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EXECUTIVE SUMMARY 

Traditionally, agencies have concentrated on mitigating recurring congestion by comparing 

demand and capacity during the peak periods and by removing those bottlenecks.  However, 

congestion is often due to other sources, such as crashes, work zones, and adverse weather 

conditions.  Therefore, new approaches and performance measures are needed to mitigate 

congestion considering those non-recurring events.  

Travel time reliability has been proposed as a new concept that allows agencies to 

evaluate the performance of a facility beyond just the peak hour, and to consider operations over 

a longer period of time considering non-recurring events.  Furthermore, the concept of travel 

time reliability has been widely recognized as one of, if not the, most important performance 

measures to evaluate highway traveler perceptions.  Five previous Florida Department of 

Transportation (FDOT) research projects on travel time reliability (FDOT Contracts BD545-48, 

BD545-70, BD545-75, BDK77 977-02, and BDK77 931-04) developed and implemented tools 

for estimating travel time reliability for freeways. These can predict travel time reliability along 

the entire freeway portion of the Strategic Intermodal System (SIS) as a function of various 

changes in the system, such as incident removal times and work zone occurrences, as well as 

selected Intelligent Transportation Systems (ITS) programs and initiatives (such as the Road 

Rangers).  However, there is also a need to use these tools developed for FDOT’s project 

selection process for annual reporting to the Legislature. To accomplish this, the tools should be 

able to provide all performance measures related to travel time reliability that are of interest for 

these purposes. Furthermore, they need to provide travel time reliability measures for the arterial 

portion of the SIS and also consider reliability across all modes, including the auto, rail, transit, 

etc.   

This research project made improvements in the freeway travel time reliability method, 

developed a new arterial travel time reliability method, and proposed a framework for 

considering travel time reliability in a multimodal context.  

Improvements in the freeway travel time reliability method are the following: 

1) The Travel Time Index (TTI) and the Planning Time Index (PTI) were incorporated 

into the method as two additional performance measures for reliability and variability.  
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2) The process for evaluating the impacts of weather on traffic operations was enhanced 

by considering three (instead of two) regions in Florida (represented by zipcodes in 

Tallahassee, Orlando, and Miami), and by analyzing weather data over five years 

(instead of only one year).   

3) Travel time measures based on estimated and observed data were compared, focusing 

on sections with congested conditions.  It was concluded that the estimated travel 

times are higher than the observed ones; however, there are some fundamental 

differences in the methods used to obtain the two sets of values.  One of the most 

important differences is that the estimated values calculate the travel time over the 

entire section, while the observed values are based on spot speed measurements 

extrapolated to the entire section.  Depending on the location of the detector, the 

conditions may or may not be representative of the entire section.  

 

The arterial travel time estimation method was developed based on simulated data (using 

the CORSIM microsimulator).  The following factors were used to develop the travel time 

estimation models: number of signals per mile, free-flow speed, demand, percent of turning 

movements, cycle length, g/C ratio, quality of progression, incident duration, and percent of 

lanes closed during an incident.  These factors were selected because of their potential effect on 

travel time, and also because they are generally available to analysts in Florida.  Two travel time 

estimation models were developed using results from a total of 1200 scenarios: one model for 

non-congested scenarios and one model for congested scenarios.  A spreadsheet similar to that 

previously developed for freeway sections was developed to obtain travel time reliability 

measures along arterials, based on the results of the developed travel time estimation models.  

Lastly, a conceptual framework for conducting multimodal travel time reliability analysis 

was proposed.  For travel using a single mode, travel time and travel time reliability can be 

estimated separately for each mode.  Comparisons can be made across modes as long as the 

travel time definitions are consistent across modes and the travel times are estimated in a 

consistent manner.  For travel time using multiple modes, travel times and travel time reliability 

need to be estimated considering the entire trip including the interconnections between modes.  
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1. INTRODUCTION 

  

1.1. Background 

The goal of the Strategic Intermodal System (SIS) is to provide a transportation system that 

efficiently serves Florida’s citizens, businesses and visitors: a transportation system that helps 

Florida become a worldwide economic leader, enhances economic prosperity and 

competitiveness, enriches quality of life, and reflects responsible environmental stewardship. 

The SIS consists of transportation facilities and services of statewide and interregional 

significance, including both freeways and arterials.  Traditionally, agencies have concentrated on 

mitigating recurring congestion by comparing demand and capacity during the peak periods and 

by removing those bottlenecks.  However, congestion is often due to other sources, such as 

crashes, work zones, and adverse weather conditions.  Therefore, new approaches and 

performance measures are needed to mitigate congestion considering those non-recurring events.  

Travel time reliability has been proposed as a new concept that allows agencies to 

evaluate the performance of a facility beyond just the peak hour and to consider operations over 

a longer period of time considering non-recurring events.  Furthermore, the concept of travel 

time reliability has been widely recognized as one of, if not the, most important performance 

measure to evaluate highway traveler perceptions. However, determining how to measure, 

quantify, predict, and report travel time reliability has proved to be elusive. 

Five previous Florida Department of Transportation (FDOT) research projects on travel 

time reliability (FDOT Contracts BD545-48, BD545-70, BD545-75, BDK77 977-02, and 

BDK77 931-04) developed and implemented tools for estimating travel time reliability for 

freeways. These can predict travel time reliability along the entire freeway portion of the SIS as a 

function of various changes in the system, such as incident removal times, and work zone 

occurrences, as well as selected Intelligent Transportation Systems (ITS) programs and 

initiatives (such as the Road Rangers).  However, there is also a need to use the tools developed 

in FDOT’s project selection process for annual reporting to the Legislature. To accomplish this, 

the tools should be able to provide all performance measures related to travel time reliability that 

are of interest for these purposes. Furthermore, they need to provide travel time reliability 

measures for the arterial portion of the SIS and also consider reliability across all modes, 

including the auto, rail, transit, etc.   
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1.2. Objectives 

The objectives of this research are: a) to identify the performance measures desired to be 

obtained from this tool (for annual reporting to the legislature, for project prioritization, for 

interchange approvals, etc.) and modify the tool accordingly; b) to develop new models and 

expanded methods for obtaining travel time reliability measures in arterials and multimodal 

corridors; and c) to develop a framework for expanding the travel time reliability estimation 

methods to all modes (rail, transit, water, aviation).  

 

1.3. Organization 

This report is organized as follows: Chapter 2 discusses the inclusion of additional performance 

measures to assess reliability, provides an overview of recommended changes to account for 

weather impacts, and presents the results of comparisons between model estimates and field 

travel time data.  Chapter 3 develops travel time estimation models for arterials using simulation 

and develops methods for obtaining travel time reliability measures along arterial sections.  

Chapter 4 develops a framework for expanding the travel time reliability estimation methods to 

all modes (rail, transit, water, aviation).  Chapter 5 provides conclusions and recommendations. 
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2. IMPROVEMENTS IN THE FREEWAY ANALYSIS METHOD 

 

2.1. Performance Measures for Reliability 

Two additional performance measures have been identified as potential measures of reliability: 

the Travel Time Index (TTI) and the Planning Time Index (PTI). The TTI is defined as the 

average travel time during the hour(s) of interest divided by the travel time under low flow 

conditions (i.e., the travel time corresponding to free-flow speed.)  The PTI is defined as the 95% 

average travel time during the hour(s) of interest divided by the travel time under low flow 

conditions (i.e., the travel time corresponding to free-flow speed.)  TTI has been incorporated 

into the database calculations for years 2005 – 2009, while PTI has been added as a performance 

measure in the spreadsheet applications used for initial development.  

 

2.2. Weather Impacts 

Weather impacts were previously considered based on two regions within Florida, and using 

one-year weather data.  This revised procedure considers three regions in Florida (Tallahassee, 

Orlando, Ft. Lauderdale) and five years of data.  The revised method and models are presented 

below, along with an example application.  

The effects of weather are estimated for each freeway section based on the probability of 

occurrence for a particular rainfall category (none or trace, light rain, and heavy rain) for each of 

the 24 hours of analysis.  This probability of occurrence is obtained using a calibrated 

relationship between rainfall intensity and frequency.  Figure 2.1 illustrates conceptually such a 

relationship and the probabilities of occurrence for each of the three rainfall categories. The areas 

of each of the three categories specified in the figure represent the respective probabilities of 

occurrence.  These three probabilities of occurrence are used in the reliability estimation to 

obtain the likelihood of each of the three rainfall categories for each analysis freeway section.  
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Figure 2.1 Relationship between Frequency and Rainfall Intensity 

To obtain the three probabilities, first, a curve such as the one shown in Figure 2.1 is 

developed for each freeway segment.  Three different curve types (or distribution models) were 

developed based on a five-year-period dataset (January, 2006 – December, 2010) for Tallahassee, 

Orlando, and Miami. The weather data were collected through the Weather Underground website 

(http://www.wunderground.com).  Based on the location of the study segment, one of these three 

types is selected to develop the freeway section curve as a function of the average rainfall for 

that particular freeway section.  

The remainder of this section describes the development of the three curve types and 

provides an example application for a freeway section. 

2.2.1. The Three Types of Rainfall Intensity vs. Frequency Curves  

Three distribution models were developed based on a five-year-period dataset (January, 2006 – 

December, 2010) for Tallahassee, Orlando, and Miami. The weather data were collected through 

the Weather Underground website (http://www.wunderground.com).  Figure 2.2 provides the 

frequency of rainfall intensity at these three representative locations.  Based on its shape, the 

relationship between rain intensity and its corresponding frequency is assumed to be a Gamma 

distribution.  

Rainfall Intensity
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u
e
n
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None, or trace of rain

Light rain

Heavy rain
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a) Rainfall Intensity Distribution for Tallahassee 32301 
 (Mean = 0.1425 inches/hour, Variance = 0.073 inches2/hour2)    

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 b) Rainfall Intensity Distribution for Orlando 32801  
(Mean = 0.1444 inches/hour, Variance = 0.064 inches2/hour2) 

 

 

 

 

 

 

 

 

c) Rainfall Intensity Distribution for Miami 33127 
(Mean = 0.1418 inches/hour, Variance = 0.070 inches2/hour2) 

Figure 2.2 Rainfall Intensity Distribution of Three Representative Locations 
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Equations 1, 2 and 3 are the cumulative Gamma distribution functions for the three 

representative regions (1 for Tallahassee, 2 for Orlando, and 3 for Miami) in Figure 2.2:  
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 
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The two key parameters, the shape parameter k and the scale parameter θ, for each model were 

obtained by regression based on the five years of hourly rainfall data. 

Figure 2.3 is a map of Florida’s annual precipitation averaged over the period 1961-1990.  

From this map, it can be observed that the three cities discussed above (Tallahassee, Orlando and 

Miami) are located in the northwest extremely high precipitation area, central low precipitation 

area and southeast high precipitation area, respectively. Therefore, Florida was divided into three 

areas to reflect these differences in precipitation patterns.  For each part of the state, the rainfall 

frequency distribution of one location (Tallahassee in the northwest area, Orlando in the central 

area, and Miami in the southeast area) was used to represent the frequency characteristics of 

rainfall intensity of the respective part of Florida.  Table 2.1 and Figure 2.4 present the 

recommended categorization of counties to the three rainfall distribution regions.  
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Figure 2.3 Florida Average Annual Precipitation Map  

(Source:Spatial Climate Analysis Service, Oregon State University, 2000) 

Table 2.1 Rainfall Distribution Regions 

 Representative 
Location 

Counties Description  

Region 1 Tallahassee Escambia, Santa Rosa, Okaloosa, Walton, Holmes, 
Washington, Bay, Jackson, Calhoun, Gulf, Franklin, 

Liberty, Gadsden, Leon, Wakulla, Jefferson, 
Madison, Taylor, Hamilton, Suwannee, Lafayette, 
Dixie, Columbia, Baker, Union, Levy, Gilchrist 

northwest 
extremely high 

precipitation area 

Region 2 Orlando Nassau, Duval, Clay, St. Johns, Putnam, Bradford, 
Alachua, Marion, Flagler, Volusia, Seminole, Lake, 

Citrus, Sumter, Hernando, Pasco, Pinellas, 
Hillsborough, Polk, Orange, Osceola, Brevard, 
Indian River, Okeechobee, Highlands, Hardee, 
Desoto, Manatee, Sarasota, Charlotte, Glades, 

Hendry, Lee, Collier 

central low 
precipitation area 

Region 3 Miami St. Lucie, Martin, Palm Beach, Broward, Miami-
Dade, Monroe 

southeast high 
precipitation area 
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Figure 2.4 Division of the Rainfall Distribution Regions 

All the rainfall frequency distributions in one rainfall distribution region are assumed to 

have the same shape parameter k.  However, the second parameter of the distribution is 

estimated using the average rainfall of the specific freeway section.  Using the specified shape 

parameter k in Equation 1, 2 or 3 (which represents the region of the state) and the mean of the 

rainfall data for each hour (which represents the freeway section), we obtain the specific rainfall 

distribution for each freeway section.  We finally obtain the probability for each of the three 

rainfall scenarios (trace or none, light rain, or heavy rain) for each freeway section from these 

distributions, as shown in Figure 2.1. 

The calculation algorithm for the probability of rain (light and heavy rain) for each 

location, as well as the split between light rain and heavy rain are the same as those described 

previously.  
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2.2.2. Example 

An example is presented below to illustrate the method in more detail.  The freeway segment 

used in this example is a section of I-95/SR 9 between Broward Blvd and Sunrise Blvd. The zip 

code for this area is 32819. 

Step 1. Data Assembly  

Rainfall data were obtained for a 72-day sample that included the 1st, 6th, 11th, 16th, 21st and 

26th day of each month. The number of rainy days and the average rainfall for each hour of the 

rainy days were estimated.  Figure 2.5 shows the respective calculation table in the “Rain” tab of 

the worksheet.  The orange-highlighted columns indicate the required user inputs in the 

procedure.  

