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fl oz fluid ounces 29.57 milliliters mL 
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NOTE: volumes greater than 1000 L shall be shown in m3 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or 

"metric ton") 

Mg (or "t") 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 

Celsius oC 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

lbf poundforce 4.45 newtons N 

lbf/in2 poundforce per square 

inch 
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LENGTH 
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m meters 3.28 feet ft 
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km kilometers 0.621 miles mi 
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AREA 
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VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or "metric 

ton") 
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TEMPERATURE (exact degrees) 
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ILLUMINATION 

lx lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

N newtons 0.225 poundforce lbf 
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EXECUTIVE SUMMARY 

Visibility is one of the most important impacts weather can have on road systems; 

weather-related visibility reduction is most often due to fog. Florida is among the top-

rated states in the United States with regards to traffic safety problems resulting from 

adverse visibility conditions caused by fog/smoke (FS). The reduced visibility also has a 

negative impact on traffic flow. This research attempted to identify the effect of reduced 

visibility on traffic flow as well as predict the reduced visibility events by using weather 

parameters including air temperature, wind speed, surface moisture etc. In detail, the 

following tasks were completed in this research: 

 Development of fog detection algorithm and the corresponding software by using 

an array of low-cost environmental sensors 

 Analysis of the effect of weather parameters on reduced visibility  

 Analysis of the impact of reduced visibility on traffic flow characteristics  

 Analysis of the distribution and influencing factors of fog duration  

 Evaluation of the performance of the fog detection algorithm developed by 

PraxSoft 

 Exploring the relationship between reduced visibility and traffic flow 

characteristics 

In summary, there are several major conclusions from the research: 

 An array of low-cost environmental sensors, arranged at varying levels above the 

ground surface, could effectively detect the onset of fog and meet or exceed 

existing performance of traditional and much more expensive technologies. 
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 The fog is most likely to form when the values of humidity and subsurface 

moisture are higher. It is also more likely to form fog when the wind speed is 

lower and the air temperature is more close to the dew point.  

 The mean headway and headway variation are significantly higher while the mean 

speed and volume are significantly lower in fog cases compared to clear cases. 

There isn’t significant difference in speed variation based on the comparison of a 

single case. 

Overall, the impact of reduced visibility on passenger cars is more significant compared 

to trucks. The mean headway, variation of headway and speed are significantly higher 

while the mean speed is significantly lower in the fog case compared to the clear case for 

the cars. In comparison, there isn’t significant difference in the standard deviation of 

speed for the trucks and the difference of mean speed, headway and standard deviation of 

headway between fog cases and clear cases for passenger cars are all larger than trucks. 

 

The differences of mean of headway, speed and standard deviation of headway are all 

significant under different visibility levels. The mean of headway increases when the 

visibility drops. The mean speed decreases when the visibility drops. The mean of 

standard deviation of headway increases when the visibility drops. 

 

The effect of reduced visibility on both directions is similar. The effects of reduced 

visibility on different lanes are different. For the outer lane, the mean speeds under good 

visibility and moderate visibility levels are both significantly higher than mean speed 

under low visibility level. The difference of mean speed under good and moderate 



 

x 

visibility levels is not significant. The mean headway under good visibility level is 

significantly higher than both mean headways under low and moderate visibility levels. 

The difference of mean headway under low and moderate visibility levels is not 

significant. For the middle lane, the mean speeds increases as the visibility increases. The 

mean headway increases as the visibility drops and the mean headway under good 

visibility level are significantly higher than both mean headways under low and moderate 

visibility levels.  The difference of mean headway under low and moderate visibility 

levels is not significant. For the inner lane, the mean speeds under good and moderate 

visibility levels are both significantly higher than the mean speed under low visibility 

level. The difference of mean speed under good and moderate visibility levels is not 

significant. The mean headway decreases as the visibility increases. 

 

Hazard-based duration model is appropriate to model fog duration time and its 

influencing factors. The lognormal distribution model gives the best description of fog 

duration without covariates. The log-logistic model gives the best description of fog 

duration with covariates. The increase of “humidity”, “barometric_pressure” and 

“subsurface_moisture” would increase the fog duration time. Meanwhile, the increase of 

“wind_speed” and “solar_radiation” would decrease the fog duration time. 

 

Praxsoft developed the fog detection algorithm and the updated algorithm is efficient to 

detect the fog days but it is still likely to make false positive alarms when the day is 

actually clear.  
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The results of matched control case logistic regression model indicated that higher mean 

of headway, variance of speed and headway and higher occupancy were related to the 

increase of the likelihood of reduced visibility while lower mean speed was related to the 

increase of the likelihood of reduced visibility. 
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1. INTRODUCTION 

Visibility is one of the most important impacts weather can have on road systems; 

weather-related visibility reduction is most often due to fog. At least 18 states have 

installed visibility detection systems in the US.  Florida is among the top-rated states in 

the United States with regards to traffic safety problems resulting from adverse visibility 

conditions caused by fog/smoke (FS) and heavy rain. The reduced visibility also has a 

great impact on traffic flow. It is necessary to figure out the effect of reduced visibility on 

traffic flow and it will be very beneficial if we can accurately predict the reduced 

visibility events using to provide accurate warning messages to drivers in advance. 

Therefore, the major objectives of this research are as follows: 

 To develop the fog detection algorithm and the corresponding software by using 

an array of low-cost environmental sensors 

 To analyze the effect of some important weather parameters on reduced visibility  

 To analyze the impact of reduced visibility on traffic flow characteristics  

 To analyze the distribution and influencing factors of fog duration  

 To evaluate the performance of the fog detection algorithm developed by PraxSoft 

company 

 To further explore the relationship between reduced visibility and traffic flow 

characteristics 

This report is divided into ten chapters. A review of existing research related to reduced 

visibility and its impact on traffic flow is provided in Chapter 2. The development of fog 

detection algorithm and the corresponding software are introduced in Chapter 3. Data 

collection and preparation are presented in Chapter 4. Chapter 5 mainly analyzes the 

effect of weather parameters on reduced visibility. Analysis of the impact of reduced 
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visibility on traffic flow characteristics are presented in Chapters 6. Chapter 7 provides 

analysis about the distribution and influencing factors of fog duration. The evaluation of 

the performance of the fog detection algorithm developed by PraxSoft Company is 

provided in Chapter 8 and Chapter 9 further explores the relationship between reduced 

visibility and traffic parameters. Finally, conclusions and further research are provided in 

Chapter 10. 
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2 .LITERATURE REVIEW 

2.1 State-of-the-art and Practice Visibility Systems in the US and around the World 

Recently, two comprehensive reports were published regarding Visibility/Fog Detection 

Systems. Abdel-Aty et al. (2012a) offers a synthesis of the various visibility systems and 

traffic control techniques currently being deployed and implemented in the US and 

around the world. The second chapter of that report reviews all developed fog detection 

systems currently in use in the US. By examining the configurations and management 

strategies of these fog detection systems, the report indicates that some of these systems 

can detect reduction in visibility below certain acceptable levels, and respond accordingly 

in real time to convey specific and effective warning messages to drivers.  These systems 

are also able to report this information to the appropriate Traffic Management Centers 

(TMCs). Finally, the report also mentioned that the increased severity levels of vision 

obstruction related to crashes derive from the inadequacy of traffic control techniques 

available to provide guidance to drivers, and the unpredictability of locations and times of 

reduced visibility on highways.  

Visibility is also a critical factor for the departure and landing processes of aircraft.  

Three major types of visibility detection systems are used in aviation: Automated 

Weather Observing System (AWOS), Automated Surface Observing System (ASOS), 

and Automated Weather Sensor System (AWSS). Automated airport weather stations are 

prevalent in the United States and Canada. They are automated sensor suites designed to 

serve aviation and meteorological observation organizations’ needs for safe and efficient 

aviation and weather forecasting operations.  
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Chapters three and four of the above-mentioned report provide an analysis of fog/smoke-

related crashes in Florida, and an analysis of fog hotspot identification, respectively. All 

crashes on the examined roads were extracted from the Crash Analysis and Reporting 

(CAR) system database maintained by the FDOT. Crash data collected from all roadways 

in Florida from the years 2005 to 2010 were investigated. There were 1,492,446 crashes 

that occurred without any vision obstructions. Among them, 2,078 crashes were fog 

related and 278 crashes were smoke related. In terms of temporal distribution, it was 

found from the crash data records that the morning hours from December to February 

were the deadliest for FS crashes. 

This information suggests an increased use of the new visibility detection systems that are 

being derived from existing affordable technologies such as roadway-side cameras. One 

can also conclude that the utilization of airport visibility detection information might be a 

promising way of increasing the coverage of road visibility detection systems. 

Shahabi et al. (2012) also provide a complete description of the fog detection and 

warning system currently active across the US. First, this system determines favorable 

fog conditions in terms of the different meteorological components. In addition, it 

introduces various forecasting tools which are utilized by different agencies in their fog 

detection processes (a detailed description of these forecasting tools will be provided in 

the Fog/Visibility Detection and Prediction Method section of this report). The system 

also identified the critical fog-prone areas across West Virginia, based on the amount of 

foggy days recorded each year, by using the West Virginia weather observation stations 

that reported foggy days to show the fog levels and heaviest fog days for the five stations. 

These stations are located at airports, and mainly are used in forecasting for aviation 
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purposes. In the final section of the report, a benefit cost analysis is provided to justify 

the implementation of fog systems. Table 2.1 shows the cost estimation for an active fog 

warning system. Determining the exact quantity of benefits is not easy. The reduction in 

the number of crashes comprised the major part of benefits for the fog detection system. 

Table 2.1 Cost Estimation Table for An Active Fog Detection System (Shahabi et al. 

2012) 

 

With the advancements that have been made in data collection and real-time 

communication, it is plausible to detect and predict low visibility areas in real time. Real-

time measurements of visibility may help in warning drivers when visibility has fallen 

below certain acceptable levels. The credibility of visibility detection and warning 

systems is essential to ensure drivers’ compliance with these systems. Furthermore, how 

drivers react to a “reduced visibility” message is crucial to the effectiveness of fog 

warning systems. The goal of this research is to provide a cost-effective approach that 

provides early detection of the onset fog by installing innovative, low-cost sensors, and 

augmenting them with algorithms that can predict the probability of fog formation. The 
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following two sections summarize the update on state-of-the-practice visibility systems 

and state-of-the-art studies. 

2.2 State of the Practice of Visibility Detection Systems 

Fog detection and warning systems have been installed across the US. Several systems 

were installed more than a decade ago, such as the systems used for I-75 in southeastern 

Tennessee, state route 99 near the San Joaquin Valley in California, and I-10 in Alabama. 

With the introduction of new technologies, some existing systems have been upgraded 

and several new types of systems have been proposed. Abdel-Aty et al. (2012a) and 

Shahabi et al. (2012) provide a comprehensive survey of the fog detection and warning 

systems used in the US. Here, we summarize the new systems and any findings that have 

not been included in the above-mentioned reports regarding systems used in the US and 

around the world. 

Virginia Fog Detection and Warning System (Murphy et al., 2012) 

An advanced Fog Detection and Warning System (FDWS) has been proposed by the 

Virginia Department of Transportation (VDOT) for use on a 14-mile corridor of I-77 that 

runs between the North Carolina state line and US 58/221. Four elements are included in 

this system: detection (visibility and traffic), communication, data processing, and an 

advisory information system. 

New forward-scatter visibility sensors are currently being used to improve the accuracy 

of fog/limited visibility detection systems.  Along with these sensors, upgraded 

millimeter wave traffic detectors are equipped to monitor traffic speed, volume, and 

occupancy data. Traffic detectors can be placed upstream and downstream from the 
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visibility sensors. Traffic sensors detect unusual changes in travel speeds or occupancy 

rates to alert upstream drivers that the speed of traffic ahead is slower due to fog or 

incident. 

Tennessee DOT Low Visibility Warning System (Shahabi et al., 2012) (Murphy et al., 

2012) 

Tennessee DOT (TDOT) and the Tennessee Department of Safety implemented a low 

visibility warning system on I-75 in Tennessee. The system covers 19 miles (30.6 

kilometers) and consists of two Environmental Sensor Stations (ESS), eight forward-

scatter visibility sensors, 44 vehicle detectors, 10 DMS, 10 VSL signs, and two highway 

advisory radio transmitters. Traffic and environmental data are transmitted from the 

sensors to an on-site computer for processing through underground fiber optic cables.  

Then the data are submitted to the central computer in the Highway Patrol office in 

Tiftonia via a microwave communication system. 

From October 1st of 2011 through March 31st of 2012, the system issued twelve speed 

reductions for fog conditions. Of these events, two were evaluated to require closure of 

the Interstate section. During the same period, the system was also manually activated to 

provide 34 alerts to drivers for non-fog related incidents. 

Fog Warning System in Venice Region, Italy (Leviäkangas et al., 2010) (Lindqvist et 

al., 2009) 

This fog warning system, called Fog Pilot, is one of the pilot programs of the 

ROADIDEA project organized under 7th Framework Program of the European Union. 
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Fog is a relatively frequent phenomenon in the Po Valley and has caused major issues for 

road traffic.  

The idea behind Fog Pilot was to develop an aerial monitoring system of the fog presence 

in the territory comprising the Venice Region, combining in a novel way all ground-

based observations and satellite imagery, in an effort to develop suitable products for 

disseminating the information to end users. This process can yield drivers several options: 

 Change of route in view of thick fog. For professional end users this can mean 

taking a detour, but also saving travel time and lowering the risk of incurring an 

accident. 

 Break the trip until visibility conditions improve. For professional truck drivers 

who are subject to systematic rests, this option could optimize their planning. 

 Private users could decide to modify their route, take a train instead of a car, or 

simply postpone their trip. 

This system includes information obtained from a variety of data sources such as satellite 

direct visibility measurements, standard meteorological measurements, web cams, and 

visibility meters. In this pilot system, 10 visibility meters were built (see Figure 2.1). The 

following list highlights these parameters: 

 Visibilimeters: very high reliability response close to the measurement site, 

decreasing with increases in distance. The choice of this decreasing rate should 

take into account two important aspects: one concerning the average distance 

among the visibilimeters, and the other regarding the importance of the 

contribution (that is, how smooth this contribution should be; too rapid a decrease 
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would imply only local information with a consequent loss of large scale 

information, and too slow a decrease would result in the smearing out of the 

information with a loss of variability). 

 

Figure 2.1  Locations of Visibilimeters in the Veneto Region (Lindqvist et al., 2009) 

 

• Satellite: Attribution of probability of fog (POF) and probability of severe fog (POSF) 

could, in principle, be derived by a statistical analysis of data archives; for the time being, 

the sample size is too small and all such probabilities are subjectively attributed. 

• Meteorological stations: The relationship between the standard meteorological 

observations and visibility, or fog, is done by statistical analysis; since fog is a strongly 

non-linear phenomenon (in terms of meteorological observations), a nonparametric 

approach has been chosen (cf. AMANOVA).  The high level of dimensionality (12 
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variables) makes a direct evaluation of the probability density description very difficult, 

so that the Classification and Regression Tree (CART) form of analysis was chosen.  The 

output of a well-tuned tree is the probability distribution for the defined visibility classes 

which have to be translated to a weight (peaked/flat distributions give high/low weights).  

The decrease with distance can be performed as it was for the visibilimeters, but with a 

different length scale (the network is denser). 

• Meteorological stations via CALMET: Besides the use of meteorological station sites 

for the calculation of fog probability distributions, the fog risk model is able to take 

advantage of the CALMET meteorological model. CALMET can be used to generate a 

grid of the meteorological parameters where the corresponding weights assigned to each 

grid point depend upon the distance to the station locations since interpolation of the 

humidity field could induce error and lead to erroneous estimations. 

The principle structure of Fog Pilot is shown in Figure 2.2.  
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Figure 2.2  Fog Pilot Principle Structure (Leviäkangas et al., 2010) 

A real-time probability map (see Figure 2.3) has been generated based on the above data 

sources. The probability of reduced visibility under 500 meters is presented in this map as 

colors referring to ten different probability ranges between 0% and 100%. These maps 

can be produced every hour, with a delay of about 30 minutes. In the beginning, the maps 

were available only as .jpgs. The system plans to include the information yielded from 

the merging system in geographical database such as GoogleMaps, or an equivalent. 

 

Figure 2.3  Map of Probability of Visibility Reduction under 500 meters over Veneto 

Plain (Leviäkangas et al., 2010) 
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Fog Pilot aims to test the usefulness of such a product by involving end user testing. The 

plan is to evaluate the best threshold of visibility for a “Dense Fog Presence” alert; 

possible choices to be evaluated could include 100, 150 and 200 meters. 

Fog Warning System in Abu Dhabi Emirate (UAE) (Ali et al., 2013) 

A real-time fog detection and warning system was proposed in Abu Dhabi. It has three 

main components: a fog sensing (detection) component, a fog density data collection and 

analysis component, and a driver fog notification component. Fog sensors were installed 

on light poles, radar stations, and cell phone towers along the highway. In addition, the 

detection of slow traffic movement due to poor visibility by the wireless device inside 

vehicles will also pass to the fog analysis component. Data collected from the fog sensors 

and traffic movement will be used to conduct the appropriate analyses necessary to 

determine the geographical boundaries of the poor visibility sectors of the highway. 

Furthermore, the patrol officer would approach the boundaries of the fog zone and send a 

signal to the fog analysis component to improve the accuracy of the virtual zone. The fog 

density data collection and analysis component conducts the analysis to decide the 

boundaries of poor visibility zones, and it can also identify which area is affected 

frequently by fog. In driver fog notification component, there are three possible methods 

of disseminating the information to drivers: Changeable Message Signs (CMS), radio 

weather channels, and Short Message Service (SMS) submissions through cell phones. 

By using these techniques, this system is able to define, efficiently and accurately, the 

boundaries of the fog zones in the coverage area. 
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2.3 Studies of Visibility Systems 

In addition to the fog detection programs used in the US and in other countries around the 

world, there are several new procedures, more advanced with respect to visibility-related 

studies. This section of the literature review discusses the impact of these types of 

systems on broad inclement weather.  

