03:16:31.28 PM
267 Car	Red	.	Car	.	.	03:16:32.30 PM
268	Red	.	Car	.	.	03:16:33.31 PM
269	Red	.	Car	.	.	03:16:33.34 PM
270 Car	Red	.	Car	.	.	03:16:34.32 PM
271 Car	Red	.	Car	.	.	03:16:35.34 PM
272	Red	.	Car	.	.	03:16:35.41 PM
273	Red	.	Car	.	.	03:16:35.70 PM
274 Car	Red	.	Car	.	.	03:16:36.37 PM
275 Car	Red	-	Car	-	.	03:16:37.37 PM
276 Car	Red	.	Car	Car	.	03:16:38.38 PM
277	Red	.	Car	Car	.	03:16:39.24 PM
278 Car	Red	.	Car	Car	.	03:16:39.40 PM
279 Car	Red	.	Car	Car	.	03:16:40.40 PM
280	Red	.	Car	Car	.	03:16:41.10 PM
281	Red	.	Car	.	.	03:16:41.18 PM
282	Red	.	Car	.	.	03:16:41.42 PM
283	Red	.	Car	.	.	03:16:42.43 PM
284	Red	.	Car	.	.	03:16:43.45 PM
285	Red	.	Car	.	.	03:16:44.46 PM
286	Red	.	Car	.	.	03:16:45.48 PM
287	Red	.	Car	.	.	03:16:46.49 PM
288	Red	.	Car	.	.	03:16:47.51 PM
289	Red	.	Car	.	.	03:16:48.52 PM
290	Red	.	Car	.	.	03:16:49.53 PM
291	Red	Car	Car	.	.	03:16:50.55 PM
292	Red	Car	Car	.	.	03:16:51.56 PM
293	Red	.	Car	.	-	03:16:52.03 PM
294	Green	.	Car	.	.	03:16:52.58 PM
295	Green	.	Car	.	.	03:16:53.59 PM
296	Green	.	Car	.	.	03:16:54.60 PM
297.	Green	.	Car	.	.	03:16:55.62 PM
298	Green	.	Car	.	.	03:16:56.64 PM
299	Green	.	Car	.	.	03:16:57.65 PM
300.	Green	Car	Car	.	.	03:16:58.66 PM
301	Green	.	Car	.	.	03:16:59.11 PM
302	Green	.	Car	.	.	03:16:59.68 PM
303	Green	.	.	Car	.	03:17:00.27 PM
304	Green	.	.	Car	.	03:17:00.69 PM
305	Green	.	.	Car	.	03:17:01.71 PM
306	Green	.	.	Car	.	03:17:02.72 PM
307	Green	.	.	Car	.	03:17:03.73 PM
308.	Green	03:17:04.02 PM
309	Green	03:17:04.75 PM
310	Green	.	Car	.	.	03:17:05.76 PM
311.	Green	03:17:06.44 PM
312.	Green	03:17:06.77 PM

313	Green	03:17:07.79 PM
314	Green	03:17:08.80 PM
315	Green	.	.	Car	.	03:17:09.82 PM
316	Green	03:17:10.39 PM
317	Green	03:17:10.83 PM
318	Green	03:17:11.85 PM
319	Green	03:17:12.86 PM
320	Green	03:17:13.87 PM
321	Green	03:17:14.89 PM
322	Green	03:17:15.90 PM
323	Green	03:17:16.91 PM
324.	Green	03:17:17.93 PM
325	Green	03:17:18.94 PM
326	Green	Car	.	.	.	03:17:19.96 PM
327.	Green	03:17:20.14 PM
328	Green	03:17:20.97 PM
329.	Green	03:17:21.98 PM
330 Car	Green	03:17:23.00 PM
331 Car	Green	03:17:24.01 PM
332 Car	Green	03:17:25.02 PM
333 Car	Green	03:17:26.04 PM
334 Car	Green	03:17:27.06 PM
335 Car	Green	03:17:28.07 PM
336 Car	Green	03:17:29.08 PM
337 Car	Green	03:17:30.10 PM
338 Car	Green	03:17:31.11 PM
339 Car	Green	03:17:32.12 PM
340 Car	Green	03:17:33.13 PM
341 Car	Green	03:17:34.15 PM
342 Car	Green	03:17:35.16 PM
343 Car	Green	03:17:36.18 PM
344 Car	Green	03:17:37.19 PM
345 Car	Green	03:17:38.21 PM
346 Car	Green	03:17:39.22 PM
347 Car	Green	03:17:40.23 PM
348 Car	Green	03:17:41.25 PM
349 Car	Green	03:17:42.26 PM
350 Car	Green	03:17:43.28 PM
351 Car	Green	03:17:44.29 PM