 

Figure 2.5 Calculation Example for the “Rain” Tab 

Step 2. Determine Shape Parameter k and Scale Parameter θ 

The location of the freeway segment is used in this step to determine the shape of the rainfall 

intensity distribution. The subject freeway segment is in rainfall distribution region 3; therefore, 

the value used for the shape parameter k of the Gamma distribution is 0.2872.  The other 
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descriptive parameter for the Gamma distribution, the scale parameter θ, is determined using the 

average rainfall for this location.  For example, for the hour of 4 to 5 PM (or 16:00 to 17:00), the 

scale parameter θ is calculated using the following equation: 

0.1415
0.4927

0.2872

mean

k
   

                                 (4) 

The results of this step are presented in the fourth and fifth columns of Figure 2.5. 

 

Step 3. Probability of Rain 

Since the “Trace” category does not have any impact on speed reduction, the probability of rain 

includes the sum of the probability of light and heavy rain. Based on the results of Step 1, the 

probability of rain for each hour is calculated by dividing the number of days that rained 

(precipitation is greater than 0.01 inches/hour) during this particular hour by 72 (the total number 

of days in the sample). For cases when the number of rainy days in the sample is zero, it is 

assumed that the probability of rain for this hour is 0.001. The results of this step are presented in 

the ninth column of Figure 2.5.  

 

Step 4. Estimate the Probability for Three Rainfall Scenarios 

Using the cumulative Gamma distribution function developed in step 2, the probability of each 

of the three rainfall scenarios for the hour of 4 to 5 PM (or 16:00 to 17:00) at this location can be 

identified. 

Based on Equation (1), the probability for the “Trace” condition is as follows: 

(0.2872,0.01/ 0.4927)
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(0.2872)SP Trace F


  
         (5) 

The probability for “Light Rain” is calculated as follows: 

(  ) (0.5;0.2872,0.4927) (0.01;0.2872,0.4927)

(0.2872,0.5 / 0.4927) (0.2872,0.01/ 0.4927)
                        0.560

(0.2872) (0.2872)

S SP Light Rain F F

 
 

  
     (6) 

The probability for “Heavy Rain” is:  

P(Heavy Rain) = 1 – P(Trace) – P(Light Rain) = 0.078     (7) 

 

The results of this step are presented in the sixth to eighth columns of Figure 2.5. 
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Step 5. Estimate the Ratio of Light and Heavy Rain 

The ratio of the two rain levels is used to estimate the probability of occurrence for the two levels. 

The ratio of Light Rain to Light+Heavy Rain is calculated as follows:  

P(Ratio of Light Rain) = P(Light Rain)/[P(Light Rain)+P(Heavy Rain)] = 0.877   (8) 

 

The ratio of Heavy Rain to Light + Heavy Rain is as follows: 

(    ) 1 (    ) 1 0.877 0.123P Ratio of Heavy Rain P Ratio of Light Rain           (9) 

The results of this step are presented in the last three columns of Figure 2.5.  

 

Step 6. Estimate the Equivalent Free-Flow Travel Time for the Rain Scenario 

The three columns with blue headers shown in Figure 2.5 are used in the SR tab of the worksheet 

to calculate the travel time under rain-related scenarios.  The hour of 16:00 to 17:00 is used as an 

example in the calculations below.  

The free-flow speed of the subject freeway segment is 65 mph under normal conditions. 

As discussed previously, the free-flow speed reduction for light rain and heavy rain are assumed 

to be 6% and 12% respectively.  Therefore, the adjusted free-flow speed for light rain is:  

(  ) (1     )

                        65 (1 0.06) 61.1

F Light Rain FFS FFS reduction for light rain  
                     (10) 

Similarly, the adjusted free-flow speed for heavy rain is:  

(  ) (1     )

                        65 (1 0.12) 57.2

F Heavy Rain FFS FFS reduction for heavy rain  
                      (11) 

Then, given that the length of this freeway segment is 1.022 miles, the equivalent free-

flow travel time for the rain scenario is estimated as the weighted (based on frequency) average 

of the two rain conditions:  

     

(    (3600 /    )

     (3600 /    ))

(0.877 (3600 / 61.1) 0.123 (3600 / 57.2) 1.022

60.37

Equivalent Free flow Travel Time for Rain

Ratio of Light Rain FFS for Light Rain

Ratio of Heavy Rain FFS for Heavy Rain Length


 
  

    
             (12) 
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The results of the calculation for the equivalent free-flow travel time for the rain scenario 

are shown in column AI of the “SR” tab in the example worksheet. Using this travel time and the 

probability of rain obtained in step 3, the hourly adjusted travel time of each segment is obtained 

for each rain-related scenario. 

 

2.3. Comparison to Field Data 

Previous comparisons of the travel time reliability model estimates showed that generally travel 

times from sections with a small probability of congestion were estimated reasonably well by the 

models developed.  This comparison focuses on comparisons for sections that have a high 

probability of congestion.  The research team identified several congested sections (see Table 2.2) 

and obtained field data from the STEWARD database (traffic data clearinghouse developed by 

FDOT and UF, and currently maintained by UF) in order to compare the field data to model 

estimates. Due to the availability and quality of the field data, data from only five of these 

sections (Sections 1, 4, 6, 9, and 13) were used. These five sections are highlighted in red in 

Table 2.2, along with thei location and characteristics.   

Field data were obtained for each of these sections in 5-min intervals, from 4 pm to 7 pm.  

For sections 1, 9 and 13 field data were obtained for the entire 2010 year (Jan. 1, 2010 to Dec. 

31); however the other two sections had some missing data due to detector malfunctions, and 

thus field data were obtained between May 1 to Dec. 16, 2010, for section 4 and between Jan. 1 

and Sept. 30, 2010, for section 6.  

For these sites, three travel time-related measures were compared for the evening peak 

period (4-7 pm): average speed, 95% speed, and TTI (travel time index).  When estimating 

averages, values weighted by frequency and volume were both calculated.  The comparisons 

conducted for each of the measures are provided and discussed in the following sections. 
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Table 2.2 Evaluation of Selected Congested Sections 

  
 

 

 

 

 

 

OrderID Year ROADWAY BEGIN_POST END_POST USROUTE CNTYNAME DISTRICT RLANES LLANES SECTADT TOTLanes AverageADT 

1  2010 86070000 7.614 9.669 I 95 BROWARD 4 4 4 296000 8 37000 

2  2010 10190000 1.746 2.09 I 275 HILLSBOROUGH 7 2 2 147000 4 36750 

3  2010 87200000 11.558 11.784 I 395 MIAMI-DADE 6 2 2 145000 4 36250 

4  2010 86095000 9.64 10.38 I 595 BROWARD 4 3 2 179000 5 35800 

5  2010 10190000 2.613 2.762 I 275 HILLSBOROUGH 7 3 2 176500 5 35300 

6  2010 87270000 3.221 5.228 I 95 MIAMI-DADE 6 3 3 210000 6 35000 

7  2010 72020000 0 0.491 I 95 DUVAL 2 3 2 172000 5 34400 

8  2010 10190000 7.342 7.444 I 4 HILLSBOROUGH 7 3 2 169000 5 33800 

9  2010 86070000 14.892 15.093 I 95 BROWARD 4 4 4 267000 8 33375 

10  2010 87004000 0.569 0.793 I 195 MIAMI-DADE 6 1 2 96000 3 32000 

11  2010 10190000 5.126 5.632 I 275 HILLSBOROUGH 7 3 3 192000 6 32000 

12  2010 86095000 4.191 5.82 I 595 BROWARD 4 3 3 185000 6 30833 

13  2010 86070000 10.287 11.312 I 95 BROWARD 4 5 5 306000 10 30600 

14  2010 10320101 0 0.41 I 275 HILLSBOROUGH 7 2 0 60500 2 30250 

15  2010 86095000 6.68 6.825 I 595 BROWARD 4 4 3 211000 7 30143 
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2.3.1. Comparison of Average Speed 

Table 2.3 provides the model-estimated speeds and the field average speeds, weighted by both 

frequency and volume.  As shown, the differences between the frequency-weighted average 

speed and the volume-weighted average speed are very small.  However, the differences between 

estimated and observed speeds are significant.  

Table 2.3 Model-estimated and Observed Average Speeds 

Segment 
Order ID 

Field Data (mph) Estimated Avg. Speed (mph) 

Weighted by 
Frequency 

Weighted 
by Volume 

Percent of 
Difference 

Weighted by 
Frequency 

Weighted 
by Volume 

Percent of 
Difference 

1 66.84 66.49 0.52% 37.50 36.82 1.83% 

4 72.43 72.26 0.23% 42.21 41.61 1.41% 

6 52.60 52.31 0.55% 41.80 41.32 1.15% 

9 63.20 62.28 1.46% 33.00 32.32 2.04% 

13 66.94 66.12 1.22% 45.94 45.43 1.10% 

 

Figures 2.6 and 2.7 display the estimated and observed speeds for each of the five 

sections, and show that the observed speeds are consistenty higher than the estimated ones for all 

five sections.  In other words, the reliability model underestimates the average speeds (or 

overestimates the travel time) for sections that have high congestion frequency.  Sections 6 and 

13 have relatively smaller differences than the other sections.  Examining the data it was found 

that these two sections have slightly higher volumes than the other three sections.  However, all 

five of the selected sections appear to have moderate volumes (1250 veh/h to 1550 veh/h).   

2.3.2. Comparison of 95% Speed  

Similar to the average speeds, the frequency-based and volume-based 95% speeds are within 2 

mph of each other.  Also, the differences between the estimated and the observed speeds show 

similar trends to the average speeds.  Sections 6 and 13 have relatively smaller differences than 

the other three sections.  
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Figure 2.6 Comparison of Estimated and Observed Speeds (Weighted by Number of Hours) 

 
 

Figure 2.7 Comparison of Estimated and Observed Speeds (Weighted by Volume) 
  

Table 2.4 Comparison of Estimated and Observed 95% Speeds 

Segment 
Order ID 

Field Data (mph) Estimated 95% Speed (mph) 

Based on 
Frequency 

Based on 
Volume 

Percent of 
Difference 

Based on 
Frequency 

Based on 
Volume 

Percent of 
Difference 

1 45.91 45.64 0.588% 28.39 28.78 1.385% 

4 68.09 67.95 0.206% 26.48 26.69 0.816% 

6 41.93 42.04 0.262% 19.51 19.51 0.000% 

9 38.34 38.49 0.391% 8.46 9.94 17.606% 

13 43.57 43.6 0.069% 34.31 34.94 1.830% 
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Figure 2.8 Comparison of Estimated and Observed 95% Speeds (Based on Frequency) 

 

 
 

 Figure 2.9 Comparison of Estimated and Observed 95% Speeds (Based on Volume)  
 

2.3.3. Comparison of Travel Time Index (TTI) 

The Travel Time Index (TTI) is the ratio of travel time in the peak period to the travel time at 

free-flow conditions: 

Travel Time Index = Average Travel Time / Free-flow Travel Time       (12) 

In this project, free-flow speed was assumed to be the speed limit plus 5 miles per hour.  

The TTI estimates are shown in Table 2.5. As with the other two measurements, calculation 

results based on frequency and volume are very similar. However, there are significant 
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differences between the field and estimated values.  The estimated TTI values are consistantly 

higher than the field data.  This result is consistant with the average speed calculation since TTI 

is calculated based on the average travel time.  As shown in Table 2.5, the values of TTI 

calculated based on field data are very close to 1.  For section 4, the TTI is lower than 1.0 (0.97 

for both the frequency-weighted and volume-weighted values), which indicates that the average 

speed is close to the free-flow speed.  

Figures 2.10 and 2.11 present graphically the TTI values for the estimated and the 

observed speeds, weighted by number of hours and by volume respectively.  

Table 2.5 Comparison of Estimated and Observed TTI 

Segment 
Order ID 

Field Data Estimated TTI 

Weighted by 
Frequency 

Weighted 
by Volume 

Percent of 
Difference 

Weighted by 
Frequency 

Weighted 
by Volume 

Percent of 
Difference 

1 1.08 1.09 0.93% 1.73 1.77 1.86% 

4 0.97 0.97 0.00% 1.54 1.56 1.43% 

6 1.09 1.09 0.00% 1.56 1.57 1.17% 

9 1.18 1.19 0.85% 2.12 2.17 2.08% 

13 1.09 1.11 1.83% 1.41 1.43 1.12% 

 

 

Figure 2.10 Comparison of Estimated and Observed TTI (Weighted by Number of Hours) 

0

0.5

1

1.5

2

2.5

1 4 6 9 13

Field Data

Estimated TTI



  

  1188  
  

 
 

Figure 2.11 Comparison of Estimated and Observed TTI (Weighted by Volume) 
 

2.3.4. Summary of the Comparison Results 

From the above comparisons of the three reliability results, it can be concluded that the travel 

time reliability model appears to overestimate the congested condition, especially for the less 

congested freeway sections.  

One of the key differences between the estimated and the observed values is that the 

estimated values calculate the travel time over the entire section, while the observed values are 

based on spot speed measurements extrapolated to the entire section.  Thus, for locations where 

the sensor location is frequently congested the speed will generally lower and the travel time for 

the entire section will generally be higher.  For locations where the sensor location is upstream or 

downstream of the queue the speed will generally be higher and the travel time lower.  It is 

recommended that any further comparisons between the estimated travel times and field data are 

based on actual section travel times rather than speeds extrapolated to the entire section.  

A second difference between the estimated and the observed values is that the estimates 

are based on the incident data from the 2007 CARS database, while the volumes are based on 

2010 field data.  The observed speeds were obtained in 2010.  It is recommended that the annual 

incident data be used in future calculations to estimate travel time reliability for each year.  