Traffic Flow in Inclement Weather 

Weather causes a variety of impacts on the characteristics of traffic flow. Day-to-day 

weather events such as rain, snow, and fog can seriously affect the mobility and safety of 

road users. Billot et al. (2010) developed weather-responsive traffic state estimation tools 

that apply Sequential Monte Carlo methods.  Such methods are used to detect in space the 

occurrence of rain events, and to adjust the parameter estimations for traffic analysis. 

Compared to the impact of rain, there is very limited research on the impact of low 

visibility on traffic flow. Hou et al. (2013) developed systematic procedures for 

calibrating weather effects on traffic flow models. They found that visibility and 

precipitation intensity significantly impact both free flow speed and maximum flow rate. 

Maze et al. (2006) showed that reduced visibility decreased traffic speed by 12% on 

freeways in the Minneapolis/St. Paul metropolitan area. In the old study of Jones & 

Goolsby (1970), it was shown that rain results in a 12-19% reduction of capacity of the 

freeway. Lamm et al. (1990) looked into the impact of the reduced visibility due to rain 

on the vehicle speeds. The authors found that speeds are not influenced by wet pavement 

due to light rain so long as visibility is not affected significantly by heavy rain. In the 

same way, Ibrahim and Hall (1994) found that there was no considerable reduction in 
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maximum observed traffic flows and operating speeds in light rain; however, the capacity 

in heavy rain is reduced by 14-15%. 

 

Moreover, Kockelman (1998) found that the binary dummy variable indicating a rainy 

condition has a significant effect in traffic flow models. Edwards (1999) compared traffic 

parameters by weather conditions such as clear, rain, and fog. The author found that the 

average peak hour traffic flow decrease in heavy rain and fog by 2.9% and 9.2%, 

respectively. Speeds were also investigated in each weather condition and it was found 

that the 85 percentile speeds in clear, rain, and fog are 71.38, 68.10, and 62.11 mph, 

respectively.  

 

Smith et al. (2004) examined the impact of rain at various levels of intensity on the 

capacity and operating speeds to figure out the impact of weather conditions on traffic 

parameters. The authors used a maximum observed throughput approach to estimate 

freeway link capacity; the mean of the highest 5% flow rates was used to determine the 

percentage changes in capacity due to rain. It was found that the capacity was reduced 

statistically significant as rainfall intensity becomes greater. Light rain reduces the 

freeway link capacity by 4-10%, whereas heavy rain lowers it by 25-30%. Akin et al. 

(2011) found that rain reduces the average vehicle speed and capacity by 8-12% and 7-

8%, respectively. The authors also revealed that light rain results in 65-66% traffic 

volume reduction. Meanwhile, few studies have focused on the direct relationship 

between the reduced visibility and traffic flow. Kyte et al. (2001) investigated the 
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effectiveness of the low visibility due to rain on speeds. The authors found that a 0.77 

kph (kilometer per hour) reduction in speed for every 0.01 km. 

Effect of reduced visibility on driving behavior 

Not many researchers have concentrated on the reduced visibility due to fog since they 

are less frequent compared to rain. Thus, researchers have conducted driving simulator 

based study in order to find out the effect of fog. Broughton et al. (2007) studied the car 

following behavior using driver simulator data and found that the average headway 

distances were reduced in reduced visibility conditions. Mean distances in clear, light fog, 

and dense fog are 42.7m, 34.6m, and 26.0m, respectively. The authors asserted the 

headway distances decrease because drivers seek visible cues when in foggy conditions 

that obscures scenery and roadway visibility.  

 

In recent, Yan et al. (2014) examined the influence of foggy conditions on the speed 

behavior using driving simulator data. The authors compared the average speed in 

different geometric alignments such as straight, uphill, downhill, and S type curve in 

various weather conditions like clear, light fog, and heavy fog. It was shown that driving 

speeds are significantly reduced by the existence of fog in the straight segments. 

However, no significant difference was found between speeds in light fog and heavy fog 

in the straight segments. In case of downhill and uphill segments, there was no 

meaningful difference in speeds between clear and light fog. It is interesting that in S-

curve segments, speeds in light fog are significantly higher than that in clear conditions. 

One of important findings of the authors is that the effect of fog is not consistent in 

different geometric alignments. 
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Ni et al. (2010) examined age-related difference in car following behavior in foggy 

conditions. The authors used driving simulator data and found that the largest reduction 

in the car following performance occurs at moderate speeds under the highest fog density 

condition, with older drivers keeping a much closer headway distance (21%) compared to 

young drivers. The result implies that older drivers are at higher risk especially under 

high fog density. Muller and Trick (2012) investigated the influence of driving 

experience on driving speeds in simulated foggy conditions. The authors found that both 

novice and experience drivers reduce their speeds in foggy conditions but experience 

drivers reduce their speed more than novice drivers in the same situation.  

 

As stated previously, many researchers agreed that drivers reduce their speeds in adverse 

weather conditions but some researchers found opposite results. Snowden et al. (1998) 

asserted that drivers unintentionally increase their speed in foggy weather from their 

simulation experiment. The authors found that drivers think that they are driving far more 

slowly than they actually are in foggy conditions and therefore they increase their speed. 

Similarly, Brooks et al. (2011) also claimed that drivers keep their high speeds while 

driving in fog since fog does not appear to limit drivers’ ability to keep their lane 

positions.  

 

Previous research studies have shown that low visibility conditions due to the adverse 

weather considerably affect to traffic flow and driving behavior. It was shown that the 

rainy condition reduces the speed, traffic volume (or flow rate), and capacity. 

Nevertheless, it is still controversial that the effect of fog on traffic and driving behavior. 
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Most studies found that the fog reduce driving speeds while other claimed the opposite 

(Snowden et al. 1998; Brooks et al., 2011). One of the common limitations of these fog 

studies is that they only relied on simulation results. Therefore, it is needs further 

investigation that can clearly describe the driving behavior and traffic flow changes in 

foggy conditions using real traffic and weather data. 

Weather Responsive Traffic Management Strategies (WRTM) 

Three types of road weather management strategies may be employed in response to 

inclement weather; these include advisory, control, and treatment. Advisory and control 

strategies are the main measures for low visibility conditions. Advisory strategies provide 

prevailing or predicted weather information to road users. Control strategies range from 

the voluntary compliance of speed management to compulsory strategies such as route 

and vehicle restrictions. 

Alfelor et al. (2013) described the state-of-the practice in weather-responsive traffic 

management (WRTM) used in the US and Europe. This system generally includes 

weather and traffic data collection, traffic analysis and modeling, human factors analysis, 

and performance evaluation. This research also discussed the gaps in current practices, as 

well as research related to weather-responsive traffic management. Recommendations on 

how these gaps could be filled are also described. First, real-time and location-specific 

information for road users at adverse weather is limited for most existing practice. Recent 

advances in mobile sensing and data collection technologies for adverse weather have 

great potential to provide the weather information more accurately and timely. Second, 

the concepts of advanced WRTM systems and strategies were developed but need to be 
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implemented and evaluated to demonstrate the benefits and provide guidance to agencies 

on how they can be successfully implemented. Third, there are several new researches 

such as Advanced Driver Assistance Systems (ADAS) and Adaptive Cruise Control 

(ACC) that could have significant impact on traffic management especially under the 

inclement weather. 

Visibility-related Crash Prediction 

Recently, researchers have been trying to understand the relationship between real-time 

traffic flow characteristics and crashes that occur during reduced-visibility conditions. 

Abdel-Aty et al. (2012b) examined the relationship between real-time traffic data and the 

risk of crashes during reduced visibility related (VR) conditions by using Bayesian 

matched case-control logistic regression with the available loop/radar detectors (LDs) and 

automatic vehicle identification (AVI) data. It was found that 73% of VR crashes could 

be identified. Hassan and Abdel-Aty (2013) used Random Forests and matched case-

control logistic regression models to examine how real-time traffic flow data could 

predict crash occurrence during reduced visibility conditions. The results also indicated 

that traffic flow variables leading to visibility-related crashes were slightly different from 

variables leading to clear visibility crashes. 

Evaluation of Traffic Management Tools 

The evaluation of traffic management tools can be divided into two categories. From the 

perspective of engineering economics, a benefit and cost analysis is needed in order to 

decide whether to purchase and/or deploy system components.  The other issue is the 

evaluation of the effects of the tool on driver behavior. There are a large number of 
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studies that have tested the effectiveness of reducing vehicle speed. Few studies have 

focused on expected driver responses to different messages in reduced visibility 

conditions, or their preferences with regards to the forms of these messages.  

Mueller and Trick (2012) compared speed and hazard avoidance rates during fog between 

experienced drivers and novice drivers. Novice drivers exhibited higher speeds and less 

hazard avoidance in foggy weather. Jomaa et al. (2013) evaluated the effectiveness of 

vehicle-activated signs on driver behavior and the trigger parameters used in each study. 

This research suggests that the newly-developed dynamic activation threshold values 

should be considered in future studies. Ni et al. (2013) found that under reduced visibility 

conditions, older drivers face an increased risk of accident due to their decreased ability 

to successfully steer the vehicle. Hassan and Abdel-Aty (2011) adopted Explanatory 

Factor Analysis (EFA) and Structural Equation Modeling (SEM) to examine drivers’ 

compliance and satisfaction with VSL/CMS under low visibility. 

Fog/Visibility Detection and Prediction Method   

Most fog forecasting is used for aviation purposes, using sensors located at airports. The 

sensors used at airports are called Automated Surface Observing Stations (ASOS). ASOS 

constantly collect and stream data and help the National Weather Service (NWS) to 

monitor and forecast the formation of fog. One limitation of ASOS is its inability to see 

weather not encountered by the sensors.  

With regards to visibility detection for airports, Chan (2013) proposed a new algorithm 

that combines Light Detection and Ranging’s (LiDAR) backscattered power data and 

measurements from the forward scatter sensors to generate visibility maps for the Hong 
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Kong International Airport. The LiDAR is a monostatic, heterodyne system operating at a 

wavelength of about 2 µm. The forward scatter sensor has a transmitter and a receiver at 

an angle of 33º with respect to each other. This new algorithm is able to generate a 

visibility map without using the empirical relationship for a specific weather type. This 

research has shown that the LiDAR-based visibility estimates are generally of satisfactory 

quality, particularly for visibility of 1500 m or above. 

Shahabi et al. (2012) introduced various fog detection tools which are currently being 

utilized by different agencies’ fog forecasting processes. Sounding profiles can be a 

valuable method of diagnosing and forecasting fog. However, this tool has three 

limitations. First, it is unreliable for predicting local events because the observations are 

sparse. Second, the intervals between sounding observations can be quite large, which 

makes it difficult to identify timely any changes in conditions. Third, the resolution of the 

sounding instrument affects the accuracy of the detection of fog formation and dissipation.  

Another data source used for fog detection is satellite imagery. Satellite imagery is useful 

for showing fog events if they are spreading out at a synoptic scale. In addition, satellite 

imagery can also be used to monitor mid and high level clouds to predict their effects on 

underlying fog. However, it is hard to differentiate between low-lying stratus cloud and 

fog. 

Fog prediction generally combines data obtained from sources such as sensing techniques, 

supplemental meteorological information, and core algorithms or forecasting models. 

Using models to forecast fog at a local scale, however, remains a difficult task. Higher 

levels of forecast accuracy have been achieved by developing very sophisticated 
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parameterization schemes, especially for the simulation of subgrid-scale atmospheric 

processes. However, improving the accuracy of fog prediction remains a challenge.  

Using existing highway cameras to monitor/forecast fog is of great interest to researchers, 

as these uses might already be deployed for other purposes. There are two general 

approaches to measuring meteorological visibility with a camera. The first is to detect the 

contrast between the most distant targets. The second general approach is based on 

machine learning and requires a calibration phase, with meteorological data collected 

with a visibility meter. Babari et al. (2012) used existing highway cameras and a 

technique based on the gradient magnitude to estimate visibility. The module of the Sobel 

gradient indicates the value of the largest change from bright to dark at each pixel. 

Researchers established a link between visibility and the gradient in the image. The 

visibility estimates were obtained with an average error of 30%. 

In summary, fog detection and warning systems have been widely implemented across 

the US and other countries. With the advancements being made in detection and 

communication techniques, road users can now be advised through variable message 

signs and highway advisory radios. An analysis of the existing literature indicates that 

most systems use traditional visibility sensors and cameras; these implementations are, 

however, very expensive. 

More important, the majority of systems can only detect existing fog and lack the ability 

to provide predictive guidance. The prediction of visibility obstructions could help 

drivers avoid crashes and possibly guide traffic to alternative routes, or help save money 

via a more advanced deployment of law enforcement services. 
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The real time fog probability map in Italy and the visibility map used at the Hong Kong 

International Airport are the only two applications that try to provide uniform geospatial 

coverage. The fog probability map can provide predictions regarding fog for an entire 

area, rather than just several fixed points or segments, by the construction of several 

sensors. However, it should be noted that these two systems provide fog nowcasting 

rather than fog forecasting. 

This project attempts a much more cost-effective approach by mounting lower cost 

sensor arrays at different levels above the ground. These sensor arrays are combined with 

adaptive learning modules to provide more accurate local predictions and, to the best of 

our knowledge, no other existing systems or studies use this technology. 

2.4 Chapter Summary 

This chapter first introduced the state-of-the-art and practice visibility systems in the US 

and around the world. After that previous researches related to the effect of reduced 

visibility on traffic flow and driver behavior as well as fog detection and prediction 

methods were generalized. One of the common limitations of those fog studies is that 

they only relied on simulation results. Therefore, it needs further investigation that can 

clearly describe the driving behavior and traffic flow changes in foggy conditions using 

real traffic and weather data. In addition, most fog detection systems can only detect 

existing fog and lack the ability to provide predictive guidance. It is meaningful to 

develop fog prediction algorithm to help drivers avoid crashes and possibly guide traffic 

to alternative routes, or help save money via a more advanced deployment of law 

enforcement.
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3. INTRODUCTION OF METEOROLOGICAL THEORY AND 

DEVELOPMENT OF FOG ALGORITHM 

3.1 Introduction  

The presence of fog, smoke, and heavy rain contribute to an increase in the potential for 

traffic crashes.  Improved detection and prediction of visibility obstructions can help 

avoid crashes, improve traffic management from reduced congestion, save money and 

most importantly save lives via more efficient advance deployment of law enforcement or 

other crews necessary to monitor deteriorating visibility conditions.  The purpose of this 

chapter was to validate that an array of alternative low-cost environmental sensors 

combined with decision support logic specifically designed to detect the onset of fog, can 

meet or exceed existing performance of traditional technologies to identify fog and also 

provide the potential for short-term fog prediction.   

 

An analysis of existing technologies indicates that most states have achieved some degree 

of improvement in safety via the deployment of visibility sensors and cameras along 

select sections of highways that can send information to dynamic message signs and 

traffic management centers.  These traditional implementations are however expensive, 

purely reactive in nature, and typically limited to only very few locations due to budget 

constraints.  These traditional approaches do not provide the necessary spatial coverage 

nor do they provide predictive guidance that is desired for optimum safety. 

 

During this project PraxSoft worked to refine current low-cost environmental sensor 

array, interfaced it with an innovative communications system for real-time data 
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collection, determined necessary supplemental data, developed initial decision support 

software algorithms to process and analyze the data, and deployed a prototype system at a 

test site on I-4 in Polk County, FL.  A traditional visibility sensor and camera were used 

as a baseline “ground truth” to determine the presence of restricted visibility.  Initial 

results confirmed the ability of the PraxSoft system to identify the presence of fog with 

promising potential for at least short term prediction of fog formation. 

3.2 Meteorological Theory 

The foundation of the initial PraxSoft fog algorithm was based on correlations between 

observed fog events and other meteorological parameters (e.g. temperature, dew point, 

relative humidity, wind speed, visibility, etc.) derived from a historical data set of high-

quality hourly weather observation records which included 179 airport, land and marine 

based stations with a core of 76 sites that are from airports and report the necessary 

parameters for fog in Florida.  This analysis of historical meteorological observation data 

indicated a positive relationship between the occurrences of low visibility (less than 0.1 

mile) and certain measured atmospheric conditions.  Specifically, most fog events were 

reported (or inferred from low visibility measurements) when relative humidity 

measurements exceeded certain thresholds.  In some cases there was also a correlation of 

fog formation with clear skies in the evening and early morning hours, though the sample 

set for this was limited due to fewer available observation points with reliable reporting 

of sky conditions than expected.  It was further determined that the occurrence of recent 

precipitation events and associated increased levels of soil moisture could also potentially 

increase the onset of low visibility during the following 12-24 hour period.    
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The findings were consistent with meteorological phenomena known as radiation fog, a 

type of fog that typically forms at night under clear skies with calm winds when heat 

absorbed by the earth’s surface during the day is radiated into space.  As the earth’s 

surface continues to cool, provided a deep enough layer of moist air is present near the 

ground, the humidity will reach at or near 100% and fog will form.  Radiation fog occurs 

close to the ground, near the level of an automobile windshield, can reduce visibility to 

near zero at times, and has the potential to make driving extremely hazardous. 

 

For any type of fog to form the Temperature/Dew Point (T/Td) spread must be small 

enough or a RH of 100% will never be reached.  Also, an abundance of condensation 

nuclei must to be present for dense fog to form (why smoke-related fog events produce 

denser fog).  PraxSoft originated the concept of a “Fog Index”, designed to provide an 

objective prediction of the formation of radiation fog, the most common type of fog in 

Florida.  Radiation fog has several characteristics:  

o forms over land only  

o occurs most often with high air pressure under clear skies  

o requires relatively high humidity and a stable atmosphere  

o requires very light winds  

o disappears some period of time after sunrise with an increase in winds  

 

Please note that persistent light winds are typically necessary for dense radiation fog 

formation helping ensure that cool surface air will mix with the layers above and within 

the layer where water droplets are present. If there is too much wind, fog will not form, 

but low stratus cloud cover that is detached from the surface is likely and will not cause 

traffic impediments.  
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It should also be noted that fog dissipation typically occurs after sunrise with an increase 

in winds when the sun starts to heat up the friction layer at the top of the fog bank and 

mixing of the air begins.  Fog will dissipate even more as the droplets at the top of the 

bank start to evaporate demanding more latent heat.  This physics phenomenon 

sometimes creates a brief intensification of fog immediately prior to dissipation, all 

usually occurring within about the first hour after sunrise.    

