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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.2 
square 

millimeters 
mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 
square 

kilometers 
km2 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 
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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 
megagrams (or 

"metric ton") 
Mg (or "t") 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

oF Fahrenheit 
5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

lbf pounds force 4.45 Newtons N 

lbf/in2 
pounds force per 

square inch 
6.89 kilopascals kPa 
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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL 
WHEN YOU 

KNOW 
MULTIPLY BY TO FIND SYMBOL 

LENGTH 

mm millimeters 0.039 inches in 

m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

AREA 

mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

 

 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds mass lb 

Mg (or "t") 
megagrams (or 

"metric ton") 
1.103 

short tons (2000 

lb) 
T 
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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU 

KNOW 

MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

oC Celsius 1.8C+32 Fahrenheit oF 

 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

lx  lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

N Newtons 0.225 pounds force lbf 

kPa kilopascals 0.145 
pounds force per 

square inch 
lbf/in2 
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EXECUTIVE SUMMARY 

 

Contamination of Florida’s surface and groundwater resources by excess nutrient 

loadings degrades water quality and aquatic habitat. In this project, two new designs of 

stormwater Best Management Practices (BMPs) containing engineered media were developed, 

implemented, and tested in the field. Blanket filters and vertical reactors containing Biosorption 

Activated Media (BAM) were constructed in stormwater management basins and systematically 

tested for efficiency in capturing roadway runoff and removing nitrogen. Hydrologic data 

collected within BMPs were assessed over 101 storm events to characterize hydrologic fluxes. 

Roadway runoff and infiltrate from within the BMPs were sampled and evaluated for nutrient 

content over 11 discrete storm events. The goals of this research project were to (1) assess 

nitrogen removal potential of the BAM blanket filters and vertical reactors and (2) to understand 

relative costs and benefits of the BMPs over a 20- to 30-year BMP design life.  

A blanket filter, consisting of a 1-ft top sandy soil layer and 3-ft BAM layer, placed in the 

vadose zone (unsaturated zone) of a stormwater management basin captured 100% of incoming 

roadway runoff during the monitoring period. The blanket filter reduced concentrations of total 

nitrogen (TN), nitrite-nitrate (NOx), and ammonia (NH3) in roadway runoff by a mean of 60%-

66%. By comparison, mean removals of TN, NOx, and NH3 within a 3-ft soil layer (containing 

no BAM) in the same basin range from 78%-92%, exceeding mean removals observed in the 

blanket filter. Specific design parameters of the blanket filter were tested to understand how 

depth of the BAM and soil layers influence nitrogen remediation. Within a blanket filter, a 3-ft 

layer of BAM removes considerably more nitrogen, and particularly NOx, as compared to 1.5-ft 

layer of BAM. Within a blanket filter, a 3-ft soil layer above the BAM layer may remove 

considerably more nitrogen as compared to a 1-ft soil layer.  

Of six media configurations tested within vertical reactors, nitrogen removal was best 

achieved by a 4-ft layer of BAM. This configuration removed a mean 49% TN and over 53% 

NOx from incoming stormwater. The vertical reactors captured only a small fraction (0.2%) of 

incoming stormwater. It is estimated that through a 20- to 30-year design life, the cost of each 

pound of TN removed by blanket filters (a 3-ft layer of BAM placed in the vadose zone with 1-ft 

soil coverage) is $611-$715. It is estimated that the cost of each pound of NOx removed by 

blanket filters is $1,360-$1,590. It is estimated that through a 20- to 30-year design life, the cost 

of each pound of TN removed by vertical reactors placed in the vadose zone is $453-$498. It is 

estimated that each pound of NOx removed will cost $701-$732.  

This project is one of the first field-scale tests of BAM-based stormwater BMPs and the 

first testing of the blanket filter and vertical reactor designs. While testing indicates good 

performance of BAM blanket filters in removing nitrogen species from stormwater runoff, the 

nitrogen remediation benefits above that which may expected from the natural soil profile are 

unclear. Further controlled field-scale testing is recommended to better understand when and 

where BAM may be expected to deliver clear and measurable nitrogen removal benefits.  
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CHAPTER 1.  Introduction 

Roadway runoff is a non-point source of pollution endangering surface and groundwater 

resources. Excess nutrient loads can lead to ecosystem degradation by causing eutrophication, 

algal blooms, and loss of biodiversity (Mallin et al. 2009; Suthar et al. 2009; Eller and Katz 