Lastly, in the current travel time reliability model, we used several assumptions (for 

example, work zone frequency) which may not be suitable for all segments.  These assumptions 

contribute to the differences between estimated and observed data. It is recommended that the 

existing database be updated as additional data become available.  
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3. ESTIMATION OF ARTERIAL TRAVEL TIME USING SIMULATION 

 

This section describes the development of travel time estimation models for arterials and their 

use in obtaining travel time reliability metrics.  The CORSIM traffic microsimulator was used to 

develop the travel time estimation models.  The first part of this chapter describes the 

development of the CORSIM network and the factors considered in the models developed.  The 

second part summarizes the results of the simulated scenarios, while the third part presents the 

proposed travel time estimation models which were developed based on the simulation results.  

The fourth part evaluates the regression models developed, and the last part provides an 

overview of the spreadsheet developed to estimate travel time reliability for arterial sections. 

 

3.1. Travel Time Estimation Using CORSIM 

Several factors affect travel time along arterials (i.e., cycle length, distance between signals, 

presence of left turns, etc.).  There is a very large number of potential combinations of such 

factors, which would lead to many different arterial configurations.  However, there is a more 

limited set of factors that are typically available to FDOT, and they can readily be used in arterial 

travel time estimation. FDOT’s Quality of Service Handbook (2009) uses the following input 

variables: number of signals per mile, posted speed, number of through lanes, left turn lanes, 

roadway class, median presence, terrain, AADT, K, D, cycle length, and g/C.  To achieve the 

project objectives, eight factors were considered to investigate their effects on arterial travel time 

and eventually develop analytical models that predict travel time as a function of the most 

important ones. These factors are: number of signals per mile, free-flow speed (FFS, which can 

be assumed to relate to the posted speed), demand (which corresponds to AADT, K, and D), 

percent of turning movements, cycle length, g/C ratio, incident duration, and quality of 

progression. These factors were selected because of their potential effect on travel time, and also 

because they are available to be used as input factors later in evaluating travel time reliability for 

a particular arterial facility.  Another factor, ‘percent of lanes blocked by incidents’ is also 

included to account for the effects of incidents.  This subsection discusses these nine factors and 

the corresponding scenarios to be evaluated.  
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1. Number of Signals Per Mile 

A simulated arterial section with length 1.07 miles was developed in CORSIM.  It was assumed 

that there are two through lanes per direction at each intersection; sections with three lanes per 

direction were also tested to evaluate incident conditions.  The number of signals per mile can 

have a significant effect on travel time.  Therefore, the scenarios for considering the number of 

signals per mile are: 1, 4, 7, with one of those being a major intersection and the others minor 

intersections.  The layouts of the arterial for the three scenarios are shown in Figure 3.1. It was 

assumed that 250-ft left-turn pockets are provided at each intersection approach.   

  

1-signal arterial: 

  
4-signal arterial: 

  
7-signal arterial: 

  

Figure 3.1 Arterial Layouts as a Function of the Number of Signals per Mile 

  
  
  
  

Major  
intersection 

Major  
intersection

Major  
intersection 
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2. FFS (mph)  

FFS can have a significant effect on travel time, particularly for the non-congested scenarios. 

Two scenarios were used for the main arterial: 35 mph and 45 mph.  It was assumed that all side 

streets have 35 mph FFS. 

 

3.  Demand (vphpl) 

Demand can have a very significant effect on travel time.  The following scenarios were tested:  

 For the main arterial: 100, 500, 800, 1200 vphpl  

 For side streets: 500 vphpl for minor intersections and 800 vphpl for major 

intersections 

It was assumed that the percent of heavy vehicles for the entire network is zero. 

 

4.  Percent of turning movements (%)  

This variable can have an important effect on travel time; however such data are typically not 

available for specific locations.  Therefore, the following are assumed for all scenarios: 

 For the main arterial: Major intersection: Right: 15%, Left 15% ; Minor intersection: 

Right: 5%, Left 5% 

 For the side streets: Major intersection: Right: 15%, Left 15%; Minor intersection: 

Right: 5%, Left 5%   

 

5. Cycle length (sec) 

It was assumed that each signal is pre-timed.  Minor intersections were assumed to have two 

phases, while major intersections were assumed to have four phases (including dual lefts for both 

the NS and the EW directions).  Two scenarios were tested: 100 sec and 140 sec.  

 

6. Weighted g/C ratio  

According to the 2009 FDOT Quality and Level of Service Handbook, “the weighted g/C of an 

arterial is the average of the sum of the critical intersection’s through g/C with the average of the 

other intersections’ through g/Cs. Essentially the worst intersection is given equal weight as all 
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the other intersections combined”.  Thus, an overal g/C ratio can be obtained for the arterial 

according to FDOT's procedures.  It was assumed that the arterial approaches of the major 

intersection has g/C ratio not exceeding 0.4, and the arterial approaches of minor intersections 

have a g/C as high as 0.7.  The following scenarios of the weighted g/C ratio were tested: 0.4, 

0.45, 0.5.  The research team also tested g/C ratios of 0.3 and 0.6 for non-congested non-incident 

conditions.  The scenarios tested are illustrated in Figure 3.2.  The figure shows the weighted g/C 

as well as the individual g/Cs corresponding to each intersection under each scenario. 
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1-signal arterial: 

 
(g/C=0.3): g/C=0.3 g/C=0.3 
(g/C=0.4): g/C=0.3 g/C=0.5 
(g/C=0.45): g/C=0.35 g/C=0.55 
(g/C=0.5): g/C=0.4 g/C=0.6 
(g/C=0.6): g/C=0.5 g/C=0.7 
 
4-signal arterial: 

 
(g/C=0.3):  g/C=0.35 g/C=0.3 g/C=0.25 g/C=0.3 
(g/C=0.4):  g/C=0.55 g/C=0.4 g/C=0.35 g/C=0.4 
(g/c=0.45): g/C=0.5 g/C=0.5 g/C=0.35 g/C=0.45 
(g/C=0.5): g/C=0.5 g/C=0.5 g/C=0.4 g/C=0.6 
(g/C=0.6): g/C=0.65 g/C=0.65 g/C=0.4 g/C=0.7 
 
7-signal arterial: 

 
(g/C=0.3):  g/C= 0.35 g/C=0.3 g/C=0.25 g/C=0.3 g/C=0.3 g/C=0.3 g/C=0.3 
(g/C=0.4):  g/C= 0.4 g/C=0.45 g/C=0.3 g/C=0.4 g/C=0.35 g/C=0.4 g/C=0.5 
(g/C=0.45): g/C= 0.45 g/C=0.5 g/C=0.35 g/C=0.45 g/C=0.4 g/C=0.55 g/C=0.45 
(g/C=0.5):  g/C= 0.5 g/C=0.55 g/C=0.4 g/C=0.45 g/C=0.45 g/C=0.5 g/C=0.65 
(g/C=0.6):  g/C= 0.65 g/C=0.65 g/C=0.4 g/C=0.6 g/C=0.6 g/C=0.7 g/C=0.6 
 

Figure 3.2 Weighted and Intersection g/C Scenarios for Each Arterial Layout  
(Note: g/C values in parentheses provide the weighted g/C ratios) 

 

 

 

 

MMaajjoorr    
iinntteerrsseeccttiioonn  

MMaajjoorr    
iinntteerrsseeccttiioonn  

Major  
intersection 
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7. Incident duration 

The following incident durations were tested: no incidents (base case), 15 min, and 30 min. The 

incident was assumed to occur on one link near the major intersection at time 100 sec (the total 

simulation time is 3600 sec).   

 

8. Percent of lanes blocked by incident  

Three lane closure scenarios were tested: single lane closure along a 2-lane arterial, single lane 

closure along a 2-lane arterial, and a 2-lane closure along a 3-lane arterial.  To incorporate the 

number of lanes blocked into the travel time estimation models, the following index was 

employed:  

Lane	Blockage	Index ൌ
#	lanes	blocked	by	incidents
total	#	lanes	per	direction

 

The following indices of lanes blocked by incident were tested: 1/2 (incident blocks one 

lane on a 2-lane arterial), 1/3 (incident blocks one lane on a 3-lane arterial), and 2/3 (incident 

blocks two lanes on a 3-lane arterial).  

 

9. Quality of progression/ offsets 

Given the very high number of possible scenarios related to offsets, two categories of 

progression were tested: favorable progression and unfavorable progression.  A preliminary 

analysis was conducted for the 88 basic scenarios shown in Table 3.1, to determine which set of 

offsets would result in favorable and unfavorable progression.  

Table 3.1 Preliminary Tests for Determining Offset 

 
FFS 
(mph) 

Demand 
(vphpl) 

Cycle 
(sec) 

# Signals and g/C 
ratio 

Incident 
duration 
(min) 

# Lanes 
blocked  

# Scenarios 

Range of 
factors 1 

35,  
45 

100, 
500, 
800,  
1200 

100,  
140 

1 signal & g/C=0.4, 
4 signal 
&g/C=0.45, 
7 signal & g/C=0.5 

0 
 

0 
2*4*2*3 = 
48 

Range of 
factors 2 

35,  
45 

100, 
500, 
800 

100,  
140 

1 signal & g/C=0.3, 
4 signal & g/C=0.6, 
 

0 0 
2*3*2*2 = 
24 

Range of 
factors 3 

45 

100, 
500, 
800,  
1200 

100,  
140 

1/4 signal & 
g/C=0.4, 
7 signal & g/C=0.5  
 

15 
 

1 or 2 lanes 
blocked on 
a 3-lane 
arterial 

1*4*2*2*1
*1 = 16 
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For each of the 88 scenarios shown in Table 3.1, different offsets (0%, 5%, 10%, 15%, 

20%, and 30% percent of the cycle length) were tested. For example, for the 4-signal arterial, and 

100 sec cycle length, the scenario with offsets as 10% of the cycle length has offset values of 0, 

10, 20, 30 sec. at each of the four intersections respectively. Based on the test results, one set of 

offsets was selected to represent favorable progression, and another one was selected to represent 

non-favorable progression. The remaining scenarios employed the same offsets as their 

respective basic scenarios. Thus, the same set of offsets was used for all scenarios with the same 

geometric and traffic control characteristics but with differing g/C and incident durations.  

Table 3.2 summarizes the results of the preliminary CORSIM runs for each of the first 48 

scenarios shown in Table 3.1 and for each of the 6 offset options.  CORSIM was run for 10 times 

for each scenario and offset case and the corresponding average arterial travel times are 

summarized in Columns 7 to 12 of Table 3.2.  For each scenario, the offset resulting in the 

lowest arterial travel time was selected as the favorable progression and is marked in red. The 

offset resulting in the highest arterial travel time was selected as the unfavorable progression and 

is marked in blue. 

Table 3.2 Determining Offsets for Favorable and Unfavorable Progression  

Sc
en

ar
io

 

A
rt

er
ia

l 
D

em
an

d
 

(v
p

h
p

l)
 

C
yc

le
 (

se
c)

 

A
rt

er
ia

l g
/C

 
ra

ti
o 

S
ig

n
al

s/
m

il
e 

A
rt

er
ia

l F
F

S 
(m

p
h

) 

Arterial Travel Time (min) 

O
ff

se
t 

=
 

0%
C

 

O
ff

se
t 

=
 

5%
C

 

O
ff

se
t 

=
 

10
%

C
 

O
ff

se
t 

=
 

15
%

C
 

O
ff

se
t 

=
 

20
%

C
 

O
ff

se
t 

=
 

30
%

C
 

1 100 100 0.4 1 35 2.61 2.59 2.63 2.65 2.67 2.73 

2 100 100 0.4 1 45 2.23 2.22 2.26 2.30 2.35 2.31 
3 100 100 0.45 4 35 3.07 3.00 2.97 2.97 2.97 3.10 
4 100 100 0.45 4 45 2.59 2.56 2.53 2.54 2.60 2.80 

5 100 100 0.5 7 35 3.29 3.17 3.16 3.24 3.50 3.76 
6 100 100 0.5 7 45 2.78 2.72 2.82 2.98 3.26 3.51 
7 100 140 0.4 1 35 2.95 3.01 3.09 3.14 3.10 2.91 

8 100 140 0.4 1 45 2.60 2.67 2.74 2.68 2.57 2.43 
9 100 140 0.45 4 35 3.40 3.38 3.39 3.46 3.58 3.86 

10 100 140 0.45 4 45 2.94 2.97 3.04 3.15 3.28 3.36 

11 100 140 0.5 7 35 3.69 3.70 3.86 4.09 4.18 4.71 
12 100 140 0.5 7 45 3.23 3.32 3.55 3.78 3.87 4.50 
13 500 100 0.4 1 35 3.13 3.13 3.12 3.04 2.95 2.81 

14 500 100 0.4 1 45 2.69 2.61 2.51 2.43 2.37 2.32 
15 500 100 0.45 4 35 3.73 3.60 3.40 3.31 3.23 3.16 
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Table 3.2 (continued) Determining Offsets for Favorable and Unfavorable Progression  
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16 500 100 0.45 4 45 3.18 2.96 2.78 2.68 2.64 2.77 
17 500 100 0.5 7 35 3.89 3.55 3.26 3.11 3.30 3.82 
18 500 100 0.5 7 45 3.21 2.89 2.68 2.78 3.10 3.66 

19 500 140 0.4 1 35 3.46 3.33 3.21 3.15 3.12 3.02 
20 500 140 0.4 1 45 2.82 2.73 2.71 2.66 2.60 2.54 
21 500 140 0.45 4 35 4.18 3.79 3.56 3.45 3.46 3.78 

22 500 140 0.45 4 45 3.36 3.13 2.96 2.99 3.13 3.43 
23 500 140 0.5 7 35 4.13 3.74 3.61 3.82 4.09 5.01 
24 500 140 0.5 7 45 3.50 3.18 3.26 3.59 3.90 4.89 

25 800 100 0.4 1 35 6.70 6.65 6.66 6.67 6.73 6.98 
26 800 100 0.4 1 45 6.47 6.25 6.24 6.22 6.13 6.33 
27 800 100 0.45 4 35 4.21 4.18 4.05 3.85 3.66 3.59 