 

Usually within about an hour of sunrise, the heat of the sun has a chance to warm up the 

ground, the fog bank will detach and will start to lift off in a few places and sometimes a 

low stratus and/or stratocumulus cloud will be formed.  In the absence of sunshine (with 

high altitude clouds) this fog can persist for hours.  Sometimes this type of fog can be 

very persistent, especially near water bodies or in lower areas such as valleys where 

katabatic winds will help the formation. (Radiation Fog Formation, 2014)  

 

As mentioned earlier, radiation fog usually forms during the nighttime hour when clear 

skies and light to calm winds are present and when air temperatures are close to 

saturation near the ground surface.  As the air cools to saturation due to heat escaping to 

space and lack of wind, the moisture condenses out to form fog as illustrated below 

(Radiation Fog, 2014): 
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Figure 3.1 Formation of Radiation Fog 

  

As the sun rises it increases the temperature, the air becomes less saturated and winds 

increase. The fog then dissipates.  A more technical explanation of the physics of fog 

droplet formation is offered below (Knupp, 2014):   
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Figure 3.2 Explanation of the Physics of Fog Droplet Formation 

3.3 Sensor Array Architecture, Placement and Installation 

Since a correlation of certain environmental conditions were derived from the historical 

data set analysis, specialized environmental sensor arrays were designed to measure 

certain parameters.    A schematic of the Fog Monitoring System is shown in Figure 3.3.   
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Figure 3.3 Fog Monitoring System 

 

For purposes of this project, a Fog Monitoring Station (FMS) consists of three sensors at 

increasing elevations beginning at one foot one inch. A soil probe is inserted under the 

immediate ground surface. An anemometer is placed at every other FMS at a height of 

eight feet above the ground.  The anemometer used was specifically chosen for its low-

speed detection capabilities. A 5-watt solar panel and 12AH battery keep the FMS 

powered at all times so data is reported at 5-minute intervals 24/7. There are a total of 

eight FMS’s spaced 0.25 miles apart. All sensors are secured to a 2-inch aluminum pole 

and a NEMA enclosure houses the battery, wiring, 802.15.4 radio, and Wireless Sensor 
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Node Microprocessor circuit board to handle the multiple sensor inputs while providing 

extremely low power consumption. This enables a high rate of data transmissions because 

of the very low power budget of the system.  A photograph of one of the FMSs is shown 

in Figure 3.4 below. 

  

 

Figure 3.4 Fog Monitoring Station 

 

A more traditional meteorological sensor array, visibility sensor and camera were 

installed at the center point of the Fog Monitoring Stations to validate the data from the 

FMS units.  Figure 3.5 is a diagram that illustrates the complete sensor architecture and 

layout of the system. 
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Figure 3.5 Sensor Architecture and Layout of the System 

 

Also installed at the center location is the cellular back-haul and RF communications 

receiver that is responsible for collecting the data from the FMSs and delivering it to the 

PraxSoft database server via an “always-on” cellular gateway. This allows real-time 

access of data and images from the instrumented site. Each FMS communicates with the 

receiver via a point-to multipoint RF link with data packets sent out every 5 minutes 

(adjustable down to 1 minute). As each packet is received and acknowledged, it is sent to 

the server and inserted into an SQL database where the data is made available to selected 
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users via a web application. The following photograph (Figure 3.6) shows the central 

collection point with the camera, visibility sensor, and meteorological sensor stack. 

 

 

Figure 3.6 Camera, Visibility Sensor, and Meteorological Sensor Stack 
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Figure 3.7 below is the aerial view of the project study area located on I-4 between 

milepost 19 and milepost 23. The study area is roughly situated between State Road 559 

and State Road 557. Each pinpoint marker represents the location of a multi-array sensor 

stack, and the distance between two consecutive yellow pinpoints is 0.25 miles.   

 

 

 

Figure 3.7 Aerial View of the Study Area 

 

Web Application  

The web application is based on previous software developed by PraxSoft and modified 

for this project. It can be accessed at the following URL: 

http://fdot.weatheractive.net:81/login.aspx 

 

http://fdot.weatheractive.net:81/login.aspx
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Credentials are required to login and access the data. 

The web application provides real-time access to the data from the FMSs and other 

sensors via a GIS-based map interface as shown in Figure 3.8 below. 

 

 

Figure 3.8 GIS-Based Map Interface 

 

The web application includes an “Administrative” mode where the metadata used in 

determination of the Fog Detection Thresholds can be defined and adjusted. 

 

This information along with the analysis of the data collected during the project will be 

explained in the following section. 



 

35 

3.4 Fog Algorithm and Visibility Determination  

Measurements of environmental parameters from the Fog Measurement Stations were 

collected from sensors at different elevations above the ground. This data provided an 

objective micro-level assessment of the current state of the thermodynamic profile near 

the ground surface along with soil conditions to determine if a visibility constraint (fog) 

existed or was likely forming.   The FMS sensor measurements were interrogated each 5-

minute update cycle, seeking to identify conditions that exceeded certain defined fog 

detection thresholds for each unique location where FMS sensors are deployed.   

 

Critical “threshold” values were identified for each measured FMS parameter, at each 

vertical level, that correlated to the presence of fog.   Three distinct thresholds, one for 

low fog probability, one for medium fog probability, and one for high probability are 

assigned for each meteorological parameter.   FMS measurements are continually 

monitored.  As atmospheric conditions change, each FMS measurement at every vertical 

level along with soil moisture is compared to their corresponding fog thresholds.  A 

resultant consolidated Mean Fog Index (MFI) is derived and is further refined by other 

geospatial factors.   The MFI is then converted into an easy-to-understand numerical 

range value from 0 (no fog) to 3 (fog likely). 

 

 

Mean Fog

Index

High 3 Fog Likely

Moderate 2 Fog Likely Forming

Low 1 Monitor Trends

None 0 Good Visibility Likely

Description
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Initial test results have been encouraging.  Once correlations of the presence of fog were 

validated by the FMS instrumentation, then continuous monitoring of the FMS 

measurements occurred over time looking for trends where parameters approached 

critical thresholds.  This provided the opportunity for short-term prediction of the onset 

and dissipation of fog events.  In some cases the system was able to not only indicate the 

onset of fog, but also provided a much longer pre-warning than we had originally 

anticipated.  This is encouraging as it would allow officials more advance time to prepare 

for localized dense fog events.  More research and more test data are suggested to further 

refine algorithms and also to reduce the chances of “false positives”. 

 

Test Case Verification  

There were several data sets available for initial analysis to correlate observed fog 

episodes with the data gathered by the 8 FMS sites with “ground-truth” by the 

meteorological sensor array, visibility sensor and camera images.  

 

In the initial test data sets shown below, two examples of radiation fog occurred on 

February 2nd and February 4th.   In both cases the Mean Fog Index provided at least one 

hour advance notice prior to the formation of dense fog. Another shorter duration fog 

event occurred on January 20th which also showed the system at work.   

 

February 2  

On February 2nd, the data from the FMS sensors verified the presence of fog with the 

Mean Fog Index at “High” starting at 4:00 am, with all three FMS humidity sensors at 
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100% saturation and calm winds.  The conventional visibility sensor started indicating 

lower readings at FMS station 1 at about 5:30 am.   In this case the test FMS system 

provided over a full hour of advance warning of an ensuing fog event that ultimately 

became very dense.                                        

 

Table 3.1: FMS Data 2/2/2014 

 

Visibility sensor readings: 

 

Table 3.2: Visibility Data 2/2/2014 

 

 

Date Time FMS Station SM H1 H2 H3 Fog Index

2/2/2014 4:02:44 1 0.3701 100 100 100 High

2/2/2014 4:08:40 1 0.3701 100 100 100 High

2/2/2014 4:14:36 1 0.3701 100 100 100 High

2/2/2014 4:20:32 1 0.3701 100 100 100 High

2/2/2014 4:26:31 1 0.3701 100 100 100 High

2/2/2014 4:32:24 1 0.3701 100 100 100 High

2/2/2014 4:44:16 1 0.3701 100 100 100 High

2/2/2014 4:56:09 1 0.3701 100 100 100 High

2/2/2014 5:02:05 1 0.3701 100 100 100 High

2/2/2014 5:25:49 1 0.3701 100 100 100 High

2/2/2014 5:27:51 2000

2/2/2014 5:34:35 1060

2/2/2014 5:48:03 2000

2/2/2014 6:01:31 274

2/2/2014 6:14:59 1074

2/2/2014 6:21:54 315

2/2/2014 6:28:38 96

2/2/2014 6:35:22 153

2/2/2014 6:42:06 241

2/2/2014 7:02:18 261

2/2/2014 7:09:03 184

Visibility
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Camera images from this dense fog event are captured below: 

 

         5:34 am                                    7:15 am                                     9:30 am 

 

Some time after sunrise (which occurred at 7:15 am) the fog began to lift and disperse as 

the winds increased.  The humidity levels soon followed and the high risk was lowered. 

 

Table 3.1: Continued 

 

 

Date Time FMS Station SM H1 H2 H3 Fog Index

2/2/2014 8:35:42 1 0.3653 100 100 100 High

2/2/2014 8:41:40 1 0.3653 100 100 100 High

2/2/2014 8:47:34 1 0.3653 100 100 100 High

2/2/2014 8:53:33 1 0.3653 100 100 100 High

2/2/2014 8:59:27 1 0.3653 100 100 100 High

2/2/2014 9:11:21 1 0.3653 100 100 100 High

2/2/2014 9:17:17 1 0.3653 100 100 100 High

2/2/2014 9:23:14 1 0.3653 100 100 100 High

2/2/2014 9:29:11 1 0.3653 100 100 100 High

2/2/2014 9:35:08 1 0.3653 100 100 100 High

2/2/2014 9:41:06 1 0.3653 100 100 100 High

2/2/2014 9:47:08 1 0.3653 98.2 100 100 High

2/2/2014 9:53:03 1 0.3653 98.6 100 100 High

2/2/2014 9:58:58 1 0.3653 98 98.8 100 High

2/2/2014 10:16:51 1 0.3653 93.8 94.4 96.4 Moderate

2/2/2014 10:22:48 1 0.3653 89.8 91.3 92.5 Moderate

2/2/2014 10:28:48 1 0.3653 86.7 88 89.3 Moderate
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February 4 

The February 4th episode followed a similar pattern with a “High” Fog Index that 

preceded a fog event by more than one hour.  Very light winds persisted for much of the 

night with saturated humidity levels resulting in fog in the early morning hours.  This was 

followed by an increase in wind after sunrise, a decrease in humidity, and the lifting of 

the fog whereupon the Mean Fog Index was reduced. 

.  

Table 3.3: FMS Data 2/4/2014 

Date Time FMS Station SM H1 H2 H3 Fog Index

2/4/2014 5:47:27 8 0.2796 100 100 100 High

2/4/2014 5:53:25 8 0.2796 100 100 100 High

2/4/2014 5:59:23 8 0.2796 100 100 100 High

2/4/2014 6:05:23 8 0.2796 100 100 100 High

2/4/2014 6:29:14 8 0.2796 100 100 100 High

2/4/2014 6:35:14 8 0.2749 100 100 100 High

2/4/2014 6:41:12 8 0.2749 100 100 100 High

2/4/2014 6:47:08 8 0.2796 100 100 100 High

2/4/2014 6:53:06 8 0.2796 100 100 100 High

2/4/2014 6:59:04 8 0.2796 100 100 100 High

2/4/2014 7:05:03 8 0.2796 100 100 100 High

2/4/2014 7:11:01 8 0.2796 100 100 100 High

2/4/2014 7:28:55 8 0.2796 100 100 100 High

2/4/2014 8:04:47 8 0.2749 100 100 100 High

2/4/2014 8:16:44 8 0.2749 100 100 100 High

2/4/2014 8:28:38 8 0.2749 100 100 100 High

2/4/2014 8:34:36 8 0.2749 100 100 100 High

2/4/2014 8:40:34 8 0.2749 100 100 100 High

2/4/2014 8:46:35 8 0.2749 100 100 100 High

2/4/2014 8:52:31 8 0.2749 100 100 100 High

2/4/2014 8:58:30 8 0.2749 100 100 100 High

2/4/2014 9:10:27 8 0.2749 100 100 100 High

2/4/2014 9:16:26 8 0.2749 100 100 100 High

2/4/2014 9:22:24 8 0.2749 100 100 100 High

2/4/2014 9:28:23 8 0.2749 100 100 100 High

2/4/2014 9:34:22 8 0.2749 100 100 100 High

2/4/2014 9:40:21 8 0.2749 100 100 100 High

2/4/2014 9:46:42 8 0.2749 100 100 100 High

2/4/2014 9:52:19 8 0.2749 100 100 100 High

2/4/2014 9:58:19 8 0.2749 98.1 98.2 99 High

2/4/2014 10:04:18 8 0.2749 94.4 92.5 96.3 High

2/4/2014 10:10:18 8 0.2749 86.9 86.3 92.3 Moderate

2/4/2014 10:16:19 8 0.2796 82 82.3 91.6 Moderate

2/4/2014 10:22:20 8 0.2749 79.6 80 87.4 Low
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One note, the soil moisture (SM column) ticked down from 0.2796 to 0.2749 which may 

be expected as the fog persists and moisture slowly evaporates out of the soil.  This was 

also noted in some of the FMS stations during the February 2nd event.  

 

Visibility sensor readings: 

 

   Table 3.4: Visibility Data 2/4/2014 

2/4/2014 5:46:46 1271

2/4/2014 5:53:30 2000

2/4/2014 6:00:14 1188

2/4/2014 6:06:58 89

2/4/2014 6:20:26 242

2/4/2014 6:27:10 95

2/4/2014 6:33:54 258

2/4/2014 6:40:38 182

2/4/2014 6:47:22 220

2/4/2014 6:54:06 195

2/4/2014 7:00:51 216

2/4/2014 7:14:18 276

2/4/2014 7:27:46 177

2/4/2014 7:34:30 226

2/4/2014 7:41:14 149

2/4/2014 8:01:26 2000

2/4/2014 8:14:54 136

2/4/2014 8:28:22 289

2/4/2014 8:35:06 326

2/4/2014 8:41:50 1190

2/4/2014 8:48:34 1126

2/4/2014 8:55:18 198

2/4/2014 9:02:02 1190

2/4/2014 9:08:47 2000

2/4/2014 9:15:32 2000

2/4/2014 9:22:17 2000

2/4/2014 9:29:02 2000

2/4/2014 9:35:51 2000

2/4/2014 9:42:32 2000

Visibility
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The lower visibility in this event, also correspond well with the visibility sensor readings, 

which just lag 40 or so minutes when the fog lifted.   Below are camera images of the fog 

event for February 4th: 

 

    5:46 am                                      7:00 am                                              9:15 am 

January 20  

On January 20th there was a short duration radiation fog event.  Even though it was of 

short duration, it was a radiation fog event with significantly reduced visibility.  The 

event occurred right around sunrise. When the winds increased at just after 8:20 am, it 

began to break it up. The visibility sensor began indicating reduced visibility at 7:41 am, 

however the FMS indicated a “High” fog index at 6:06 am.  From the pictures below it 

can be seen that there is indeed the beginning of reduced visibility at 6:06 am. Winds 

were calm and humidity levels were at saturation on all three levels of the FMS.   
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Visibility sensor for January 20th: 

 

Table 3.5: Visibility Data 1/20/2014 

 

 

 

 

 

 

 

 

 

1/20/2014 6:06:49 2000

1/20/2014 6:26:58 2000

1/20/2014 6:33:41 2000

1/20/2014 6:40:24 2000

1/20/2014 6:47:07 2000

1/20/2014 6:53:50 2000

1/20/2014 7:00:33 2000

1/20/2014 7:07:16 1222

1/20/2014 7:13:59 2000

1/20/2014 7:20:42 2000

1/20/2014 7:27:25 2000

1/20/2014 7:41:02 174

1/20/2014 7:54:28 211

1/20/2014 8:07:57 72

1/20/2014 8:14:37 53

1/20/2014 8:21:20 2000

1/20/2014 8:28:06 2000

1/20/2014 8:34:49 2000

1/20/2014 8:41:31 2000

1/20/2014 8:48:18 2000

1/20/2014 8:54:59 2000

Visibility



 

43 

Weather from station 1 for January 20th: 

 

Table 3.6: FMS Data 1/20/2014 

 

        6:06 am                                      7:40 am                                        8:21 am  

 Additionally, other events on the 21st and 28th of January, though they did not have a 

strong signature for radiation fog, produced reduced visibilities which started improving 

around sunrise with increased wind speeds.   

Date Time FMS Station SM H1 H2 H3 Fog Index

1/20/2014 6:06:32 1 0.332 100 100 100 High

1/20/2014 6:24:19 1 0.332 100 100 100 High

1/20/2014 6:30:14 1 0.332 100 100 100 High

1/20/2014 6:36:10 1 0.332 100 100 100 High

1/20/2014 6:42:05 1 0.332 100 100 100 High

1/20/2014 6:48:01 1 0.332 100 100 100 High

1/20/2014 6:59:52 1 0.332 100 100 100 High

1/20/2014 7:05:50 1 0.332 100 100 100 High

1/20/2014 7:11:45 1 0.332 100 100 100 High

1/20/2014 7:17:39 1 0.332 100 100 100 High

1/20/2014 7:23:35 1 0.332 100 100 100 High

1/20/2014 7:41:22 1 0.332 100 100 100 High

1/20/2014 7:53:13 1 0.332 100 100 100 High

1/20/2014 8:11:00 1 0.332 100 100 100 High

1/20/2014 8:16:57 1 0.332 100 100 100 High

1/20/2014 8:22:51 1 0.332 100 100 100 High

1/20/2014 8:34:42 1 0.332 100 100 100 High

1/20/2014 8:40:38 1 0.332 100 100 100 High

1/20/2014 8:46:36 1 0.332 100 100 100 High
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3.5 Chapter Summary 

The purpose of this chapter was to develop a proof of concept to validate that an array of 

low-cost environmental sensors, arranged at varying levels above the ground surface, 

could effectively detect the onset of fog and meet or exceed existing performance of 

traditional and much more expensive technologies.  A combination of sensors and 

software algorithms were refined and augmented to work in concert to create derivative 

products that detect and provide the basis to predict the onset of fog.  The design of the 

software is flexible enough to allow for the algorithms to be tuned and adjusted for 

micro-local conditions for improved accuracy.  Visualization of category rankings of fog 

threat indices were also made available via an online portal.  The validation during this 

initial project certainly justifies additional research and development that will lead to a 

final system which could be more broadly deployed.   
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4. DATA COLLECTION AND PREPARATION 

4.1 Site Selection and Weather Sensor Installation  

The site selected is based on the earlier report by UCF on I-4 in Polk County, mile posts 

22.528-22.628 and 21.426-21.928 (see Figure 4.1). The system architecture and the aerial 

view of the selected study area are already shown in the previous chapter 3. 

