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EXECUTIVE SUMMARY 
 
Introduction 
 
One of the goals of the Florida Department of Transportation’s 2020 Transit Strategic Plan is to 
help Florida Transit Systems improve their performance.  Reducing the number of transfers 
involved in a transit trip is an important step towards that end.  According to a transit onboard 
survey conducted as part of the recent South Florida Travel Characteristics Study (Carr Smith 
Corradino 2000), about one half of the transit trips involved at least one transfer.  Approximately 
15% involved two or more transfers.  A survey (Stern 1996) of various transit agencies in U.S. 
indicated that about 58% of the respondents believed that transit riders were only willing to 
transfer once per trip.  It is widely accepted in the U.S. transit industry that the willingness of 
riders to transfer has a significant impact on the total ridership of a transit system (Newman et al. 
1983).  This perception is based on empirical transit market studies or past experiences, and if it 
is valid, the ridership of a transit system may increase significantly by merely reducing transfers 
through the optimization of the existing transit route network configuration without expanding 
services or demanding more resources.  In addition to ridership, transit route design or 
configuration may also have a significant impact on transit budgets and route coverage, and thus 
contributing to the transit system effectiveness and efficiency and the overall quality of life in the 
urban areas being served.   
 
Factors that affect the passengers' willingness to transfer vary, and may include waiting time and 
walking distance required during transfers, reliability of bus schedules, bus headways, loading 
factor, and so on.  One of the main concerns is the security of passengers and criminal activities 
that sometimes occur at transfer locations, especially in the evening or at night on low frequency 
bus routes, where missing one connecting bus may result in a long wait and cause safety 
concerns (Stern 1996).  Transfers increase riders’ travel difficulty, which, in turn, has a negative 
impact on the overall ridership of a transit system. Avoiding unnecessary transfers and/or 
reducing transfer difficulty have become an important transit design or service improvement 
issue. Various remedies or improvements have been suggested or implemented, including 
coordinating bus schedules, increasing bus frequencies, increasing the number of sheltered and 
well lit bus transfer stops, and reconfiguring existing transit network to reduce transfers.  Since 
this study is concerned with issues related to transit route network (TRN) reconfiguration or 
optimization to minimize riders' transfers, the literature review and description presented in this 
report will mainly deal with issues on transit route network optimization and related topics. 
 
Transfers are a result of a network configuration that is unable to provide direct services between 
all pairs of origins and destinations.  Clearly, the main reason is the constraint on resources, 
which is faced by all transit properties.  It is difficult to eliminate or noticeably reduce bus 
transfers without significantly increasing bus fleet size and total bus route miles, both of which 
will result in the increase of operating costs.  Moreover, the “inertia” in transit services, i.e., the 
inability to immediately or fully respond to changes in population, housing, employment, and 
demographics (such instant response may be neither desirable nor practical), also contributes to 
transfers that may be potentially eliminated. 
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For transit systems with small bus route networks, a seasoned planner may obtain reasonable bus 
route network results by utilizing his or her knowledge and experience, carrying out simple 
ridership data collection and analysis, and following certain simple guidelines.  For large urban 
areas where the number of bus routes may be close to or over a hundred, and the number of bus 
stops in thousands, intuition, past experiences, and simple guidelines may not be enough to 
produce even near-optimal transit route network configurations due to various complicated 
factors involved in transit route network design.  Systematic methodologies are therefore needed 
to obtain better transit route network configurations.  

 
The goal of this study was to develop a methodology and a software tool for optimizing bus 
transit services to reduce transfers.  The research objectives included: 
 

(1) Provide an understanding of the current state-of-the-art and the state-of-the-practice in 
transit network optimization. 

(2) Develop a methodology for optimizing transit service configuration based on a 
synthesis/refinement of the state-of-the-art and the state-of-the-practice. The 
methodology would have the ability to deal with a larger transit network than had been 
reported in the literature.  Based on the methodology a more robust network optimization 
tool would be produced, which could be used for practical planning purposes. 

(3) Develop a user-friendly computer tool for transit agencies to optimize their bus services 
with optimal transfers. 

 
Literature Review 
 
A TRN optimization problem may be stated as the determination of a set of transit routes given a 
transit demand distribution in a transit service area, subject to a set of feasibility constraints, to 
achieve objective(s) that optimize the overall quality of a TRN.  Mathematically, a TRN 
optimization problem may be formulated as a special form of integer optimization problems 
called  a combinatorial optimization problem where the solution search space is a set of various 
subsets (or combinations) of an integer set.  The search space of a combinatorial optimization 
problem may be extremely large even for a small integer set due to the combinatorial 
characteristics.      
 
Solving a TRN optimization problem involves the search for an optimal set of feasible transit 
routes with unknown topology/geometry.  It is difficult to solve problems with a large number of 
integer variables since the associated solution procedure involves discrete optimization, which 
usually requires the search for optimal solutions from an intractable search space (Garey and 
Johnson 1979).   
 
A great deal of research has been conducted in the area of transit network optimization, including 
TRN optimization and TNS optimization, or a combination of the two.  The methods in the 
literature may be roughly grouped into two categories: mathematical approaches, and heuristic 
approaches.  However, there are no clear boundaries between these approaches.  In this study, we 
consider an approach a mathematical approach if the problem is formulated as an optimization 
problem over a relatively complete solution search space, and generic solution search methods 
are then employed to obtain the solutions.  Examples of such algorithms include various greedy 
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type algorithms, hill climbing algorithms, tabu search algorithms, and stochastic based search 
algorithms such as genetic algorithms (GAs) and simulated annealing search schemes.  
References and descriptions of various mathematical search algorithms may be found, for 
example, in (Aarts and Lenstra 1997, Bertsekas 1998).  We consider an approach a heuristic 
approach if domain specific heuristics, guidelines, or criteria are first introduced to establish a 
solution strategy framework, and mathematical programming or any other search techniques are 
then employed to obtain the best results.  The main difference between a mathematical approach 
and a heuristic approach lies in the fact that the mathematical approach formulates the problem 
on a solution space with certain completeness that, theoretically, should include global optimal 
solutions.  In contrast, the heuristic approach formulates a problem directly on possible solution 
sub-spaces defined based on domain specified heuristic guidelines.   
 
The advantage of heuristic approaches is that they are always able to provide feasible solutions 
to problems of any size.  The main disadvantage of heuristic approaches is that their results are 
almost certainly not global or even local optimal solutions.  This may be attributed to the fact 
that search schemes in heuristic approaches are usually ad hoc procedures based on computer 
simulations of human transit design processes guided by heuristic rules.  The corresponding 
search spaces are usually not clearly defined and the search results are likely to be biased toward 
existing systems or any systems on which the set of design heuristics are based.   

 
Compared with other methods in transit network design, mathematical optimization approaches 
usually have more rigorous problem statements and solid theoretical ground.  Under certain 
conditions, such as the case of convex problem defined domain and objective functions, a global 
optimal solution can be guaranteed.  Disadvantages of mathematical optimization approaches in 
TRN design are the following: 
 

(1) In practice, the optimization problem derived from a realistic transit network system may 
be either non-convex or, in most cases, with unknown convexity, and in such cases, 
results produced from a mathematical optimization process may be at most a local 
optimal.   

 
(2) The resultant mathematical optimization systems derived from realistic combinatorial 

TRN problems are usually at least NP-hard, which refers to problems for which the 
number of elementary numerical operations is not likely to be expressed or bounded by a 
function of polynomial form (Garey and Johnson 1979).  The NP-hard intractability is 
due to the need to search for optimal solutions from a large search space made up by all 
possible solutions.  For this reason, existing mathematical optimization solution 
approaches to the TRN problems are usually applied to relatively small and idealized 
networks for small urban areas or medium-sized urban areas with coarse networks.  The 
route network structures may also be limited to certain particular configurations.  As a 
cautionary note, the computational intractability that is used to describe a problem or an 
algorithm is only an asymptotic estimate to the solvability of a problem, and is usually 
based on the worst-case scenarios.  It may only be true when the size of the problem 
becomes very large, which may not be the case for a particular practical problem at hand.   
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While applications of mathematical optimization to large realistic transit network design 
problems are limited thus far, it has been quite successful in other related fields due to the 
development of powerful mathematical tools in combinatorial search fields, e.g., operations 
research, electric power scheduling and distribution, etc. 
 
Solution Methodology 
 
The methodology was developed based on the following considerations: 
 

• The method should be generally applicable to the design and optimization of a wide 
range of TRN problems in practice. 

• The solution method should be as generic as possible and should not favor any particular 
transit network configurations. 

• Solutions obtained from this method should give reasonably good results in a reasonable 
amount of time as permitted by the current computer power affordable to most transit 
agencies.  The results should improve as the computer resource or power increases, and 
should approach the global optimum when there is no computer resource limitation.   

 
The solution methodology consisted of the following components: 
 

(1) Representation of Street Nodes, Transit Service Area, Transit Routes, and Route 
Network.  Street nodes are represented by an integer set called the street node set where 
each integer element in this set is associated uniquely with a street node.  The transit 
service area is represented by an integer vector space called the street network set where 
each integer vector has two integer components corresponding to the starting and ending 
node identifiers (IDs) of a street segment.  A transit route is represented by an integer 
vector (route vector) with a sequence of  ordered integer components, and each of the 
integer components is associated with a street node on the route.  A route network is 
represented by a set of route vectors.  The goal of a TRN optimization is to find a set of 
route vectors or a route network that corresponds to an optimal goal function or 
functions. 

 
(2) Representation of Search Spaces for Transit Routes and Transit Network.  All the 

solution search spaces are flexibly, iteratively, and locally defined since a complete 
global search space for a combinatorial optimization problem will evidently result in an 
intractable solution search space even for a small street network.  The formulation of 
various local solution search spaces is aimed at obtaining search spaces that are 
computationally tractable for existing computational resources to perform local searches.   

 
(3) Constraints for Transit Route Network.  Integer constraints in this study include the 

following: (a) Fixed route constraints prescribing fixed guideway lines or bus routes that 
are specified by transit planners to meet certain planning goals, which will remain 
unchanged during the optimization process; (b) Constraints prescribing starting, ending, 
or in-between areas through which transit routes must pass.  These areas may be major 
activity centers or transfer points; (c) Route length constraints for individual transit lines 
or for the entire system; and (d) Constraints on the number of transit stops on individual 
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routes.  The above constraints are simple constraints since they do not require function 
evaluations.  Identifying more simple constraints in an integer optimization problem may 
reduce the sizes of corresponding solution search spaces significantly.  In this study 
several function constraints are also introduced to avoid selecting routes with 
unreasonable shapes or directness.  Such constraints include various route directness 
constraints and OOD (Out-of-Direction) constraints.  The function constraints  confine 
the solution selecting process to solution subspaces consisting of routes that satisfy 
certain users specified route shape or directness criteria.   

 
(4) Formulation of Various Optimization Objective Functions.  Objective functions 

considered in this study are various trip coverage functions or their combinations.  The 
goal is to obtain a TRN structure with minimum transfers while optimizing service 
coverage.  If a trip between an OD pair requires no transfers, the trip is called a zero-
transfer trip, while a trip between an OD pair that requires k or fewer transfers will be 
called a k-or-less transfer trip.  A k-or-less transfer trip coverage function, or simply a k-
or-less transfer function, is defined as the total number of OD trips that can be 
accomplished with k or fewer transfers in a transit network service area given a service 
configuration.   

 
The use of any of the transfer functions alone as the objective function may result in the 
optimization of one TRN parameter at the cost of others.  This study also introduced two 
objective functions, the average number of vehicle boarding functions, that combine 
several trip coverage functions thus may give more balanced results.  The value of a 
boarding function are always no smaller than 1, with the optimal value is 1, indicating 
that all trips are zero-transfer trips.   

 
(5) Solution Search Algorithms.  There are five solution search algorithms developed in this 

study.  The basic assumption in formulation of these algorithms is that the demand 
distribution in a TRN service area has certain continuity.  In other words, nodes with 
certain transit demands are probably close to nodes with similar demands.   In such cases, 
it will be more effective in searching for better solution by evaluating paths that are near 
nodes or areas with higher trip distributions.  The first two search algorithms are greedy 
type search schemes.  The basic search strategy of a greedy type search method is to 
follow the first solution candidate that gives a better goal function value in a search 
process.  Advantages of these two methods are that in general they converge relatively 
fast and need less memory spaces.  However, these two greedy type methods may be trap 
into poor local optima.  The other two search algorithms are based on the hill climbing 
methods.  Conceptually, the hill climbing method is similar to the deepest decent method 
in continuous research fields.  In stead of following the first encountered better result as 
in greedy type search methods, a hill climbing search process follows the best result in a 
local search space.   

 
In the description of the two greedy type search methods and the two hill climbing search 
methods, issues regarding the global-ness of the search results from these methods have 
not been addressed.  In fact, all these methods are local search methods, although the two 
hill climbing methods may produce better results due to larger search spaces.  For non-
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convex optimization system,  a local search scheme may suffer from premature 
convergence to or being trapped into one of the local optimal results near initial guess 
route network.  The last search algorithm is also based on a greedy type method.  
However, to avoid premature convergence to poor local optima, an escape schemes based 
on the integrated simulated annealing and tabu search methods is included in the greedy 
search process.  This resultant method, called the integrated simulated annealing, tabu, 
and greedy search method, is capable to escape from any local optima, and theoretically, 
will visit a global optima eventually with a probability of 1.0.               

 
Numerical Experiments 
 
The methodologies for transit route network design optimization developed from this study has 
been tested through several benchmark problems studied or developed by Mandl (1979, 1979a), 
Shih and Mahmassani (1994), and Baaj and Mahmassani (1991).  The selection of these 
benchmark problems is based on the following considerations. Firstly, these problems have been 
well documented with detailed descriptions of street network input data, OD matrix input data 
and, most importantly, transit route network results and the corresponding objective function 
values, which can be used for comparison with results from this study.  Secondly, methodologies 
developed by these authors and the corresponding numerical results seem to be well 
acknowledged in the transit planning research community.  Finally, these benchmark problems 
are real, practical problems, although with some simplification assumptions, making them 
appropriate for use as benchmark problems to evaluate results from this study.  It needs to be 
emphasized that the comparison between the results from this study and those from the 
benchmark problems was merely to validate the methodology developed in this study.  In fact, 
the design objectives and design variables involved in this study are different from those used in 
studies by Mandl (1979, 1979a), Shih and Mahmassani (1994), and Baaj and Mahmassani (1991).  
In this study, the objective functions are those which reflect a transit system’s network directness 
and transfer directness, and the design variables are integer vectors representing transit routes.  
The benchmark problems are TN optimization problems, which include both TRN design 
optimization and certain parts of TNS (transit network scheduling) design optimization problems, 
and the design objectives are, in addition to various network directness functions, user or 
operator costs, such as transfer times, waiting times, etc.  A more comprehensive comparison of 
the methods developed in this study with those benchmark problems may be appropriate after 
work on transit scheduling optimization is completed.  Presently, the comparison involves only 
those design variables and results related to or obtained from TRN optimization.  The numerical 
tests are performed based the Mandl’s problem (1979, 1979a) and the Miami-Dade County 
transit system.  The results showed that the methodology developed in this study was able to 
improve results from the benchmark problems and improve the system performance in Miami-
Dade County compared to the existing system, assuming that the transit demand estimated from 
the Miami-Dade County 1999 FSUTMS model was accurate. 
 
Software Development 
 
The methodology developed in this research has been implemented in a prototype GIS based 
program called OPTNet (OPTimization Package for transit Network).  The program was 
implemented with TransCAD as the front end user interface.  It allows the user to specify input 
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data including street network, transit demand (OD matrix), optional route configurations, initial 
guess routes, fixed routes, pre-specified service areas, optimization parameters, etc.  The 
program can display the input such as streets, initial transit network, and OD matrix graphically 
as well as the output.  The attributes and performance statistics of the optimized transit network 
are also provided.  The user may choose to modify the program output to arrive at a final 
network configuration by adjusting selected routes and stop locations, or, after making 
modifications, choose to use the current solution as the initial input into OPTNet for further 
optimization. 
 
Summary and Conclusions  
 
The methodology developed from this work has a systematic mathematical statement of the TRN 
problems including the definition of various objective functions, solution search spaces and 
constraint conditions commonly used in transit planning fields, and a systematic scheme that 
flexibly defines solution search spaces based on available computing resources and/or 
optimization problem sizes.  Two local search schemes have been developed to obtain results for 
practical problems of a large-scale in a reasonable amount of time.   
 
The feasibility of the proposed method has been tested through practical TRN optimization 
problems of realistic sizes.  Numerical results showed that the methodology developed in this 
work was capable of tackling large-scale transit network design optimization problems.  Further 
improvements may include development of TRN optimization methods that consider dynamic 
transit demand, demand and travel time in different time periods of a day, and waiting and 
transfer penalties.   
 
Recommendations 
 
As mentioned before, a complete transit network design optimization process should include two 
design optimization components, i.e., transit route network design optimization and transit 
network scheduling design optimization.  The present work dealt with the optimization of transit 
route network structure in an attempt to find the optimal route network layouts in terms of 
network directness, transfer directness, and ridership coverage.  However, to realize those 
optimal characteristics allowed by the resultant route network obtained from the route network 
design stage, the optimization of transit network schedule design should be implemented.  
Design variables in network scheduling optimization may include vehicle headways and 
timetables, and the optimization objective functions may be the user cost, operator cost, or a 
combination of the two. Constraints may include minimum/maximum vehicle headways, 
passenger waiting times, vehicle load factors, fleet size, and so on.  Although traditional heuristic 
methods may produce a workable transit schedule by following certain guidelines or criteria, it is 
important to develop effective mathematical optimization methodologies for transit scheduling 
design since the differences in cost benefits between a workable result and an optimal or even a 
good result may be significant, especially for large scale transit network system.   
 
Another important improvement would be to allow the use of travel time instead of travel 
distance in the optimization process.  This is because a shortest path measured by distance may 
not be the shortest path measured by travel time.  For transit users, they are more sensitive to 
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travel time and less to travel distance.  More importantly, unless travel time is used in 
optimization, travel time savings provided by rapid transit services such as Miami-Dade 
County’s Metrorail and Busway and transit users’ preference for these rapid transit services 
cannot be properly considered and results will not be accurate.   
 
In this study, the street networks were assumed or approximated as undirected networks.  This 
assumption is valid for street networks involving one way streets if any two corresponding one 
way segments of a bus route are close to each other and the lengths (or travel times) of the two 
segments are more or less the same.  This assumption may not be true in some practical 
situations when the two one way segments are far apart or when travel time on these two 
segments are noticeably different.  Thus it is desirable to extend the current methodology to 
support optimization problems based on directed street networks.   
 
Because network travel time varies by route and by time of day, to model a transit network 
accurately with travel time as the cost measure, it is necessary to consider time-of-day models 
and network optimization for different periods of time.  This means that transit demand for 
desirable time period during a day is needed.  Currently, the accurate estimation of transit OD 
matrix remains a challenging task.  Although several methods based on limited survey data and 
statistic technologies have been reported in the literature (Tsygainitzky 1979, Simon and Furth 
1985, Furth and Navick 1992), they are usually limited to one transit route or one transit corridor, 
and their validity for use for transit route networks remains unclear.  The Automatic Passenger 
Counters (APC) technology, especially the smart card technology, is a promising ridership and 
OD data collection means.  However, before such technologies become available, additional 
study will be needed to estimate transit demand and OD matrix.  Improvements in OD matrix 
accuracy may be possibly achieved through modeling and the use of existing ridership data.  
Sample data collected for selected routes may provide good estimates of the spatial distribution 
and the temporal patterns of transit demand.  These estimates may also be extrapolated to areas 
not currently being served by transit.  One difficulty in using existing ridership data such as 
boarding and alighting data is the lack of historical data or data in electronic format as most 
transit properties do not systematically preserve or utilize such data.  It is recommended that 
tools be provided to transit properties to help them preserve such data electronically and allow 
them to retrieve and analyze the data, and that the potential of utilizing these data for the purpose 
of helping estimate transit demand be studied. 
 
To improve the speed of the OPTNet program, different strategies and techniques will need to be 
investigated and applied.  The full potential of mathematical optimization approaches to find 
global or near global optimal results for large-scale transit network analysis seems to lie in 
parallel computing techniques.  This is because the power of a single processor computer is 
limited by our current knowledge of physics.  The computing power of a parallel computer relies 
on both individual processor’s speed and the number of processors in the computers.  Although 
the power of a single computer process is limited, such limitation may be removed if multiple 
processors are connected to form a parallel computer.  Therefore, implementing OPTNet on a 
parallel platform is naturally the next development stage for any promising mathematical 
optimization methodologies. 
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1. INTRODUCTION 
 
1.1 Problem Statement 
 
One of the goals of the Florida Department of Transportation’s 2020 Transit Strategic Plan is to 
help Florida Transit Systems improve their performance.  Reducing the number of transfers 
involved in a transit trip is an important step towards that end.  According to a transit onboard 
survey conducted as part of the recent South Florida Travel Characteristics Study (Carr Smith 
Corradino 2000), about one half of the transit trips involved at least one transfer.  Approximately 
15% involved two or more transfers.  A survey (Stern 1996) of various transit agencies in U.S. 
indicated that about 58% of the respondents believed that transit riders were only willing to 
transfer once per trip.  It is widely accepted in the transit industry in the U.S. that the willingness 
of riders to transfer has significant impact on the total ridership of a transit system (Newman et 
al. 1983).  This perception is based on empirical transit market studies or past experiences, and if 
it is valid, the ridership of a transit system may increase significantly by merely reducing 
transfers through the optimization of the existing transit route network configuration without 
expanding services or demanding more resources.  In addition to ridership, transit route design or 
configuration may also have a significant impact on transit budgets and route coverage, and thus 
contributing to the transit system effectiveness and efficiency and the overall quality of life in the 
urban areas being served.   
 
Factors that affect the passengers' willingness to transfer vary and may include waiting time and 
walking distance required during transfers, reliability of bus schedules, bus headways, loading 
factor, and so on.  One of the main concerns is the security of passengers and criminal activities 
that sometimes occur at transfer locations, especially in the evening or at night on low frequency 
bus routes, where missing one connecting bus may result in a long wait and cause safety 
concerns (Stern 1996).  Transfers increase riders’ travel difficulty, which, in turn, has a negative 
impact on the overall ridership of a transit system. Avoiding unnecessary transfers and/or 
reducing transfer difficulty have become an important transit design or service improvement 
issue. Various remedies or improvements have been suggested or implemented, including 
coordinating bus schedules, increasing bus frequencies, increasing the number of sheltered and 
well lit bus transfer stops, and reconfiguring existing transit network to reduce transfers.  Since 
this study is concerned with issues related to transit route network reconfiguration or 
optimization to minimize riders' transfers, the literature review and description presented in this 
report will mainly deal with issues on transit route network optimization and related topics. 
 
Transfers are a result of a network configuration that is unable to provide direct services between 
all pairs of origins and destinations.  Clearly, the main reason is the constraint on resources, 
which is faced by all transit properties.  It is difficult to eliminate or noticeably reduce bus 
transfers without significantly increasing bus fleet size and total bus route miles, both of which 
will result in the increase of operating costs.  Moreover, the “inertia” in transit services, i.e., the 
inability to immediately or fully respond to changes in population, housing, employment, and 
demographics (such instant response may be neither desirable nor practical), also contributes to 
transfers that may be potentially eliminated. 
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For transit systems with small bus route networks, a seasoned planner may obtain reasonable bus 
route network results by utilizing his or her knowledge and experience, carrying out simple 
ridership data collection and analysis, and following certain simple guidelines.  For large urban 
areas where the number of bus routes may be close to or over a hundred and the number of bus 
stops in thousands, intuition, past experiences, and simple guidelines may not be enough to 
produce even near-optimal transit route network configurations due to various complicated 
factors involved in transit route network design.  Systematic methodologies are therefore needed 
to obtain better transit route network configurations. 
 
1.2 Goals and Objectives 
 
The goal of this study was to develop a methodology and a software tool for optimizing bus 
transit services to reduce transfers. The research objectives included: 
 

1. Provide an understanding of the current state-of-the-art and the state-of-the-practice in 
transit network optimization. 
 

(4) Develop a methodology for optimizing transit service configuration based on a 
synthesis/refinement of the state-of-the-art and the state-of-the-practice.  The 
methodology would have the ability to deal with a larger transit network than had been 
reported in the literature.  Based on the methodology a more robust network optimization 
tool would be produced, which could be used for practical planning purposes. 
 

2. Develop a user-friendly computer tool for transit agencies to optimize their bus services 
with optimal transfers. 

 
1.3 Organization 
 
This report is divided into six chapters.  In the remaining chapters, a review of literature in the 
field of transit network and schedule optimization is presented in Chapter 2.  Chapter 3 describes 
the methodology developed in this study, including the problem and solution representation and 
solution search methods.  Validity tests of this methodology are described in Chapter 4, where 
the results from this study are compared to some well known benchmark problems.  The 
methodology was also applied to a large-scale transit network configuration problem based on 
the Miami-Dade County transit system, and the results are presented.  Chapter 5 discusses the 
development of a computer program that implements the methodology from this study.  Finally, 
conclusions, recommendations, and future direction of further research are provided in Chapter 
6. 
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2. LITERATURE REVIEW 
 
2.1 Background 
 
In general, a transit network (TN) design process has two design stages: transit route network 
(TRN) design and transit network scheduling (TNS) design.   A TRN design problem deals with 
issues related to transit route layout or coverage, while a TNS design problem involves transit 
vehicle headway or frequency design, and vehicle assignment timetables or bus schedule tables.   
Mathematically, a TN design problem may be stated as the determination of a set of transit 
routes and associated frequencies, subject to a set of feasibility constraints, to achieve the desired 
objectives that minimize the overall cost, usually a combination of user and operator costs.  User 
costs are often measured by the total travel time incurred to the users, which consists of access 
time, waiting time, in-vehicle travel time, transfer time, etc.  Operator costs depend on the fleet 
size, transit vehicle size, transit vehicle miles, and vehicle operation hours required for a 
particular route configuration.  Feasibility constraints may include, but are not limited to, 
maximum allowable bus headway, vehicle load factors, and available resources including capital 
and operating costs. 
 
In practice, a more realistic TN design problem statement may involve the minimization of 
multiple, often conflicting objectives under complex multiple constraints.  For instance, 
minimization of operator costs, maximization of coverage of transit service area and service 
hours, and minimization of the number of transfers are objectives that conflict with each other 
since increasing the transit service coverage area or reducing riders’ transfers will increase the 
operator costs.  In such cases, compromises must be made to balance different objectives to 
obtain solutions.  Different constraints may also be explicitly or implicitly in contradiction to 
each other or to certain optimization objectives.  For example, a transit planner may specify a 
constraint as the maximum number of bus routes allowed in a transit system.  Limits placed on 
the total number of bus routes are usually a result of practical consideration based on available 
transit budget, since an increase in the number of bus routes usually results in a larger bus fleet 
size and more bus drivers if the existing levels of service are to be maintained.  The transit 
planner may also set a constraint on the maximum length of individual transit routes based on 
consideration of issues such as difficulty in maintaining bus schedule adherence, bus driver 
fatigue, and so on.  Inappropriate setting of these two constraints may result in difficulty in 
obtaining a solution because to cover a given transit coverage area, a solution procedure may 
have to increase either the total number of bus routes in the system, or to increase the coverage 
of individual bus route, i.e., the length of certain bus routes or their service hours.   
 
Mathematically, a typical optimization process may be stated as bellow. 
   

Maximize/minimize: f(x, n) for all x ∈ R (read as x in R) and n ∈ I             [2.1a] 
Subject to: 

(a) Equality constraints:     
      gi(x, n) = 0, i = 1, 2, …, k                                                        [2.1b]   
(b) Inequality constraints:     
 hj(x, n) ≤ 0, j = 1, 2, …, m                                                       [2.1c] 
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where f(x, n) is an objective function, x = x(x1, x2,…, xr) is a vector (or, more generally, a set of 
vectors) with continuous or real components, and n = n(i1, i2,…, is) is a vector (or, more 
generally, vectors) with discrete or integer components.  R in [2.1a] is a space of vectors with 
continuous variable components, which usually has the following form, 
 
     R = R{x(x1, x2, …, xr) | ai ≤ xi ≤ bi, i = 1, 2, …, r},                                     [2.2a] 
 
where real numbers ai and bi define the range of vector x’s ith component.  I in [2.1a] is a set or 
space1 of vectors with integer variable components, 
 
    I = I{n(i1, i2, …, is) | nj ≤ ij ≤ mj, j = 1, 2, …, s},                                        [2.2b] 
 
where integers nj and mj define the range of vector n’s jth component.  For simplicity, a vector 
with continuous components will be referred to as a continuous or real vector and a vector with 
integer components will be referred to as an integer vector.  If the optimization problem defined 
in [2.1] does not involve integer vectors, i.e., n = 0, then the problem is considered a traditional 
or continuous optimization problem.  However, if the optimization problem in [2.1] involves 
only integer vectors, i.e., x = 0, it is called an integer optimization problem.  A mixed integer 
optimization problem is one that contains both integer and continuous vectors, i.e., x ≠ 0 and n ≠ 
0.    
 
A combinatorial optimization problem is a special case of integer optimization problems.  It 
refers to an integer optimization problem where the integer vector’s component set (i1, i2,…, is) 
in vector n = n(i1, i2,…, is) is an ordered subset of a larger integer set, N{i1, i2, …, is} (s ≤ n).  For 
example, the set that includes all ordered two-integer subsets of the integer set N{1, 2, 3} is {(1, 
2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)}, and the integer vector set defined on such a set is called a 
combinatorial integer set or space based on N{1, 2, 3}, 
 
      ( )2

NC {n} = ( )2
NC {n(1,2), n(1,3), n(2,3), n(2,1), n(3,1), n(3,2)}. 

 
For clarity, in this report, a set (integer or real) enclosed in parentheses, e.g., (a1, a2,…, ak), 
represents an ordered set, while a set (integer of real) enclosed in braces, e.g., {a1, a2,…, ak}, 
represents an unordered set.  In general, a combinatorial space based on all s-integer subsets of 
an integer space N{i1, i2,…, it} may be expressed as 
 
     ( )s

NC {n} = {n(i1, i2, …, is) | for all (i1, i2, …, is) ⊂ N{ i1, i2, …, in} [2.3a] 
 
It may be seen that as n and s, i.e., the size of space N{i1, i2,…, in} and the number of 
components of vector n(i1, i2,…, is), increase, the corresponding combinatorial space ( )s

NC {n} can 
be very large.  In expression [2.3a], all the integer vectors have the same number of component s. 
if s can vary within certain range, e.g., (smin ≤ s ≤ smax) where smin and smax are two given integers, 

                                                 
1 In general, a set is referred to a group of individuals that have certain common features such as a vector set, a 
solution set,  an integer set etc.  A space is a set with certain geometric or other measurements such as length, 
distance etc.  For example, a 2D vector space is a set, and one of the geometric measurements is the length of 
individual vectors.   
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then the combinatorial space based on all s-integer subsets (smin ≤ s ≤ smax) of an integer space 
N{i1, i2,…, it} may be expressed as 
 
     ( )maxmin , ss

NC {n} = {n(i1, i2, …, is) | for all (i1, i2, …, is) ⊂ N{ i1, i2, …, in} (smin ≤ s ≤ smax).  [2.3b] 
 
Space ( )maxmin , ss

NC  will be referred to as a combinatorial space based on integer space N, and space 
N will be referred to as the base integer space, or simply the base space, of combinatorial 
space ( )maxmin , ss

NC .  For N{1, 2, 3}, smin = 1 and smax = 2, the combinatorial vector space defined in 
[2.3b] becomes 
 
     ( )3,1

NC {n} = {n(1), n(2), n(3), n(1,2), n(1,3), n(2,3), n(2,1), n(3,1), n(3,2)}. 
 
A mixed combinatorial problem is similar to a combinatorial optimization problem but it also 
includes real vectors, i.e., x ≠ 0, and n is defined on a combinatorial vector space.  TN design is a 
typical combinatorial optimization problem, where the base integer space N{i1, i2,…, in} is the set 
of all potential transit stops (or street nodes that are suitable for use as transit stops) in the transit 
service area.  An integer vector n = n(i1, i2,…, is) may represent a transit route if the vector’s 
component set (i1, i2,…, is), an ordered s-integer subset of the base space N{i1, i2,…, in}, 
represents the sequence of the transit route’s stops/nodes.  A TRN may be represented by a set of 
integer vectors, 
 
     T(l) = T(l){n1, n2, …, nl},                                                    [2.4a] 
 
where l is the number of transit routes in the route network system, and 
 
     nj = n ( )

jsiii ,,, 21 Λ , (j = 1, 2, …, l)                                [2.4b] 
 
are the l transit route vectors, sj is the number of transit stops on transit route nj.  It may be seen 
that a transit route vector is a member of the combinatorial space ( )maxmin , ss

NC  defined in [2.3b], 
i.e., nj ∈ ( )maxmin , ss

NC {n} (j = 1, 2, …, l) and a transit route network is a subset/subspace of 
( )maxmin , ss
NC , i.e., T

(l)
{n} ( )maxmin ,ss

NC⊂ {n}.  Based on the above description, a TRN design 
optimization problem may be stated as follows:   
 

Maximize/minimize: f(x, T
(l)

) for all x ∈ R and ( ) ( )maxmin , ssl
NCT ⊂                     [2.5a] 

Subject to: 
      

(a) Inequality constraints: 
        lmin ≤ l ≤ lmax                                                                                            [2.5b]                 
        smin ≤ si ≤ smax,  i = 1, 2, …, l                                                                [2.5c] 
(b) Equality constraints:   
        gi(x, T(l)) = 0,  i = 1, 2, …, ig                                                                   [2.5d]   
(c) Other inequality constraints:     

              pi(x, T(l)) ≤ 0,  i = 1, 2, …, ip                                                                 [2.5e] 
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      (d) Certain topology constraints on transit routes: 
              qi(n),  i = 1, 2, … iq                                                                              [2.5f] 
 

 where T(l) is a TRN with l routes defined in [2.4a] and [2.4b]; lmin and lmax are, respectively, the 
minimum and the maximum numbers of transit routes in the network system; and smin and smax 
are, respectively, the minimum and the maximum numbers of nodes/stops on a transit route. 

( )maxmin , ss
NC  in [2.5a] is the combinatorial space defined in [2.3b].  Expressions [2.5d] and [2.5e] 

represent other constraints not explicitly stated such as route directness constraints, etc. 
Topology constraints for transit routes include, for example, that a transit route should not have 
loops or intersect itself and that neighboring transit stops must be connected with street 
segments.  The transit network optimization problem defined in [2.5] is a typical integer or 
mixed integer (if real vectors x ≠ 0) combinatorial optimization problem.  The solution of such 
problems is difficult even with relatively small number of integer variables since the associated 
solution procedure involves discrete optimization, which usually requires the search for optimal 
solutions from a combinatorial search space with an extremely large number of possible 
solutions (Papadimitriou and Steiglitz 1982, Nemhauser and Wolsey 1988). 
 
Typical mixed combinatorial optimization problems in TN design are those of which the 
objectives are to find both the optimal TRN structure and the optimal values of certain design 
parameters associated with the route network, such as bus frequencies, transfer times, etc.  
Optimization of TRN configuration involves the search for an optimal set of feasible transit 
routes of which the topology (or the structure of the route network) is unknown.  For bus route 
scheduling optimization problems, analytical approximation or transformation methods (Newell 
1973) have been used, where the original integer optimization problem is related to a gradient or 
sub-gradient based optimization problem involving only continuous variables, i.e., n = 0.  
Optimization of continuous system is a well-developed research field in which various powerful 
solution algorithms are available.  However, it is unlikely that such approximation or 
transformation exists for the optimization of TRN configuration problem due to the complex 
nature of transit network topology.   
 
A great deal of research work has been done in the area of transit network optimization, 
including transit route design, scheduling optimization, or a combination of the two.  The 
methods reported in the literature may be roughly grouped into the following categories:  
 

(1) Mathematical optimization based approaches; 
(2) Heuristic approaches; 
(3) Genetic algorithm (GA) based approaches; 
(4) Knowledge-based expert system (KBES) based heuristic approaches; and 
(5) Other methods. 
 

Mathematical optimization approaches include mainly two classes of optimization: traditional 
gradient based approaches that mainly deal with problems with continuous variables or 
discrete/integer variables that could be approximated by or related to continuous variables, and 
those that deal with integer optimization and/or combinatorial optimization.  Heuristic 
approaches are widely used in transit planning since they utilize planners’ knowledge, past 
experience, and physical intuition to incrementally improve existing systems.  They are easy to 
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understand and always produce reasonable solutions, but may not be transferable to other 
systems. Genetic algorithm based approaches are conceptually closed to mathematical 
optimization.  However, it may be more convenient to consider them as a separate group of 
approaches since these methods use solution search schemes/algorithms that are quite different 
from those used in the traditional mathematical approaches.  KBES is a branch of Artificial 
Intelligence (AI) and has been widely applied in various fields with great success.  KBES based 
heuristic approaches attempt to simulate the decision making process by formalizing the 
knowledge and heuristic rules used by transit planners in designing bus route network, which 
serve to quickly narrow down the search space and to find reasonable solutions.  
 
The above method of categorizing various solution approaches for transit route network design 
in the literature is merely designed for the convenience for this study.   There are other ways to 
group the different methodologies.  The choices made to identify various approaches reflect in 
part personal taste/opinion, or expertise, and in part a preference depending on 
researchers/planners' emphases, goals, or sometimes convenience to describe and compare 
different approaches.  For example, Chua and Silock (1982) identified the following approaches 
to transit network restructuring and optimization: 
 

(1) Manual approach using service standards and guidelines; 
(2) Systems analysis using standard travel demand and trip assignment models; 
(3) Market analysis using manual trip assignment for corridors or small service areas; 
(4) Systems analysis with interactive graphics;  
(5) Heuristic procedures; and  
(6) Mathematical optimization. 
 

This categorization also reflects the historical evolution of transit network design methods in the 
past. 
 
Baaj (1990) characterized different approaches based on the formulation or methods used in the 
following design components/stages: objective function, demand, constraints, passenger 
behavior, and solution techniques.  Shih and Mahmassani (1994) included two more features: the 
decision variables and service types.  Another classification used by Ceder and Israeli (1997) 
was as follows: 
 

(1) Simulation models that simulate passenger flow; 
(2) Ideal network methods; and  
(3) Mathematical programming models. 
 

