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On page 7, the original text is: 
 

100
20×= RNRR              (1.3) 

where, 

RR  = Ride Rating (0 to 100 scale) 

  RN = Profiler Ride Number 

  Note: Ride Rating is actually calculated to a 100 scale and then reported on a  

    10 scale. 
 
Now, the above text should be changed to: 
 

10
20×= RNRR              (1.3) 

where, 

RR  = Ride Rating (0 to 10 scale) 

  RN = Profiler Ride Number 
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ABSTRACT 

Timely identification of undesirable crack, ride and rut conditions has been a critical step 

in pavement management at the network level. To date, many models have been 

developed for forecasting of pavement conditions with most of them focusing on a single 

index. Florida Department of Transportation (FDOT) forecasting models for roughness, 

skid resistance, or crack condition, etc. are such examples. The overall pavement surface 

condition is jointly determined by these individual pavement condition indices. This 

report summarizes the results of a research project that was initiated to implement a 

pavement condition prediction methodology using Artificial Neural Network (ANN). In 

this research effort, three individual ANN models were developed to forecast three key 

indices, including crack rating, ride rating, and rut rating. These indices have been used 

by FDOT for pavement evaluation purposes. Each individual model was trained and 

tested with the use of FDOT pavement surface condition database. Modeling results 

suggest that the ANN models developed in the research have the capability to 

satisfactorily forecast future individual pavement condition index up to a period of five 

years. As one of the implementation tasks, a software package was developed for easy 

implementation and use of the ANN predictive models. 
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CHAPTER 1 

INTRODUCTION 

Pavement condition performance models, which simulate the deterioration process of 

pavement conditions and provide forecasting of pavement conditions over time, play a 

pivotal role in pavement management system (PMS). Myriads of researches have been 

done with respect to pavement performance modeling. However, the pavement 

deterioration process is so complex that it is difficult and sometimes impossible to find an 

appropriate functional form as used in traditional modeling. Hence, a new approach, 

which can be categorized as “biologically-inspired”, is taking the territory from its 

traditional counterpart. Typical models in this category are neural networks and genetic 

algorithms. Neural network abstracts the underlying relationship between dependent and 

independent variables from the exemplar data pairs and express it as forms of weight 

matrix. The main objective of this research was to develop a pavement performance 

model applying neural network algorithm and implement the model in the Florida 

Department of Transportation (FDOT) pavement management system. 

1.1 Background 

Transportation Equity Act in the 21st Century (TEA-21) calls for coordinated efforts to 

collect, store, manage, and analyze transportation related data, which lay a solid 

foundation for the establishment of PMS. Due to the increasing challenges in pavement 

maintenance and rehabilitation, PMS has become a very beneficial management tool for 

highway agencies. The high expenditures incurred in highway construction imply a 

significant saving even from a slight improvement in management of the highway 

investment. 

Pavement management typically operates at two levels, (1) network level and (2) project 

level. At the network level, a priority program and work schedules are developed within 
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overall budget constraints. On the other hand, at the project level, specific physical 

improvements are implemented according to the network decisions. The key components 

of a PMS are inventory, analysis, output, and feedback. Pavement performance model, 

which acts as the hub of the analysis component, is the engine of the whole management 

activities. The activities include: at the network level, (1) prediction of the future 

conditions of the pavement, (2) prediction of the future funding needed to keep the 

pavement network at an acceptable level, (3) comparison of the effects of various funding 

scenarios on the pavement network, and (4) justification of annual budget for 

rehabilitation; at the project level, (1) identification of the candidate projects for 

rehabilitation, (2) generation of rehabilitation alternatives for each candidate project, (3) 

technical and economic analysis of each alternative, and (4) justification of project 

rehabilitation activities. 

As it can be seen, the pavement performance model is not only a technical tool but also 

one that has significant economic implications. Traditionally, pavement performance has 

been referred to as serviceability performance, a concept defined by Carey and Irick, 

which represents performance as the history of pavement serviceability with time [1]. 

Since then, the concept of pavement performance has been widely analyzed and 

discussed by many researchers [2, 3, 4]. Typically, pavement performance models or 

pavement deterioration models relate pavement condition, represented by any one 

indicator of pavement condition, to a set of explanatory variables, such as traffic loads, 

environmental, design, construction, and maintenance practices to simulate the 

mechanism of the pavement deterioration process. If measured explanatory variables are 

furnished, pavement performance models can predict the future condition of the 

pavement, based on which future management activities are scheduled. In order to make 

a decision as to when maintenance activities are necessary, it is important to establish an 

action threshold in terms of the pavement condition. Usually, the rationale to set up the 

threshold is based on the deterioration rate. Empirically, the period of first several years 
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after construction represents the slowest deterioration period for a pavement. As time 

progresses, pavement conditions become worse, and the deterioration rate begins to 

increase until it comes to a reflection point after which the pavement deteriorates so 

quickly that it is no longer efficient to renovate rather than rebuild it. However, the 

threshold value can vary depending on the rating systems and specific indicator that is 

used for pavement condition evaluation. A graphic illustration of the effect of 

maintenance activities on the pavement performance is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Illustration of the Effect of Maintenance Activities on Pavement Performance 

1.2 FDOT Current Practice 

Currently, FDOT uses three key pavement performance indices, which are crack index 

(CI), ride index (RD), and rut index (RT), to capture the different attributes of pavement 

surface conditions. In addition, FDOT uses a composite index called the pavement 

condition rating (PCR) to represent the overall pavement condition. PCR is defined as the 

minimum of the three key indices. It implies that the three indices are equally important 

and the lowest one represents the overall pavement condition. The indices of cracks, ride 
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and ruts are rated on a 0-10 scale where 10 indicates the best condition and 0 the worst. If 

PCR is greater than the decision threshold of 6.4, the pavement is considered to be in a 

sound condition; or if PCR is equal to 6 and determined by ride rating, the pavement is 

not considered deficient when the speed limit is less than 45 mph. The following section 

provides a brief review of the FDOT rating procedure of each individual index. 

1.2.1 Crack Rating 

Visual survey has been employed to determine the pavement crack condition. A survey 

crew drives an inspection vehicle at a reduced speed to visually check the entire section 

and records the overall crack condition of the section. To facilitate crack data collection, 

three distinct types of cracking have been considered by FDOT: 

Class IB: this category includes hairline cracks that are 1/8 inch (3.18 millimeters) 

wide either in the longitudinal or transverse direction. 

Class II: this category includes cracks with open width from 1/8 inch (3.18 

millimeters) to 1/4 inch (6.35 millimeters) either in the longitudinal or transverse 

direction. These cracks may have moderate spalling or severe branching. It is also 

included cracks with open with less than 1/4 inch (6.35 millimeters) which has 

formed cells less than 2 feet (0.61 meters) on that longest side (alligator cracking).  

Class III: this category includes cracks with open width 1/4 inch (6.35 millimeters) 

or greater and extending in a longitudinal or transverse direction and these those 

opened to the base or underlying material. It is also includes progressive Class II 

cracking resulting in severe spalling with chunks of pavement breaking out. 

Severe raveling (loss of surface aggregate) or patching would also be classified as 

Class III cracking. 
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The crack rating (CR) is obtained by subtracting the “negative deduct values” associated 

with various forms of cracking from 10 as shown in Eq.1.1  

CR = 10 – (cw + co)                (1.1) 

where, 

 cw = deduct value confined to wheelpaths 

  co = deduct value outside of Wheelpaths 

Deduct values for flexible pavements are shown in Tables 1.1 and 1.2. A crack rating 

score of 10 indicates a pavement without observable distress or with only minor 

observable distress. 

Table 1.1 Numerical Deductions for Cracking Survey (Confined to Wheelpaths (cw)) 

 

Table 1.2 Numerical Deductions for Cracking Survey (Outside of Wheelpaths (co)) 

Source: FDOT Flexible Pavement Condition Survey Handbook 

1B Cracking Deduct II Cracking Deduct III Cracking Deduct

00-05 0.0 0.5 1.0
06-25 1.0 2.0 2.5
26-50 2.0 3.0 4.5
51+ 3.5 5.0 7.0

Percent of Pavement 
Area Affected by 

Cracking

Predominate Cracking Class

1B Cracking Deduct II Cracking Deduct III Cracking Deduct

00-05 0.0 0.0 0.0
06-25 0.5 1.0 1.0
26-50 1.0 1.5 2.0
51+ 1.5 2.0 3.0

Percent of Pavement 
Area Affected by 

Cracking

Predominate Cracking Class
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1.2.2 Rut Rating 

The rut defect score (RD) is obtained by subtracting the “deduct point” corresponding to 

the rut depth from 10 as shown in Eq.1.2.  

RD = 10 – ra               (1.2) 

where, ra is the ultrasonic rutting deduct points, which can be found in Table 1.3. 

The average rut depth (both wheelpaths combined) is extracted from the ultrasonic 

profiler report and coded as indicated on Table1.3. Manual rut depths are also recorded, if 

necessary. 

Table 1.3 Ultrasonic Rutting Deduct Points (ra) 

Source: FDOT Flexible Pavement Condition Survey Handbook 

1.2.3 Ride Rating 

Ride Rating is calculated using profiler ride number, acquired from the outside wheel 

path. The expression for computing ride rating is as follows: 

Range Range Code 

inches mm Value
0 0 0.00 - 0.06 0.00 – 1.59 0 0

1/8 3.18 0.07 – 0.19 1.60 – 4.76 1 1
1/4 6.35 0.20 – 0.31 4.77 – 7.94 2 2
3/8 9.53 0.32 – 0.44 7.95 – 11.11 3 3
1/2 12.7 0.45 – 0.56 11.12 – 14.29 4 4
5/8 15.88 0.57 – 0.69 14.30 – 17.46 5 5
3/4 19.05 0.70 – 0.81 17.47 – 20.64 6 6
7/8 22.23 0.82 – 0.94 20.65 – 23.81 7 7
1 25.4 0.95 – 1.06 23.82 – 26.99 8 8

1 1/8 28.58 1.07 – 1.19 27.00 – 30.16 9 9
1 1/4  + 31.75 1.20  + 30.17  + 10 10

Rut Depth 
inches

Rut Depth 
mm

Defect 
Points
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100
20×= RNRR               (1.3) 

where, 

RR  = Ride Rating (0 to 100 scale) 

  RN = Profiler Ride Number 

  Note: Ride Rating is actually calculated to a 100 scale and then reported on a  

    10 scale. 