352 Car	Green	03:17:45.30 PM
353 Car	Green	.	Car	-	Car	03:17:45.88 PM
354 Car	Green	.	Car	Car	.	03:17:46.32 PM
355 Car	Green	.	.	Car	.	03:17:46.44 PM
356 Car	Green	Car	.	.	.	03:17:46.89 PM
357 Car	Green	03:17:47.24 PM
358 Car	Green	03:17:47.34 PM
359 Car	Green	03:17:48.35 PM
360 Car	Green	03:17:49.02 PM
361 Car	Green	.	-	.	.	03:17:49.36 PM
362 Car	Green	.	Car	.	.	03:17:50.38 PM
363 Car	Green	.	.	.	-	03:17:50.73 PM
364 Car	Green	.	Car	.	Car	03:17:51.39 PM
365 Car	Green	03:17:51.94 PM
366 Car	Green	03:17:52.40 PM
367 Car	Green	03:17:53.41 PM
368 Car	Green	.	Car	.	.	03:17:54.27 PM
369 Car	Green	.	Car	.	.	03:17:54.43 PM
370 Car	Green	03:17:54.62 PM
371 Car	Green	.	.	Car	.	03:17:55.44 PM
372 Car	Green	Car	.	Car	.	03:17:56.46 PM
373 Car	Green	Car	Car	.	.	03:17:56.90 PM
374 Car	Green	.	Car	.	.	03:17:57.10 PM
375 Car	Green	03:17:57.17 PM
376 Car	Green	03:17:57.48 PM

377 Car	Green	.		Car	.	03:17:58.32 PM
378 Car	Green	.	Car	Car	.	03:17:58.49 PM
379 Car	Green	.	Car	.	.	03:17:58.62 PM
380 Car	Green	03:17:59.08 PM
381 Car	Green	Car	.	-	.	03:17:59.50 PM
382 Car	Green	.	.	Car	.	03:17:59.94 PM
383 Car	Green	Car	-	Car	.	03:18:00.52 PM
384 Car	Green	Car	Car	.	.	03:18:00.59 PM
385 Car	Green	.	Car	.	.	03:18:00.94 PM
386 Car	Green	03:18:01.19 PM
387 Car	Green	\cdot	.	Car	.	03:18:01.52 PM
388 Car	Green	Car	.	.	.	03:18:02.10 PM
389 Car	Green	Car	.	.	.	03:18:02.54 PM
390 Car	Green	03:18:02.81 PM
391 Car	Green	03:18:03.55 PM
392 Car	Green	03:18:04.57 PM
393 Car	Green	.	.	-	.	03:18:05.58 PM
394 Car	Green	-	.	Car	.	03:18:06.36 PM
395 Car	Green	Car	.	.	.	03:18:06.56 PM
396 Car	Green	Car	.	.	.	03:18:06.63 PM
397 Car	Green	03:18:07.27 PM
398 Car	Green	\cdot	.	.	.	03:18:07.62 PM
399 Car	Green	Car	.	.	.	03:18:08.38 PM
400 Car	Green	03:18:08.63 PM
401 Car	Green	\cdot	.	.	.	03:18:08.68 PM
402 Car	Green	Car	.	.	.	03:18:09.59 PM
403 Car	Green	Car	.	.	.	03:18:09.67 PM
404 Car	Green	03:18:09.90 PM
405 Car	Green	03:18:10.66 PM
406 Car	Green	.	Car	-	.	03:18:11.56 PM
407 Car	Green	.	Car	.	.	03:18:11.67 PM
408 Car	Green	03:18:11.81 PM
409 Car	Green	03:18:12.68 PM
410 Car	Green	.	.	.	-	03:18:13.64 PM
411 Car	Green	03:18:13.71 PM
412 Car	Green	.	Car	.	.	03:18:14.71 PM
413 Car	Green	03:18:15.00 PM
414 Car	Green	.	-	.	.	03:18:15.72 PM
415 Car	Green	.	Car	.	.	03:18:16.74 PM
416 Car	Green	.	Car	.	.	03:18:16.77 PM
417 Car	Green	03:18:17.32 PM
418 Car	Green	03:18:17.75 PM
419 Car	Green	Car	.	Car	.	03:18:18.76 PM
420 Car	Green	Car	.	.	.	03:18:18.84 PM
421 Car	Green	03:18:19.04 PM
422 Car	Green	.	-	.	.	03:18:19.78 PM
423 Car	Green	.	Car	Car	-	03:18:20.79 PM
424 Car	Green	03:18:20.82 PM
425 Car	Green	03:18:20.87 PM
426 Car	Green	.	-	.	.	03:18:21.77 PM
427 Car	Green	03:18:21.86 PM