28 800 100 0.45 4 45 3.76 3.59 3.34 3.10 3.04 3.14 
29 800 100 0.5 7 35 4.48 4.10 3.71 3.45 3.46 4.02 
30 800 100 0.5 7 45 3.82 3.39 3.06 2.98 3.26 3.92 

31 800 140 0.4 1 35 8.95 8.91 8.85 8.58 8.67 8.43 
32 800 140 0.4 1 45 8.14 8.19 8.16 7.96 8.14 8.07 
33 800 140 0.45 4 35 5.14 4.80 4.39 4.02 3.92 4.16 

34 800 140 0.45 4 45 4.40 3.93 3.68 3.44 3.56 3.83 
35 800 140 0.5 7 35 5.01 4.43 4.07 4.04 4.37 5.62 
36 800 140 0.5 7 45 4.34 3.83 3.60 3.85 4.22 5.49 

37 1200 100 0.4 1 35 10.11 10.04 10.06 10.09 10.09 9.90 
38 1200 100 0.4 1 45 9.84 9.75 9.67 9.61 9.70 9.55 
39 1200 100 0.45 4 35 7.87 7.93 7.89 7.59 7.58 7.44 

40 1200 100 0.45 4 45 7.73 7.17 7.50 6.87 7.01 7.40 
41 1200 100 0.5 7 35 6.54 6.26 5.81 5.44 5.74 6.36 
42 1200 100 0.5 7 45 5.86 5.68 5.66 5.28 6.03 6.23 

43 1200 140 0.4 1 35 10.99 10.88 10.80 10.72 10.70 10.50 
44 1200 140 0.4 1 45 10.62 10.39 10.40 10.37 10.26 10.27 
45 1200 140 0.45 4 35 10.17 10.22 9.46 9.18 8.31 8.91 

46 1200 140 0.45 4 45 9.90 9.65 8.59 8.43 8.50 8.11 
47 1200 140 0.5 7 35 8.63 8.89 8.40 7.83 7.77 8.65 
48 1200 140 0.5 7 45 8.12 8.55 7.96 8.47 8.08 8.79 

Note: Red color - favorable progression 
        Blue color – unfavorable progression 
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Based on the nine factors discussed above, a total of 1200 scenarios were tested, as 

described in Table 3.3. 

Table 3.3 Final Set of Scenarios Tested 

  
# 
Signal
s 

FFS 
(mph) 

Demand 
(vphpl) 

Cycle 
(sec) 

g/C 
ratio 

Incident 
duration 
(min) 

# Lanes 
blocked by 
incident 

Offset Scenarios 

Range of 
factors 1 

1 
4  
7 

35  
45 

100 
500 
800  
1200 

100 
140 

0.4 
0.45  
0.5 

0,  
15  
30 

1 lane 
blocked on 
a 2-lane 
arterial 

1-
favorable 
0-neutral 

3*2*4*2*
3*3*2=86
4 

Range of 
factors 2 

1 
4  
7 

35  
45 

100 
500 
800 

100  
140 

0.3 
0.6 

0 N/A 
1-
favorable 
0-neutral 

3*2*3*2*
2*1*2=14
4 

Range of 
factors 3 

1 
4  
7 

45 

100 
500 
800 
1200 

100  
140 

0.4 
0.5 

15  
30 

1 or 2 lanes 
blocked on 
a 3-lane 
arterial 

1-
favorable 

3*1*4*2*
2*2*2*1= 
192 

Total # 
scenarios 

 1200 

 

For statistical purposes, multiple runs are needed for each scenario.  Based on the standard 

deviation of speed under various conditions it was determined that the number of runs for 

scenarios with arterial demand 100 veh/h/ln and 500 veh/h/ln would be 5, while the number of 

runs for scenarios with demand 800 veh/h/ln and 1200 veh/h/ln would be 15.   The higher 

scenario demands have higher variability and thus a higher number of runs is needed to estimate 

the average.  

 

3.2. Travel Time Estimates 

For illustrative purposes, travel times for both the subject direction and the opposing direction of 

the arterial for the first 37 scenarios are summarized in Table 3.4. 

 

 

 

 

 

 

 



  

  2288  
  

Table 3.4 Results for the First 37 Scenarios  

incduration demand cycle numinter gcratio FFS offset Average TT (min/mile) 

Scenario 
Incident 
duration 

(min) 

Demand 
(vphpl) 

Cycle 
(sec) 

# signals 
/mile 

g/C 
ratio 

FFS 
(mph) 

Offset 
Subject 

Direction 
Opposing 
Direction 

1 0 100 100 1 0.4 35 favorable 2.41 2.50 

2 0 100 100 1 0.4 35 neutral 2.55 2.53 

3 0 100 100 1 0.4 45 favorable 2.07 2.01 

4 0 100 100 1 0.4 45 neutral 2.19 2.22 

5 0 100 100 1 0.45 35 favorable 2.31 2.34 

6 0 100 100 1 0.45 35 neutral 2.44 2.46 

7 0 100 100 1 0.45 45 favorable 1.97 1.89 

8 0 100 100 1 0.45 45 neutral 2.08 2.05 

9 0 100 100 1 0.5 35 favorable 2.22 2.22 

10 0 100 100 1 0.5 35 neutral 2.34 2.39 

11 0 100 100 1 0.5 45 favorable 1.88 1.82 

12 0 100 100 1 0.5 45 neutral 1.99 1.86 

13 0 100 100 4 0.4 35 favorable 2.86 3.10 

14 0 100 100 4 0.4 35 neutral 2.90 3.40 

15 0 100 100 4 0.4 45 favorable 2.48 2.56 

16 0 100 100 4 0.4 45 neutral 2.64 3.02 

17 0 100 100 4 0.45 35 favorable 2.76 2.95 

18 0 100 100 4 0.45 35 neutral 2.89 3.32 

19 0 100 100 4 0.45 45 favorable 2.35 2.43 

20 0 100 100 4 0.45 45 neutral 2.61 3.03 

21 0 100 100 4 0.5 35 favorable 2.57 2.67 

22 0 100 100 4 0.5 35 neutral 2.78 3.13 

23 0 100 100 4 0.5 45 favorable 2.21 2.24 

24 0 100 100 4 0.5 45 neutral 2.43 2.80 

25 0 100 100 7 0.4 35 favorable 3.29 4.50 

26 0 100 100 7 0.4 35 neutral 3.72 5.44 

27 0 100 100 7 0.4 45 favorable 2.92 3.48 

28 0 100 100 7 0.4 45 neutral 3.59 5.18 

29 0 100 100 7 0.45 35 favorable 3.13 3.88 

30 0 100 100 7 0.45 35 neutral 3.62 4.54 

31 0 100 100 7 0.45 45 favorable 2.77 3.10 

32 0 100 100 7 0.45 45 neutral 3.43 4.07 

33 0 100 100 7 0.5 35 favorable 2.95 3.35 

34 0 100 100 7 0.5 35 neutral 3.50 4.26 

35 0 100 100 7 0.5 45 favorable 2.54 2.79 

36 0 100 100 7 0.5 45 neutral 3.27 3.66 

37 0 100 140 1 0.4 35 favorable 2.71 2.88 
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3.3. Arterial Travel Time Estimation Models 

This section presents the travel time estimation models developed based on the results of the 

simulation runs.  After all scenario runs were completed the researchers developed several plots 

illustrating the relationships between various sets of parameters to identify trends and potential 

relationships.  It was observed that the relationship between demand and travel time is not linear, 

and that the relationship is different for non-congested vs. congested conditions.  Thus, separate 

models were developed to estimate the arterial travel time for these two conditions . 

To categorize each scenario as representing congested vs. non-congested conditions, the 

research team examined the CORSIM simulation output and animation. It was concluded that 

congested conditions would include all scenarios with demand of 1,200 veh/h/ln, some scenarios 

with demand of 500 veh/h/ln and g/C ratio of 0.3, and some scenarios with demand of 800 

veh/h/ln.  Table 3.5 provides an overview of the scenarios with congested conditions. 

 

Table 3.5 Overview of the Congested Scenarios 

Incident Duration 
(min) 

Demand (vphpl) Cycle (sec) # Signals g/C ratio 

0 

500 
100 7 0.30 

140 7 0.30 

800 

100 7 0.40 

140 1/4/7 0.40 

all all 0.30 

1200 all all all 

15 
800 

100 1/7 0.40 

140 
1/4/7 0.40 

7 0.45 

1200 all all all 

30 
800 

100 
1 0.40 

7 0.4, 0.45 

140 
1/4/7 0.40 

7 0.45, 0.5 

1200 all all all 
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The development of the two models as well as their final form are provided below.    

  

1. Model for non-congested scenarios 

A total of 819 scenarios belong to this condition. A multiple linear regression model was 

developed that estimates travel time as a function of various arterial characteristics.  A minimum 

travel time of 60/FFS minutes (calculated as 1 mile divided by FFS), which would occur when 

demand=0, incident duration =0, and no signal, is included in the model as the intercept.  This 

model is valid for cycle lengths longer than 60 seconds and g/C ratios larger than 0.3.  All the 

factors included in the model are continuous variables except for progression, which is 

categorized as favorable or unfavorable.  The model developed based on the CORSIM runs is: 

 

ܶܶ ൌ
଺଴

ிிௌ
൅ ݐ	ܺ	0.001603 ൅ ݁ݏ݋݈݈ܿ݁݊ܽ	ܺ	0.084618 ൅ ܦ	ܺ	0.001413 ൅  ሺ௔௖௧ି଺଴ሻ  (13)ܥ	ܺ	0.012962

൅0.204141	X	N െ 4.70594	ܺ	݃ܿሺ௔௖௧ି଴.ଷሻ െ 0.52147	ܺ	ܱ	ሺ݉݅݊/݈݉݅݁ሻ 

where: 

FFS= Free-Flow Speed (mph) 

t = incident duration (min) 

laneclose = percent of lanes blocked by incidents (= lanes blocked by incidents / total 

lanes ) 

D = demand (veh/h/ln) 

C(act-60) = cycle length - 60 (sec)  

N = number of signals per mile 

gc(act-0.3) = g/C ratio - 0.3 

O = 0 if favorable progression, -1 if unfavorable progression 

The resulting R-square value is 0.93, indicating a good fit of the model to the simulated 

data.  According to the equation, when demand is approaching zero, and there are no signals 

along the arterial, the travel time would be (60/FFS) minutes per mile.  Travel time increases 

linearly with incident duration, percent of lanes blocked by incident, demand, and the number of 

signals.  It also increases as the cycle length increases above 60 seconds, while it decreases with 

the average g/C.  The travel time also increases when the progression becomes unfavorable.   

Note that the variables ‘t’ and ‘laneclose’ are included in the model to consider the 

effects of incident duration and closed lanes on travel time, although they are not statistically 

significant.  One of the early versions of the models included two separate models, one for 
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scenarios with incidents and another for scenarios without incidents. However, if the two models 

are developed separately, their results are not consistent.  For example, the models sometimes 

resulted in lower travel times when an incident was present with all other variables being 

identical.  Therefore the researchers combined all data in one model to avoid those discrepancies.   

  

2. Model for congested scenarios 

A total of 349 scenarios belong to this condition. Similar to the model for non-congested 

scenarios, a minimum travel time of 60/FFS minutes (calculated as 1 mile divided by free flow 

speed) is set for ideal conditions.  The model is as follows: 

  

ܶܶ ൌ
଺଴

ிிௌ
൅ ݐ	ܺ	0.030626 ൅ ݁ݏ݋݈݈ܿ݁݊ܽ	ܺ	0.727794 ൅ ܦ	ܺ	0.005191 ൅  ሺ௔௖௧ି଺଴ሻ  (14)ܥ	ܺ	0.037972

൅0.136407	X	N െ 24.1586	ܺ	݃ܿ௔௖௧ି଴.ଷ െ 0.82938	ܺ	ܱ	ሺ݉݅݊/݈݉݅݁ሻ 

where: 

FFS= Free-Flow Speed (mph) 

t = incident duration (min) 

laneclose = percent of lanes blocked by incidents (= lanes blocked by incidents / total 

lanes ) 

D = demand (veh/h/ln) 

Cact-60 = cycle -60 (sec)  

N = number of signals per mile 

gcact-0.3 = g/C ratio - 0.3 

O = 0 if favorable progression, -1 if unfavorable progression 

The resulting R-square value is 0.97, which indicates very good agreement with the 

simulated data.  As for the equation for non-congested conditions, when demand is approaching 

zero, and there are no signals along the arterial, the travel time would be (60/FFS) minutes per 

mile.  Travel time increases linearly with incident duration, percent of lanes blocked by incident, 

demand, and the number of signals.  It also increases as the cycle length increases above 60 

seconds, while it decreases with the average g/C.  In this case however, the increase is steeper for 

all variables, compared to the non-congested non incident case.  The only exception is the 

number of signals per mile, as its impact appears less pronounced for congested conditions.  

Similarly to the model for non-congested conditions, the variable ‘laneclose’ is included in this 

model to consider the effects of closed lanes on travel time, although it is not significant.  
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To apply the models, the following should be observed, to be consistent with the data 

used in model development: 

(1) The cycle length should be more than 60 sec. 

(2) The g/C ratio should be larger than 0.3. 

(3) When demand is below 300 veh/h/ln, use the developed models with caution. This is 

because the estmated travel time could be lower than the free-flow travel time given a 

very high g/C ratio (above 0.5) and low demand (below 300 veh/h/ln). 

 

3.4. Evaluation of Travel Time Estimation Models 

The models developed are evaluated by testing their results under various input values.  These 

evaluation values were obtained under a variety of conditions, to ensure the results are 

reasonable under a broad range of conditions.  Table 3.6 provides some of the results of this 

evaluation (a total of 30 scenarios).  As shown, the results are reasonable for the scenarios tested.  