The reviewing of FDOT rating procedures revealed considerable inconsistency in the 

rating systems of different indices used by FDOT. In order to assure consistency, three 

different models were developed with respect to the three key indices, crack index, rut 

index and rut index. The minimum value predicted by the three models is considered as 

the predicted PCR. 

1.2.4 Forecasting Methods used by FDOT 

Two mathematical forecasting methods are currently used by FDOT for each roadway 

segment: (1) mean deterioration rate and (2) simple linear regression. In practice, one of 

the methods that best fits the prior trend of the data will usually be chosen. However, 

since pavement performance is a nonlinear phenomenon in nature, neither of the two 

methods is appropriate in general. Hence, more accurate models based on sophisticated 

forecasting methodologies are needed for FDOT PMS. 

1.3 Project Background 

Four different objectives were achieved in a previous research conducted by Lu et al, 

University of South Florida (USF) leading to the development of a pavement crack 

performance model [5]. These objectives are: 

1. Review of the existing models used to predict pavement crack condition, 
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2. Review of the FDOT database to identify available information that could be 

used for the model development, 

3. Development of neural network model for crack forecasting based on historical 

information, and 

4. Evaluation of the performance of the neural network model as compared with 

other existing models. 

The previous research results and findings have demonstrated that the neural network 

method is an appropriate tool to model pavement crack performance. The previous 

research results are so inspiring that further research interest was mandated to implement 

the neural network method in FDOT’s PMS. Thus, in 2000, FDOT and USF started a 

follow-up research, “Applications of Neural Network Models for Forecasting of 

Pavement Crack Index and Pavement Condition Rating”. This research focused on 

application of the neural network model to pavement condition rating (PCR) and 

implementation of the model in FDOT PMS. In addition to the PCR forecasting model, 

three different neural network submodels were established and corresponding software 

that implement these neural network models were developed. This report summarizes the 

above research efforts. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Review of Existing Pavement Performance Models 

The last three decades witnessed an increasing interest in the development of pavement 

performance models. Although pavement performance models may take different forms, 

typically, they relate the indicators of pavement conditions, such as cracking index, 

roughness, or rutting, to explanatory variables such as traffic loads, environmental factors, 

cycle, age, and pavement structure. The purpose of a model is to establish a causal 

relationship between the pavement condition and these factors that is considered 

influencing performance of pavements. Three broad categories of pavement performance 

models currently exist. These are deterministic models, probabilistic models, and 

biologically-inspired models.  

2.1.1 Deterministic Models 

For deterministic models, the functional form is assumed to be explicitly specified. 

Deterministic models can be further divided into three subcategories, which are pure 

empirical models, mechanistic-empirical models, and expert system models. 

1) Pure Empirical Models 

Pure empirical model is one of the most widely used models for pavement performance 

forecasting. A massive database is required in the modeling effort. A typical empirical 

model takes the form of a non-linear polynomial curve that obeys specific boundary 

conditions as shown in Eq.2.1. 

3
3

2
210 XaXaXaaPCR +++=                   (2.1) 
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where: 

  PCR = pavement condition rating, 

  X = pavement age in years, and 

  4321 ,,, aaaa = regression parameters. 

To assure the accuracy of such models, pavements need to be classified into families with 

each family having a unique set of parameters capturing its own characteristics. 

2) Mechanistic-empirical Models 
Historically, engineering knowledge of pavement behavior under traffic loading has been 

mostly based on mechanistic analyses of pavement structures. Mechanistic models are 

developed based on the mechanistic relationship among loading, stresses, strains, and 

deflections. Due to the complexity of the interactions among the factors relevant to 

pavement performance, few of this type of model have been successfully developed so 

far. Instead, the hybrid breed of mechanistic-empirical models becomes popular. The 

mechanistic-empirical model is the combination of empirical method and mechanistic 

knowledge. In particular, it involves a mechanistic model to calculate the pavement 

response (stresses, strains, deflections) under traffic loading, and an empirical function 

relating the pavement response to the pavement performance (cracking, roughness, and 

rutting etc.). An example of this model category is a pavement roughness model provided 

by Queiroz [6] as shown in Eq.2.2.  

))(10(08.9))(10(22.9297.1)log( 23 STAGEQI −− ++=  

))(log1}(10(57.5))(10(03.7 42 NSENRH −− +−         (2.2) 

where: 

  QI = roughness (counts/km), 

  AGE = pavement age in years, 

  ST = surface type dummy variable (0 for as constructed and 1 for overlaid), 
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  RH = state of rehabilitation indicator (0 for as constructed and 1 for overlaid), 

  SEN1 = strain energy at bottom of asphalt layer (10-4 kgf cm), and  

 N = cumulative equivalent single axle loads (ESAL). 

By taking into account of the mechanistic characteristics of the pavement, the 

mechanistic-empirical models can perform better than the empirical models. A major 

drawback is that more efforts are needed in the acquisition of data. 

3) Expert System Models 

It is recognized that pure empirical models and mechanistic-empirical models are both 

massive data demanding models. In cases where data are deficient, experts can 

supplement knowledge. Expert models are developed based on the opinions of 

experienced engineers who are familiar with the deterioration patterns of different types 

of pavement. In practice, the amount of expert knowledge that enters these models varies 

depending on the highway agency. Some agencies may rely one hundred percent on 

expert opinions, while others may use contribution of 50% from expert opinion and 50% 

from databases. South Dakota Department of Transportation used this approach to 

develop their deterioration models (SD93-14). In South Dakota, first, a scaling system 

was applied to develop the deduct values associated with each severity and extent 

classifications associated with defined distress types. Then, experienced engineers were 

asked to provide estimates of the ages of pavements to reach particular conditions in 

terms of severity and extent for different distress type. With these data, a regression 

analysis was performed to determine the coefficients for the specified model, which 

could take the following form: 

  batcPPI +=                   (2.3) 

where: 

  PPI = pavement performance index, 
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  c = the maximum value of the index, 

  a = slope of the deterioration curve, 

  t = age of the pavement, and 

  b = exponent coefficient of the curve. 

2.1.2 Probabilistic Models 

Inherent variability of material properties, environmental conditions, traffic 

characteristics, and the subjective nature of condition surveys cause the pavement 

performance to inherit characteristics of a stochastic process. Probabilistic models treat 

pavement condition measures such as PCR or crack index as a random variable. A 

popular probabilistic pavement performance model is the Markov chain model, which is 

an application of Markovian technique in pavement performance modeling. Markovian 

technique and its applications in pavement modeling was described in detail by Butt [7]. 

The technique requires developing a probability transition matrix to predict the pavement 

deterioration with time. The basic Markov chain model consists of initial stage 

probability and the transition matrix as shown in Eq.2.4. 

i
i PPP )(0=                    (2.4) 

where: 

  P0 = the vector of initial state probability, 

  Pi = the vector of state probability of ith duty cycle, 

  P = probability transition matrix, and 

i = duty cycle. 

The probability transition matrix P can be expressed as 
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where, ∑
=

=
n

ij
ijp 1, i = 1,2,3,……n-1. 

The roadway condition, in terms of a particular indicator, is divided into n states, with 1 

describing the best condition and n the worst. Pii is the probability of a roadway staying 

in state i during one duty cycle and Pij ( i < j ) is the probability of a roadway transiting 

down to the state j during one duty cycle. However, it is an arduous job to assign 

reasonable values for all probabilities in the P matrix. In practice, a simplified matrix is 

generally used. If the assumption is made that the pavement condition will not drop by 

more than one state in a single duty cycle, which is the general situation for most 

pavements under normal traffic loading, the probability transition matrix can be simply 

rewritten as  
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Wasantha Kumara et al described the application of the Markov model to predict the 

crack depth propagation in Florida’s asphalt pavements [8]. 

2.1.3 Biologically-inspired Models 

Typical models in this category are genetic algorithm (GA) and artificial neural network 

(ANN) model. A genetic algorithm derives its concept from the process of evolution in 

nature. First, a population of characteristic candidates for the optimization problem is 

created. Each of these candidates is termed as an individual. Then, the individuals in the 

population go through a process of evolution. The evolution is usually achieved in a 

manner that is similar to the biological evolution: (1) evaluate the fitness of all 

individuals in the population; (2) create a new population through three key operations: 

crossover, reproduction, and mutation on individuals in old population; (3) discard the 

old population, and iterate using the new population. One iteration is referred to as a 

generation. The three operations play a crucial role in the process of evolution. 

Reproduction allows the copy of better individuals to appear in the new population. 

Crossover allows different individuals to be created in the successive generation by 

merging material from individuals from the previous generation. Mutation is the 

operation that can infuse new information in a random way to the genetic search process.  

A recent application of genetic algorithm in the pavement performance modeling is done 

by Andrei et al [9]. In the research, a roughness performance model was developed by 

using the genetic programming algorithm. Various published LTPP distress data and 

early results of RO-LTPP data were utilized for the modeling. After running about 50 

generations, the best model was finally obtained, which is expressed as: 

  )(log 1101 SNRRR ttt ++= −−                                   (2.7) 

where, 

  Rt= roughness of pavement at age t, 
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  Rt-1 = roughness of pavement at age t-1, and 

  SN = structural number modified for subgrade strength. 

As noticed, it is an iterative model. With the initial roughness R0 and the pavement 

roughness condition at age t provided, Rt can be forecast iteratively. The research result 

suggests that evolutionary technique can be used successfully in engineering fields, 

especially in transportation engineering, where the available sample data are usually 

scarce and time-consuming to collect. 

Another important biologically-inspired approach is artificial neural network (ANN). 

ANN stems from the understanding of the functioning of the brain. It can be regarded as 

the highly simplified models of the human brain system, which, however, emulates 

human brain abilities of learning, generalization, and abstraction. Up to now, many 

applications of ANN to pavement performance modeling have been attempted producing 

inspiring results. 

2.2 Application of Artificial Neural Networks in Pavement Performance Modeling 

A number of studies have involved the application of artificial neural networks to model 

pavement performance over time. To name a few, four applications relevant to this 

research are discussed herein. 