 

Figure 4.1  – Microscopic Analysis of Fog Crashes in Polk County  

(Abdel-Aty et al. 2012) 
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It is roughly situated between State road 559 and State road 557. On December 11 we 

were granted permission to visit the site to mark sensor and weather station locations.  All 

FMS and WX are marked with stakes, flags, and orange paint. The RF field test results 

are listed below:   

FMS 1: 100%, located 37 feet from pavement 

FMS 2: 100%, located 37 feet from pavement, Located right at the fence 

FMS 3: 99.4%, located 36 feet from pavement 

FMS 4: 100%, located 36 feet from pavement, Located right at the fence 

FMS 5: 100%, located 58 feet from pavement 

FMS 6: 100%, located 69 feet from pavement 

FMS 7: 100%, located 68 feet from pavement 

FMS 8: 99.4%, located 69 feet from pavement 

On December 11, 2013 we contacted the 811 underground utilities locator concerning the 

2.5 mile stretch of I-4 West. On December 16th the locates were completed.  The results 

are as follows:   

 Brendan Lonergan, TransCore, request completed and any conflicts were marked 

with flags and spray paint. 

 Gulfstream Natural Gas, close but not in conflict with the dig site area.  

 Verizon, no conflicts.  

 C/O Auburndale W/S/Street, no response yet 

 Tampa Electric Company, no conflicts. 
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 AT&T, conflicts marked 

 Ticket 345307883 FL : Polk County, POLK CITY Community I 4 

 Ticket 345307655 FL : Polk County, POLK CITY Community I 4 

 Ticket 345307779 FL : Polk County, POLK CITY Community 

The NEXRAD weather radar data being integrated into the visualization module is of 

high quality and reliability, updating every 5 minutes (essentially the same update 

frequency as the NEXRAD radars themselves).  A straightforward method to visualize 

this radar has been developed and the radar imagery is merged with base map information 

and highway networks. 

 

The FMS have been setup in the PraxSoft lab and are collecting data to ensure all sensors 

and communications between nodes are working appropriately before field deployment.  

Data is being sent to a PraxSoft WSN receiver which is connected to the Internet.  

 

4.2 Weather Data Collection  

The weather data was then collected from those installed weather sensors in I-4 rest area. 

There are mainly two kinds of weather datasets. The first kind of dataset consists of 

twenty-one variables including air temperature, dewpoint, surface moisture, humidity, 

wind speed and some other important weather parameters such as barometric pressure 

and rainfall. The second kind of dataset consists of twelve variables including air 

temperature, surface moisture, humidity, wind speed and fog index which is used to 

predict the fog event. The Figure 4.2 and Figure 4.3 show a sample of these two kinds of 

datasets. 
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Figure 4.2 Sample of Weather Data 

 

 

Figure 4.3 Sample of Weather Data including Fog Index 
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4.3 Installation of Wavetronix SmartSensor 

In order to investigate the relationship between weather and traffic flow, a vehicle-based 

detector, Wavetronix SmartSensor HD, was installed to collect accurate traffic flow data, 

including vehicle speed, vehicle length and lane assignment. Augmenting the system with 

the unit Click 514 enables us to collect data for every vehicle so we can also calculate the 

headway. 

The Installation Site 

Figure 4.4 depicts is the aerial view of the selected study area on I-4 from milepost 19 to 

milepost 23. It is roughly situated between State road 559 and State road 557. The 

selected light pole to install the traffic detector is near the entrance of the rest area on the 

eastbound side (Figure 4.5). The offset from first detection lane to the light pole is 54 feet. 

The pictures of the street view of the light pole are provided from Figures 4.6 to 4.8. 

 

Figure 4.4 Rest area on the eastbound side of I-4 
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Figure 4.5 Light pole near the entrance of rest area 

 

 

Figure 4.6 Street view of the light pole (1) 

 

54 ft 
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Figure 4.7 Street view of the light pole (2) 

 

 

Figure 4.8 Street view of the light pole (3) 
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Components of the Traffic Sensor 

There are three main parts of the detection systems: Wavetronix SmartSensor HD, pole-

mount cabinet and power. The Wavetronix SmartSensor HD is a HD Digital Wave Radar 

which has a detection range of 250 feet and the ability to simultaneously detect up to 22 

lanes of traffic (Figure 4.9). In the pole-mount cabinet, it has the Lightning surge 

protector (Click! 200) and the Event logger (Click 514). Lightning surge protector (Click! 

200) protects devices from power surges over DC power and serial communication lines 

(Figure 4.10). Event logger (Click 514) monitors individual vehicle data pushed from 

SmartSensor HD and forwards it to data logger devices (Figures 4.11 to 4.13). In addition 

to the above two components, a DataBridge SDR-CF data logger was installed to save the 

vehicle-based traffic flow data (Figures 4.14 and 4.15). DataBridge SDR-CF is the tool 

for adding storage to any device. Two 12 V car batteries were connected in series to 

provide the power of the SmartSensor, event logger and data logger (Figure 4.16). 

 

Figure 4.9 Wavetronix SmartSensor HD 
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Figure 4.10 Lightning surge protector (First from left) 

 

 

Figure 4.11 Event logger (Second from left) 
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Figure 4.12 The connection between the lightning surge protector and the event 

logger 

  

Figure 4.13 All components inside the cabinet 
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Figure 4.14 DataBridge SDR-CF data logger 
 

 

Figure 4.15 The LED indicators show the SDR’s current recording status 
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Figure 4.16 Batteries were connected in series 

 

Installation of the Traffic Sensor 

The installation of the traffic sensor system was in the morning of January 22, 2014. In 

order to capture the traffic flow for three lanes on each direction, the sensor was installed 

at more than 30 feet height. The side-to-side angle was set as close to perpendicular to the 

traffic flow as possible. The sensor alignment was done by the alignment tool of the 

SmartSensor HD Manager (SSMHD) software. Figures 4.17 to 4.22 show the process of 

the installation of the traffic sensor. Figure 4.23 shows the metal case for the batteries. 
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Figure 4.17 Preparation of the installation 

 

Figure 4.18 The installation of Wavetronix SmartSensor HD (1) 
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Figure 4.19 The installation of Wavetronix SmartSensor HD (2) 

 

  

Figure 4.20 The installation of the case 
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Figure 4.21 The installation of Wavetronix SmartSensor HD (3) 

 

Figure 4.22 Test of the event logger and data logger 
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Figure 4.23 Battery case 

 

4.4 Traffic Data Collection  

The traffic data was then collected by Wavetronix SmartSensor HD installed in the above 

mentioned rest area. The dataset includes eight important variables related to traffic flow 

characteristics including vehicle speed, vehicle length, duration of detection and lane 

assignment. The headway of each vehicle can also be calculated from the original dataset. 

The dataset covers the period from January 31st, 2014 till April. Figure 4.24 shows a 

sample of the dataset. 

 
Figure 4.24  Sample of Traffic Dataset 
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4.5 Combined Dataset 

It can be seen from Figure 4.2 and Figure 4.24 that there are two common variables in the 

weather dataset and the traffic dataset: date and time. Therefore, these two original 

datasets can be merged into one combined dataset which includes variables related to 

both traffic flow characteristics and weather parameters. The combined dataset can 

therefore be used to analyze the relationship between visibility and traffic flow 

characteristics. Figure 4.25 shows a sample of the dataset. 

 
Figure 4.25  Sample of Combined Dataset 

4.6 Chapter Summary 

This chapter presented the site selection and installation of weather sensors and the traffic 

sensor. The components of the traffic sensor were also introduced in detail. After that, a 

sample of collected weather data, traffic data and combined datasets were shown in this 

chapter. 
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5. ANALYSIS OF THE EFFECT OF WEATHER PARAMETERS ON 

REDUCED VISIBILITY 

5.1 Analysis of Weather Parameters in a Fog Case 

In this section we selected one fog period that occurred on the morning of Feb 2nd for the 

purpose of analyzing the impact of several important weather parameters on the fog 

formation. This fog occurrence is also addressed in Praxsoft’s report. First the 

relationship between temperature difference of air temperature and dew point and 

visibility was analyzed. The dew point is the temperature at which the air can no longer 

hold all of the water vapor which is mixed with it, and some of the water vapor must 

condense into liquid water. It can be seen from Figure 5.1 that during the fog situation 

and also the period close to the fog situation, the air temperature and the dew point are 

identical. It can be concluded that the air temperature and dew point approaching each 

other is the sign of favorable fog conditions and the fog is most likely to form. 

 

Figure 5.1 Analysis of Relationship between Temperature Difference and Visibility 
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Figure 5.2 Analysis of Relationship Between Humidity and Visibility 

 

Figure 5.2 shows the relationship between humidity and visibility during the fog period. 

It can be seen from this figure that the humidity is at 100% before the fog formation 

period and during the fog period. The humidity drops significantly around two hours after 

the fog disappeared. It can be concluded that the high humidity is the sign of favorable 

fog conditions and the fog is most likely to form. 

5.2 Comparison of Weather Parameters between Fog Case and Clear Case 

Four important weather parameters including humidity, subsurface moisture, wind speed 

and difference between air temperature and dew point were further compared using t-test 

to figure out the difference of these weather parameters in fog and clear cases. The 

weather dataset from Jan 1st to Mar 11th was divided into two subsets: weather dataset 

with good visibility and the dataset with reduced visibility. The sample size of the 
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weather dataset with good visibility is 16017 while the sample size of the weather dataset 

with reduced visibility is 538. 

5.2.1 Humidity Comparison 

The comparison of the humidity under fog case and clear case is carried out by 

comparing the mean value of the humidity using the t-test. It is noted that the t-test used 

for comparing means of two independent samples in this report consists of two 

procedures. First, the Folded F test is used for checking the equality of variances of the 

two sample means. Secondly, the Pooled t-test is applied if the variances of two sample 

means are equal. On the other hand, the Satterthwaite t-test is applied if the variances of 

two sample means are not equal. Only the p-value for applied t-test is illustrated in the 

tables showing summary of the t-test. It can be seen from Table 5.1 that the value of the 

mean in fog case is 98.1%, while the value of the mean in clear case is 79.4%. The P- 

value showed to be less than 0.0001 which indicates that the mean value is significant 

different in both cases.  

Table 5.1 Summary of t-test for Humidity 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 538 16017 

Mean 98.11 79.37 

95% CL Mean 97.29-98.93 79.04-79.70 

Maximum Value 100 100 

Minimum Value 32.00 18.00 

Standard deviation 10.30 21.44 

P-Value <.0001 

 



 

65 

 

Figure 5.3 Distribution of Humidity 

 

The distribution of value of humidity in both cases was shown in Figure 5.3. The top one 

is the distribution for the fog case and the bottom one is the distribution for the clear case. 

It can be seen from above figure that almost all the values of humidity in the fog case are 

100% while the values of humidity in the clear case are much more various. There are a 

number of values below 100% for the clear case. It can be concluded from the figure that 

the fog is more likely to form when the humidity is higher and close to 100%. 

5.2.2 Subsurface Moisture Comparison 

The comparison of the subsurface moisture under fog case and clear case is carried by 

comparing the mean value of the subsurface moisture using the t-test. The value of the 

mean in fog case is 0.3122 volumetric water content (VWC), while the value of the mean 



 

66 

in clear case is 0.2981 VWC. The P-value showed to be 0.0006 which indicates that the 

mean value is significantly different in both cases.  

Table 5.2 Summary of t-test for Subsurface Moisture 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 538 16017 

Mean 0.31 0.28 

95% CL Mean 0.300-0.317 0.296-0.299 

Maximum Value 0.5748 0.5843 

Minimum Value 0.1368 0 

Standard deviation 0.109 0.098 

P-Value 0.0006 

 

 
 

Figure 5.4 Distribution of Subsurface Moisture 

 

The distribution of subsurface moisture in both cases was shown in Figure 5.4. The top 

one is the distribution for the fog case and the bottom one is the distribution for the clear 

case. It can be seen that the mean value of subsurface moisture in fog case is significantly 
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higher than the mean value of subsurface moisture in clear case.  It can be concluded that 

the fog is more likely to form when the subsurface moisture is higher. 

5.2.3 Wind Speed Comparison 

The comparison of the wind speed under fog case and clear case is carried by comparing 

the mean value of the wind speed using the T-test. The value of the mean in fog case is 

1.809 mph, while the value of the mean in clear case is 2.996 mph. The P-value showed 

to be less than 0.0001 which indicates that the mean value is significant different in both 

cases.  

 

 

Table 5.3 Summary of t-test for Wind Speed 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 538 16017 

Mean 1.809 2.996 

95% CL Mean 1.676-1.941 2.965-3.028 

Maximum Value 9.4000 20.6000 

Minimum Value 0 0 

Standard deviation 1.662 2.084 

P-Value <.0001 
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 Figure 5.5 Distribution of Wind Speed 

 

The distribution of wind speed in both cases was shown in Figure 5.5. The top one is the 

distribution for the fog case and the bottom one is the distribution for the clear case. It 

can be seen that the mean value of wind speed in fog case is significantly lower than the 

mean value of wind moisture in clear case.  It is also noted that there is round 30 percent 

of wind speed equals to zero in the fog case compared to only around 13 percent of wind 

speed equals to zero in the clear case. It can be concluded that the fog is more likely to 

form when the wind speed is lower especially when the wind speed is equal to zero. 
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5.2.4 Difference Between Air Temperature And Dewpoint Comparison 

The comparison of the temperature difference under fog case and clear case is carried by 

comparing the mean value of the temperature difference using the T-test. The value of the 

mean in fog case is 0.688oF, while the value of the mean in clear case is 7.586oF. The P- 

value showed to be less than 0.0001 which indicates that the mean value is significant 

different in both cases.  

Table 5.4 Summary of t-test for Temperature Difference 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 538 16017 

Mean 0.688 7.586 

95% CL Mean 0.379-0.996 7.448-7.724 

Maximum Value 29.320 44.010 

Minimum Value 0 0 

Standard deviation 3.643 8.888 

P-Value <.0001 
difference

 
Figure 5.6 Distribution of Temperature Difference 
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The distribution of difference between air temperature and dew point in both cases is 

shown in Figure 5.6. The top one is the distribution for the fog case and the bottom one is 

the distribution for the clear case. It can be seen that the mean value of difference 

between air temperature and dew point in fog case is significantly lower than the mean 

value of wind moisture in clear case.  It is noted that almost all the values of temperature 

difference equal to zero in the fog case compared to only around 34 percent of values 

equal to zero in the clear case. It can be concluded that the fog is more likely to form 

when the air temperature is very close to dew point. 

5.3 Chapter Summary 

Firstly, a fog case was analyzed to figure out the effects of weather parameters on 

reduced visibility. It can be concluded that the air temperature and dew point approach 

each other combined with the high humidity is the sign of favorable fog conditions and 

the fog is most likely to form. Four important weather parameters including humidity, 

subsurface moisture, wind speed and difference between air temperature and dew point 

were compared in further to figure out the difference of these weather parameters in fog 

and clear cases. It can be concluded from Figure 5.3-Figure 5.6 that the fog is more likely 

to form when the humidity is higher and close to 100%, the wind speed is lower, the 

subsurface moisture is higher and the air temperature is very close to the dew point. 
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6. DATA ANALYSIS OF IMPACT OF REDUCED VISIBILITY ON 

TRAFFIC FLOW CHARACTERISTICS 

The impact of reduced visibility on traffic flow characteristics is analyzed in this section. 

Two fog cases were selected and analyzed by comparing them with clear cases to figure 

out the difference of traffic flow characteristics under different situations. Moreover, the 

vehicles were divided into two types including passenger cars and trucks in order to 

identify whether the impact of visibility on traffic flow characteristics is different for 

different vehicle types. After that, the traffic flow characteristics under different visibility 

levels and the effects of reduced visibility on different lanes were analyzed. 

6.1 Preliminary Analysis of a Fog Case 

6.1.1 Analysis of Traffic Flow Characteristics in a Fog Case 

The fog case was selected on Feb 2nd  morning.  The period of fog formation is from 

6:30am to 9:00am in the morning. The relationship between mean speed and visibility is 

shown in Figure 6.1. It can be seen from that there is a slight drop in speed during 

reduced visibility. The mean speed drops to around 70 mph during the fog period. The 

relationship between speed variation and visibility is shown in Figure 6.2. It is shown 

from this figure that the speed variation increases at the beginning of the fog formation 

and the speed variation is larger during the fog period. 
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Figure 6.1 Relationship between Mean Speed and Visibility  

 

 

Figure 6.2 Relationship between Speed Variation and Visibility  
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 Figure 6.3 Relationship between Headway and Visibility 

 

The relationship between headway and visibility is shown in Figure 6.3. It seems that the 

headway keeps decreasing during the fog period. The main reason for this is that the 

traffic volume also increases during this period. Therefore, the impact of reduced 

visibility on mean headway was not clearly shown from this Figure. It is easier to figure 

out the impact of reduced visibility on mean headway when the volume is more stable 

during the fog period. It can be seen from the figure that the headway variation is larger 

in the fog period. 