428 Car	Green	Car	Car	.	.	03:18:22.82 PM
429 Car	Green	.	Car	.	.	03:18:23.19 PM
430 Car	Green	-	.	.	.	03:18:23.29 PM
431 Car	Green	03:18:23.83 PM
432 Car	Green	.	.	Car	.	03:18:24.85 PM
433 Car	Green	.	.	.	-	03:18:25.26 PM
434 Car	Green	-	.	.	Car	03:18:25.87 PM
435 Car	Green	03:18:26.87 PM
436 Car	Green	03:18:27.73 PM
437 Car	Green	03:18:27.89 PM
438 Car	Green	.	.	.	-	03:18:28.90 PM
439 Car	Green	.	.	.	\cdot	03:18:29.92 PM
440 Car	Green	.	.	.	Car	03:18:30.93 PM

441 Car	Green	Car	.	.		03:18:31.68 PM			
442 Car	Green	.	.	.		03:18:31.94 PM			
443 Car	Green	03:18:32.01 PM			
444 Car	Green	.	.	Car	.	03:18:32.96 PM			
445 Car	Green	03:18:33.15 PM			
446 Car	Green	Car	.	.	.	03:18:33.98 PM			
447 Car	Green	Car	.	.	.	03:18:34.99 PM			
448 Car	Green	03:18:35.58 PM			
449 Car	Green	.	Car	.	.	03:18:36.01 PM			
450 Car	Green	03:18:36.69 PM			
451 Car	Green	03:18:37.02 PM			
452 Car	Green	.	Car	Car	.	03:18:37.96 PM			
453 Car	Green	.	Car	Car	.	03:18:38.04 PM			
454 Car	Green	.	Car	.	.	03:18:38.36 PM			
455 Car	Green	Car	.	.	.	03:18:38.77 PM			
456 Car	Green	Car	.	.	.	03:18:39.05 PM			
457 Car	Green	03:18:39.22 PM			
458 Car	Green	Car	.	.	.	03:18:40.06 PM			
459 Car	Green	03:18:40.28 PM			
460 Car	Green	Car	.	.	.	03:18:41.07 PM			
461 Car	Green	.	\cdot	.	.	03:18:41.54 PM			
462 Car	Green	.	Car	.	.	03:18:42.09 PM			
463 Car	Green	03:18:42.60 PM			
464 Car	Green	.	-	.	.	03:18:43.10 PM			
465 Car	Green	.	Car	.	.	03:18:44.11 PM			
466 Car	Green	Car	.	Car	.	03:18:44.68 PM			
467 Car	Green	.	.	Car	.	03:18:44.93 PM			
468 Car	Green	.	.	Car	.	03:18:45.13 PM			
469 Car	Red	.	.	Car	.	03:18:45.33 PM Not Compl Red Arrow	720	5	180
470 Car	Red	-	-	.	.	03:18:45.43 PM			
471 Car	Red	Car	Car	.	.	03:18:46.15 PM			
472 Car	Red	Car	.	.	.	03:18:46.30 PM			
473 Car	Red	03:18:46.40 PM			
474 Car	Red	-	.	.	.	03:18:47.16 PM			
475 Car	Red	Car	.	.	.	03:18:48.17 PM			
476 Car	Red	.	.	Car	.	03:18:49.13 PM			
477 Car	Red	.	.	Car	.	03:18:49.20 PM			
478 Car	Red	03:18:49.43 PM			
479 Car	Red	Car	Car	.	.	03:18:50.20 PM			
480 Car	Red	.	Car	.	.	03:18:51.09 PM			
481 Car	Red	.	Car	-	.	03:18:51.21 PM			
482 Car	Red	.	Car	.	.	03:18:52.22 PM			
483 Car	Red	Car	.	Car	.	03:18:52.76 PM			
484 Car	Red	Car	.	Car	.	03:18:53.24 PM			
485 Car	Red	Car	.	.	.	03:18:53.62 PM			
486 Car	Red	.	.	-	.	03:18:53.93 PM			
487 Car	Red	.	.	-	.	03:18:54.25 PM			
488 Car	Red	Car	.	.	.	03:18:55.27 PM			
489 Car	Red	Car	Car	-	.	03:18:56.28 PM			
490 Car	Red	.	Car	.	.	03:18:56.71 PM			
491 Car	Red	.	Car	.	.	03:18:57.30 PM			
492 Car	Red	03:18:58.18 PM			
493 Car	Red	Car	.	.	.	03:18:58.31 PM			
494 Car	Red	Car	Car	.	.	03:18:59.33 PM			
495 Car	Red	Car	Car	Car	.	03:19:00.34 PM			