Attoh-Okine et al. applied a neural network to develop a pavement roughness progression 

model [10]. The training data were generated from RODEMAN, a road deterioration and 

maintenance submodel of HDM-III. An empirical simulation model was used to generate 

roughness data. The neural network was then developed relating the pavement roughness 

to a set of factors causing pavement roughness: pavement structural deformation, 

incremental traffic loadings, extent of cracking and thickness of surface layer, 

incremental variation of rut depth, surface defects such as patching and potholes, and 

environmental and other non-traffic-related variables such as road age etc.. Three 



 16

different architectures of the neural network with one, two and three layers, respectively, 

were examined. The back-propagation learning algorithm was used as the learning rule. 

The predicted results of the trained network were compared with the desired results in 

terms of the mean square error (MSE). It was concluded that the application of neural 

networks in pavement deterioration modeling is feasible when a large database of 

pavement condition is available. On the other hand, since the modeling was accomplished 

using simulated data, it was recognized that the model might not be general enough to 

perform well on other data sets, especially from pavements in service. 

Shekharan developed ANN models to predict pavement conditions for five families of 

pavements: original flexible, overlaid flexible, composite, jointed, and continuously 

reinforced concrete pavements [11]. The pavement condition was represented by 

pavement condition rating (PCR), a composite index derived by combining the distresses 

and roughness, formulated for the Mississippi Department of Transportation. In this 

approach, Genetic Adaptive Neural Network Training (GANNT) algorithm is employed. 

The explanatory variables that have been chosen as inputs to the neural network models 

are pavement structure, pavement history represented by pavement age in years, traffic 

volume by cumulative 18-kip equivalent single axle loads. In order to account for quality 

of maintenance activities, and to some extent the traffic volume, the classification 

according to Federal Aid System (FAS) is also included in the list of explanatory 

variables. To substantiate the prediction capability of ANN, the same data with the same 

explanatory variables are employed for developing regression models. Finally, 

comparison was made on ANN and regression modeling. The author concluded that for 

modeling purposes, artificial neural network algorithms are, in general, found to be a 

better tool as compared to regression techniques, for the simple reason that artificial 

neural networks provide a flexible form of mapping and can take into account any 

functional form of equation. 
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Owusu-Ababio applied neural networks to model performance of thick asphalt pavement 

(thickness≥ 152.4 mm (6 in.)) [12]. The database used for this study was developed 

through a survey of the Wisconsin Department of Transportation district offices and 

selected city governments. The indicator of pavement condition used in this study was the 

pavement distress index (PDI), which range from 0 to 100 with 0 being the best and 100 

being the worst. The main factors assumed to affect the performance of non-overlaid 

thick asphalt pavements include the pavement surface thickness, pavement age, traffic 

level (ESAL/day), base thickness, and roadbed condition. For comparison purposes, 

multiple linear regression (MLR) models were also developed. It was concluded that the 

ANN model outperforms the MLR model in terms of standard error and R square value. 

In the research conducted by Lu et al USF, a neural network model was developed to 

forecast pavement crack condition [5]. In this study, the FDOT pavement condition 

database was used. Back propagation algorithm was employed for the network training. 

A three-layer neural network model was proposed for the modeling. Through trial and 

error, seven specific variables were selected as inputs. These are crack index time series 

variables, CI(t-2), CI(t-1), CI(t), which are the Crack Index in year t-2, t-1 and t, 

respectively, flexible type of pavement indicator (1 if flexible, 0 otherwise), rigid type of 

pavement indicator (1 if rigid, 0 otherwise), pavement cycle, and pavement age. As the 

output of neural network, the following year’s crack index (CI(t+1)) was predicted. For 

comparison purposes, a corresponding AR model was also developed. The comparison 

result showed that neural network model was more accurate than the AR model in terms 

of root mean square error (RMSE), average error and R square value. As the result of the 

research, the authors (Lou et al, 2001) concluded that the proposed neural network model 

was an effective tool for pavement maintenance planning.  

The literature review showed that ANN is a powerful modeling tool and began to receive 

increasing attention in modeling pavement performance over time. However, most of the 
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researches focus on modeling single pavement index, such as crack, ride, or rut index, 

etc., with few centering on overall pavement condition. This study attempted to fill this 

void. As result of this research, ANN models were developed to forecast the overall 

pavement condition in Florida. 
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CHAPTER 3 

METHODOLOGY 

Three ANN models were developed in this study to forecast the overall pavement 

conditions, encompassing the individual crack, ride and rut ratings. They are (1) crack 

performance model, (2) ride performance model, and (3) rut performance model. FDOT 

uses a composite index (PCR) to represent overall pavement condition. PCR is defined as 

the minimum of crack, ride and rut indices. The minimum forecasted value from the three 

models is used to represent the forecasted PCR. The popular ANN training algorithm of 

standard Back-Propagation (BP) algorithm was employed for neural network training 

purpose. In the following sections techniques in modeling pavement performance over 

time are introduced first. Then, An in-depth review of ANN and BP algorithm are 

provided.  

3.1 Techniques Applied in Pavement Performance Modeling 

Primarily, there are two distinct types of models available for pavement condition 

forecasting. The first type is a static model and can be conceptually described by the 

following equation: 

.),,,,,( etctETMSfPI ttttt =             (3.1) 

where, 

  PIt = pavement condition index at age t, 

  St = pavement structural conditions at age t, 

  Mt = pavement materials characteristics at age t, 

  Tt = traffic conditions at age t, and 

  Et = environmental conditions at age t. 

Often, the development of such models is based on field and/or laboratory data and 

statistical analysis. As a result, formats of these models are generally complicated due to 
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the multitude of variables associated. Further, these models may lack accuracy due to 

numerous uncertainties. 

The second type, a dynamic model, can be described by the following equation: 

  ),...,,( 21 Ntttt PIPIPIfPI −−−=            (3.2) 

Pavement condition at age t, PIt, is forecasted using historical pavement condition data at 

ages t-1, t-2, … , t-N. This type of model is based on historical performance of pavement 

characteristics, irrespective of other variables used in the static model. By understanding 

the dynamics of the changing process over time, this type of model can forecast future 

conditions based on the past conditions. It is recognized that the structural condition is 

reflected in the historical changing process of pavement condition. Thus, if external and 

structural conditions are not significantly changed within a relative short time period, the 

model based on historical information could produce a reasonably accurate forecast of 

future pavement condition. This type of model is called time-series model, which has 

been successfully applied in transportation engineering. 

A time-series model can describe time-dependent processes in which past data influence 

future data in the presence of underlying deterministic factors. These factors may be 

characterized by trends, cycles, and non-stationary behavior of the processes. It is these 

recurring patterns and relationships that the predictive models attempt to recognize. On 

the other hand, there is always certain level of randomness existing in the time-series. 

Both the deterministic trend and the randomness should be addressed in the forecasting 

model. A traditional statistical treatment of time series would include tests for 

randomness, analyses of series into component parts, smoothing, and the use of 

autoregressive models. However, the inherently nonlinear time series, such as that found 

in pavement condition deterioration process, are more suitable for analysis by the general 

nonlinear mapping provided by a neural network, than by linear based autoregressive 
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models. Neural networks are nonlinear models that can be trained to map past and future 

data of a time-series, thereby uncovering the hidden relationships governing the data. 

3.2 Artificial Neural Networks 

An ANN is a parallel information-processing system that has certain performance 

characteristics similar to biological neural networks. A neural net consists of a large 

number of simple processing elements called neurons. Each neuron is connected to other 

neurons by means of directed links and each directed link has a weight associated with it. 

The weights acquired through the training process represent abstracted information from 

dataset, which is used by the net to solve a particular problem. Some functions that neural 

networks are able to perform include: (1) classification - making a decision on which 

category an input pattern belongs to, (2) pattern matching - according to the input pattern, 

the neural network produces corresponding output pattern, (3) pattern completion - 

presented with an incomplete pattern, the neural network produces the corresponding 

complete pattern, (4) optimization - provided with the initial values for a specific 

optimization problem, the neural network produces a set of variables that represent an 

acceptably optimized solution to the problem, and (5) simulation: presented with the 

current state vector of a system or time series, the trained network generates structured 

sequence or patterns that simulate behavior of the system with time. 

The capability that neural network can execute such complicated tasks is attributed to its 

underlying parallel distributed computational “mechanism”. The mechanism is supported 

by three crucial and interacting components: (1) pattern of connection between neurons, 

which is referred to as architecture, (2) method of determining the weight of the 

connections, which is referred to as learning algorithm, and (3) neuron activation function. 

In order to construct a neural network for solving a particular problem, three components 

need to be determined first, including architecture, learning method, and neuron 

activation function. 
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3.2.1 Architecture 

Significant effort is needed to determine the best architecture for the ANN models. This 

includes the determination of input and output variables, number of hidden layers, and 

number of hidden neurons in each hidden layers. Usually, a neural network with too few 

hidden neurons is unable to learn sufficiently from the training data set, whereas a neural 

network with too many hidden neurons will allow the network to memorize the training 

set instead of generalizing the acquired knowledge for unseen patterns [13]. Haykin 

recommends using two hidden layers; the first one for extracting local features and the 

second one for extracting global features [14]. However, with two hidden layers, a 

significant increase in the training time and corresponding decrease in the efficiency of 

training process could be experienced. Funahashi and Hornik et al. separately proved that 

any continuous function can be approximated with an arbitrary accuracy using the 

three-layered network [15,16]. Thus, from a theoretical viewpoint, a three-layered 

network is enough for function approximation. In practice, most neural network 

applications use only one hidden layer. Due to the still vague understanding of the 

impacts of the variation of ANN architecture, trial and error is conventionally employed 

to select the appropriate number of hidden neurons in the hidden layer for the problem 

under investigation. As an illustration, a typical three-layered neural network with one 

output neuron is shown in the Figure 3.1. 
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    Input Layer       Hidden Layer          Output Layer 
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                                                           Y 
                .               . 
                .               . 
                .               . 
 
  Xn 

 
 

Note: 

X1, X2,…, Xn = input to the neural network, and 

Y = output of the neural network 

Figure 3.1  A Typical Three-layered Neuron Network with One Output Neuron 

3.2.2 Learning method 

All learning methods can be classified into two categories: supervised learning and 

unsupervised learning. Supervised learning is a process that utilizes an external teacher 

and/or global information. Several popular supervised learning algorithms are error 

correction learning, reinforcement learning, stochastic learning, and hardwired systems. 

Supervised learning can be further classified into two subcategories: structural learning 

and temporal learning. Structural learning is concerned with finding the best possible 

input-output relationship for each individual pattern pair. Examples of structural learning 

include pattern matching and pattern classification. However, temporal learning is 

concerned with capturing a sequence of patterns necessary to achieve some final outcome. 