6.1.2 Comparison of Traffic Flow Characteristics Between Fog Case and Clear Case 

The same period from 6:30am to 9:00am on Feb 9th  morning was selected as the clear 

case to compare the traffic flow characteristics between fog case and clear case. The 

reason to choose this date is that it is the same weekday as Feb 2nd. Therefore, the volume 
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is expected to be similar in those two days and it will be easier to investigate the effect of 

reduced visibility. Five important traffic flow variables including headway, speed, speed 

variation, headway variation and volume were compared using t-tests to identify the 

difference of these variables in fog case and clear case. 

 

6.1.2.1 Headway 

The comparison of the headway under the fog and clear cases is carried by comparing the 

mean value of the logarithm of headway using the t-test. The value of the mean in fog 

case is 2.6708 seconds, while the value of the mean in clear case is 2.4351 seconds. The 

P- value showed to be less than 0.0001 which indicates that the mean value is 

significantly different in both cases.  

Table 6.1 Summary of t-test for Logarithm of Headway 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 300 300 

Mean 2.6708 2.4351 

95% CL Mean 2.6125-2.7290 2.3836-2.4866 

Maximum Value 4.2729 3.7710 

Minimum Value 1.5064 1.3863 

Standard deviation 0.5129 0.4535 

P-Value <.0001 
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Figure 6.3 Distribution of Logarithm of Headway 

 
 

 Figure 6.4 Q-Q Plots of Logarithm of Headway 

 

The distribution of logarithm of headway in both cases is shown in Figure 6.4. The top 

one is the distribution for the fog case and the bottom one is the distribution for the clear 



 

76 

case. It can be seen from above figure that the mean headway is significantly higher in 

the fog case. The Q-Q plot in shown in Figure 6.5 indicates that the logarithm of headway 

in both cases follows the normal distribution. 

6.1.2.2 Mean Speed 

The comparison of the mean speed under fog case and clear case is carried out by 

comparing the mean value of the mean speed using the t-test. The value of the mean in 

fog case is 70.61 mph, while the value of the mean in clear case is 73.37 mph. The P- 

value showed to be less than 0.0001 which indicates that the mean value is significantly 

different in both cases.  

Table 6.2 Summary of t-test for Mean Speed 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 300 300 

Mean 70.6139 73.3785 

95% CL Mean 70.2258-71.0020 73.1235-73.6334 

Maximum Value 84.1500 78.5658 

Minimum Value 60.9567 65.5000 

Standard deviation 3.4156 2.2442 

P-Value <.0001 
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Figure 6.5  Distribution of Mean Speed 

 

 
Figure 6.6  Q-Q Plots  of Mean Speed 

 

The distribution of mean speed in both cases is shown in Figure 6.6. The top one is the 

distribution for the fog case and the bottom one is the distribution for the clear case. It 

can be seen that the mean speed is significantly lower in fog case. The Q-Q plot 
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illustrated in Figure 6.7 indicates that mean speed in both cases follows the normal 

distribution. 

6.1.2.3 Standard Deviation of Speed 

The comparison of the standard deviation of speed under fog case and clear case is 

carried out by comparing the mean value of the standard deviation of speed using the t-

test. The P-value showed to be 0.48 which indicates that the mean value is not significant 

different in both cases, although it appears that the standard deviation of speed is higher 

in the fog condition. 

Table 6.3 Summary of t-test for Standard Deviation of Speed 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 300 300 

Mean 5.7945 5.6975 

95% CL Mean 5.5828-6.0063 5.5226-5.8724 

Maximum Value 12.4364 12.0994 

Minimum Value 0.1768 1.8385 

Standard deviation 1.8606 1.5397 

P-Value 0.4871 

 

 
Figure 6.7 Distribution of Standard Deviation of Speed 
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Figure 6.8 Q-Q Plots of Standard Deviation of Speed 

 

The distribution of standard deviation of speed in both cases is shown in Figure 6.8. The 

top one is the distribution for the fog case and the bottom one is the distribution for the 

clear case. It can be seen that standard deviation of speed is slightly higher in fog case. 

The impact of reduced visibility on standard deviation of speed is not significant. The Q-

Q plot in Figure 6.9 indicates that standard deviation of speed in both cases follows the 

normal distribution. 

6.1.2.4 Standard Deviation of Headway 

The comparison of the standard deviation of headway under fog case and clear case is 

carried by comparing the mean value of the standard deviation of headway using the T-

test. The value of the mean in fog case is 15.705 s, while the value of the mean in clear 

case is 11.892 s. The P-value showed to be less than 0.05 which indicates that the mean 
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value is significant different in both cases. The variance of standard deviation of headway 

is larger in fog case. 

Table 6.4 Summary of t-test for Standard deviation of Headway 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 300 300 

Mean 15.705 11.892 

95% CL Mean 14.623-16.786 11.026-12.758 

Maximum Value 68.32 74.74 

Minimum Value 3.65 3.54 

Standard deviation 0.8232 1.8632 

P-Value <0.0001 

 

 
Figure 6.9 Distribution of Standard Deviation of Headway  

 

The distribution of standard deviation of standard deviation of headway in both cases is 

shown in Figure 6.10. The top one is the distribution for the fog case and the bottom one 
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is the distribution for the clear case. It can be seen that standard deviation of headway is 

higher in fog case.  

6.1.2.5 Volume 

The comparison of the volume under fog case and clear case is carried out by comparing 

the mean value of the volume using the t-test. The value of the mean in fog case is 13.85 

vehicles per minute per direction, while the value of the mean in clear case is 17.15 

vehicles per minute per direction. The P- value showed to be less than 0.0001 which 

indicates that the mean value is significantly different in both cases.  

 

 

Table 6.5 Summary of t-test for Volume 

Parameter 
Analysis Cases 

Fog Case Clear Case 

Sample size 300 300 

Mean 13.8500 17.1500 

95% CL Mean 12.9926-14.7074 16.2881-18.0119 

Maximum Value 42.0000 42.0000 

Minimum Value 1.0000 2.0000 

Standard deviation 7.5461 7.5859 

P-Value <.0001 
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Figure 6.10  Distribution of Volume  

 

 
Figure 6.12 Q-Q Plots of Volume 

 

The distribution of volume in both cases is shown in Figure 6.11. The top one is the 

distribution for the fog case and the bottom one is the distribution for the clear case. It 

can be seen that the volume is significant lower in fog case. The Q-Q plot in Figure 6.12 
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indicates that volume in clear case follows the normal distribution very well while the 

volume in fog case does not follow the normal distribution very well. 

6.1.3 Scatterplot Analysis 

The scatterplot was used to analyze the relationship between several traffic flow 

characteristics including speed, headway and volume in both fog case and clear case. The 

research team wants to figure out whether the relationship between several traffic flow 

characteristics is different in both cases. 

.  

Figure 6.11  Speed and Headway Relationship in Clear Case 
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Figure 6.12  Speed and Headway Relationship in Fog Case 

 

The speed and headway relationship in both cases is shown in Figures 6.13 and Figure 

6.14. There is obvious difference in the relationship between speed and headway in both 

cases. It can be seen from the Figure 6.13 that the headway increases as the mean speed 

decreases in the clear case while this trend is not that obvious as it is shown in Figure 

6.14. There is not significant change for the mean speed as the headway increases in the 

fog case.  
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Figure 6.13 Speed and Volume Relationship in Clear Case 

 

 

Figure 6.14  Speed and Volume Relationship in Fog Case 

 

The speed and volume relationship in both cases is shown in Figures 6.15 and 6.16. There 

is also obvious difference in the relationship between speed and volume in both cases. It 

can be seen from Figure 6.15 that the volume increases as the mean speed increases in the 
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clear case while the trend is not the same as it is shown in Figure 6.16. The mean speed 

remains constant or even slightly drops as the volume increases in the fog case.  

6.2 Analysis of Impacts of Reduced Visibility on Different Types of Vehicles 

In this section, the vehicles were divided into two types including passenger cars and 

trucks in order to figure out whether the impact of visibility on traffic flow characteristics 

is different in different vehicle types. The type of vehicles was divided based on the 

length of vehicles. The vehicle is considered as truck when the length of vehicle is above 

30 feet and it is considered as passenger cars when the length of vehicle is equal to or less 

than 30 feet. The datasets used in this section were the combined data mentioned in 

section 4.5 which covers the period from Jan31th to Mar11th. 

6.2.1 Comparison of Reduced Visibility on Speed 

The comparison of the speed of both vehicle types under fog case and clear case is 

carried by comparing the mean value of the speed using T-test. The value of the mean for 

the passenger cars in fog case is 72.01 mph, while the value of the mean in clear case is 

73.18 mph. The value of the mean for the trucks in fog case is 65.79 mph, while the value 

of the mean in clear case is 66.89 mph. It can be seen that the mean speed of both vehicle 

types decreases around 1.1 mph during the fog case. The P-value for both vehicle types 

showed to be less than 0.001 which indicates that the mean value is significantly different 

in both cases. 
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Table 6.6 Summary of t-test for Speed 

Vehicle Type 
Parameter 

Analysis Cases 

Fog Case Clear Case 

Passenger Cars Sample size 367 7177 

Mean 72.01 73.18 

95% CL Mean 71.67-72.37 73.15-73.22 

Maximum Value 76.90 78.65 

Minimum Value 47.97 45.86 

Standard deviation 3.42 1.57 

 P-Value <0.001 

Truck Sample size 365 7174 

Mean 65.79 66.89 

95% CL Mean 65.53-66.03 66.84-66.92 

Maximum Value 72.25 75.30 

Minimum Value 49.03 40.76 

Standard deviation 2.65 1.73 

P-Value <0.001 

 

The distribution of speed in both cases is shown in Figure 6.17 and Figure 6.18. The top 

one in each figure is the distribution for the fog case and the bottom one is the 

distribution for the clear case. It can be seen from these two figures that the mean speed 

of both vehicle types is significantly lower in the fog case. 

.  

Figure 6.17 Distribution of Mean Speed for Cars 
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Figure 6.18 Distribution of Mean Speed for Trucks 

6.2.2 Comparison of Reduced Visibility on Headway 

The comparison of the headway of both vehicle types under fog case and clear case is 

carried by comparing the mean value of the logarithm of headway using T-test. The value 

of the mean for the passenger cars in fog case is 2.36 seconds, while the value of the 

mean in clear case is 1.99 seconds. The value of the mean for the trucks in fog case is 

2.56 seconds, while the value of the mean in clear case is 2.27 seconds. It can be seen that 

the mean headway of passenger cars and trucks increases 0.37 seconds and 0.29 seconds 

separately during the fog case. The effect of reduced visibility on headway of passenger 

cars is larger compared to trucks. The P- value for both vehicle types showed to be less 

than 0.001 which indicates that the mean value is significant different in both cases. 
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Table 6.4 Summary of t-test for Logarithm of Headway 

Vehicle Type 
Parameter 

Analysis Cases 

Fog Case Clear Case 

Passenger Cars Sample size 367 7177 

 Mean 2.36 1.99 

 95% CL Mean 2.29-2.44 1.97-2.00 

 Maximum Value 3.81 0.82 

 Minimum Value 1.27 4.10 

 Standard deviation 0.78 0.79 

 P-Value <0.001 

Truck Sample size 365 7174 

 Mean 2.56 2.27 

 95% CL Mean 2.50-2.63 2.25-2.29 

 Maximum Value 4.05 4.26 

 Minimum Value 1.60 0.35 

 Standard deviation 0.67 0.64 

 P-Value <0.001 

 

The distribution of logarithm of headway in both cases is shown in Figure 6.19 and 

Figure 6.20. The top one in each figure is the distribution for the fog case and the bottom 

one is the distribution for the clear case. It can be seen from these two figures that the 

headway of both vehicle types is significantly higher in the fog case. 

 

Figure 6.19  Distribution of Logarithm of Headway for Cars 
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Figure 6.20  Distribution of Logarithm of Headway for Trucks 

6.2.3 Comparison of Reduced Visibility on Speed Variation 

The comparison of the speed variation of both vehicle types under fog case and clear case 

is carried by comparing the mean value of the standard deviation of speed using T-test. 

The value of the mean for the passenger cars in fog case is 6.10 mph, while the value of 

the mean in clear case is 5.77 mph. The value of the mean for the trucks in fog case is 

5.62 mph, while the value of the mean in clear case is 5.60 mph. It can be seen that the 

standard deviation of speed of passenger cars and trucks increases 0.33 mph and 0.02 

mph separately during the fog case. The effect of reduced visibility on standard deviation 

of trucks is not significant. The P-value for passenger cars showed to be less than 0.001 

which indicates that the mean value is significantly different. 
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Table 6.5 Summary of t-test for Standard Deviation of Speed 

Vehicle Type 
Parameter 

Analysis Cases 

Fog Case Clear Case 

Passenger Cars Sample size 367 7177 

 Mean 6.10 5.77 

 95% CL Mean 6.01-6.20 5.75-5.79 

 Maximum Value 11.82 20.64 

 Minimum Value 3.71 2.52 

 Standard deviation 1.01 0.91 

 P-Value <0.001 

Truck Sample size 365 7174 

 Mean 5.62 5.60 

 95% CL Mean 5.48-5.77 5.57-5.63 

 Maximum Value 14.99 15.99 

 Minimum Value 0.99 0.05 

 Standard deviation 1.51 1.39 

 P-Value 0.78 
 

 

The distribution of logarithm of headway in both cases is shown in Figure 6.21 and 

Figure 6.22. The top one in each figure is the distribution for the fog case and the bottom 

one is the distribution for the clear case. It can be seen from both figures that the speed 

variation of passenger cars is significantly higher in the fog case while the speed variation 

for the trucks is not. 
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Figure 6.21  Distribution of Standard Deviation of Speed for Cars 

 

 
Figure 6.22  Distribution of Standard Deviation of Speed for Trucks 
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6.2.4 Comparison of Reduced Visibility on Headway Variation 

The comparison of the standard deviation of headway under fog case and clear case is 

carried by comparing the mean value of the standard deviation of headway using the T-

test. The value of the mean for the passenger cars in fog case is 13.03 seconds, while the 

value of the mean in clear case is 9.48 seconds. The value of the mean for the trucks in 

fog case is 12.59 seconds, while the value of the mean in clear case is 9.64 seconds. It can 

be seen that the standard deviation of headway of passenger cars and trucks increases 

3.55 seconds and 2.95 seconds separately during the fog case. The effect of reduced 

visibility on standard deviation of headway of passenger cars is larger compared to trucks. 

The P- value for both vehicle types showed to be less than 0.001 which indicates that the 

mean value is significant different in both cases. 

Table 6.6 Summary of t-test for Standard Deviation of Headway 

Vehicle Type 
Parameter 

Analysis Cases 

fog Case clear Case 

Passenger Cars Sample size 367 7177 

 Mean 13.03 9.48 

 95% CL Mean 12.20-13.88 9.31-9.66 

 Maximum Value 40.14 37.74 

 Minimum Value 3.71 1.81 

 Standard deviation 8.83 7.65 

 P-Value <0.001 

Truck Sample size 365 7174 

 Mean 12.59 9.64 

 95% CL Mean 11.81-13.36 9.48-9.80 

 Maximum Value 39.19 48.11 

 Minimum Value 3.27 0.32 

 Standard deviation 8.13 7.05 

 P-Value <0.001 

 

The distribution of standard deviation of headway in both cases is shown in Figure 6.23 

and Figure 6.24. The top one in each figure is the distribution for the fog case and the 
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bottom one is the distribution for the clear case. It can be seen from these two figures that 

standard deviation of headway of both vehicle types is significantly higher in the fog case. 

 

 

Figure 6.23  Distribution of Standard Deviation of Headway for Cars 

 

 

Figure 6.24  Distribution of Standard Deviation of Headway for Trucks 
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6.3 Effects of Reduced Visibility on Traffic Flow Characteristics using ANOVA 

The method of Analysis of variance (ANOVA) is used in this project to compare the 

differences between several group means and their associated variations. This method 

provides a powerful statistical test of comparing means of more than two groups and it is 

a generalization of t-test. As doing multiple two-sample t-tests is not convenient and 

would result in an increased chance of errors, ANOVA is useful in comparing means of 

three or more groups for statistical significance. In this section ANOVA is used to further 

analyze the traffic flow characteristics under different visibility levels and the effects of 

reduced visibility on different lanes. The datasets used in this section were the combined 

dataset mentioned in section 4.5 which covers the period from Jan31th to Mar26th.  

6.3.1Analysis of Effects of Different Visibility Levels  

According to the characteristics of the weather dataset and some previous literature 

(Hassan and Abdel-Aty, 2011a), we divided the visibility into three levels using the same 

combined dataset analyzed above in order to further investigate the difference of traffic 

flow characteristics under different visibility levels. The visibility is considered as good 

visibility and classified as 1 in the ANOVA analysis when the visibility is greater than or 

equal to 2000 m. The visibility is considered as moderate visibility and classified as 2 if 

the visibility is less than 2000 m but greater than 300 m. The visibility is considered as 

low visibility and classified as 3 if the visibility is less than or equal to 300 m.  

Headway comparison 

The comparison of the headway under different visibility levels is carried out by 

comparing the mean value of the headway per direction. The distribution of means of 

http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Multiple_comparisons_problem
http://en.wikipedia.org/wiki/Statistical_significance


 

96 

headway under three different visibility levels is shown in Figure 6.25. It can be seen 

from the figure that the mean headway is significantly higher under low visibility. 

 

It also can be seen in Table 6.10 that the differences of means of headway are all 

significant under different visibility levels. The mean of headway increases when the 

visibility drops. The difference of headway between good visibility and moderate 

headway is 2.0176 seconds and the difference between moderate visibility and low 

visibility is 1.8945 seconds.  