2017). Although various sources of excess nitrogen loading are documented, such as septic 

tanks, chemical fertilizers, livestock wastes, and wastewater treatment sites (Eller and Katz 

2017), roadway runoff has been ranked as a major source of non-point source nutrients in the 

U.S. and in Florida (Trenouth and Gharabaghi 2016). Engineered media, such as Biosorption 

Activated Media (BAM), may facilitate contaminant removal through physical, chemical, and 

biological interactions within the media (O’Reilly et al. 2012). The inclusion of engineered 

media within stormwater Best Management Practices (BMPs) may therefore enhance nutrient 

removal performance of the BMP. Overall performance of media-based stormwater BMPs will 

hinge upon the hydraulic design of the BMP to efficiently capture runoff, as well as the 

performance of the engineered media to effectively remove nutrients from infiltrated runoff.  

In this project, two new designs of stormwater BMPs containing BAM engineered media 

were developed, implemented, and tested in the field. The goals of this research project were to 

(1) assess nitrogen removal potential of the BAM blanket filters and vertical reactors and (2) to 

understand relative costs and benefits over a 20- to 30-year BMP design life. To assess nitrogen 

removal potential of BAM blanket filters and vertical reactors, BMPs were instrumented with 

hydrologic monitoring equipment and subsurface sampling devices. Hydrologic data were 

collected within BMPs over 101 storm events to characterize hydrologic fluxes. Roadway runoff 

entering the BMPs and infiltrated stormwater from multiple locations within BMPs were 

sampled over 11 storm events and analyzed at a certified laboratory for total nitrogen (TN), 

nitrate-nitrite (NOx), and ammonia (NH3). To understand costs per pound of nitrogen removed 

over a 20- to 30-year project design life, modeling and field data were used to estimate TN and 

NOx removal through BMP design life (through target years 2038 and 2048). Life cycle cost 

analysis was undertaken to compare BMP lifetime TN and NOx removal benefits to 

construction/operational costs. 

Projects goals were facilitated by the following research tasks: 

Task 1: BMP Design 

Task 2: BMP Construction and Instrumentation 

Task 3: BMP Monitoring 

Task 4: BMP Life-cycle Cost Assessment  

Task 5: Project Draft Final Report 

Task 6: Project Final Report 

Interim reporting regarding each of these tasks (Kibler et al. 2017a; 2017b; 2017c; 2017d; Kibler 

et al. 2018; Kibler et al. 2019a; 2019b) are available on the UCF STARS data repository 

(https://stars.library.ucf.edu/fdot/).  
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CHAPTER 2.  BMP Implementation and Monitoring 

In this project, two new designs of stormwater Best Management Practices (BMPs) were 

developed, implemented and tested in stormwater management basins near Ocala in Marion 

County, FL (Figure 2.1). Basin 9b is located near Silver Springs State Park (29° 12' 56" N and 

82° 03' 30" W) and collects runoff from State Road 40 and State Road 35. Basin 2 is located 

approximately 2 miles south of Basin 9b off SR 35 (29° 11' 16" N and 82° 03' 11" W) and 

collects runoff from State Road 35.  

 

Figure 2.1. Location of Basin 9b and Basin 2 near Ocala, FL, and BMP schematics.  

 

Two blanket filters containing biosorption activated media (BAM) were constructed in Basin 

9b, one at a depth of 0 -6 ft below ground surface (West Blanket Filter, WBF) and the other 0-4 ft 

below ground surface (East Blanket Filter, EBF) (Figure 2.2). A 3-ft layer of BAM in the WBF 

was overlain by a 3-ft layer of aerobic soil (topsoil from the site), while the EBF included a 3-ft 

layer of BAM and 1-ft soil layer. In Basin 2, six vertical reactors (VR1 to VR6) were constructed 

of concrete, containing different volumes of BAM or iron filings-based green environmental 

media (IFGEM-2) (Figure 2.3). All BMPs were instrumented with subsurface sampling devices 

and hydrologic monitoring equipment, including deep and shallow pressure transducers to 

characterize the depth to groundwater and transient fluxes within the vadose zone related to 

event runoff. Hydrologic data were collected within BMPs over 101 storm events to characterize 

hydrologic fluxes. Roadway runoff entering the BMPs and infiltrated stormwater from multiple 

locations within BMPs were sampled over 11 storm events and analyzed at a certified laboratory 

for total nitrogen (TN), nitrate-nitrite (NOx), and ammonia (NH3). 
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Figure 2.2. Basin 9b WBF and EBF in cross-section and plan view.  
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Figure 2.3. Basin 2 vertical reactors in cross-section and plan view.  
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CHAPTER 3.  Study Results 