Examples of temporal learning include prediction, simulation, and control. In the case of 
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unsupervised learning, external teacher or supervisor is not necessary. It relies only upon 

local information during the entire learning process by organizing presented data and 

discovering its emergent collective properties. 

Back-propagation (BP) method, which was used in this research, falls into the category of 

supervised learning.  It is one of the most popular learning methods for multiple-layer 

neural networks. Due to its generality, BP neural network can be used to tackle a wide 

array of problems. A detailed discussion of the BP method is presented in section 3.2. 

3.2.3 Neuron activation function 

A neural network consists of many neurons. Each neuron is an independent processing 

element (PE), having its own inputs and output. The term of “distributed parallel 

computation” is derived from the independence property of neurons. A typical neuron is 

shown in Figure 3.2.  

        x1 

  Input             w1 

  From   x2 

  Other          w2 

  Processing     . 
  Elements      .                                       Output 

              wn 

         xn 

 

Figure 3.2  Diagram of Artificial Neuron 

The output shown in Figure 3.2 is calculated by the following equation: 
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where  

xi = the ith input, 

wi = the connection weight associated with ith input, 

Oj = output of jth neuron, and  

 f = the transfer function. 

As noticed, the processing of each neuron is simply a weighted summation plus a 

function transfer. Five typical transfer functions are generally used as neuron activation 

functions depending on the characteristics of the problem under study. These activation 

functions are linear, linear threshold, step, sigmoid and Gaussian. Among these, the 

most commonly used one is the sigmoid function due to its concise form and 

differentiability. The output of each neuron calculated by the sigmoid transfer function 

can be expressed as: 

)(1
1)( yae

yfz −+
==                 (3.4) 

∑
=

=
n

i
ii xwy

1
                  (3.5) 

where : 

 z = neuron output, 

 y = input to the transfer function, 

 a = gain of the sigmoid function, 

 n = number of element in the input vector, 

 xi = ith element in the input vector, and 

 wi = weight of connection i. 

In this study the sigmoid function was employed as the neuron activation function. 
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3.2.4 Characteristics of neural network performance 

In computational terms, a neural network exhibits a unique set of performance 

characteristics inherited from its parallel-distributed structure. By simulating the 

functionality of the human brain, neural network could possess: 

(1) Learning ability: presented with examples, neural networks are capable of learning 

from examples. In other words, it can generalize information from the presented 

examples. 

(2) Nonlinearity: neural network can perform nonlinear multi-dimensional mapping.  

(3) Memorization: can memorize the patterns and restore the incomplete patterns. 

(4) Adaptivity: can adapt itself to the environment by virtue of learning. 

Of these characteristics, the most outstanding one is learning. The learning capability of 

ANNs is achieved by adjusting the signs and magnitudes of their weights according to 

learning rules that seek to minimize a cost or error function. BP neural network is the 

most widely used neural network. It provides a great opportunity for the multi-dimension 

vector mapping. Although powerful, the concept of BP network is very simple. The 

following section will focus on the organization of BP algorithm. 

3.3 Back Propagation Method 

Back-Propagation (BP) is an effective training method for multiplayer neural networks. 

Its appearance has played a major role in the re-emergence of neural networks as tools for 

solving a wide variety of problems especially after the downturn of neural networks due 

to limitations of single-layer neural networks. BP is simply the implementation of the 

gradient descend method to minimize the total squared error of the output computed by 

the network. However, the general nature of BP method implies that a BP trained 
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network can be applied to solve problems in a wide spectrum of fields. Moreover, BP 

method presents a clear mathematical concept and ease of programming. These 

conveniences empower BP as a versatile and pragmatic mechanism to implement neural 

networks. Enormous software applications of neural network use BP as the embedded 

learning law. “Brainmaker” is one of these, and was employed in this research effort to 

develop the neural network models.  

Compared with other neural network training methods, BP is a straightforward one. To 

facilitate understanding, a detailed mathematical derivation of BP method is presented as 

follows. To be general, a three-layer multiple-input-and-output neural network is shown 

in Figure 3.3 is used as an example to illustrate the derivation.  

     X1                            Z1                      Y1 

 
 
     X2                            Z2                      Y2 

 
 .             .                   . 

          .             .                   . 
               .             .                   . 
     Xn                            Zs                      Ym 

 
 

           Input Layer   Hidden Layer         Output Layer 

           (n neurons)    (s neurons)           (m neurons) 

Figure 3.3  Back-propagation Network Structure 

The following nomenclature will be used in the discussion. 
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Weight between the input layer and the hidden layer:   ),...,2,1;,...,2,1( sjniwij ==   

Bias between the input layer and the hidden layer:      ),...,2,1( sjb j =  

Weight between the hidden layer and the output layer:  ),...,2,1;,...,2,1( mksjwik ==  

Bias between the hidden layer and the output layer:     ),...,2,1( mkbk =  

Input sample:                                   )()2()1( ,..., pXXX   

Expected output:                                 )()2()1( ,..., pTTT   

Actual network output:                            )()2()1( ,...,, pYYY   

To simplify the deduction, the bias is considered as a special weight with input as –1. Let 

the bias be the 1th element in the input vector, indicated by the subscript 0. Thus, 
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Therefore, the output of neurons for the hidden layer and output layer are: 
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It is assumed that the rth sample in the training set propagates forward to the output as 

110 ,...,, −mYYY , then half of sum of the square error for the rth example is:  
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The total error for learning p examples is: 
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Given the rth training pattern pair, ( )rE  can be considered as a function of W. The 

relationship can be expressed as: 
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Thus, 
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Let uvw  be any weight in W.  BP weight change is based on the following equation:  
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where η  is learning rate. 

By applying Eq.3.12, the updated weight can be derived as: 
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Now, one needs to solve ( )1
ij

total

w
E
∂
∂  and ( )2
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w
E
∂
∂

. 

As an example, if the sigmoid function is used, the gain of the function, a, can be set to 

1.0 for simplicity. For the output layer, the rth training pattern pair and the kth output, 

Eq.3.4 becomes: 
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By incorporating Eq.3.9 and Eq.3.15, the partial derivative of totalE  with respect to jkw  

can be expressed as: 
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Notice )()( )( r
k

r
k Yuf = , the following equation can be derived: 
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By substituting Eq.3.17 into Eq.3.13, one obtains:  

 ∑
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Similarly, for the hidden layer, the rth training pattern pair and the jth output, Eq.3.4 

becomes: 
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By incorporating Eq.3.20 and Eq.3.9, the partial derivative of totalE  with respect to ijw  
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By substituting Eq.3.21 into Eq.3.14, the following relation can be obtained:  

  ∑
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)()()1()1( )()1( δη             (3.22) 

Eq.3.19 and Eq.3.22 are the weight adjustment equations for the hidden layer and input 

layer respectively. They will be used during the training process for adjustment of 

weights in order to reduce the total training error.  The derivation above demonstrates a 

training approach commonly used by practitioners called the “batch training”. In batch 

training, the weights are adjusted after all of samples are processed. Batch training can 

guarantee totalE  to decrease gradually and speed up convergence as well. However, 

sometimes it may cause instability. To address this issue, a momentum term )(nw∆α is 

recommended by some practitioners to add to the adjustment. The additional momentum 

term improves the stability of the learning algorithm by properly directing the weight 

adjustment. After adding the momentum term, Eq.3.21 and Eq.3.22 become: 
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In practice, Eq.3.23 and Eq.3.24 are used as weight adjustment rules for the BP network 

training. 

3.4 ANN Model Implementation 

There are two forms of implementation, hardware and software. The hardware 

implementation involves neuron realization by using VLSI, optic, or molecular 

technologies. Software implementation involves software simulation and algorithm-based 

applications. This research project falls in the latter category of algorithm-based 

application, which actually applies the neural network algorithm as a means to model the 

vague mechanism underlying the pavement deterioration process over time. 
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CHAPTER 4 

DATABASE AND DATA PREPROCESSING 

This chapter contains a detailed review of the database structure and data preprocessing. 

The FDOT database contains detailed information on highway pavement conditions on 

Florida state roads. The database includes variables such as crack, roughness, rutting, 

roadway identification (RDWYID), section begin mileage (BMP) and section end 

mileage (EMP), roadway side, roadway age, roadway type, number of lanes, district, 

system, maintenance cycle, etc. Data preprocessing is the prelude to the ANN modeling 

process, and it involves adding missing data, deleting irretrievable data, and transferring 

original database into the formats appropriate for the modeling purposes. 

4.1 Database Review 

FDOT highway pavement condition survey database was used in this study for both 

modeling and software implementation purposes. The databases include three time-series, 

crack index, ride index and rut index, from year 1976 to year 2001. For various purposes, 

the database was used in this research in two different formats. The one used for 

modeling purposes in the modeling stage is shown in Table 4.1. The data preprocessing 

for modeling purposes was based on this first format of the database. The second format 

of the database as shown in Table 4.2 was used for forecasting purposes at the software 

implementation stage, which will be discussed later. These two formats can be easily 

converted to one another by simply running a SAS program developed for this purpose.  

Each pavement section recorded in the database is identified by the location, pavement 

type, and maintenance cycle, etc. The distribution of pavement sections across different 

maintenance cycles, pavement types and pavement age is shown in Figures 4.1 and 4.2.  
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Table 4.1 Database Format for Modeling Purposes 

 

Note: “ * ” : missing data point. 