 

 
Figure 6.25 distribution of means of headway under different visibility levels  
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Table 6.7 Comparison of means of headway under different visibility levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

3 - 2 1.8945 0.6497 3.1392 *** 

3 - 1 3.9120 3.1780 4.6461 *** 

2 - 3 -1.8945 -3.1392 -0.6497 *** 

2 - 1 2.0176 0.9487 3.0864 *** 

1 - 3 -3.9120 -4.6461 -3.1780 *** 

1 - 2 -2.0176 -3.0864 -0.9487 *** 

Note that *** indicates that the result is significant 

 

Speed comparison 

The comparison of the speed under different visibility levels is performed by comparing 

the mean value of the speed per direction. The distribution of means of speed under three 

different visibility levels was shown in Figure 6.26. It can be seen that the mean speed is 

significantly lower under low visibility. 

 

It also can be seen from Table 6.11 that the differences of mean speed are all significant 

under different visibility levels. The mean speed decreases when the visibility drops. The 

difference of speed between good visibility and moderate visibility is 0.2929 mph and the 

difference between moderate visibility and low visibility is 0.6588 mph.  
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Figure 6.26 Distribution of means of speed under different visibility levels  

 

Table 6.8 Comparison of means of speed under different visibility levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

1 - 2 0.29297 0.01564 0.57029 *** 

1 - 3 0.95181 0.76093 1.14268 *** 

2 - 1 -0.29297 -0.57029 -0.01564 *** 

2 - 3 0.65884 0.33533 0.98234 *** 

3 - 1 -0.95181 -1.14268 -0.76093 *** 

3 - 2 -0.65884 -0.98234 -0.33533 *** 
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Variance of Headway comparison 

The comparison of the variance of headway under different visibility levels is carried by 

comparing the mean value of the standard deviation of headway per direction. The 

distribution of standard deviation of headway under three different visibility levels was 

shown in Figure 6.27. It can be seen that the standard deviation of headway is 

significantly higher in low visibility. 

 

It also can be seen from Table 6.12 that the differences of standard deviation of headway 

are all significant under different visibility levels. The mean of standard deviation of 

headway will increase when the visibility drops. The difference of standard deviation of 

headway between good visibility and moderate visibility is 0.8115 seconds and the 

difference between moderate visibility and low visibility is 1.7449 seconds.  

 

Figure 6.15 Distribution of standard deviation of headway under different visibility 

levels  
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Table 6.9 Comparison of standard deviation of headway under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

3 - 2 1.74495 1.29903 2.19087 *** 

3 - 1 2.55647 2.29213 2.82082 *** 

2 - 3 -1.74495 -2.19087 -1.29903 *** 

2 - 1 0.81152 0.43065 1.19239 *** 

1 - 3 -2.55647 -2.82082 -2.29213 *** 

1 - 2 -0.81152 -1.19239 -0.43065 *** 

 

It is noted that the variance of speed under different visibility levels is also analyzed 

using the same method but the result shows that there is not significantly difference of 

variance of speed under different visibility levels.  

6.3.2Analysis of Effects of Reduced Visibility on Different Lanes  

 

There are three lanes in each direction for the site. The outer lane is labeled as 0 and the 

inner lane is labeled as 2 while the middle lane is labeled as 1 for the East Bound 

direction. The outer lane is labeled as 5 and the inner lane is labeled as 3 while the middle 

lane is labeled as 4 for the West Bound direction. In this section we will mainly make 

comparisons about the traffic flow characteristics in different lanes under different 

visibility levels. At first, the distributions of average speed and headway were compared 
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for both directions. It can be seen from the Table 6.13 to Table 6.16 that the distribution 

of average speed and headway are very similar in both directions. The average speed for 

the inner lane is significantly higher than middle lane and outer lane while the average 

headway for the outer lane is significantly higher than middle lane and inner lane. In 

addition, further comparison under different visibility levels presents the similar results 

for both directions, therefore, this study focused on presenting the effects of reduced 

visibility on different lanes for the EB. 

 

Table 6.13 Comparison of means of speed in different lanes for EB 

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

2 - 1 4.41505 4.28185 4.54826 *** 

2 - 0 8.75264 8.61856 8.88672 *** 

1 - 2 -4.41505 -4.54826 -4.28185 *** 

1 - 0 4.33759 4.20458 4.47060 *** 

0 - 2 -8.75264 -8.88672 -8.61856 *** 

0 - 1 -4.33759 -4.47060 -4.20458 *** 
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Table 6.14 Comparison of means of headway in different lanes for EB 

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

0 - 2 5.1770 4.6939 5.6602 *** 

0 - 1 8.4569 7.9776 8.9362 *** 

2 - 0 -5.1770 -5.6602 -4.6939 *** 

2 - 1 3.2798 2.7998 3.7599 *** 

1 - 0 -8.4569 -8.9362 -7.9776 *** 

1 - 2 -3.2798 -3.7599 -2.7998 *** 

 

Table 6.15 Comparison of means of speed in different lanes for WB 

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

5 - 3 -1.5589 1.1048 2.0131 *** 

5 - 4 4.6358 4.1876 5.0839 *** 

3 - 5 1.5589 -2.0131 -1.1048 *** 

3 - 4 3.0768 2.6234 3.5302 *** 

4 - 5 -4.6358 -5.0839 -4.1876 *** 

4 - 3 -3.0768 -3.5302 -2.6234 *** 
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Table 6.16 Comparison of means of headway in different lanes for WB 

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

5 - 3 1.5589 1.1048 2.0131 *** 

5 - 4 4.6358 4.1876 5.0839 *** 

3 - 5 -1.5589 -2.0131 -1.1048 *** 

3 - 4 3.0768 2.6234 3.5302 *** 

4 - 5 -4.6358 -5.0839 -4.1876 *** 

4 - 3 -3.0768 -3.5302 -2.6234 *** 

 

Speed comparison of outer lane in different visibility levels 

The speed comparison of the outer lane under different visibility levels is carried out by 

comparing the mean speed. The distribution of means speed under three different 

visibility levels for the outer lane is shown in Figure 6.28. It is hard to see the difference 

of mean speed under different visibility levels but it can be seen from Table 6.17 that the 

mean speeds under good visibility level and moderate visibility level are both 

significantly higher than mean speed under low visibility level while the difference of 

mean speed under good visibility level and moderate visibility level is not significant. 

The difference of mean speed between good visibility and low visibility is 1.28 mph and 

the difference between moderate visibility and low visibility is 0.84 mph.  
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Figure 6.28 Distribution of means of speed for outer lane under different visibility 

levels  

 

Table 6.10 Comparison of means of speed for outer lane under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

1 - 2 0.44000 -0.08060 0.96061  

1 - 3 1.28185 0.92093 1.64277 *** 

2 - 1 -0.44000 -0.96061 0.08060  

2 - 3 0.84185 0.23303 1.45066 *** 

3 - 1 -1.28185 -1.64277 -0.92093 *** 

3 - 2 -0.84185 -1.45066 -0.23303 *** 
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Speed comparison of middle lane in different visibility levels 

The speed comparison of the middle lane under different visibility levels is also carried 

by comparing the mean speed. The distribution of means speed under three different 

visibility levels for the outer lane was shown in Figure 6.29. It can be seen from the 

Figure 6.29 that there is obvious difference of mean speed under different visibility levels. 

It also can be seen from the Table 6.18 that the mean speeds will increase as the visibility 

increases. The difference of mean speed between good visibility and low visibility is 1.01 

mph and the difference between good visibility and moderate visibility is 0.36 mph.  

 

 

Figure 6.29 Distribution of means of speed for middle lane under different visibility 

levels  
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Table 6.11 Comparison of means of speed for middle lane under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

1 - 2 0.36757 0.03969 0.69546 *** 

1 - 3 1.01375 0.78870 1.23881 *** 

2 - 1 -0.36757 -0.69546 -0.03969 *** 

2 - 3 0.64618 0.26424 1.02813 *** 

3 - 1 -1.01375 -1.23881 -0.78870 *** 

3 - 2 -0.64618 -1.02813 -0.26424 *** 

 

speed comparison of inner lane in different visibility levels 

The speed comparison of the inner lane under different visibility levels is shown in the 

Figure 6.30 and Table 6.19. The distribution of means speed under three different 

visibility levels for the inner lane was shown in Figure 6.30. It is hard to see the 

difference of mean speed under different visibility levels but it can be seen from Table 

6.19 that the mean speeds under good visibility level and moderate visibility level are 

both significantly higher than mean speed under low visibility level while the difference 

of mean speed under good visibility level and moderate visibility level is not significant. 

The difference of mean speed between good visibility and low visibility is 0.96 mph and 

the difference between moderate visibility and low visibility is 0.77 mph.  
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Figure 6.30 Distribution of means of speed for inner lane under different visibility 

levels  
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Table 6.12 Comparison of means of speed for inner lane under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

2 - 1 0.18868 -0.14793 0.52528  

2 - 3 0.96323 0.57122 1.35524 *** 

1 - 2 -0.18868 -0.52528 0.14793  

1 - 3 0.77455 0.54413 1.00497 *** 

3 - 2 -0.96323 -1.35524 -0.57122 *** 

3 - 1 -0.77455 -1.00497 -0.54413 *** 

 

In summary, we can conclude that the mean speed will not drop significantly as the 

visibility starts to decrease especially in inner lane and outer lane. The mean speed will 

reduce significantly as the visibility drop to below 300m for all the lanes. 

 

Headway comparison of inner lane in different visibility class 

The headway comparison of the inner lane under different visibility levels is shown in the 

Figure 6.31 and Table 6.20. The distribution of means speed under three different 

visibility levels for the inner lane was shown in Figure 6.31. It can be seen from that there 

is obvious difference of headway under different visibility levels. It also can be seen from 

the Table 6.20 that the mean headway will decrease as the visibility increases. The 
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difference of mean headway between good visibility and low visibility is 4.4734 seconds 

and the difference between good visibility and moderate visibility is 2.4157 seconds.  

 

 

Figure 6.31 Distribution of means of headway for inner lane under different 

visibility levels  
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Table 6.20 Comparison of means of headway for inner lane under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

3 - 2 2.0577 0.0936 4.0218 *** 

3 - 1 4.4734 3.3189 5.6279 *** 

2 - 3 -2.0577 -4.0218 -0.0936 *** 

2 - 1 2.4157 0.7292 4.1022 *** 

1 - 3 -4.4734 -5.6279 -3.3189 *** 

1 - 2 -2.4157 -4.1022 -0.7292 *** 

 

Headway comparison of middle lane in different visibility class 

The headway comparison of the middle lane under different visibility levels is shown in 

the Figure 6.32 and Table 6.21. The distribution of means speed under three different 

visibility levels for the middle lane was shown in Figure 6.32. It can be seen that the 

mean headway increases as the visibility drops and it can be seen from Table 6.21 that the 

mean headway under good visibility level are significantly higher than both mean 

headways under low visibility level and moderate visibility level while the difference of 

mean headway under low visibility level and moderate visibility level is not significant. 

The difference of mean headway between good visibility and low visibility is 2.48 

seconds and the difference between good visibility and moderate visibility is 2.12 

seconds.  
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Figure 6.32 Distribution of means of headway for middle lane under different 

visibility levels  

 

Table 6.13 Comparison of means of headway for middle lane under different 

visibility levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

3 - 2 0.3600 -0.7359 1.4558  

3 - 1 2.4892 1.8435 3.1349 *** 

2 - 3 -0.3600 -1.4558 0.7359  

2 - 1 2.1292 1.1885 3.0700 *** 

1 - 3 -2.4892 -3.1349 -1.8435 *** 

1 - 2 -2.1292 -3.0700 -1.1885 *** 
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Headway comparison of Outer lane in different visibility class 

The headway comparison of the inner lane under different visibility levels is shown in the 

Figure 6.33 and Table 6.22. The distribution of mean headway under three different 

visibility levels for the inner lane was shown in Figure 6.33. The results are very similar 

to the results related to middle lane. The  mean headway increases as the visibility drops 

and it can be seen from Table 6.22 that the mean headway under good visibility level are 

significantly higher than both mean headways under low visibility level and moderate 

visibility level while the difference of mean headway under low visibility level and 

moderate visibility level is not significant. The difference of mean headway between 

good visibility and low visibility is 4.70 seconds and the difference between good 

visibility and moderate visibility is 3.17 seconds, which are both larger than those of 

middle lane. 

 

Figure 6.33 Distribution of means of headway for outer lane under different 

visibility levels  
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Table 6.14 Comparison of means of headway for outer lane under different visibility 

levels  

 

Comparison of 

different 

visibility levels 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 

3 - 2 1.5334 -0.5493 3.6161  

3 - 1 4.7072 3.4726 5.9419 *** 

2 - 3 -1.5334 -3.6161 0.5493  

2 - 1 3.1738 1.3929 4.9548 *** 

1 - 3 -4.7072 -5.9419 -3.4726 *** 

1 - 2 -3.1738 -4.9548 -1.3929 *** 

 

6.4 Chapter Summary 

This chapter mainly analyzed the effect of reduced visibility on traffic flow 

characteristics. The mean headway and headway variation are significantly higher while 

the mean speed and volume are significantly lower in fog case. The impact of reduced 

visibility on passenger cars is more significant compared to trucks. In comparison, there 

isn’t significant difference in the standard deviation of speed for trucks. The difference of 

mean speed, headway and standard deviation of headway between fog cases and clear 

cases for passenger cars are all larger than trucks. 

 

The differences of means of headway are all significant under different visibility levels. 

The mean of headway will increase when the visibility drops. The mean speed will 
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decrease when the visibility drops. The mean of standard deviation of headway will 

increase when the visibility drops. 

 

The distribution of traffic flow characteristics is very similar in both directions and the 

effect of reduced visibility on both directions is also similar. The effects of reduced 

visibility on different lanes are different.  
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7. ANALYSIS OF THE DISTRIBUTION AND FACTORS OF FOG 

DURATION 

Fog duration time is the period starting from the time a fog appears to the time it 

disappears. The main objective of this section is to explore the distribution of the fog 

duration time and its influencing factors. 

7.1 Data Collection and Preparation 

The data were obtained from the project of sensor-based fog prediction and monitoring 

system and the website (http://fdot.weatheractive.net:81/login.aspx). The original data 

contains several important weather variables including visibility, air_temp, board_temp, 

humidity, barometric_pressure, wind_speed, solar_radiation, dew_point and 

subsurface_moisture. It is known that fog may have an effect on traffic flow. Therefore, 

weather variables were considered as the potential influencing factors on the fog duration 

in this study. 

 

We need to obtain the duration times of fog events and the corresponding values of 

weather variables. Whether fog appears was determined by the visibility variable 

aggregated by 5-mintues interval. After excluding the days with significant wind, rain 

and snow, we define that fog appears when the visibility is less than 2000 meters, and 

there is no fog if the visibility is equal or better than 2000 meters. A fog event is that a 

fog appears (the visibility<2000) and lasts to disappears (the visibility≥2000). Duration 

time of a fog event is the period starting from the time it appears to the time it disappears. 

It is a sum of several successive 5-mintues time intervals. The average value of each 

weather variable in the fog duration time is the corresponding value of the potential factor 
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of the sample. For example, the fog event is a valid sample and its duration time is 1.5 

hours if a fog event starts at 6:00 AM and lasts to end at 7:30 AM. The average values of 

weather variables from 6:00 AM to 7:30 AM are the corresponding values of the variables 

in this sample. 

7.2 Duration Model 

Hazard-based duration models have been used in the biometrics and industrial 

engineering fields as a means of determining causality in duration data and they have 

recently been applied in the transportation field. In the transportation field, duration 

models have been used in accident analysis (Nam and Mannering, 2000; Chung, 2010), 

travel activity behavior (Bhat, 1996, 2004; Lee and Timmermans, 2007; Berg et al., 

2012), automobile ownership (Yamamoto et al., 2004; Chen and Niemeier, 2005; Chang 

and Yeh, 2007) and vehicle delay ( Paselk and Mannering, 1994; Guo et al., 2012; Yang 

et al., 2012). 

 

The variable of interest in duration model is the survival time that elapsed from the 

beginning of an event until its end. In our study, fog duration time can be regarded as the 

fog duration that starts when a fog appears and ends when it disappears. Therefore, a 

duration model is very appropriate to be used to study fog duration event. 

Let T denote fog duration time. Then, the survival function is denoted by
 S t

. It is also 

called endurance probability or survivor probability in duration literature. It represents 

the probability that the duration time does not elapse before time t .  

( ) Pr( )S t T t                                                                                                        (7.1) 

  The failure probability, which is known as the cumulative distribution of T , is then 

http://www.sciencedirect.com/science/article/pii/S0965856498000652#bib1#bib1
http://www.sciencedirect.com/science/article/pii/S0965856498000652#bib21#bib21
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( ) Pr( ) 1 ( )F t T t S t                                                                                         (7.2) 

The fog duration time T has a probability density function defined as the limit of the 

probability of failure in a small interval per unit time. It can be expressed as 

 
0

( )
( ) lim

t

P t T t tF t
f t

t t 

  
 

                                                                      (7.3) 

The density function is also known as the unconditional failure rate. 

The hazard function ( )h t  of duration time T  gives the conditional failure rate. In this 

study, The hazard function is the instantaneous rate at which the fog duration will end in 

an infinitesimally small time period, t , after time t , given that the duration time has 

lasted to time t  seconds: 

 

 0

Pr( ) ln ( )
( ) lim

t

t T t t T t f t d  S t
h t

t S t dt 

    
  


                                        (7.4) 

 

The shape of the hazard function has important implications for the modeling approach. 

Depending on the underlying event and the duration process, the hazard function may 

take different shapes. Note that fog duration times may be influenced by various factors. 

The influential factors can be defined as a vector of explanatory variables, 

 1 2 p, , ,x x x


 x
. To accommodate the effects of these influential factors, the most 

commonly used approach to model duration data is the proportional hazard model (Bhat, 

1996). The proportional hazard models for duration data usually assume that the 

explanatory variables take a constant proportional effect on an unspecified baseline 

hazard function. Although this assumption may relieve the estimation efforts of the model, 

it may not be applicable when the constant proportional assumption is violated. An 
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alternative approach is the accelerated hazard model, which is mainly used in reliability 

theory and industrial experiments. In our study, a parametric hazard approach is adopted 

because its hazard function can be chosen flexibly. 