496 Car	Red	Car	Car	.	-	03:19:01.11 PM			
497 Car	Red	Car	Car	Car	.	03:19:01.36 PM			
498 Car	Red	Car	Car	Car	.	03:19:02.37 PM			
499 Car	Red	Car	.	Car	.	03:19:02.78 PM			
500 Car	Red	Car	.	Car	.	03:19:03.38 PM			
501 Car	Red	Car	.	Car	.	03:19:04.39 PM			
502 Car	Red	Car	.	Car	.	03:19:05.41 PM			
503 Car	Red	Car	.	Car	.	03:19:06.43 PM			
504 Car	Red	.	.	Car		03:19:07.44 PM			

505 Car	Red	.	.	Car	.	03:19:07.50 PM
506 Car	Red	.	.	Car	.	03:19:08.45 PM
507 Car	Red	.	.	Car		03:19:09.47 PM
508 Car	Red	03:19:09.76 PM
509 Car	Red	03:19:10.48 PM
510 Car	Red	03:19:11.49 PM
511 Car	Red	03:19:12.51 PM
512 Car	Red	03:19:13.52 PM
513 Car	Red	.	.	Car	.	03:19:14.53 PM
514 Car	Red	.	.	Car	.	03:19:15.55 PM
515 Car	Red	.	.	Car	.	03:19:16.57 PM
516 Car	Red	.	.	Car	.	03:19:17.58 PM
517 Car	Red	.	.	Car	.	03:19:18.59 PM
518 Car	Red	.	.	Car	.	03:19:19.61 PM
519 Car	Red	.	.	Car	.	03:19:20.62 PM
520 Car	Red	.	.	Car	.	03:19:21.63 PM
521 Car	Red	.	.	Car	.	03:19:22.65 PM
522 Car	Red	.	.	Car	.	03:19:23.66 PM
523 Car	Red	.	.	Car	.	03:19:24.68 PM
524 Car	Red	.	.	Car	.	03:19:25.69 PM
525 Car	Red	.	.	Car	.	03:19:26.71 PM
526 Car	Red	.	.	Car	.	03:19:27.72 PM
527 Car	Red	.	.	Car	.	03:19:28.74 PM
528 Car	Red	.	.	Car	.	03:19:29.75 PM
529	Red	.	.	Car	.	03:19:30.76 PM
530	Red	.	.	Car	.	03:19:30.79 PM
531 Car	Red	.	.	Car	.	03:19:31.77 PM
532 Car	Red	.	.	Car	.	03:19:32.78 PM
533 Car	Red	.	.	Car	.	03:19:33.80 PM
534	Red	.	.	Car	.	03:19:34.63 PM
535	Red	.	.	Car	.	03:19:34.81 PM
536 Car	Red	.	.	Car	.	03:19:35.83 PM
537 Car	Red	.	.	Car	.	03:19:36.84 PM
538 Car	Red	.	.	Car	.	03:19:37.85 PM
539 Car	Red	.	.	Car	.	03:19:38.88 PM
540 Car	Red	.	.	Car	.	03:19:39.89 PM
541 Car	Red	.	.	Car	.	03:19:40.90 PM
542 Car	Red	.	.	Car	.	03:19:41.92 PM
543 Car	Red	.	.	Car	.	03:19:42.93 PM
544	Red	.	.	Car	.	03:19:43.63 PM
545	Red	.	.	Car	.	03:19:43.95 PM
546	Red	.	.	Car	.	03:19:44.96 PM
547	Red	.	.	Car	.	03:19:45.97 PM
548	Red	.	.	Car	.	03:19:46.98 PM
549	Red	.	.	Car	.	03:19:48.00 PM
550	Red	.	.	Car	.	03:19:49.01 PM
551	Red	.	.	Car	.	03:19:50.02 PM
552	Red	.	.	Car	.	03:19:51.04 PM
553	Red	.	.	Car	.	03:19:52.06 PM
554	Red	.	.	Car	.	03:19:53.07 PM
555	Red	.	.	Car	.	03:19:54.08 PM
556	Green	.	.	Car	.	03:19:55.10 PM
557	Green	.	.	Car	.	03:19:56.11 PM
558	Green	.	.	Car	.	03:19:57.13 PM
559	Green	.	.	Car	.	03:19:58.14 PM
560	Green	.	.	Car	.	03:19:59.16 PM
561	Green	.	.	Car	.	03:20:00.17 PM
562	Green	.	.	Car	.	03:20:01.19 PM
563	Green	.	Car	Car	.	03:20:02.19 PM
564 Car	Green	Car	Car	Car	.	03:20:03.21 PM
565 Car	Green	Car	.	Car	.	03:20:04.05 PM
566 Car	Green	Car	.	Car	.	03:20:04.22 PM
567 Car	Green	03:20:05.17 PM
568 Car	Green	.	.	.		03:20:05.20 PM

569 Car	Green	03:20:05.27 PM
570 Car	Green	Car	-	Car	.	03:20:06.25 PM