 

 

 

 

 

 

 

 

 

 

BMP EMP RDWYID RDWYSIDE LANES DISTRICT YEAR AGE CYCLE TYPE CRACK RUT RIDE
21.941 25.946 1010000 L 2 1 1976 1 1 1 10 8 9
21.941 25.946 1010000 L 2 1 1977 2 1 1 10 8 8.5
21.941 25.946 1010000 L 2 1 1978 3 1 1 10 8 8.6
21.941 25.946 1010000 L 2 1 1979 4 1 1 10 8 8.5
21.941 25.946 1010000 L 2 1 1980 5 1 1 * * *
21.941 25.946 1010000 L 2 1 1981 6 1 1 10 8 8.8
21.941 25.946 1010000 L 2 1 1982 7 1 1 10 9 8.6
21.941 25.946 1010000 L 2 1 1983 8 1 1 10 8 8.7
21.941 25.946 1010000 L 2 1 1984 9 1 1 * * *
21.941 25.946 1010000 L 2 1 1985 10 1 1 * * *
21.941 25.946 1010000 L 2 1 1986 11 1 1 9.4 7 8.5
21.941 25.946 1010000 L 2 1 1987 12 1 1 9.4 7 8.8
21.941 25.946 1010000 L 2 1 1988 13 1 1 9.4 7 9
21.941 25.946 1010000 L 2 1 1989 14 1 1 9.4 7 9.2
21.941 25.946 1010000 L 2 1 1990 15 1 1 8.4 7 8.7
21.941 25.946 1010000 L 2 1 1991 16 1 1 8.5 7 8.5
21.941 25.946 1010000 L 2 1 1992 17 1 1 8.5 8 8.8
21.941 25.946 1010000 L 2 1 1993 18 1 1 8.5 8 8.6
21.941 25.946 1010000 L 2 1 1994 19 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1995 20 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1996 21 1 1 8.5 8 8.5
21.941 25.946 1010000 L 2 1 1997 22 1 1 7.5 8 8.7
21.941 25.946 1010000 L 2 1 1998 23 1 1 7.5 8 8.6
21.941 25.946 1010000 L 2 1 1999 24 1 1 7.5 8 8.4
21.941 25.946 1010000 L 2 1 2000 25 1 1 7.5 8 8.3
21.941 25.946 1010000 L 2 1 2001 26 1 1 7.5 8 8.4
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Table 4.2 Database Format for Forecasting Purposes 

 

Note: “ * ” : missing data point. “ … … ” : elapses of time series of crack index, ride 

index and rut index between year 1976 and year 2001. 

 

 

 

 

 

 

 

 

 

 

BMP EMP RDWYID RDWYSIDE SYSTEM LANES DISTRICT COUNTY TYPE CYCLE
0 0.491 1010000 L 1 2 1 01 1 2
0 7.777 1010000 R 1 2 1 01 1 1

0.491 4.98 1010000 L 1 2 1 02 4 1
4.98 7.777 1010000 L 1 2 1 03 1 1

7.777 10.306 1010000 L 1 2 1 04 1 1
7.777 8.685 1010000 R 1 2 1 05 1 2
8.685 10.879 1010000 R 1 2 1 06 1 2

10.306 11.842 1010000 L 1 2 1 07 1 2
10.879 11.924 1010000 R 1 2 1 08 1 2
AGE CRK1976 … … CRK2001 RUT1976 … … RUT2001 RIDE1976 … … RIDE2001

19 * … … 5.5 * … … 8 * … … 6.5
24 * … … 6 * … … 7 * … … 8.7
19 * … … 4.7 * … … * * … … 7.8
24 * … … 7 * … … 8 * … … 8
21 8 … … 1 4 … … 8 6.4 … … 8.2
8 8 … … 8.5 4 … … 9 6.4 … … 8.2
9 8 … … 8.5 4 … … 9 6.4 … … 8.7
6 7.7 … … 8.5 2 … … 9 5 … … 8.5

11 7.7 … … 7 2 … … 8 3.2 … … 8.3
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Figure 4.1  Distribution of Sections across Types and Age Groups 
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Figure 4.2  Distribution of Sections across Types and Cycles 
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In addition to the distribution information discussed herein, two major defects were 

observed during data mining. One is the missing of data points, which may be caused by 

discontinuous survey activities; another is irrational oscillation of the time series of 

pavement index data. Logically, pavement conditions should deteriorate over time, which 

is generally seen by the decreasing pavement distress index with time. However, 

sometimes increases are observed in the database. Therefore, it is necessary to preprocess 

the database prior to modeling and forecasting stages in order to screen off the illogical 

information that exists in the database. 

4.2 Data Preprocessing 

Two major approaches were used to preprocess the database for neural network modeling. 

The first step was to supplement the missing data points in the observations by means of 

linear interpolation. Table 4.1 shows a portion of the original database, which includes 

missing data points as indicated by *. Table 4.3 shows the database after missing points 

are added by linear interpolation. The added points are shown as data marked by *. Once 

the missing data points were added, moving average was carried out to smoothen the time 

series of index data. The objective of smoothening was to reduce or eliminate the illogical 

signals of the time-series data. For example, in case of the crack index, the moving 

average was computed by the following equation using a three-step moving range: 

3
)1()()1()( +++−= tcracktcracktcracktcrack                     (4.1) 

where crack(t) is the measured crack index at time t. In order to depict the benefit of 

using the moving average technique to improve the time series of index data, comparison 

plots of time series of crack index of both original and moving average data are shown in 

Figure 4.3. In addition, the database modified after moving averaging was executed is 

shown in Table 4.4.  
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Table 4.3 Database after Adding Missing Data Points by Interpolation 

 

 

 

 

 

 

 

 

 

 

BMP EMP RDWYID RDWYSIDE LANES DISTRICT YEAR AGE TYPE CYCLE CRACK RUT RIDE
21.941 25.946 1010000 L 2 1 1976 1 1 1 10 8 9
21.941 25.946 1010000 L 2 1 1977 2 1 1 10 8 8.5
21.941 25.946 1010000 L 2 1 1978 3 1 1 10 8 8.6
21.941 25.946 1010000 L 2 1 1979 4 1 1 10 8 8.5
21.941 25.946 1010000 L 2 1 1980 5 1 1 *10 *8 *8.7
21.941 25.946 1010000 L 2 1 1981 6 1 1 10 8 8.8
21.941 25.946 1010000 L 2 1 1982 7 1 1 10 9 8.6
21.941 25.946 1010000 L 2 1 1983 8 1 1 10 8 8.7
21.941 25.946 1010000 L 2 1 1984 9 1 1 *9.8 *7.7 *8.6
21.941 25.946 1010000 L 2 1 1985 10 1 1 *9.6 *7.3 *8.6
21.941 25.946 1010000 L 2 1 1986 11 1 1 9.4 7 8.5
21.941 25.946 1010000 L 2 1 1987 12 1 1 9.4 7 8.8
21.941 25.946 1010000 L 2 1 1988 13 1 1 9.4 7 9
21.941 25.946 1010000 L 2 1 1989 14 1 1 9.4 7 9.2
21.941 25.946 1010000 L 2 1 1990 15 1 1 8.4 7 8.7
21.941 25.946 1010000 L 2 1 1991 16 1 1 8.5 7 8.5
21.941 25.946 1010000 L 2 1 1992 17 1 1 8.5 8 8.8
21.941 25.946 1010000 L 2 1 1993 18 1 1 8.5 8 8.6
21.941 25.946 1010000 L 2 1 1994 19 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1995 20 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1996 21 1 1 8.5 8 8.5
21.941 25.946 1010000 L 2 1 1997 22 1 1 7.5 8 8.7
21.941 25.946 1010000 L 2 1 1998 23 1 1 7.5 8 8.6
21.941 25.946 1010000 L 2 1 1999 24 1 1 7.5 8 8.4
21.941 25.946 1010000 L 2 1 2000 25 1 1 7.5 8 8.3
21.941 25.946 1010000 L 2 1 2001 26 1 1 7.5 8 8.4
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Figure 4.3  Comparison between Original Series and the Moving Average Series 
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Table 4.4 Database Modified Using the Moving Average Technique 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BMP EMP RDWYID RDWYSIDE LANES DISTRICT YEAR AGE TYPE CYCLE CRACK RUT RIDE
21.941 25.946 1010000 L 2 1 1976 1 1 1 10 8 9
21.941 25.946 1010000 L 2 1 1977 2 1 1 10 8 8.7
21.941 25.946 1010000 L 2 1 1978 3 1 1 10 8 8.5
21.941 25.946 1010000 L 2 1 1979 4 1 1 10 8 8.6
21.941 25.946 1010000 L 2 1 1980 5 1 1 10 8 8.7
21.941 25.946 1010000 L 2 1 1981 6 1 1 10 8.3 8.7
21.941 25.946 1010000 L 2 1 1982 7 1 1 10 8.3 8.7
21.941 25.946 1010000 L 2 1 1983 8 1 1 9.9 8.2 8.6
21.941 25.946 1010000 L 2 1 1984 9 1 1 9.8 7.7 8.6
21.941 25.946 1010000 L 2 1 1985 10 1 1 9.6 7.3 8.6
21.941 25.946 1010000 L 2 1 1986 11 1 1 9.5 7.1 8.6
21.941 25.946 1010000 L 2 1 1987 12 1 1 9.4 7 8.8
21.941 25.946 1010000 L 2 1 1988 13 1 1 9.4 7 9
21.941 25.946 1010000 L 2 1 1989 14 1 1 9.1 7 9
21.941 25.946 1010000 L 2 1 1990 15 1 1 8.8 7 8.8
21.941 25.946 1010000 L 2 1 1991 16 1 1 8.5 7.3 8.7
21.941 25.946 1010000 L 2 1 1992 17 1 1 8.5 7.7 8.6
21.941 25.946 1010000 L 2 1 1993 18 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1994 19 1 1 8.5 8 8.7
21.941 25.946 1010000 L 2 1 1995 20 1 1 8.5 8 8.6
21.941 25.946 1010000 L 2 1 1996 21 1 1 8.2 8 8.6
21.941 25.946 1010000 L 2 1 1997 22 1 1 7.8 8 8.6
21.941 25.946 1010000 L 2 1 1998 23 1 1 7.5 8 8.6
21.941 25.946 1010000 L 2 1 1999 24 1 1 7.5 8 8.4
21.941 25.946 1010000 L 2 1 2000 25 1 1 7.5 8 8.4
21.941 25.946 1010000 L 2 1 2001 26 1 1 7.5 8 8.4
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Table 4.5 Format of the Transformed Database for Crack Forecasting 

 

After interpolation and using the moving average, the database preprocessing was 

completed. As a result of database preprocessing, a transformed database consisting of 

new variables was formed. Table 4.5 shows some of these variables. 

4.3 Formation of Datasets for Training, Testing, and Validation Purposes 

After the data-preprocessing task was completed, another task called formation of 

datasets was carried out. The objective of this step was to form three datasets in a format 

that can be instantaneously used for network training, testing, and validation respectively. 