3.1 Nitrogen removal performance of blanket filters in the vadose zone  

What is the effectiveness of blanket filters to remove nitrogen from stormwater? This is the 

primary question managers may have following this study. By comparing the concentrations of 

different nitrogen species in stormwater before and after treatment in the blanket filter, this 

question can be assessed. Due to its close proximity to the groundwater table, the WBF in Basin 

9b experienced salient groundwater intrusion impacts during the field-testing period of 2018, 

while groundwater intrusion in the EBF was minimal. Therefore, conclusions may be drawn 

regarding nitrogen removal efficiency of the EBF and top soil layer of the WBF only. Results 

will apply to blanket filters implemented within the vadose zone (unsaturated zone) that are not 

persistently saturated by groundwater. Mean removals of TN, NOx and NH3 within the EBF 

(including both the 1-ft top soil layer and 3-ft BAM layer) are 60%-66% (Figure 3.1).  

 

Figure 3.1 Mean nitrogen removal after blanket filter treatment in the EBF, relative to 

stormwater inlet concentrations. 

The next question managers may have is whether nitrogen removal within a blanket filter 

compares favorably to nitrogen removal within an unaltered soil profile found in a stormwater 

retention basin. While this experiment contains no official control, data from the top 3-ft soil 

layer in the WBF can help managers assess performance of the blanket filter as compared to soil 

only (Figure 3.2). Mean removals of TN, NOx, and NH3 within the 3-ft soil layer range from 

78%-92%, exceeding mean removal in the blanket filter by a wide margin. This result reflects 

the natural spatial heterogeneity of soil properties. Soil properties (e.g. texture, organic matter 

content) vary from place to place and influence the transformation of nitrogen through the soil 

profile. Therefore, nitrogen remediation that can be expected within unaltered soil profiles is also 

spatially variable. In some places, replacing the unaltered soil profile with a filtration media such 

as BAM will lead to greater transformation and removal of nitrogen; in other cases the natural 

remediation of the unaltered soil profile will exceed that of BAM. Better understanding of 

nutrient transformation within BAM relative to soils of variable properties will allow for better 

prediction of when replacing part of the soil profile with BAM blanket filters may lead to greater 

net removal of nutrients. Controlled, field-scale experimental applications of BAM BMPs are 

necessary to gain further knowledge.        
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Figure 3.2. Mean nitrogen removal after treatment in blanket filter (1-ft top soil layer and 3-ft 

BAM layer) as compared to after treatment in 3-ft unaltered soil. Both are relative to incoming 

stormwater concentrations. 

3.2 Blanket filter performance as a function of event size 

Managers implementing blanket filters may wish to know about the variability of the blanket 

filter performance documented in this study and, in particular, if there is performance variation 

across small vs. moderate to large events. Blanket filter performance during larger events may be 

limited by system hydraulics. When event sizes are large, rates of incoming stormwater may 

surpass capacity of the blanket filters. Infiltration through blanket filters implemented in 

stormwater management areas, where runoff from larger catchment areas is concentrated, 

proceeds at a low rate compared to rates of incoming stormwater. Thus, stormwater will pond 

within the bermed blanket filter area and infiltrate slowly over time. If volumes of event runoff 

exceed the capacity of the BMP, stormwater flows over the berms and does not interact with the 

media. This overflow stormwater bypasses the blanket filter. The sizing of the blanket filter basin 

relative to the basin catchment area will determine the frequency of this occurrence and the 

cumulative hydraulic capture efficiency of the blanket filter (ratio of runoff that infiltrates into 

the blanket filter and is treated by the media to the total volume of the runoff entering the basin). 

For instance, during monitoring for this project, the capture efficiency of the EBF was 100%, and 

the capture efficiency of the WBF was 50%. The BMPs were sized similarly, but the catchment 

area draining to the WBF was larger, resulting in BMP exceedance during about 10% of the 

recorded events (10 of 101 recorded events). The exceedance events were larger events, thus on 

a cumulative volume basis the overall capture efficiency of the WBF is 50%. However, as this is 

a hydraulic capture efficiency, it may not reflect the proportion of pollutant mass that is captured. 