Due to the complexity in transit network design, there are no clear boundaries between different 
approaches.  A method based on mathematical optimization formulation may incorporate 
heuristic guidelines to limit its search space to obtain solutions with limited computing power.  A 
method based on certain heuristic guidelines or criteria may also employ mathematical 
programming techniques in one or more of its design stages or components.  An approach is 
considered as a mathematical optimization approach if the problem is formulated as a 
mathematical optimization problem on a relatively complete solution search space.  
Mathematical (or generic) heuristic search algorithms may then be introduced in order to make 
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the resultant system solvable with available computer resources.  Here mathematical heuristic 
search algorithms refer to those search methods that are less domain knowledge specific and 
have been used in a wide range of network applications.  Examples of such algorithms include 
greedy type algorithms, hill climbing algorithms, nearest-neighbor algorithms, simulated 
annealing approaches, Tabu search algorithms, and so on.  Descriptions of various mathematical 
heuristic algorithms may be found, for example, in (Aarts and Lenstra 1997, Bertsekas 1998, 
Gould 1988, Hillier and Lieberman 1986, Nemhauser and Wolsey 1988).   
 
An approach is considered a heuristic approach if domain specific heuristic guidelines or criteria, 
mostly based on transit planners’ past experiences, are first introduced to establish a solution 
strategy framework, usually consisting of several solution stages, and at each or some of the 
stages, mathematical optimization or other solution techniques are employed to obtain the best 
results.  The main difference between these two types of approaches lies in the fact that the 
mathematical optimization approach formulates the problem on a solution space that, 
theoretically, should include all possible solutions.  Heuristic guidelines or algorithms are then 
applied to reduce the search space size.   In contrast, the heuristic approach formulates a problem 
directly on possible solution sub-spaces defined based on heuristic guidelines.  Mathematical 
programming techniques or other solution means may be then used to find the best solution from 
the solution sub-spaces.  It is inevitably that some approaches in the literature may qualify as 
both mathematical programming and heuristic approaches, while some other methods may not be 
considered as either.    
 
Table 2.1 provides a summary of the main features of some of the approaches reported in the 
literature where Math Opt. stands for mathematical optimization, GA for genetic algorithm, NN 
for neural networks, AI for artificial intelligence, and Gen. for generalized.  The fifth column 
classifies the solution approaches.  H&M (Heuristic and Mathematical) indicates that the 
solution was first established based on a heuristic framework but certain mathematical 
optimization methods were employed at some design stages to reduce solution spaces.  It is not 
surprising that most of the approaches in the table fall into this class (as are in the literature).   In 
column 7, titled Constraints, HG means heuristic guidelines. 
 
The next three sections describe the various methods used in transit route network design and 
related research fields, especially those that are relevant to the optimization of transit network 
configurations that minimize transfers.   The review focuses on various approaches that have 
been used in TN design processes and those with good potentials to improve TN design 
procedures and results.  The purpose is to investigate the applicability, maturity, and the potential 
for further improvements of the various methodologies currently used in transit planning field.  
Detailed description and comparison on various individual authors’ work on transit planning 
fields may be found in (Baaj 1990, Shih and Mahmassani 1994, Axhausen 1984), among others. 
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Table 2.1 Main Features of Some Approaches Used in Transit Network Design 
Year Author Optimization 

Objectives 
Design 

Variables 
Solution 

Approaches 
Service 
Types Constraints Others 

1967 Lampkin & 
Saalmans Gen. user time Route & 

frequency H&M Fixed route 
& schedule 

Operating 
cost 

Transfer 
considered

1974 Silman et al. Gen. user cost Route & 
frequency H&M Fixed route 

& schedule 
Operating 

cost 
Transfer 

considered

1976 Mandl Gen. Time Route H&M Fixed route 
& schedule 

Route 
coverage, 
directness 

Transfer 
considered

1979 Dubois et al. Gen. user time Route & 
frequency H&M Fixed route 

& schedule 
Operating 

cost 
Transfer 

considered

1988 Van Nes et al. No. of direct 
trips 

Route & 
frequency H&M Fixed route 

& schedule 
Operating 

cost, flee size 

Transfer 
considered 

(simple 
examples) 

1981 Hasselström Cost & user 
benefit 

Route & 
frequency H&M Fixed route 

& schedule 
Operating 

cost 
Transfer 

considered

1990 Baaj Multi-object 
approach 

Route & 
frequency H&M Fixed route 

& schedule 

Multi-
constraints 

(HG) 
–  

1991 Israel & Ceder Gen. time & 
fleet size 

Route & 
frequency H&M Fixed route 

& schedule – – 

1991 Bander Optimal path Route 
itinerary 

Math dynamic 
programming

Fixed route 
& schedule – 

Formulation 
and 

discussion 

1992 Baaj & 
Mahmassani 

Route 
network AI-

based 
representation 

Transit 
network 
design 

AI  
Multi-

constraints 
(HG) 

Formulation 
and 

discussion 

1992 Bookbinder & 
Désilets 

Disutility 
function 

reflect transfer 
inconvenience 

Timetable 
& headway 
(offset time 
variables)

Math Opt. 

Fixed route 
& schedule 

(random bus 
travel times)

HG 
Formulation 

& simple 
examples 

1994 Shih & 
Mahmassani 

Multi-object 
approach 

Route & 
frequency Heuristic 

Fixed route 
& variable 
schedule 

Multi-
constraints 

(HG) 
– 

1995 Baaj & 
Mahmassani 

Multi-object 
approach 

Route & 
frequency

Hybrid AI 
heuristic – Multi-

constraint 
Transfer 

considered

1995 Hill & Fu 
Total 

expected 
waiting time 

Headway, 
transfer 
time, & 
schedule 

Math Opt. 
stochastic  

Fixed route 
& schedule – 

Theory with 
ideal 

examples 

1998 Bruno et al. 
Gen. cost to 
access rapid 
transit line 

Location of 
a rapid 

transit line

Math Opt. 
dynamic 

programming

Fixed route 
& schedule 

Route 
connectivity, 

coverage, 
etc. 

Multi-
transit 
models 

1998 Pattnaik et al. 
Gen. time 
(user & 

operator) 

Route 
network GA Fixed route Frequency, 

load factor – 
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Year Author Optimization 
Objectives 

Design 
Variables 

Solution 
Approaches 

Service 
Types Constraints Others 

1998 Janarthanan & 
Schneider 

Increase 
productivity 
of TNWD  

Knowledge 
based 
design 

parameters 

AI-KBES 
 Various Various 

Applied to 
prototype 
problem 

1999 Soehodo & 
Koshi 

Gen. social 
cost 

Route & 
frequency H&M – – Transfer 

considered

2001 Caramia 
Travel time & 
management 

cost 

Route 
network & 
vehicle No.

GA & NN – – Applied to  
real case 

2002 Bielli et al. Total operator 
and user cost 

Route 
shape & 
headway 

MATH – – – 

2003 Chien et al. Transfer 
directness 

Route 
network MATH – 

Route length, 
waiting time, 
load factors, 

etc.  

– 

 
2.2 Mathematical Optimization Techniques 
 
Optimization is a process or a technique to search for the best solution for a problem or a 
procedure as effective, perfect, or useful as possible.  In mathematical terms, optimization is a 
technique for finding a maximum/minimum value of an objective function of several variables 
subjecting to a set of constraints.  For transit network design problems, mathematical 
optimization is usually formulated as constrained mixed integer optimization problems, which 
are usually combinatorial problems.  The resultant systems are then solved with the appropriate 
linear/nonlinear programming or other techniques.  For combinatorial TN design problems with 
a large number of integer variables, heuristic algorithms and certain relaxation or approximation 
schemes are usually applied to either reduce the size of the search space or transform the 
problem at hand to another solvable problem. 
 
The TN design optimization problem may be stated as the determination of a set of transit routes 
and/or associated frequencies, subject to a set of constraints, to achieve the desired objective(s) 
that minimizes the overall cost and other objectives that have impacts on the overall ridership of 
the transit system. The overall cost is generally a combination of user and operator costs.  Other 
objectives may include minimizing the number of transfers, waiting time, and so on.  Constraints 
are usually expressed as inequality conditions, such as the maximum allowable bus headway, 
vehicle load factor, bus fleet size, maximum route length, number of routes, and the integrality 
restrictions on some or all the variables, as well as other requirements related to transit polices. 
 
Compared with other methods used in transit network design, mathematical optimization based 
solution approaches usually have a more complete solution search space and rigorous problem 
statements.  Results from a properly defined mathematical model are usually not biased toward 
any existing route networks.  The theory behind the solution algorithms, such as various linear or 
nonlinear programming techniques and mathematical heuristic algorithms developed based on 
graph theory and combinatorial optimization research, is relatively mature and has been applied 
successfully in various fields such as air traffic control, operations research, telecommunication 
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network design, electric power system scheduling and distribution, and so on for a long time.  
There are a variety of available solution algorithms and/or program code in the literature and 
market (Mor and Wright 1993, Bertsekas 1998, Bertsekas 1991, Gould 1988, Nemhauser and 
Wolsey 1988).  Under appropriate conditions such as continuity, once or twice differentiable 
conditions of the objective functions, unknowns or design parameters, convex problem defined 
domains, etc., the mathematical optimization based methods usually can give more accurate 
results than other methods.  It is well accepted that the mathematical programming approaches 
have the potential to become powerful and systematic tools for complicated TN design problems.   
 
The existing mathematical optimization methods, however, have a number of disadvantages.  
Firstly, conditions to guarantee a stable, rapid convergence to a unique global optimal solution 
are usually quite strict.  Such conditions include, for example, the existence of the first and the 
second order derivatives of the objective functions with sufficient smoothness, convex feasible 
search regions usually defined by various inequality constraints, Kuhn-Tucker conditions, and 
solution search space sizes computationally feasible for available computer resources (CPU time 
and storages) (Sheffi 1985), and so on.  The necessary condition for an optimal solution to exist 
is related to the characteristics of the first order derivative (or the gradient matrix for multi-
variable problems) of the objective functions.  This condition is sometimes called the first order 
condition.  The sufficient condition of an optimal solution is related to the characteristics of the 
second order derivatives (or the Hessian matrix for multi-variable problems).  These two 
conditions are sometimes referred to as the first and the second order conditions for an 
optimization system.  For practical problems, to meet the above conditions or their 
approximations may require rigorous mathematical derivation and cumbersome regularity 
schemes.  
 
Secondly, the overall (solvable) condition of a mathematical optimization system derived from a 
TN design problem may be sensitive to the setting of certain design parameters.  For example, 
Newell (1979) illustrated nonconvex optimization example by studying the effect of the rider's 
waiting time to the resultant system (for a description of non-convexity please refer to Appendix 
A).  Other factors such as various constraints may also result in a nonconvex system.  Existing 
literature does not provide information on rigorous mathematical analyses or methodologies to 
avoid or to deal with factors that result in a nonconvex system.  For a nonconvex optimization 
system, an optimal solution from the minimization process is not guaranteed.  A solution may 
only be a local optimal solution (stationary or saddle point solution, to be more accurate) near the 
initial guess network provided by the user.  A global optimal solution must be chosen from all 
the possible local optimal results.  For complex problems, there seem to be no effective ways to 
systematically locate all the possible regions where local optimal solutions may occur.  
Consequently, in engineering practices a reasonable near- or sub-optimal solution may have to be 
accepted.  
 
Finally, due to the need to search for optimal solutions from a large search space made up by all 
possible solutions, the resultant mathematical optimization systems derived from realistic mixed 
combinatorial TN design problems (e.g., problems involving both transit network configuration 
and other parameters such as bus frequency and bus feeder assignments) are usually NP-hard 
(Bertsekas 1998, Nemhauser and Wolsey 1988, Magnanti and Wong 1984).  The term “NP-hard” 
refers to problems for which the number of elementary numerical operations (comparison, 
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addition, subtraction, multiplication, etc.) or computer CPU time needed to solve the problems is 
not likely to be expressed or bounded by a polynomial function of form p(l, n, m, fi), where l, n 
and m may represent, in a TN design optimization problem for example, the number of bus 
routes, the number of possible transit stops, and the number of street segments of the street 
network system, and  fi (i = 1, 2, … k) are unknown parameters such as bus frequencies defined 
on the transit route network.  Problems or algorithms for which the worst-case measure of the 
number of elementary operations or CPU time needed to obtain solutions can be expressed in 
polynomial forms are called problems or algorithms with polynomial time complexity (PTC).  
Any problems for which no polynomial algorithms exist are called intractable problems, or 
problems with intractable time complexity (ITC).  An example of the ITC class of problems is 
the exponential time complexity (ETC) problem, where the number of required elementary 
operations is an exponential function, such as ap (l, n, m) (a > 1).  There are other kinds of problems 
that sit between the PTC and ITC classes.  The non-deterministic polynomial (or NP time 
complexity) problems/algorithms, including NP hard and NP complete problems2, belong to 
these classes of problems (Garey and Johnson 1979).  Table 2.2, fashioned after the one from 
(Gould 1988), illustrates the time required for solving problems of various time complexity 
classes with respect to problem sizes n.  For a particular problem, n usually represents the 
number of unknowns, nodes, degrees of freedom, or the size of the data set.  The time 
complexity order (TCO) in Table 2.2, where TCO = O(f(n)) and f(n) = n, n2, n3, 2n, or 3n, 
represents the number of operations required to solve a problem of size n, and the symbol O(f(n)) 
(read big oh of f(n)) represents the order of f(n), or to be more specific, O(f(n)) = c f(n) where c is 
a nonzero constant.  To illustrate, Table 2.2 assumes c = 1 and that one operation requires an 
average of 0.000001 second.  The problems described in the first three rows are in the PTC class 
because the numbers of operations of the problems can be expressed in terms of polynomial 
forms of the associated problem size n, i.e., the linear polynomial form TCO = n, the quadratic 
polynomial form TCO = n2, and the cubic polynomial form TCO = n3.  The CPU times required 
to solve these three PTC class problems for n = 10, 30, 50, and 100 are also given in the table.  
The last two rows are problems in the ITC class, or precisely, in the ETC class.   It may be seen 
that as the problem size increases, the CPU time required to solve these two ITC class problems 
increases exponentially.  For n = 100, which is a relative small number for a practical TN design 
problem, the CPU time is 248 centuries for TCO = 2n and 370 centuries for TCO =3n.  Such 
numbers are in astronomical order, and are intractable for any existing computers. 
 

Table 2.2  Comparisons of Solution Time for Various Time Complexity Classes and 
Problem Sizes 

                                 Problem Size Time 
Complexity   

Order (TCO) n = 1 n = 30 n = 50 n = 100 

O(n) 0.00001 sec 0.00003 sec 0.00005 sec 0.0001 sec 
O(n2)  0.0001 sec 0.0009 sec 0.0025 sec 0.01 sec 
O(n3)  0.1 sec 24.3 sec 5.2 min 2.7 hr 
O(2n)  0.001 sec 17.9 min 35.7 yrs 248 cent 
O(3n)  0.059 sec 6.5 yrs 2 × 108 cent 370 cent 

 Notes: sec – seconds; yrs – years; cent – century 
                                                 
2   The terms NP hard and NP complete both refer to the hardest or most difficult problems in NP classes.  NP hard 
usually refers to optimization problems while NP complete is for decision problems. 
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An example of the PTC class problem is the multiplication of two matrices of order n, C = AB.  
Following the typical rules for matrix multiplication, the element of the resultant matrix C is 
expressed as:  

     ∑
=

=
n

k
kjikij bac

1
. 

 
It is easy to see from the above expression that the calculation of cij involves n multiplications, 
and n-1 additions.  Since there are n2 entries in matrix C, i.e., cij (i = 1, 2, …, n), the matrix 
multiplication algorithm requires a polynomial form of p(n) = n2(n + n – 1) = 2n3 - n2 operations 
to complete the task.  Thus the time complexity order of this problem is  
 
     TCO = O(p(n)) = O(2n3 - n2) = O(n3). 
 
As a cautionary note, the term time complexity order or computational intractability that is used 
to describe a problem, an approach, or an algorithm is only an asymptotic estimate to the 
solvability of a problem, and is usually based on the worst-case scenarios.  It may only be true 
when the size of the problem becomes very large, which may not be the case for a particular 
practical problem at hand.  Some simplex algorithms are probably in the exponential time 
complexity category (Evans and Minieka 1992).  However, various simplex algorithms have 
been widely used to solve practical mathematical programming problems of realistic sizes. 
 
Combinatorial TRN design optimization problems are usually at least in NP class since 
polynomial-time algorithms for finding optimal solutions are unlikely to exist.  Some TRN 
algorithms are ITC because the number of elementary operations or the CPU times is usually in 
the order of exponential time complexity, such as 3p(n,m).  An example of ITC problem for TRN 
design is illustrated in Figure 2.1.  The solid line and black circles represent an existing bus route 
and its stops/nodes, while the white circles and doted lines show the possible bus stops/nodes and 
the street segments near the bus route.  Assume that one would like to find the bus route 
configuration with the minimum travel impedance from bus stop 1 to stop n by evaluating all the 
possible bus routes near the existing one.  Note that a route with minimum travel impedance may 
not be the route with the shortest distance since the travel impedance usually includes the effects 
of roadway functional class, traffic congestion, delays at intersections, and other factors that 
resist or slow down traffic flow.  It may be easily seen that the total number of all possible bus 
routes in Figure 2.1 should be a finite number.  Exhaustive search schemes, such as the 
exhaustive enumeration (checking the feasibility of every possible solution and comparing 
feasible solutions’ objective function values to find the minimum), should guarantee a global 
optimal for any optimization problems based on a finite solution space.  To estimate the number 
of all possible bus routes based on the existing bus route r(1, 2, … n), one may use the procedure 
bellow. 
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Figure 2.1 A Transit Route and Neighboring Street Network  

 
1. Start from the existing bus route r(1, 2, …, n): 

a) Keep all nodes on the existing route fixed except node 1. 
b) Adjusting node 1 to obtain the following additional routes. 

(1) Option 1: r(1, 1a, 2a, 2,…, n)  
(2) Option 2:        r(1,1b, 2b, 2,…, n)  
 

2. For any of the three bus routes in Step 1: 
a) Keep all nodes on the existing route fixed except node 2. 
b) Adjusting node 2 to obtain the following routes, noting that one could obtain two 

new routes from each of the three existing routes in Step 1, thus there are six new 
routes resulting from this step: 
(1) Option 1: r(1, 2, 2a, 3a, 3,…, n)  
(2) Option 2: r(1, 2, 2b, 3b, 3,…, n)  
(3) Option 3: r(1, 1a, 2a, 3a, 3,…, n)  
(4) Option 4: r(1, 1a, 2a, 2, 2b, 3b, 3,…, n)  
(5) Option 5: r(1, 1b, 2b, 3b, 3,…, n)  
(6) Option 6: r(1, 1b, 2b, 2, 2a, 3a, 3,…, n)  

3. For any one of the six bus routes obtained in Step 2 and three bus routes obtained in Step 
1 (nine altogether): 
a) Keep all nodes on the existing route fixed except node 3. 
b) Adjusting node 3 to obtain 18 new routes since, as in Step 2, one could obtain two 

new routes from each of the nine existing routes in steps 1 and 2.  Thus there are 18 
new routes resulted in this step.   

 
4. Repeat the procedures described in Step 2 and Step 3 to node 4 through node n-1. 

 
The total number of possible bus routes based on this procedure may be calculated.  Since at the 
kth step, the total number of possible bus routes is Sk = Sk-1 +2Sk-1 = 3Sk-1, where Sk-1 and Sk are 
the total numbers of possible bus routes at (k – 1)th and kth steps, respectively, and from Step 1, S1 
= 3,  the total number of possible bus routes at the last step, i.e., Step n - 1, will be 
 
  Sn-1 =3Sn-2 = 3( 3 Sn-3 ) = 32Sn-3 = 33Sn-4  = … = 3n-2S1 = 3n-1. 
 
Thus, the problem of finding the bus route with minimum travel impedance by evaluating all 
possible bus routes is exponentially intractable with the time complexity order TCO =3n-1.   For n 

1a 2a ia na 

1b 2b ib nb 

1 2 i n 
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= 100, a reasonable number of bus stops for an urban bus route, the CPU time required to 
evaluate all the 399 alternative paths, with the current computing technologies, may be well over 
the age of the universe, which is believed to be about 140 billion years old.  
 
For a network of a realistic size, the number of bus routes or lines l, the number of possible bus 
stops n, and the number of street segments m, may be in the order of hundreds or thousands.  
Thus, the selection of an optimal transit route network structure through an exhaustive search 
scheme or any search scheme with completeness may involve computer operations or CPU time 
of astronomical proportions (Newell 1979, Garey and Johnson 1979).  Domain specific heuristic 
search schemes, either mathematical or physical, may have to be introduced into a mathematical 
optimization process to improve the solvability of a problem. 
 
It is worthwhile to point out that the above mentioned difficulties in the current mathematical 
optimization approaches are not a result of the mathematical optimization formulation, which 
merely simulates/represents the physical reality of the transit network system.  The nonconvex 
thus non-uniqueness of the optimal solution due to various local optima as well as the large 
search spaces is inherent from the complicated and combinatorial nature of TN design physical 
reality.  Other approaches will encounter the same difficulties as the size of their possible 
solution search spaces increases.  Due to the significant computing time, existing mathematical 
optimization solution approaches to TN design problems are usually applied to relatively small 
and idealized networks for small urban areas or medium-sized urban areas with coarse networks.  
The route network structures may also be limited to certain particular configurations where 
solution uniqueness or convexity may be recovered, such as many-to-one, one-to-many, or spinal 
network structures, etc.  However, while applications of mathematical optimization to large 
realistic transit network design problems are limited thus far, it has been quite successful in other 
related fields, e.g., operations research, electric power scheduling and distribution, etc.  Large 
systems that involve millions of unknowns and constraints have also been solved successfully 
(Bertsekas 1998). 
 
Previous research in TN design that involves various mathematical optimization techniques, 
either partially or whole, includes, among others, the work by Lampkin and Saalmans (1967), 
Byrne and Vuchic (1972), Silman et al. (1974), Byrne (1975), Rapp and Gehner (1976), Dubois 
et al. (1979), Mandl (1979), Hasselstrom (1981), Oudheusden et al. (1987), Oldfield and Bly 
(1988), LeBlanc (1988), Kuah and Perl (1988), Désilets (1989), Chang (1990), Norojono (1990), 
Israel (1990), Bookbinder and Désilets (1992), Hill and Fu (1995), Ceder and Israel (1997), and 
Soehodo and Koshi (1999).  Most of these studies introduced some heuristic criteria or certain 
simplification assumptions to limit the solution search space or to reduce the optimization 
objectives to a particular network structure or a few design parameters, e.g., route spacing, route 
length, stop spacing, bus size, bus headway or frequency, and rider waiting times.  Additionally, 
most of the studies were also based on predetermined route network structures.  Additional 
information on and reviews of various mathematical optimization approaches may be found in 
(Chua 1984, Axhausen and Smith 1984, Baaj 1990, Soehodo and Koshi 1999). 
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2.3 Traditional Heuristic Approaches 
 
2.3.1 Overview 
 
Heuristic approaches, or the traditional heuristic approaches, have been used for bus route 
network design for a long time and may be traced back many decades to the time of the earliest 
bus transit systems.  They are still the most widely used methods in transit planning and route 
network design problems.  The term “traditional” here describes various heuristic approaches 
used in transit planning that are to be distinguished from mathematical heuristic algorithms in 
graph theory and in various mathematical combinatorial research fields, and from AI-based 
heuristic approaches.  The main differences between these heuristic methods are that traditional 
heuristic approaches are strong domain-specific and depend heavily on personal knowledge and 
experiences, while mathematical heuristic algorithms are relatively less domain-specific since 
these methods usually apply to a variety of applications in different fields with little or no 
modifications in their basic search criteria and principles.  Examples of various mathematical 
heuristic methods that have been widely used in engineering, economics, social and natural 
sciences include greedy algorithms, nearest neighbor algorithms, depth-first, breadth-first, best-
first search schemes, rollout algorithms, Tabu search methods, and simulated annealing methods, 
and so on (Bertsekas 1998, Wolsey 1998).  AI-based heuristic approaches are also strongly 
domain-specific.  However, the focus of these methods is the organization of domain knowledge 
and automated reasoning processes, and a particular heuristic solution scheme may be only a part 
of a complete AI-based solution process.   Ideally, an AI-based heuristic approach should include 
any solution algorithms appropriate to the problem at hand.   
 
Mathematically, heuristic methods are a solution technique that improves the search efficiency or 
solvability while possibly sacrificing claims of completeness.  It is a practical tool for problems 
of which the search space is too large or for which there are no appropriate ways to define a 
complete search space.  Unlike mathematical optimization approaches where the formulation is 
intended to, theoretically, find the global optimal solution, heuristic approaches are usually 
formulated to obtain a local optimal, a sub-optimal, or any solutions that result in certain 
improvements over existing ones.  Pearl (1984) defines heuristics methods as “criteria, methods, 
or principles for deciding which among several alternative courses of action promises to be the 
most effective in order to achieve some goal.”  Heuristic methods are usually problem dependent 
since their search criteria, principles, and guidelines are domain or problem specific.   
 
In TN design, heuristic approaches are usually a combination of applications of guidelines and 
procedures for route selections and bus frequency/headway determination, based on criteria 
established from past experiences, ridership and demand data, cost and feasibility constraints, 
intuition of the transit planners, as well as some policies out of certain social and/or political 
considerations.  The route network structures obtained from heuristic approaches tend to be of 
certain types that are intuitive and conceptually easy to understand or accept by planners.  They 
are usually shaped by historical reasons or affected by existing systems that have evolved 
gradually with demographic changes in the urban areas they serve.  Typical network types 
include, for example, radial networks, grid networks, trunk/feeder or transit-corridor networks, as 
well as transit-center networks (Toliver et al. 1989).  
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To date, especially with the rapid development in computer techniques, the heuristic approaches 
have experienced significant advances.  A heuristic approach in TN design may include several 
design stages or components.  At each stage, sub-design problems are usually formulated.  
Depending on the complexity of the sub-problems and the availability of the associated solution 
tools, solutions are obtained based on heuristic guidelines, analytical formulation, or 
mathematical programming techniques.  Typical design goals of sub-problems may be, for 
instance, route network skeleton, bus route network spacing, bus stop spacing, headway, transfer 
times, waiting time, or transit network reconfiguration.  Results from different design stages are 
then evaluated and modified iteratively in each design cycle and interactively between different 
design stages using heuristic guidelines (Shih and Mahmassani 1994, Baaj 1990). 
 
The advantages of heuristic approaches are several.  Firstly, they are always able to provide 
feasible solutions to TN design problems of any size.  For instance, given a problem of a realistic 
size, the issue concerning a heuristic approach is mainly the effectiveness of its solution, or the 
improvement of its solution over existing ones.  In contrast, the challenge for a mathematical 
optimization problem is often whether or not the problem can be solved with existing computer 
resources. 
 
Secondly, the formulation and/or solution strategy of each design stage is relatively independent 
to others, thus making it easier to adopt a solution method that best fits a particular design goal 
or stage, such as linear or nonlinear programming methods for bus route network generation 
(mostly bus route network skeleton or certain predefined configurations), analytical solutions for 
bus route frequency design, and stochastic methods for estimating waiting time, etc.   
 
Thirdly, it is relatively easy to incorporate various constraints into the solution procedures, since 
heuristic approaches usually select solutions from a possible solution space that already meet 
most of the design constraints.  Finally, it is relatively easy to deal with issues or design 
requirements due to political reasons, such as concerns in social fairness regarding coverage of 
transit route network, traffic flow, noise level, and so on.  
 
Heuristic approaches also have disadvantages.  The main disadvantage of heuristic approaches is 
that their results are almost certainly not global or even local optimal.  This may be attributed to 
the fact that search schemes in heuristic approaches are usually ad hoc procedures based on 
computer simulations of human transit design processes guided by heuristic rules.  The 
corresponding search spaces are usually not clearly defined and the search results are likely to be 
biased toward existing systems or any systems on which the set of design heuristics are based.  
Moreover, heuristic approaches usually decompose complex TN design problems into several 
manageable sub-problems, and appropriate solution schemes and/or approximate assumptions 
are then applied to these sub-problems.  However, a solution that has optimal performances 
separately at different design stages or based on particular route network configuration may not 
necessarily be the optimal result.  Although solutions from various heuristic approaches have 
been described as local optima or sub-optima, performances of various heuristic approaches in 
the literature are usually evaluated or judged by improvements, sometimes in terms of 
percentages of changes of certain design parameters over existing systems, which may not be 
valid statements on the optimal-ness of the results.       
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Literature on various heuristic approaches may be found, among others, in (Lampkin and 
Saalmans 1967, Rea 1972, Silman et al. 1974, Mandl 1979, Dubois et al. 1979, Hasselstrom 
1981, Ceder and Wilson 1986, Van Nes, et al. 1988, Baaj 1990, and Israeli and Ceder 1991).  A 
thorough review of various heuristic approaches, including mathematical optimization methods, 
may be found in (Baaj 1990, Axhausen 1984, Chua and Silcock 1982). 
 
The next two subsections provide a brief description of several heuristic methods that have been 
applied to practical transit network design problems for medium-sized and relative large transit 
service areas.  The studies have been well documented including detailed descriptions of solution 
algorithms, heuristic guidelines, and, most importantly, computer code and input data sets.  
These methods have been used or tested for practical transit network design problems, although 
some are quite simplified.  The work summarized here seems to be well acknowledged in the 
transit planning research community, thus may serve as a good starting point as well as 
benchmarks for this study. 
 
2.3.2 Mandl’s Method 
 

(1) Mandl (1979, 1979a) developed a heuristic algorithm for urban transit network design.  
The method was applied to a coarse transit network design problem based on a real 
network in Switzerland.  Mandl’s problem was a small and dense network of 15 nodes 
with a total demand of 15,570 trips per day, a relatively high demand density for the 
small network.  The travel time between the two farthest nodes in the network was 33 
minutes along the shortest path.  The network connectivity of Mandl’s problem is shown 
in Figure 2.2, where each transit node is labeled by an integer, and the in-vehicle travel 
time in minutes between adjacent connected node pairs is indicated next to the 
corresponding street segment.  The transit demand matrix for the 15 transit nodes is also 
illustrated in Figure 2.2.  The matrix shows the average number of passenger trips per day 
between each transit node pair.  Figure 2.3 illustrates Mandl’s final solution network.  
Important measures of Mandl’s solution network included, for example, 100% service 
coverage, 69.94% of the trips involving no transfers, 29.93% of the trips involving one 
transfer, and only 0.13% of the trips needing more than one transfer.   Mandl’s work has 
been widely cited by researchers.  Axhausen (1984) tested Mandl’s algorithm to a transit 
network based on data from Madison Metro to evaluate the feasibility of Mandl’s 
algorithm for transit networks of a different size and configuration.  Baaj and 
Mahmassani (1991) and Shih and Mahmassani (1994) applied Mandl’s algorithm and 
testing problem as a benchmark to test their solution frameworks and results.  
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Figure 2.2 Mandl’s Swiss Network and Transit Demand Matrix  

(Reproduced from Mandl 1979) 
 

Mandl’s transit network design approach consists of two stages.   During the first stage, a 
feasible initial route network is generated.  The emphases are service coverage and directness.   
The solution procedures at this stage may be summarized bellow. 
 

(1) Find the shortest paths between all connected transit nodes to form a possible solution 
space.  This is achieved via a mathematical optimization algorithm.   

 
(2) For each transit node pairs, select one shortest path from all possible shortest paths, 

which may be more than one, following heuristic guidelines. 
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(3) Create initial transit routes/lines by connecting selected transit node or terminal pairs   
following heuristic guidelines. 

 
(4) Check service coverage, and add unserved nodes (nodes that are not connected to a 

transit route) to appropriate existing routes or create new routes with the unserved nodes 
as route terminals. 

 
Geometrically, the above algorithm should always produce a feasible route network although it 
may not be the best one.  The second stage of Mandl’s method tries to minimize an objective 
function of total travel time, including in-vehicle and waiting times, following a hierarchical, 
iterative procedure.  The limitation of Mandl’s method is the lack of consideration of the demand 
pattern during the route construction stage.   
 

 
Figure 2.3 Route Network Layout by Mandl’s Algorithm 

(Reproduced from Mandl 1979) 
 
2.3.3 Shih and Mahmassani’s Method  
 
Shih and Mahmassani (1994) developed a heuristic framework and computer based procedures 
for transit network design.  Their work is based on earlier work of Baaj (1990) and Baaj and 
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Mahmassani (1991) with the consideration of (a) the ability to identify transfer centers and 
incorporate the transfer center concept into the network design process; (b) provision of 
alternative design concept including conventional and coordinated bus schedules, as well as 
timed-transfer concepts; (c) allowing the option of variable vehicle size.   Creation of transfer 
centers is one approach to minimize transfer times by selecting appropriate locations (often 
major employment or activity centers) in a transit network where a large number of transit lines 
(including trunk and feeder lines) will converge or intersect and by coordinating the transit 
vehicle arrival and departure times so that waiting time for passengers may be minimized.  
Design of a transit network with this approach involves identification of transfer center locations, 
modification of transit routes, and redesign of schedules.  
 
 
Shih and Mahmassani’s approach consists of the following design stages or components.  
 

(1) Route Generation Procedure (RGP) 
 

The RGP was evolved from earlier work by Baaj and Mahmassani (1991) with the    
incorporation of the transfer center concept.  It is a typical example of heuristic route 
network design.  First, it generates a possible route network solution space by connecting 
all the transit demand node pairs with the shortest paths.  It provides options to include 
modified or alternative shortest paths to expand the solution space.  Next, it begins to 
query the planner for service directness, transit coverage level, and other appropriate 
input or data that could be used to define the initial network skeletons, such as transit 
node pairs that can possibly serve as transit centers and node pairs with high demand 
values.  The network skeletons are then expanded to more detailed route network 
iteratively via various node selection and insertion strategies guided by the transit 
planner’s knowledge and expertise.  The RGP terminates when the objectives of the 
transit system coverage and service directness are achieved.  

 
(2) Network Analysis Procedure (NETP)  
 

The NETP consists of a series of iterative procedures for trip assignment, bus vehicle 
sizing, frequency setting, and computation of various system performance measures.  
Values of various transit design parameters such as bus fleet size, route frequencies, 
vehicle sizes and other measures reflecting service quality, system utilization, and user 
and operator costs are provided by the route network results from RGP.  The NETP could 
also be used for transit system evaluation by comparing various parameters obtained from 
the NETP with a set of parameters either from an existing system or from earlier 
iterations.  

 
(3) Transit Center Selection Procedure (TCSP) 
 

The TCSP selects feasible transit node pairs as transit centers according to certain 
heuristic criteria that reflect commonly used guidelines for transfer centers.  Criteria 
identified by the authors include: (a) proximity to a major activity center; (b) location in a 
population cluster or in major community area; (c) reasonable distance from other transit 
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centers; (d) good transfer opportunities; and (e) feasibility considerations such as 
accessibility, land availability, and geographical limitations.  

 
(4) Network Improvement Procedure (NIP) 
 

The NIP seeks to improve a set of routes generated by the RGP that may be economically 
and operationally infeasible.  The route modification acts either at the transit coverage 
level or at the route structure level.  Modifications include route discontinuation, route 
merging, route splitting, and branch exchange of routes.  

 
Shih and Mahmassani’s approach was been tested with Mandl’s small and dense network 
benchmark problem shown in Figure 2.2.   This benchmark problem was also used by Baaj and 
Mahmassani (1991) to test their solution framework (from which Shih and Mahmassani’s 
approach evolved).  Figure 2.4 shows one of the route network layout from Baaj and 
Mahmassani’s algorithm, while Figure 2.5 shows results from Shih and Mahmassani’s network 
layout based on the transit center concept.  Table 2.3 presents a comparison of the results from 
the above different route network design approaches.  Improvements from Shih and 
Mahmassani’s approach over the earlier work by Mandl (1979) and Baaj and Mahmassani 
(1991) included, for example, 82.59% 0-transfer service coverage compared with Mandl’s 
69.94% (Mandl, 1979) and Baaj and Mahmassani’s 78.61% (Baaj and Mahmassani 1991), and a 
total transfer time (penalty) of 13,350 compared with Mandl’s 23,500 (Mandl, 1979) and Baaj 
and Mahmassani’s 16,650 (Baaj and Mahmassani 1991).    
 

Table 2.3  Comparison of Approaches for Mandl’s Benchmark Network Problem 
(Reproduced from Shih and Mahmassani, 1994) 

RGP with Transit Center 
Concept Network Characteristics 

Coordinated Uncoordinated

Baaj and 
Mahmassani’s 

Solution 

Mandl’s 
Solution 

% demand zero-transfer 82.59 82.59 80.99 69.94 
% demand one-transfer 17.41 17.41 19.01 29.93 
% demand two-transfers 0 0 0 0.13 
% total demand unsatisfied 0 0 0 0 
Total travel time (minutes) 225,102 203,936 217,954 219,094 
Total in-vehicle travel time 191,826 170,328 180,356 177,400 
In-vehicle waiting time 20,933 - - - 
Total out-of-vehicle time 19,726 20,058 22,804 18,194 
Total transfer time (penalty) 13,550 13550 14,800 23,500 
Fleet size 87 84 82 99 
Operation cost ($) 4,043.14 3,924.26 3,830.03 4,620.61 
Fuel consumption (gallons) 346.8 336.6 328.52 396.33 
Third set of input design parameters: 70% minimum total demand satisfied without transfers, MD 

node insertion strategy, and shortest path heuristic 
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Figure 2.4 Route Network Layout Case 3 by Baaj and Mahmassani’s Approach 

(Reproduced from Shih and Mahmassani 1994) 
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Figure 2.5 Route Network Layout Cases 1 & 3 by Shih and Mahmassani’s Approach 
(Reproduced from Shih and Mahmassani 1994) 

 
The performance of Shih and Mahmassani’s method was further investigated with an actual 
transit network and data from the transit system of Austin, Texas.  The service area was 
represented by a transit network defined based on 177 transit nodes.  All the 177 nodes were 
selected from an existing transit network consisting of 40 fixed-schedule bus routes.  To obtain 
the demand matrix, which is a critical input data set for any transit network design and is often 
estimated from on-off surveys regularly conducted by many transit agencies, Shih and 
Mahmassani applied Tsygainitzky’s fluid analogy model (Tsygainitzky 1979).   Tsygainitzky’s 
model for generating the transit demand matrix has been successfully tested by Simon and Furth 
(1985) for a single transit line, and has been widely used by transit agencies due to its simplicity 
and relative reliability (Shih and Mahmassani 1994).  However, the accuracy or validity of using 
this model to obtain the demand matrix for a transit network that consists of more than a single 
bus line is unclear.  The network connectivity of Shih and Mahmassani’s problem was defined 
by two lists: a list of various locations and their associated node numbers and a street network 
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list or matrix generated from street links that connected these 177 nodes and that were suitable 
for bus operations.   
 