Preparation of the training, testing, and validation dataset is the crucial step in 

successfully completing and deploying the ANN models. To achieve this, the transformed 

database was converted into another reduced database by excluding the redundant 

variables. Then, the reduced database was divided into two datasets. One dataset included 

all of the historical pavement index information except the latest year, which would be 

AGE TYPE CYCLE CI(t-4) CI(t-3) CI(t-2) CI(t-1) CI(t) CI(t+n) RT_Avg RT_Det RD_Avg RD_Det
5 1 1 10 10 10 10 10 10 8 0 8.7 0
6 1 1 10 10 10 10 10 10 8.1 0 8.6 0
7 1 1 10 10 10 10 10 9.9 8.1 0 8.6 0
8 1 1 10 10 10 10 9.9 9.8 8.2 0.1 8.7 0
9 1 1 10 10 10 9.9 9.8 9.6 8.1 0.2 8.7 0.3

10 1 1 10 10 9.9 9.8 9.6 9.5 8 0.4 8.6 1
11 1 1 10 9.9 9.8 9.6 9.5 9.4 7.7 0.5 8.6 1.2
12 1 1 9.9 9.8 9.6 9.5 9.4 9.4 7.5 0.5 8.6 1.2
13 1 1 9.8 9.6 9.5 9.4 9.4 9.1 7.2 0.4 8.7 0.7
14 1 1 9.6 9.5 9.4 9.4 9.1 8.8 7.1 0.5 8.8 0.3
15 1 1 9.5 9.4 9.4 9.1 8.8 8.5 7 0.7 8.8 0.1
16 1 1 9.4 9.4 9.1 8.8 8.5 8.5 7.1 0.9 8.8 0
17 1 1 9.4 9.1 8.8 8.5 8.5 8.5 7.2 0.9 8.8 0
18 1 1 9.1 8.8 8.5 8.5 8.5 8.5 7.4 0.6 8.8 0
19 1 1 8.8 8.5 8.5 8.5 8.5 8.5 7.6 0.3 8.7 0
20 1 1 8.5 8.5 8.5 8.5 8.5 8.2 7.8 0 8.7 0
21 1 1 8.5 8.5 8.5 8.5 8.2 7.8 7.9 0.3 8.7 0
22 1 1 8.5 8.5 8.5 8.2 7.8 7.5 8 0.7 8.6 0
23 1 1 8.5 8.5 8.2 7.8 7.5 7.5 8 1 8.6 0
24 1 1 8.5 8.2 7.8 7.5 7.5 7.5 8 1 8.6 0
25 1 1 8.2 7.8 7.5 7.5 7.5 7.5 8 0.7 8.5 0
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used for training and testing purposes. The second dataset contained only the latest year 

data, which would be used for validation purposes. To obtain the training and testing 

datasets, the dataset used for training and testing purpose was again divided into two 

subsets, one containing 80% of data in the dataset which would be used for network 

training and the remaining 20% of data would be used for network testing. According to 

the database partitioning, the validation dataset could be considered as statistically 

independent from the datasets that were used for training and testing purposes. Hence, the 

verification of the ANN model by using validation dataset can be considered as a 

touchstone to examine the performance of the developed ANN models from an 

implementation point of view. To reduce computational efforts, a SAS program was 

developed to automatically preprocess the database and generate the three datasets for 

network training, testing and validation purposes. Finally, the variables included in the 

training, testing, and validation datasets are shown in Table 4.6, 4.7, 4.8, 4.9, and 4.10 

respectively. 

Table 4.6 Variables Included in the N-year Crack-Forecasting Model (Models for Flexible 

Pavements) 

 
 
 

Description
Crack(t-4) Input Crack Index for the year (t-4)
Crack(t-3) Input Crack Index for the year (t-3)
Crack(t-2) Input Crack Index for the year (t-2)
Crack(t-1) Input Crack Index for the year (t-1)
Crack(t) Input Crack Index for the year t (current year)
Crack(t+n) Output Crack Index for the year (t+n)
Ride_Avg Input (Ride(t-4) + Ride(t-3) + Ride(t-2) + Ride(t-1) + Ride(t))/5
Ride_Det Input Ride(t-4) - Ride(t)
Rut_Avg Input (Rut(t-4) + Rut(t-3) + Rut(t-2) + Rut(t-1) + Rut(t))/5
Rut_Det Input Rut(t-4) - Rut(t)
Age Input Section age since the last major improvement activity
Cycle Input Pavement improvement cycle of roadway section

Variables
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Table 4.7 Variables Included in the N-year Ride-Forecasting Model (Models for Flexible 

Pavements) 

 

Table 4.8 Variables Included in the N-year Rut-Forecasting Model (Models for Flexible 

Pavements) 

 

 

 

 

Description
Ride(t-4) Input Ride Index for the year (t-4)
Ride(t-3) Input Ride Index for the year (t-3)
Ride(t-2) Input Ride Index for the year (t-2)
Ride(t-1) Input Ride Index for the year (t-1)
Ride(t)  Input Ride Index for the year t (current year)
Ride(t+n) Output Ride Index for the year (t+n)
Crack_Avg Input (Crack(t-4)+Crack(t-3)+Crack(t-2)+ Crack(t-1) + Crack(t))/5
Crack_Det Input Crack(t-4)-Crack(t)
Rut_Avg  Input (Rut(t-4)+Rut(t-3)+Rut(t-2)+Rut(t-1)+Rut(t))/5
Rut_Det  Input Rut(t-4)–Rut(t)
Age  Input Section age since the last major improvement activity
Cycle Input Pavement improvement cycle of roadway section

Variables

Description
Rut(t-4)  Input Rut Index for the year (t-4)
Rut(t-3)  Input Rut Index for the year (t-3)
Rut(t-2)  Input Rut Index for the year (t-2)
Rut(t-1)  Input Rut Index for the year (t-1)
Rut(t)  Input Rut Index for the year t (current year)
Rut(t+n)  Output Rut Index for the year (t+n)
Crack_Avg Input (Crack(t-4)+Crack(t-3)+Crack(t-2)+Crack(t-1)+Crack(t))/5
Crack_Det Input Crack(t-4)-Crack(t)
Ride_Avg  Input (Ride(t-4)+Ride(t-3)+Ride(t-2)+Ride(t-1)+Ride(t))/5
Ride_Det  Input Ride(t-4)-Ride(t)
Age  Input Section age since the last major improvement activity
Cycle  Input Pavement improvement cycle of roadway section

Variables
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Table 4.9 Variables Included in the N-year Crack-Forecasting Model (Models for Rigid 

Pavements) 

 

Table 4.10 Variables Included in the N-year Ride-Forecasting Model (Models for Rigid 

Pavements) 

 

 

 

 

Description
Crack(t-4) Input Crack Index for the year (t-4)
Crack(t-3) Input Crack Index for the year (t-3)
Crack(t-2) Input Crack Index for the year (t-2)
Crack(t-1) Input Crack Index for the year (t-1)
Crack(t)  Input Crack Index for the year t (current year)
Crack(t+n) Output Crack Index for the year (t+n)
Ride_Avg  Input (Ride(t-4)+Ride(t-3)+Ride(t-2)+Ride(t-1)+Ride(t))/5
Ride_Det Input Ride(t-4)-Ride(t)
Age  Input Section age since the last major improvement activity
Cycle Input Pavement improvement cycle of roadway section

Variables

Description
Ride(t-4) Input Ride Index for the year (t-4)
Ride(t-3) Input Ride Index for the year (t-3)
Ride(t-2) Input Ride Index for the year (t-2)
Ride(t-1) Input Ride Index for the year (t-1)
Ride(t)  Input Ride Index for the year t (current year)
Ride(t+n) Output Ride Index for the year (t+n)
Crack_Avg Input (Crack(t-4)+Crack(t-3)+Crack(t-2)+Crack(t-1)+Crack(t))/5
Crack_Det Input Crack(t-4)-Crack(t)
Age  Input Roadway section age since last major improvement activity
Cycle Input Pavement improvement cycle of roadway section

Variables
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It must be noted that each N-year model can represent 5 different models with 

N=1,2,3,4,5. Once the formation of datasets for training, testing, and validation was 

completed, network modeling can performed as discussed in the next chapter. In view of 

irregularity of the data in the database, the database preprocessing is the crucial step for 

the model development. To guarantee the reliable performance of neural network for 

forecasting task, it is important that quality data be utilized for network training. As result 

of database preprocessing, illogical data variation is corrected and corresponding datasets 

are formed that can be directly used by neural network for network training, which will 

be discussed in next chapter. 
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CHAPTER 5 

MODEL DEVELOPMENT 

This chapter presents the modeling framework design and procedures used for the 

development of each ANN model. Similar to the traditional modeling process, where the 

objective is to estimate a set of coefficients for a particular function form of specification, 

the main objective of ANN modeling in this research was to attain a set of weight 

matrices, which is the abstracted underlying knowledge from the example data after 

many loops of training. However, to use neural network to solve a particular real-life 

problem, a framework needs to be first designed according to the characteristics of the 

problem under study. The objective of the framework design is to determine whether a 

nested ANN architecture is necessary and how the components of the architecture 

communicate with each other. After completion of the framework design, the next stage 

was to design the architecture of each ANN sub-model. The design process of ANN 

architecture is actually a decision-making process, which includes determining the 

number of layers, the number of neurons in each layer, variables to be included in input 

layer and output layer, etc. After finishing the ANN architecture design, the ANN 

architecture needs to be trained, tested and validated.  

Training a neural network involves repeatedly presenting a set of example data pairs to 

the neural network. The neural network adapts its weights according to the learning law. 

The result of training is a set of weight matrices, which store the knowledge gained from 

the example data set. Testing the neural network is almost as same as training it, except 

that the trained network is presented with the examples it had not seen during the training, 

and no weight adjustments are made during testing. For this project, the data used in 

training and testing did not include the latest year data in the database. The only 

difference between validation and testing is that validation uses the latest data, which is 

an independent dataset from training and testing, but testing uses the same historical 
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dataset that did not include the latest year data as training does. The following sections 

present procedures used for the modeling and the detailed efforts and results of the model 

development.  

5.1 Model Framework Design 

To enhance the performance of the ANN models developed in the research, two types of 

models were developed. The first one was the model for flexible pavements, and the 

second one was the model for rigid pavements. For flexible pavements, three sub-models 

were developed for the indices of crack, ride and rut respectively. For rigid pavements, 

two sub-models were developed for the indices of crack and ride respectively. The PCR 

model was a de facto combination of these sub-models, as shown in Figures 5.1 and 5.2.  
 