 

3.5. Development of Spreadsheet to Estimate Arterial Travel Time 

A spreadsheet similar to that previously developed for freeway sections was developed to obtain 

travel time reliability measures along arterials, based on the results of the travel time estimation 

models described above.  The literature review on the impacts of rain on arterial travel time is 

presented in Appendix A, while the guide to the spreadsheet is provided in Appendix B.  

In summary, the spreadsheet was developed with the following assumptions: 

1) Light rain reduces the free-flow speed by 10%, and heavy rain reduces the free-flow 

speed by 17%. 

2) Only blocking incidents are considered.  

3) Incident data and workzone data along arterial streets are not presently available to the 

research team, therefore assumptions were made with respect to the probability of 

incidents and workzones as well as their duration. 

 

 

 

 

 



  

  3333  
  

Table 3.6 Results of Model Evaluation  

Scenario 
Incident 
Duration 
(min) 

Percent of 
Lanes 
Blocked 
by 
Incident 

Demand 
(veh/h/ln) 

Cycle 
(sec) 

Number 
of 
Signals 

g/C 
Ratio 

FFS 
(mph) 

Progression 
(0-
favorable,  
-1-neutral) 

Estimated 
Travel 
Time 
(min/mile) 

1 NO N/A 300 70 2 0.5 50 1 1.2 

2 NO  N/A 300 100 2 0.6 50 0 1.7 

3 NO N/A 600 70 4 0.5 40 1 2.4 

4 NO  N/A 600 100 4 0.6 40 0 2.8 

5 NO N/A 1500 70 8 0.5 30 1 6.4 

6 NO  N/A 1500 100 8 0.6 30 0 6.0 

7 20 0.5 300 80 2 0.4 50 1 1.9 

8 20 0.5 300 130 2 0.5 50 0 2.6 

9 20 0.5 600 80 4 0.4 40 1 3.0 

10 20 0.5 600 130 4 0.5 40 0 3.7 

11 20 0.5 1500 80 8 0.4 30 1 10.2 

12 20 0.5 1500 130 8 0.5 30 0 10.5 

13 40 0.333 300 90 2 0.3 50 1 2.5 

14 40 0.333 300 150 2 0.5 50 0 2.9 

15 40 0.333 600 90 4 0.3 40 1 3.6 

16 40 0.333 600 150 4 0.5 40 0 4.0 

17 40 0.333 1500 90 8 0.3 30 1 13.5 

18 40 0.333 1500 150 8 0.5 30 0 11.8 

19 60 0.667 300 100 2 0.3 50 1 2.7 

20 60 0.667 300 160 2 0.5 50 0 3.1 

21 60 0.667 600 100 4 0.3 40 1 3.8 

22 60 0.667 600 160 4 0.5 40 0 4.2 

23 60 0.667 1500 100 8 0.3 30 1 14.7 

24 60 0.667 1500 160 8 0.5 30 0 13.0 

25 45 0.5 600 120 5 0.45 45 1 3.4 

26 45 0.33 600 120 5 0.45 45 1 3.4 

27 45 0.67 600 120 5 0.45 45 1 3.4 

28 45 0.5 1500 120 5 0.45 55 1 10.0 

29 45 0.33 1500 120 5 0.45 55 1 9.8 

30 45 0.67 1500 120 5 0.45 55 1 10.1 
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4. FRAMEWORK FOR EXPANDING THE TRAVEL TIME RELIABILITY 

ESTIMATION TO ALL MODES  

 

This chapter discusses the conceptual framework for conducting multimodal travel time 

reliability analysis. The first section summarizes the literature review findings, while the second 

section develops a conceptual framework for estimating travel time reliability across multiple 

modes.  

 

4.1. Literature Review 

Travel time reliability for the following modes was explored in the literature: transit, intercity 

transportation, bicycles, and pedestrians. The findings are summarized in the remainder of this 

section. 

1. Transit 

Transit service reliability is complex in that there is no single measure that can comprehensively 

gauge service quality.  The most common measures of service reliability generally relate to 

schedule adherence, running times, and headways (Victoria et al., 2008).  

Schedule adherence is an important reliability measure for infrequent users, timed 

transfers, and long headway service.  Traditionally, transit agencies use on-time performance 

(OTP) as a measure of schedule adherence.  OTP is expressed as the percentage of buses that 

depart a certain location within a predetermined range of time, generally no more than one 

minute early or five minutes late (Bates, 1986).  When vehicles conform to the schedule, 

passengers are able to coordinate their arrivals with those of the bus better, resulting in average 

wait times that are less than one-half the scheduled headway.  OTP is a measure that is 

particularly useful for evaluating system reliability from a transit agency’s standpoint.  However, 

a measure such as departure delay is more relevant to a passenger’s experience of delay.  

Another limitation of OTP from the passenger’s perspective is that it assumes that all early and 

late departures are of equal consequence, regardless of the delay’s severity or the time of day 

(Kimpel, 2001).  

For high-frequency service, which is typically defined as service operating at headways 

of 10 minutes or less, headway delay is reported as the most important indicator of reliability. 

Headway delay uses actual headway minus scheduled headway to measure the spacing between 
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buses.  A negative value for headway delay means that a bus is falling behind its leader, and a 

positive value means that the bus is gaining (Kimpel, 2001).  Extreme variation in headway 

delay will result in bus bunching, which tends to propagate as vehicles travel along a route.  The 

uneven passenger loading associated with bunching causes additional delay and requires the use 

of more vehicles to serve the same number of passengers (Victoria et al., 2008).  

Running time is also an important measure of transit performance.  Running time 

represents the time it takes a bus to travel from one location to another.  Running time delay 

(actual running time minus scheduled running time) measures how well a bus is moving along 

each link.  A positive value of running time delay means that a bus is having difficulty traversing 

the link.  Running times are important to passengers to the extent that they affect in-vehicle 

travel time (Kimpel, 2001). 

TCRP Report 100, the second edition of the Transit Capacity and Quality of Service 

Manual (Kittelson and Associates, 2003), is known as the primary document that incorporates 

research findings on transit capacity and quality of service.  A set of six fixed-route transit 

service measures is provided to assist with the measurement of transit availability and 

comfort/convenience at the stop-level, route segment-level, and system-level.  The six measures 

are presented along with level of service (LOS) grades from A to F (analogous to the highway 

LOS measures).  One of the six measures is on-time performance.  The on-time performance 

LOS defines “on time” as zero to five minutes late.  For LOS A, the on-time percentage is 95 to 

100 percent or, from the perspective of the passenger, approximately one late transit vehicle 

every two weeks (not including transfers).  For LOS F, the on-time percentage is less than 75 

percent or, from the passengers’ perspective, at least one late transit vehicle on a daily basis (also 

not including transfers). 

 

2. Intercity Travel Time 

There has been only a limited amount of research on intercity travel time reliability.  In one of 

the most relevant papers, Chang and Hsu (2003) developed a mathematical model to analyze the 

passenger waiting time in an intermodal station in which the intercity transit system was served 

via feeder buses.  The model relates the passenger waiting time to the reliability of feeder bus 

services and the capacity of the intercity transit system. 

Also, the California High-Speed Rail Authority and the Federal Railroad Administration 

(2008) completed an environmental impact evaluation of the High-Speed Train (HST) program 
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between the Bay Area and the Central Valley.  To evaluate the relative differences in travel 

conditions that would result from the No Project or HST alternatives, they considered travel time 

and reliability as performance measures.  Travel time was measured as the total (door-to-door) 

travel time for the example city pairs and compared between different alternatives.  The report 

didn’t provide the travel time calculation method for the corridor, but it mentioned that the travel 

time for the air travel mode and the HST mode both include access time, terminal time, wait time, 

line-haul time and arrival time (not only the time spent on the train or the plane).  For the 

reliability analysis, the report indicated 8 factors that impact travel time reliability: incidents, 

inclement weather, construction, volume variation, special events, traffic control devices and 

procedures, base capacity and vehicle availability and routing.  The extent to which these eight 

factors affect each travel mode is analyzed and compared on a qualitative basis.  The 

susceptibility of each travel mode to each reliability factor is described and ranked into three 

levels: low, moderate and high.  Because trips are composed of combinations of modal elements 

(including different modes for trip segments such as station or terminal access), modal rankings 

were combined, providing a qualitative understanding of the reliability of each alternative.  They 

finally concluded that HST systems can provide shorter travel times and are more reliable than 

other travel modes and the conventional U.S. intercity rail services. 

 

3. Bicycles 

No research was found in the literature related to bicycle travel time reliability; however several 

papers were found reporting on the estimation of bicycle travel speed and the factors affecting 

bicycle travel time.  In summary, the factors found to affect bicycling speed include type of 

facility (off-street facility, on-street facility and regular streets), gradient, trip length, number of 

signalized intersection, average daily traffic, time of day (peak or off-peak) and personal 

characteristics (age, gender, comfort in traveling in light and heavy traffic).  The majority of the 

bicycling speeds reported in the literature fall between 7.5 mph to 15.5 mph.  

 

4. Pedestrians 

No studies were found in the literature related to reliability for pedestrian facilities, however, 

there are several studies related to the speed of pedestrians.  In summary, the factors that have 

been reported to impact pedestrian speed include pedestrian age, gender, weather, season and 
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type of walking facility. Most of the research articles have focused on the pedestrian crossing 

speed, which is the walking speed of pedestrians at intersections: the average crossing speed for 

all pedestrians ranges from 3.94 fps to 4.60 fps.  Xiong et al. (2007) studied the pedestrian speed 

on sidewalk and concluded that the average walking speed of pedestrians on sidewalks is 4.0 fps. 

Both Daamen and Hoogendoorn (2006) and Xiong et.al. (2007) indicated that speeds of 

individuals follow a normal distribution.  Lam and Cheung (2000) reported travel time estimates 

for pedestrians on different types of walking facilities in Hong Kong.  They also produced a 

travel time function used to estimate pedestrian speeds as a function of free-flow travel speeds 

and volume-to-capacity relationships for congested pedestrian areas.  

 

4.2. Multimodal Reliability Performance Measures 

This section provides an overview of the framework developed regarding the consideration of 

reliability in a multi-modal environment.   

Generally, multimodal travel time estimation can be performed at two levels: 

1. Travel times and travel time reliability for travel by a single mode from a given origin 

to a given destination.  In this case travel time and travel time reliability can be 

estimated separately for each mode.  Comparisons can be made across modes as long 

as the travel time definitions are consistent across modes and the travel times are 

estimated in a consistent manner.  

2. Travel times and travel time reliability for travel using multiple modes from a given 

origin to a given destination.  In this case travel times and travel time reliability need 

to be estimated considering the entire trip including the interconnections between 

modes.  

Figure 4.1 illustrates conceptually three alternative routes.  In the cases of routes 1 and 2, 

each one is completed with one mode, and these belong in the first category.  The third one 

involves three different modes.  Each of these two types of comparisons is discussed in 

additional detail in the remainder of this chapter.   
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Figure 4.1 Travel Times for Alternative Routes and Multiple Modes  

  

Travel time by a single mode 

When travel between an origin and a destination is conducted by a single mode (air, rail, water, 

automobile, truck, transit, intercity transportation, bicycle, and walking) travel time can be 

obtained relatively easily (at least theoretically) by obtaining departure times and the arrival 

times during the hours of interest.  The threshold for defining reliability however needs to be 

obtained differently for each mode.  For modes that involve schedules, the threshold needs to be 

obtained as a function of the scheduled arrival time.  For example, for transit service the TCRP 

Report 100, the second edition of the Transit Capacity and Quality of Service Manual (Kittelson 

and Associates, 2003), recommends considering arrivals within 5 minutes of the scheduled 

arrival time as being on-time.  For modes that do not involve schedules (such as automobile and 

bicycles) the threshold should be set based on speeds during non-congested conditions, or based 

on average travel speed during free-flow conditions.  Issues that need to be addressed in setting 

such thresholds across modes are the following: 

 Should the reliability threshold vary between different modes? For example, if a 5-

minute threshold is used for transit service, should the same threshold be used for 

bicycles? 
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 Should the reliability threshold be set as a function of the trip distance? For example 

should the threshold be 5 minutes for an anticipated 10 min trip as well as for a 60 

min trip? 

  

Travel time using multiple modes 

Figure 4.2 illustrates a multi-modal route between origin A and destination B.  The route consists 

of three links which represent three different modes.  The figure also provides the average travel 

times for two different time periods along each link.  As shown in this example, the average 

travel time for each link varies between time periods.  Thus in this case it is important to 

consider the travel time for the entire trip and for each time period of interest. On the other hand, 

individual link travel times are also important, as they can provide information on bottleneck 

location and times. 

  
  
  
  
  
  
  
  
  
  

  
  

Figure 4.2 Travel Time Estimation for Multimodal Route 

  
Note that the second link could represent the interconnection time between two modes. 

For example, if a traveler takes a bus to reach the train station and catch a train, then in Figure 

4.2 the first link is the bus trip, the second link is the time between the bus arrival and the train 

departure, and the third link is the train trip.  

Issues to be resolved under this category are the following: 

 How should on-time performance be defined in this case? Should the threshold for 

the route be based on a combination of thresholds for each link? Should thresholds be 

set considering different alternative routes (as for example in the case of the three 

alternative routes in Figure 4.1)? 
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 How should connections between modes be handled? What threshold should be used 

for an “on-time” connection? 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

This research project made improvements in the freeway travel time reliability method, 

developed a new arterial travel time reliability method, and proposed a framework for 

considering travel time reliability in a multimodal context.  

Improvements in the freeway travel time reliability method are the following: 

1) The Travel Time Index (TTI) and the Planning Time Index (PTI) were incorporated 

into the method as two additional performance measures for reliability and variability.  

2) The process for evaluating the impacts of weather on traffic operations was enhanced 

by considering three (instead of two) regions in Florida (represented by Tallahassee, 

Orlando, and Miami), and by analyzing weather data over five years (instead of only 

one year).   