Figure 2.6 shows a portion of the network node definition list for the Austin problem.  The 
network definition list was obtained by assigning an integer number to each of the physical 
locations of bus stops in the network service area.   Figure 2.7 shows a partial list of the Austin 
transit network’s nodal connectivity array.  The network connectivity array lists all the connected 
neighboring nodes and the corresponding distances for each transit node.   Complete input data 
of this test problem may be found in Shih and Mahmassani’s original manuscript.  Figure 2.8 
shows a part of Austin’s street network.  Several transit nodes that may be used as transit centers 
are also indicated.  These figures show an example of the basic input data needed to perform a 
transit route network optimization task.  The same kinds of data inputs or their approximation are 
also required for this research.  Figures 2.6 and 2.7 show the essential data for transit network 
design optimization task, which must come from field survey or from a transit agency’s network 
database obtained from previous investigation to ensure an accurate simulation of the real world. 
 
To describe the results from the application of Shih and Mahmassani’s algorithm to the Austin 
transit network design problem will require a lengthy discussion on various effects of changes of 
the design parameters such as the relationships between the zero-transfer trips and the system’s 
minimum service coverage, the total in-vehicle and total out-of-vehicle travel times versus the 
level of directness of the system, and so on.  The best solution network in terms of overall 
service coverage and zero-transfer trip coverage gave 98% coverage of the total trips and 80% of 
zero-transfer trips, although the user and operator costs corresponding to such results are unclear.  
A composite indicator that may reflect the overall performance of a solution network seems to be 
needed to characterize the “optimal-ness” of the results corresponding to various parameters’ 
settings. 
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Figure 2.6 Partial List of the Austin Problem’s Transit Node Definition 
(Reproduced from Shih and Mahmassani 1994) 
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Figure 2.7 Partial List of the Austin Problem’s Transit Node Connectivity 
(Reproduced from Shih and Mahmassani 1994) 
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Figure 2.8 Street Network in Austin Area 

(Reproduced from Shih and Mahmassani 1994) 
 
2.4 Heuristic Approaches Using Knowledge-Based Expert Systems 
 
Knowledge-based expert systems (KBES) are one of the AI techniques.  AI is a branch of 
computer science partially rooted in cognitive psychology and attempts to simulate and realize 
human's intelligence abilities on computers.  KBES approaches involve organizing and capturing 
the domain knowledge of one or more experts and using it to establish a knowledge base and 
inference rules, which may then be applied to obtain good knowledge, advice, and tools about 
how to solve particular problems. KBES and related AI tools are widely used in various 
engineering, manufacturing, businesses, and other fields, such as mechanical or structural design, 
diagnosis of structural failures, construction planning/scheduling, medical diagnosis, and so on 
(Giarratano and Riley 1993, Dym and Levitt 1991). 
 
Heuristic methods in transit planning and route network design employ empirically derived 
guidelines/procedures based on criteria established from experiences and intuitions of the transit 
planners to search for near-optimal solutions.  Apparently, a successful heuristic method depends 
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heavily on the knowledge and experiences of capable planners who are not only keenly aware of 
issues arising during transit network design processes, but also capable of formulating and/or 
finding the best mathematical or other solution tools to solve the sub-problems in various design 
stages.  In practice, such experts are rare.  The goal of a KBES is to systematically extract and 
integrate the knowledge related to a design process into a computer program, usually in an 
interactive graphic framework, that will provide suggestions and comparisons of whole or partial 
solutions, diagnosis of problems, or recommendations regarding issues encountered during a 
design or planning process.  A KBES makes the expertise of a few experts available to many less 
knowledgeable and may substantially improve the productivity of the design procedure and help 
search for the best solutions. 
 
While KBESs have become popular and successful in many fields, their applications to transit 
planning and route network design seem to be relatively limited compared with their applications 
in other fields.  Janarthanan and Schneider (1998) investigated the applicability of KBESs to 
transit network design and developed an interactive KBES program to assist in the development 
of high-performance transit network designs.  
 
Baaj and Mahmassani (1995) presented a framework of a hybrid AI/operations research solution 
approach, which combined AI search techniques with vehicle routing heuristics and transit 
system analysis methods.  In a separate research, they developed an AI based representation and 
search algorithms for transit network design to reduce the search space and to obtain solutions 
efficiently.  Other work applying expert systems or related AI tools to transit route network 
problems includes, among others, Baaj and Mahmassani (1990).   
 
The following is a summary of the advantages of KBES based approaches and related AI design 
tools:    
 

(1) They systematically incorporate the knowledge, expertise, experience, and various design 
rules and/or code into a computer "expert system" program.  This allows for persons who 
do not have in-depth knowledge about every aspects of transit planning or route network 
design, or for experienced planners who could not get into details of all the issues 
involved in a design task due to time or resource constraints, to obtain effective solutions.   

 
(2) They allow the users to access various powerful algorithms or procedures developed by 

others, especially those mathematical solution tools developed by people who have in-
depth knowledge in mathematical and/or computer science fields. 

 
(3) Since KBES programs usually operate interactively, they allow the users to quickly 

compare the merits of different results due to changes in one or more design parameters.  
This may be particularly useful to design problems with conflicting objectives. 

 
The disadvantages of an AI based approach include:  
 

(1) It may be expensive to develop a good KBES program since the necessary knowledge 
needs to be first captured from various experts in all the related fields, based on which a 
well designed code/program called a knowledge base must be developed.  The 
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development of a substantial knowledge base may require a team of “knowledge 
engineers” to work with experts from several related fields for a possibly prolonged 
period of time, ranging from several weeks to several years.   

 
(2) Sometimes different experts may provide inconsistent heuristic rules. 

 
(3) To keep the knowledge base up-to-date, continual maintenance may be necessary, which 

may also be costly. 
 
2.5 Optimization Formulations Based on Genetic Algorithms 
 
The last three decades have witnessed an increasing interest in biologically motivated approaches 
like artificial neural networks and genetic algorithms for solving optimization problems 
(Goldberg 1989, Holland 1992, Haupt and Haupt 1998).  Genetic algorithms (Gas) are search 
and optimization methods based on the principle of natural selection, i.e., survival of the fittest.  
The basic idea behind GAs is that individuals and their off-springs that best fit or adapt to the 
surrounding environment have the best chance to survive.  In a typical GA, a population of 
individuals (usually potential solutions) undergoes a sequence of transformation through the 
application of "genetic operators" and a selection process.  Those individuals that best fit the 
surrounding environments (usually defined by a problem's objective functions and constraints) 
will have a better chance to survive the selection process, and their off-springs may have a better 
chance to survive the transformation and selection processes of the next generation.  After some 
number of generations, the solutions converge, and the individual with the best fitness score 
represents, hopefully, the optimum solution of the system.  Detailed descriptions on various GA 
based methods and applications may be found in (Goldberg 1989, Holland 1992, and Haupt and 
Haupt 1998), among others. 
 
Early work on applying GAs to transportation problems includes, for example, Vignaux and 
Michalewicz's work on linear and nonlinear transportation problems (Vignaux 1989, 1991).  In 
the transit planning field, Chakroborty et al. (1995) used GAs in bus route network scheduling 
problems and concluded that genetic algorithm was an efficient tool for similar optimization 
problems in the transportation field.  Pattnaik et al. (1998) applied GAs to urban bus route 
network design problem.  The methods were then applied to a network involving seven to 20 
routes.  Recently, Caramia et al. (2001) presented an iterative scheme based on GA that involves 
neural network (NN) in function evaluation. The goal of their study is to improve the 
performance of existing bus networks by reducing the average travel time and management cost.  
Numerical results for a real world problem indicated that their GA method might be more 
effective in terms of computational time compared with classical assignment method.  
 
The advantages of GA-based methods are summarized bellow. 
 

(1) Unlike the traditional gradient matrix based mathematical solution search schemes, GA 
formulations do not require the calculation of the gradient matrix and any other higher 
order derivative matrices, or their approximation, of the objective function with respect to 
all the unknowns.  The calculation of the gradient matrix or its approximation is a major 
computational burden in the traditional mathematical optimization approaches, and the 
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accuracy and condition of the gradient matrix usually have significant effects on the 
stability, rate of convergence, and accuracy of the finial results of the solution process. 

 
(2) A GA based solution method directly carries out its search on a population of individuals 

(i.e., potential solutions) and the objective functions themselves, not their derivatives.  
Therefore, there is no need to formulate a system of governing equations that represent or 
simulate the relationship between various parameters and unknowns mathematically.  
This is particularly attractive for practical applications where it is difficult to establish 
mathematical formulation to accurately and effectively simulate complex situations.  TN 
design problems are good examples of such cases. 

 
(3) Constraints are relatively easy to incorporate into a GA solution process.  They may be 

simply defined as a part of the environmental conditions or by imposing large penalties 
on individuals that violate certain constraints thus reducing their survival possibility in 
the selection process.  This may be especially suitable to problems where constraints are 
complicated and cannot be properly defined. 

 
(4) GA has been an active research field for the past several decades and results have been 

widely used in various application fields.  There are many existing algorithms and 
computer codes (Haupt and Haupt 1998). 

 
GAs also have two main disadvantages: 
 

(1) GAs are stochastic algorithms whose search methods are based on natural evolution 
principle, i.e., genetic inheritance and Darwinian strife for survival process.  This, as are 
the cases for all other algorithms based on probability theory, may not guarantee 
optimum solutions, although by randomly choosing a sufficiently large number of 
“individuals”, the probability of a GA solution being close to the real optimal solution 
will increase. 

 
(2) Mathematically, GAs may be categorized as weak solution search schemes that make few 

assumptions about the problem domains and function characteristics, such as the 
smoothness and consistence or compatibility of the objective functions, design 
parameters, unknowns, and constraints.  While this makes GAs enjoy wide applicability, 
especially for problems of complex nature, it also causes GAs to suffer from 
combinatorial explosive solution costs due to huge solution search space when dealing 
with large-scale problems.   

 
Although GAs have been widely employed in a variety of fields, their applications in transit 
network design have been relatively limited compared to other approaches in the literature.  The 
potentials of GAs to solve transit network design problems need to be further explored. 
 
2.6 Summary 
 
Generally speaking, a combinatorial optimization problem with a large number of integrality 
variables is computationally intractable to produce an optimal solution with any existing 
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computer resources.  This difficulty, along with the natural evolution of various approaches in 
transit planning design fields, results in a rich variety of heuristic solution approaches in transit 
network design field.  Instead of finding global optima, these heuristic approaches are designed 
to improve existing systems or to find near optimal solutions in a reasonable amount of 
computational time by taking advantages of the special features inherent in the structure of 
individual problems.  These heuristic approaches are often strongly domain- or problem-specific, 
and rely heavily on transit polices, design guidelines, and planners’ past experiences, as well as 
the existing transit systems.  Although achievements or good improvements have been reported, 
these heuristic approaches used in transit network design suffer from a lack of generality.  A 
heuristic method that produces good solution in one transit system design case may not offer 
similar benefits when applied to another transit system without significant modifications.  A 
heuristic method applicable to a wide range of transit network design problems seems 
unavailable currently. 
 
The mathematical optimization approaches, while widely accepted as having the potential to 
become powerful and systematic design tools for TN design problems, seem still in the 
exploratory stage in transit planning research field.  They are mainly used in small and/or 
idealized transit network systems, or used in the optimization of particular design parameters, 
such as headway, waiting time, and bus route or bus stop spacing.  Thus far, there has been no 
report on mathematical optimization approaches that are capable of solving transit design 
problems of realistic sizes or handling a complete transit design cycle (from route network 
construction and frequency setting to scheduling and so on).  The reason for this may lie in the 
fact that mathematical optimization approaches usually define a solution space with 
completeness that is computationally intractable to existing computer resources.  This seems to 
have prevented further exploration of the mathematical optimization approaches to practical 
transit network design problems.  The literature on transit network design indicated that it is 
quite common that studies often begin with derivation of the problem statements based on 
mathematical optimization theory including definition of objective functions and formulation of 
various equality and inequality constraints.  However, after encountering the computational 
intractability of the resulting system, researchers would turn to traditional heuristic approaches. 
 
Ironically, the research and application of various mathematical optimization approaches, 
especially in integer and combinatorial optimization fields, have been one of the most successful 
fields in mathematical science and other related disciplines such as operations research, 
transportation, communication, and so on.   In fact, the past three decades ushered in an exciting 
era of research and applications of combinatorial optimization and graph theory, of which 
network optimization has been an important part.  A variety of powerful mathematical heuristic 
algorithms have developed to tackle network optimization problems that are NP-hard or 
computationally intractable.  While NP-hard and/or computationally intractable network 
optimization problems are usually associated with extremely large solution spaces, for most 
practical applications, the vast majority of the solutions in such spaces (possibly over 99% for 
transit network design problems) are far away from any merely reasonable/usable solutions.  
Such characteristics have been recognized by researchers in various research fields.  Because the 
degree of solution difficulty for integer optimization problems is usually directly related to the 
number of integer variables (Hillier and Lieberman 1986), introducing or identifying more 
inequality constraints in an integer optimization system may lower the level of difficulty for a 
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solution if these constraints reduce the total number of integer variables of the system.  
Contemporary mathematical heuristic optimization algorithms effectively reduce the size of a 
search space by carefully selecting various constraints or upper and lower bounds to isolate or 
identify sub-spaces most likely to contain optimal solutions and small enough to allow the search 
for optimal or near optimal solutions in a reasonable amount of time. 
 
In order to tackle transit network design problems of realistic sizes, mathematical optimization 
approaches for transit network design may require multi-disciplinary research efforts involving 
research fields/branches in engineering, mathematics, and computer science. Experiences from 
related application fields where different types of large, practical network optimization problems 
have been solved successfully can also be borrowed 
 
The application of various GA approaches for transit planning seems to be another example 
where GA based methods for transit network design have produced limited results even though 
successful applications of GAs have been reported in many fields that involve combinatorial 
optimizations.  GA based optimization approaches are especially suitable to those practical 
problems where the environments or conditions are too complicated to be represented or 
simulated by mathematical formulations, or where the resultant mathematical systems are too 
large to solve with completeness with any existing computer power.  While computing resources 
required by GAs are spent mainly on generation of feasible solutions and evaluating objective 
functions (fitness), which can be significant for a large and complicated problem, GAs will 
always be able to produce feasible solutions in a reasonable timeframe.  The computing 
resources required may also be less intense if evaluation of objective functions and generation of 
solutions are simple and straightforward.  GAs are definitely worth further exploration for 
application to different transit planning problems in light of the vast successful applications in 
various engineering, science, and social science fields. 
 
In general, various solution search methods may be categorized as weak or strong solution search 
methods according to the smoothness requirements on their variables/unknowns, objective 
functions, or constraints.  The classical exhaustive search methods or brute-force methods that 
attempt to examine as many as possible solution candidates to find the optimal result are the 
weakest methods since these methods usually do not require any smoothness on the various 
functions, parameters and unknowns involved in the optimization system.  Limitation of such 
methods is inefficiency and the extremely large amount of computer CPU time needed to obtain 
reasonable results, which confines these methods to problems with small and finite solution 
population space.  The various gradient-based traditional mathematical optimization approaches 
are in the strong search method category due to their various smoothness and convexity 
requirements on objective or constraint functions, problem definition domains, variables or 
unknowns, and their derivatives.  Generally, strong methods are much faster to produce accurate 
results compared than weak methods.  A disadvantage of such strong methods is their limited 
applicability to complex practical problems due to the strict requirements on smoothness, 
convexity, and other mathematical conditions required for solution uniqueness, stability, and 
accuracy.  GAs fit somewhere between the weak and the strong methods.  They usually require 
much more time to obtain reasonable results than a gradient-based mathematical strong method, 
if it exists for a particular problem.  At the same time, compared with classical exhaustive, or 
brute-force, search methods, GAs are much more effective and efficient in term of solution time 
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and problem solvability.  As an alternative method, GAs may be suitable for various 
combinatorial or mixed integer optimization problems encountered in transit planning field, since 
for such problems of a realistic size, algorithms based on mathematical optimization techniques 
are likely to fail to produce any solutions due to computational intractability.  In fact, some 
researchers consider GAs as heuristic type methods that may always give better solutions from a 
particular solution space or populations.   
 
Other methods in the network optimization research area that may have the potential to become 
powerful tools for transit network design include fuzzy logic based methods and stochastic 
methods.  In stead of finding an optimal solution with determination, which usually leads to 
computationally intractability, the goal of stochastic methods is to find an expected optimal 
solution that could be made as close to the real optimum as possible3.   KBES approaches also 
have the promise to become a powerful design tool for transit planning if the advantages of 
different analysis methods as discussed in this report are utilized and integrated with the 
expertise from experts in multidisciplinary research and application fields.  However, the 
development of such expert system design tool may be costly since it involves coordinated work 
of a team of experts, possibly over a prolonged period of time. 
 
 

                                                 
3 Conceptually, both stochastic and fuzzy methods should be considered as mathematical optimization approaches.  
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3. SOLUTION METHODOLOGY 
 
3.1 Introduction 
 
In this chapter, solution methodologies based on mathematical optimization technology are 
described.  The reason for developing a mathematical optimization approach for the transit route 
network optimization was based on the following considerations.  Although always providing 
solutions for practical problems, the traditional heuristic approaches are in most cases ad hoc 
schemes.  They depend heavily on individual planners’ past experiences and physical intuitions.   
The design objectives and/or criteria of conventional heuristic approaches are usually a set of 
guidelines or requirements established with the natural evolution of existing transit systems.  
Theoretical justifications for such design guidelines or requirements are usually unclear.  
Moreover, most transit agencies may already have their own design procedures for TN design 
based on various heuristic schemes.  The benefits to develop a new traditional heuristic approach 
based on existing design guidelines for TN design seem limited.  GA based methods have the 
potential to tackle complicated TN design problems, but their applications in transit planning 
fields are limited and are still in the research stage.  One of the most serious difficulties of 
existing GA approaches is the combinatorial explosive solution cost for large TN problems.  It 
seems that GA approaches are options or choices when there are no analytical/mathematical 
solution means available since, in general, GA methods are slower to obtain results of the same 
accuracy than analytical/mathematical schemes.  Development of good KBES programs is an 
expensive involved process, thus infeasible for this project.  In conclusion, it seems that the 
development of mathematical optimization based approaches is the most appropriate goal for this 
study.  The main advantages of the mathematical optimization approaches are as follows: 
 

(1) Mathematical optimization problems are usually formulated with relatively more 
completeness and rigor.  In other words, under proper conditions, mathematical 
optimization approaches may guarantee a global or local optimal result.  

 
(2) Solutions obtained from mathematical approaches are unlikely to be biased to any 

existing transit systems although initial guess networks may have an effect on which 
local optimal result an iterative solution procedure will converge to or approach. 

 
(3) Various design guidelines and requirements are represented by mathematical constraints, 

either equality or inequality constraints.  These constraints could be flexibly designed to 
meet particular requirements of any transit network design problems. 

 
(4) There are a wide variety of solution methods, schemes, or concepts developed or used in 

operations research, mathematical optimization, graph theory research, or other related 
fields that may be applied or adopted in the transit network design field, especially 
mathematical heuristic approaches that have been successfully applied to solve NP-hard 
problems or other computational intractable problems. 

 
The most difficult task in solving TN design problems with mathematical optimization methods 
is to deal with the extremely large solution search space obtained from mathematical 
optimization formulation.  The approaches used in this study are based on schemes that gradually 
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reduce the space to local spaces that are small enough to allow exhaust search with existing 
computer resources.  After exhaustive search of one local solution space, another local space will 
be generated based on the data obtained from previous search results.  The criteria for selecting a 
new search space include that (a) it is small enough to conduct an exhaustive search and (b) it 
has the potential to produce better results.   The search process will continue until it is unable to 
find any better results, and, hopefully, the result is a local or global optimal solution.   
 
The main idea behind the methods developed in this study is similar to the branch-and-bound 
methods in network optimization fields and the rollout algorithms described in (Bertsekas 1998).  
In branch-and-bound methods, some integer sets and their descendant subsets are discarded if 
they have no chance of containing optimal results under certain constraints.  In the rollout 
algorithms, in stead of searching through the entire branch-and-bound subsets, the search is 
performed with a sequence of subsets that are most likely to contain better solutions.  In this 
study, some solution subspaces are excluded from local search spaces if they either violate 
certain constraints or result in search space sizes that are computationally intractable.  In general, 
the quality of the search results is related to the size of local solution search spaces.  In other 
words, larger local solution search spaces are more likely to produce results that are closer to a 
global optimum than smaller local spaces.  Since searching through larger solution spaces 
requires more computing resources, the performance of the methods developed in this study will 
be dependent of the computing resources required.  The numerical results presented in the next 
chapter will show that for several TRN problems, results obtained from this study with an 
existing high-end PC are at least comparable or better than those obtained from other transit 
network approaches.  With the rapid development of computing techniques and power, the 
potential to further improve results obtained from the methods developed from this study is 
promising.  The famous Moore’s law, which predicted that the computer chip’s processing 
power would double every 18 months, has been confirmed in the last 35 years.  It is expected to 
be true for at least two more decades.  Considering such a rapid growth in CPU processor power, 
the rapid development of multiprocessor and massive multiprocessor computers, as well as 
paralleled computing techniques, solving TN optimization problems of a realistic size with 
mathematical optimization techniques seems not to be an intractable task in the future.  
 
The mathematical optimization methodologies were developed based on the following 
assumptions:   
 

(1) The method should be generally applicable to the design and optimization of a wide 
range of transit networks in practice.  The limitation of this method for practical 
problems, especially for large transit systems, should stem mainly from the computing 
resources it requires, not from the basic assumptions, representations, or other problem-
dependent issues such as various transit network solution search guidelines in the existing 
heuristic approaches.   

 
(2) The solution method should be as objective as possible.  It should not favor any particular 

transit network configurations of an existing transit system or certain solution selection 
guidelines based on individuals’ experiences, which are usually problem dependent or the 
results of historical evolution.   
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(3) Solutions obtained from this method should give reasonably good results, probably a 
local optimal solution, in a reasonable amount of time as permitted by the current 
computer power affordable to most transit agencies in the U.S.  The results should 
improve as the computer resource or power increases, and should approach the global 
optimum when there is no computer resource limitation.   

 
(4) Algorithms and solution search schemes from this method should be easy to implement 

or realized in parallel computing frameworks, thus having the potential to take full 
advantages of the modern parallel computing techniques.   

 
In the remaining sections of this chapter, the solution framework and the corresponding 
mathematical statements or representations of the transit network optimization methods are 
described.  Sections 3.2 and 3.3 present the mathematical representations of the street network of 
a transit service coverage area and a transit route and/or a transit route network system, 
respectively.  Section 3.4 gives the mathematical representation of the search space or spaces 
from which optimal transit routes may be obtained.  Sections 3.5 and 3.6 describe certain 
topology and/or geometrical constraints on transit routes in a transit network system and certain 
boundary conditions on some transit routes imposed by transit planners, respectively.  
Constraints related to operating costs are described in Section 3.7. 
 
3.2 Mathematical Representation of Typical Transit Service Area 
 
A transit service area is represented as a set of street nodes and a set of street segments connected 
to the street nodes.  This set of street nodes and segments will be referred to as the street network 
of the transit service area.  More precisely, the definition of a street network consists of three 
parts:  
 

(1) A set of street segments that are suitable for operating transit vehicles/buses;  
(2) Street corners or other points on streets that may be used as transit stops; and  
(3) A set of street segment lengths.   
 

In this study, potential transit stops will be referred to alternatively as street nodes, or simply 
nodes, of the street network.  A street segment is the line or arc in the street network that 
connects two adjacent street nodes.  For some applications, it may be more convenient to use 
travel time between two adjacent nodes as the “length” of the street segment that connects these 
two nodes.  Depending on the requirement of a particular application, a street segment length 
used in this study may either refer to its geometric length or the time needed to traverse the 
segment.  A sequence of street segments that connects any two nodes and does not intersect itself 
is called a path or route between these two nodes.  Similar to segment length, the shortest path 
between two nodes may either refer to the path that has the shortest geometric distance between 
the two nodes or the path that takes the least time to travel.  Figure 3.1 illustrates a small street 
network of a transit service area.  The thick, green solid line in Figure 3.1 indicates a path that 
connects nodes 3 and 28; the blue dashed line and the red dotted lines are two alternative paths.  
Each of the potential transit stops, or nodes, is assigned a unique integer number as an identifier.  
The numbering of nodes is arbitrary.  The location of a node may be described in a list (or table) 
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that associates each node number with the name of its corresponding physical location as shown 
in Table 3.1.   

Figure 3.1  Street Network of a Sample Transit Service Area 
 

Table 3.1 Location Description of a Sample Street Network Nodes 
Street node numbers Location names 

1 City government center 
2 Airport terminal A 
3 South station 
4 University student center 

… … 
 
A street segment or arc4 may be defined by its two end nodes and its length (or travel time), i.e., 
ai(ni1, ni2) where ni1 and ni2 are the starting and the ending nodes of street segment ai, 
respectively.  In general, street arcs a(n1, n2) and a(n2, n1) may not be the same if a street segment 
is a one-way street or travel times are different on the same segment in the two opposite 
directions.  In such cases, the street network is called a directed network.  In this study, only 
undirected network is considered, in which street arcs a(n1, n2) and a(n2, n1) will be considered 
the same5. This assumption is based on the fact that for most transit routes the overall route 
lengths in both directions are more or less the same, and the distance between any two one-way 
street segments of a bus route is usually no more than a few street blocks.  The assumption of 
undirected network may be removed in the future, which will only require minor modifications 
to the algorithms and programs for them to be applicable to directed networks.  It is also assumed 

                                                 
4 In the literature of transit planning, a street segment is also called a street arc or a street link.  The terms arc and 
link are more often used in network theory in graph theory and operations research.   
5 The methodology described in this study may be easily extended to problems with directed networks. 
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that there is only one street segment between any two connected adjacent nodes, i.e., the 
expression a(n1, n2) is uniquely associated with one street segment.  If there are two street 
segments between two adjacent nodes, as shown in Figure 3.2(a) where a’(n1, n2) and a(n1, n2) 
have the same end nodes, an additional node n0 will need to be introduced to modify one of these 
two arcs to recover the uniqueness of the representation.  Figure 3.2(b) gives an example of such 
a modification where arc a’(n1, n2) is replaced by two arcs a(n1, n0)  and a(n0, n2).   
 
 
 
 
 
 
 
 
 

Figure 3.2 Recover the Uniqueness of Street Arc Representation 
 
Another assumption is that the street network is connected, i.e., there are no isolated nodes or 
sub-networks.  Thus for any two nodes, there is a sequence of street segments, or a path, in the 
street network that connects these two nodes. 
 
In summary, this study deals with transit route network optimization based on a connected, 
undirected street network system.  The following is the mathematical representation of a street 
network.  A street network may be defined by a set of all the street segments/arcs: 
 
     A(m) = {a1, a2, … am}                                                                                       [3.1] 
 
where  A(m) denotes a street network of m street segments or arcs, and 
 
     ai(ni1, ni2), i = 1, 2, …, m                                                                                  [3.2] 
 
are the m street segments.  Let N(n) denote the set of street nodes,  
 
     N(n) = N(n) {n1, n2, …, nn},                                                                                [3.3] 
 
where n is the total number of nodes.  All ending nodes of the street arcs belong to this node set: 
 
     minn n

ii ,,2,1,, )(
21 Λ=∈ N .                                                                           [3.4] 

 
A path between any two nodes is defined as a sequence of non-reoccurring nodes (i.e., the path 
does not intersect itself) in which any two neighboring nodes are connected by an arc, 
 
     p = p(n1, n2, …, nk)                                                                                     [3.5] 
 

n2 
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A street network may also be represented through adjacency lists (or tables) of the street nodes.  
For a given node, called the master node, its associated nodal adjacency list consists of all the 
immediately neighboring nodes.  Immediately neighboring nodes are those that can be connected 
to the master node by one street segment.  These segments are called the adjacent segments of 
the master node.  The set of nodal adjacency lists of a street network may be expressed 
mathematically as follows:    
 
      L(k) = L(k){nk,1, nk,2, …, nk,m(k)},    k = 1, 2, …, n.                                                        [3.6a]   
 
where, L(k) is the nodal adjacency list or set of the street node k, nkj (j = 1, 2, … m(k)) is the node 
number of the jth neighboring node, m(k) is the number of neighboring nodes in the master node 
k’s adjacency list, and n is the total number of nodes in the street network.  In this report, m(k) 
will be referred to as the length of the node k’s nodal adjacency list, and m will be used to 
represent the average length of all the nodal adjacency lists in a street network.  In some 
applications, it may be convenient to also include the length of each adjacency arc in the list.  In 
such cases, the nodal adjacency list may be expressed as follows: 
 
 L(k) = L(k){nk1, dk1; nk2, dk2;  …, nkm(k), dkm(k)},    k = 1, 2, …, n.                               [3.6b]            
 
where dkj  is the distance from node k to node nkj, i.e., the length of the street arc a(k, nkj). 
  
For illustrative purposes, two data files that define the street network shown in Figure 3.1 are 
given in Tables 3.2 and 3.3.  Table 3.2 lists some of the street segment/arc data of the street 
network, while Table 3.3 presents part of the nodal adjacency list data of the street network.  
Street segment/arc data and street nodes’ nodal adjacency list data are equivalent and either one 
may be used to define a street network or to derive the other.    

 
Table 3.2  A Sample of a Street Network Data File (Street Segment/Arc File) 

Street 
segment No. 

Starting 
node No. 

Ending 
node No. 

Segment 
length 

1 1 2 1125 
2 2 3 976 
3 4 5 657 
4 5 6 589 
5 7 8 521 
6 8 9 894 
7 10 11 982 
8 11 12 872 

… … … … 
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Table 3.3 A Sample of a Street Network Data File (Street Nodal Adjacent List File) 
Adjacent Node Master 

Node Node 
No. 

Arc 
Length 

Node 
No. 

Arc 
Length 

Node 
No. 

Arc 
Length 

Node 
No. 

Arc 
Length … …

1 2 1125 8 1200       
2 1 1125 3 976 9 800     
3 2 976 20 1400 27 1500     
4 5 657 14 710       
5 4 657 6 589 10 320     
6 5 589 7 590 11 410     
… … … … … … … … … … …

 
3.3 Mathematical Representation of Transit Routes and Route Network 
 
A transit route may be defined by the sequence of the stop numbers on the route.  In Figure 3.1, 
the sample transit route represented by the green solid line may be expressed by the following 
sequence of street node numbers: 
 
     ri(ni1, ni2, …, nik(i)) = r(28, 29, 30, 31, 32, 26, 20, 9, 2, 3),           [3.7a] 
 
where i is the route number, k(i) is the number of stops on this route, and ni1, ni2, …, nik(i) are the 
global street node numbers of the stops.  For this particular route, these global numbers are 28, 
29, 30, 31, 32, 26, 20, 9, 2, and 3.  A transit route’s stops will also be referred to as the nodes of a 
transit route, or simply a transit/bus line’s nodes.   
 
It needs to point out that in reality, the set of stops of a transit line may not be exactly the same 
as the street node set consisting of all the street nodes on the transit line because transit vehicles 
do not necessarily stop at each of the street nodes.  One difficulty in using a real transit stop 
sequence to define a transit route is the lack of uniqueness in route representation since more 
than one arc will be necessary to connect two adjacent bus stops therefore there may be more 
than one path between two stops connected by one street arc.  To illustrate, consider the route 
shown as a red dotted line in Figure 3.1.  This route is represented uniquely by street node 
sequence (21, 22, 23, 24, 25, 26, 27, 20, 13, 8, 1, 2).  Assume that transit vehicles on this route 
only stop at street nodes 21, 23, 25, 20, and 2.  It may be easy to see that the route stop sequence 
(21, 23, 25, 20, 2) does not represent the same route uniquely.  For example, between stop nodes 
25 and 20 on this route, there are two path segments (25, 26, 27, 20) and (25, 26, 20).  Unless 
additional information is provided, by either introducing an intermediate node (e.g., node 27) or 
requiring a shortest path connection between stops 25 and 20, paths connecting these two stops 
will not be unique.  In this study, for the purpose of representation uniqueness, it is assumed that 
the transit route stop set and the corresponding street node subset are the same.  To refine bus 
stop locations that may involve either moving or adding bus stops may be handled in post 
processing, or more appropriately, in the transit route system scheduling/headway optimization 
process.     
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A necessary condition for a sequence of street nodes [3.7a] to be a transit route is the 
connectivity condition, i.e., any two neighboring nodes in a node sequence must correspond to a 
street arc, that is 
 
     a(nij, ni(j+1)) ∈ A

(m)
, j = 1, 2, …, k(i) – 1,                                             [3.7b] 

 
where A

(m)
 is the arc space, or the set of the street segments as defined in [3.1].  From equation 

[3.5] and [3.7], it may be seen that a transit route is also a path of the street network.  For a given 
street network, the set of all possible paths that connect any two nodes of the street network 
define a path space, denoted as PC , of the street network.  The path space PC will be referred to 
as the complete path space of the associated street network.  PC is a combinatorial vector space 
defined on street node set N(n).  The goal of the transit route network optimization is to find the 
optimal path subspace, or the optimal transit network, from the complete path space PC .  A 
transit route network T

(l)
 is defined as a set of transit routes, 

 
     T

(l)
 = {r1, r2, …, ri},                                                                                  [3.8a] 

 
 where l  is the number of transit routes in this route network system, and 
 
      ri = {ni1, ni2, …, nik(i)}, i = 1, 2, …, l                                                                             [3.8b] 
 
are the l transit routes in the transit route network system.  T

(l)
 is a subspace of the path space PC, 

and ri (i = 1, 2, … l) are members of the path space PC .  A transit route network T
(l)

 may also be 
expressed in the following matrix form: 
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where tij is the connectivity coefficient between transit line i and street node j and has the 
following property 
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In this study, transit routes are also referred to as transit paths, or simply paths. 
 
3.4 Mathematical Representation of Search Spaces for Transit Routes and Network 
 
In this section, a brief description will be given to illustrate the methodology developed in this 
study to define various solution search spaces from which desired optimal results are sought.  
Before proceeding, a method based on exhaustive search is described to illustrate the difficulties 
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in (a) defining a complete solution search space that includes all possible transit network 
solutions; and (b) developing a global solution search method to find the global optimal solution 
from the complete solution space.    
 
Assume that one is looking for l optimal transit routes from a street network.  To find the optimal 
solution to this problem, one way is to first list all the possible paths from the street network 
system.  This will define a basic solution search space of the problem.  The l optimal transit 
routes will be formed by paths from the basic search space.  Therefore, the search space for 
finding l optimal transit routes will be a combinatorial search space consisting of all possible 
unique  subspaces, each containing l paths from the original basic path space.  In other words, 
each member of the combinatorial space is an l-subspace of the basic path space.  The optimal 
route network may then be found by evaluating all the members in the combinatorial space and 
choosing the best one.  This is the so-called exhaustive search method.   
 
Theoretically, exhaustive search is the simplest solution search method, and it guarantees a 
global optimal result.  However, it may not be able to produce any optimal solution for practical 
problems because most time it is infeasible to enumerate and evaluate all path combinations due 
to the extremely large search space and inadequate computing resources.  To illustrate this 
difficulty, let’s consider the search space for a transit network consisting of n nodes.  One way to 
generate the search space is to connect each node pair from the node space N(n) with the shortest 
path between the two nodes to obtain the shortest path/search space, 
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where, pij = p(i, ij1, ij2, …, ijk , j)  (i = 1, 2, n – 1; j = i + 1, i + 2, … n) represents the shortest path 
between nodes i and j, and kijijij ,,, 21 Λ  are the intermediate nodes between the starting node i 
and ending node j of the path pij.  It may be seen that the shortest path space PS is a subspace of 
the complete path space PC of the street network.  For simplicity, assume that (a) there is only 
one shortest path between each node pair in the street network, i.e., subspace PS is unique, and 
(b) the optimal results will only occur on shortest paths. These two assumptions are only for 
illustration purposes and are probably not true in most practical situations.  The goal is to 
demonstrate that even with these two strict assumptions, the size of the resultant search space is 
already of an astronomical magnitude.  As an example, consider the small street network shown 
in Figure 3.1, where n = 33.  With assumption (a), the number of paths in search space PS 
contains, according to expression [3.10], ns shortest paths:  
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In other words, the path space PS contains 528 paths.  For a transit network optimization problem 
involving l bus routes, the space PS must be further expanded into a combinatory search space, 
                                                                                    

( ){ } ( ) ( ) ( ) ( ){ } ( ){ } { }{ }Sll
ll

l
llll

cSS
PppppppPPPPCPC PP ⊆=≡ ,,,allfor,,,,,, 212121 ΛΛΛ    [3.12] 

 
where Pi

(l)
 (i = 1, 2, …, l) are the l-subspaces of  the space PS, i.e., each subspace Pi

(l)
 contains l 

shortest paths of SP , and cl is the total number of independent l-subspaces of  the space PS.  Two 

l-subspaces Pi
(l)

 and Pj
(l)

 are independent if at least one path is in Pi
(l)

, but not in Pj
(l)

.  Each l-
subspace Pi

(l) could be a possible solution of the l-route transit network.  The total number of 
independent l-subspaces in the combinatory space ( )l

SPC , lc, is given by 
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The above number could be large even for relative small sn  and l.  For the small street network 

in Figure 3.1, where ns = 528, several l
nc s

Cl = are calculated for some l numbers to illustrate this 
point:   
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It may be seen that for transit networks that have four or more routes (l ≥ 4), l

nc s
Cl =  is already 

in astronomical orders.  If the two simplified assumptions (a) and (b) made earlier about the 
street network are removed, the solution search spaces will grow even larger.  Assumption (a) 
assumes that there is only one shortest path between any node pair, which may not be true for 
some street networks.  For example, it may be seen from the street network shown in Figure 3.3 
that any path starting from node i, going only in rightward and/or upward directions, and ending 
at node j will be a shortest path between these two nodes.  Figure 3.3 provides two such paths 
between nodes i and j.  For this particular street network, the number of shortest paths between 
any two nodes may be very large.  This example shows that in general, the number of shortest 
paths ns in a street network’s shortest path space, may be much larger than that calculated from 
equation [3.11], thus resulting in a much larger combinatorial search space with the search space 
size given by equation [3.13]. 
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Figure 3.3  Two Shortest Paths between Nodes i and j 
 

Assumption (b), which claims that optimal routes occur only on shortest paths, may not be true 
either because the optimal routes depend on both path lengths and the distribution of riders in a 
street network, as well as some other factors.  In other words, an optimal route may not be the 
shortest path but one that may take longer to travel but serves more transit users.  Therefore, 
tradeoffs between travel time and service coverage must be considered in optimizing a transit 
network.  This means that the search space of a transit route network problem should not be 
limited to the space defined by shortest paths of the street network.  Other alternative paths must 
also be included in the solution search space.  This evidently will result in an even larger solution 
search space than the already astronomically sized space described by expressions [3.10] through 
[3.14].  Therefore, it may be impractical to define a complete solution search space, or to develop 
a solution search scheme intended to find the global optimal from a complete solution search 
space. 
 