      Crack(t-4) 

    Crack(t-3) 
      Crack(t-2) 
      Crack(t-1) 
      Crack(t) 
       Ride_Avg   Crack(t+1) 

     Ride_Det 
       Age 
      Cycle 
                                              (Mininum)       PCR(t+1) 
      Ride(t-4) 

    Ride(t-3) 
      Ride(t-2) 
      Ride(t-1) 
      Ride(t) 
       Crack_Avg        Ride(t+1)                 

     Crack_Det 
       Age 
      Cycle 
 

Figure 5.1  Architecture of PCR forecasting model (Rigid Pavements) 

Note: the variables in Figure 5.1 are defined in Tables 4.9 and 4.10. 
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      Crack(t-4) 

    Crack(t-3) 
      Crack(t-2) 
      Crack(t-1) 
      Crack(t) 
       Ride_Avg   Crack(t+1) 

     Ride_Det 
       Rut_Avg 
       Rut_Det 
      Age 
      Cycle 
 
      Ride(t-4) 

    Ride(t-3) 
      Ride(t-2) 
      Ride(t-1) 
      Ride(t) 
       Crack_Avg        Ride(t+1)         (Mininum)      PCR(t+1) 

     Crack_Det 
       Rut_Avg 
       Rut_Det 
      Age 
      Cycle 
 
      Rut(t-4) 

    Rut(t-3) 
      Rut(t-2) 
      Rut(t-1) 
      Rut(t) 
       Crack_Avg   Rut(t+1) 

     Crack_Det 
       Ride_Avg 
       Ride_Det 
      Age 
      Cycle 
 

Figure 5.2  Architecture of PCR Forecasting Model (Flexible Pavements) 

Note: the variables in Figure 5.2 are defined in Tables 4.6, 4.7, and 4.8. 
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5.2 ANN Modeling Procedures 

5.2.1 Model Architecture 

The selection of ANN architecture is not a straightforward decision-making process. 

Most of the time, trial and error combined with engineering judgment is jointly employed 

to determine the appropriate architecture for a particular problem. As an illustration, 

Table 5.1 shows the training and testing errors resulting from typical network 

architectures for 1-year crack index forecasting model. Similar to the traditional models, 

variables that appear in the output layer are the dependent variables, which are defined 

according to the problem under study. Variables that appear in the input layer are 

independent variables. It is not difficult to decide what variables should be included in 

the input layer since it is straightforward to select input layer variables that are considered 

highly correlated with the output variables from the available set of variables. To do this, 

a statistical test can be performed to distinguish these variables that are significantly 

correlated with the output variables, or use trial and error to select the architecture that 

produces minimum training and testing error. However, selection of the number of 

neurons in the hidden layer is not as simple as the selection of input variables in the input 

layer. In practice, a sequential number of hidden neurons were tried, and the number that 

produces the minimum root-mean-square test error is usually selected. As an example, 

the selection of the number of hidden neurons for the 5-year flexible crack model is 

shown in Figure 5.3. The root-mean-square test error is plotted against the number of 

hidden neurons. According to Figure 5.3, the architecture with 22 hidden neurons 

produced the structure with the best performance for the 5-year flexible crack model. In 

the practice of selecting number of hidden neurons, not all trials of different number of 

hidden neurons result in clear-cut trend as shown in Figure 5.3. An inclusive situation 

was often met that different trails with the same parameter setting produce different 

results. This instability poses a difficult situation to make decision on the best number of 
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hidden neurons during the network training. As experienced in the process of network 

training, 11 hidden neurons and 22 hidden neurons produced best result most of time for 

model training for rigid and flexible type of pavements, respectively, regardless of 

different forecasting time-windows. 

Table 5.1 Training and Testing Errors of Different Network Architectures 

Note: * The architecture selected for from previous research project [5]. 

** The model architecture selected for the current research project (Model 10 for 

flexible pavements and Model 11 for rigid pavements). 

The indication “l-m-n-o” for the neural network architecture as shown in Table 5.1 

denotes a two-hidden-layer neural network structure with l neurons in the input layer, m 

neurons in the first hidden layer, n neurons in the second hidden layer, and o neurons in 

the output neurons. The indication “l-m-n” denotes a one-hidden-layer neural network 

Training Testing
1 CI(t-1), CI(t) CI(t+1) 2-6-1 0.1063 0.0983
2 CI(t-1), CI(t) CI(t+1) 2-6-6-1 0.159 0.1604
3 CI(t-2), CI(t-1), CI(t) CI(t+1) 3-7-1 0.0751 0.0774
4 CI(t-2), CI(t-1), CI(t) CI(t+1) 3-7-7-1 0.1031 0.1108
5 CI(t-3),CI(t-2),CI(t-1),CI(t) CI(t+1) 4-8-1 0.0802 0.075
6 CI(t-3),CI(t-2),CI(t-1),CI(t) CI(t+1) 4-8-8-1 0.1227 0.1341

CI(t-2), CI(t-1), CI(t),
 Type, Age, Cycle
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t)
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t), Cycle, Age
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t), RD_avg, 
RD_det, RT_avg, RT_det, 
Cycle, Age
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t), RD_avg, 
RD_det, Cycle, Age

0.0445** 10 CI(t+1) 11-22-1 0.0367

0.0564

9 CI(t+1) 7-10-1 0.0481 0.0551

8 CI(t+1) 5-10-1 0.0481

RMS Error

*   7 CI(t+1) 7-12-1 0.0631 0.0593

Model Inputs Output Architecture

0.0442** 11 CI(t+1) 9-18-1 0.0356
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structure with l neurons in the input layer, m neurons in the hidden layer, and n neurons 

in the output layer. 
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Figure 5.3  Root-mean-square Errors with Different Number of Hidden Neurons 

5.2.2 Training, Testing, and Validation 

Given the architecture of ANNs, the weights of links among the neurons are resolved 

through the training process. The training process involves presenting all example pattern 

pairs in the training dataset to the network and adjusting the weights of the connections 

according to the weight adjustment rule as defined by Eqs.3.23 and 3.24. The training 

process is considered complete when the total error, as defined in Eq.3.9, reduces to an 

acceptable threshold level, which is predefined according to characteristics of the 

problem under study. After completion of the training procedure, the trained network is 

exposed to the testing dataset to check if the training is successful. The testing data pairs 

are fed into the trained ANN, and the testing error is calculated. If the testing error is still 

within the acceptable level, the ANN model is considered a reasonable model. After the 

training and testing, the last and also the most critical step is to verify the model using a 
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validation data set. Again, if the error incurred in the validation process is still acceptably 

small, the model can be treated as a practical model, and ready for the real-life 

implementation. 

5.3 Architectures of Neural Network Models Used in the Research 

This section presents the neural network architectures used in the research project. The 

procedure to select the architectures was described in previous section. After a laboring 

process of trial and error, the architectures selected for the neural network sub-models are 

detailed in Table 5.2, and the schematic architectures are shown in Figures 5.4-5.8, where 

t represents current year and n represents the number of years for which forecasts are 

made.  

As result of model development, 25 submodels were established with 10 models for rigid 

pavements and 15 models for flexible pavements. 10 models for rigid pavements 

included: 1-year crack model, 2-year crack model, 3-year crack model, 4-year crack 

model, 5-year crack model, 1-year ride model, 2-year ride model, 3-year ride model, 

4-year ride model, and 5-year ride model. 15 models for flexible pavements included: 

1-year crack model, 2-year crack model, 3-year crack model, 4-year crack model, 5-year 

crack model, 1-year ride forecasting model, 2-year ride model, 3-year ride model, 4-year 

ride model, 5-year ride model, 1-year rut model, 2-year rut model, 3-year rut model, 

4-year rut model, and 5-year rut model. The model year as identified for each models 

above relates to forecasting time window with respect to the current year. For example, 

1-year crack model is used for the crack index forecasting for the next “one” year with 

respect to the current year. The same terminology applies to all other models. 
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Table 5.2 Selected Network Architectures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inputs Output Architecture
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t), RD_avg,
RD_det, RT_avg, RT_det,
Cycle, Age
RD(t-4), RD(t-3), RD(t-2), 
RD(t-1), RD(t), CI_avg,
CI_det, RT_avg, RT_det,
Cycle, Age
RT(t-4), RT(t-3), RT(t-2), 
RT(t-1), RT(t), CI_avg,
CI_det, RD_avg, RD_det,
Cycle, Age
CI(t-4), CI(t-3), CI(t-2), 
CI(t-1), CI(t), RD_avg,
RD_det, Cycle, Age
RD(t-4), RD(t-3), RD(t-2), 
RD(t-1), RD(t), CI_avg,
CI_det, Cycle, Age

Crack

Ride

Flexible  
Pavements

Rigid 
Pavements

Model

Crack

Ride

Rut

RD(t+1)

11-22-1

9-18-1

CI(t+1)

RD(t+1)

RT(t+1)

CI(t+1)
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Crack (t-1)                . 
 
 

Crack (t)                 . 
 
        Ride_Avg                                  Crack (t+n) 
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        Cycle 
 
 
 
 
 

Figure 5.4  Architecture of Crack Forecasting Model (Flexible Pavements) 
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Figure 5.5  Architecture of Crack Forecasting Model (Rigid Pavements) 
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        Cycle 
 
 
 
 
 

Figure 5.6  Architecture of Ride Forecasting Model (Flexible Pavements) 
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Figure 5.7  Architecture of Ride Forecasting Model (Rigid Pavements) 
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Figure 5.8  Architecture of Rut Forecasting Model (Flexible Pavements) 
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CHAPTER 6 

PERFORMANCE EVALUATION OF ANN MODELS 

After completing the training and testing processes, the neural network attains the 

capability of simulating pavement condition deterioration mechanism and thereby 

forecasting the future pavement condition. Then, the subsequent step is to evaluate the 

performance of the developed neural network models. For this purpose, the validation 

dataset, which includes only the 2001 pavement data, was used. To obtain unbiased 

evaluations, irrational data that are showed improved pavement condition with time were 

discarded. Only these roadway sections with year 2000 PCR indices equal or greater than 

that of year 2001 were used for model evaluation purposes. 