571 Car	Green	.	Car	Car		03:20:07.09 PM
572 Car	Green	.	Car	Car	.	03:20:07.27 PM
573 Car	Green	.	Car	.		03:20:07.70 PM
574 Car	Green	Car	.	.	.	03:20:08.21 PM
575 Car	Green	Car	.	.	.	03:20:08.28 PM
576 Car	Green	.	Car	.	.	03:20:09.30 PM
577 Car	Green	.	Car	.	.	03:20:09.34 PM
578 Car	Green	Car	.	.	.	03:20:10.23 PM
579 Car	Green	Car	.	.	.	03:20:10.31 PM
580 Car	Green	03:20:11.24 PM
581 Car	Green	03:20:11.32 PM
582 Car	Green	.	Car	.	.	03:20:12.33 PM
583 Car	Green	Car	.	.	.	03:20:13.01 PM
584 Car	Green	Car	.	.	.	03:20:13.35 PM
585 Car	Green	03:20:13.66 PM
586 Car	Green	03:20:14.37 PM
587 Car	Green	Car	.	.	.	03:20:15.39 PM
588 Car	Green	Car	.	.	.	03:20:15.42 PM
589 Car	Green	03:20:16.04 PM
590 Car	Green	03:20:16.39 PM
591 Car	Green	03:20:17.35 PM
592 Car	Green	03:20:17.42 PM
593 Car	Green	.	-	.	.	03:20:18.42 PM
594 Car	Green	.	Car	.	.	03:20:19.43 PM
595 Car	Green	Car	.	.	.	03:20:20.03 PM
596 Car	Green	03:20:20.28 PM
597 Car	Green	03:20:20.44 PM
598 Car	Green	03:20:21.46 PM
599 Car	Green	Car	Car	Car	.	03:20:22.48 PM
600 Car	Green	.	Car	.	.	03:20:23.07 PM
601 Car	Green	03:20:23.14 PM
602 Car	Green	03:20:23.17 PM
603 Car	Green	03:20:23.49 PM
604 Car	Green	Car	.	.	.	03:20:24.50 PM
605 Car	Green	03:20:24.89 PM
606 Car	Green	03:20:25.52 PM
607 Car	Green	03:20:26.30 PM
608 Car	Green	03:20:26.53 PM
609 Car	Green	Car	.	.	.	03:20:27.54 PM
610 Car	Green	.	Car	.	.	03:20:28.17 PM
611 Car	Green	.	Car	.	.	03:20:28.55 PM
612 Car	Green	.	Car	.	.	03:20:29.57 PM
613 Car	Green	.	.	.		03:20:30.04 PM
614 Car	Green	03:20:30.59 PM
615 Car	Green	.	Car	.		03:20:31.62 PM
616 Car	Green	03:20:32.37 PM
617 Car	Green	03:20:32.62 PM
618 Car	Green	03:20:33.63 PM
619 Car	Green	03:20:34.65 PM
620 Car	Green	03:20:35.66 PM
621 Car	Green	03:20:36.67 PM
622 Car	Green	03:20:37.69 PM
623 Car	Green	03:20:38.70 PM
624 Car	Green	03:20:39.71 PM
625 Car	Green	-	.	.	.	03:20:40.73 PM
626 Car	Green	Car	.	.		03:20:41.74 PM
627 Car	Green	.	-	.	.	03:20:42.33 PM
628 Car	Green		Car	.		03:20:42.75 PM
629 Car	Green		.	.	.	03:20:43.14 PM
630 Car	Green		.	.		03:20:43.77 PM
631 Car	Green			.		03:20:44.65 PM
632 Car	Green					03:20:44.78 PM

633 Car	Green	.	Car	.	.	03:20:45.80 PM
634 Car	Green	.	.	Car	.	03:20:46.07 PM
635 Car	Green	03:20:46.43 PM
636 Car	Green	03:20:46.81 PM
637 Car	Green	.	.	-	.	03:20:47.82 PM
638 Car	Green	03:20:48.84 PM
639 Car	Green	Car	Car	.	.	03:20:49.86 PM
640 Car	Green	Car	.	.	.	03:20:50.16 PM
641 Car	Green	03:20:50.47 PM
642 Car	Green	03:20:50.86 PM
643 Car	Green	.	Car	.	-	03:20:51.89 PM
644 Car	Green	03:20:52.39 PM
645 Car	Green	03:20:52.89 PM
646 Car	Green	-	.	.	.	03:20:53.90 PM
647 Car	Green	03:20:54.92 PM
648 Car	Green	03:20:55.93 PM
649 Car	Green	Car	.	.	.	03:20:56.95 PM