The following is a description of the solution search spaces used in this study that are locally and 
iteratively defined based on current route network search results.  The search space size may be 
adjusted to stay within the limitation of available computing resources.  First, denote the basic 
path space of a street network as PB.  PB contains all paths that are candidate transit routes.  
Additionally, denote )(l

BC  as the l-combinatorial search space generated from PB, i.e., )(l
BC  is 

made up by all the independent l-subspaces of the basic path space PB.  The basic path space PB 
is a subspace of the complete path space PC , or PB ⊆ PC since being a transit route a path must 
satisfy certain constraints, such as the minimum and/or maximum route length constraints.  
Assume that at solution search iteration i, an intermediate transit network result Ti

(l)
 = {ri1, ri2, …, 

ril} is obtained, where rij (j = 1, 2, …, l) are the l transit routes of Ti
(l)

.  It may be seen that Ti
(l)

 is 
a member of the solution combinatorial space )(l

BC , and that rij (j = 1, 2, …, l) are members of the 
basic path space PB.  Now for iteration i+1, instead of searching through the entire combinatorial 
space )(l

BC , usually of a size of astronomical order, the search space used in this study will be 
limited to the neighborhood spaces of each route obtained at iteration i.  These neighborhood 
spaces will be referred to as local path search spaces or simply local path spaces.  
 
The following is a description and definition of local path space.  A local path space has two 
components: a master path and a set of paths that are in the neighborhood of the master path. A 

i 

j 
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local path space is derived from the local node spaces of the master path.  Similar to a local path 
space, a local node space also has two parts: a master node and a set of nodes that are in the 
neighborhood of the master node.   In this study, the first order local node space of a master node 
is defined as the set of nodes in the master node’s nodal adjacency list and the master node itself.  
For example, node 19’s local node space in the street network shown in Figure 3.1 is defined as 
 
     { } { } { }18,26,20,13,12)19(1919,18,26,20,13,1219)19( )1()1( LLL ∪== NN .                        [3.15]  
 
In general, the ith order local node space of a master node k is defined as the set of nodes that can 
be connected to the master node with i or fewer street segments.  The order of a local node space 
provides a measurement of the degree of localization.  The choice of an appropriate order may be 
made based on the computing resources available, making this method adaptive to the computing 
limitations.  Denote the (i-1)th order local node space of a master node k as ( )kN
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jk  is 
the street node number of the jth node in the local node space.  The ith  order local node space may 
be written as 
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where ( ))1( −i

jkL  is the nodal adjacency list of node )1( −i
jk .  A local node space is a subspace of the 

street node space ( )kN
i)(L  ⊆ N(n).  As the order i increases, it will approach to the original street 

node space N(n).  
 
With the above definition of local node spaces, a local path/route space may be derived.  First 
from equations [3.5] and [3.9], in view of equation [3.16], for a given master path p = p(n1, n2, 
…, nr) one can generate a sequence of local node spaces, 
 
      ( ))(,),(),( )(2)(1)( r
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where ( ) ),,2,1()( rjn j

N
i Λ=L  is the local node space of master node nj on master path p.  The 

local path space of the master path p is generated or defined in the following steps: 
 

1. Connecting nodes in space ( )1)( nN
iL  with nodes in space ( )2)( nN

iL  to obtain a set of paths. 

2. Extending or connecting those paths obtained in Step 1 to nodes in space ( )3)( nN
iL  to 

obtain a set of paths starting from nodes in space ( )1)( nN
iL , passing through nodes in 

space ( )2)( nN
iL , and ending at nodes in space ( )3)( nN

iL .   

3. Repeating Step 2 to extend the paths to nodes in space ( )4)( nN
iL , then to nodes in 

space ( )5)( nN
iL , and so on until the nodes in the last space ( )r

N
i n)(L  are connected. 
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4. The resultant path space obtained from Steps 1 through 3, denoted as ( )pLP
i)( , will be 

defined as the local path space expanded from the master path p, or simply, the local path 
space of path p. 

 
Note that in Steps 1 through 3, any intermediate results that are not paths, such as loops, must be 
removed during the local path generation.  To illustrate, a path p1 (the red dotted line) in path 
space ( )rLP

)1( , which is the first order local path space of the master path r (the green solid line), 
is plotted in Figure 3.1.  Path p1 = p1(21, 22, 23, 24, 25, 26, 27, 20, 13, 8, 1, 2) is generated by 
connecting nodes 21, 22, 23, 24, 25, 27, 13, 8, 1 and 2, which are, respectively, members of the 
first order local node spaces of the master path r =r(28, 29, 30, 31, 32, 26, 20, 9, 2, 3).  For 
instance, node 21 belongs to the first order local node space of node 28, node 22 belongs to that 
of node 29, and so on.  It may be seen that as the order i increases, a local path space of any 
master path will approach to or become the complete path space PC .  In fact, as i increases, the 
master path’s local node spaces will include any two nodes in street network space N(n), thus the 
master path’s local path space will include any paths between these two nodes. 
 
In the definition of a local path space ( )pLP

i)(  in Steps 1 through 4, the paths that connect nodes 

in local node space ( )j
N
i n)(L  with nodes in local node space ( )1)( +j

N
i nL  could be any paths in the 

complete path space CP  of the street network.  This will lead to a large path space even for the 

first order space, e.g., i = 1, in ( )pLP
i)( , and the resulting path space may be hardly a “local” 

space.  For example, the path segment that connects node 21 with 22 in path p1  = p1 (21, 22, 23, 
24, 25, 26, 27, 20, 13, 8, 1, 2) in Figure 3.1 (the red dotted line) could be replaced by a new path 
segment (21, 14, 4, 5, 10, 15, 22) to obtain a new path p2 = p2 (21, 14, 4, 5, 10, 15, 22, 23, 24, 25, 
26, 27, 20, 13, 8, 1, 2).  The path p2 (the blue dashed line) is also a member of the local path 
space ( )rLP

)1( , but can hardy be considered local to the master path r.  To deal with this problem, 

a modified local path space, denoted as ( )pP )(
)(
k

i , of a master path p is defined.  The procedure to 

generate ( )pP )(
)(
k

i  from the master path p is the same as that defined by Steps 1 through 4 for 

( )pLP
i)( , except that the paths used to connect nodes in local node space ( )j

N
i n)(L  and nodes in 

local node space ( )1)( +j
N
i nL  will be taken from a k-level shortest path space )(k

SP  that consists of 
the first k shortest paths between any two nodes in the street node space N(n).   A description of 
algorithms for finding a k-level shortest path space  in a network may be found in Shier (1979).  
Explicitly, the k-level shortest path space )(k

SP  may be expressed as 
 
     )()( k

S
k

S PP = { )(r
ijp , i = 1, 2, …, (n – 1); j = i + 1, i + 2, …, n; r = 1, 2, … k},               [3.18] 

 
where )(r

ijp  represents the rth shortest path between node i and node j.  Denote )(r
ijd  as the length 

of the rth shortest path )(r
ijp , one has 
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     )()3()2()1( k
ijijijij dddd ≤≤≤≤ Λ ,  i = 1, 2, …, (n – 1); j = i + 1, i + 2, …, n               [3.19] 

 
For k = 1, one has a 1-level shortest path space )1(

SP  as is the case in equation [3.10].   For 
simplicity, a 1-level shortest path space )1(

SP , a 1-level shortest path )1(
ijp , and distance )1(

ijd  will 

refer to as, respectively, a shortest path space PS, a shortest path S
ijp , and a shortest distance S

ijd .  
The ith order local path space based on a k-level shortest path space, or simply a local path space, 
will be written as 
 
     ( )pP )(

)(
k

i  = ( ) ( ) )()( )(,),(),( )(2)(1)()()( k
S

k
S Pr

N
i

N
i

N
i

N
iP

N
i nnn LLLPpP Λ= .                                      [3.20a] 

                                                                                                              
It may be seen that as i and k increase, a local path space of any master path will approach to the 
complete path space PC .  This is because that as i increases, the master path’s local node spaces 
will include any two nodes in space N(n), and as k increases, the master path’s local path space 
will include any paths between these two nodes.   
 
Given the above definition of local path space, the local search spaces of a transit network T(l) = 
{r1, r2, …, rl} may be defined by the following expression,  
 
     ( ) ( ) ( ) ( ){ }l

k
i

k
i

k
i

k
i

lk
i rPrPrPTTT )(

)(2
)(

)(1
)(

)(
)(

)(
)()(

)( ,,, Λ= ,                                    [3.20b] 
 
where ( )j

k
i rP )(
)(  is the local path space of  transit route rj, (j = 1, 2, …, l).  ( ))()(

)(
lk

i TT  is called the 

ith order local network search space of the master transit network T
(l)

 based on a k-level shortest 
path space, or simply a local network space of  network T

(l)
.  It may be seen from expression 

[3.24] that ( ))()(
)(

lk
i TT  consists of a sequence of local path search spaces ( )j

k
i rP )(
)(  associated with 

each transit route rj, (j = 1, 2, …, l) in transit network T
(l)

.  In a solution stage or in an iteration in 
a transit network optimization process, ( )j

k
i rP )(
)(  will be the search space of the corresponding 

transit route rj (j = 1, 2, …, l). 
 
3.5 Approximation of Transit Route Search Spaces 
 
To make the solutions to the transit route optimization problem achievable, certain assumptions 
have been made in this study.  The purposes of these approximate assumptions are (a) to further 
reduce the size of each transit route’s local path search space and (b) to limit the solution path 
search spaces to those that meet certain route directness constraints.   
 
The local path space of a master path/route described in the previous section is still too large for 
a practical transit network optimization problem.  Figure 3.4 shows a simple one-route transit 
network in which the blue dashed line represents the master route r(1, 2, …, n).  For this simple 
problem, the number of paths in the local path space ( )rP )1(

)1(  of the master route r may be 
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estimated following the steps below (recall that ( )rP )1(
)1(  is the first order space based on 1-level 

shortest path space): 
 

(1) Connecting nodes 1, 1a, or 1b with nodes 2, 2a, or 2b, respectively, using shortest path 
segments, one obtains 32 = 9 path segments: p(1a , 2a), p(1a , 2a , 2), p(1a , 2a , 2, 2b ), p(1, 
2), p(1, 2, 2a),  p(1, 2, 2b), p(1b , 2b), p(1b , 2b , 2), and  p(1b , 2b , 2, 2a ).  In generating 
these path segments, if there is more than one shortest path between the two nodes, one 
may randomly choose one shortest path. 

(2) Connecting the path segments obtained from Step 1 to nodes 3, 3a, or 3b, respectively, 
one arrives at 33 = 27 path segments. 

(3) Continue the above procedure to the last 3 nodes, n, na, and nb, one obtains 3n paths that 
all belong to the local path space ( )rP )1(

)1(  of the master route r.   The green solid line and 

the red dotted line in Figure 3.4 are two of the 3n paths in path space ( )rP )1(
)1( . 

 
For a practical transit route network, a typical transit route may have node/stop number ranging 
from 20 to 100, thus leading to a typical local path search space sizes from 3n = 320 = 3.5 × 109  to 
3n = 350 = 5.2 × 1047.  This is a local path search space of only one transit route.  Even a local 
solution search from such a large path space may already have exceeded the limits of current 
computing resources for most transit agencies.      
 
 
 
 
 
 
 
 
 
 
       

Figure 3.4 Simple One-Route Transit Network 
 
The large size of a local path space is mainly due to the fact that the path space includes many  
paths that are impractical in terms of route directness.  Route directness reflects the deviation of 
a route that connects two nodes from the shortest path between these two nodes.  For example, 
the transit route indicated by the red dotted line shown in Figure 3.4 is highly unlikely in practice 
because it is much longer than the shortest path between node 1 and n.   One measurement of the 
directness of a transit route may be 
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where dij(r) is the route distance (or travel time) between node i and node j on transit route r(1, 2, 
…, n), and S

ijd is the length (or travel time) of a shortest path between node i and node j of the 
street network.  In general, dij(r) represents the distance (or time) a person travels (or spends) if 
he/she takes a bus, while S

ijd  represents the distance (or time) a person travels (or spends) if 
he/she drives a car or takes a taxi.  The route directness value d(r) represents the average ratio of 
the distance/time transit users spend on travel by transit over that if they drive or take taxi 
between their origin and designation points.  Ideally, the optimal directness value of a transit 
route is d(r) = 1.  In such a case, all passengers travel along the shortest paths between their 
origin and designation points.  In reality, however, route directness d(r) is always greater than 
one since it will not be possible to provide point-to-point direct services to all passengers.  On 
the other hand, route directness ratio d(r) should not be too large as significant route deviation 
from shortest paths will likely result in loss of ridership due to unreasonably long travel time.  
Therefore, in this study, instead of searching for solutions in the local space that is derived from 
the local node spaces of all the nodes on the corresponding master path (ref. equation [3.17]), the 
local path space to be used is derived from the local node spaces of a few key nodes on the 
master path that defines a route through a flexible number of piecewise shortest path segments 
connecting these key nodes.  The number of key nodes on a master path may be flexible.  Routes 
defined through small numbers of key nodes will generally result in better route directness and 
small local path search space, thus leading to fast convergence in solution processes.  However, a 
route with a small number of key nodes may fail to reach or connect nodes with potential large 
trip demands due to the inflexibility in the route shape.  Routes that have larger numbers of key 
nodes are relatively more flexible to reach more neighboring nodes thus may cover more trips.  
However, this will also result in larger local path search space thus may require more computing 
resources.  Moreover, route directness may suffer because of the flexibility in the route shape.   
 
The idea of using paths made up by piecewise shortest path segments to represent/approximate a 
real transit route is a familiar one in continuous field, such as in finite element methods and finite 
difference methods, where a linear, quadratic, cubic, or even higher polynomial shape functions 
are used to approximate more complex functions.   
 
The local spaces used in this study to represent a transit route and its neighboring local path 
space are defined as follows.  Figure 3.5(a) shows a transit route r with starting node n1 and 
ending node n2.  Assume that this route has been obtained during an iterative solution process, 
and that better route configurations are being sought based on this intermediate result.  Figure 
3.5(b) illustrates a two-key-node representation of the master path r where the first and the 
second key nodes are the starting and ending nodes, n1 and n2, of the master path r.  Nodes n11, 
n12, n13, and n14, shown in Figure 3.5(b), are adjacent nodes of key node n1, whereas nodes n21, 
n22, n23, and n24 are adjacent nodes of key node n2.  The local path space of the two-key-node (or 
simply two-node) representation of the master path r is generated by connecting node n1 and its 
adjacent nodes n11, n12, n13, and n14, respectively, with node n2 and its adjacent nodes n21, n22, n23, 
and n24.  The paths that connect the above nodes are from a shortest path space )1(

SP .  The local 

path space of the two-node representation of the master path r may be written as ( ))2()1(
)1( rP , 

where r(2) is the two-node representation of the master path r.  In general, a local path space of an 
s-node representation of the master path r will be denoted as 
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where i is the order of the local path space, the superscript k refers to the fact that the shortest 
paths used to connect key nodes and their nodal adjacency list nodes are from a k-level shortest 
path space )(k

SP , s is the number of key nodes used to represent the master path r, and r(s) is the s 
-node representation of the master path r.  It may be seen that as the number of key nodes, or s, 
increases, the local path space ( ))()(

)(
sk

i rP  will approach to the local path space ( )rP )(
)(
k

i , which is 

the local path space of the master path r.   For a given transit network { }l
l rrrT ,,, 21
)( Λ= , a local 

search space based on various numbers of key-node representation is defined as 
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where ( ))()(

)(
js

j
k

i rP  is a local path space of sj-node representation for master path rj (j = 1, 2, … l). 
Figure 3.5(c) shows a three-node representation of the master path r where the third key node n3 
and its adjacent nodes n31, n32, n33, and n34 are located in an area between the starting and ending 
nodes of the master path r.   Figure 3.5(d) shows a four-node and a five-node path representation 
of the master path r.  The four- and five-node path representations have been used in the 
optimization in several of the optimization problems tested in this study. 

Figure 3.5 Representation of Transit Route with Two to Five Key Nodes 
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Figure 3.6(a) illustrates a street network (gray lines), a master node (black circle), its first order 
node space (black and white circles), and its second order node space (black, white, and gray 
circles).  A three key-node representation of a master path (solid line) and the first order local 
node spaces of key nodes n1, n2, and n3 (black circles and associated neighboring white circles ) 
are illustrated in Figure 3.6(b). 

Figure 3.6 Street Network, a Local Node Space, and a Three Key-Node Local Path 
Space 

 
As have been indicated before representation of a master path with larger key-node number 
results in larger search space size, and the associated results (computing resources permitting) 
are usually better than those obtained from a representation of a smaller number of key-nodes.  
However, without proper directness constraints, larger number of key-node path representations 
may lead to paths with unreasonable shapes.  Figure 3.7 shows some basic route shapes allowed 
by different numbers of key-node path representations.  For this example, it has assumed that the 
shortest path between each node pair is a straight line segment.  Figure 3.7(a) shows a typical 
path in a local path space of two-node path representation where the two end nodes are 
connected with one shortest path segment.  Paths obtained from space of two-node path 
representation have the best route directness.  All transit riders on such paths travel on the 
shortest path segments between their origin and designation points.  The disadvantage of such a 
path is that it fails to cover any nodes outside the shortest path segment thus may result in lower 
trip coverage.  Figure 3.7(b) shows a path configuration from a space of three-node path 
representation.  The extra node in this path representation adds some flexibility to the paths in 
this path space to cover nodes on one side of a shortest path segment that connects the two end 
nodes.  A path in space of two-node path representation will also be a path in a space of three-

n1 n11 

n12 

n13 

n14 

n2 n21 

n22 

n23

n24 
n3 n31

n32

n33

n34

(b) A master node and its neighboring nodes 

(a) A path, its three key-nodes, and three first order local node spaces  



 53

node path representation.  In such a case, the third node is located in the shortest path segment 
between the two end nodes.  Figure 3.7(c) shows a case where two nodes are located on each 
side of the shortest path segment between the two end nodes.  For this case, a path from a space 
of four-node path representation, shown in Figure 3.7(c), may need to cover these two nodes. 
Figures 3.7(d), 3.7(e), and 3.7(f) further show, respectively, paths in path spaces of five-node, 
six-node and seven-node path representations.   In general, as the number of key-nodes increases, 
the associated path space will include paths that are more flexible to cover various node 
distributions although the route directness of a path will decrease as the path’s flexibility 
increases.  Additionally, the path space of higher number of key-node path representation will 
include paths in spaces of lower numbers of key-node path representation.  For example, the path 
shape shown in Figure 3.7(b) is a special case of the path shape shown in Figure 3.7(c) when 
both nodes n3 and n4 are on the same side of the shortest path segment between nodes n1 and n2.  
Various basic path shapes in a path space may be called mode-shapes of the path space.   From 
the above discussion, the path shape in Figure 3.7(a) is the only mode-shape in path space of 
two-node path representation, the path shapes in Figure 3.7(a) and 3.7(b) are the two mode-
shapes in path space of three-node path representation, and Figure 3.7(a), 3.7(b) and 3.7(c) are 
the three mode-shapes in path space of three-node path representation, and so on. 
 
 

 
       
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Representations of Transit Route with Two through Seven Key Nodes 
 
It may be seen from the above discussion that from a practical points of view, the number of key-
nodes used in the representation of local path spaces in a mathematical optimization formulation 
should be limited since a representation based on a large number of key nodes will include paths 
that are too flexible to be transit routes due to unreasonable route directness ratios.  The selection 
of an appropriate key-node number for a particular TRN design problem depends mainly on the 
computing resources available.  By selecting a particular key-node number, all paths that could 
not be represented for the given number of key nodes will be automatically filtered out from the 
associated local path spaces, resulting in much smaller search spaces.  In practice, the key-node 
number should be such that it is large enough to allow inclusion of as many paths as possible 
with reasonable route directness, but small enough to result in a tractable solution process. 
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3.6 Constraints for Transit Routes 
 
This section presents various constraints applied in this study.  Identifying and incorporating as 
many appropriate integer constraints as possible into an integer optimization solution process 
may be one of the most important steps in solving a large scale TRN design problem since it has 
a direct impact on the solvability of the whole solution process.  For example, in the optimization 
process of Miami area’s transit route network presented in the next chapter, the basic path search 
space is reduced by more than 30% after applying the constraint on the maximum transit route 
length.  Other constraints, such as the minimum and maximum numbers of bus stops per route, 
further reduce the search space significantly.  Using a path representation based on a specific 
key-node number described in previous section is another example to separate solution subspaces 
that contain unfavorable solutions.  Applying various constraints to separate and discard solution 
subspaces that are unlikely to contain valid solutions is a common technique in various branch-
and-bound methods in network optimization fields.  Such techniques will be employed 
repeatedly through various solution stages in this study. 
 
There are mainly four types of constraints in transit route network optimization analysis.  The 
first constraint type includes various location constraints imposed on certain transit routes by 
transit planners.  Such constraints must be satisfied during the optimization process, and will be 
referred to as location constraints of a transit route network system.  The second type of 
constraints includes various operational and/or feasibility constraints that are usually based on 
heuristic guidelines or past experiences.  Such constraints are usually given as upper and/or 
lower bounds that are used to define the ranges of certain transit network parameters.  These 
constraints will be referred to as heuristic constraints.  Constraints of the first and the second 
types are simple constraints because incorporating such constraints into a solution framework for 
TRN optimization is straightforward and may often be used to reduce the solution search spaces 
significantly through branch-and-bound schemes.  The third constraint type includes various 
composite or functional constraints that rely on other design variables of the network system, and 
usually require considerable computational efforts to evaluate.  The route and network directness 
constraints are examples of such constraints, where the directness of a route or a route network is 
a function of route geometry or a route network structure.  The fourth type of constraints is those 
implied in the model formulation or approximation, which may result in the exclusion of certain 
solution subspaces.  These constraints are described in the following subsections. 
 
3.6.1 Location Constraints 
 
The following is a list of location constraints that have been implemented in the computer 
program developed in this study. 
 

(1) Fixed route constraints 
 

A transit route and all its stops/nodes are specified and may not be changed during the 
optimization process.  Examples of such routes include fixed guideway transit lines, 
busways, or any routes specified by transit planners to meet certain planning goals. 
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(2) Prescribed route starting and ending area constraints (two-area constraints) 
 

The general areas of starting and ending points of a transit route are defined by two sets of 
nodes.  A route with such constraints must start from a node inside the starting area, and end 
at a node inside the ending area.  A route starting from a given node, and/or ending at a given 
node is a special case of such constraint, where the starting area or ending area has only one 
node.  When there is only one node in a specified area, the constraint in the corresponding 
end is called a fixed boundary constraint; otherwise, it is called a flexible boundary 
constraint.  This constraint is applied when transit planners wish to specify transit routes 
between two major activity centers.  Examples of such routes are those that serve airports, 
downtown, government centers, railway terminals, universities, shopping malls, etc. 

 
(3) Prescribed route starting, ending, and an in-between area constraints (three-area 

constraint) 
 

In addition to the starting and ending areas of a transit route, an intermediate area may also 
be specified.  A route with such constraint must start from a node inside the starting area, and 
pass a node inside the intermediate area, and end at a node inside the ending area.  
Depending on the number of nodes in a specified area, this constraint may be also called 
fixed boundary constraint if there is only one node in the area, or flexible boundary constraint 
there are more than one node in the area. This constraint allows transit planners to specify 
transit routes between three major civic activity areas.   

 
The two- and three-area constraints described above may also be used in situations where transit 
planners specify several transit routes intersecting in certain activity areas.  Examples of such 
areas are transit transfer centers.  Connecting several feeder bus lines with a major transit line 
such as a rail rapid transit line will be a special application of these constraints, where the 
specified area will be defined by some or all of the nodes on the transit line, and routes will be all 
the feeder bus lines.  
 
3.6.2 Heuristic Constraints 
 
These constraints are used mainly for reducing the sizes of solution search spaces.  Such 
constraints are usually based on either heuristic guidelines, past experiences, or common 
practices accepted by transit planning communities.   The following are the constraints used in 
this study. 
 

(1) Constraints on the maximum length (or service time) of a transit route.   
 

This constraint defines the maximum length (or service time) for each transit route in a 
transit route network.  The maximum length (or service time) constraint for a transit route is 
usually based on operational considerations.  For example, it is known that it is more difficult 
to maintain transit service schedules for longer bus line/route (or service hours).  Moreover, 
long operating hours may cause bus driver fatigue thus may result in safety hazards.   
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Denote lr(ri) as the length of transit route ri, and lt(T(l)) as the total length of transit network 
T

(l)
.  The maximum length constraints for individual transit routes may be expressed as 

follows: 
 
    lr(ri) ≤ Rlmax ,  i = 1, 2, … l                               [3.24] 
 
and for total route length in a transit route network system 
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where Rlmax and Tlmax  are, respectively, two user input parameters to define the maximum route 
length for each transit route and the maximum total route length of the transit network 
system.  
 
(2) Constraint on the minimum length (or service time) of a transit route 

 
This constraint sets the minimum length (or service time) for each transit route in a transit 
route network.  This constraint is to prevent short transit lines from being generated because 
it is known that very short transit lines are usually not cost effective (except certain special 
purpose shuttle bus lines). 

 
     lr(ri) ≥  Rlmin ,     i = 1, 2, …, l                          [3.26] 
 
where Rlmax is a user input parameter to define the minimum route length for each transit route. 
 
(3) Constraint on the maximum number of stops/nodes on a transit/bus line  

 
This constraint is to limit solution search spaces to include only paths that have nodes fewer 
than a user input number, nmax.  The number nmax may be determined based on past 
experience or studies or surveys of the existing transit system.  A large number of nmax may 
result in a large solution search space, thus solution difficulty for large transit route network 
system due to the limitation of computing resources.  On the other hand, a small number of 
nmax may exclude some legitimate solution candidates from the solution search space, 
resulting in failure in obtaining true optimal solutions.   In general, nmax = 40 for small or mid 
transit service systems, and nmax = 80 for larger transit service systems may be reasonable 
values.  It needs to be emphasized here that the constraint on the maximum number of nodes 
is not essential for transit route network optimization problems.  It is merely for the purpose 
of reducing the size of a solution search space thus a more effective solution process.  
Without this constraint, the maximum number of nodes in a transit route will be determined 
by the maximum route length (or operation time) constraint.   

 
 
 



 57

(4) Constraint on minimum number of stops/nodes in a transit/bus line 
 

Similar to the constraint on the maximum number of nodes, the constraint on the minimum 
number of nodes is also intended to reduce the size of solution search space, and may also be 
based on past experience or heuristic guidelines.  Denote the minimum number of nodes 
allowed in a transit route as nmin, this constraint may be expressed as nmin ≥ 2 and nmin  ≤ nmax. 

 
3.6.3 Composite or Functional Constraints 
 
In this study, three transit network service directness constraints are introduced to control and/or 
evaluate the quality of route network configurations.  One is the individual transit route based 
service directness, called route directness d(r), that characterizes the route directness of an 
individual transit route r.  A second one, called transit network directness d(T

(l)
), is the transit 

route network directness that reflects the service directness of the entire transit route network 
system T

(l)
.  Both d(r) and d(T

(l)
) are important parameters that reflect the service quality of a 

transit route network system.  A third constraint, referred to as route out-of-direction tolerance 
constraint do(r), is based on the concept of Out-of-Direction (OOD) impact index suggested by 
Welch et al. (1991).  The OOD impact index reflects tolerance of riders on a bus route to 
deviations from main travel path of a fixed route to increase the accessibility or ridership of the 
route.  Welch et al. have observed that as the degree of deviation increases, riders, especially 
travel time sensitive ones, may choose not to use transit services.  There are many ways to define 
route directness d(r), transit network directness d(T

(l)
), and the OOD impact function do(r).  The 

following is the definition of d(r), d(T
(l)

), and do(r) used in this study. 
 
(1) Transit route directness constraints.  There are two ways to define the service 

directness of a transit route.  One is based on the geometry of a transit route that reflects 
the route’s geometrical characteristics.  This route directness, denoted as dG(r), will be 
referred to as the service directness based on route geometry.  In general, a transit route 
with good geometry based directness means that averagely stop/node pairs of the route 
are connected either with shortest paths of the street network or by paths close to shortest 
paths between those stop pairs.  The other route directness, denoted as dR(r), takes into 
account of the ridership distribution along the transit route, and will be referred to as 
ridership based route directness.  In general, a transit route with good ridership based 
directness means that averagely transit riders of the route travel between their origin and 
designation points along either shortest paths in the street network or paths close to 
shortest paths between those points.  The following is the mathematic definition of the 
route directness.  The route directness of a transit route r based on route geometry is 
defined as 
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where 
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The route directness of r based on route geometry and ridership is 
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In expressions [3.27a, b, c, d] r is the number of nodes on the transit route r = r(n1, n2, …, 
nr), and )(r

ijd is the shortest distance (or travel time) between nodes ni and nj measured 

along the transit route r. )(S
ijd in expressions [3.27a,c] represents the shortest network 

distance (or time) between the two corresponding nodes, nodes ni and nj.  In general, one 
has the relationship )()( r

ij
S

ij dd ≤ . Variables oij and oji in expressions [3.27c] and [3.27d] are 
coefficients of the origin and designation matrix, or simply, the OD matrix, of the street 
network, 
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where n is the total number of nodes in the street network system.  The physical meaning 
of the OD coefficient oij is the number of trips originated from node i, and destined for 
node j.  This study deals with fixed transit demand problems, i.e., O is assumed to be a 
constant matrix, and does not change with transit supply.  In practices, fixed transit 
demand analysis may apply to problems with average trip distribution over certain time 
durations (e.g. Mandl’s problem with daily OD trip distribution), or apply to particular 



 59

time periods in a day such as transit peak hours, off-peak hours etc.  It should be 
recognized that in reality, transit demand may depend on transit supply, thus ideally, a 
more accurate TRN optimization should be carried out in an iterative manner in a cycle 
of demand estimation and route network design.  G

ijw  in expressions [3.27a, b] and R
ijw  in 

expressions [3.27c, d] are weighting coefficients, and G
ijw  is based on the number of node 

pairs in the corresponding route or network system, while R
ijw  is based on the OD trip 

distribution over the street network. 
 
It may be seen from expression [3.27a] that physically, the geometry based route 
directness dG(r) reflects the average ratio of the two traveling distances between each 
node pair on route r, one is measured along route r, and one is measured along the 
shortest path of the street network.   The value of geometry based route directness dG(r) 
may represent, in certain sense, an aspect of operating cost of the transit route r.  A value 
of dR(r) = 1 indicates that, averagely, transit vehicles in route r travel along the shortest 
paths between route stops, whereas a value of dR(r) = 2 indicates that, averagely, the 
distances that transit vehicles travel between transit stops are twice of that along the 
corresponding shortest paths in the street network.   
 
From expression [3.27c], it may be seen that in general, the transit ridership/demand 
based directness parameters dR(r) reflects an aspect of user cost of the transit system since 
it represents the average ratio of the distance or time a person spends when traveling 
between his/her origin and designation points by bus along transit route r, to the 
distance/time used if he/she travels along the shortest path of the street network system.  
A value of dR(r) = 1 indicates that, averagely, passengers in transit route r travel along the 
shortest paths between their originating and designating points, whereas a value of dR(r) 
= 2 indicates that, averagely, passengers in transit route r use twice of the time of that if 
they travel along the shortest paths between their originating and designating points.  
 
With the above discussion on transit route directness, the route directness constraints 
used in this study may be expressed as follow, 
 
 ( ) ( ) ( )liddordd R
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where G

rd  and R
rd  are users defined maximum geometry based and ridership based route 

directness values or tolerances.  The two directness G
rd  and R

rd  may be determined by 
transit planners based on past experiences, or by survey on existing and potential transit 
riders to find the maximum values average transit riders may accept.   In general, smaller 
directness values may result in higher transit operating cost.   However, larger directness 
values may not only turn away potential transit riders, but also force existing transit riders 
to look for other alternatives whenever possible, thus may eventually lead to high 
operating cost due to lower ridership. 

 
(2) Transit network directness constraints.  The transit route network directness has a 

similar physical meaning as that of the route directness described in the previous section 
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except that the directness measurement is based on the geometry or ridership 
characteristics of the entire route network in stead of on individual transit route.  
Naturally, the computational cost to evaluate the transit route network directness is much 
more expensive than that for individual route directness.  The following is the 
mathematic definition of the route network directness used in this study.  The network 
directness of a transit route network T

(l)
 based on geometric characteristics is defined as 
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where 
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The transit route network directness based on both network geometry and ridership is, 
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where 
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In expressions [3.30a, b, c, d], t is the total number of nodes covered by the transit route 
network system T

(l)
 = {r1, r2, … rl}, and )(T

ijd is the shortest distance (or travel time) 

between nodes mi and mj measured along the transit route network T
(l)

.  Nodes mi and mj 
belong to transit network node set { }t

t
T

t
T mmm ,,, 21

)()( ΛNN = , which is made up by all 

the nodes covered by transit route network T
(l)

.  In general, )(t
TN  is a subset of the total 

street node set N
(n)

,  i.e., )()( nt
T NN ⊆ . )(t

TN  will be equal to N(n) when the transit route 

network T
(l)

 covers all the street nodes in the street network system.  )(S
ijd in expressions 

[3.30a,c] represents the shortest distance (or time) between the two corresponding nodes 
mi and mj in [3.30a,c].  )(T

ijd  is the shortest distance/time in the transit network.  In 

general, there is the relationship )()()( r
ij

T
ij

S
ij ddd ≤≤ .  Figure 3.7 shows an example of 

different shortest distance/time values between a node pair through different networks or 
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route.   The shortest distance between node 25 and node 2 is obtained from path (25, 26, 
27, 20, 35, 13, 8, 1, 2) if traveling along the red dashed line route; or from the path (25, 
26, 20, 9, 2) if traveling along the two-line transit network, i.e., red dashed line and green 
solid line; or from the path (25, 26, 34, 35, 9, 2) if traveling along the shortest path of the 
street network system. 

 
Figure 3.8 Shortest Distances from Different Network/Route System 

 
Variables oij and oji in expressions [3.30c] and [3.30d] are coefficients of the OD matrix 
defined in [3.29].   G

ijw  in expressions [3.30a, b] and R
ijw  in expressions [3.30c, d] are 

weighting coefficients, and G
ijw  is based on the number of node pairs in the 

corresponding transit route network, while R
ijw  is based on the OD trip distribution of the  

street network.  The transit route network directness dG(T
(l)

) in equation [3.30a] has a 
similar physical meaning as described in previous section for route directness dR(r).  
More specifically, dG(T

(l)
) reflects the average ratio of the two travel distances between 

each node/stop pair in transit network T
(l)

, one measured along the shortest path via 
transit route network, and the other along the shortest path in the street network.  A value 
of dG(T

(l)
) = 1 indicates that on average transit vehicles in transit route network T(l) travel 

along the shortest paths between their OD points, whereas a value of dG(T(l)) = 2 indicates 
that on average transit vehicles in transit route network T(l) travel twice of the distance of 
that if they travel along the shortest paths between their OD points.  dR(T

(l)
) in equation 

[3.30c] is the transit route network directness that accounts for the ridership/demand 
distribution along the route and in the network. 
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Generally the transit ridership/demand based directness parameters dR(T
(l)

) reflect an 
aspect of user cost of the transit system while the transit network geometry based 
directness parameter dG(T

(l)
) reflects an aspect of operator cost of the transit system.   

 
With the above discussion on transit route network directness, the transit route network 
directness constraints used in this study may be expressed as follows: 
 

 ( ) ( ) ,, )()( R
T

lRG
T

lG ddordd ≤≤ TT  [3.30e] 
 
where G

Td  and R
Td  are users input maximum transit network directness values or 

tolerances.  G
Td  and R

Td  may be determined in a similar manner as G
rd  and R

rd .  They 
also have the same implications on the user and operator costs. 

 
(3) Out-of-Direction (OOD) constraints on transit routes.  The OOD methodology 

developed by Welch et al. (1991) is mainly for existing transit route networks.  Although 
it could be a good tool in the post processing stage to fine tune the solution route 
network, it cannot be directly used in the solution search process developed in this study 
where routes are constantly changed during search iterations.  To incorporate their 
method into the optimization process developed in this study, the following modification 
is made.  Denote ( ) ( )ro

ijd  as the OOD impact index of node i and node j of a transit route 
r, then 

 

  ( ) ( ) ( ) ( )[ ]
( ) ( )r

rr
r 2

)1(

ij

ijijijo
ij r

dlr
d

−
= , [3.31a] 

 
where ( ) ( )r1

ijr , called the through ridership following Welch et al. (1991), is the number 
of trips or riders traveling on route r that pass through nodes i and j without boarding or 
alighting at any nodes between these two nodes, and ( ) ( )r2

ijr , called the OOD ridership, is 
the number of trips or riders on route r that involve either boarding or alighting at nodes 
between these two nodes.  lij(r) is the distance (or time) between nodes i and j along route 
r, and dij is distance (or time) along the shortest path between these two nodes in the 
street network.  The number lij(r) - dij  in equation [3.32], called the OOD travel distance 
(or time), reflects the increase in travel distance (or time) along route segment of r rather 
than along the shortest path segment between nodes i and j.  The physical meaning of 
OOD defined in [3.32] may be explained as the extra travel distance or time suffered by 
each through passenger for each OOD passenger.  According to Welch et al. (1991), it 
was believed that in general the maximum value of OOD impact index should not be 
larger than 15 measured by travel time.  Otherwise, the inconvenience to through 
passengers may have adverse impact on through ridership.   In the computer program 
developed in this study, two user-defined OOD constraint values are used to control the 
OOD characteristics of individual transit route: 
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  ( ) ( ) ( ) ( ) ( ) ( ) ,,max
o

ave
ooo

ij ddanddd ≤≤ rr  [3.31b] 
 

where ( )odmax  is a user-defined maximum OOD impact index value that controls individual 
OOD route segments on a route, and ( )o

aved  is another user-defined maximum average 
OOD impact index value that controls the average OOD characteristics on a route,  while 

( ) ( )rod  is defined as follows, 
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r in [3.32c] is the number of nodes in route r.   The determination of ( )odmax  and ( )o

aved  may 
be either following certain heuristic guidelines or from survey data Welch et al. (1991). 