3) Travel time measures based on estimated and observed data were compared, focusing 

on sections with congested conditions.  It was concluded that the estimated travel 

times are higher than the observed ones; however there are some fundamental 

differences in the methods used to obtain the two sets of values.  One of the most 

important differences is that the estimated values calculate the travel time over the 

entire section, while the observed values are based on spot speed measurements 

extrapolated to the entire section.  Depending on the location of the detector, the 

conditions may or may not be representative of the entire section.  

 

The arterial travel time estimation method was developed based on simulated data (using 

the CORSIM microsimulator).  The following factors were used to develop the travel time 

estimation models: number of signals per mile, FFS, demand, percent of turning movements, 

cycle length, g/C ratio, quality of progression, incident duration, and percent of lanes closed 

during an incident.  These factors were selected because of their potential effect on travel time, 

and also because they are generally available to analysts in Florida.  Two travel time estimation 

models were developed using results from a total of 1200 scenarios: one model for non-

congested scenarios, and one model for congested scenarios.  A spreadsheet similar to that 

previously developed for freeway sections was developed to obtain travel time reliability 

measures along arterials, based on the results of the developed travel time estimation models.  
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Lastly, a conceptual framework for conducting multimodal travel time reliability analysis 

was proposed.  For travel using a single mode, travel time and travel time reliability can be 

estimated separately for each mode.  Comparisons can be made across modes as long as the 

travel time definitions are consistent across modes and the travel times are estimated in a 

consistent manner.  For travel time using multiple modes, travel times and travel time reliability 

need to be estimated considering the entire trip including the interconnections between modes.  
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APPENDIX A - Effects of Rain on Arterial Travel Time 

 
This appendix presents the assumptions made for effects of rain on arterial travel time reliability 

based on previous research.  The first few paragraphs summarize the key articles identified that 

examine weather effects on arterial travel time, and the appendix concludes with the list of 

recommendations . 

Lamm et al. (1990) examined 24 curved road sections of rural two lane highways during 

both dry and wet conditions.  They found no statistical difference in operating speed between 

those two conditions without the consideration of visibility. Therefore, they concluded that 

operating speeds are not affected by wet pavement until visibility is also impacted.  

Gillam and Withill (1992) investigated weather impacts on adaptive traffic signal systems 

in four urban areas of the United Kingdom.  They analyzed traffic flow under dry and wet 

pavement conditions from March to November 1991, and found that travel time delay and 

congestion increased by an average of 11% when roads were wet, and that saturation flow rate 

was reduced by 6% with wet pavement. 

Mitretek Systems (2002) used a two-step regression analysis to analyze the impacts of 

adverse weather on travel time based on the combined data of reported travel time data and 

weather observation.  The weather impacts on 15 arterial segments and 18 freeway segments in 

metropolitan Washington, D.C. from December 1999 to May 2001 were studied. They found that, 

the average impact of precipitation on peak-period traffic is at least an 11% increase in travel 

time.  During the off-peak periods, travel time increases by approximately 13% due to an array 

of weather attributes including visibility (0->=0.25 miles, 1-<=0.25 miles), wind, and 

precipitation.  Precipitation was found to cause a 3.5% increase in travel time. The report 

concluded that the value of 3.5% was likely to be lower than reality due to the limitation of data. 

However, the report did not distinquish between the effects of light rain and those of heavy rain.  

Perrin and Martin (2002) analyzed the impacts of inclement weather on speed and 

saturation flow rate at two intersections in Salt Lake Valley, Utah, during the winter 1999/2000. 

Over 30 hours data were collected on 14 days with inclement weather.  The authors found that 

rain reduced speed and saturation flow rate by 10% and 6% respectively.  

Chin et al. (2004) used loop detector data from different regions of the United States to 

analyze the impacts of weather on operations.  Weather conditions were classified into 5 

categories: light rain, heavy rain, light snow, heavy snow, fog and ice.  They assumed that rain or 



  

  4499  
  

snow falling at a rate of 1 inch or more per hour to be heavy and lower amounts to be light. For 

both urban arterials and rural arterials, the estimated loss of capacity and speed are 6% and 10% 

respectively under light rain conditions.  The same results were obtained for heavy rain 

conditions.  

Chung et al. (2005) investigated the effects of rainfall on travel demand and travel time at 

Tokyo Metropolitan Expressway (MEX).  The authors concluded that travel demand decreases 

for rainy days, especially during the weekend.  Saturday is most sensitive to weather conditions, 

followed by Sunday. They also found that, at low density, there is no significant difference in 

travel time between rainy and dry conditions.  However, at high density, travel time is 

significantly higher during rainy conditions than during dry conditions by 4.4 to 6.3%. In their 

study, the impact of light rain and heavy rain on travel time is not analyzed separately. 

Abdalla and Abdel-Aty (2006) modeled travel time when drivers are equipped with real-

time traffic information/advice, based on urban traffic networks consisting of several different 

arterials in Orlando.  They considered three different weather conditions (clear sky, light rain, 

and heavy rain) in their model, and found that light and heavy rain conditions increase the travel 

time by 9.12% and 17%, respectively.  However, they did not classify precipitation by intensity. 

Athey Creek Consultants (2009) designed a real-time travel time estimation model for the 

Minnesota arterial travel time (MATT) project.  They considered the impact of rain or snow on 

travel time in the calibrating process of the travel time estimation model.  The travel time was 

increased if it was raining or snowing by a set number. However, it is not clear from the report 

what amount of increase in travel time was assumed.  

In summary, most of the literature reported that rain resulted in a speed reduction of 9%-

11% and saturation flow rate / capacity reduction of approximately 6%.  However, most of the 

previous research did not classify precipitation by intensity.  There is one paper indicating that 

light rain and heavy rain increase the travel time by 9% and 17%, respectively.  Table A-1 

provides a summary of the literature review regarding speed and capacity reductions caused by 

rain on arterials. 
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Table A-1 Summary of Literature on Speed and Capacity Reduction on Arterials Due to Rain 

Authors (Year) Rain Intensity 
Levels 

Speed Reduction Capacity  
Reduction 

Lamm et al. (1990) Dry and Wet 
Conditions 

Operating speeds are not affected by wet 
pavement until visibility is also impacted. 

-- 

Gillam and Withill 
(1992) 

Dry and Wet 
Conditions 

11% 6% 

Mitretek Systems 
(2002) 

Dry and Wet 
Conditions 

causes more than 11% increase in travel 
time in peak period, 3.5% increase in off-
peak period 

-- 

Perrin and Martin 
(2002) 

Dry and Wet 
Conditions 

10% 6% 

Chin et al. (2004) Light (< 1 in/h) 10% 6% 

Heavy (≥1 in/h) 10% 6% 

Abdalla and Abdel-
Aty (2006) 

Light  increase the travel time by 9.12%  -- 

Heavy  increase the travel time by 17% -- 

  

In conclusion, the recommended rainfall intensity categories and their impact on arterial 

operating speed and capacity reduction are shown in Table A-2.  

 

Table A-2 Recommended Rainfall Intensity Classifications and Impacts on Arterial Speed Reduction 

Rain Category 
Rainfall Intensity 
(inch/hour) 

Speed Reduction 
(%)

Capacity Reduction 
(%) 

None < 0.01 0 0 
Light  0.01- 1 10 6 
Heavy >1 17 6 
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APPENDIX B - Guide to the Worksheet for Estimating Arterial Travel Time 

Reliability 

 
Tab 1 – Facility Description 
 

This tab is for informational purposes only and it defines the various types of facilities and their 

corresponding abbreviations that will be used in the rest of the worksheet. The example “SR 15/US 17/92 

Orlando” consists of three facility types: “1art1c”, “1art2c”, and “1art3d”, which are highlighted with light 

purple, olive green, and aqua in the tab. 

 

Tab 2 – LOS Criteria 
 

This tab presents the level of service (LOS) volume thresholds (columns C to G) according to facility 

type (column A), number of lanes (column B) and time period – peak, off-peak and midday (column I). The 

corresponding LOS data of “1art1c”, “1art2c”, and “1art3d” are highlighted with light purple, olive green, 

and aqua in the tab. 

 

Tab 3 – HrlyK with Peak Hours Speed Table 
 

This tab presents the average hourly K factors (column C) according to facility type (column A), hour 

of the day (column B) and time period (column D). The data for arterial road are highlighted with grey in 

the tab. 

 

Tab 4 – SR15 Inputs 
 

This tab has the basic information related to the example section. The orange-highlighted cells indicate 

user input. The grey column headers indicate information related to the characteristics of the example 

section. The blue-highlighted column headings indicate output that will be used as input in the intermediate 

calculations in other tabs. 

 

Input 

The characteristics of the example section are input (cells B3:M3), including the speed limit (cell 

AA3). From the 2009 FDOT Quality/Level of Service Handbook, the cycle length (cell W3) and g/c ratio 

(cell X3) can be obtained from the Generalized Service Volume Table 1. The speed threshold for different 

road types and different LOS can also be obtained from the same table, and the LOS C threshold is used as 

the free-flow speed for Reliability Calculation in Tab 10 and 11 (cell AB3). The number of signals (cell 

U3) is obtained from Google Earth. 
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The progression type (cell Y3), the probability of one/two lane blocked incident (column V) and work 

zone (column X), and the duration of one/two lane blocked incident (column W) and work zone (column 

Y), were not available through field data, thus the numbers shown are provided for illustrative purposes. 

 

Calculations 

Columns B,C,D,E,F,G,I,K,L,M: 

They obtain their respective values from row 3. 

Column H: 

Length = END_POST - BEGIN_POST. 

Column J: 

LANES Adj = Integer (LANES/2). 

Column N: 

PD HourVol = AADT * 0.55 * Avg of HrlyK (from the HrlyK with Peak Hours tab, according to 

Facility type and hour of the day). 

Column O: 

OD HourVol = AADT * 0.45 * Avg of HrlyK (from the HrlyK with Peak Hours tab, according to 

Facility type and hour of the day). 

Cells N33, O33: 

Sums of their respective columns. 

Columns P,Q,R,S,T: 

LOSA, LOSB, LOSC, LOSD, LOSE are calculated from the lookup table "LOS Criteria" based on the 

LOSTABLE field for “1art1c”, “1art2c”, and “1art3d” type. 

Cell V3: 

Number of signals per mile = Number of signals / Length. 

Cell Z3: 

FFS for Travel Time Calculation = Speed Limit + 5. 

Cells Z8:Z31: 

Probability of 1 Lane Blocked Incident and Work Zone = Probability of 1 Lane Blocked Incident * 

Probability of 1 Lane Blocked Work Zone. 

Cells AA8:AA31: 

1 Lane Blocked Incident and Work Zone Duration = Maximum (1 Lane Blocked Incident Duration, 1 

Lane Blocked Work Zone Duration). 

Cells Z35:Z58: 

Probability of 2 Lane Blocked Incident and Work Zone= 

Probability of 1 Lane Blocked Incident * Probability of 2 Lane Blocked Work Zone  

   + Probability of 2 Lane Blocked Incident * Probability of 1 Lane Blocked Work Zone 

   + Probability of 2 Lane Blocked Incident * Probability of 2 Lane Blocked Work Zone 



  

  5533  
  

Cells AA35:AA58: 

2 Lane Blocked Incident and Work Zone Duration = Maximum (2 Lane Blocked Incident Duration, 2 

Lane Blocked Work Zone Duration). 

 

Tab 5 – Rain 
 

This tab includes all weather-related calculations. The orange-highlighted cells indicate user input 

fields, while the blue-highlighted column and row headings indicate output that will be used as input in 

other tabs. 

 

Input 

From the literature review, we concluded that the speed reduction for “None or Trace”, “Light Rain” 

and “Heavy Rain” is 0, 10% (cell F2) and 17% (cell F3) respectively. The capacity reduction for both light 

and heavy rain is 6% (cell F4).  The entire Florida is divided into three areas to reflect the differences in 

precipitation patterns.  Table B-1 presents the three rainfall distribution regions. 

 

Table B-1. Rainfall Distribution Regions 

 
Representative 

Location 
Counties Description 

Region 1 Tallahassee 

Escambia, Santa Rosa, Okaloosa, Walton, 
Holmes, Washington, Bay, Jackson, Calhoun, 

Gulf, Franklin, Liberty, Gadsden, Leon, 
Wakulla, Jefferson, Madison, Taylor, 

Hamilton, Suwannee, Lafayette, Dixie, 
Columbia, Baker, Union, levy, Gilchrist 

Northwest extreme 
high precipitation area 

Region 2 Orlando 

Nassau, Duval, Clay, St. Johns, Putnam, 
Bradford, Alachua, Marion, Flagler, Volusia, 
Seminole, Lake, Citrus, Sumter, Hernando, 

Pasco, Pinellas, Hillsborough, Polk, Orange, 
Osceola, Brevard, Indian River, Okeechobee, 

Highlands, Hardee, Desoto, Manatee, Sarasota, 
Charlotte, Glades, Hendry, Lee, Collier 

Central low 
precipitation area 

Region 3 Miami 
St. Lucie, Martin, Palm Beach, Broward, 

Miami-Dade, Monroe 
Southeast high 

precipitation area 
 

If the subject arterial section is located in Region 1, the value of Segment Location (cell F6) is 1; if it is 

located in Region 2, Segment Location is 2; and if it is located in Region 3, Segment Location is 3. The 

shape parameter k of the Gamma Distribution was estimated to be 0.2782, 0.3258, and 0.2872 for Region 1 

(cell J5), Region 2 (cell J6), and Region 3 (cell J7), respectively. 

 

Calculations 

Column D: 
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Shape Parameter k of the Gamma Distribution = 0.2782 if Segment Location = 1; or Shape parameter k 

of Gamma Distribution = 0.3258, if Segment Location = 2; or Shape parameter k of Gamma Distribution = 

0.2872, if Segment Location = 3. 