650 Car	Green	03:20:57.04 PM
651 Car	Green	03:20:57.97 PM
652 Car	Green	Car	.	.	.	03:20:58.98 PM
653 Car	Green	03:20:59.52 PM
654 Car	Green	Car	.	.	.	03:20:59.99 PM
655 Car	Green	03:21:00.58 PM
656 Car	Green	03:21:01.01 PM
657 Car	Green	.	-	.	-	03:21:02.02 PM
658 Car	Green	.	Car	.	Car	03:21:02.76 PM
659 Car	Green	.	.	Car	Car	03:21:03.01 PM
660 Car	Green	.	.	Car	Car	03:21:03.09 PM
661 Car	Green	03:21:03.57 PM
662 Car	Green	03:21:04.05 PM
663 Car	Green	03:21:05.07 PM
664 Car	Green	03:21:06.08 PM
665 Car	Green	03:21:07.09 PM
666 Car	Green	.	.	Car	.	03:21:08.10 PM
667 Car	Green	03:21:08.62 PM
668 Car	Green	03:21:09.12 PM
669 Car	Green	Car	-	.	.	03:21:10.13 PM
670 Car	Green	.	Car	.	.	03:21:10.39 PM
671 Car	Green	03:21:10.89 PM
672 Car	Green	.	.	.	-	03:21:11.14 PM
673 Car	Green	.	.	.	Car	03:21:12.16 PM
674 Car	Green	.	Car	.	.	03:21:13.18 PM
675 Car	Green	03:21:13.98 PM
676 Car	Green	-	.	.	.	03:21:14.19 PM
677 Car	Green	Car	.	.	.	03:21:15.20 PM
678 Car	Green	-	.	.	.	03:21:15.40 PM
679 Car	Green	-	.	.	.	03:21:16.22 PM
680 Car	Green	.	.	Car	-	03:21:17.23 PM
681 Car	Green	.	.	Car	.	03:21:18.18 PM
682 Car	Green	.	.	Car	.	03:21:18.28 PM
683 Car	Green	03:21:19.19 PM
684 Car	Green	03:21:19.28 PM
685 Car	Green	03:21:20.20 PM
686 Car	Green	03:21:20.28 PM
687 Car	Green	03:21:21.29 PM
688 Car	Green	03:21:22.30 PM
689 Car	Green	03:21:23.28 PM
690 Car	Green	.	-	.	.	03:21:23.37 PM
691 Car	Green	.	Car	.	.	03:21:24.33 PM
692 Car	Green	03:21:24.90 PM
693 Car	Green	03:21:25.34 PM
694 Car	Green	.	-	Car	.	03:21:26.36 PM
695 Car	Green	03:21:26.52 PM
696 Car	Green	03:21:27.37 PM

697 Car	Green	Car	.	.	.	03:21:28.38 PM			
698 Car	Green	03:21:28.94 PM			
699 Car	Green	03:21:29.40 PM			
700 Car	Green	.	.	Car	.	03:21:30.41 PM			
701 Car	Green	.	Car	.	.	03:21:30.56 PM			
702 Car	Green	03:21:31.17 PM			
703 Car	Green	03:21:31.42 PM			
704 Car	Green	03:21:32.44 PM			
705 Car	Green	03:21:33.45 PM			
706 Car	Green	03:21:33.53 PM			
707 Car	Green	03:21:34.47 PM			
708 Car	Green	03:21:34.55 PM			
709 Car	Green	03:21:35.48 PM			
710 Car	Green	03:21:36.50 PM			
711 Car	Green	03:21:37.39 PM			
712 Car	Green	03:21:37.51 PM			
713 Car	Green	03:21:38.30 PM			
714 Car	Green	.	Car	.	.	03:21:38.52 PM			
715 Car	Green	Car	.	.	.	03:21:39.11 PM			
716 Car	Green	Car	.	.	.	03:21:39.53 PM			
717 Car	Green	03:21:39.71 PM			
718 Car	Green	03:21:40.55 PM			
719 Car	Green	03:21:41.56 PM			
720 Car	Green	03:21:42.25 PM			
721 Car	Green	03:21:42.58 PM			
722 Car	Green	Car	.	.	.	03:21:43.59 PM			
723 Car	Green	03:21:43.86 PM			
724 Car	Green	03:21:44.61 PM			
725 Car	Red	.	Car	Car	.	03:21:45.33 PM Yellow Arrc Red Arrow	560	6.4	180
726 Car	Red	.	.	Car	.	03:21:45.43 PM			