 
3.6.4 Implicitly Applied Route Directness Constraints 
 
Some constraints are applied or implied implicitly.  Constraints of these types are usually used 
for the purpose of reducing solution search spaces.  For example, when a transit route is 
represented by k key-node path model, it may automatically exclude some possible paths that 
may only be represented by higher order key-node models.  The selection of k may depend on 
past experience or certain heuristic guidelines.  A larger k will lead to inclusion of paths with 
poor route directness and large solution search space sizes.  Smaller k may result in loss of 
legitimate solution candidates. 
 
3.7 Optimization Objective Functions 
 
Objective functions are functions of which the values will be maximized or minimized during 
optimization processes.  Depending on particular problems, an optimization process may involve 
one or more objective functions.  In this study, the objective functions considered are various 
service coverage functions.  In a street network system overlaid with a transit route network, a 
street node i is associated with a given demand, oij (j = 1, 2, … n), where oij represents the 
number of trips originating at node i and destined for node j, and n is the number of nodes in the 
street network.  Nodes i and j are called an OD pair, and oij is called OD trips from node i to 
node j and is an element of the OD matrix O (matrix O is defined in [3.28]), also referred to as a 
demand matrix.   
 
Traveling between any OD pair, e.g., nodes i and j, may or may not involve transfers depending 
on the configuration of transit route network.  If a trip between an OD pair requires no transfer, 
the trip will be called a zero-transfer trip, while a trip between an OD pair that requires k or 
fewer transfers will be called a k-or-less transfer trip.  A k-or-less transfer trip coverage function, 
or simply a k-or-less transfer function, is defined as the total number of OD trips that can be 
accomplished with k or fewer transfers in a transit network service area.  The function is 
evaluated based on the assumption that the network demand is given and that the goal is to 
optimize the transit route network structure to maximize 0-transfer trips while attempting to 
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provide services to meet as much demand as possible in a transit service area.  In other words, in 
this study, the interaction between transit service quality and demand is not modeled.  In reality, 
transit demand thus a service coverage function value not only depends on the route network 
layout or structure, but is also influenced by service frequencies, vehicle time tables, and other 
service quality factors such as bus stop amenities.   
 
The following is a description of the various transfer coverage functions used in this study.  
Denote fk as a k-or-less transfer function, then 
 

fk = fk(T, O), k = 0, 1, 2, …                                                               [3.32] 
 
where T and O are, respectively, the transit route network matrix as defined in equations [3.9a,b] 
and the OD matrix of the system.  Expression [3.32] reflects the fact that the value of the transfer 
trip coverage functions depends on the transit route network configuration and the demand 
distribution as defined by the OD matrix.  Let fT  be the total number of OD trips in a street 
network OD matrix, i.e., 
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then the following function value 
 

 
T

k
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f
r =                                                     [3.34] 

 
represents the ratio of OD trips that require k-or-less transfers to the total number of OD trips in 
the demand matrix.  Function value rk will be referred to as k-or-less transfer function ratio, or 
simply k-or-less transfer ratio.  The k-or-less transfer ratio is an indicator of the quality of a 
transit route network.  For example, r0 = 0.8 means that 80% of transit riders can travel between 
their origin and destination points without any transfers, whereas a value of r1 = 0.9 indicates that 
90% of transit riders can travel between their origin and destination points with zero or one 
transfer.  It is easy to see that for a transit route network with fixed total route length or service 
hours, a greater value of the zero-transfer function or zero-transfer function ratio corresponds to 
better service quality.  For transfer function ratio defined in [3.34], the optimal value is 1.0, 
while for transfer function in [3.32], the optimal value is fT.   In the computer program there are 
several options to select the objective functions.  These options are described bellow. 
 
3.7.1 Object Function Based on Zero Transfer Trip Coverage  
 
The optimization process will maximize the function value of f0 (or r0) under appropriate 
constraints described in previous sections.   Explicitly, the zero-transfer function may be 
expressed in terms of OD matrix O and transit route network matrix T as follows, 
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where oij are coefficients of  OD matrix O and )0(
ijh are coefficients with the following property 
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=
otherwise  0,

routetransitoneleastatby connecteddirectly arenodeandnodeif,1)0( ji
hij .           [3.36] 

 
Coefficients )0(

ijh  will be referred to as zero-transfer coefficients and their associated matrix 

( ))0()0()0(
ijhHH =  as zero-transfer matrix.  Coefficients )0(

ijh  may be derived from transit route 
network matrix T based on the following relationships,   
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where tki and tkj are coefficients of transit route network matrix T defined in equations [3.9a,b], 
and h is a Heaviside step function, or simply an h-function, which has the property bellow:  
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The physical meaning of coefficient )0(

ijα in equation [3.37a] is the number of transit routes that 
directly connect street nodes i and j.  For a given OD matrix O, the optimization process is to 
select a transit route network T

(l)
 from an appropriate solution space such that the zero-transfer 

function f0 in [3.35] reaches a maximum value. 
 
3.7.2 Object Function Based on One-or-Less Transfer Trip Coverage  
 
The optimization process will maximize the function value of f1 (or r1) under appropriate 
constraints.  The one-or-less transfer function may also be expressed in terms of OD matrix O 
and transit route network matrix T.  Compared with 0f , the evaluation of one-transfer function is 
much more expensive due to the large number of arithmetic operations involved.  The following 
is a brief description of the relationship between the one-or-less transfer function f1 and matrices 
O and T.  Similar to the zero-transfer function, the one-or-less transfer function may be 
expressed in terms of OD matrix O and one-or-less transfer coefficients )1(

ijh  (or matrix H
(1)

), 
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where oij are the coefficients of OD matrix O and )1(

ijh are coefficients that have the following 
property: 
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⎩
⎨
⎧

=
otherwise  0,

routestransitor two oneby connected arenodeandnodeif,1)1( ji
hij   [3.40] 

 
Coefficients )1(

ijh  and their associated matrix ( ))1()1()1(
ijhHH =  will be referred to as one-or-less 

transfer coefficients and one-or-less transfer matrix, respectively.  The relationship between )1(
ijh  

and tij is given by the following equations: 
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where h is the h-function defined in equation [3.38], and )1(

ijα  are auxiliary coefficients that have 
the following property: 
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Coefficients αkm in equation [3.41c] are transit/bus line intersection coefficients that have the 
property 
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Physically, αkm represents the number of nodes that appear on both transit line k and line m.   It 
may be seen by comparing equations [3.41] with [3.37] that optimization with one-or-less 
transfer objective function f1 involves a much larger number of arithmetic operations than 
optimization with zero-transfer objective function f0. 
 
3.7.3 Objective Function Based on Two-or-Less Transfer Trip Coverage  
 
The optimization process will maximize the function value of f2 (or r2) under appropriate 
constraints.  Similar to the zero-transfer and one-or-less transfer function cases, the two-or-less 
transfer function may be expressed in terms of OD matrix O and two-or-less transfer coefficients 

)2(
ijh  (or matrix H(2)) as follows,  
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where oij are coefficients of OD matrix O and )2(
ijh are coefficients that have the following 

property 
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Coefficients )2(

ijh and their associated matrix H(2) = H(2)(hij
(2)) will be referred to as two-or-less 

transfer coefficients and two-or-less transfer matrix, respectively.  The relationship between 
)2(

ijh and tij are given by the following equations, 
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where h is the h-function defined in equation [3.38], and )2(

ijα  are auxiliary coefficients that have 
the following property: 
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In equation [3.44c], coefficients αki and αmi are defined in equation [3.42], and coefficients βkm  
have the following properties: 
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Optimization with two-or-less transfer objective function f2 is even more computational intensive 
than optimization with one-or-less transfer objective function f1 due to the great number of 
arithmetic operations involved in equations [3.44] to obtain all the required coefficients.  In fact, 
numerical tests conducted in this study have indicated that for current high-end PCs, f2 seems 
only good for small or some mid sized transit route network optimization problems.  For large 
problems, powerful mainframe computers or special computational means such as 
multiprocessor parallel computing schemes may be required to obtain results in a reasonable 
amount of time.  
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3.7.4 Objective Function of Multiple Objects 
 
There are mainly two methods to deal with optimization problems with more than one object.  
The first method is to formulate objective functions for individual optimization objects, then 
create a single composite objective function from these individual objective functions using 
weighting coefficients.  The contribution of a particular objective function to the resulting 
composite objective function may be adjusted by assign an appropriate weighting coefficient.   
For example, if all three transfer coverage functions f0, f1 and f2 are to be incorporated into a 
single objective function, three weighting coefficients α0, α1, and α2 may be introduced to 
establish the following composite objective function, 

 
     fc = α0 f0 + α1 f1 + α2 f2                         [3.45] 

 
The magnitude of a particular weighting coefficient with respect to the others will determine the 
relative importance of the corresponding objective function.  Mathematically, solution methods 
based on a single objective function are easier to formulate if weighting coefficients are given.  
However, in practice, such methods may be difficult to use since determination of appropriate 
weighting coefficients may either require in-depth knowledge about the domain or itself be a 
difficult optimization sub-problem.   
 
The second method does not use weighting coefficients to represent the relative importance of 
individual objective functions.  The solution procedure of such method involves a scheme that 
first selects potential solutions that meet the most important optimization objective, then from 
this selected solution pool, seek solutions that also meet the next important objective.  The 
selection process will continue until all the optimization objectives are met.  To illustrate the idea 
of the second method, consider a transit route network design optimization problem.  Assume 
that a transit rider is covered by transit services if he or she can travel from his or her origin to 
destination with two or fewer transfers (i.e., the person is covered by a two-or-less transfer trip).  
If the primary design object is the maximization of zero-transfer trip coverage and the secondary 
object is the maximization of transit network service ridership coverage (i.e., two-or-less transfer 
trip coverage), then one has the following optimization objectives: 

 
• Maximization of primary objective function: f0 
• Maximization of secondary objective function: f2 

 
During solution search iteration, solutions that meet the primary objective, i.e., with large zero-
transfer function values, will be selected first.  From these solutions that have the same zero-
transfer function values, solution that meet the secondary objective, i.e., having large two-or-less 
transfer function values, will be selected next.  A list of some of the objective function 
combinations available in the computer code developed for this study is given below, where f is 
used to represent the combination of objective functions. 
 

 
1. f  = (k) –  Maximization of single objective function fk (k = 0, 1, 2): 

f  = (0): Maximization of zero-transfer objective function f0;  
f  = (1): Maximization of one-or-less transfer objective function f1; 
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f  = (2): Maximization of two-or-less transfer objective function f2.    
 
2. f = (i, j) – Maximization of two objective functions with fi as the primary objective 

function and fi as the secondary objective function (i, j = 0, 1, 2, i ≠ j).  For example,  
 f = (0, 1):  Maximization of zero-transfer function f0 with one-or-less transfer function f1 

as the secondary function;  
 f = (0, 2): Maximization of zero-transfer function f0 with two-or-less transfer function f2 

as the secondary function;  
 f = (1, 0): Maximization of one-or-less transfer function f1 with zero-transfer function f0 

as the secondary function. 
 
3. f = (0, 1, 2) – Maximization of multiple objective functions with zero-transfer function f0 

as the primary objective function, f1 as the secondary objective function, and f2 as the 
third objective function. 

 
4. f = ((0, 1)) – Maximization of two objective functions with both zero-transfer function f0 

and one-or-less transfer function f1 as the primary objective functions.  In such cases, a 
route network will be selected during solution search iterations if both f0 and f1 have 
higher values than the existing network.  This option is for practical situations where one 
wants to improve the zero-transfer trip coverage without sacrificing the total service 
coverage, which is defined in this case by the one-or-less transfer coverage. 

 
5. f = ((0, 2)) – Maximization of two objective functions with both zero-transfer function f0 

and two-or-less transfer function f2 as the primary objective functions.  A route network 
will be selected if both f0 and f2 have higher values than the existing network.  This option 
is for practical situations where one wants to improve the zero-transfer trip coverage 
without sacrificing the total service coverage defined by the two-or-less transfer 
coverage. 

 
6. f = ((1, 2)) – Maximization of two objective functions with both one-transfer function f1 

and two-or-less transfer function f2 as the primary objective functions.  A route network 
will be selected if both f1 and f2 have higher values than the existing network.  This option 
is for improving the one-or-less transfer trip coverage without sacrificing the total service 
coverage defined by the two-or-less transfer coverage.  For transit systems that includes 
rail lines or a trunk-and-feeder system, certain bus lines are designed as feeder lines to 
serve rail or trunk lines.  In such cases, the one-or-less transfer objective function f1 will 
be more appropriate than the zero-transfer function f0. 

 
7. f = ((0, 1, 2)) – Maximization of multiple objective functions with zero transfer function 

f0, one-or-less transfer function f1, and two-or-less transfer function f2 as the primary 
objective functions.  A route network will be selected if all the three associated functions 
f0, f1, and f2 have better values than the existing network.  This option is for situations 
where one wants to improve one objective without sacrificing the others. 

 
8. f = (t2) – Minimization of the transfer directness objective function defined as follows. 
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where α is a weighting coefficient to penalize uncovered trips during the optimization 
process of the transit route network system.  Expression [3.46] has the same form as that of 
[3.45] where the coefficient α has to be determined heuristically or through trial-and-error.  
The physical meaning of the objective function t2(T, O) is the average number of vehicle 
boardings that a transit rider has to make to accomplish an OD trip.  The optimal value of 
t2(T, O) is 1.0. In such cases, all transit riders board transit vehicles only once, therefore all 
trips are zero-transfer trips.  The denominator in the expression, fT, is the number of total trips 
from the transit demand matrix O, whereas the numerator is the total passenger boardings in 
transit network system.  The physical meanings of the various terms in equation [3.46] may 
be explained as follows.  For the f0 transit riders who complete their OD trips without 
transfers, the number of boardings is f0 since these people need only to board buses or transit 
vehicles once.  For the (f1 - f0) transit riders who complete their OD trips with exactly one 
transfer, the number of boardings is 2(f1 - f0) since transferring to another transit vehicle 
requires an additional boarding.  For the (f2 – f1) transit riders who complete their OD trips 
with exactly two transfers, the corresponding number of boardings is 3(f2 – f1).  Any trips that 
are either not covered by the route network under analysis or require more than two transfers 
to accomplish are considered as not covered by the transit network service.  Therefore, the 
total uncovered trips in the route network will be (fT – f2).  To account for the (fT – f2) 
uncovered trips in the measurement, a penalty α is introduced to include a fictitious transit 
vehicle boarding number α(fT – f2).  This is to avoid solutions that have a small t2(T, O) value 
but covers only a small percentage of the demand.  The value of the penalty number α needs 
to be determined by transit planners.  For example, one may consider each of the uncovered 
trips as four vehicle boardings, i.e., α = 4.  In general, the larger the value α is, the greater 
importance is given to service coverage in the minimization process.  However, α should not 
be too large relative to other coefficients, as it may result in the optimization process 
attempting to minimize the single term (fT – f2) and neglecting the effects of other factors.  In 
the computer program developed in this study, the default value for α is four, which seems to 
give reasonable results. 

 
9. f = (t1) –  Minimization of the transfer directness objective function defined below: 
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The physical meaning of t1 is similar to that of t2(T, O), defined in [3.46], except that 
uncovered trips now will include trips that require two or more transfers. 

 
3.8 Solution Search Algorithms 
 
In this section, several solution search algorithms developed in the study are presented.  
Limitations and advantages of these algorithms are also discussed.   In section 3.4, a local transit 
network solution search space based on branch-and-bound and localization concepts has been 
represented as (ref. equation [3.23]) 
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where T
(l)

 = {r1, r2, …, rl} is the master transit network; rj (j = 1, 2, …, l) are the l routes in the 
network; )( js

jr is the sj-node representation of route rj; ( ))()(
)(

js
j

k
i rP  is the local path search space 

generated from )( js
jr ; i is the order of the local space; and k indicates that the local search space 

is based on a k-level shortest path space (ref. [3.19]).  As explained in section 3.4, the search 
space ( ))()(

)(
lk

i TT  may be flexibly defined and expanded to include all possible solutions by 
increasing i or  k, or both.  The smallest search space defined by this representation is obtained 
by setting k = 1 and i =1, 
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where the local path space ( ))()1(

)1(
js

jrP  is obtained by connecting adjacent local node spaces 

generated from nodes of path )( js
jr with shortest path segments.  Since the solution methods used 

for most of the application problems or examples in this research are based on the smallest 
search space defined in [3.48a], for simplicity, the first order, 1-level shortest path space based 
local network space ( ))()1(

)1(
lTT  and local path space ( )rP )1(

)1(  will be written, respectively, as 

L
T
(T

(l)
) and L

P
(r), while the first order local node space )()1( iNL of a master node i defined in 

equation [3.16] will be denoted as L
N
(i).   With the above definitions, equation [3.48a] now 

becomes 
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This search space now only includes those route networks that are located in the immediate 
neighborhood of the master network T

(l)
.  However, for practical transit network optimization 

problems, this small local solution search space defined by [3.48b] may be still too large for any 
solution algorithms to obtain results based on exhaust search schemes.  To illustrate, consider a 
street network A

(m)
 with an average nodal adjacency list length 4=m and a transit network T(l) = 

{r1, r2, …, rl} defined in A
(m)

.  Recall, from equation [3.6a], that the length of a nodal adjacency 
list is the number of nodes in that list, and m  is the average nodal adjacency list length of the 
entire street network.  Using two-node representation, i.e., sj = 2, a local path space L

P
(r1

(2)
) 

generated from a typical master path r in T
(l)

 will have on average a path population of kp = ( m + 
1)2.   Since there are l routes in transit network T

(l)
, the network population in the local network 

space L
T
(T

(l)
) defined in [3.48b] will be in the order of kT = kl

p = ( m + 1)2l.  For a transit 
network of bus route number l = 50, the population number in network search space L

T
(T

(l)
) will 

be in the order of kT =(4 + 1)2x50 = 5100, which is impossible to handle by current computer 
resources in any transit agencies in this country.   
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To illustrate with a simple example, consider the street network shown in Figure 3.1 where the 
transit network consists of two routes r1 and r2 represented by the green solid line and red dotted 
line, respectively.  The route r1 starts from node 28 and ends at node 3, and both nodes have 
nodal adjacency list length of 3.  Node 28’s local node space LN(28) = {21, 22, 29, 28} consists 
of node 28’s nodal adjacency list nodes 21, 22, 29 and node 28 itself, while node 3’s local node 
space LN(3) = {2, 20, 27, 3} consists of node 3’s nodal adjacency list nodes 2, 20, 27 and node 3 
itself.  The local path space L

P
(r1

(2)
) based on the two-node representation of the green route r1 is 

constructed by connecting the four nodes in node 28’s local space LN(28) = {21, 22, 29, 28} with 
the four nodes in node 3’s local space LN(3) = {2, 20, 27, 3}, respectively, to obtain 42 = 16 
shortest paths, 
 
      ( ) { } 3,27,20,2,28,29,22,21,)2(

1 === jiS
ij

P prL ,                [3.49a] 
 
where S

ijp  represents the 1-level shortest path (ref. equation [3.22]) between nodes i and j.  Route 
r2 represented by the red dotted line in Figure 3.1 starts from node 21, and ends at node 2.  
Following the same procedure as before, the local path space LP(r2

(2)) for route r2 can be 
generated by connecting the four nodes in node 21’s local node space LN(21) = {28, 22, 14, 21} 
with the four nodes in node 2’s local node space in LN(2) = {1, 9, 3, 2}, respectively, to obtain 42 
= 16 shortest paths, 
       
      ( ) { },)2(

2
S
ij

P prL =  i = 28, 22, 14, 21; j = 1, 9, 3, 2.                   [3.49b] 
 
The local transit network search space of the two-route transit network T

(2)
 = {r1, r2} is 

established by choosing the first path and the second paths, respectively, from the path space 
L

P
(r1

(2)
) defined in [3.49a], and the path space L

P
(r2

(2)
) defined in [3.49b], 
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Since there are 42 x 42 = 256 different ways to select these two paths from path spaces L

P
(r1

(2)
) 

and L
P
(r2

(2)
), the local transit network search space of the two-route transit network has a 

population of 256 (note that some of the networks may have same paths).    
 
From the above discussion, it may be seen that even for a locally defined solution search space, it 
is still not practical to find a local optimal solution through the evaluation of all the possible 
solution candidates in the local space.  Solution methods that do not require evaluation of all the 
members in a search space are needed for practical problems.   
 
The following is a description of the various solution search methods developed in this study.  
The basic assumption of these methods is that the transit demand distribution in a transit network 
service area has certain continuity or characteristics.  In another word, nodes or areas with 
certain transit trip/demand-distribution values are probably surrounded by nodes or areas with 
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similar demands.   In such cases, it may be more effective in searching of the optimal solution by 
evaluating paths that pass or near nodes or areas with higher transit demand in stead of 
evaluating all the paths in a solution space.   
 
Assume that at iteration k, one obtains a transit route network result, 
 
    T(l)  = {r1, r2, …, ri, …, rl},                                                                         [3.51a] 
 
where 
 
   ri = (i1, i2, …, in(i)), i = 1, 2, …, l                                                         [3.51b] 
are the l routes of the network, and n(i) is the number of nodes on route i.  The local transit route 
network search space of the master network T

(l)
 is, from [3.48], 
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where, from [3.49a,b], 
 
      ( )( ) liis

i
P ,,2,1, Λ=rL                                                                  [3.51b] 

 
is the local path search space of the master path ( )is

ir , and path ( )is
ir  is the si-node representation 

of path ri.  The goal is to find a better route network result for the next, or the (k+1)th iteration.  
The following subsections describe the various methods and the corresponding procedures for 
selecting better results from local search spaces.  For simplicity, only procedures that 
evaluate/select one route at time will be presented.  The procedures to evaluate/select multiple 
routes at a time are similar except that the evaluation/selection target is a route subspace instead 
of a single route. 
 
3.8.1 Greedy Search Method I (GS1) 

 
The basic idea and search procedures of this search method may be described through a simple 
example. Assume that from a previous search process, one obtains an intermediate route network 
result T

(l)
 = {r1, r2, … rl}, and is looking for a better alternative to update/replace one of the 

routes, rj, in the route network.  To illustrate, assume that the path shown in Figure 3.5(a) 
represents route rj, then the solution search procedure of this method may follow the steps below: 

 
(1) Select a route from the current route network, i.e., route rj in this case. 
(2) Select key-nodes from route rj. For two-node representation, the two key-nodes are the 

starting and ending nodes of route rj, i.e., nodes n1 and n2 in Figure 3.5(b).  For three-
node representation, the three key-nodes are the starting, the ending, and center nodes of 
route rj, i.e., nodes n1, n2, and n3 in Figure 3.5(c).  Assume the three-node representation 
of route rj shown in Figure 3.5(c) is used in this example, and is denoted as rj

(3).  
(3) From the three key-nodes n1, n2, and n3 shown in Figure 3.5(c), generate the three 

corresponding local node spaces:  
         LN(n1) = {n1, n11, n12, n13, n14} – the local node space of node n1 
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         LN(n2) = {n2, n21, n22, n23, n24} – the local node space of node 2n  
         LN(n3) = {n3, n31, n32, n33, n34} – the local node space of node 3n  

      Note, in this example, the average nodal adjacency list length 4=m , and number of 
nodes in all the three local node spaces is 51 =+m .   

(4) First, connect nodes in node spaces LN(n1) and LN(n3) with shortest paths to obtain 5 × 5 = 
25 shortest path segments. Then extend these shortest path segments to nodes in node 
space LN(n2) with shortest paths to obtain 25 × 5 = 125 paths.  Each of the 125 paths is 
made from two shortest path segments.  These 125 paths is the local path space of route rj 
based on three-node representation LP(rj

(3)).  In general, a local path space with an s-node 
representation and an average nodal adjacency list length m  = 4 will have a path space 
population of ( m  + 1)5. 

(5) Replace route rj in the existing transit network T
(l)

 = {r1, r2, …, rl}, with path jkr  in path 

space L
P
(rj

(3)
) to obtain an updated transit network T

(l)
 = {r1, …, rj-1, rjk, rj+1,  …, rl}, and 

perform function evaluation of the resulting transit route network.  Whenever a better 
result is obtained, i.e., the objective function value associated with path rjk is better than 
that associated with route rj, replace rj with rjk, and go to step (1) to start a new search 
process with the updated route jr .  If no better result is found after going through all the 

125 paths rjk ∈ L
P
(rj

(3)
) (k = 1, 2, …, 125), go Step (6) with the original transit network 

T
(l)

 = {r1, r2, …, rl} in this step. 
(6) Select the next route from the transit route network, e.g., route r(j+1), and go to Step (1) to 

start a new local search process for route r(j+1). 
(7) The search process will be considered converged if no better results can be found from all 

the individual route’s local path search spaces.     
 

The basic procedure of GS1 method now may be summarized as follow.  First, select a starting 
initial route network, and generate a solution search subspace Ls

T of tractable size with existing 
computing resources.  For example, based on the observation that averagely a street node in most 
transit service areas is jointed by no more than four street segments,  one may assume that the 
average length of a nodal adjacency list in a street network is m  = 4.  The average number of 
nodes in a local node space of such street network will be m + 1 = 5.  The search subspace Ls

T 
will have a solution population of ( m  + 1)5 = 55 if it only includes one local path space as is the 
case described in Step (1) and Step (7), and Ls

T will have a solution population of  ( m  + 1)t×5 = 5 

t×5 if it includes t local path spaces.  Second, with exhaust search, find the first encountered path 
(or paths if t > l) from the search subspace Ls

T that gives better objective function value (or 
values) than the existing one.  If the current search subspace Ls

T does not have any better 
solution, generate a new subspace Ls

T with a new route or routes in route network T(l).  Third, 
generate a new solution search subspace Ls

T from the better path (or paths) obtained from the 
second step, and start a new search process or iteration.  The search process will stop and be 
considered as converged if no better results could be found.   
 
Numerical results from this study have shown that GS1 method converges relatively faster than 
other methods developed in this study.  For a convex solution search space, GS1 method should 
produce a global optimal result.  However, in reality, most transit route network optimization 
problems are either intuitively non-convex or with unknown convex-ness characteristics.  In such 
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cases, the GS1 method may suffer rapid and premature converge to one of the local optimal 
results near initial guess route network. 
 
3.8.2 Greedy Search Method II (GS2) 
 
The main difference between GS2 method and the GS1 method is that the GS2 method will go 
to the next route, e.g., route r(j+1), and start a new search process whenever a better route 
alternative is obtained for the current route rj while the GS1 method will continue the search 
process for the current route rj until it could not find any better alternative path for route rj.  
Intuitively, the route network layouts obtained from GS2 method should be more evenly 
distributed among various transit demand areas than those obtained from GS2 method.  The GS2 
method’s search procedures are described below. 
 

Steps (1) through (4) are the same as those for GS1. 
(5) Replace route rj in the existing transit network T(l) = {r1, r2, …, rl} with path rjk ∈ LP(rj

(3)) 
to obtain an updated transit network T(l) = {r1, …, rj-1, rjk, rj+1,  …, rl}, and perform 
function evaluation of the resultant transit route network.  Whenever a better result is 
obtained, i.e., the objective function value associated with path rjk is better than that 
associated with route rj, replace rj with rjk to obtain an updated transit route network, and 
go to Step (6). 

(6) Select next route from the transit route network, e.g., route r(j+1), and go to Step (1) to 
start a new local search process for route r(j+1). 

(7) The search process will be considered converged if no better results can be found from all 
the individual route’s local path search spaces. 

 
3.8.3 Hill-Climbing Search Method (HC) 
 
From the description of the previous two sections, it may be seen that a greedy-type method, 
GS1 or GS2, searches for a better route from the local path space ( ))( js

j
P rL  of an existing route 

rj.  Whenever a better route, denoted as rj
(b1), in local path space ( ))( js

j
P rL  is found, the existing 

route rj will be replaced with rj
(b1), and a new search process will be started with the updated 

rj
(b1).   Although route rj

(b1) is better than the existing route rj, it may not be the best route in local 
path space ( ))( js

j
P rL .  It may be desirable to use the best route, denoted as rj

(b2), in the local path 

space ( ))( js
j

P rL  to replace the existing route rj.  This is the basic idea of the HC method.  The HC 
method may be more computational expensive comparing with greedy type methods since to 
find the best route rj

(b2) it needs to evaluate all the paths in the local path space ( ))( js
j

P rL .  For the 

example described in sections 3.8.1 and 3.8.2, the local path space ( ))( js
j

P rL  (where sj = 3) 
contains 125 paths.  In general, HC methods should produce better results than those obtained 
from the two greedy type methods GS1 or GS2.  The following is the search procedure of the 
HC method. 
 

Steps (1) through (4) are the same as those for GS1. 
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(5) Replace route rj in the existing transit network T
(l)

 = {r1, r2, …, rl} with path rjk ∈ LP(rj
(3)) 

to obtain an updated transit network T
(l)

 = {r1, …, rj-1, rjk, rj+1,  …, rl}, and perform 
function evaluation of the resulting transit route network.  Repeat the above process 125 
times to obtain the best route rj

(b2) in this step, i.e., the objective function value associated 
with path rj

(b2) is better than those associated with routes rj and rjk (k = 1, 2, …, 125).  
Replace rj with rj

(b2) to obtain an updated transit route network T
(l)

{r1, r2, …, rj-1, rj
(b2), 

rj+1, …,  rl} (j = 1, 2, …, l), and go to Step (6). 
(6) Select the next route from the transit route network, e.g., route r(j+1), and go to Step (1) to 

start a new local search process for route r(j+1). 
(7) The search process will be considered converged if no better results can be found from all 

the individual route’s local path search spaces.    
 
The number of function evaluations required from HC method may be estimate as follows.  
Assume that the average length of a nodal adjacency list in a street network is m = 4, and the 
average number of nodes in a local node space of such street network will be m + 1 = 5.  For a 
search subspace Ls

T generated from one master path with key-node number s, the search 
subspace Ls

T will have a solution population of ( m + 1)5 = 55.  For transit route network of l 
routes, the number of function evaluations corresponding to an iteration loop that includes the 
exhaust search of all the l local subspaces associated with the l master routes will be( m + 1)5 × l 
= 55 × l.  For r = 5 and l = 80, reasonable numbers for medium or large transit network systems, 
the number of function evaluations during an iteration loop will be ( m + 1)5 × l = 55 × 80 = 
250,000, i.e., the evaluation of object function defined in [3.34] for zero-transfer optimization, or 
[3.38] for one-or-less transfer optimization, or [3.42] for two-or-less transfer optimization must 
be performed 250,000 times for one iteration.  According to results from tests conducted in this 
study, an optimization process will typically converge between 10 to 100 iterations. 
 
3.8.4 Fast Hill Climb Method (FHC)  
 
The FHC method is an extension of the HC method described in the previous section. The 
differences between the FHC method and the HC method are the following.  In the search 
process of a typical route rj, the HC method will replace the existing route rj with the best route 
alternative rj

(b2) obtained from the local path space ( ))( js
j

P rL , and then start the search process for 
the next transit route.  In the FHC method, however, the existing route rj will not be replaced by 
the best route alternative rj

(b2) in local path space ( ))( js
j

P rL .  Instead, the best route alternative 
rj

(b2) for route rj and the associated objective function value fj (or values for multi-objective 
optimization problems) will be saved, and the search process for the next transit route, e.g., r(j+1), 
will start with the same route rj in the route network.  The local search process will perform l 
times for all the l transit routes in a transit route network to obtain a set of the best alternative 
routes rj

(b2) (j = 1, 2, …, l), and a set of objective function values fj corresponding to transit route 
networks T(l){r1, r2, …, rj-1, rj

(b2), rj+1, …,  rl-1, rl} (j = 1, 2, …, l).  Finally, the transit route 
network consisting of all the best routes T(l){r1

(b2), r2
(b2), …, rl

(b2)} will be evaluated to obtain the 
objective function fl+1 (or values for a multi-objective optimization problem).  The best transit 
route network among the l+1 route networks will be the one that corresponds to the best 
objective function.  Conceptually, the FHC method is similar to the deepest decent search 
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method in continuous research fields.  For transit service areas where the transit demand 
distributions have certain continuity characteristics or patterns, the FHC method should be able 
to give better results than those obtained from the other methods discussed in this section. The 
following is the search procedure of the FHC method. 
 

Steps (1) through (4) are the same as those for GS1. 
(5) Replace route rj in the existing transit network T(l){r1, r2, …, rl} with path rjk ∈ LP(rj

(3)) to 
obtain an updated transit network T(l){r1, …, rj-1, rj, rj+1, …,  rl}, and perform function 
evaluation of the resultant transit route network.  Repeat the above process 125 times to 
obtain the best route rj

(b2) in the step, i.e., the objective function value associated with 
path  rj

(b2) is better than those associated with routes rj and rjk (k = 1, 2, …, 125).  Save 
the best route rj

(b2) and the corresponding function value fj in the memory, and go to Step 
(6) with the original transit network of this step, T(l){r1, r2, …, rl}. 

(6) If all the l routes in this transit network have been evaluated, i.e., all the rj
(b2) and fj  (j = 1, 

2, …, l) have been obtained, go to Step (7).  Otherwise, select the next route from the 
transit route network, e.g., route rj+1, and go to Step (1) to start a new local search process 
for route rj+1.  

(7) Perform function evaluation of the resulting transit network T(l){r1
(b2), r2

(b2), …, rl
(b2)} to 

obtain the corresponding function value fl+1.  Compare fl+1 and fj, corresponding to 
network T(l){r1, …, rj-1, rj

(b2), rj+1, …,  rl} (j = 1, 2, …, l+1), and select the transit network 
corresponding to the best function value to replace the original network.   

(8) The search process will be considered converged if the function values fj (j = 1, 2, …, 
l+1) are no better than the function value f associated with the original transit network 
T(l){r1, r2, …, rl}in this iteration. 

 
3.8.5 Integrated Simulated Annealing, Tabu and Greedy Method (ISTG) 
 
In the description of the two greedy type search methods and the two hill climbing search 
methods, issues regarding the global-ness of the search results from these methods have not been 
addressed.  In fact, all these methods are local search methods, although the two hill climbing 
methods may produce better results due to larger search spaces.  For non-convex optimization 
system,  a local search scheme may suffer from premature convergence to or being trapped into 
one of the local optimal results near initial guess route network.  To avoid premature 
convergence to poor local optima, one way is to enlarge local search spaces by increase s, the 
key-node representation number described in section 3.5; or i the order of local space number 
defined in [3.16] and [3.17]; or k, the number that defined the k-level shortest path space in 
expressions [3.18] and [3.19].  All these remedies may increase the search space size 
significantly, thus may require considerable more computing resources.  Another way is to 
include escape schemes in the solution search process to prevent the search process from 
trapping into local optimal valleys.  The integrated simulated annealing, tabu, and greedy search 
method (ISTG) developed in this study combines the greedy search method described in section 
3.8.1 with a simulated annealing and tabu search scheme that is capable to escape from any local 
optima, and theoretically, will visit a global optima eventually with a probability of 1.0. 
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3.8.6 Tabu Search and Simulated Annealing 
 
The basic idea of escaping from a poor local optimum in the tabu search algorithm is to accept 
occasionally worse solutions from the local search space (Glover et al. 1993).  One difficulty 
with this idea is that cycling may occur, i.e., the search process may repeat the same sequence of 
solutions indefinitely.  To alleviate this problem, a tabu list is established to keep track of 
solutions evaluated recently and prevent a list of recent incumbents from reentering the new 
solution search process.  The simulated annealing search scheme is a stochastic process, also 
aimed to avoid getting trapped into poor local optima.  Unlike traditional deterministic search 
methods where difficult theoretical issues such as convexity, continuity,  uniqueness of the 
optimization system must be addressed, being able to find global optimal results through a 
stochastic process is not a difficult issue in itself.  In fact, under fairly general conditions, one 
can always expect to find a global solution from solutions obtained by randomly selected initial 
guess networks.  For example, assume that a network system has m local optimal solutions and 
that one of them is the global optimal solution.  Further assume that the chance to converge to 
this global optimal solution from a randomly selected initial network is 1/m, then from 
probability theory, the probability to obtain the global optimal solution from k solution search 
processes with randomly selected initial networks will be 
 

k

m
mp ⎟

⎠
⎞

⎜
⎝
⎛ −

−=
11 . [3.52] 

 
It may be seen from [3.52] that as the number of search processes k increases, a global optimal 
result will be eventually visited (with probability 1) although the converging process may be 
slow or computationally intractable for problems with large m.  The simulated annealing method 
is a stochastic search process that aims to find a global optimal result faster than these 
unsophisticated random search methods.  The basic idea is inspired by the annealing process in 
solids where slower cooling temperature process from liquid to solid states usually leads to a 
lower energy state (Kirkpatrick, 1983).  Mathematically, such process can be simulated as a 
stochastic search process where a local search space will replace an incumbent with probability 1 
if it contains solutions with better goal values, and with some probability between 0 and 1 for 
solutions with worse goal values.  The probability to accept a worse solution is proportional to 
the difference in the goal value, slightly worse solutions have a higher probability of being 
accepted while much worse solutions have fewer chances to be accepted.  In the long run, as the 
number of search iterations becomes sufficiently large, the search process can escape away from 
any local optimal, and eventually should visit a global optimal solution.   
 
The basic procedure for a TRN design optimization problem with the boarding functions defined 
in [3.46] or [3.47] as the objective function begins with a given TRN T0.  A solution candidate 
TRN T is then selected from a local network space ( )0

)(
)( TT k

i  defined in [3.20].  The network T is 
accepted if the associated objective function is improving, that is t(T, O) < t(T0, O), where t is a 
boarding function defined in [3.46] or [3.47].  Otherwise, T is accepted with probability 
 
 p = e-∆/θ, ∆ = [ t(T0,O) - t(T,O)] [3.53] 
 



 79

where θ is a positive number representing current temperature6 of the annealing process.  The 
temperature θ regulates the likelihood of accepting solutions with worse goal values.  A higher 
temperature θ  results in a larger probability of accepting worse solutions, while a smaller θ 
reduces the chances to accept worse solutions.  In practice,  it is typical to start with a high initial 
temperature to allow a better chance of escaping from poor local minima, and gradually reduce θ 
to enhance the selectivity of the search towards improved solutions.  The main strategies or 
features of the ISTG method developed in this study are described below. 
 