Even during larger events, blanket filters were able to capture the first part of runoff, which may 

contain the greatest pollutant loadings.   

A difference in blanket filter performance may also be observed during small storms, where 

runoff volumes may be insufficient to promote uniform wetting of the filter media. To evaluate 

this question, we compared nitrogen removals through the entire blanket filter during small 

(cumulative precipitation depth < 0.1 in, cumulative runoff < 400 ft3) versus larger (cumulative 

precipitation depth 0.2–1 in, cumulative runoff 910–2,870 ft3) runoff events. Though sample 

sizes are low, there is detectable variation in blanket filter performance related to event size 

(Figure 3.3). Counterintuitively, removal rates of NOx and TN are higher during small events.    
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Figure 3.3. Mean nitrogen removal after blanket filter treatment in the EBF, relative to 

stormwater inlet concentrations, for small and large events. 

 

3.3 Nitrogen removal through a 1.5-ft vs. 3.0-ft BAM layer 

Managers wishing to implement BAM blanket filters may wish to know if there is a benefit 

in implementing a greater depth of BAM, given the extra cost. We therefore tested the difference 

in performance of a 1.5-ft vs. 3-ft BAM layer. A 3-ft BAM layer removes considerably more 

nitrogen, and particularly NOx, as compared to 1.5-ft layer of BAM (Figure 3.4).  

 

Figure 3.4. Nitrogen removal of stormwater after treatment through 1.5-ft and 3.0-ft layer of 

BAM, relative to infiltrated stormwater entering the BAM layer.  

 

3.4 Nitrogen removal through 1-ft vs. 3-ft layer of aerobic media 

Managers wishing to implement BAM blanket filters may wish to know if there is a benefit 

in implementing a greater depth of aerobic soil media above the BAM layer, given the extra cost. 

We therefore tested the difference in performance of a 1-ft vs. 3-ft aerobic soil layer. A 3-ft soil 

layer may remove considerably more nitrogen as compared to a 1-ft soil layer (Figure 3.5).  
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Figure 3.5. Nitrogen removal of stormwater after treatment through 1.0-ft and 3.0-ft layers of 

aerobic media (sandy soil), relative to stormwater entering the basin. Positive values indicate 

removal, negative values indicate generation. 

3.5 Nitrogen removal through vertical reactors 

In Basin 2, the primary research question was to determine which of the six tested media 

configurations (VR1 – VR6) performed optimally within vertical reactors. Based on highest and 

most consistent nitrogen removal performance (Table 3.1), VR4 was found to be the most 

promising reactor configuration. VR4 consisted of 4 ft of BAM (Figure 3), and removed a mean 

of 49% TN and over 53% of NOx from incoming stormwater.  

 

3.6 Lifetime cost analysis of BMPs  

Through a 20- or 30-year design life, the cost of each pound of TN removed by blanket filters 

(a 3-ft layer of BAM placed in the vadose zone with 1-ft soil coverage) or vertical reactors 

(configured as VR4) ranges from $453-$715 and each pound of NOx ranges from $701-$1590 

(Table 3.2). Costs per pound of nitrogen removed are lower for vertical reactors as compared to 

blanket filters. However, it should be noted that the scale of vertical reactors tested herein was 

very small relative to basin catchment size (hydraulic capture efficiency of 0.2%). Nitrogen 

removal costs may scale with increasing size of BMPs. For vertical reactors built to treat small 

volumes of stormwater, these cost per pound estimates may be accurate. However, vertical 

reactors built to a larger scale (similar to scale of the blanket filters) may have a greater cost per 

pound of nitrogen removed.  
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Table 3.1. Mean nitrogen removal in vertical reactors of Basin 2. 