Column E: 

Scale Parameter θ of the Gamma Distribution = Average Rainfall/Shape Parameter k, if Average 

Rainfall is not 0; or Scale Parameter θ of the Gamma Distribution = 0.001/Shape Parameter k, if Average 

Rainfall equals to 0. 

Column F: 

Probability of Trace= GAMMADIST (0.01, k, θ, TRUE) (Returns the cumulative gamma distribution 

at 0.01 given values of k and θ). 0.01 is the upper bound of the rainfall intensity range for “Trace”. 

Column G: 

Probability of Light Rain= GAMMADIST (0.5, k, θ, TRUE) - GAMMADIST (0.01, k, θ, TRUE). 0.01 

and 0.5 are the lower and upper bounds of the rainfall intensity range for “Light Rain” respectively. 

Column H:  

Probability of Heavy Rain= 1- Probability of Light Rain - Probability of Trace 

Column I:  

Probability of Rain = Number of Rainy Days/72, (72 is the sample size of the rainfall data.) if Number 

of Rainy Days is not 0; or Probability of Rain = 0.001, if Number of Rainy Days equals to 0. 

Column J: 

Ratio of Light Rain to Light + Heavy Rain = Probability of Light Rain/( Probability of Light Rain + 

Probability of Heavy Rain). 

Column K: 

Ratio of Heavy Rain to Light + Heavy Rain = 1 - Ratio of Light Rain to Light + Heavy Rain. 

 

Tab 6 and 7– Capacity-Demand 1 lane blocked / Capacity-Demand 2 lane blocked 
 

These tabs include the 1 or 2 lane blocked calculations for different scenarios. The procedure followed 

is essentially the same in the two tabs, except the Number of Closed Lanes (Cells C12:C35) is 1 and 2 

respectively, as indicated in the tab title, thus only Tab 6 (Capacity-Demand 1 lane blocked) is presented in 

this section. 

The orange-highlighted cells indicate user input. The grey column headers indicate information related 

to the characteristics of the example section. The blue-highlighted column headings indicate output used as 

input in the intermediate calculations in other tabs. 

 

Input 

The capacity maintained for each lane under different number of lane blocked conditions for incident 

(cells C5:D7) and work zone (cells I5:J7) were not available. The numbers shown are provided for 

illustrative purposes only. 
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Seasonal Factors for arterial road for the 52 weeks of a year (cells AW38:CV38) were not available. 

FDOT Seasonal Factors for freeways were used here for illustrative purposes. 

 

 

Calculations 

Cells B12:B35: 

The number of lanes per direction is obtained from the SR15 Inputs Tab (column J). 

Cells C12:C35: 

The Number of Closed Lanes is 1 as indicated in the tab title. 

Cells D12:D35: 

The LOS E, i.e. capacity without incident or work zone or rain, is obtained from the SR15 Inputs Tab 

(column T). 

Columns E and F: 

The peak and off-peak direction volume (vehicle per hour per direction) is obtained from the SR15 

Inputs Tab (column N and O). 

Cells H12:H35: 

Capacity under no incident/no work zone (vphpd) = LOS E (Capacity without incident or work zone or 

rain). 

Cells I12:I35: 

Capacity under rain (vphpd) = LOS E (Capacity without incident or work zone or rain) * (1 - The 

capacity reduction from rain (Tab Rain Cell F4)). 

Cells J12:J35: 

If the Number of Lanes per direction is greater than the Number of Closed Lanes, the remaining 

capacity for the blocking incident is obtained from the Incident Capacity Table (cells C5:D7) as a function 

of the Number of Lanes per direction and the Number of Closed Lanes. Then Capacity under incident 

(vphpd) = LOS E * Remaining Capacity per lane for blocking incident * (Number of Lanes per direction - 

Number of Closed Lanes). 

Cells K12:K35: 

If the Number of Lanes per direction is greater than the Number of Closed Lanes, the remaining 

capacity for the blocking work zone is obtained from the Work Zone Capacity Table (cells I5:J7) as a 

function of the Number of Lanes per direction and the Number of Closed Lanes. Then Capacity under work 

zone (vphpd) = LOS E * Capacity Remains per lane for blocking work zone * (Number of Lanes per 

direction - Number of Closed Lanes). 

Cells L12:L35: 

Capacity under rain and incident (vphpd) = Capacity under incident * (1 - The capacity reduction from 

rain). 

Cells M12:M35: 
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Capacity under rain and work zone (vphpd) = Capacity under work zone * (1 - The capacity reduction 

from rain). 

Cells N12:N35: 

Capacity under incident and work zone (vphpd) = Minimum (Capacity under incident, Capacity under 

work zone). 

Cells O12:O35: 

Capacity under rain, incident, and work zone (vphpd) = Capacity under incident and work zone * (1 - 

The capacity reduction from rain). 

Columns AW to EV apply the FDOT seasonal factors (for the 52 weeks of the year) on both the peak 

and the off-peak direction volumes in order to obtain the average demand as well as the probability of 

demand over capacity for different scenarios. In particular: 

Cells AW12:CV35: 

Peak Direction Volume for each weeki (vphpd) = Peak Direction Volume (vphpd)* FDOT Seasonal 

Factorsi, where i = the week #. 

Cells CW12:EV35: 

Off-peak Direction Volume for each weeki (vphpd) = Off-peak Direction Volume (vphpd)* FDOT 

Seasonal Factorsi, where i = the week #. 

Cells AW43:EV66: 

Demand-Capacity no incident/no work zone = 0, if Direction Volume for each week < Capacity under no 

incident/no work zone (column H). 

Demand-Capacity no incident/no work zone = 1, if Direction Volume for each week > Capacity under no 

incident/no work zone (column H). 

Cells AW71:EV94: 

Demand-Capacity rain = 0, if Direction Volume for each week < Capacity under rain (column I). 

Demand-Capacity rain = 1, if Direction Volume for each week > Capacity under rain (column I). 

Cells AW99:EV122: 

Demand-Capacity incident = 0, if Direction Volume for each week < Capacity under incident (column J). 

Demand-Capacity incident = 1, if Direction Volume for each week > Capacity under incident (column J). 

Cells AW127:EV150: 

Demand-Capacity work zone = 0, if Direction Volume for each week < Capacity under work zone 

(column K). 

Demand-Capacity work zone = 1, if Direction Volume for each week > Capacity under work zone 

(column K). 

Cells AW155:EV178: 

Demand-Capacity rain and incident = 0, if Direction Volume for each week < Capacity under rain and 

incident (column L). 
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Demand-Capacity rain and incident = 1, if Direction Volume for each week > Capacity under rain and 

incident (column L). 

Cells AW183:EV206: 

Demand-Capacity rain and work zone = 0, if Direction Volume for each week < Capacity under rain and 

work zone (column M). 

Demand-Capacity rain and work zone = 1, if Direction Volume for each week > Capacity under rain and 

work zone (column M). 

Cells AW211:EV234: 

Demand-Capacity incident and work zone = 0, if Direction Volume for each week < Capacity under incident 

and work zone (column N). 

Demand-Capacity incident and work zone = 1, if Direction Volume for each week > Capacity under incident 

and work zone (column N). 

Cells AW239:EV262: 

Demand-Capacity rain, incident, and work zone= 0, if Direction Volume for each week < Capacity under rain, 

incident, and work zone (column O). 

Demand-Capacity rain, incident, and work zone = 1, if Direction Volume for each week > Capacity under rain, 

incident, and work zone (column O). 

Column AS:  

# weeks Demand > Capacity = SUM of the Demand-Capacity cells. 

Column AT:  

% of weeks Demand > Capacity = (# weeks Demand > Capacity)/(2*52). 

Column AU: 

Demand Uncongested = Average of Directional Volumes of the weeks where Demand-Capacity = 0 / 

(Number of Lanes per direction - Number of Closed Lanes), if (# weeks Demand > Capacity) ≠ 104. 

Demand Uncongested = blank, if (# weeks Demand > Capacity) = 104. 

Column AV: 

Demand Congested = Average of Directional Volumes of the weeks where Demand-Capacity = 1 / 

(Number of Lanes per direction - Number of Closed Lanes), if (# weeks Demand > Capacity) ≠ 0. 

Demand Congested = blank, if (# weeks Demand > Capacity) = 0. 

Columns Q,R,S,T,U,V,W,X: 

Probability of demand over capacity = % of weeks Demand > Capacity (column AT), depending on 

the scenario. 

Columns Z,AA,AB,AC,AD,AE,AF,AG: 

Demand under uncongested conditions = Demand uncongested (column AU), depending on the 

scenario. 

Columns AI,AJ,AK,AL,AM,AN,AO,AP: 

Demand under congested conditions = Demand congested (column AV), depending on the scenario. 
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Tab 8 – Intermediate Scenario Calc 
 

This tab calculates the average incident duration, average # lanes blocked by incidents/ total # lanes, 

Average Demand (vphpl), and Probability of Occurrence for different scenarios. These are shown in blue 

header columns and are subsequently used as input in the SR 15 Final Calc Tab. 

 

Input from other Tabs 

Column B: 

Number of Lanes per direction is obtained from the SR 15 Inputs Tab (column J). 

Cells C5:C28: 

Probability of Rain is obtained from the Rain Tab (column I). 

For One-Lane Blocked Scenario: 

Cells C65:C88: 

Number of Closed Lanes is obtained from the Capacity-Demand 1 lane blocked Tab (column C). 

Cells E65:J88: 

PROBABILITY & DURATION OF INCIDENT is obtained from the SR 15 Inputs Tab (cells 

V8:AA31). 

Cells L65:S88: 

PROBABILITY OF DEMAND OVER CAPACITY is obtained from the Capacity-Demand 1 lane 

blocked Tab (cells Q12:X35). 

Cells U65:AB88: 

DEMAND UNDER UNCONGESTED CONDITIONS is obtained from the Capacity-Demand 1 lane 

blocked Tab (cells Z12:AG35). 

Cells AD65:AK88: 

DEMAND UNDER CONGESTED CONDITIONS is obtained from the Capacity-Demand 1 lane 

blocked Tab (cells AI12:AP35). 

For Two-Lane Blocked Scenario: 

Cells C95:C118: 

Number of Closed Lanes is obtained from the Capacity-Demand 2 lane blocked Tab (column C). 

Cells E95:J118: 

PROBABILITY & DURATION OF INCIDENT is obtained from the SR 15 Inputs Tab (cells 

V35:AA58). 

Cells L95:S118: 

PROBABILITY OF DEMAND OVER CAPACITY is obtained from the Capacity-Demand 2 lane 

blocked Tab (cells Q12:X35). 
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Cells U95:AB118: 

DEMAND UNDER UNCONGESTED CONDITIONS is obtained from the Capacity-Demand 2 lane 

blocked Tab (cells Z12:AG35). 

Cells AD95:AK118: 

DEMAND UNDER CONGESTED CONDITIONS is obtained from the Capacity-Demand 2 lane 

blocked Tab (cells AI12:AP35). 

 

Calculations 

*If the probability of occurrence is equal to zero, this means the scenario will not occur at this specific 

time for this section.  Thus the corresponding duration, # lanes blocked, and demand are shown as blank. 

For Non-Congested Scenario: 

Cells E5:E28: 

Incident Duration = 0. 

Cells F5:F28: 

# lanes blocked by incidents/ total # lanes = 0. 

Cells G5:G28: 

Demand (vphpl) = Uncongested Demand under no incident/no work zone (vphpl) (U65:U88). 

Cells H5:H28: 

Prob of Occurrence = (1- Probability of Rain)*(1- Probability of Demand over Capacity under no 

incident/no work zone), if Number of Lanes per direction = 1; 

Prob of Occurrence = (1- Probability of 1 Lane Blocked Incident)*(1- Probability of 1 Lane Blocked 

Work Zone)*(1- Probability of Rain)*(1- Probability of Demand over Capacity under no incident/no work 

zone), if Number of Lanes per direction = 2; 

Prob of Occurrence = (1- Probability of 1 Lane Blocked Incident- Probability of 2 Lane Blocked 

Incident)*(1- Probability of 1 Lane Blocked Work Zone- Probability of 2 Lane Blocked Work Zone)*(1- 

Probability of Rain)*(1- Probability of Demand over Capacity under no incident/no work zone), if Number 

of Lanes per direction = 3. 

For Non-Congested with Rain Scenario: 

Cells J5:J28: 

Incident Duration = 0. 

Cells K5:28: 

# lanes blocked by incidents/ total # lanes = 0. 

Cells L5:L28: 

Demand (vphpl) = Uncongested Demand under rain (vphpl) (V65:V88). 

Cells M5:M28: 

Prob of Occurrence = Probability of Rain*(1- Probability of Demand over Capacity under no 

incident/no work zone), if Number of Lanes per direction = 1; 
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Prob of Occurrence = (1- Probability of 1 Lane Blocked Incident)*(1- Probability of 1 Lane Blocked 

Work Zone)*Probability of Rain*(1- Probability of Demand over Capacity under no incident/no work 

zone), if Number of Lanes per direction = 2; 

Prob of Occurrence = (1- Probability of 1 Lane Blocked Incident- Probability of 2 Lane Blocked 

Incident)*(1- Probability of 1 Lane Blocked Work Zone- Probability of 2 Lane Blocked Work 

Zone)*Probability of Rain*(1- Probability of Demand over Capacity under no incident/no work zone), if 

Number of Lanes per direction = 3. 

For Non-Congested with Incident Scenario: 

Cells O5:O28: 

Incident Duration = blank, if Number of Lanes per direction = 1; 

Incident Duration = 1 Lane Blocked Incident Duration, if Number of Lanes per direction = 2; 

Incident Duration = (1 Lane Blocked Incident Duration*Probability of 1 Lane Blocked Incident*(1- 

Probability of Demand over Capacity under incident for 1 lane blocked) + 2 Lane Blocked Incident 

Duration*Probability of 2 Lane Blocked Incident*(1- Probability of Demand over Capacity under incident 

for 2 lane blocked)) / (Probability of 1 Lane Blocked Incident*(1- Probability of Demand over Capacity 

under incident for 1 lane blocked) + Probability of 2 Lane Blocked Incident*(1- Probability of Demand 

over Capacity under incident for 2 lane blocked)), if Number of Lanes per direction = 3. 