3.8.6.1 Divide-and-Conquer Heuristic 
 
There are two levels of annealing search processes in the proposed ISTG method, one at the 
network level, and the other at the route local search space level.  Directly searching at the 
network level means searching solutions from a huge combinatorial space and the number of 
sample evaluations (large enough to suppress responses due to noises) to expose any meaningful 
characteristics (such as local minimum etc.) from a solution population may be computationally 
intractable.  Dividing a problem into sub-problems of manageable sizes is a common heuristic 
called “divide-and-conquer” in operations research fields.  Parameters and criteria involved in 
the two levels of search processes include the following: 
 

(1) The initial temperature θn, the cooling temperature reduction factor τn  (0 < τn  ≤ 1), the 
maximum number of search iterations allowed Ln, and  the maximum CPU time allowed 
for solution search process at network level; 

(2) The initial temperature θr , the cooling temperature reduction factor τr  (0 < τr  ≤ 1), and 
the maximum number of search iterations allowed Lr  at route level; 

(3) Termination or convergence criterion, i.e., the definition of the “frozen” states in an 
annealing search process either at the network search level, or at the route search level.  
The termination condition used in the ISTG search method is defined through a 
probability tolerance P (Pr for route level search, and Pn for network level search) for 
repeated occurrence of the same goal values during a search process.  For example, if the 
current search result has the same goal value as the previous one, for P = 0.9, a search 
process will be continued with probability P = 0.9, or be terminated with the 
complementary probability 1 - P = 0.1.  In practice, large P values usually lead to lengthy 
computer running time before convergence, while small P values may result in the search 
processes failing to escape from local minima located in a flat valley or plateau. 

 
The above parameters and criteria will be further explained through a simple example. 
 
3.8.6.2 Communication of Various Local Solution Spaces  
 
This is an important condition to ensure that a global optimum will be eventually visited with 
probability 1 in a simulated annealing search process (Hajek 1988).  In particular, any local 
search space must be generated such that it allows a search process to migrate from any local 
spaces to any other solution spaces.  Failing to meet this condition may prevent some solutions 
from entering the search process, thus failing to arrive at globally optimal results.  This condition 

                                                 
6 For TRN optimization, temperature is a borrowed word from annealing in solids, and has no physical meanings.  
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is fairly general and easy to meet for most  problems in TRN design practice.  The locally and 
iteratively defined local network and path search spaces ( )TT )(

)(
k

i  and ( )rP )(
)(
k

i  defined in 
expressions [3.20b] and [3.20a] will satisfy this condition if the street network dose not have 
isolated nodes or sub-networks. 
 
3.8.6.3 Diversification of Search Areas 
 
Diversification of a search process is intended to cover more promising solution spaces in 
effective and manageable manners.  The following are some of the options in ISTG search 
method to enhance the diversity of the method:   
 

(1) Increase the coverage of a local search space by increasing:  
(a) the numbers of  key-nodes used to represent  master paths (refer to equation [3.22]);  
(b) the level number of the k-level shortest path space )(k

SP  used to generate local path 
spaces near master paths;  

(c) the order numbers of local node spaces that define the sizes of  master nodes’ local 
node spaces.  All the above options result in large local search spaces thus are limited 
by the computing resources. 

(2) Using local search spaces generated from more than one routes will also increase the 
coverage of local spaces although the resultant local spaces may suffer from 
combinatorial explosion as the number of routes involved in the local spaces increases.      

(3) Applying a high initial temperature θ, or a slow cooling process (by assigning 
temperature reduction factor τ  closed to 1) will also result in diversification.         

(4) Using longer tabu queue/list will prevent the search process from cycling the same 
solution search sequences thus encouraging diversification.  Numerical experiments 
conducted in this study have shown that although simulated annealing algorithm by itself 
can eventually escape from poor local minima, without the tabu (“forbidden”) list to 
prevent the same solutions from entering the search process, escaping from local minima 
by random chances may be extremely time assuming, sometimes more than 95% percent 
of the total solution time.  

(5) Increasing Nr, the number of random selected solutions from a global path space.  During 
local search process, ISTG allows random selection of Nr solutions outside current local 
spaces to enhance search diversification. 

 
3.8.6.4 Intelligent Intervention 
 
It has been point out by Fox (1993) that simulated annealing theory does not in principle exclude 
useful intelligent interventions to optimize the random search process or meet particular 
requirement in practice, mostly the speed of convergence with available computer sources.  
Intelligent interventions included in the ISTG method are:  
 

(1) temporal and spatial memory of recent samples to avoid cycling of solution search 
sequence resulted from the incorporation of the tabu queue/list into the annealing search 
process; 
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(2) enhancement of communication among local solution spaces by random inclusion of 
solutions outside a local  space into the local search process; and 

(3) incorporation of greedy type search strategy into route level local search process.  
 
As mentioned before, each search process or stage in ISTG involves only one or a few routes 
(divide-and-conquer) for the reason of computing resource limitation.  At such a route level 
solution search process, a blind annealing search should eventually converge to the best route in 
the corresponding local space with probability 1.  However, due to requirement of convergence 
speed, which is usually as important as to find a good optimal result in practice, earlier 
termination of route level annealing search may be necessary, and the resultant route/routes at 
such a termination point may not be the best.  The greedy type intervention in ISTG will replace 
those termination point results with the best ones visited during the local search process of these 
route/routes before entering search process of the next route (or routes).   
 
The above intervention will certainly have effects on the random mechanism of the simulated 
annealing search, thus may have effects on the outcome of the search process, in particular the 
global-ness of the result.  However, numerical experiments conducted in this study have shown 
that with the same computing resources (CPU time, memory size, etc.), results obtained from 
ISTG search with intelligent intervention are usually much better than those without any 
treatments.  In fact, intervention or treatment to speed up convergence in simulated annealing 
search seems to be a “must” step for this algorithm since the provable rate of convergence to a 
global optimum thus far has exponential time complexity, which is inconsistent with many 
successful applications of this method in practice. 
 
3.8.6.5 ISTG Search Procedure 
 
The following is a brief description of the ISTG search procedure developed in this study 
through a simple example.  The route level local search for this simple example involves one 
route at time.  The procedure for route level local search involving more than one route is 
similar.  Assume that during a solution search process, an intermediate TRN result T(l) = {r1, r2, 
… rl} has been obtained, the current network level annealing temperature is θn, and the cooling 
temperature reduction factor is τn.  The solution search procedure for the next stage of ISTG 
method involves the following steps: 
 

(1) Select a transit route, e.g., route rj from T(l).  Initialize a local tabu list/queue of length Lt, 
and set loop number counter Lr = 0.  Set an initial route level temperature θr = θn and a 
cooling temperature reduction factor τr. 

(2) Select key-nodes for route rj.  For illustration, assume the three-node representation of 
route rj (see Figure 3.6(a)) is used, denoted as rj

(3).   
(3) From the three key-nodes n1, n2, and n3 generate three corresponding local node spaces, 

i.e., N
)1(L (n1) = {n1, n11, n12, n13, n14}, N

)1(L (n2) = {n2, n21, n22, n23, n24}, and N
)1(L (n3) = {n3, n31, 

n32, n33, n34}.  There are 5 nodes in each of the three local node spaces in this example. 
(4) Connect nodes in node spaces N

)1(L (n1) and N
)1(L (n3) with the shortest paths in space )1(

SP to 
obtain 5 × 5 = 25 shortest path segments.  Then extend these shortest path segments to 
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nodes in node space N
)1(L (n2) with shortest paths to obtain 25 × 5 = 125 paths.  These 125 

paths form the local path space of route rj based on three-node representation ( ))3()1(
)1( jrP .   

(5) Selected a path rjk ∈ ( ))3()1(
)1( jrP .  If the path space ( ))3()1(

)1( jrP  is large, choose rjk at random, 

otherwise select rjk sequentially from space ( ))3()1(
)1( jrP .  To enhance diversification, some 

of the paths may be chosen randomly and occasionally from a global path space.  If rjk is 
already in the tabu list/queue, repeat the selection process of this step.  Otherwise, add rjk 
into the tabu list, and go to Step (6).    

(6) Replace route rj in the existing TRN T(l) with path rjk to obtain T(l) = {r1, …, rj-1, rjk, rj+1,  
…, rl}, and perform objective function evaluation.  If a better result is obtained, replace rj 
with rjk, reduce temperature by setting θr ←τr θr, update the route level loop counter Lr ← 
Lr +1, and go to Step (2) to start a new search with reduced temperature.  If the result has 
the same goal value as the previous one, route rjk is accepted with probability p defined in 
equation [3.53].  If route rjk is accepted, replace rj with rjk, set θr ←τr θr, Lr ← Lr +1 and 
go to Step (2).  If route rjk is rejected, go to Step (7).  

(7) Check termination conditions for route level search.  Conditions used in this study 
include (a) maximum number of loops allowed at route level search; and (b) probability 
tolerance for results with repeated goal value.  If a route level search termination 
condition is reached, go to step (8), otherwise go to step (5).  

(8) If local path spaces of all the l routes in TRN T(l) have been searched, begin a new search 
iteration at network level by setting θn ←τn θn , and go to Step (1).  Otherwise, select the 
next route from the transit route network, e.g., route r(j+1), and go to Step (1) to begin a 
new route level local search for route r(j+1).     

 
The search process will be considered converged and will be terminated if any of the following 
conditions are met at network solution search level: (a) maximum number of search iterations 
allowed at network level is reached; (b) maximum CPU time allowed at network level is 
reached; (c) terminated with the complementary probability 1 - Pn due to the repeated occurrence 
of network results with the same goal value. 
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4. NUMERICAL EXPERIMENTS 
 
The methodology for transit route network design optimization developed from this study has 
been tested through several benchmark problems studied or developed by Mandl (1979, 1979a), 
Shih and Mahmassani (1994), and Baaj and Mahmassani (1991).  The selection of these 
benchmark problems is based on the following considerations. Firstly, these problems have been 
well documented with detailed descriptions of street network input data, OD matrix input data 
and, most importantly, transit route network results and the corresponding objective function 
values, which can be used for comparison with results from this study.  Secondly, methodologies 
developed by these authors and the corresponding numerical results seem to be well 
acknowledged in the transit planning research community.  Finally, these benchmark problems 
are real, practical problems, although with some simplification assumptions, making them 
appropriate for use as benchmark problems to evaluate results from this study.  It needs to be 
emphasized that the comparison between the results from this study and those from the 
benchmark problems was merely to validate the methodology developed in this study.  In fact, 
the design objectives and design variables involved in this study are different from those used in 
studies by Mandl (1979, 1979a), Shih and Mahmassani (1994), and Baaj and Mahmassani 
(1991).  In this study, the objective functions are those described in Section 3.6, which reflect a 
transit system’s network directness and transfer directness, and the design variables are integer 
vectors representing transit routes.  The benchmark problems are TN optimization problems, 
which include both TRN design optimization and certain parts of TNS (transit network 
scheduling) design optimization problems, and the design objectives are, in addition to various 
network directness functions, user or operator costs, such as transfer times, waiting times, etc.  A 
more comprehensive comparison of the methods developed in this study with those benchmark 
problems may be appropriate after work on transit scheduling optimization is completed.  
Presently, the comparison involves only those design variables and results related to or obtained 
from TRN optimization.  The numerical tests are performed based the Mandl’s problem (1979, 
1979a) and the Miami-Dade County transit system.  The test problems and results are described 
in the following sections. 
 
4.1 Mandl’s Transit Network Problem 
 
Mandl’s problem has been discussed in Chapter 2. As shown in Figure 2.2, it consists of a small 
and dense network of 15 nodes with a total demand of 15,570 trips per day.  Each transit node is 
labeled with an integer and each street segment with the in-vehicle travel time in minutes.  The 
transit demand or OD matrix for the 15 street nodes is also illustrated in Figure 2.2 and provides 
the average number of passenger trips per day between each transit node pair.  Figure 2.3 shows 
Mandl’s final solution route network.   
 
Mandl’s problem has been used by Baaj and Mahmassani (1991) and Shih and Mahmassani 
(1994) as benchmark problems to test their solution frameworks and transit network optimization 
results.  Baaj and Mahmassani (1991) compared three route network layouts that they obtained 
from their TN optimization processes with three different sets of design parameters.  All three 
showed improvements over Mandl’s earlier network results.  Shih and Mahmassani (1994) 
further extended Baaj and Mahmassani (1991)’s work by introducing transit center methodology.  
Using Mandl’s problem as test benchmarks, Shih and Mahmassani (1994) also obtained three 
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route network layouts from their solution methodology based on three sets of design parameters.  
The resultant networks demonstrated further improvements over the earlier work by Mandl, and 
Baaj and Mahmassani.  The network layouts produced by Mandl, Baaj and Mahmassani, and 
Shih and Mahmassani are illustrated in Figures 2.3, 2.5, and 2.4, respectively. 
 
4.1.1 Numerical Experiment 1 
 
The results from this study are given in Table 4.1 along with those from previous authors’ work. 
The comparison is made based on variables that characterize the quality of transit route network 
configurations, such as the percentages of zero-, one-, or two-transfer trips, route network 
directness, transfer directness, total route length, etc.  The comparisons are limited to those 
objective function values and design variables that reflect the quality or characteristics of the 
transit route networks.  In Table 4.1, the first row lists the source of the benchmark problems.  
The second row identifies the solutions to the benchmark problems.  While all problems were 
originated from Mandl’s network and demand, they differed in design parameters such as 
number of routes and total route length.  Baaj and Mahmassani produced three solutions for the 
Mandl’s problem, and so did Shih and Mahmassani, with different design parameters or 
methods.  The methods that were used to obtain the results are indicated in the third row, where 
Mandl means Mandl’s method, B&M stands for Baaj and Mahmassani’s methods, S&M for Shih 
and Mahmassani’s methods, and FHC indicates results obtained from the fast hill climbing 
solution search method described in Sections 3.8.3.  The solutions given here were generated 
with multiple objective functions f((0, 1, 2)), as described in Section 3.7.4.  Local search spaces 
were generated from the three key-node representation.  For each solution, the left column 
provides the statistics for the layout produced in the original study as indicated by the source of 
the problem, and the right (shaded) column provides the statistics for the results. 
 

Table 4.1  Result Comparison – FHC Method (Existing Network as Initial Guess) 
Problem 
Source Mandl Baaj & Mahmassani Shih & Mahmassani 

Route layout 
case number 1 1 2 3 1 2 3 

Search Method Mandl FHC B&M FHC B&M FHC B&M FHC S&M FHC S&M FHC S&M FHC
zero-transfer 

trips (%) 69.94 76.43 78.6 82.34 79.96 86.64 80.99 82.98 82.59 84.84 87.73 91.78 82.59 89.92

one-transfer 
trips (%) 

29.93 
 

23.57 
 

21.39 
 

17.66
 

20.04
 

13.36
 

19.01
 

17.02
 

17.41
 

15.16
 

12.27 
 

8.22 
 

17.41
 

10.08
 

two-transfer 
trips (%) 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Uncovered 
trips (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total route 
length 82 82 126 125 144 144 106 105 124 124 151 152 124 127 

Number of 
routes 4 4 6 6 8 8 7 7 6 6 8 8 6 6 

Network 
directness 1.05 1.05 1.06 1.01 1.01 1.00 1.16 1.09 1.04 1.06 1.03 1.00 1.04 1.06 

Transfer 
directness (t2)  

1.30 1.24 1.21 1.18 1.2 1.13 1.19 1.17 1.17 1.15 1.12 1.08 1.17 1.1 

Trips/Length 190 190 124 125 108 108 147 148 126 126 103 102 126 123 
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The statistics shown in Table 4.1 include percentages of transit trips that could be accomplished 
with zero transfer (zero-transfer trips), one transfer (one-transfer trips), or two transfers (two-
transfer trips).  The percentage of trips that were not served by the designed network is also 
given for each solution.  From the table it may be seen that the percentages of zero transfer trips 
were higher for all solutions produced in this study.  Route network performance was also 
measured by total route length, number of routes, network directness, transfer directness, and 
trips per unit route length (mile or minute).   All the testing problems used in this study were 
designed to have the same numbers of transit routes and similar total route lengths as the original 
problems.  Recall that the optimal values for network directness (dR(T(l))) and transfer directness7 
are both 1.0.  It may be seen that all the results from both the previous work or this study had 
excellent network directness and in majority of the problems, the results from this study showed 
slight improvements.  The transfer directness, which represents the average number of boardings, 
from this study again showed improvements.  The number of covered trips per unit route length, 
or trip-length ratio is defined as, 
    

      ( ) ,/
T

ii
LT l

f
R =     (i = 0, 1, 2, c)                                          [5.1] 

 
where f0, f1, and f2 are, respectively, the zero-, one-or-less, and two-or-less transfer functions 
defined in Chapter 3; fc is the number of total covered trips; and lT is the total length of the route 
network system.  Therefore, ( )0

/ LTR , ( )1
/ LTR , and ( )2

/ LTR  in [5.1] are the trip-length ratios corresponding 
to the zero, one-or-less, and two-or-less transfer trips while ( )c

LTR /  is the trip-length ratio 
corresponding to total covered trips.  In general, a larger value of ( )c

LTR /  indicate a more effective 
transit route network layout.  However, the ultimate effectiveness of a transit network must also 
include the outcomes of transit scheduling design and measured by the ratios of number of 
covered trips to transit revenue hours and revenue miles, which are affected by service frequency 
setting. 
 
4.1.2 Numerical Experiment 2 
 
Results from this study as shown in Table 4.1 were obtained by using the original solutions of 
the benchmark problems as the initial guess networks.  This means that the optimization methods 
developed in this study may be used to improve or evaluate an existing route network.  For a 
more objective comparison without any possible biases introduced by using the original solutions 
to the benchmark problems as the starting point of the search, results were also produced by 
using initial networks automatically generated by a computer program, OPTNet, which will be 
describe in Chapter 5.  The only requirements in generating these results were that they must 
have the same number of routes as the original solutions, and the total network route lengths 
should not be more than 5% different from those of the original solutions.  The results are given 
in Table 4.2, which in general, had performance comparable to those shown in Table 4.1.   
 

                                                 
7 In these cases, transfer directness equals to boarding function t2 since all OD trips are covered by two or less 
transfer trips. 
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Table 4.2 Result Comparison – FHC Method (Program Generated Initial Networks) 
Problem 
Source 

Mandl’s 
Problem Baaj & Mahmassani’s Problem Shih & Mahmassani’s Problem 

Route layout 
case number 1 1 2 3 1 2 3 

Search Results Mandl FHC B&M FHC B&M FHC B&M FHC S&M FHC S&M FHC S&M FHC
zero-transfer 

trips (%) 69.94 72.25 78.6 85.68 79.96 89.27 80.99 84.20 82.59 87.67 87.73 89.08 82.59 87.12

one-transfer 
trips (%) 29.93 26.98 21.39 14.32 20.04 10.73 19.01 14.26 17.41 12.33 12.27 10.21 17.41 12.85

two-transfer 
trips (%) 0.13 0.00 0.00 0.00 0.00 0.00 0.00 1.54 0.00 0.00 0.00 0.00 0.00 0.00 

Uncovered 
trips (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total route 
length 82 82 126 124 144 144 106 105 124 124 151 152 124 127 

Number of 
routes 4 4 6 6 8 8 7 7 6 6 8 8 6 6 

Network 
directness 1.05 1.06 1.06 1.02 1.01 1.00 1.16 1.03 1.04 1.04 1.03 1.04 1.04 1.04 

Transfer 
directness (t2) 

1.30 1.29 1.21 1.14 1.2 1.12 1.19 1.17 1.17 1.12 1.12 1.12 1.17 1.13 

Trips/Length 190 190 124 126 108 108 147 148 126 126 103 102 126 123 
 

Table 4.3 provides the detailed data on the route network layouts from the original solutions and 
solutions produced in this study.  In the table, Result 1 means results described in Table 4.1 and 
Result 2 means results described in Table 4.2.    
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Table 4.3 Detailed Route Network Structure Layouts from Previous and Current Studies 
Problem 
Source 

Route 
Layout 
Cases  

Results Route Network Layouts  

Mandl (0,1,2,5,7,9,10,12), (4,3,5,7,14,6), (11,3,5,14,8), (12,13,9) 
Result 1 (0,1,2,5,7,9,10,12,13), (4,3,5,7,14,6), (11,3,5,7,14,8), (6,9) Mandl Case 1 
Result 2 (3,1,2,5,7,9,10,12), (0,1,2,5,14,6), (4,3,5,14,8), (11,10,12,13) 
B&M (6,1,4,7,9,10,11), (6,14,5,7,9,12,13), (0,1,2,5,7), (8,14,6,9), (4,3,5,7,9), (0,1,2,5,14,8) 

Result 1 (6,14,7,9,10,11), (14,5,7,9,10,12,13), (2,1,3,5,14,6), (8,14,6,9), (4,3,5,7,9), (0,1,2,5,14,8) Case 1 
Result 2 (3,1,2,5,7,9,10), (0,1,2,5,14,6), (4,1,2,5,14,8), (9,10,11),  (6,14,5,2,1,3,11), 

(13,12,10,9,6,14,7) 

B&M (0,1,3,11,10,12,13), (2,5,7,14,6,9), (9,10,12), (9,10,11), (7,9,13), (0,1,3,5), (8,14,5,7,9), 
(4,1,2,5,14,6,9) 

Result 1 (0,1,3,11,10,12,13), (2,5,7,14,6,9), (9,10,12), (9,10,11), (7,9,13), (0,1,2,5,7), (8,14,5,7,9), 
(4,3,5,7,9,10) Case 2 

Result 2 (1,2,5,7,9,10,11,12), (8,14,6,9), (0,1,2,5,7,14,6), (9,12,13), (4,3,5,14,6,9), (9,10,11), 
(4,1,2,5,14,6), (7,5,2,1,3,11) 

B&M (9,1,2), (9,10,11), (9,3), (0,1,2,5,7,9), (8,1,4,6,9), (4,3,5,7,9), (0,1,3,4) 
Result 1 (10,12,13), (9,10,11), (9,13,12), (0,1,2,5,7,9), (8,14,6,9), (4,3,5,7,9), (0,1,3,4) 

B&M  

Case 3 
Result 2 (4,3,1,2,5,7,9), (8,14,6,9), (0,1,2,5,7), (9,12,13), (4,3,5,14,6), (9,10,11), (1,2,5,7,14,6) 

S&M (5,7,9,10,12,13), (6,1,4,7,9,10,11), (6,9,12), (0,1,2,5,7,9), (8,1,4,6,9), (4,3,5,7,9) 
Result 1 (5,7,9,10,12,13), (10,9,7,5,3,11), (6,9,12), (0,1,2,5,7,9), (8,14,6,9), (4,1,2,5,14,6) Case 1 
Result 2 (0,1,2,5,7,9), (4,3,5,7,9,10), (13,12,10,9,6,14,7), (8,14,6,9,10), (0,1,2,5,14,6), (9,10,11) 

S&M (2,5,14,6,9,10), (1,2,5,7,14,6,9,10), (9,13,12), (0,1,3,5), (9,10,11), (8,14,6,9), (4,3,5,7,9), 
(0,1,2,5,7,9,12)  

Result 1 (7,5,2,1,3,11), (3,1,2,5,14,6,9,10), (10,12,13), (0,1,3,5), (9,10,11), (8,14,6,9), (4,3,5,7,9), 
(0,1,2,5,7,9,10,12,13) 

Case 2 
 

Result 2 (1,2,5,7,9,10), (8,14,6,9), (0,1,2,5,7), (5,7,14,6,9,12), (4,3,5,7,9,10), (9,10,11), 
(3,4,1,2,5,14,6), (6,9,10,12,13) 

S&M (5,7,9,10,12,13), (6,1,4,7,9,10,11), (6,9,12), (0,1,2,5,7,9), (8,1,4,6,9), (4,3,5,7,9)  
Result 1 (4,3,5,7,9,10), (12,9,10,11), (6,9,12,13), (0,1,2,5,7,9), (8,14,6,9), (3,4,1,2,5,14,6) 

S&M  

Case 3 
Result 2 (0,1,2,5,7,9), (4,3,5,7,9,10), (12,10,9,6,14,7), (8,14,6,9,13,12), (0,1,2,5,14,6), (9,10,11) 

 
4.1.3 Numerical Experiments 3 and 4 
 
The last numerical experiment involved the application of the ISTG search method to Mandl’s 
problems as defined by Mandl (1979, 1979a), Baaj and Mahmassani (1991), and Shih and 
Mahmassani (1994).  The objective function for all the ISTG test problems was the average 
vehicle boarding function t1 defined in equation [3.47].  The penalty boarding number for 
uncovered trips, α, was taken as four, i.e., each trip that could not be accomplished with one or 
less transfer would be considered as four vehicle boardings.  All the test results were obtained 
with the two key-node representation.  The purpose of using the least number of key-node 
representations was to demonstrate that by introducing the escaping schemes from local optima, 
the ISTG method was capable to produce comparable results obtained from the FHC method 
with higher number of key-node representation.   
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Table 4.4 Result Comparison – ISTG Method (Exiting Network as Initial Guess) 
Problem Source Mandl Baaj & Mahmassani Shih & Mahmassani 

Route layout cases 1 1 2 3 1 2 
Search Method Mandl ISTG B&M ISTG B&M ISTG B&M ISTG S&M ISTG S&M ISTG

0-transfer trips (%) 69.94 76.11 78.61 83.11 79.96 88.83 80.99 82.21 82.59 87.35 87.73 91.01
1-transfer trips (%) 29.93 23.89 21.39 16.89 20.04 11.17 19.01 17.79 17.41 12.52 12.27 8.99
2-transfer trips (%) 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00
Total route length 82 83 126 126 144 144 106 106 124 124 151 151 
Number of routes 4 4 6 6 8 8 7 7 6 6 8 8 

Boarding function  t1   1.303 1.239 1.214 1.169 1.200 1.112 1.190 1.178 1.174 1.125 1.123 1.08
Transfer directness (t2)  1.302 1.239 1.214 1.169 1.200 1.112 1.190 1.178 1.174 1.128 1.123 1.090

Network directness 1.052 1.052 1.064 1.064 1.006 1.006 1.157 1.132 1.040 1.049 1.031 1.037
 
The average boarding objective function (t1) values are given in the ninth row of Table 4.4 in 
italic.  Results of transfer directness are shown in the tenth row.  The transfer directness reflects 
the overall transfer effective of a network route layout.  Note that the differences between the 
transfer directness values in Table 4.4 from the ISTG method and those in Table 4.1 from the 
FHC method were negligible.         
 
Results shown in Table 4.4 were obtained by using the original solutions of the benchmark 
problems as the initial guess networks.  Table 4.5 shows results produced based on program 
generated initial networks.  The only requirements in generating these results were that they must 
have the same number of routes as the original solutions, and the total network route lengths 
should not be more than 5% different from those of the original solutions.  The results, in 
general, had performance better or comparable to those shown in Table 4.2 for the FHC method.  
 

Table 4.5 Result Comparison – ISTG Method (Program Generated Initial Networks) 
Problem Source Mandl Baaj & Mahmassani Shih & Mahmassani 

Route layout cases 1 1 2 3 1 2 
Search Results Mandl ISTG B&M ISTG B&M ISTG B&M ISTG S&M ISTG S&M ISTG

0-transfer trips (%) 69.94 75.72 78.6 89.15 79.96 90.75 80.99 84.84 82.59 91.27 87.73 91.59
1-transfer trips (%) 29.93 23.70 21.39 10.85 20.04 8.93 19.01 14.52 17.41 8.73 12.27 8.41 
2-transfer trips (%) 0.13 0.58 0.00 0.00 0.00 0.32 0.00 0.64 0.00 0.00 0.00 0.00 

Uncovered trips (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total route length 82 82 126 123 144 140 106 107 124 124 151 152 
Number of routes 4 4 6 6 8 8 7 7 6 6 8 8 

Boarding function  t1   1.303 1.260 1.214 1.109 1.200 1.099 1.190 1.164 1.174 1.087 1.123 1.084
Transfer directness (t2)  1.302 1.249 1.214 1.109 1.200 1.096 1.190 1.158 1.174 1.087 1.123 1.084

Network directness 1.052 1.040 1.064 1.006 1.006 1.006 1.157 1.006 1.040 1.037 1.031 1.000
 

4.2 Miami-Dade County Transit Network Design Problem 
 
Miami-Dade County encompasses an area of about 38 miles by 22 miles, with a population of 
about 2.3 million.  However, unlike some large urbanized cities such as New York City, Boston, 
or San Francisco, Miami-Dade County has relatively low population and employment densities 
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and transit ridership.  Except in downtown Miami and a few activity centers, transit demands are 
dispersed thinly over a large area, making it difficult to provide transit services efficiently.  
However, opportunities are also present.  The population forecast has predicted another 1.2 
million new residents in the county in the next 20 years (Miami-Dade 2001), which will result in 
worsening of traffic congestion but an increased and urgent need for better public transit services.  
The referendum passed in November 2002 by the voters in the county approved a sales tax 
increase, which will provide much needed funding for highway and particularly transit projects.  
New rail lines are to be built in the next 30 years and bus services are to be expanded 
significantly.  All these make it imperative to develop tools for transit route network design and 
optimization to both increase ridership and realize cost savings. 
 
For this study, the street network data were obtained in a GIS format from Miami-Dade County 
Information Technology Department (ITD) in 2000.  There were two sets of street network data: 
detailed streets and major roads, which are illustrated in Figure 4.1.  The street network used for 
transit route optimization was based on the major roads with some minor streets added based on 
the existing bus routes.  The major street network consisted of  4,300 street segments and 2,804 
street nodes.  The distance between the two farthest nodes in the network was about 35 miles and 
the length of the shortest street segment was about 100 feet. 
 

 
Figure 4.1 Street Network in Miami-Dade Transit Service Area 

 
At the time of this study, Miami-Dade Transit Agency (MDTA) operated 83 transit routes 
including Metrorail, a rail rapid transit system of 22.5 route miles, Metro-mover, a 4.5-mile 
downtown automated circulation system, and 81 bus routes.  In the optimization process, 
Metrorail and Metro-mover routes were fixed.  For the bus network, the longest route was about 
32 miles and the shortest route was about 4 miles.  Those two numbers were used as base lines to 
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set the transit route length constraints in the optimization process.  There were about 1,520 route 
miles.  Figure 4.2 shows the existing transit network in Miami-Dade County.  The transit route 
network data shown in Figure 4.2 were obtained from MDTA in year 2002.  It may be seen from 
Figure 4.2 that some areas are not currently served by the existing transit network.  The total 
route mileage of the existing transit network system was 1,520 miles, which also included those 
of small loops, needed either for transit vehicle turning around at some bus terminal points or for 
picking up or dropping off passengers at certain activity centers such as shopping centers.  If  not 
counting the mileage from these small circular loops, the existing transit network had about 
13,00 road miles.   
 
 

 
Figure 4.2  Existing Transit Network in Miami-Dade Transit Service Area 

 
The demand matrix used in this study was generated from the 1999 Miami-Dade County 
FSUTMS8 model.  The demand matrix provided the daily number of passenger trips between 
each node pair in the street network.  The total demand was 162,252 daily transit trips.  The 
distribution of the demand is shown in Figure 4.3.  While the FSUTMS model is considered 
sufficient for the purpose of testing the optimization methodology developed in this study, it is 
known to have certain limitations.  To obtain more accurate OD matrix data that reflect the 
current Miami Dade transit demand distribution, further efforts are needed to develop transit 
demand estimates. 

                                                 
8 Florida Standard Urban Transportation Model Structure 
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Figure 4.3 Transit Demand Distributions in Miami Dade Transit Service Area 

 
Several methods developed in this study were applied to the problem of transit network 
optimization for Miami-Dade County, which resulted in a number of potential solutions.  In the 
solution process, depending on the outcomes, certain constraints were adjusted to obtain better or 
more reasonable results in a reasonable amount of time and input data were modified for more 
realistic results.  In this study, all the numerical results were generated from a high-end PC with 
a 2.8GHz CPU, 1GB RAM memory, and an 80GB hard disk.  Currently, a high-end PC already 
has 3.06GH CPU with 2GB RAM or more memory.  It is observed during the numerical analysis 
process of this study that the time savings from using a PC with 2.8GH and 1GB RAM was more 
than 30% compared to a PC with 1.8GHz and 512MB RAM. 
 
4.2.1 Numerical Experiment 1 
 
The route network optimization processes had the following constraints:  
 

(1) The total route length of the route network must be no more than 10% different from that 
of the existing route network; and  

(2) The existing fixed route constraints must be enforced, i.e., the Metrorail, and Metromover 
routes must not be changed during the optimization processes.   

 
All the results, given in Table 4.6, were generated with up to five-key node representations and 
with different search methods.  The methods, indicated in the second row of Table 4.6, included 
(refer to Sections 3.8.1 through 3.8.4): 
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(1) GS1 – greedy method 1; 
(2) GS2 – greedy method 2; 
(3) HC – hill climbing method; and 
(4) FHC – fast hill climbing method. 

 
The performance statistics for the existing transit network are given in the second column in 
Table 4.6.  They are also provided for each of the results produced using the above four methods 
with two single optimization objectives, maximizing zero-transfer trips (f0) and maximizing zero 
and one transfer trips (f1).  The values of the objective functions are given in the shaded cells.  
The statistics include percentages of trips that can be completed with zero, one, and two 
transfers, percentages of trips that could be completed with zero, one or less, and two or less 
transfers, network directness, transfer directness, and CPU time required to obtain the solutions. 
 

Table 4.6 Comparison of Results with Existing Network (Existing Network as Initial 
Guess) 

Network Parameters Existing 
Results Zero transfer objective function f0 

One-or-less transfer objective 
function f1 

Solution Method  GS1 GS2 HC FHC GS1 GS2 HC FHC 
Zero-transfer trips (%) 14.28 22.25 22.25 23.82 23.43 18.01 18.67 19.21 18.90 
One-transfer trips (%) 40.85 47.46 46.45 47.18 47.94 59.85 60.29 60.87 61.55 
Two-transfer trips (%) 10.08 7.98 7.63 6.40 6.39 8.74 7.90 7.94 6.91 

One-or-less transfer trips (%) 55.13 69.71 68.71 71.00 71.37 77.86 78.96 80.08 80.45 
Two-or-less transfer trips (%) 65.20 77.69 76.34 77.40 77.75 86.59 86.86 88.02 87.36 

Total covered trips (%) 65.66 77.86 76.49 77.55 77.89 86.72 86.94 88.13 87.48 
Two-or-less transfer trips 105,588 125,810 123,623 125,349 125,918 140,229 140,664 142,547 141,472

Total route mileage 1,278 1,330 1,321 1,345 1,340 1,304 1,317 1,366 1,345 
Two-or-less  transfer trips 

per route mile 83 95 94 93 94 108 107 104 105 

Total trips 161,944 161,944 161,944 161,944 161,944 161,944 161,944 161,944 161,944
Number of routes 83 83 83 83 83 83 83 83 83 

Network directness 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
Transfer directness t 1.94 1.82 1.81 1.78 1.78 1.89 1.88 1.87 1.86 

Transfer directness (t2) 2.65 2.30 2.33 2.28 2.27 2.18 2.16 2.13 2.13 
CPU Time (hours) - 0.32 1.72 0.74 0.79 3.79 24.29 14.49 15.76 

 
The best zero-transfer trip coverage result was obtained from the HC method with objective 
function f0, which had an improvement of 67% over the existing network.  The percentage of 
zero-transfer trips increased from the existing 14.28% to 23.82%.  The other three search 
methods also produced results with improvements ranging from about 56% to 64%.  These 
improvements were achieved with a small increase in the total network route mileages of only 
3% to 5% above the existing system.   

 
For objective function f1, the best one-or-less transfer trip coverage result was obtained from the 
FHC method.  The percentage of one-or-less transfer trip coverage increased from the existing 
55.13% to 80.45%, which represented a 46% improvement.  The corresponding total route length 
increased only by 5%.  The results of the one-or-less trip coverage from the other three search 
methods with objective function f1 also showed comparable improvements, with increases 
ranging from about 41% for method GS1 to 45% for method HC.  At the same time, the total 



 93

route mileages only increased less than 5%.  The one-or-less trip coverage is an important transit 
service quality indicator since according to survey by Stern (1996), as most transit riders may be 
only willing to transfer once per trip.  Assuming this is true, the one-or-less trip coverage shown 
in the sixth row of Table 4.4 would be the actual total trip coverage of the corresponding route 
networks.  More specifically, using the case corresponding to the last column as an example, 
80.45% of the transit demands in the transit service area might likely to be met, while the rest of 
the 19.55% trip demands might either be unsatisfied or require two or more transfers.  In the 
latter case the customers who had to make more than one transfer might be lost unless they were 
captive riders.  There are certain cases where two-or-less transfer trip coverage may also be 
appropriate as optimization objective function.  Examples of such situations include the so-called 
spinal transit route network structures and trunk-and-feeder systems, which have transit centers 
where some bus routes are designated as feeder lines to serve major transit corridor routes such 
as light rail and subway lines.  Transit corridors such as light rails and subways offer high quality 
services.  As a result, transit users may be willing to use a trunk-and-feeder system even when 
one or two transfers are required.   
 
The number of covered trips (those that require two or less transfers) per route length is an 
indicator of the efficiency of the network.  The number of covered trips (those requiring two or 
less transfers) per route length is an indicator of the efficiency of the network.  The best result of 
108 is produced from method GS1 with one-or-less transfer function f1 as the objective function.  
It may be seen from the 11th row of Table 4.6 that for the same objective function, either f0 or f1, 
the differences between the results from various search methods were insignificant.   
 
All the solutions in Table 4.6 showed excellent network directness.  Two transfer directness 
parameters are given in Table 4.4: t = [f0 + 2(f1 - f0) + 3(f2 – f1)]/f2  that represents the average 
numbers of boardings per transit rider who i able to complete a trip with two or fewer transfers 
and t2 = [f0 + 2(f1 - f0) + 3(f2 – f1) + α(ft - f2)]/ft  (α = 5) that takes into account of trip demands not 
covered by the associated route network.  All the solutions had various degrees of improvements 
in transfer directness t2, ranging from 24% for methods HC and FHC (one-or-less transfer 
objective function) to 12% for method GS2 (zero-transfer objective function).    
 
The network results from the FHC method with up to five key-nodes are illustrated in Figure 
4.4.  The solid black lines represent results from the zero-transfer objective function f0, the 
yellow lines represent the existing bus route network, and the gray dots represent street nodes 
with transit trip demands.  It may be seen that some of these street nodes with trip demands were 
not covered by transit routes.  For this problem, the uncovered trips are 100% - 77.89% = 
22.11%.  Figure 4.5 further shows the route network results obtained with the one-or-less 
transfer trip coverage function f1 as the objective function.  The solid lines labeled as One-
FHCS–Five now represent route network result from the one-or-less transfer objective function 
using the FHC search method with up to five key-nodes.  The route network result had, in 
general, a similar pattern as that in Figure 4.4 except that the total route network coverage 
increased from 77.89% to 87.48% at a cost of decreasing the quality of transfer directness t.  
Moreover, the percentage of zero-transfer trips also decreased from 23.43% to 18.90%.  One 
drawback of an optimization process with a single objective function is that the optimization of 
one network parameter may be at the cost of other network parameters.  For problems where the 
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optimization of more than one network parameters is required, multi-objective functions or with 
a composite objective function will be necessary.   