 
Removal compared to  

incoming stormwater 
Removal from  

Top to Bottom 

lysimeters 
 

Top Bottom 
 NOx 

VR1 -56.2% -171.2% -73.7% 

VR2 52.2% 47.0% -11.0% 

VR3 8.1% 71.8% 69.3% 

VR4 -470.8% 53.6% 91.9% 

VR5 -155.6% 94.6% 97.9% 

VR6 -137.1% -0.1% 57.8% 
 NH3 

VR1 -42.6% 37.6% 56.3% 

VR2 31.7% 59.1% 40.2% 

VR3 18.0% 81.2% 77.0% 

VR4 74.7% -19.49% -371.9% 

VR5 64.7% -200.1% -751.2% 

VR6 60.1% 73.5% 33.4%  
TN                               

VR1 -17.7% -12.4% 4.5% 

VR2 58.3% 57.2% -2.5% 

VR3 38.5% 78.5% 65.1% 

VR4 -70.8% 48.7% 70.0% 

VR5 5.4% 25.1% 20.9% 

VR6 18.8% 59.6% 50.2% 

 

Table 3.2. BMP cost per pound ($/lb) TN and NOx removed after 20- and 30-year design life 

  2038 2048 

Blanket filter 

(based on EBF) 

TN $ 715 ± $27 $ 611 ± $ 23 

NOx $ 1,590 ± $ 61 $ 1,360 ± $ 52 

Vertical reactor 

(based on VR4) 

TN $ 498 ± $ 25 $ 453 ± $ 23 

NOx $ 732 ± $ 37 $ 701 ± $ 35 
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CHAPTER 4.  Design Guidance 

4.1 Guidance on when to use different BAM recipes 

Nitrogen removal performance documented herein is based on use of the Bold and Gold® 

Filtration Media, specifically the CTS mixture; hydraulic and nitrogen removal performance 

using other BAM mixtures may vary. Choice of BAM media to be used in a BMP typically 

depends on the incoming flow rate and desired remediation performance. The CTS mixture 

(Table 4.1) will typically infiltrate approximately 2-5 in/hr while other BAM mixtures are 

designed to infiltrate stormwater at greater rates. However, due to the hydraulics of blanket filter 

design, little benefit may be found from promoting greater flow rate through the engineered 

media layer. Faster infiltration in the filter will in theory allow for greater hydraulic capture 

efficiency of the BMP. However, since treated stormwater passing out of the BAM filter layer 

must infiltrate into the surrounding soil, permeability of the basin subsurface will ultimately 

control infiltration through the blanket filter. The sizing of the BMP relative to catchment size 

draining to the BMP is therefore the most influential design factor to determine hydraulic capture 

efficiency.  

Depth of the BAM layer is a primary design consideration that influences nitrogen removal 

performance. This study clearly indicates that 3-ft of BAM removes more nitrogen than a 1.5-ft 

BAM layer.    

Table 4.1. Composition (by volume) of Bold and Gold® CTS mixture. 

 CTS 

Sand 59% 

Silt and Clay 27% 

Tire Crumb  14% 

(O'Reilly et al., 2012) 

4.2 Guidance on aerobic media for top layer of blanket filters 

The blanket filter design specifies that a layer of aerobic media should be placed over the 

BAM layer. The aerobic media serves the purpose of promoting nitrification and also allows 

establishment of vegetation, which prevents filter erosion. Depth of the aerobic media layer may 

vary; this study indicates that a greater depth of aerobic media promotes overall BMP nitrogen 

removal effectiveness. The aerobic media should be a sandy soil. Onsite materials may be used 

for this purpose, provided that basin soils will provide sufficiently high infiltration rates. Soils 

characterized by less than 1% of a sample (by mass) passing the No. 200 sieve are acceptable 

aerobic media for the top layer of blanket filters.  

4.3 Guidance on blanket filter sizing 

The sizing of the blanket filter relative to catchment size draining to the BMP is the most 

influential design factor that will determine BMP capture efficiency. Capture efficiency, the ratio 

of runoff that infiltrates into the blanket filter and is treated to the total volume of runoff entering 

the basin, is a hydraulic performance measure that relates directly to cumulative nutrient removal 

performance. When volumes of event runoff exceed capacity of the blanket filter, untreated 

stormwater flows over the berms. This overflow stormwater bypasses the blanket filter and is not 
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treated. The sizing of the blanket filter basin relative to the basin catchment area will determine 

the frequency of overflow occurrence and the cumulative hydraulic capture efficiency of the 

blanket filter. Greater hydraulic capture efficiency will allow for greater capture and treatment of 

overall nutrient loadings, however, trade-offs with cost or logistical constraints may exist.  