Cells P5:P28: 

# lanes blocked by incidents/ total # lanes = blank, if Number of Lanes per direction = 1; 

# lanes blocked by incidents/ total # lanes = 1/2, if Number of Lanes per direction = 2; 

# lanes blocked by incidents/ total # lanes = (1*Probability of 1 Lane Blocked Incident*(1- Probability 

of Demand over Capacity under incident for 1 lane blocked) + 2*Probability of 2 Lane Blocked 

Incident*(1- Probability of Demand over Capacity under incident for 2 lane blocked)) / (Probability of 1 

Lane Blocked Incident*(1- Probability of Demand over Capacity under incident for 1 lane blocked) + 

Probability of 2 Lane Blocked Incident*(1- Probability of Demand over Capacity under incident for 2 lane 

blocked)), if Number of Lanes per direction = 3. 

Cells Q5:Q28: 

Demand = blank, if Number of Lanes per direction = 1; 

Demand = Uncongested Demand under incident for 1 lane blocked, if Number of Lanes per direction = 

2; 

Demand = (Uncongested Demand under incident for 1 lane blocked*Probability of 1 Lane Blocked 

Incident*(1- Probability of Demand over Capacity under incident for 1 lane blocked) + Uncongested 

Demand under incident for 2 lane blocked*Probability of 2 Lane Blocked Incident*(1- Probability of 

Demand over Capacity under incident for 2 lane blocked)) / (Probability of 1 Lane Blocked Incident*(1- 

Probability of Demand over Capacity under incident for 1 lane blocked) + Probability of 2 Lane Blocked 

Incident*(1- Probability of Demand over Capacity under incident for 2 lane blocked)), if Number of Lanes 

per direction = 3. 
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Cells R5:R28: 

Prob of Occurrence = 0, if Number of Lanes per direction = 1; 

Prob of Occurrence = Probability of 1 Lane Blocked Incident*(1- Probability of 1 Lane Blocked Work 

Zone)*(1-Probability of Rain)*(1- Probability of Demand over Capacity under incident for 1 lane blocked), 

if Number of Lanes per direction = 2; 

Prob of Occurrence = Probability of 1 Lane Blocked Incident*(1- Probability of 1 Lane Blocked Work 

Zone- Probability of 2 Lane Blocked Work Zone)*(1-Probability of Rain)*(1- Probability of Demand over 

Capacity under incident for 1 lane blocked) + Probability of 2 Lane Blocked Incident*(1- Probability of 1 

Lane Blocked Work Zone- Probability of 2 Lane Blocked Work Zone)*(1-Probability of Rain)*(1- 

Probability of Demand over Capacity under incident for 2 lane blocked), if Number of Lanes per direction 

= 3. 

For Non-congested with work zone, Non-congested with rain and incident, Non-congested with rain 

and work zone, Non-congested with incident and work zone, Non-congested with rain, incident, work zone, 

Congested, Congested with rain, Congested with incident, Congested with work zone, Congested with rain 

and incident, Congested with rain and work zone, Congested with incident and work zone, Congested with 

rain, incident, work zone Scenarios, the calculations are similar. 

 

Tab 9 – SR 15 Final Calc 
 

This tab calculates the travel time under different scenarios and the average travel time for the example 

section. The orange-highlighted cells indicate user input. The grey column headers indicate information 

related to the characteristics of the example section. The blue column headers are reserved for the travel 

times and probabilities of each scenario and the purple column headers and highlighted cells are the results 

(yearly averages). 

 

Input 

Cells F3:M4: 

The coefficients of the travel time estimation models from the project report. 

 

Calculations 

Column B: 

Length is obtained from the SR 15 Inputs Tab (column H). 

Columns C and D: 

The peak and off-peak direction volume is obtained from the SR15 Inputs Tab (column N and O). 

Column F,G,H,I: 

They obtain their respective values from the SR15 Inputs Tab (cells V3:Y3). 

Column J: 

Constant is used in the travel time estimation model calculation and given as 1. 
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Column L: 

Free-Flow Speed is obtained from the SR 15 Inputs Tab (cell Z3). 

Column M: 

FFS adjusted for Light Rain = FFS*(1- Free-flow speed reduction for Light Rain). 

Column N: 

FFS adjusted for Heavy Rain = FFS*(1- Free-flow speed reduction for Heavy Rain). 

Columns O,P: 

Light and Heavy rain ratios are obtained from their corresponding columns on the Rain tab. 

Column Q: 

Equivalent Free-flow Travel Time for Rain = ((Ratio of Light Rain to Total Rain*(3600/FFS adjusted 

for Light Rain)) + (Ratio of Heavy Rain to Total Rain*(3600/FFS adjusted for Heavy Rain)))*Length. 

Column R: 

FFS adjusted for Rain = Length*3600 / Equivalent Free-flow Travel Time for Rain. 

Columns U,W,Y,AA,AC,AE,AG,AI,AK,AM,AO,AQ,AS,AU,AW,AY: 

Probability of occurrence for each scenario is obtained from the Intermediate Scenario Calc Tab. 

Columns T,V,X,Z,AB,AD,AF,AH: 

If the probability of occurrence is equal to zero, this means the scenario will not occur at this specific 

time for this section and the corresponding scenario travel time is shown as blank. 

Non-congested scenarios travel time (sec) = (60/FFS (or FFS adjusted for Rain for scenarios with rain) 

+ 0.001603*incident duration + 0.084618* # lanes blocked by incidents/ total # lanes + 0.001413*demand 

+ 0.012962* Cycle Length + 0.204141* # Signals/mile – 4.70594*Arterial g/C Ratio – 

0.52147*Progression + (-60*0.012962-03*(–4.70594))*1)*Length*60. 

Columns AJ,AL,AN,AP,AR,AT,AV,AX: 

If the probability of occurrence is equal to zero, this means the scenario will not occur at this specific 

time for this section and the corresponding scenario travel time is shown as blank. 

Congested scenarios travel time (sec) = (60/FFS (or FFS adjusted for Rain for scenarios with rain) + 

0.030626*incident duration + 0.727794* # lanes blocked by incidents/ total # lanes + 0.005191*demand + 

0.037972* Cycle Length + 0.136407* # Signals/mile – 24.1586*Arterial g/C Ratio – 0.82938*Progression 

+ (-60*0.037972-03*(–24.1586))*1)*Length*60. 

Column BA: 

Total Probability Check = the sum of all scenario probabilities (must be 100%). 

Column BB: 

Annual Expected TT = the sum of all scenario probability*scenario travel time. 

Column BD: 

Annual Average Speed = Length / (Annual Expected TT/3600). 

Column BF: 

Calculations for TT Weighted By Demand = Annual Expected TT*(PD HourVol + OD HourVol). 
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Cell BB33: 

Avg. Annual TT = Average of the hourly Annual Expected. 

Cell BD33: 

Avg. Annual Speed = Length / (Avg. Annual TT/3600). 

Cell BF33: 

Avg. Annual TT/mile = Avg. Annual TT / Length. 

Cell BB34: 

Avg. Weighted by Hourly Demand TT = (the sum of Calculations for TT Weighted By Demand) / 

(Total of PD HourVol + Total of OD HourVol). 

Cell BD34: 

Avg. Weighted by Hourly Demand Speed = Length / (Avg. Weighted by Hourly Demand TT/3600). 

Cell BF34: 

Avg. Weighted by Hourly Demand TT/mile = Avg. Weighted by Hourly Demand TT / Length. 

 

Tabs 10 and 11 – Reliability All Day / Reliability 4-7 
 

In these tabs the results of the SR 15 Final Calc Tab are used to estimate reliability performance 

measures. The procedure followed is essentially the same in the two tabs, thus only Tab 10 (Reliability All 

Day) will be discussed here. 

 

Input 

There is no manual input in this tab, as everything is obtained from another tab. In cells AI11 and AI12 

the total days in a year and the total hours in a year are found. 

 

Calculations 

Column C: 

Travel Time is obtained from all the Travel Time columns of the SR 15 Final Calc Tab. 

Column D: 

Frequency (%) is obtained from all the Probability of Occurrence columns of the SR 15 Final Calc 

Tab. 

Column E: 

Average Speed = Length/(Travel Time/3600) 

Column F: 

Frequency (hours) = Frequency (%) * Total days in a year. 

Column G: 

Flow - Both Directions = PD HourVol + OD Hour Vol (from the SR 15 Final Calc Tab). 

Column H: 

Annual Hourly Volume = Frequency (hours) * Flow-Both Directions 
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Column I: 

TT*Freq (%) = Travel Time * Frequency (%). 

Cells F393, H393: 

The sums of Frequency (hours), Annual Hourly Volume 

Column K: 

Free-flow Travel Time = Section Length / (Free-flow Speed (SR 15 Inputs Cell AB3) / 3600) 

Column L: 

Section Hourly Volume = Flow - Both Directions 

Column M: 

Hourly Avg. TT (Weighted by Freq) = Sum of TT*Freq(%) of each scenario 

Column N:  

Hourly Avg. Speed (Weighted by Freq) = Section Length/(Hourly Avg. TT/3600) 

Column O: 

Hourly Travel Time Index = Hourly Avg. TT/Free-flow Travel Time 

Cell M36: 

Daily Average TT (Weighted by Freq) = Average of Hourly Avg. TT (Column M) 

Cell M37: 

Daily Average TT (Weighted by volume) = Section Hourly Volume (Column L) Weighted Average of 

Hourly Avg. TT (Column M) 

Cell M39: 

Daily Average Speed (Weighted by Freq) = Average of Hourly Avg. Speed (Column N) 

Cell M40: 

Daily Average Speed (Weighted by volume) = Section Hourly Volume (Column L) Weighted Average 

of Hourly Avg. Speed (Column N) 

Cell M42: 

Daily TTI (Weighted by Freq) = Average of Hourly Travel Time Index (Column O) 

Cell M43: 

Daily TTI (Weighted by volume) = Section Hourly Volume (Column L) Weighted Average of Hourly 

Travel Time Index (Column O) 

Columns P, Q, R: 

These are columns C, E, F sorted by Travel Time. 

Column S: 

Cumulative Hours = the cumulative of the sorted Frequency (hours). 

Column V: 

Frequency (Hours) by brackets in order to be used in a Chart. Refers to column R. 

Columns W, X, Y: 

These are columns C, E, H sorted by Travel Time. 
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Column Z: 

Cumulative Volume = the cumulative of the sorted Volume. 

Column AC: 

Total Vehicles by brackets in order to be used in a Chart. Refers to column Y. 

 

Travel Time Reliability Calculations 

Cell AI11, AI12: 

Total days in a year and the total hours in a year. 

Cell AI13: 

Total Annual Volume = Sum of Column H. 

Cell AJ17: 

Travel time corresponding to 10 mph = Length*3600/10. 

We seek the last travel time value on column Q and X less than 10 mph and we highlight that line in 

yellow. 

Cell AI18: 

Percent of time travel speed is above 10 mph = Highlighted cell (see above) in the Cumulative Hours 

column / Total hours in a year. 

Cell AI19: 

Percent of trips travel speed is above 10 mph = Highlighted cell (see above) in the Cumulative Volume 

column / Total Annual volume. 

Cell AJ21: 

Travel time corresponding to 15 mph = Length*3600/15. 

We seek the last travel time value on column Q and X less than 15 mph and we highlight that line in 

yellow. 

Cell AI22: 

Percent of time travel speed is above 15 mph = Highlighted cell (see above) in the Cumulative Hours 

column / Total hours in a year. 

Cell AI23: 

Percent of trips travel speed is above 15 mph = Highlighted cell (see above) in the Cumulative Volume 

column / Total Annual volume. 

Cell AI27: 

95% of the Total Annual Volume = Total Annual Volume*95% 

We seek the last cumulative volume value on column Z that is less than the 95% of total annual 

volume and we highlight that line in yellow. 

Cell AK27: 

Travel Time corresponding to 95% of time = The value of the highlighted cell (see above) on the 

sorted Travel Time column (Column W). 
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Cell AM27: 

Travel Speed corresponding to 95% of time = The value of the highlighted cell (see above) on the 

sorted Average Speed column (Column X). 

Cell AJ28: 

Free-Flow (LOS C Threshold Speed) Travel Time = The value in Cell K8. 

Cell AJ29: 

Planning Time Index based on number of trips = Travel Time corresponding to 95% of trips / Free-

flow Travel Time. 

Cell AI31: 

95% of the Total Hours in a Year = Total hours in a year*95% 

We seek the last cumulative hours value on column S that is less than the 95% of total hours in a year 

and we highlight that line in yellow. 

Cell AK31: 

Travel Time corresponding to 95% of time = The value of the highlighted cell (see above) on the 

sorted Travel Time column (Column P). 

Cell AM31: 

Travel Speed corresponding to 95% of time = The value of the highlighted cell (see above) on the 

sorted Average Speed column (Column Q). 

Cell AJ32: 

Free-Flow (LOS C Threshold Speed) Travel Time = The value in Cell K8. 

Cell AJ33: 

Planning Time Index based on number of trips = Travel Time corresponding to 95% of hours / Free-

flow Travel Time. 

Cell AJ37: 

Volume Weighted Daily Average TT = The value in Cell M37 

Cell AJ41: 

Daily Average TT Weighted by Frequency = The value in Cell M36 

Cell AJ38, AJ42: 

Free-Flow (LOS C Threshold Speed) Travel Time = The value in Cell K8. 

Cell AJ39: 

Travel Time Index based on number of trips = Volume Weighted Daily Average TT/ Free-flow Travel 

Time 

Cell AJ43: 

Travel Time Index based on frequency = Daily Average TT Weighted by Frequency/ Free-flow Travel 

Time 

 

 