727 Car	Red	.	.	Car	.	03:21:45.62 PM			
728 Car	Red	03:21:45.68 PM			
729 Car	Red	03:21:46.64 PM			
730 Car	Red	Car	.	.	.	03:21:47.45 PM			
731 Car	Red	Car	.	.	.	03:21:47.65 PM			
732 Car	Red	Car	.	.	.	03:21:48.67 PM			
733 Car	Red	03:21:49.17 PM			
734 Car	Red	03:21:49.68 PM			
735 Car	Red	.	.	Car	.	03:21:50.59 PM			
736 Car	Red	.	.	Car	.	03:21:50.70 PM			
737 Car	Red	03:21:51.05 PM			
738 Car	Red	.	Car	.	.	03:21:51.71 PM			
739 Car	Red	03:21:52.40 PM			
740 Car	Red	03:21:52.72 PM			
741 Car	Red	03:21:53.73 PM			
742 Car	Red	03:21:54.75 PM			
743 Car	Red	.	Car	.	.	03:21:55.76 PM			
744 Car	Red	03:21:56.55 PM			
745 Car	Red	03:21:56.77 PM			
746 Car	Red	03:21:57.79 PM			
747 Car	Red	03:21:58.81 PM			
748 Car	Red	Car	.	.	.	03:21:59.82 PM			
749 Car	Red	Car	.	.	.	03:22:00.83 PM			
750 Car	Red	Car	.	.	.	03:22:01.85 PM			
751 Car	Red	Car	.	Car	.	03:22:02.87 PM			
752 Car	Red	Car	.	.	.	03:22:03.59 PM			
753 Car	Red	03:22:03.69 PM			
754 Car	Red	03:22:03.88 PM			
755 Car	Red	.	.	Car	.	03:22:04.89 PM			
756 Car	Red	03:22:05.66 PM			
757 Car	Red	03:22:05.91 PM			
758 Car	Red	03:22:06.92 PM			
759 Car	Red	Car	.	.	-	03:22:07.93 PM			
760 Car	Red	Car	.	.	Car	03:22:08.94 PM			

761 Car	Red	Car	.	.	.	03:22:09.96 PM
762 Car	Red	Car	Car	Car	.	03:22:10.97 PM
763 Car	Red	Car	Car	.		03:22:11.52 PM
764 Car	Red	.	Car	.	.	03:22:11.59 PM
765 Car	Red	.	.	.		03:22:11.92 PM
766 Car	Red	03:22:12.00 PM
767 Car	Red	.	.	.		03:22:13.00 PM
768 Car	Red	03:22:14.02 PM
769 Car	Red	.	.	.		03:22:15.03 PM
770 Car	Red	03:22:16.05 PM
771 Car	Red	03:22:17.06 PM
772 Car	Red	03:22:18.07 PM
773 Car	Red	03:22:19.08 PM
774 Car	Red	.	.	Car	.	03:22:20.09 PM
775 Car	Red	.	.	Car	.	03:22:21.11 PM
776 Car	Red	.	.	Car	.	03:22:22.12 PM
777 Car	Red	03:22:22.90 PM
778 Car	Red	03:22:23.15 PM
779 Car	Red	03:22:24.16 PM
780 Car	Red	03:22:25.17 PM
781 Car	Red	03:22:26.19 PM
782 Car	Red	03:22:27.20 PM
783 Car	Red	03:22:28.21 PM
784 Car	Red	03:22:29.22 PM
785 Car	Red	.	.	Car	.	03:22:30.24 PM
786 Car	Red	.	.	Car	.	03:22:31.25 PM
787	Red	.	.	Car	.	03:22:31.99 PM
788 Car	Red	.	.	Car	.	03:22:32.26 PM
789 Car	Red	Car	.	Car	.	03:22:33.28 PM
790 Car	Red	Car	.	Car	.	03:22:34.29 PM
791 Car	Red	Car	.	Car	.	03:22:35.31 PM
792 Car	Red	Car	.	Car	.	03:22:36.32 PM
793 Car	Red	Car	.	.	.	03:22:37.00 PM
794 Car	Red	Car	.	.	.	03:22:37.33 PM
795 Car	Red	Car	.	.	.	03:22:38.36 PM
796 Car	Red	Car	.	.	.	03:22:39.37 PM
797	Red	Car	.	.	.	03:22:40.24 PM
798 Car	Red	Car	.	.	.	03:22:40.38 PM
799 Car	Red	Car	.	.	.	03:22:41.39 PM
800	Red	Car	.	.	.	03:22:41.55 PM
801 Car	Red	Car	.	.	.	03:22:42.41 PM
802 Car	Red	Car	.	.	.	03:22:43.42 PM
803	Red	Car	.	.	.	03:22:43.97 PM
804	Red	Car	.	.	.	03:22:44.43 PM
805 Car	Red	Car	.	.	.	03:22:45.44 PM