 

In the accelerated hazard model, the natural logarithm of the duration time, log t, is 

expressed as a linear function of the covariates, yielding the linear model 

log j j jt  X β
                                                                                                      (7.5) 

where xj is a vector of covariates, β is a vector of regression coefficients, and εj is the 

error with density f(ε). The distributional form of the error term determines the regression 

model. If we let f(ε) be the logistic density, the log-logistic regression is obtained. If we 

let f(ε) be the standard normal density, the lognormal regression is obtained. Setting f(ε) 

equal to the extreme-value density yields the exponential and the Weibull regression 

models. Several parametric distributions for the accelerated hazards can be assumed 

including Exponential, Weibull, lognormal and Log-logistic. Parametric hazard models 

can be estimated by maximum likelihood method. These common distributions and the 

detailed estimation methods can be found in Lee and Wang (2003). 

 

The AIC (Akaike Information Criterion) and the BIC (Baysian Information Criterion) 

procedure approaches can be applied to select the best parametric model. The AIC and 

BIC are two popular measures for comparing maximum likelihood models. AIC and BIC 

are defined as 

 AIC = -2*ln(L) + 2*k                                                                                            (7.6) 

 BIC = -2*ln(L) + ln(N)*k                                                                                      (7.7) 
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where, k = number of parameters estimated, N = number of observations, L = the 

maximized value of the likelihood function for the estimated model. Given two models fit 

on the same data, the model with the smaller value of the information criterion is 

considered to be better. 

7.3 Results and Discussions 

Descriptive statistics 

A total of 65 valid samples were obtained from four months of weather data from January 

1 to April 30, 2014. Sometimes there are several fog duration (i.e. low visibility) events 

in one day. Meanwhile, sometimes there is not one low-visibility event in several 

successive days. The average duration time of all samples was 0.816 hour, with a 

standard deviation of 1.492 hours. The median duration time was 0.333 hour (i.e. 20 

minutes). It means that half of all low-visibility events last 20 minutes or less. The 

maximum low-visibility duration was 8.25 hours while the minimum was 5 minutes. 

Figure 7.1(a) presents the sample distribution of fog duration times with 0.5 hour in each 

interval. Figure 7.1(b) shows the cumulative distribution of fog duration times. From 

these two Figures, it is shown that 67.7% of all samples last no more than 0.5 hour. 84.6% 

of all samples last no more than one hour. 
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a. Histogram of fog duration time 

 

 

Figure 7.1 Cumulative distribution Table of fog duration time 

 

Estimated results without covariates 

  Considering the fog duration times of the 65 fog events，we obtain the MLE 

(Maximum Likelihood Estimation) of the parameters and the log-likelihoods for the 
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exponential, Weibull, lognormal, and log-logistic distributions using STATA. The results 

are shown in Table 7.1. For example, the MLE of λ in the exponential distribution is 

exp(0.203) and the corresponding log-likelihood is -119.401, and the MLE of the two 

parameters in the Weibull distribution are λ=exp(0.413*0.764) and γ=0.764 and the 

corresponding log-likelihood is -113.654. 

 

Table 7.1 Goodness-of-fit tests of models without the covariates for fog duration 

data  

Model 

Estimated Parameters 

LLc BIC AIC 

Aa Bb 

Exponential -0.203 None
d -119.401 242.976 240.801 

Weibull -0.413 0.764 -113.654 235.657 231.308 

Lognormal -1.104 1.189 -103.509 215.366 211.017 

Log-logistic -1.602 0.679 -104.040 216.430 212.081 

aA=-lnλ for the exponential and log-logistic, =-(1//γ)lnλ for the Weibull, =μ for the lognormal distribution. 

bB=γ for the Weibull and log-logistic, =σ for the lognormal distribution. 

cLL, Log-likelihood. 

d
None, this parameter does not exist in the exponential model. 

The values of the BIC and AIC for the various distributions considered in fog duration 

data are listed in the last two columns in Table 7.1. Based on Table 7.1, the lognormal 

distribution would be selected by either the BIC or AIC procedure. 

 

The lognormal distribution model gives the best description of fog duration without 

covariates (see Figure 7.2). Based on the lognormal distribution model, density function 
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and cumulative distribution function of fog duration using our sample data can be written 

as 

2 2

2

1 1 1
( ) exp{ [log( ) ] } exp{ 0.354[log( ) 1.040] }

22 1.189 2
f t t t

t t


  


    

 

 (7.8) 

log( )
( ) { } {0.841log( ) 0.875}

t
F t t






   .                                                       (7.9) 

 

 

Figure 7.2 Cumulative distribution of fog duration time without covariates 

 

Estimated results with covariates 

（1）Correlation analysis of potential variables 

 Before a statistical calculation is done, the data have to be examined carefully. If some of 

the variables are significantly correlated, one of the correlated variables is likely to be a 

predictor as good as all of them. Correlation coefficients between variables can be 

computed to detect significantly correlated variables. 
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 The correlation analysis is presented in Table 7.2. The correlation is high between 

“air_temp”, “dew_point”, and “board_temp”. There is positive correlation between each 

other for these three variables. As some of the variables are significantly correlated, only 

one of the correlated variables was selected to the fog duration model. Finally, seven 

variables were selected to study the fog duration, which are listed in the first column in 

Table 7.3. 

Table 7.2 Correlations between potential influential variables 

Variable 2 3 4 5 6 7 8 9 Mean 

1.visibility 0.01 0.27 0.08 -0.05 -0.34 0.14 -0.08 -0.02 767.40 

2.air_temp  -0.16 -0.52 0.56 0.04 0.83 0.95 0.14 59.56 

3.humidity   0.21 -0.40 -0.54 0.42 -0.34 0.19 93.84 

4. barometric_pressure     -0.28 -0.27 -0.37 -0.56 0.07 30.00 

5. wind_speed     -0.11 0.28 0.55 0.31 2.99 

6.solar_radiation      -0.22 0.28 -0.30 102.34 

7.dew_point       0.69 0.24 57.34 

8.board_temp        0.07 65.30 

9.subsurface_moisture         0.30 

 

（2）Parameter estimated results 

To identify important influenced factors using a parametric approach, one needs to select 

the most appropriate parametric model and identify the most significant subset of 

covariates. In this study, hazard-based duration model was used to identify influenced 

factors of fog duration. Four parametric distribution models were fitted to the data for 65 

fog duration events to determine the variables related to fog duration time. The possible 

influencing variables considered were visibility, air_temp, humidity, barometric_pressure, 

wind_speed, solar_radiation, and subsurface _moisture. 
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We firstly applied the stepwise selection procedure (p<0.10) to select the best subset of 

covariates separately for the exponential, Weibull, lognormal, and Log-logistic models. 

The results of covariates’ selections are presented in Table 7.3. Three covariates 

(wind_speed, solar_radiation and subsurface_moisture) are selected as the most 

significant covariates in the exponential model. The same two covariates (wind_speed 

and solar_radiation) are selected as the most significant covariates in the Weibull and 

lognormal models. Meanwhile, two different covariates (humidity and 

barometric_pressure) are selected as the most significant covariates in the log-logistic 

model. 

 

Then, we applied the information criterion (AIC and BIC) procedures to select the best 

parametric model with covariates. Table 7.3 shows the values of BIC and AIC for 

different parametric models with the selected covariates. Based on these values, the log-

logistic model with two covariates was selected as the final model for the data since its 

AIC or BIC value is the smallest among all the models. However, it is not known if the 

log-logistic model is significantly better than the other models.  
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Table 7.3  Parametric estimated results with the selection of model and covariates 

simultaneously 

Variable Exponential Weibull Lognormal Log-logistic 

visibility −a − − − 

air_temp − − − − 

humidity − − − 0.022 

barometric_pressure − − − 2.737 

wind_speed -0.287 -0.246 -0.183 − 

solar_radiation -0.001 -0.001 -0.001 − 

subsurface_moisture 4.440 − − − 

CONS -0.804 0.386 -0.409 -85.302 

γ(σ) None
b
 0.857 1.088 0.607 

LL -106.746 -107.018 -97.736 -97.507 

BIC 230.189 230.734 212.170 211.712 

AIC 221.491 222.036 203.472 203.014 

a −, the variable is insignificant (p>0.10). 

bNone, this parameter does not exist in this model 

 

（3）Analysis of the covariates’ effects 

The results of parametric estimation are presented in Table 7.3. Five variables- humidity, 

barometric_pressure, wind_speed, solar_radiation and subsurface_moisture -were 

selected for use in the models, all related significantly (p<0.10) to fog duration time. The 

positive sign of the regression coefficient indicates that the increase of this variable has a 

positive effect on fog disappearance. It also means that the fog duration time decreases 

with the increase of the variable. Therefore, the increase of “wind_speed” or 
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“solar_radiation” would decrease the fog duration time. On the contrary, the negative 

sign of the regression coefficient indicates that the increase of this variable has a negative 

effect on fog disappearance and a longer time of fog duration. Therefore, the increase of 

“humidity”, “barometric_pressure” or “subsurface_moisture” would increase the fog 

duration time.  

 

（4）the goodness of the fitted models 

 

 

Figure 7.3  Cumulative distribution of fog duration time with covariates 

 

Once a specified parametric model and a subset of covariates are selected, the goodness 

of fit of this model should be assessed. Figure 7.3 gives the comparisons of the 

cumulative distributions of the sample and four parametric models. We can see that the 

Log-logistic distribution model gives the best description of fog duration with the 
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significant covariates. It is noted that the sample cumulative probability indicates the 

specific condition for individual sample, while the estimated results of parametric models 

indicate the average condition that is related with different influential factors and all 

samples. 

 

In addition, the graphical method of Cox-Snell residual procedure with covariates can be 

used to assess the goodness of fit of the parametric regression model. The graph should 

be closed to a straight line with unit slope and zero intercept if the fitted model for the 

duration time T is correct. Figure 7.4 shows the Cox-Snell residuals plots from fitting the 

exponential, Weibull, lognormal, and log-logistic models, respectively with the 

significant covariates to the fog duration data. The four graphs look similar, and all are 

close to a straight line with unit slope and zero intercept. No significant differences are 

observed in these graphs. The results obtained are similar to those from Figure 7.3. The 

differences among the four distributions are small. The log-logistic distribution is slightly 

better than the others when the values of the Cox-Snell residuals are less than two (it 

represents 86.15% of all samples). 
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Figure 7.4 Cox-Snell residuals plots from the fitted the exponential, Weibull, 

lognormal, and log-logistic models on fog duration data 

 

7.4 Chapter Summary 

In summary, we used hazard-based duration model to investigate fog duration time and 

its influencing factors. The following several conclusions were made: 

(1) In our samples, half of all low-visibility events last 20 minutes or less. 67.7% of 

all samples last no more than 30 minutes. 84.6% of all samples last no more than 

60 minutes. 

(2) Hazard-based duration model is appropriate to model fog duration time and its 
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influenced factors. The lognormal distribution model gives the best description of 

fog duration without covariates. The log-logistic model gives the best description 

of fog duration with covariates. 

(3) The increase of “humidity”, “barometric_pressure” and “subsurface_moisture” 

would increase the fog duration time. Meanwhile, the increase of “wind_speed” 

and “solar_radiation” would decrease the fog duration time. 

  



 

130 

8. EVALUATION OF THE PERFORMANCE OF THE FOG 

DETECTION ALGORITHM 

As has been introduced in chapter 3, the PraxSoft developed the fog prediction algorithm 

based on the weather datasets they collected which includes measurements of temperature 

and relative humidity from the Fog Measurement Station (FMS) at different elevations 

above the ground, along with soil moisture, wind speed and rainfall measurements. These 

measurements provided an objective micro-level assessment of the current state of the 

thermodynamic profile near the ground surface along with soil conditions to determine if 

a visibility constraint (fog) exists or is likely forming.    

 

In addition to micro-level sensor data and traditional site location metadata parameters, 

for this project we also store a land cover/land use classification code that best describes 

the nature of the land cover at and around the weather observation and FMS sites.  The 

United States Geological Survey (USGS) NLCD 1992 2-digit land cover classification 

codes is being used.  A means has been developed to enter these metadata values.  Each 

USGS NLCD code will also have an assigned “Land Impact” value that is utilized in the 

Fog Index calculation. 

 

In this section, our research team at UCF conducted an evaluation of the performance of 

the fog prediction algorithm developed by Praxsoft. 

8.1 Evaluation of the Performance of the Initial Fog Detection Algorithm 

The performance of the initial fog detection algorithm completed around April 11 was 

first evaluated in general by using the Table 8.1 for classification.  The major purpose of 
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this evaluation is to figure out whether the fog detection algorithm can be used to predict 

the reduced visibility by showing high or moderate fog index.  

 

The following four measures were used as performance criteria to evaluate the relative 

performances of the fog detection algorithm (Miranda-Moreno, 2006): 

False Discovery Rate (FDR): the ratio of false positives (Type I errors) among all 

detected fog events by a model. Smaller values are better.  

FDR=
D

V
                                                                                                            (8.1) 

False Negative Rate (FNR): the ratio of false negatives (Type II errors) among all 

detected non-fog events by a model. Smaller values are better. 

FNR=
X

R
                                                                                                            (8.2) 

Sensitivity (SENS): the ratio of correctly detected fog events. Larger values are better. 

SENS=
1n

S
                                                                                                           (8.3) 

Specificity (SPEC): the ratio of correctly detected non-fog events. Larger values are 

better. 

SPEC=
0n

U
                                                                                                            (8.4) 

n0:  number of “true” good visibility 

n1: number of “true” reduced visibility 
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Table 8.1  Possible Outcomes of Classification 

 Number of 

observation 

“detected” as high 

fog index 

Number of 

observation 

“detected” as 

moderate fog index 

Number of 

observation 

“detected” as low 

fog index 

Number of reduced 

visibility 

U  V 

Number of good 

visibility 

R  S 

 X  D 

U:  number of observations of reduced visibility correctly identified as high fog index 

V:  number of Type I errors 

R:  number of Type II errors 

S:  number of observations of good visibility correctly identified as low fog index 

D:  number of observations of visibility identified as low fog index 

X: number of observations of visibility identified as high fog index 

 

Table 8.2 Results of all the observations 

 Number of 

observation 

“detected” as high 

fog index 

Number of 

observation 

“detected” as 

moderate fog index 

Number of 

observation 

“detected” as low 

fog index 

Number of reduced 

visibility(<2000) 

425 6 6 

Number of good 

visibility(>=2000) 

6997 3182 1544 

 12160  1550 

 

The performance of the algorithm was first evaluated in general by using the above tables 

of classification and criteria.  The total number of observations is 12160. It can be seen 

from Table 8.2 that the number of Type II error that the observation of good visibility 

was detected as high fog index in the prediction algorithm was 6997. In addition, the 

observation of good visibility was detected as moderate fog index was also 3182. The 

number of Type I error that the reduced visibility was detected as low fog index was 6. 

The result of four performance criteria measurements was shown in Table 8.3. It then can 
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be concluded from the results that this algorithm can be used to detect the fog days but it 

is very easy to make a false alarm when the day is actually clear.  

 

Table 8.3 Results of four performance criteria measurements  

Criteria Value 

FDR (smaller is better) 0. 4% 

FNR (smaller is better) 57.5% 

SENS (larger is better) 13.2% 

SPEC (larger is better) 97.2% 

 

 

Next, In order to further validate the predictions of the fog index in the cases with 

reduced visibility, the visibility in the days with reduced visibility are matched by the 

prediction of the fog index in the same days. Fourteen cases with reduced visibility were 

studied. The starting date and time and ending date and time for the 14 cases are 

summarized in Table 8.4.  

Table 8.4 The starting date and time and ending date and time for the 14 fog cases 

Case Limits 

Fog Index (High) Reduced Visibility 

Date Time Date Time 

1 

Starting 01/28/2014 20:30:48 02/01/2014 0:08:44 

Ending 02/01/2014 15:03:54 02/01/2014 08:39:15 

2 

Starting 02/01/2014 16:15:28 02/02/2014 01:38:44 

Ending 02/02/2014 10:38:36 02/02/2014 09:23:42 

3 

Starting 02/02/2014 22:13:43 02/03/2014 08:15:40 

Ending 02/03/2014 10:17:52 02/03/2014 08:49:20 

4 

Starting 02/03/2014 19:18:26 02/04/2014 01:03:58 

Ending 02/04/2014 09:49:16 02/04/2014 09:02:02 

5 

Starting 02/06/2014 19:17:29 02/08/2014 22:06:16 

Ending 02/09/2014 09:50:36 02/08/2014 23:54:21 

6 Starting 02/06/2014 19:17:29 02/09/2014 0:54:56 
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Ending 02/09/2014 09:50:36 02/09/2014 01:35:20 

7 

Starting 02/11/2014 21:01:19 02/12/2014 03:21:30 

Ending 02/13/2014 04:01:13 02/12/2014 20:27:59 

8 

Starting 02/19/2014 19:15:05 02/20/2014 05:14:08 

Ending 02/20/2014 08:36:08 02/20/2014 06:08:00 

9 

Starting 02/21/2014 19:29:13 02/22/2014 02:45:28 

Ending 02/22/2014 20:24:49 02/22/2014 18:46:20 

10 

Starting 02/25/2014 20:41:15 02/26/2014 04:58:59 

Ending 02/27/2014 16:30:00 02/26/2014 16:41:05 

11 

Starting 03/03/2014 20:45:02 03/04/2014 05:54:31 

Ending 03/04/2014 10:48:00 03/04/2014 07:50:05 

12 

Starting 03/04/2014 19:46:19 03/05/2014 06:21:28 

Ending 03/05/2014 10:54:56 03/05/2014 09:16:43 

13 

Starting 03/08/2014 19:14:15 03/09/2014 0:31:55 

Ending 03/09/2014 09:29:10 03/09/2014 4:52:00 

14 

Starting 03/10/2014 09:43:11 03/11/2014 09:32:24 

Ending 03/11/2014 11:58:25 03/11/2014 09:59:20 

 

From the summary of starting date and time and ending date and time for the 14 cases are 

in Table 8.4, we can conclude that when there is a reduced visibility the fog index is 

showing high fog in 100% of the cases. However, the problem is that the fog index starts 

to predict high fog before the visibility drops by a period of time in the range of 5 hours 

to 3 days and it keep showing high fog after the visibility is normal by a period of time in 

the range of 45 minutes to 23 hours, which means a lot of time was falsely detected as fog 

period. 
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8.2 Evaluation of the Performance of the Modified Fog Detection Algorithm  

The fog detection algorithm was modified recently by PraxSoft after we identified the 

above problem. Therefore, the performance of the modified algorithm was evaluated 

again by using the same method and criteria.  The total number of observations is 10493 

which include the analysis period from 1/2/2014 to 04/01/2014 in the new dataset. It can 

be seen from Table 8.5 that the number of Type II error that the observation of good 

visibility was detected as high or moderate fog index in the prediction algorithm was 

2058 and 2778 separately. The number of the reduced visibility detected as low fog index 

or none fog index was only 12 in total.  The result of four performance criteria 

measurements was shown in Table 8.6. It then can be concluded from the results that this 

updated algorithm is still efficient to detect the fog days but it is still easy to make a false 

alarm when the day is actually clear.  The total number of the observations of good 

visibility detected as high or moderate fog index was 4836 which consists 46.1% of all 

the observations. Overall, it can be seen from the Table 8.6 that the performance of the 

updated algorithm was much better compared to the original one. 