To size a blanket filter, the designer must choose a maximum event size that the BMP should 

fully contain. The filter should then be constructed such that the capacity is large enough to 

contain all runoff routed from the catchment area during this maximum design event. For 

example, if it is decided that the BMP should fully treat events up to 1.5 in depth, the BMP 

theoretical capture volume must be sized to contain all runoff routed from the catchment during a 

1.5 in storm. A theoretical maximum capture volume can be calculated using the horizontal 

dimensions of the BMP, berm height, depth and porosity of the aerobic soil layer, and depth and 

porosity of the BAM layer. Assuming the BAM and soil are at field capacity at the start of runoff 

and neglecting infiltration out of the filter to deeper soil layers, the maximum capture volume 

will fill all available pore space in the subsurface filter and a free surface of water will rise to the 

height of the berms. Additional water entering the treatment area will pass over the berms and 

will not be treated by the filter. Actual maximum capture volume may be greater than theoretical, 

due to deep infiltration from the filter into surrounding soils. However, as blanket filters are 

implemented where runoff from larger catchment areas is concentrated, infiltration through the 

filter proceeds at a low rate compared to rates of incoming stormwater. At the event scale, 

neglecting deep infiltration will not significantly overestimate BMP sizing.  

4.4 Costs for materials and installation  

At the time of implementation (2017), costs of materials and installation associated with the 

blanket filters and vertical reactors tested herein respectively totaled approximately $46,690 and 

$16,150 (itemized in Tables 4.2 and 4.3). In addition to the approximately 8 person/days of labor 

represented by this estimate (encompassed in the contracting lines), UCF personnel provided an 

additional 8 person/days of direct labor to implementation of the two blanket filters and six 

vertical reactors. Use of onsite materials for berm construction and the top aerobic media layers 

of blanket filters reduced project implementation costs considerably. Additionally, since all 

BMPs were constructed at the same approximate time and place, contracting and equipment 

costs are likely lower.  
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Table 4.2. Costs of for materials and installation associated with the two blanket filters. 

Item 

Unit Cost 

($) 

Units 

(number) 

Total 

Cost 

($) 

Contracting and equipment $11,000 2 filters $22,000 

BAM media $75 230 yd3 $17,250 

Freight to project site $3,600 1 $3,600 

Geotextile $500 2 spools $1,000 

Wooden framing $2.16 1,728 ft2 $800 

Berm fill $0 245 yd3 $0 

Aerobic soil layer $0 163 yd3 $0 

Gravel $60 14 yd3 $840 

Erosion control blanket $300 2 spools $600 

Seeding $6 100 lb $600 

Total $46,690 

  

Table 4.3. Costs of for materials and installation associated with the six vertical reactors. 

Item 

Unit Cost 

($) 

Units 

(number) 

Total 

Cost 

($) 

Contracting and equipment -- 6 reactors  $7,000 

BAM media $75 20 yd3 $1,500 

Media freight to project site $350 1 $350 

Concrete boxes (order of varied 

sized boxes) 
-- 7 boxes $5,500 

Concrete freight to project site $300 1 $300 

Flow channels $100 6 $600 

Gravel $60 15 yd3 $900 

Total $16,150 
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4.5 Residence time vs. removal curves for NOx and TN 

 

Figure 4.1. Hydraulic residence time vs. removal curves for NOx and TN. Positive values 

indicate removal, negative values indicate generation. 

 

Residence time/removal curves suggest that nitrogen removal rates are greater when the 

residence time of stormwater in BAM is shorter. This is similar to the results of the small/large 

storm analysis (Figure 3.3), which indicated that rates of TN and NOx removal were greater 

during the very small storm events. This behavior differs from findings of laboratory studies, 

which generally suggest that longer contact times promote greater nitrogen transformations. Such 

differences in performance between lab and field studies emphasize the need for further field-

scale testing of BAM BMPs.   
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CHAPTER 5.  Construction Specifications 

As an additional reference, practitioners are referred to the as-built construction drawings for 

specifications relevant to blanket filter and vertical reactor construction (Kibler et al. 2017c).  

5.1  Blanket filter construction 

Footprints of blanket filters are measured and staked, aligned along the centerline of 

stormwater inlets. Fill is excavated within the footprint to the design depth. Careful observation 

and sorting of excavated materials at this stage can save the project time and money, as 

heterogeneous subsurface materials may be used for different project components. Pockets of 

soils containing greater clay content, for instance, may be suitable for building berms, while 

pockets of sandy soils may be used as the top aerobic blanket filter layer. Use of onsite materials 

will reduce materials costs and costs of spoil disposal. It is recommended that excavated 

materials be sorted into pre-designated storage areas according to quality. 