806 Car	Red	Car	.	.	.	03:22:46.46 PM
807 Car	Red	Car	.	.	.	03:22:47.48 PM
808 Car	Red	Car	.	.	.	03:22:48.49 PM
809	Red	Car	.	.	.	03:22:49.28 PM
810	Red	Car	.	.	.	03:22:49.50 PM
811	Red	Car	.	.	.	03:22:50.52 PM
812	Red	Car	.	.	.	03:22:51.53 PM
813	Red	Car	.	.	.	03:22:52.55 PM
814	Red	Car	.	.	.	03:22:53.56 PM
815	Red	Car	.	.	.	03:22:54.57 PM
816	Red	Car	.	.	.	03:22:55.59 PM
817	Red	Car	.	.	.	03:22:56.60 PM
818	Red	Car	.	.		03:22:57.61 PM
819	Red	Car	.	.	.	03:22:58.63 PM
820	Red	Car	.	.	.	03:22:59.65 PM
821	Green	Car	.	.	.	03:23:00.66 PM
822	Green	Car	.	.	.	03:23:01.67 PM
823	Green	Car	.	.		03:23:02.69 PM
824	Green	Car	.	.		03:23:03.70 PM

825	Green	Car	.	.		03:23:04.71 PM
826	Green	Car	.			03:23:05.73 PM
827	Green	Car	.	.	.	03:23:06.74 PM
828	Green	.	.	.		03:23:07.54 PM
829.	Green	.	.	.		03:23:07.76 PM
830.	Green	.	Car	.	.	03:23:08.77 PM
831	Green	.	Car	.	.	03:23:09.78 PM
832	Green	03:23:10.36 PM
833	Green	03:23:10.80 PM
834 Car	Green	03:23:11.81 PM
835 Car	Green	.	Car	.	.	03:23:12.82 PM
836 Car	Green	03:23:13.36 PM
837 Car	Green	03:23:13.85 PM
838 Car	Green	Car	.	.	.	03:23:14.86 PM
839 Car	Green	03:23:15.38 PM
840 Car	Green	03:23:15.87 PM
841 Car	Green	03:23:16.89 PM
842 Car	Green	.		.	.	03:23:17.89 PM
843 Car	Green	03:23:18.91 PM
844 Car	Green	03:23:19.92 PM
845 Car	Green	03:23:20.94 PM
846 Car	Green	03:23:21.95 PM
847 Car	Green	03:23:22.97 PM
848 Car	Green	03:23:23.98 PM
849 Car	Green	03:23:25.00 PM
850 Car	Green	03:23:26.01 PM
851 Car	Green	03:23:27.03 PM
852 Car	Green	03:23:28.03 PM
853 Car	Green	03:23:28.07 PM
854 Car	Green	03:23:28.87 PM
855 Car	Green	03:23:29.05 PM
856 Car	Green	03:23:30.06 PM
857 Car	Green	03:23:30.99 PM
858 Car	Green	03:23:31.08 PM
859 Car	Green	03:23:32.09 PM
860 Car	Green	03:23:33.10 PM
861 Car	Green	.	Car	.	.	03:23:34.13 PM
862 Car	Green	.	Car	.	.	03:23:34.16 PM
863 Car	Green	Car	.	.	.	03:23:34.58 PM
864 Car	Green	03:23:35.09 PM
865 Car	Green	03:23:35.16 PM
866 Car	Green	03:23:36.15 PM
867 Car	Green	03:23:37.16 PM
868 Car	Green	-	.	.	.	03:23:38.18 PM
869 Car	Green	Car	.	.	.	03:23:39.19 PM
870 Car	Green	03:23:39.29 PM
871 Car	Green	03:23:40.15 PM
872 Car	Green	03:23:40.22 PM
873 Car	Green	03:23:41.06 PM
874 Car	Green	03:23:41.22 PM
875 Car	Green	03:23:42.23 PM
876 Car	Green	03:23:43.25 PM
877 Car	Green	03:23:44.27 PM
878 Car	Green	03:23:45.28 PM
879 Car	Green	.	-	.	.	03:23:46.29 PM
880 Car	Green	.	Car	.	.	03:23:47.31 PM
881 Car	Green	03:23:47.89 PM
882 Car	Green		.	.		03:23:48.32 PM
883 Car	Green	03:23:49.09 PM
884 Car	Green		.	.	.	03:23:49.33 PM
885 Car	Green	.	.	.		03:23:50.21 PM
886 Car	Green			.		03:23:50.34 PM
887 Car	Green					03:23:51.22 PM
888 Car	Green					03:23:51.36 PM