 
Figure 4.4  Route Network Results from Zero-Transfer Objective Function (Existing 

Network as Initial Guess) 

 
Figure 4.5  Route Networks from One-or-Less Transfer Objective Function (Existing 

Network as Initial Guess) 
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In terms of computer CPU times shown in the last row of Table 4.6, method GS1 seemed to be 
the fastest method, while method GS2 the slowest. With a PC of 2.8GH and 1GB RAM, all the 
optimization processes based on zero-transfer objective function was accomplished within one or 
two hours, while results based on one-or-less transfer function needed from a few hours for 
method GS2 to a couple of days for other methods.  Considering the size of these network 
optimization problems, the improvements to the existing results, and the low cost of high 
powered PCs, these CPU times are reasonable. 
 
4.2.2 Numerical Experiment 2 
 
The various results presented in Table 4.6 were generated with the existing Miami-Dade transit 
route network as the initial guess network, which might be biased toward the existing network.  
In other words, those results might be local optima in the neighborhood spaces of the existing 
network.  For comparison and objectivity, all the optimization problems in Table 4.6 were solved 
again with the same constraints except that the initial guess network was automatically generated 
by the program.  Table 4.7 presents the numerical results based on the program generated initial 
guess networks.  Results in Table 4.7 show that in general, various design variables and objective 
functions values obtained from automatically generated initial networks were slightly better than 
those obtained based on the existing networks (refer to Table 4.6).  Although this did not 
guarantee global optimal results, it did increase the possibility that a global optimal result or a 
local optimal result in a large solution subspace might be near.  In general, to determine whether 
or not a solution is a global optimal result is a difficult task especially in transit network 
optimization field where available theories or guidelines seem nonexistent for large complicated 
network systems.  However, statistically, if an optimization process always converges to the 
same or similar solutions from randomly selected initial guesses, the possibility of such results 
being close to a global optimal result increases as the number of times that the process is 
repeated increases.    

 
Table 4.7 Results from Program Generated Initial Networks 

Network Parameters Existing 
Network

Zero transfer trip coverage 
function 

One transfer trip coverage 
function 

Solution Method  GS1 GS2 HC FHC GS1 GS2 HC FHC 
Zero-transfer trips (%) 14.28 26.29 26.33 26.87 26.41 20.14 19.58 19.96 19.47 
One-transfer trips (%) 40.85 46.41 46.28 47.54 47.36 60.61 61.65 62.29 62.10 
Two-transfer trips (%) 10.08 2.21 2.33 2.36 2.48 2.84 2.74 2.82 2.66 

One-or-less transfer trips (%) 55.13 72.71 72.61 74.41 73.77 80.74 81.23 82.24 81.57 
Two-or-less transfer trips (%) 65.20 74.91 74.94 76.77 76.25 83.58 83.97 85.06 84.23 

Total covered trips (%) 65.66 74.92 74.95 76.77 76.25 83.58 83.97 85.07 84.24 
Two-or-less transfer trips 105,588 121,316 121,364 124,325 123,482 135,353 135,979 137,752 136,407

Total route mileage 1,278 1,340 1,338 1,344 1,348 1,341 1,335 1,353 1,346 
Two-or-less transfer trips 

per route mile 83 91 91 93 92 101 102 102 101 

Total trips 161,944 161,944 161,944 161,944 161,944 161,944 161,944 161,944 161,944
Number of routes 83 83 83 83 83 83 83 83 83 

Network directness 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
Transfer directness t 1.94 1.68 1.68 1.68 1.69 1.79 1.80 1.80 1.78 
Transfer directness t2 2.65 2.26 2.26 2.22 2.24 2.16 2.15 2.13 2.15 

CPU Time (hours) - 0.39 1.20 0.86 0.65 4.68 18.62 11.15 12.93 
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Figures 4.6 and 4.7 show two network results given in Table 4.7.  Similar to Figures 4.4 and 4.5, 
both results were obtained from methods FHC.  The solid black lines represent solutions from, 
respectively, zero-transfer objective function f0 in Figure 4.6, and one-or-less transfer objective 
function f1 in Figure 4.7.   

 
Figure 4.6  Route Networks from Zero-Transfer Objective Function (Program 

Generated Initial Network) 

 
Figure 4.7 Route Network from One-or-Less Transfer Objective Function (Program 

Generated Initial Network) 
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As the last set of numerical experiments of this section, Table 4.8 describes results obtained from 
the minimization of the two network transfer directness objective functions described in section 
3.7.4, i.e., the average number of passenger boarding objective function based on one-or-less 
transfer trips defined in equations [3.47]: 
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and the average number of passenger boarding objective function based on two-or-less transfer 
trips defined in  equations [3.46]: 
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The penalty number α was set at 4, meaning that each uncovered trip would be penalized as four 
passenger vehicle boardings.  For objective function t1, uncovered trips are those that are not 
included in one-or-less transfer trips, and for objective function t2, uncovered trips are those that 
are not included in two-or-less transfer trips.   The optimal value for both functions t1 and t2 is 
1.0.  In such cases, all riders in the transit service area under analysis are covered, and each rider 
completes his/her trip with one vehicle boarding, or a zero-transfer trip.  The advantage of using 
the average numbers of passenger boardings t1 or t2 as objective functions is that it takes into 
account the effect of zero-transfer, one-or-less transfer, and uncovered trips simultaneously into 
the optimization process for functions t1 and t2.  Additionally, it also includes the effect of two-
or-less transfer trips into the optimization process for function t2.  The disadvantage of these 
objective functions is that the selection of the penalty number α is somewhat ad hoc, as it relies 
on trial-and-error based on previous program results.  Moreover, optimization processes based on 
the average boarding are more computational intensive than those based on single objective 
function shown in Tables 4.6 and 4.7 because both functions t1 and t2 are composite objective 
functions.  Function evaluation of  t1 involves the calculation of the zero-transfer function f0 and 
the one-or-less transfer function t1, while function evaluation of t2  involves the calculation of the 
zero transfer function f0, one-or-less transfer function f1, and two-or-less transfer function f2.   

 
In Table 4.8, statistics for the existing transit system and four optimization results are provided. 
The shaded cells show the objective function values after the optimization processes.  It may be 
seen that results obtained from the optimization processes had significant improvements over the 
existing network.  Generally, method FHC produced slightly better results than method GS1.  
However, the computational cost of method FHC was higher than method GS1.  Additionally, 
the optimization process for objective functions involving two-or-less transfer function f2 was 
quite time consuming.  It took 90.41 hours or about four days for method GS1 to produce results, 
and 389.67 or about two weeks for FHC to complete.  Although in terms of real monetary terms, 
a week of CPU running time on a PC is still considered inexpensive, it may be impractical to 
experiment with a large number of  scenarios and obtain results in a reasonable amount of time.  
In such cases, the use of a main frame computer, a multi-processor PC, or a multi-computer 
network may be desirable.  
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Comparing various network parameter results obtained from objective functions t1 and t2 in Table 
4.8, it may be seen that for the same search methods, either GS1 or FHC, results from objective 
function t1 and those from function t2 were quite consistent.  There were no significant 
differences in the zero, one-or-less, and two-or-less transfer trip coverages associated with 
objective functions t1 and t2, as were the cases in optimization with single objective function 
described in Tables 4.6 and 4.7.  Figure 4.8 depicts the network optimization results with transfer 
directness function t1 using the FHC method with up to five key-node route representation, while 
Figure 4.9 shows the results based on objective function t2 using GS1.  
 

Table 4.8 Comparison of Results with Existing Network (Existing Network as Initial 
Guess) 

Average passenger boarding 
function t1 

Average passenger boarding 
function t2 Network Parameters Existing 

Network 
GS1 FHC GS1 FHC  

Objective Function t1   2.76 2.14 2.13 2.19 2.10 

Objective Function t2   2.65 2.12 2.10 2.15 2.04 

Zero-transfer trips (%) 14.28 24.22 24.55 22.40 25.70 
One-transfer trips (%) 40.85 56.48 56.77 57.05 56.28 
Two-transfer trips (%) 10.08 2.85 3.06 4.22 6.63 

One-or-less transfer trips (%) 55.13 80.70 81.31 79.45 81.98 
Two-or-less transfer trips (%) 65.20 83.54 84.37 83.67 88.61 

Total covered trips (%) 65.66 83.54 84.38 83.68 88.72 
Zero-transfer trips 23117 39,218 39,754 36,279 41,613 

One-or-less transfer trips 89,271 130,684 131,682 128,664 132,754 
Two-or-less transfer trips 105,588 135,294 136,634 135,505 143,498 

Total covered trips 106,330 135,295 136,641 135,513 143,676 
Total trips 161,944 161,944 161,944 161,944 161,944 

Total route mileage 1,278 1,350 1,358 1,336 1,355 
Two-or-less transfer  trips per 

route mile 83 100 101 102 91 

Number of routes 83 83 83 83 83 
Network directness 1.02 1.01 1.01 1.01 1.01 
Transfer directness 1.94 1.74 1.76 1.78 1.79 
CPU Time (hours) - 7.62 9.85 90.41 389.67 
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Figure 4.8 Route Networks from Transfer Directness Objective Function t1  

 

 
Figure 4.9  Route Networks from Transfer Directness Objective Function t2  

 
4.2.3 Numerical Experiment 3 
 
The last numerical experiment was based on the ISTG method.  Recall from section 3.8.5 that 
the ISTG method was developed by incorporating the simulated annealing and tabu schemes 
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into the GS1 local search method to prevent the search process from being trapped into poor 
local optima.  For comparison, results from GS1 were also generated.  All the results from both 
GS1 and ISTG methods were obtained from local path search spaces based on the two key-node 
representation.   
 
The various parameters used in ISTG method for all the test cases are summarized below (refer 
to section 3.8.5 for detailed description of these parameters): 

 
(1) Length of tabu list/queue Lt = 250; 
(2) Maximum route level iteration counter Lr = 1500; 
(3) Maximum network level iteration counter Ln = 2000; 
(4) Number of randomly selected routes that are outside a local search space Nr = 50; 
(5) Maximum CPU time = 48 hours; 
(6) Initial annealing temperatures for various test cases: θ0  = 1000, 2000, 4000; 
(7) Temperature reduction factors for various test cases (for both route and network levels): τ  

= 0.50, 0.75, 0.95; 
(8) Probability tolerance for search results with repeated goal values (at both route and 

network levels): P  = 0.50, 0.75, 0.95.  
 
Table 4.9 presents the results obtained from the ISTG method and those obtained from the GS1 
method.  For comparison, network parameters associated with the existing network are also 
presented.  The values of objective function t1 are given in italic.  The first row in this table 
identifies the methods used to generate the numerical results.  Three θ0 values were used for the 
ISTG method represented the three initial annealing temperatures used in the simulated 
annealing search processes.  The second row presents different temperature reduction factors for 
different test cases.  The probability tolerances for all the test experiments were set as the same 
as the corresponding temperature reduction factors.  In such cases, a slow cooling process (τ 
close to 1) was associated with large probability tolerance (P = τ) for results with repeated goal 
function values.  For each solution method or each simulated annealing process defined by 
parameter set (θ0, τ), the corresponding column provides the statistics for the TRN obtained from 
the optimization process. 
 
From Table 4.9, it may be seen that the value of objective function t1 obtained from the GS1 
method decreased from t1 = 2.76 in the existing network to t1 = 2.22, an improvement of about 
20%, while the best result, t1 = 1.972 or an improvement of about 28% over the existing network, 
was obtained from the ISTG method with initial temperature and temperature reduction factor 
(θ0, τ) = (2000, 0.95).  The corresponding zero-transfer function f0 increased from the existing 
14.28% to 24.42%, an improvement of about 71%, and the one-or-less transfer function f1 
increased from 55.13% to 89.19%, an improvement of about 62%.  These improvements were 
achieved with a small increase of less 8% in total network route mileage.   
 
Table 4.9 also presents percentages of two-or-less transfer trips and total covered trips.  In 
general, including transit trips involving more than one vehicle transfers in transit service 
coverage may not be reliable unless the trips are made on a high-speed transit line and its  feeder-
bus system where transfers between different transit modes are usually much more efficient than 
at regular bus line intersection points. 
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Table 4.9 Comparison of Results from ISTG Method, GS1 Method, and Existing 
Network 

 
The number of covered trips per route mile shown in Table 4.9 was defined as )(

/
k

LTR  = Tk lf , 
where fk  was the number of trips accomplished with k-or-less transfers, and lT was the total 
length of the TRN.  As a network efficiency indicator, the best ( )k

LTR /  value was obtained with 
temperature reduction factor τ  = 0.95.  The average transfers in Table 4.9 were defined as [f0 + 
2(f1 - f0) + 3(f2 – f1)]/f2, which was the average boardings per transit rider who could complete a 
trip with two or fewer transfers.  The network directness shown in Table 4.7 represented the 
average ratio of the distance a person traveled between his/her OD points by using transit service 
over the distance measured along the shortest path in the street network.  It may be seen that all 
the TRNs shown in Table 4.7 had excellent network directness. 
 
Although differences in results produced by the ISTG search method with different 
combinations of annealing parameters (θ0, τ) were not significant, it did show a general trend of 
improvement in objective function values as the initial temperature θ0 increases and the cooling 
process slows down, i.e., as the temperature reduction factor τ approaches to 1.0.  As was 
pointed out before, the ISTG search method developed in this study is a stochastic process.  
Statistically, higher initial temperatures and lower cooling rates are expected to produce better 
solutions although such expectation may not be met on occasions.   
 
Results shown in the second and the last rows of Table 4.9 and also from other testing 
experiments conducted in this study revealed an interesting fact that it might be more convenient 
to use CPU time allowance as the termination condition for an ISTG search process than the 
convergent condition associated with the annealing parameter set (θ0, τ).  This was based on the 

Integrated Simulated Annealing, Tabu and Greedy Method (ISTG)
Network Parameters Existing 

Network 
GS1 

method θ0 = 1000 θ0 = 2000 θ0 = 4000 

Temperature Reduction τ - - 0.50 0.75 0.95 0.50 0.75 0.95 0.50 0.75 0.95 
Boarding Function t1 2.755 2.218 2.077 2.044 1.980 2. 096 2.037 1.972 2.070 2.004 1.977

Boarding Function t2 2.65 2.15 2.03 2.00 1.94 2.05 2.00 1.94 2.02 1.97 1.94 

  0-transfer trips (%) 14.28 20.45 21.74 21.76 23.86 21.46 23.57 24.42 22.54 24.51 24.32

 1-or-less transfer trips (%) 55.13 78.86 85.27 86.92 89.05 84.47 86.39 89.19 85.23 87.55 89.00

 2-or-less transfer trips (%) 65.20 85.83 90.38 91.20 92.94 88.78 90.37 92.50 90.14 91.18 92.74

Total covered trips (%) 65.66 85.96 90.40 91.23 92.95 88.79 90.39 92.50 90.15 91.22 92.74

Total route mileage 1,278 1,360 1,360 1,380 1,384 1,363 1,379 1,374 1,381 1,384 1,377

 Trips per route mile )2(
/ LTR  83 102 108 107 109 106 106 109 106 107 109 

Average Transfers 1.94 1.84 1.82 1.81 1.79 1.81 1.78 1.77 1.80 1.77 1.78 

Network directness 1.017 1.008 1.004 1.007 1.006 1.008 1.003 1.003 1.010 1.004 1.005

CPU Time (hours) - 2.15 5.34 7.49 25.48 4.40 9.25 36.85 5.38 8.87 30.99
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fact that improvements in objective function values seemed to be more consistent with the 
amount of CPU time actually used in a search process than the selection of the two annealing 
parameters θ0 and τ.  Consequently, it seems to be more effective in practice to conduct an ISTG 
search process with a slow cooling rate (τ and P close to 1) and large initial temperature θ0, 
while using allowable CPU time as termination condition. 
 
4.3 Summary of Numerical Experiments 
 
In this chapter, the applications of the transit route network optimization methodology developed 
in this study to two real transit route network design problems are described.  The first problem 
was Mandl’s small and dense transit network problem that was based on a real network in 
Switzerland.  Comparison and agreement of results generated from this study with those from 
previous work may serve as validity tests of the methodology developed in this study.  Results 
obtained from this study showed good improvements over the existing solutions to transit route 
network design problems.  Although the comparison may not be complete in this development 
stage since the two previous studies involved both transit route network design and transit 
scheduling design, while this study deals only with transit route network design optimization, the 
results demonstrated the ability of the methodology to improve a given solution.  
 
The second numerical experiment was a large-scale transit network problem defined based on 
the Miami Dade County’s transit system.  The problem included two routes with fixed topology 
and geometry, 81 bus routes with unknown geometrical and topological characteristics, 2,804 
street nodes, and 4,004 street segments, which was perhaps the largest transit network design 
problem reported in the literature so far.  Results obtained from the search methodologies 
developed in this study showed significant improvements over the existing network system in 
terms of transfer directness defined by the average number of passenger boardings, network 
directness defined by the closeness of an average transit rider’s travel route to the shortest path 
between his/her OD points, and the average trip length ratio defined by the number of trips 
covered by a unit transit route length.   Again, although the results should not be interpreted as 
better than the existing transit network since the demand used in this study might not be accurate, 
they did demonstrate the ability of the methodologies developed in this study to improve an 
existing network for a given demand distribution.   
 
The computing resources required for this large-scale network optimization problem was 
reasonable considering that only a high end PC was used to obtain all the numerical results.  For 
zero transfer objective function, it took less than one day to obtain results.  For one-or-less 
transfer objective function, it might need one or two days. For two-or-transfer objective function, 
several days of computing time will be needed to obtain results with current PC computing 
powers.  It is believed that the solution time on a high end PC will decrease rapidly with the 
improvement of PC computing power that has so far obeyed Moore’s law, i.e., doubling every 
eighteen months. 

 



 103

5. COMPUTER PROGRAM FOR TRANSIT ROUT NETWORK DESIGN 
 
In addition to the development of methodologies for transit network optimization, a computer 
program OPTNet, was designed and implemented.  The program was written in FORTRAN with 
a GIS based user interface implemented in TransCAD.  In this chapter, the program design, 
functions, and user interface are described. 
 
5.1 Implementation of Transit Network Optimization Methodologies 
 
The solution methodology for the optimization of transit route network design described in 
Chapter 3 has been implemented in a computer program called OPTNet (OPTimization Package 
for transit Network).  As mentioned previously, the methodology and the computer program 
OPTNet developed in this study are only the products of the first development phase of a 
complete transit network design project that should include two design stages: transit route 
network design and transit scheduling design.  A transit route network design problem deals with 
issues related to transit route layout or coverage, while a transit scheduling design problem 
addresses issues related to transit vehicle headway design and vehicle assignment timetables.   
 
In general, optimization of transit route network design should produce route network structure 
that allow optimal route network directness and transfer directness.  The route network directness 
of a transit network system is measured in this study by the two directness functions dG(T(l)) and 
dR(T(l)), defined in equations [3.30a] and [3.30c], and the two transit route Out-of-Direction 
impact indices defined in equations [3.31a] and [3.31c].  The transfer directness was represented 
by various transfer objective functions described in Section 3.7 and the average boarding 
functions defined in [3.46] and [3.47].  Ideally, both transit route network design and transit 
scheduling design processes should be carried out iteratively into one integrated design process.  
This has been left for future development.   
 
The computer program OPTNet consists of three separate modules: OPTNet1, OPTNet2, and 
OPTNet3.  The OPTNet1 module generates the shortest path space PS defined in [3.10] from the 
user input street network data in a format as shown in Table 3.2.  The shortest path search 
method used in OPTNet1 is based on the label setting approach developed by Dijkstra (1959) 
and several other researchers, and the code is adopted from the algorithm developed by Gallo 
and Pallotino (1988).   
 
The OPTNet2 module generates an initial route network T0

(l) from the shortest path space PS 
obtained from OPTNet1.  OPTNet2 provides two options in selecting the initial network, i.e., the 
simple and the random network selection methods.  Assuming that the path population of the 
shortest path space PS is ns, the simple method first select a path r1

(0) from the ns paths in shortest 
path space PS such that the one-route transit system T0

(1) = {r1
(0)} gives the best objective function 

value (or values for multi-objectives problems).  This will need at most ns function evaluations of 
the one-route network systems.  Second, from the rest of the ns – 1 paths in space PS, select a 
path r2

(0) such that the two-route network system T0
(2) = {r1

(0), r2
(0)} gives the best objective 

function value(s).  This will require at most ns – 1 function evaluations of the two-route network 
systems.  Repeat the above procedure to add route r3

(0) to obtain transit system T0
(3) = {r1

(0), r2
(0), 

r3
(0)} with ns – 2 additional function evaluations of the three-route network systems.  Continue 
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the above procedures to obtain an initial guess transit network with l initial transit routes T0
(l) = 

{r1
(0), r2

(0), r3
(0), ..., rl

(0)}.  The total number of function evaluations nt in generating ( )l
0T  may be 

estimated as below, 
 

     nt < { ns + (ns – 1) + (ns – 2) + … + [ns + (l – 1)] }× e(l)  = [ l × ns + 
2

1−l l ] × e(l) 

 
where e(l) is the number of function evaluations of an l-route network system.  The simple 
method usually can find an initial network much better than that obtained from the random 
selecting process.  However, the computational cost will be high for a large street network.  Note 
from the above expression that although the number of function evaluations nt is linearly related 
to the population size ns of the shortest path space Ps, the number of function evaluations may be 
huge for a large street network.  For a street network with n street nodes, the corresponding 
level-one shortest path space Ps will have a population size  ns = n ( n – 1 )/2.  For very large 
street networks, e.g., n > 6000, it may be more effective to start the search process from a 
randomly selected initial network than using the simple method.  It may been seen that an initial 
guess transit network generated from the OPTNet1 module does not take information from either 
the existing network system or heuristics design guidelines, thus should not introduce biases into 
any particular systems.  
 
Starting from an initial route network T0

(l), either generated from the OPTNet2 module or an 
existing route network, the OPTNet3 module searches for an optimal solution with the methods 
described in Chapter 3.  OPTNet3 produces two files describing the route network optimization 
output results.  One is an ASCII file that describes all the transit routes with street node 
sequences, and the other is used to display the results in a GIS environment.  Both files may be 
used in post processing, which involves graphic display of optimization results, analysis of the 
results, generation of system statistics, and interactive modifications by the user. 
 
5.2 TransCAD User Interface for the OPTNet Program 
 
The TRN optimization methodology developed in this study has been implemented in a 
computer program OPTNet with a TransCAD based user interface.  All the functions related to 
transit network optimization are available from a menu TRN Optimization.  Through the TRN 
Optimization menu, the OPTNet will accept and/or output graphic or table data interactively with 
various TransCAD user interface menus, dialog boxes, tools, or functions. The TRN 
Optimization menu consists of the following menu items: 
 

(1) Prepare TRN Input Data File;  
(2) Get TRN Names; 
(3) Get Major Global Control Data; 
(4) Get Detailed Global Control Data; 
(5) Get Route Control Data; 
(6) Data Check; 
(7) Run OPTNet Programs; 
(8) Post processing; 
(9) Continue Optimization. 
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In this section, the functions, data files, and definitions of various variables related to the above 
submenus are described.  Sections 5.3 through 5.3 explain the functions of the above menu items. 
 
5.2.1 Prepare TRN Input Data Files   
 
This menu prompts the user for the input files needed by OPTNet.  The user must provide these 
files before starting a TRN optimization process. 
   
A transit route network optimization process may require up to four data files.  These include: 
 

(1) A street network data file that defines all the major street segments/links suitable for 
transit vehicle operation in the transit service area;   

(2) An OD trip matrix data file that defines transit demand distribution among various street 
nodes of the street network;  

(3) A route network data file that defines any pre-defined routes in the TRN optimization 
process, such as fixed routes (guideway lines, transit planners specified routes, etc.) 
and/or user specified initial guess routes (existing route system etc); and   

(4) A route constraint area or location data file if some of the transit routes must start from,  
end at, or pass through certain pre-defined areas or locations. 

 
These files may be generated either from standard TransCAD user interface tool menus (such as 
creating network line layer or creating route system table, etc.), or from TransCAD’s street 
network database, or from other software tools.  TRN Optimization menu tool developed in this 
study also provides a Graphic User Interface (GUI) tool to generate and/or to edit pre-defined 
routes and route constraint areas during TransCAD input  process.           
 
The current version of the OPTNet program accepts two types of input file formats, i.e., files 
generated from TransCAD menu tool and the comma- or space-delimitated plain text files.  Files 
generated from other software packages must be converted into TransCAD files or plain text 
files first.  The PTIDF menu provides detained step-by-step instruction on converting non-
TransCAD files to TransCAD files with standard TransCAD tools.  The plain text files are the 
basic input/output data formats for program OPTNet.  In fact, files generated from TransCAD 
will be converted to plain test format before OPTNet is executed and the results obtained from 
OPTNet in plain text file format will be converted back to TransCAD graphic or table file 
formats.  The following is a description of TransCAD format and plain text file format for street 
network, OD matrix, pre-defined route files, and pre-defined route constraint area files. 
 
5.2.1.1 Street Network Input File 
 
Comma- or space-delimitated plain text file format  

  
The street network file has m lines of data, where m is the number of street segments in the street 
network.  Each line consists of four integer numbers that define a street segment.  The meanings 
of the four numbers, denoted as Link_ID, From_Node_ID, To_Node_ID, and Link_Leng,  are as 
follows: 
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(1) Link_ID – street segment identification number.  Any integer uniquely associated with a 
street segment may be used as the ID of the street segment.  

 
(2) From_Node_ID – node ID of the starting node of the street segment.  A street network 

consists of a set of street nodes connected by street segments.  The street node set is also 
referred to as the street segments’ end node set.  A street segment is defined by its two 
end nodes.  Each street’s end node is associated uniquely with an integer called street 
node’s or street end node’s ID.   

 
(3) To_Node_ID – node ID of the end node of the street segment.   

 
(4) Link_Leng – length of the street segment.  An integer that defines the length of  the street 

segment.  The length is generalized length.  It may be geometric length, travel time, 
travel impedance, or any other costs associated with the street segment.  In the OPTNet 
program, available units of length are feet, meters, or minutes.  Other length units such as 
miles, kilometers, or hours will be converted automatically into appropriate units in the 
TransCAD data input stage.        

 
TransCAD map (.map) file format 
 
The OPTNet will automatically covert a street network line layer defined in a TransCAD map 
file (.map) into a space-delimitated plain text file described in the previous section.  In the file 
conversion process, the user will be asked to provide the following information regarding the 
street network data file: 
 

• Name and the corresponding path directory of the TransCAD .map file; 
• Layer name of the street network line layer in the TransCAD .map file; 
• Field name of the street network’s segment/link cost, such as Length, Travel Time, 

LENGTH, Travel Impedance, etc.; 
• Units of the street network link cost, such as mile, foot, minute, hour, meter, etc. 

 
Layer name and field name provided by the user must match those appeared in the 
TransCAD .map file.  The layer and field names are case-sensitive. 
 
5.2.1.2 OD Matrix Input File 
 
The OPTNet program accepts three types of OD matrix distribution: the uniform demand 
distribution, the random demand distribution, and the user defined OD distribution.  The uniform 
demand distribution assumes that all OD pairs in the street network have the same number of 
trips, and users will be asked to provide one constant to define a typical OD pair’s trips, which 
will be applied to all other OD pairs.  The random demand distribution assumes random demand 
distribution among OD pairs of the street network.  The user will be asked to provide a mean trip 
number of a typical OD node pair.  For example, a number 10 means that the number of trips for 
an OD pair will be a random number selected from 0, 1, ... , 20.  For uniform and random 
demand distribution cases, the OPTNet program does not require an OD matrix input file.  The 
user will be asked for the uniform or random trip numbers in the Get Global Control Data menu.  
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If a user defined OD trip distribution is to be used, the user is required to provide the input data 
file to define OD trips for the OD node pairs.  The following is a description of two input file 
formats for an OD matrix. 
 
Comma- or space-delimitated plain text file format 

 
The street network file has k lines of data, where k is the number of node pairs with nonzero 
demand trips.  Each line has three integers that define an OD node pair’s demand.  The meanings 
of the three numbers, denoted as  O_Node_ID, D_Node_ID, and Num_Trips,  are given below: 
 

(1) O_Node_ID – node ID of the trip origin node.  The node ID must be the same as that 
used to define the street node (end node) set.  

 
(2) D_Node_ID – node ID of the trip designation node.  The node ID must be the same as 

that used to define the street node (end node) set. 
 

(3) Num_Trips – number of trips originated from O_Node and destined for D_Node 
identified by the two ID numbers. 

 
TransCAD map (.map) file format 
 
The OPTNet will automatically covert an OD matrix file generated from the standard TransCAD 
menu tool/function into a space-delimitated plain text file described in the previous section.  
During the file conversion process, the OPTNet will asks the user to provide the information 
regarding the street network data file, which will be described in the next subsection. 
 
5.2.1.3 Route Network Data File 
 
A route network data file defines any pre-defined routes and/or user specified initial guess routes 
(existing route system etc).  Pre-defined route input files are required only in the following two 
cases:  
 

(1) The TRN involves fixed routes, i.e., some of the routes must follow exactly the routes 
(and stops) that the planner specifies;   

(2) The solution search process for some routes must be started from user specified initial 
routes such as routes from an existing route system.   

 
The following is a description of the input file format.   

 
Comma- or space-delimitated plain text file format  

  
The pre-defined route file consists of n data blocks, denoted as B1, B2, ... , Bn, associated with the 
n pre-defined routes, r1, r2, ... , rn.  Each data block is made up by the same number of lines as 
the number of stops on the corresponding route.  For example, the data block Bi has ni lines, 
where ni is the number of stops on route ri.  Each line defines a route stop, or a stop associated 
with a particular route, and has at least three integer numbers: 
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(1) Route_Num – route number of the route stop.  This number must be greater than zero but 
less than or equal to the total number of routes of the TRN system.  

 
(2) Stop_Node_ID – node ID of the route stop.  The stop must be a street node.   

Stop_Node_ID is the ID of street node used as the stop.  Stop_Node_ID must be one of 
the numbers used to defined street nodes or street segment end nodes.  

 
(3) Route_Stop_ID – route stop sequence number of a stop.  A transit route consists of an 

ordered sequence of stops.  Route_Stop_ID defines the sequence number of the stop in 
the route stop sequence.  Route_Stop_ID must be greater than zero and less than or equal 
to the total number of stops on the current route. 

 
Note that for a TRN system of l routes, the user may pre-define any number of routes (less than 
or equal to l).  For each route stop data line, the user may provide more information on the route 
stop such as the name of the stop, milepost of the stop, etc., as long as the first three integers are 
Route_Num, Stop_Node_ID, and Route_Stop_ID.     

 
TransCAD Route Table File 
 
The TRN Optimization menu interface will automatically covert a TransCAD route table file 
generated from a standard TransCAD menu, tool, or function to a space-delimitated plain text 
file described in the previous section.  The OPTNet  also provides a graphic dialog to create a 
new or to modify an existing route network system. 
 
5.2.1.4  Route Constraint Area/Location Data File 
 
A node set data file defines any pre-defined node sets.  Users will have the options to specify that 
certain routes must start from, end at, or pass through certain areas or locations defined by the 
corresponding street node sets.  
 
The following is a description of the input file format. 
 
Comma- or space-delimitated plain text file format  

  
The pre-defined route file consists of n data blocks, denoted as B1, B2, ... , Bn, associated with the 
n pre-defined node sets, s1, s2, ... , sn.  Each data block is made up by the same number of lines as 
the number of nodes on the corresponding node set.  For example, the data block Bi has ni lines, 
where ni is the number of street nodes on node set si.  Each line defines a street node associated 
with a particular node set, and has at least two integer numbers: 
 

(1) Set_Num – node set number of the node set.   
(2) Node_ID – node ID of the street node.  Node_ID must be one of the numbers used to 

defined street nodes or street segment end nodes. 
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TransCAD Node Set Table File 
 
The TRN Optimization menu interface provides a graphic dialog to create a new or to modify an 
existing route constraint node set data file. 
 
5.2.2 Get TRN Names  
 
This menu item, when selected, will ask the user to input the following information: 
 

(1) Directory name to store all the files generated during a TRN optimization process; 
(2) Name of the TransCAD map file that defines the street network. 

 
5.2.3 Get Major Global Control Data  
 
When selected, this menu item asks the user to provide the following information: 
 

(1) Layer name of the street network line layer in the TransCAD .map file; 
(2) Field name of the street network’s segment/link cost, such as Length, Travel Time, 

LENGTH, Travel Impedance,  etc.; 
(3) Units for the street network’s segment/link cost, such as mile, foot, minute, hour, meter 

etc; 
(4) Data file format (ASCII or binary); 
(5) OD matrix data file input information (name and path); 
(6) Pre-defined route data file information (input from user provided data file or create from 

scratch); 
(7) Route constraint node set node file information (input from user provided data file or 

create from scratch). 
 

Layer name and field name provided by the user must match those appeared in the TransCAD 
geometric map file.  The layer and field names are case-sensitive. 
 
5.2.4 Get Detailed Global Control Data  
 
This menu item, when selected, will ask the user to input various global control data used during 
the TRN optimization process.  There are about 50 control parameters, most of them have been 
pre-set with default values.  The user only needs to edit a few parameters relevant to their 
particular applications.  It is recommended that the user not change a default parameter setting 
before fully understanding its physical meaning.  The following is a list of the control parameters:       
 

(1) KBin – input/output file format options (default = Opt1) 
• Option 1 = Input/output files between TransCAD and OPTNet in ASCII format 
• Option 2 = All files in ASCII format 
• Option 3 = All files in binary format 
Options 1 and 2 are for advanced users.  These two options use readable input/output 
files, thus allowing OPTNet to be used as a stand-alone network optimization processor.  
Option 2 may require large memory space for large problems. 
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(2) NRoutT – Number of Active/Inactive Transit Routes (default = 20).  Active routes are a 
set of routes involved in the TRN optimization process, while inactive routes are those 
not involved in the TRN optimization process.  Large scale transit network optimization 
may take a great amount of CPU time.  Even though a large system may be specified, it 
may be more effective to select a small number of routes as the active routes and test 
optimization process with this subset of the complete input to check the input/output data 
and various constraint settings.  The full scale optimization process may then start with 
appropriate parameter settings. 

 
(3) IndxInRt – Pre-defined Route/Line Options (default = Option 1) 

• Option 1 = No user pre-defined routes 
• Option 2 = User pre-defined routes, fixed or initial guess routes 
If option 2 is selected, the user will be asked to input the file name and path of the pre-
defined route data file.  

     
(4) InRtMeth – Initial Network Selection Options (default = Option 2) 

• Option 1 = Randomly select initial routes, for very large problems 
• Option 2 = Select initial routes through simple evaluation of objective function 
These two options are for problems where users do not provide all the initial guess routes   
through pre-defined route file. 

 
(5) Lmin – Globally defined minimum transit route length (default = 1 mile).  This constraint 

parameter defines the lower bound of all transit route lengths except for fixed routes.  
 
(6) Lmax – Globally defined maximum transit  route length (default = 30 mile).  This 

constraint parameter defines the upper bound of  all transit route lengths except for fixed 
routes. 

 
(7) Nmin – Globally defined minimum number of nodes in a route (default = 2).  This 

constraint parameter defines the lower bound of the number of nodes/stops on a transit 
route except for fixed routes.  Route stops/nodes on a route are an ordered street node 
subset along the route. 

 
(8) Nmax – Globally defined maximum number of nodes in a route (default = 100).  This 

constraint parameter defines the upper bound of number of nodes/stops on a transit route   
except for fixed routes.   

 
(9) KOpt – data output options (default = Option 1) 

• Option 1  = No detailed data output 
• Option 2  = Detailed data output for input data check 
All detailed data output files have a .chk file extension and provide detailed explanations 
of results from various stages in the optimization process.   

 
(10) KDir – Transit/street network characteristics options (default = Option 1) 

• Option 1  = Undirected network 
• Option 2  = Directed network (allow one-way streets N/A) 
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An undirected street network is one where all street segments are two-way streets.  A 
directed street network involves one-way street segments.  A directed network may be 
approximated by an undirected network if for any one-way street, one can always find a 
nearby one-way street in the opposite direction with similar cost, length, or travel time. 

 
(11) KODM –  OD matrix data input option (default = Option 1) 

• Option 1  = Uniform Trip Distribution 
• Option 2  = Random Trip Distribution 
• Option 3  = User-Provided Trip Distribution 
If Uniform or Random trip distribution option is chosen,  the average number of OD trips 
between a typical OD pair is required.  If User-Provided trip distribution option is chosen,  
an OD matrix data file must be provided later.  

 
(12) Walk –  Maximum walking distance (default = ¼ mile).  Trips at OD pairs that have 

travel distances less than the distance specified by "Walk" will be considered as covered 
trips.  The search process will not attempt to provide coverage for those trips 

 
(13) IteMax – Maximum number of search iteration at network level (default 1000).  Search 

process will stop and output results when this user specified limit is exceeded.        
 
(14) TimeMax – Maximum CPU time (hours, default 2 hours).  Search process will stop and 

output the results when this user specified time limit is exceed.    
     
(15) Temp – Initial temperature of the Simulated Annealing Search (default = 2000.0).  Large 

values will help prevent the search process from being trapped into poor local optima.  
However, large values require more CPU time. 

 
(16) Tabu – Tabu list length (default  = 50).  Large tabu list length will prevent the same 

solution or solution series from repeatedly entering the search process.  However, large 
tabu list length requires more CPU time and memory. 

     
(17) NRand – Randomly selected path list length (default  = 50).  During a local search, the 

search process will randomly select solutions from the global solution space to prevent 
the search process from being trapped into poor local optima.  However, large number of 
random paths requires more CPU time and memory. 

 
(18) BdPen – Penalty number of uncovered trips (default = 4).  A zero-transfer passenger has 

one vehicle boarding, while a one-transfer (two-transfer) transit rider has two (three) 
vehicle boardings.  In an optimization process where the boarding objective function 
only takes into account two-or-less (three-or-less) boarding trips, any trips that cannot be 
completed with two-or-less (three-or-less) boardings will be assigned a fictitious 
boarding number, i.e., the penalty number of uncovered trips. 

 
(19) Tol – Relative error tolerance (default  = 0.0).  The search process will be considered as 

converged if the relative difference between two succeed results is smaller than this 
tolerance value. 
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(20) NFactR – Temperature decrease factor (in %) at network level (default = 50).  In 
simulated annealing process, to enhance the selectivity and to speed up the search 
process, the annealing temperature may need to be decreased as the search process 
proceeds, i.e., Ti+1 = τ × Ti , where τ ≤ 1.0.  However, rapid temperature reduction (small 
τ value) may result in premature convergence to poor local optima, while slow 
temperature reduction (large τ value) requires more CPU time. 