Framing of the excavated area using wooden boards or plywood may be necessary to prevent 

wall slumping and collapse. However, this is only necessary for construction purposes and may 

be omitted is the soil structure can be maintained without framing. An impermeable liner (30 

mil) is to be installed along all sides of the excavation before filling with media, to prevent 

horizontal infiltration. This promotes vertical infiltration through the filter, ensuring the greatest 

possible contact time of stormwater within the treatment media. Care must be taken to prevent 

the impermeable liner from covering the bottom of the filter, as this would impede drainage.   

Media should be delivered and staged near the excavation. It is recommended that the media 

be covered at all times until loading begins. Media is to be placed in the excavated area in 1 ft 

layers using a front-end loader. Use of smaller machinery (e.g. a Bobcat) within the excavation is 

recommended for even application. There is not a compaction standard for this design, but the 

final layer depth will be achieved after natural settling. Some compaction of media will occur 

during installation. This is desirable, as light compaction at the time of installation will ensure 

that true depth of design is achieved. The aerobic media layer is placed directly on top of the 

BAM layer, and leveled to the ground surface. The berms are then shaped around the filter, using 

compacted excavated materials with greatest clay content. Berm specifications may vary 

according to site constraints. Berms may be steep on the interior, (test implementations were 4:1 

slope), but should have a gentler slope on the berm exterior to prevent erosion. It is important 

that the top of the berms are horizontally level. Dips and peaks in the berm tops will concentrate 

flows, potentially leading to berm scouring and eventual failure. Ideally, water will overtop the 

berms uniformly during overflow events. The berms must be revegetated as soon as possible 

following construction, as a primary erosion control. Erosion-control blanket or matting should 

be staked over the berms after construction and the berms should be seeded regularly until 

vegetation is established. A 3 in layer of gravel should be placed within the filter, in the vicinity 

of the stormwater inlets to stabilize the filter media against high flows.  

Vegetation should be encouraged to establish on the berms and within the bermed area, as 

this will enhance infiltration, assist with nutrient transformation, and prevent erosion. However, 

grasses should be seeded and sod should not be used. No fertilizers should be applied. Once 

established, vegetation must be maintained regularly. Overgrowth of vegetation within the 

bermed area will reduce the volume of stormwater the BMP can hold and therefore reduce the 
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capture efficiency of the BMP. As it may be difficult to bring mowers into the bermed areas, 

grasses should be mowed with hand-held devices to maintain a short, uniform ground cover. 

Vegetation established on the berms should be similarly short and uniform. Nonuniform 

distribution of vegetation on the berms will concentrate flows, potentially leading to berm 

scouring and eventual failure.   

5.2 Vertical reactor construction 

The vertical reactor design implemented in this project (a central holding box splitting flow 

to six vertical reactors) was designed specifically for the research experiment of determining the 

optimal reactor configuration. Construction of a vertical reactor in the field is therefore likely to 

deviate considerably from the implementation in this project. For instance, the central holding 

box will not be necessary in the field. Rather, the optimal design selected through testing (a 4-ft 

BAM reactor, capped with gravel), will be implemented within a single reactor box. The reactor 

will be sized according to the catchment area and positioned to collect stormwater from an inlet. 

As noted in previous reports (Kibler et al., 2018; Kibler et al., 2019a), the maximum capture 

volume of a vertical reactor is small relative to the volume of stormwater delivered to a 

stormwater retention basin. In this experiment, the six vertical reactors collectively captured 

0.2% of the stormwater delivered to Basin 2. Vertical reactors may therefore be poorly suited to 

stormwater retention basins. A design suited to treat larger volumes, such as the blanket filter, 

should be used as an alternative. Vertical reactors may be better suited to filter stormwater runoff 

from smaller impervious areas such as roofs and parking lots. 

Soils should be excavated from the site and a gravel footing placed. A pre-constructed, 4-

walled concrete box is placed in the excavation and filled with media and gravels. Media and 

gravels should be delivered and staged near the excavation. It is recommended that the media be 

covered at all times until loading begins. There is not a compaction standard for this design, but 

the final reactor depth will be achieved after natural settling. Media should thus be compacted 

during installation to ensure that true depth of design is achieved. A layer of gravel should be 

placed within the reactor to stabilize the BAM against high flows. The top layer of gravel should 

be approximately at the ground level. The space around the reactor is then backfilled using 

excavated materials. 
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