 

Table 8.5  Results of observations of the updated Algorithm 

 Number of 

observation 

“detected” as 

high fog index 

Number of 

observation 

“detected” as 

moderate fog 

index 

Number of 

observation 

“detected” as 

low fog index 

Number of 

observation 

“detected” as 

none fog index 

Number of 

reduced 

visibility(<2000) 

132 177 3 9 

Number of good 

visibility(>=2000) 

2058 2778 2546 2790 

 2190 2955 2549 2799 
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Table8.6  comparison of four performance criteria measurements for two algorithm 

Criteria Original algorithm Modified algorithm 

FDR (smaller is better) 0. 4% 0. 32% 

FNR (smaller is better) 57.5% 19.6% 

SENS (larger is better) 13.2% 52.4% 

SPEC (larger is better) 97.2% 96.2% 

 

Next, in order to further validate the predictions of the fog index in the cases with 

reduced visibility, the visibility in the days with reduced visibility are matched by the 

prediction of the fog index in the same days. Fifteen cases with reduced visibility were 

studied. The starting date and time and ending date and time for the 15 cases are 

summarized in Table 8.7.  

 

Table 8.7  The starting date and time and ending date and time for the 15 fog cases 

Case Limits 

Fog Index (High or 

moderate) 

Reduced Visibility 

Date Time Date Time 

1 

Starting 01/28/2014 20:30:48 02/01/2014 0:08:44 

Ending 02/01/2014 12:40:48 02/01/2014 08:39:15 

2 

Starting 02/01/2014 17:21:00 02/02/2014 01:38:44 

Ending 02/02/2014 10:58:36 02/02/2014 09:23:42 

3 

Starting 02/02/2014 22:13:43 02/03/2014 08:15:40 

Ending 02/03/2014 9:30:14 02/03/2014 08:49:20 

4 

Starting 02/03/2014 19:28:22 02/04/2014 01:03:58 

Ending 02/04/2014 09:31:25 02/04/2014 09:02:02 

5 

Starting 02/06/2014 19:29:21 02/08/2014 22:06:16 

Ending 02/09/2014 08:45:19 02/08/2014 23:54:21 

6 

Starting 02/06/2014 19:19:21 02/09/2014 0:54:56 

Ending 02/09/2014 08:45:19 02/09/2014 01:35:20 
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7 

Starting 02/11/2014 21:01:19 02/12/2014 03:21:30 

Ending 02/12/2014 09:40:38 02/12/2014 09:18:55 

8 

Starting 02/19/2014 19:21:02 02/20/2014 05:14:08 

Ending 02/20/2014 08:00:29 02/20/2014 06:08:00 

9 

Starting 02/21/2014 21:40:12 02/22/2014 02:45:28 

Ending 02/22/2014 20:24:49 02/22/2014 18:46:20 

10 

Starting 02/25/2014 22:45:52 02/26/2014 04:58:59 

Ending 02/26/2014 09:08:42 02/26/2014 08:00:47 

11 

Starting 03/03/2014 22:43:53 03/04/2014 05:54:31 

Ending 03/04/2014 09:13:12 03/04/2014 07:50:05 

12 

Starting 03/04/2014 20:33:54 03/05/2014 06:21:28 

Ending 03/05/2014 10:07:19 03/05/2014 09:16:43 

13 

Starting 03/08/2014 19:26:42 03/09/2014 0:31:55 

Ending 03/09/2014 08:53:32 03/09/2014 4:52:00 

14 

Starting 03/10/2014 23:25:12 03/11/2014 09:32:24 

Ending 03/11/2014 09:52:28 03/11/2014 09:59:20 

15 Starting 03/18/2014 20:19:12 03/19/2014 03:57:24 

1  Ending 03/19/2014 09:03:28 03/19/2014 07:49:20 

 

From the summary of starting date and time and ending date and time for the 15 cases are 

in Table 8.7, we can conclude that when there was a reduced visibility the fog index 

showed high fog or at least moderate index in 100% of the cases before the fog began. In 

most cases, the fog index starts to predict high or moderate fog before the visibility drops 

by a period of several hours and it keeps showing high or moderate fog index for several 

hours after the visibility is back to normal. There are only three cases that the fog index 

starts to predict high or moderate fog before the visibility drops by a period of three days, 

which is not so accurate for the prediction.  Overall, it also can be seen from the analysis 
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of these detailed fog cases that the performance of modified algorithm is much better 

compared to the original one, but still need much adjustment and validation. 

8.3 Chapter Summary 

The chapter mainly evaluated the performance of the fog detection algorithm developed 

by PraxSoft. Four measures: False Discovery Rate, False Negative Rate, Sensitivity and 

Specificity were used as performance criteria to evaluate the relative performances of the 

fog detection algorithm. A comparison of original and modified fog detection algorithm 

was presented in the chapter and it can be seen that the performance of modified 

algorithm is much better compared to the original one. The modified algorithm is 

efficient to detect the fog days but the percentage of making a false alarm when the day is 

actually clear is still a little bit high.   
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9. FURTHER EXPLORATION OF THE RELATIONSHIP BETWEEN 

TRAFFIC PARAMETERS AND REDUCED VISIBILITY 
 

The matched case control logistic regression models were used in this section to further 

explore the relationship between reduced visibility and traffic flow characteristics. The 

results may help in monitoring the reduced visibility in real time and reducing the 

negative effects of reduced visibility accordingly by sending warning messages to the 

motorists. The main objective of this study is to quantify the relationship between traffic 

flow characteristics and visibility and therefore we may be able to determine the change 

of visibility levels only by using traffic flow parameters. The advantage of using this 

conditional logistic regression models is to better explore the relationship between traffic 

flow variables and visibility while controlling the effect of other confounding variables 

such as location, time and the geometric design elements of highway sections (i.e., 

horizontal and vertical alignments). 

9.1 Data Preparation of Polk County 

Similar to the datasets used for the aforementioned analysis of impact of reduced 

visibility on traffic flow characteristics, the combined dataset was composed of two 

components which include the traffic data and weather data for the whole Polk County. 

9.1.1 Weather Data 

There are two airports in Polk County. One is Bartow Municipal airport and the other is 

Lakeland Linder Regional airport. The location of two airports was identified and we 

draw two buffer circles based on the center of these two airports. The weather condition 

in one circle was considered as the same and the weather information was obtained from 

the weather reports for these two airports. The radius of the circle is 5 miles. Figure 9.1 
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shows the location of these two airports and Figures 9.2 and 9.3 show the sample of 

weather data in these two airports. There are twenty variables in total for the weather 

report which includes visibility, wind speed and some other important weather related 

variables. 
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Figure 9.1 Location of two airports in Polk County 

 

 

 

 

 

 

Figure 9.2 Weather data at Bartow Airport 
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Figure 9.3 Weather data at Lakeland Airport 

 

9.1.2 Traffic Data 

Traffic flow data used in this study were collected from the RITIS system which is shown 

in Figure 9.4.  There are over 10000 loop detectors for the whole Florida State and we 

collected traffic data information from the 60 detectors which are located in Polk County 

and also within those circles of two airports close to the Polk County. In this way the 

extracted traffic data can be merged with weather data mentioned above to create the 

combined dataset. There are fifteen detectors of them within the buffer circle of Barton 

airport and forty-five detectors of them within the circle of Lakeland airport. 
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Figure 9.4 Data of All detectors in RITIS 

 

 

 

Figure 9.5 (a) 45 detectors within five miles of Lakeland airport in Polk County 
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(b) 15 detectors within five miles of Bartow airport in Polk County 

 

Figure 9.6 60 detectors within five miles of two airports in Polk County 
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Figure 9.7 shows the original raw traffic dataset which contains the following traffic flow 

variables: every 1 minute for each lane in each direction: 1) average speed 2) volume and 

3) lane occupancy (percentage of time interval, 1 minute, the loop detector 

was occupied). 

 

Figure 9.7 Sample of traffic data for the Polk County 

 

Finally, a merged dataset consisting of both traffic data and visibility data was created to 

be applied into matched case control logistic regression models. Since the one minute raw 

traffic data was noticed to have random noise and are difficult to work with in a modeling 

framework (Abdel-Aty et al. 2008),  therefore, the raw data were aggregate into 5-
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minutes levels to obtain averages and standard deviations for speed, volume, and 

occupancy. 

9.2 Methodology  

As already mentioned at the beginning of this chapter, the matched case control logistic 

regression model was applied in this study to further explore the relationship between 

visibility and traffic flow characteristics. In this study, observations with reduced 

visibility are selected first. Then, for each selected observation, some non-traffic flow 

variables associated with each fog are selected as matching factors. In this study the 

variables used to match cases and controls are: location, day of the week and time of 

reduced visibility. Using these matching factors, a total of non-fog cases are then selected 

randomly from each subpopulation of non-fog cases.  

 

Matched case-control logistic regression has been adopted in epidemiological studies. In 

addition, it was used in few transportation related studies such as Abdel-Aty et al. (2004). 

The detailed description of the modeling can be seen in Abdel-Aty et al. (2004).  The data 

of all corresponding reduced visibility were extracted from the combined dataset and a 

total of three times of observations with good visibility were randomly selected from the 

combined dataset. The final created datasets were then applied with matched case logistic 

regression models. In this study, SAS package (procedure PHREG) was used to fit the 

proposed stratified conditional logistic regression model, widely known as matched case-

control analysis in epidemiological studies (the reader is referred to SAS Institute Inc, 

2008). 
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9.3 Modeling Results 

The following five traffic flow variables: mean speed and headway, variance of speed 

and headway and average occupancy in five minutes were used as input in the model. It is 

noted that the headway data was calculated based on the volume in one minute. The 

visibility was divided into two levels: the visibility level was considered as 0 for the good 

visibility (>=1Statue Mile(SM)) and the visibility level was classified as 1 for the reduced 

visibility(<1(SM)). The modeling result was show in the Table 9.1. 

 

Table 9.1:  Modeling results for two visibility levels 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-Square Pr > ChiSq Hazard 

Ratio 

speed 1 -0.03708 0.00993 13.9293 0.0002 0.964 

Speed 

standard 

deviation 

1 0.01618 0.00533 9.2011 0.0024 1.016 

headway 1 0.02940 0.00486 36.6278 <.0001 1.030 

Headway 

standard 

deviation 

1 0.22346 0.06713 11.0810 0.0009 1.250 

Average 

Occupanc

y 

1 0.00716 0.00357 4.0209 0.0449 1.007 

 

The results indicated that higher mean of headway, variance of speed and headway and 

higher occupancy were related to the increase of the likelihood of a reduced visibility 

while lower mean speed was related to the increase of the likelihood of a reduced 

visibility. 
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After that, the visibility was further divided into three levels to further investigate the 

relationship between traffic flow characteristics and visibility. The visibility level was 

considered as 0 for the good visibility (>=1(SM)) and the visibility level was classified as 

1 for the moderate visibility (0.25(SM)<=visibility<1 (SM) ) and the visibility level was 

classified as 2 for the low visibility (visibility<0.25).The modeling result was shown in 

the  Table 9.2: 

Table 9.2  Modeling results for three visibility levels 

Paramete

r 

DF Parameter 

Estimate 

Standard 

Error 

Chi-Square Pr > ChiS

q 

Hazard 

Ratio 

speed 1 -0.03857 0.01075 12.8625 0.0003 0.962 

Speed 

standard 

deviation 

1 0.02152 0.00602 12.7908 0.0003 1.021 

headway 1 0.03039 0.00497 37.4117 <.0001 1.031 

Headway 

standard 

deviation 

1 0.30653 0.07281 17.7224 <.0001 1.359 

Average 

Occupanc

y 

1 0.00594 0.00374 2.5189 0.1125 1.006 

 

Similar results indicated that higher mean of headway, variance of speed and headway 

were related to the increase of the likelihood of a reduced visibility while lower mean 

speed was related to the increase of the likelihood of a reduced visibility. The relationship 

between average occupancy and visibility was not significant in this result. 

9.4 Chapter Summary 

This chapter applied matched case control logistic regression models to the combined 

traffic and weather datasets for the Polk County. The variables used to match cases and 
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controls are: location, day of the week and time of reduced visibility. The results 

indicated that higher mean of headway, variance of speed and headway were related to 

the increase of the likelihood of a reduced visibility while lower mean speed was related 

to the increase of the likelihood of a reduced visibility.  
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10. CONCLUSIONS 

In summary, there are several major conclusions based on the analyses above: 

1. An array of low-cost environmental sensors, arranged at varying levels above the 

ground surface, could effectively detect the onset of fog and meet or exceed existing 

performance of traditional and much more expensive technologies.  A combination of 

sensors and software algorithms were developed to detect and provide the basis to predict 

the onset of fog.   

 

2. Several most important weather parameters were analyzed and it is concluded that fog 

is most likely to form when the values of humidity and subsurface moisture are higher. It 

is also more likely to form fog when the wind speed is lower and the air temperature is 

more close to the dew point.  

 

3. The mean headway and headway variation are significantly higher while the mean 

speed and volume are significantly lower in fog case compared to clear case based on the 

analysis of one fog case in the morning. There isn’t significant difference in speed 

variation in both cases. 

 

4. It is shown from scatter plot analysis that the relationship between speed and headway 

as well as the relationship between speed and volume is different in fog case compared to 

the pattern in clear case. It is meaningful to conduct more scatter plot analysis in further 

to figure out the relationship of this traffic flow characteristics under fog situations. 
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5. The impact of reduced visibility on passenger cars is more significant compared to 

trucks. The mean headway, variation of headway and speed are significantly higher while 

the mean speed is significantly lower in the fog case compared to the clear case for the 

cars. In comparison, there isn’t significant difference in the mean headway for the trucks 

and there isn’t significant difference in the standard deviation of speed and headway 

lower in the fog case compared to the clear case for the trucks. 

 

6. It also can be concluded that the differences of mean of headway, speed and standard 

deviation of headway and are all significant under different visibility levels. The mean of 

headway will increase when the visibility drops. The mean speed will decrease when the 

visibility drops. The mean of standard deviation of headway will increase when the 

visibility drops. 

 

7. The distribution of traffic flow characteristics is very similar in both directions and the 

effect of reduced visibility on both directions is also similar. The effects of reduced 

visibility on different lanes are different. For the outer lane, the mean speeds under good 

visibility level and moderate visibility level are both significantly higher than mean speed 

under low visibility level. The difference of mean speed under good visibility level and 

moderate visibility level is not significant the mean headway under good visibility level 

are significantly higher than both mean headways under low visibility level and moderate 

visibility level. The difference of mean headway under low visibility level and moderate 

visibility level is not significant. For the middle lane, the mean speeds will increase as the 

visibility increases. The mean headway increases as the visibility drops and the mean 
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headway under good visibility level are significantly higher than both mean headways 

under low visibility level and moderate visibility level. The difference of mean headway 

under low visibility level and moderate visibility level is not significant. For the inner 

lane, the mean speeds under good visibility level and moderate visibility level are both 

significantly higher than mean speed under low visibility level. The difference of mean 

speed under good visibility level and moderate visibility level is not significant. The 

mean headway will decrease as the visibility increases. 

 

8. Hazard-based duration model is appropriate to model fog duration time and its 

influenced factors. The lognormal distribution model gives the best description of fog 

duration without covariates. The log-logistic model gives the best description of fog 

duration with covariates. The increase of “humidity”, “barometric_pressure” and 

“subsurface_moisture” would increase the fog duration time. Meanwhile, the increase of 

“wind_speed” and “solar_radiation” would decrease the fog duration time. 

 

9. As for the evaluation of the fog detection algorithm, the updated algorithm is efficient 

to detect the fog days but it is still likely to make a false alarm when the day is actually 

clear. Overall, the performance of the updated algorithm was much better compared to 

the original one and it can be used to detect almost all the fog cases. 

 

10. The matched case control logistic regression model was used to further explore the 

relationship between traffic flow characteristics and different visibility levels. The results 

indicated that higher mean of headway, variance of speed and headway and higher 
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occupancy were related to the increase of the likelihood of a reduced visibility while 

lower mean speed was related to the increase of the likelihood of a reduced visibility. 

 

The following are some directions for future research: 

It is important to further modify the fog detection algorithm to develop a more accurate 

model to describe the relationship between weather parameters and visibility and to 

predict the fog formation. 

 

In addition, there may be some other statistical methods such as time-series modellings 

can be applied to further explore the relationship between reduced visibility and traffic 

flow characteristics. It is also meaningful to compare the effect of fog with other weather 

types such as rain or smog on traffic flow characteristics. 

 

Moreover, it is important to investigate the effect of reduced visibility on traffic crashes. 

After that, the similar analysis can also be expanded to the whole state to get a more 

comprehensive and generalized results which can be applied to the whole state for 

different kinds of road segments and traffic flow conditions since both weather data and 

traffic data for the whole state were collected by our research team. 
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