 
(21) NFactE – Network Level Probability Acceptance (%) for Same Goal Value Solutions 

(default = 50).  At flat local solution valleys or plateaus, some solutions may have the 
same goal values.  Acceptance of some solutions of same goal values may increase the 
chance to escape from poor local optima.  On the other hand, large probability 
acceptance may require more CPU time.  

     
(22) RFactR – Temperature decrease factor (in %) at route level (default = 50).  Same as 

NfactR. 
     
(23) RFactE – Route Level Probability Acceptance (%) for Same Goal Value Solutions 

(default = 50).  Same as NfactE. 
 
(24) NSame – Index for Check Repeated Network Results (default = Option 1 ) 

• Option 1 = Do not check repeated network 
• Option 2 = Check repeated network 

 
(25) NRang –Annealing Search Results Update Options (default = Opt2 ) 

• Option 1 = Update at the end of every network search iteration 
• Option 2 = Update at the end of every route search iteration 

     
(26) MaxIte2 – Maximum Number of Solution Searches in Two-Point Search (default = 

2000).    This number sets the limit of solution searches in a two key-node local path 
space (including the associated rollout path spaces).  A TRN optimization process 
searches for best results from local spaces of various route(s) in an iterative manner.  It 
may not be effective to spend too much effort on particular routes’ local spaces.    

     
(27) MaxIte3 – Maximum Number of Solution Searches in Three-Point Search (default = 

2000).  Same as MaxIte2 except that this is for three key-node local space search. 
 

(28) MaxIte4 – Maximum Number of Solution Searches in Four-Point Search (default = 
2000).  Same as MaxIte2 except that this is for three key-node local space search. 

 
(29) MaxIte5 – Maximum Number of Solution Searches in Five-Point Search (default = 

2000).  Same as MaxIte2 except that this is for three key-node local space search. 
 
(30) MaxIte0 – Maximum Number of Solution Searches in Simple Search (default = 2000).  

This number sets the limit of solution searches in a simple local path space of an existing 
route.  A path in an existing route's simple path space may be obtained by extending the 
existing path to its end points' nodal adjacent nodes.    
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(31) GdirA – Maximum Average Route Directness Based on Geometry (default = 1.5).  
Average route directness (geometry) represents the average ratio of two travel distances 
between a pair of route stops on a transit route, one along the transit route, one along the 
shortest path in the street network.  The optimal value is 1.0, when all route segments 
between route stop pairs in a route are also shortest path segments in the street network. 

     
(32) RdirA – Maximum Average Route Directness Based on Ridership (default = 1.5).        

Average route directness (ridership) represents the average ratio of two travel distances 
between an OD point pair on a route, one along the transit route and one along the 
shortest path in the street network, weighted by OD trip distribution along the route.  
The optimal value is 1.0, when all transit riders on this route travel along the shortest 
paths between their OD points.  Note that the calculation of this ridership based route 
directness currently only considers riders with both their origin and destination points on 
the same route.  In other words, transferred riders have not been accounted for.    

          
(33) OdirA – Maximum Average OOD Route Directness (default = 15.0). 
     
(34) GdirM – Maximum Route Directness Based on Route Geometry (default = 2.0).          

Same as GdirA except that this constraint defines the maximum route directness of any 
or all route segments in a route instead of the average route directness of a route.  In 
other words, the ratio of the two distances, one along the route and one along the 
shortest path, must be not exceed this constraint value between any two route stops on 
all routes. 

 
(35) RdirM – Route Directness Limit for Route Segments (default = 2.0).  This parameter 

defines route segment directness’ upper bound.  A route segment is a portion of a route 
between its two route stops.  Any route segments with route directness values larger than 
the upper bound will be considered as route segments with bad route directness.  This 
constraint must be combined with the tolerance parameter defined in (36).   

     
(36) RdirMp – Tolerance (as a percentage) for Route with Bad Route Directness (default = 

20).  A route will be discarded if more than RdirMp% of riders travel with route 
directness values exceeding the limit defined by RdirM. 

     
(37) OdirM – Maximum OOD Route Directness  (default = 20).  The parameter defines the 

upper bound of the OOD route directness of any route segments in a route.   
 
(38) RtCtIndx  – Route Constraint Definition Options (default = Option 2) 

• Option 1 = Route constraint defined locally, i.e. defined route by route 
• Option 2 = Route constraint defined globally, i.e. one set of route constraint data 

applied to all   routes. 
If route constraint defined locally, separated route-by-route constraint data will be 
required. 

     
(39) RtCtType – Route Constraint Type Options (default = Option 2) 

• Option 1 = Relative Route Constraint Type Based on Existing Routes 
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• Option 2 = Absolute Route Constraint Type 
        For relative route constraint type, constraints are based on the corresponding existing 

route's characteristics.  For example, a 20 % route length tolerance constraint limits the 
route search process to the path space where all paths are no more 20 % longer than the 
existing route. 

 
(40) LTol – Route Length Tolerance (in %) for Relative Constraint Type (default = 10).  The 

length of a route candidate must be no more than LTol % difference from the 
corresponding initial route. 

 
(41) NTol – Route Stop Number Tolerance (in %) for Relative Constraint Type (default = 

100). The number of nodes of a route candidate must be no more than NTol % 
difference from the  corresponding initial route. 

  
(42) GTol – Geometry Based Route Directness Tolerance (in %) for Relative Constraint 

Type (default  = 10). The geometry based route directness (GdirA and/or GdirM) of a 
route candidate must be no more than GTol % difference from the  corresponding initial 
route. 

 
(43) RTol – Ridership Based Route Directness Tolerance (in %) for Relative Constraint Type 

(default  = 10). The ridership based geometry based route directness (RdirA and/or 
RdirM) of a route candidate must be no more than RTol % difference from the  
corresponding initial route. 

 
(44) OTol  – OOD Route Directness Tolerance (in %) for Relative Constraint Type (default  

= 10) 
        The OOD route directness (OdirA and/or OdirM) of a route candidate must be no more 

than RTol % difference from the  corresponding initial route. 
 
(45) Optimization Objective Function Options (default = Option 3) 

• Option 1 = Based on Zero Transfer Trips f0 
• Option 2 = Based on One-or-Less Transfer Trips f1 
• Option 3 = Based on Boarding Function One t1 
• Option 4 = Based on Two-or-Less Transfer Trips f2 
• Option 5 = Based on Boarding Function Two t2 

           
(46) Solution Search Method Options (default = Option 1) 

• Option 1 = ISTG based on greedy search method 
• Option 2 = ISTG based on greedy and hill climbing search method 

     
(47) Key-Node Representation Options (default =  1000000001).  Basic options include: 

• Option 1 = Local path space based on two key-node path representation  
(code = 1000000000) 

• Option 2 = Local path space based on three key-node path representation 
(code = 0100000000) 

• Option 3 = Local path space based on four key-node path representation 
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(code = 0010000000) 
• Option 4 = Local path space based on five key-node path representation    

(code = 0001000000) 
• Option 5 = Simple path space (code = 0000000001) 

 
There are also two combined options: 
• Space based on two key-node representation and simple path space      

(code = 1000000001) 
• Space based on two key-node and five key-node representation  

(code = 1001000000) 
 
(48) Route Directness Constraint Options (default =  0000000000).  Basic Options include: 

• Option 1 = No transit directness constraint                                 (code = 0000000000) 
• Option 2 = Average route directness (geometry) constraint       (code = 1000000000) 
• Option 3 = Average route directness (ridership) constraint        (code = 0100000000) 
• Option 4 = Average route directness (OOD) constraint              (code = 0010000000) 
• Option 5 = Maximum route directness (geometry) constraint    (code = 0001000000) 
• Option 6 = Maximum route directness (ridership) constraint     (code = 0000100000) 
• Option 7 = Maximum route directness (OOD) constraint           (code = 0000010000) 

 
5.2.5 Get Route Control Data  
 
This menu allows the user to specify various control or constraint data for individual routes.  
Depending on certain control parameters or options selected in the global control data menu, this 
menu will ask the user to provide additional data or information.  First, if the users chooses 
Option 2 = [With user pre-defined routes, fixed or initial guess routes] from the global control 
data input menu (see item (3) in the previous section), the file name and path of the pre-defined 
route data file will be asked for input.  Next, if users chooses Option 1 = [Route constraint 
defined locally, i.e. defined route by route] from the global control data input menu (item (38) in 
the previous section), a set of route level control data must be provided.  There are 19 route level 
control parameters, most of them have been pre-set with default values by the program.  The user 
may only need to edit a few parameters relevant to their particular applications.  Again, it is 
recommended not to change a default parameter setting before fully understanding its physical 
meaning.  The following is a list of control parameters in a typical route level constraint set. 
 

(1) Cont_Set – Constraint set number.  Users may define up to NRoutT sets of route 
constraints, where NRoutT is the total number of routes (active or inactive, refer to item 
(2) of the previous) in the TRN system. 

 
(2) Rt_Act – Route activity options:  

• Option 1 = Inactive route 
• Option 2 = Active route 

       If Option 1 is chosen, any routes with this constraint set number (Cont_Set) will not 
be included the TRN optimization process. 
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(3) Loc_Cont – Location constraint options (default = Option 1) 
• Option 1 = None – no location constraint; 
• Option 2 = Fixed – route and its stops are fixed;  
• Option 3 = 3_Areas – the starting, ending and an in-between areas of the route are 

specified;   
• Option 4 = 2_Areas – the starting and ending areas of the route are specified. 

     If Option 3 or Option 4 is chosen, corresponding node sets will be requested later.  
 

(4) Cont_Typ – Constraint type (default = Option 2)  
• Option 1 = Relative constraint type 
• Option 2 = Absolute constraint type 

 
The following constraints, when specified, only apply to routes with this constraint set number 
(Cont_Set). 
 

(5) Lmin – Locally defined minimum transit route length (default = 1 mile).   
 
(6) Lmax – Locally defined maximum transit  route length (default = 30 mile).   
 
(7) Nmin – Locally defined minimum number of nodes in a route (default = 2).   
 
(8) Nmax – Locally defined maximum number of nodes in a route (default = 100).   
 
(9) GdirA – Locally defined maximum average route directness based on geometry (default = 

1.5).  Referred to item (31) in the previous section for more description. 
 
(10) RdirA – Locally Defined Maximum Average Route Directness Based on Ridership 

(default = 1.5).  Referred to item (32) in the previous section for more description. 
 
(11) OdirA – Locally Maximum Average OOD Route Directness (default = 15.0).  Referred 

to item (33) of previous section for more description. 
 
(12) GdirM – Locally Defined Maximum Route Directness Based on Route Geometry 

(default = 2.0).  Referred to item (34) in the previous section for more description. 
 
(13) RdirM – Locally Defined Route Directness Limit for Route Segments (default = 2.0).  

Referred to item (35) in the previous section for more description. 
 
(14) RdirMp – Locally Defined Tolerance (in %) for Route with Bad Route Directness 

(default = 20).   Referred to item (36) in the previous section for more description. 
 
(15) OdirM – Locally Defined Maximum OOD Route Directness (default = 20).  Referred to 

item (37) in the previous section for more description. 
 
(16) LTol  – Locally Defined Route Length Tolerance (in %) for Relative Constraint Type 

(default = 10).  Referred to item (40) of previous section for more description. 



 117

(17) NTol  – Locally Defined Route Stop Number Tolerance (in %) for Relative Constraint 
Type (default = 100).  Referred to item (41) of previous section for more description. 

 
(18) GTol – Locally Defined Geometry Based Route Directness Tolerance (in %) for Relative 

Constraint Type (default  = 10).  Referred to item (42) of previous section for more 
description. 

 
(19) RTol – Locally Defined Ridership Based Route Directness Tolerance (in %) for Relative 

Constraint Type (default  = 10).  Referred to item (43) of previous section for more 
description. 

 
(20) OTol – Locally Defined OOD Route Directness Tolerance (in %) for Relative Constraint 

Type (default  = 10).  Referred to item (44) of previous section for more description. 
 
5.2.6 Data Check  
 
All the global and local input data will be checked at this stage.  If there are no input data and/or 
file location errors, TRN optimization process is ready to start. 
 
5.2.7 Run OPTNet Program  
 
There are five executable files in a TRN optimization process: 

 
(1) Prep1.exe – converts all the TransCAD interface files into text file (ASCII or binary) 

forms accepted by other executable files; 
 
(2) OPTNet1.exe – generates the shortest path search space; 
 
(3) OPTNet2.exe – generates an initial transit route network if the user does not provide all 

the initial routes; 
 
(4) OPTNet3.exe – searches for the optimal transit route network starting from the initial 

guess route system; and 
 
(5) Post1.exe – converts results (in text file form, ASCII or binary) obtained from OPTNet3 

into TransCAD data table formats.  
 
For large-scale TRN optimization problems, the process OPTNet3.exe may take hours or days 
depending on the problem size.  It is recommended to start a large-scale TRN problem with 
small number of key-node representation, low initial simulated annealing temperatures, small 
temperature reduction factors, small probability acceptance percentages, small CPU time 
allowance, small iteration limits, and short tabu list length.  These measures will make search 
processes short and produce results that may not be close to optimal.  After checking the results 
obtained from this preliminary program execution and if all the input/output data and the 
corresponding TRN characteristics are correct or are as expected, some of the control parameters 
may be reset and a full scale search process may be initiated. 
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5.2.8 Post Processing  
 
By selecting this menu item, the user will be able to display the results from the TRN 
optimization process in TransCAD.  Currently, the post processing for route network layout 
optimization includes functions or tools with the following features: 
 

(1) Graphic or tabular display of the layout of the route network and attributes and statistics 
about the network.  The attributes of a network include number of routes, total route 
lengths, minimum and maximum route lengths, stop names and locations, etc.  The 
statistics include route network directness measures (geometric and/or ridership based), 
transfer directness parameters such as zero, one-or-less, two-or-less trip coverage 
functions, and average boarding functions, etc.  Transfer statistics at various route 
intersection points will also be provided, which include, for example, the intersection 
node or transfer node for each route, the number of passengers originated from or 
destined at that location, the number of passengers transferring at that location, and the 
total number of on-and-off passengers at that location, which is the sum of the previous 
two numbers.  Note, the number of transfer passengers is computed based on the best 
case scenario for the corresponding node.  The best case scenario is a transfer node that 
may serve the largest number of transfer passengers even when some of them may have 
the options to use other transfer nodes.  Transfer information is useful to transit planners 
who may wish to select certain transit stops as major transfer centers.            

 
(2) Graphic or tabular display of individual routes and their attributes and statistics.  

Information on route topology, or connection between a given route and others, is also 
provided.  Attribute information includes route length, route segments’ and/or route 
stops’ locations and names.  Statistics include route directness (geometric and ridership 
based), OOD (Out-of-Direction), etc.   

 
5.2.9 Save Network Problem  
 
This menu entry allows the user to save the current optimization results, which may then be 
modified and used as the input for a new iteration of optimization.   
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6. CONCLUSIONS AND RECOMMENDATIONS 
 
6.1 Summary and Conclusions 
 
There is evidence that transfers and transfer difficulties are major factors that negatively impact 
overall transit ridership.  Therefore, one of the goals of the optimization of a transit route 
network system is to minimize the number of transfers to improve ridership and the quality of 
transit services.  The primary objective of this work was to develop transit route network 
optimization methodologies and implement them in a computer program, which should be 
capable of performing transit route network optimization for practical problems of either small, 
mid-sized, or large transit service areas in a reasonable amount of time.  In this study, 
methodologies and a computer program were designed to minimize the total number of transfers 
of a transit network system through the optimization of the route network configuration, which 
was achieved through the maximization of trips that either need zero transfer or one-or-less 
transfer depending on the objective function settings.  Previous studies on the optimization of 
transit network design problems are mainly various heuristic approaches where problem 
dependent design guidelines, criteria, or principles based on past experiences or existing systems 
must be followed in order to obtain a tractable solution search spaces.  Results obtained from 
various heuristic optimization approaches, although in most cases showing improvements over 
existing systems, are hardly optimal results, either local or global, which may be attributed to the 
facts that the search schemes in most of heuristic approaches are ad hoc procedures and the 
corresponding search spaces are usually not clearly defined.  Although there are some 
mathematical optimization based approaches for transit network designs in the literature, most of 
them are still in the theoretical formulation development stage or may be only applied to ideal or 
small networks.   
 
Transit network design and optimization, whether including transit scheduling or not, is a 
complex task.  The difficulties in transit network design optimization are inherent from the 
complex characteristics of transit network design realities, which include combinatorial 
complexity of network solution spaces, non-linearity of design objective functions or design 
variables, non-convexity of objective functions or solution/variable spaces, as well as multi-
objective nature of the  problems.  These complexities in the transit network design field thus far 
seem to preclude development of systematic mathematical optimization methodologies for transit 
network design problems of realistic sizes.  The methodology developed in this research is 
intended to provide a systematic design tool for the optimization of transit route networks of 
small, mid-sized or large scale transit service areas.  The methodology was tested first through 
several existing benchmark transit network design problems, and applied to a large scale transit 
network optimization problem based on the Miami-Dade County’s transit system.  The main 
features or contributions of the solution methodology developed from this research may be 
summarized as follows. 

 
(1) The research developed a systematic mathematical statement of the route network 

optimization problems including the definition of various objective functions, solution 
search spaces and constraints commonly used in the transit planning field. The main 
difference between this study and previous ones is that the mathematical statement and 
the formulation derived from this study has been implemented as computer program to 
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solve large, realistic transit route network optimization problems, while other studies 
usually resort to heuristic approaches or confine their problems to small networks. 

 
(2) Schemes that flexibly define solution search spaces based on available computing 

resources and optimization problem sizes have been developed.  The flexibility is 
provided through: 

 
• key-node representation of a transit route, 
• the order of local node spaces, the order of local path spaces, and the order of local 

network spaces, and 
• the k-level shortest path search space. 

 
By selecting the appropriate key-node representation, adjusting the order of local node 
spaces, local path spaces, and local network spaces, and choosing a k for the k-level 
shortest path search space, the size of the solution search space may be varied.  The 
flexibly defined local solution search space will approach to the complete solution space 
as the key-node number, the order of various local spaces, and the number k in the k-
shortest path search space increase, although the computing cost to obtain results will 
also increase as the search spaces expands. 
 

(3) This study developed several local search schemes, which were inspired or based on 
mathematical heuristic and stochastic methods widely used in operations research, graph 
theory, or other fields, to obtain results in reasonable time periods with the constraints on 
the current computing powers.  Mathematical heuristics search methods related to the 
methods used in this study included, e.g., the greedy search methods, the nearest-first 
search methods, and hill-climbing methods, and the stochastic methods included tabu 
search, simulated annealing, and greedy search.  The fast hill-climbing search scheme is 
inspired by the gradient based fast decent methods widely used in research fields of 
continua.  The traditional heuristic approaches used in the transit planning field are 
usually strongly domain or problem dependent and the search schemes are usually ad hoc 
and, in some cases, a computer simulation or automation of the design procedures used 
by human planners.  The mathematical heuristics search methods are much less domain 
dependent, and have been used and studied in a wide range of application and research 
fields.  Moreover, mathematical heuristics search methods usually have relative more 
solid theoretical ground.  For instance, Wolsey (1988) has stated that under certain 
convex conditions, the greedy type search schemes converge to global optima.   

 
(4) The methodology developed in this study is particularly suitable for implementation on 

parallel platforms.  In local search processes, the function evaluations of networks with 
different path candidates are independent of each other thus allowing multi-threaded 
parallel function evaluations of possible solution networks in local search spaces.  For the 
fast hill-climbing search method, both the procedure to generate local search spaces for 
various routes and the function evaluations of various solution networks inside local 
search spaces are independent processes between different local spaces and between 
different solution networks.  Implementation on parallel computational platforms will 
result in more effective solution schemes, which promises a great potential for 
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improvement, especially considering the rapid progress in parallel computing software 
and hardware.  

 
(5) The methodology developed in this work may also be used as a useful computational tool 

to evaluate existing transit route networks.  Various output parameters such as zero, one-
or-less, and two-or-less transfer trip coverage, network directness, transfer directness, and 
OOD impact indexes may serve as indicators on the qualities of transit networks.   

 
(6) Finally, numerical results obtained from this work showed that the methodology 

developed in this work appeared to be capable to tackle large scale transit network design 
optimization problems in a reasonable amount of time.  The results from the 
mathematical optimization approaches, though not guaranteed to be a global optimal, did 
show significant improvements over those obtained from traditional heuristic approaches.    

 
The methodology developed in this research has been implemented in a prototype GIS based 
program called OPTNet (OPTimization Package for transit Network).  The program was 
implemented with TransCAD as the front end user interface.  It  allows the user to specify input 
data including street network, transit demand (OD matrix), optional route configurations, initial 
guess routes, fixed routes, pre-specified service areas, optimization parameters, etc.  The 
program can display the input such as streets, initial transit network, and OD matrix graphically 
as well as the output.  The attributes and performance statistics of the optimized transit network 
are also provided.  The user may choose to modify the program output to arrive at a final 
network configuration by adjusting selected routes and stop locations, or, after making 
modifications, choose to use the current solution as the initial input into OPTNet for further 
optimization. 
 
6.2 Recommendations 
 
As mentioned before, a complete transit network design optimization process should include two 
design optimization components, i.e., transit route network design optimization and transit 
network scheduling design optimization.  The present work dealt with the optimization of transit 
route network structure in an attempt to find the optimal route network layouts in terms of 
network directness, transfer directness, and ridership coverage.  However, to realize those 
optimal characteristics allowed by the resultant route network obtained from the route network 
design stage, the optimization of transit network schedule design should be implemented.  
Design variables in network scheduling optimization may include vehicle headways and 
timetables, and the optimization objective functions may be the user cost, operator cost, or a 
combination of the two.  Constraints may include minimum/maximum vehicle headways, 
passenger waiting times, vehicle load factors, fleet size, and so on.  Although traditional heuristic 
methods may produce a workable transit schedule by following certain guidelines or criteria, it is 
important to develop effective mathematical optimization methodologies for transit scheduling 
design since the differences in cost benefits between a workable result and an optimal or even a 
good result may be significant, especially for large-scale transit networks.   
 
Another important improvement would be to allow the use of travel time instead of travel 
distance in the optimization process.  This is because a shortest path measured by distance may 
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not be the shortest path measured by travel time.  For transit users, they are more sensitive to 
travel time and less to travel distance.  More importantly, unless travel time is used in 
optimization, travel time savings provided by rapid transit services such as Miami-Dade 
County’s Metrorail and Busway and transit users’ preference for these rapid transit services 
cannot be properly considered and results will not be accurate.   
 
In this study, the street networks were assumed or approximated as undirected networks.  This 
assumption is valid for street networks containing one-way streets if any two corresponding one-
way segments of a bus route are close to each other and the lengths (or travel times) of the two 
segments are more or less the same.  This assumption may not be true in some practical 
situations when the two one way segments are far apart or when travel time on these two 
segments are noticeably different.  Thus it is desirable to extend the current methodology to 
support optimization problems based on directed street networks.   
 
Because network travel time varies by route and by time of day, to model a transit network 
accurately with travel time as the cost measure, it is necessary to consider time-of-day models 
and network optimization for different periods of time.  This requires that transit demand for 
desirable time period during a day is defined.  Currently, the accurate estimation of transit OD 
matrix remains a challenging task.  Although several methods based on limited survey data and 
statistic technologies have been reported in the literature (Tsygainitzky 1979, Simon and Furth 
1985, Furth and Navick 1992), they are usually limited to one transit route or one transit corridor, 
and their validity for use for transit route networks remains unclear.  The Automatic Passenger 
Counters (APC) technology, especially the smart card technology, is a promising ridership and 
OD data collection means.  However, before such technologies become available, additional 
study will be needed to estimate transit demand and OD matrix.  Improvements in OD matrix 
estimation may be possibly achieved through modeling and the use of existing ridership data.  
Sample data collected for selected routes may provide good estimates of the spatial distribution 
and the temporal patterns of transit demand.  These estimates may also be extrapolated to areas 
not being served by transit.  One difficulty in using existing ridership data such as boarding and 
alighting data is the lack of historical data or data in electronic format as most transit properties 
do not systematically preserve or utilize such data.  It is recommended that tools be provided to 
transit properties to help them preserve such data electronically and allow them to retrieve and 
analyze the data, and that the potential of utilizing these data for the purpose of helping estimate 
transit demand be studied. 
 
To improve the speed of the OPTNet program, different strategies and techniques will need to be 
investigated and applied.  Although the computing power of a single processor computer has 
been increasing rapidly for the past several decades, the full potential of mathematical 
optimization approaches to find global or near global optimal results for large-scale transit 
network analysis seems to lie in parallel computing techniques.  This is because the power of a 
single processor computer is limited by two factors: the speed of data exchanges/transfers and 
the number of microcircuits in a CPU chip.  Both of these two factors have limits based on the 
current knowledge of physics.  The speed of data exchanges could not exceed the speed of light 
while the minimum size of a micro circuit could not be smaller than the molecular of the chip 
material.  Unless there are breakthroughs in physics, these two limitations will determine the 
bounds that the power of single processor computers cannot exceed.  Nowadays, with a parallel 
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computing platform, computers interconnected via a local network can process data and perform 
calculations in parallel with speeds of from several to hundreds of thousands times faster than a 
single processor computer.  The computing power of a parallel computer depends on both 
individual processor’s speed and the number of processors in the computers.  Although the 
power of a single computer process is limited, such limit is removed if multiple processors are 
connected to form a parallel computer.  Therefore, implementing OPTNet on a parallel platform 
is naturally the next development stage for any promising mathematical optimization 
methodologies. 
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APPENDIX.   A BRIEF DESCRIPTION OF MATHEMATICAL OPTIMIZATION 
 
Appendix 1 Mathematical Optimization 
 
The following description of various mathematical optimization problems serves only as 
informational purpose, and it is not intended as rigorous mathematical statements.  More 
accurate description may be found in, for example (Wolsey 1998), among others. 
 
General Mathematical Optimization Problem 
 
A general mathematical optimization problem statement is the follow.  
 
Maximize/Minimize:  
    ( )nx ,f   for all x in R, and n in I 
 Subject to: 

Equality constraints:     
      ligi ,,2,1,0),( Λ==nx  
Inequality constraints:     
      mjh j ,,2,1,0),( Λ=≤nx . 

In the above statement, ( )rxxx ,,, 21 Λxx =  is a vector (or, more general, a matrix) with 
continuous variable components rxxx ,,, 21 Λ , and ( )siii ,,, 21 Λnn =  is a vector (or, more 
general, a matrix) with integer variable components siii ,,, 21 Λ , and R is a space of vectors with 
continuous variable components, whereas I is a space of vectors with integer variable 
components.  For example, the continuous vector space R may have the form of R : 

ribxa iii ,,2,1, Λ=≤≤ , where ai and bi define the range of the ith  variable component of 
continuous vector x; similarly the integer vector space I could have the form of 
I: sjmin jjj ,,2,1, Λ=≤≤ , and nj, mj define the range of jth integer component of the integer 
vector n. 
 
Traditional or Continuous Optimization Problem 
 
If the general optimization problem does not involve integer variables, i.e., n = 0, the problem is 
considered as a traditional or continuous optimization problem.  
 
Integer Optimization Problem 
 
On the other hand, if the general optimization problem involves only integer variables, i.e., x = 0, 
the problem is considered as an integer optimization problem.  
 
Mixed Integer Optimization Problem 
 
Mixed integer optimization problem involves both integer and continuous variables, i.e. x ≠ 0 
and n ≠ 0.    
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Combinatorial Optimization Problem 
 
A combinatorial optimization problem is a special case of integer optimization problems.  It 
refers to an integer optimization problem where the integer vector’s component set, i.e. the 
integer set (i1, i2, …,is ) in vector n = n(i1, i2, … ,is) is a subset of a larger integer set or space N( 
i1, i2, … ,it ), t ≥ s.  For example, the space that includes all two-integer subsets of the integer 
space N (1,2,3,4) is, if order of each pair dose not matter, C((1,2), (1,3), (1,4), (2,3), (2,4), (3,4)).  
Here, C is a combinatorial space generated from the original integer space N(1,2,3,4) (the 
combinatorial space C will be twice big if order of each pair dose matter, e.g. if (1,2) and (2,1) 
are considered as different sets).  The integer vectors defined on this combinatorial space will be 
n(1,2), n(1,3), n(1,4), n(2,3), n(2,4), and n(3,4).  It may be seen that as the size of N(i1, i2, … ,it), 
and the variables number of vector n(i1, i2, … ,is), i.e. r and t, increase,  the corresponding 
combinatorial space C could be very large.  
 
Mixed Combinatorial Optimization Problem 
 
A mixed combinatorial problem refers to a problem that has continuous variables, i.e., x ≠ 0 and, 
at the same time, the integer vector n is defined on a combinatorial space C obtained from a base 
integer space N following certain combination rules.  
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Appendix 2. Convex Domain and Convex Function 
 
The following is an informal description of convex domains/regions and convex functions.  This 
description is intended to give readers without a background in mathematical programming a 
general understanding of what “convex” means in optimization and why it is important in certain 
optimization problems.   It is not a mathematical definition or statement.   Rigorous definitions 
of convex domain and convex function as well as their corresponding properties may be found 
in, for example, Wolsey (1998) and Bertsekas (1998). 
 
For illustration, we only consider 1D, 2D and 3D Euclidean spaces.  The basic idea is similar for 
spaces of other types.   
 
Convex Domains 
 
A domain or region is convex if two points are in the domain then all the points on the straight 
line segment that joints these two points are also in the domain.  Here “in the domain” means 
either inside the domain or on the boundary of the domain.  A domain or region is strictly 
convex if two points are in the domain then all the points on the straight line segment that joints 
these two points are inside the domain.   Based on the above definition, it is easy to see that the 
1D region defined by the blue line segment in Figure A.1(a) is convex, while the 1D region 
defined by the blue line segments in Figure A.1(b) is not, or is nonconvex. 
 

Figure A.1 1D Examples of Convex and Nonconvex Domains 
 

In Figure A.2, (a) is a 2D strictly convex domain, (b), (c) and (d) are 2D convex domains, while 
(e) and (f) are not; (g) is a 3D convex domain, while (f) is nonconvex.  Verification of the above 
may be easily done by drawing a straight line between any two points in a domain and checking 
whether or not any portions of the line segment are outside the corresponding domain. 
 

(a) (b) 
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Figure A.2 2D and 3D Examples of Convex and Nonconvex Domains 

 
Convex Functions 
 
A (strictly) convex function is a function line, curve, surface (or a set of function line, curve, or 
surface segments) that bound or define a (strictly) convex domains/regions.   From this 
definition, the function curves and surfaces of in Figures A.3(a), (b) are convex functions since 
they bound convex domains, while the rest in Figure A.3 are non-convex functions.  Moreover, 
Figure A.3(a) is a strictly convex function.  The properties of convex domains and functions in 
terms of the solvability of an optimal result may be listed as bellow.  
 

(a) A strictly convex function defined on a convex domain has a unique maximum or 
minimum point in the domain.   The global optimal point may be found by following a 
favorite direction (e.g. following a cost decreasing direction in TRN design) starting from 
any initial guess point in the domain.  Figure A.3(a) shows a strictly convex function 
defined on a convex domain.   It easy to see from Figure A.3(a) that one may always find 
the minimum point b from any initial guess point in the domain by just following the 
decreasing direction.  

(b) There is a slight different between a strictly convex and a convex function. A convex 
function defined on a convex domain has a unique maximum or minimum value in the 
domain.  However, there are may be many points that have this maximum or minimum 
value in the convex domain. Figure A.3(b) shows an example of a convex function 
defined in a convex domain.  It may be see that all the points on segment cd of Figure 
A.3(b) have the same minimum value.  Like case (a), an optimal point, i.e. any one of the 
points on line cd in Figure A.3(b), may also be found by following a favorite direction 
starting from any initial point in the domain.      

(c) For nonconvex functions defined on convex domains, there may be many local maximum 
or minimum points or local optima.   Therefore, to search an optimal point from a guess 
point may only obtain one of the local optimal points.   The global optima must be 
obtained by comparing all the local optima.  Figure A.3(c), (d), (e) show various local 
optimal points for corresponding nonconvex functions.   For nonconvex functions, a 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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search scheme may or may not generate a local optimal since the search process may 
oscillate among the neighborhoods of several local optima, and not converge to any of 
them. 

(d) Some nonconvex problems may be decomposed into several convex sub-problems. For 
example, the problem in Figure A.3(c) may be decomposed into two convex sub-
problems defined on, respectively, the sub-domain, ab and bc.  In fact, all the nonconvex 
problems shown in Figure A.3 may be decomposed into several convex sub-problems.  
Decomposition is one of the mathematical regularities or augmentations to recover the 
solution uniqueness of a complex system.  In such cases, the global optimum is obtained 
by selecting the best solution from various sub-problems’ results.  For certain problems 
the number of sub-problems may be huge.  In such cases, in stead of searching all the 
local optimal solution for each sub-problem, one may estimate or approximate up-bounds 
or lower-bounds of some of the sub-problems’ solution ranges, and excludes those sub-
problems that are not likely to have a global optima.   To exclude unfavorable sub-
problems is also a typical scheme in optimization to reduce the size of solution search 
spaces.   For example, in Figure A.3(g), one only needs to solve the minimization sub-
problem in sub-domain ab, if knowing that some of the lower bound solution points in 
both sub-problems cd and ef are larger than any feasible solution points in sub-problem 
ab.  

 
Convex Domains and Functions 
 
To summary the above discussion on convexity of functions and domains, it is may be seen that 
(a) and (b) are the most desirable conditions since any feasible local search will always give 
better result than the initial starting one, i.e. the new result is always closer to the global optimal 
result than the starting one.  The optimization of a convex objective function with a set of 
constraints that define a convex domain is a convex optimization problem.  For convex 
optimization problems, any feasible heuristic or mathematical optimization solution schemes will 
always produce a better solution toward the global optima.  For nonconvex objective functions 
defined on convex domains, or convex functions defined on nonconvex domains, as well as 
nonconvex objective functions defined on nonconvex domains, the outcomes of a solution search 
scheme are not clear.  It may be one of the various local optima, or may not converge at all.   To 
obtain solutions or some approximate solutions from such nonconvex systems/problems, certain 
mathematical regularities or other augmentations may be needed to recover the convexity, either 
locally or globally.    For example, in Figure A.3(c), the function curve in domain ae is 
nonconvex.  However, at the sub-domains ab, bc, cd, and de, the corresponding function curve 
segments are convex.   Therefore, one may tackle the nonconvex system by solving all the 
convex sub-systems, and select the best solution from the results of sub-systems. 
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Appendix 3 Function Continuity 
 
The convexity of an optimization system mainly deals with issues regarding the uniqueness of a 
global optimum or a local optimum in a convex subsystem.   The existence of such optima, and 
the cost to obtain an optima solution if it exists are usually related to issues on the smoothness of 
the objective functions.  Considering various 1D functions show in Figure A.3 where the blue 
line or line segments represent function defined domains.  For example, in Figure A.3(h), a and c 
are discontinuous points where the curve go to infinite, and there is no optimal values for this 
problem.   Generally, a continuous function (curve, surface etc.) defined on a closed domain 
always has maximum and minimum points on the domain.  An open domain is defined as the 
domain bounded by its boundary points/curves/surfaces, but not include those points on the 
boundary points/curves/surfaces, while a closed domain is defined as the open domain plus 
points on its boundary points/curves/surfaces.  For simplicity, only closed domain will be 
discussed here.  A discontinuous point is a point where the function: a) has multiple values, e.g. 
points b, c, and d in Figure A.3(e); b) goes infinite, e.g. points a, and c in Figure A.3(h).  The 
smoothness of a function may be classified as bellow. 
 

(a) A function is a discontinuous function if there are discontinuous points in the domain it 
defined.  The function curve in Figure A. 3(e) is a discontinuous function since there are 
discontinuous points, b, c, and d. 

(b) A function is a continuous function if there are no discontinuous points in the domain it 
defined.  The function curves in Figure A. 3(a), (b), (c), (d), (f), and (g) are continuous 
functions since there are no discontinuous points in their associated domains. 

(c) A function is once-differentiable, or order-one smoothness, if a) it is a continuous 
function; b) its derivative (i.e. slope) function is also a continuous function.  The function 
in Figure A. 3(a) is once-differentiable, while the one in Figure A. 3(b) is not since its 
slope function has jumps at points b, c, and d.   Figure A.3(c) is not once-differentiable 
since at point b, the slope (i.e. the tangent of the slope angle) goes infinite.  Similarly, 
Functions in Figure 3(f), and 3(g) are once-differentiable functions, while those in Figure 
A.3(d), 3(h) are not (at points a and c, Figure A.3(h) has infinite slope values).   

(d) A function is twice-differentiable, or order-two smoothness, if a) it is a continuous 
function; b) its derivative (i.e. slope) function is a continuous function; c) its second 
derivative (i.e. curvature) function is also a continuous function.  The functions in Figure 
A. 3(a) and 3(f) are twice-differentiable, so is that in Figure A.3(g).   

 
The order of smoothness of a function characterizes the relationship of a function or a solution 
point with its neighborhood points or solutions.  Functions with higher order smoothness usually 
indicates that individual points of such functions shear more common properties or 
characteristics with their neighboring points.  For instance, the neighboring points of the 
minimum point b of the function curve in Figure A.3(a) have lower values relative to other 
points not in this neighborhood.   For discontinuous functions, the relationships of points near 
discontinuous points may not be clear, or may not have any relation at all (there are functions 
that are discontinuous everywhere!).    For such functions, exhaustive search or certain 
enumerative methods may be needed to find optimal results.   The non-smooth, continue 
functions (i.e. continue, but not once-differentiable) provide more information between 
neighboring points, e.g. the difference between two neighboring points should not be too big etc.  
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For such functions, certain bi-section based methods or upper or lower bound based methods 
may be more effective to obtain good solutions.   Functions with first order smoothness may 
further provide the direction of where a local/global optima locates since the function curve’s 
tangent slope tell which direction the function increase/decrease, or a possible optima point for a 
zero tangent slope value (i.e. horizontal tangent line).  For example, In Figure A. 3(a), the 
minimum point b has a zero tangent slope, and at other points, the tangent line decreases toward 
the optimal point b.  Furthermore, for functions with first order smoothness, various gradient-
based methods apply.  Those methods search the best solutions iteratively in tangent (or fast 
decent/accent) directions of points obtained from previous iteration.   Generally, higher order 
smoothness functions allow more effective solution search schemes than those functions with 
lower order smoothness. 
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Figure A.3 Functions: Convex/Nonconvex, Continue/Discontinue; and Domains: Convex 
and Nonconvex. 
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