6.1 Model Comparison 

To evaluate the performance of ANN models, three autoregressive (AR) models were 

developed as well to forecast the three key indices, CI, RT, and RD for the purpose of 

comparison. In the AR models, the three distress indices after n years (CI(t+n), RT(t+n), 

and RD(t+n)) were forecasted by linearly extrapolating corresponding CI, RT, and RD in 

the previous three years. The forecasted PCR value is the minimum of values of three 

individual indices. Table 6.1 shows the comparison of forecasting errors of ANN model 

and AR model. It can be seen that the ANN model was more accurate than the AR model 

in terms of average absolute error and the root-mean-square error (RMSE). 

Average absolute error is calculated using Eq.6.1. 

Average Absolute Error = 
n

po
n

i
ii∑

=

−
1           (6.1) 

where, 

  n = number of observations, 
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  oi = observed value of observation i, and 

  pi= predicted value of observation i. 

RMSE is calculated using Eq.6.2. 

RMSE = 
n

po
n

i
ii∑

=

−
1

2)(
                (6.2) 

where,  

  RMSE = root mean square error, 

  n = number of observations, 

  oi = observed value of observation i, and 

  pi= predicted value of observation i. 

 

Table 6.1 PCR Forecasting Errors of ANN Model and AR Model 

6.2 Goodness of Fit 

Goodness of fit is a commonly used approach to evaluate performance of models. In this 

research, the performance of PCR forecasting models were further evaluated by 

comparing the goodness of fit of the ANN models and AR models. For comparison 

purpose, the R2 values were calculated using Eq.6.3. 

Average Absolute Error RMSE
ANN 0.0479 0.0664
AR 0.1268 0.1969

ANN 0.0644 0.0913
AR 0.1699 0.2436

ANN 0.0791 0.1118
AR 0.1892 0.2723

ANN 0.0889 0.1284
AR 0.2127 0.2977

ANN 0.1054 0.1496
AR 0.2312 0.3215

4 year

5 year

Years of Forecast

1 year

2 year

3 year
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 ])(/)([1 222
avgactpredact PCRPCRPCRPCRR −−−= ∑∑               (6.3) 

where,  

actPCR  = actual value of PCR; 

  predPCR = value of PCR predicted by neural network model; and 

  avgPCR  = average value of PCR. 

The goodness of fit shows that the ANN models have higher R2 values than that of 

corresponding AR models. Moreover, the AR models become useless when the 

forecasting interval exceed two years because the R2 turned out to be negative. Table 6.2 

summarizes goodness of fit in terms of R2 for each model. As an illustration, one-year 

forecasting correlation graphs are shown in Figures 6.1 and 6.2. 

Table 6.2 R2 Comparisons of ANN Model and AR Model 

 

Flexible Pavements Rigid Pavements
ANN 0.88 0.79
AR 0.58 0.39

ANN 0.76 0.55
AR 0.29 0.2

ANN 0.59 0.52
AR -0.22 -0.15

ANN 0.48 0.4
AR -0.49 -0.28

ANN 0.38 0.2
AR -0.74 -0.14

4 year

5 year

Model and Years of Forecast Goodness of Fit ( R2 )

1 year

2 year

3 year



 63

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Observed PCR

Fo
re

ca
st

 P
C

R

 

a) AR Model 

 

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Observed PCR

Fo
re

ca
st

 P
C

R

 

b) ANN Model 

Figure 6.1  Goodness of Fit (Flexible Pavements, One-year Forecasting) 

R2 = 0.88 

R2 = 0.58 
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b) ANN Model 

Figure 6.2  Goodness of Fit (Rigid Pavements, One-year Forecasting) 

R2 = 0.79 

R2 = 0.39 
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6.3 Case Study of Individual Sections 

Several typical sections which were not included in the training process were initially set 

aside for the case study. The forecasts of two of the sections are plotted on the same 

graph for comparison purposes as shown in Figure 6.3. It has been found that the ANN 

model and AR model had comparable forecasting accuracy for 1-year future and 2-year 

future forecasting. However, when forecasting models were used to forecast future PCR 

values (say 3, 4, and 5 years from today), the ANN model outperformed the AR model. 

This pattern becomes pronounced when pavements tend to deteriorate at a higher rate. 

From the comparison, it can be seen that the forecasts of AR model tend to lag behind the 

observed values, which often occurs in the conventional time-series models. Again the 

comparison showed that the pavement deterioration is a nonlinear process over time in 

nature. It is suitable to use ANN for the pavement performance modeling. 
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a) Section 1, Flexible Pavement, Cycle 2 

Figure 6.3  Case Study of Individual Pavement Sections 
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b) Section 2, Rigid Pavement, Cycle 1 

Figure 6.3 Case Study of Individual Pavement Sections 

6.4 Lane-Mile Deficiency Forecast 

PCR is the criterion used by FDOT to make a decision on whether a pavement section is 

deficient or not. Accordingly, if the PCR of a section is rated equal or lower than 6.4, the 

section is considered to be deficient. A deficient section should be considered for 

rehabilitation according to the budget constraints. Deficient lane miles is defined as the 

total lane miles of pavement sections with PCR equal to or less than 6.4. The latest 

available year 2001 data is used to validate the ANN models for forecasting deficient lane 

miles. The forecasted year 2001 deficient lane miles were compared to those forecasted 

by AR models and the observed year 2001 deficient lane miles. The comparison results 

for one-year to five-year forecasting are shown in Tables 6.3 to 6.7.  
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Table 6.3 Comparison of Observed and One-year Forecast of Deficient Lane Miles Using 

ANN Models and AR Models 

 

Table 6.4 Comparison of Observed and Two-year Forecast of Deficient Lane Miles Using 

ANN Models and AR Models 

 

 

 

 

 

 

 

ANN AR ANN AR
1 1191.25 1263.36 527.99 72.11 -663.26
2 1573.95 1496.54 508.86 -77.41 -1065.09
3 1322.14 1120.52 383.56 -201.63 -938.59
4 1081.29 1207.48 300.25 126.19 -781.04
5 1230.67 1249.44 438.12 18.78 -792.55
6 352.18 390.09 95.24 37.91 -256.93
7 559.64 584.04 164.27 24.4 -395.38

Total 7311.13 7311.47 2418.29 0.35 -4892.84

FDOT 
Districts

Observed Forecast Forecasting Error

ANN AR ANN AR
1 1191.25 1363.11 429.27 171.86 -761.98
2 1573.95 1650.8 359.52 76.85 -1214.43
3 1322.14 1188.05 126.63 -134.1 -1195.52
4 1081.29 1105 197.33 23.71 -883.96
5 1230.67 1423.53 267.37 192.87 -963.3
6 352.18 385.02 69.95 32.85 -282.23
7 559.64 531.11 68.06 -28.53 -491.58

Total 7311.13 7646.63 1518.13 335.5 -5792.99

FDOT 
Districts

Observed Forecast Forecasting Error
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Table 6.5 Comparison of Observed and Three-year Forecast Deficient Lane Miles Using 

ANN Models and AR Models 

 

Table 6.6 Comparison of Observed and Four-year Forecast Deficient Lane Miles Using 

ANN Models and AR Models 

 

 

 

 

 

 

 

 

ANN AR ANN AR
1 1191.25 1408.88 269.73 217.62 -921.52
2 1573.95 1726.34 232.99 152.39 -1340.96
3 1322.14 1318.42 101.99 -3.73 -1220.15
4 1081.29 1208.39 116.24 127.09 -965.05
5 1230.67 1422.61 143.21 191.94 -1087.46
6 352.18 356.5 73.32 4.32 -278.86
7 559.64 514.61 47.95 -45.04 -511.69

Total 7311.13 7955.74 985.43 644.61 -6325.69

FDOT 
Districts

Observed Forecast Forecasting Error

ANN AR ANN AR
1 1191.25 1208.55 141.36 17.29 -1049.9
2 1573.95 1436.12 121.26 -137.83 -1452.69
3 1322.14 867.98 164.04 -454.17 -1158.11
4 1081.29 794.43 74.35 -286.86 -1006.94
5 1230.67 1009.8 111.2 -220.86 -1119.47
6 352.18 310.27 64.64 -41.91 -287.53
7 559.64 383.32 73.84 -176.32 -485.8

Total 7311.13 6010.47 750.7 -1300.66 -6560.43

FDOT 
Districts

Observed Forecast Forecasting Error
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Table 6.7 Comparison of Observed and Five-year Forecast Deficient Lane Miles Using 

ANN Models and AR Models 

According to the definition of “forecasting error” (forecasted deficient lane miles minus 

observed deficient lane miles), AR models tend to produce unacceptable larger error than 

ANN models and always overestimate pavement condition as forecasting errors are all 

negative. This fact seems to reveal that AR model is not a suitable tool for pavement 

performance modeling since pavement deterioration is a nonlinear process in nature and 

pavement condition deteriorates faster as time progresses. As compared to AR models, 

ANN models produce balanced forecasting error within acceptable range. Therefore, 

ANN models are considerably more accurate than the AR models in terms of forecasting 

accuracy. 

The deficient lane-mile comparison showed only the overall deficiency forecasting. 

When it comes to the details of individual sections, two types of forecasting errors need 

to be identified, over-estimation error and under-estimation error. Over-estimation is 

defined as the incorrect model estimate on the subject section that is actually deficient but 

forecast as not. Under-estimation is defined as incorrect model estimate on the subject 

section that is actually not deficient but forecast as deficient. For the section-by-section 

forecasting comparison, these two types of errors caused by ANN and AR models are 

summarized in the Tables 6.8 to 6.12 for one-, two-, three-, four-, and five-year 

ANN AR ANN AR
1 1191.25 914.65 122.04 -276.6 -1069.21
2 1573.95 1246.58 204.35 -327.37 -1369.6
3 1322.14 850.36 208.11 -471.79 -1114.04
4 1081.29 619.5 147.45 -461.79 -933.84
5 1230.67 818.32 184.54 -412.35 -1046.13
6 352.18 271.26 57.31 -80.92 -294.87
7 559.64 380.85 104.75 -178.79 -454.89

Total 7311.13 5101.52 1028.54 -2209.61 -6282.59

FDOT 
Districts

Observed Forecast Forecasting Error
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forecasting, respectively.  

Table 6.8 Comparison of Over- and Under-estimates of One-year forecast 

 

Table 6.9 Comparison of Over- and Under-estimates of Two-year forecast 

ANN 1191.25 117.99 1629.7 190.101 9.9 11.66
AR 1191.25 696.99 1629.7 33.73 58.51 2.07

ANN 1573.95 231.32 2211.81 153.91 14.7 6.96
AR 1573.95 1075.53 2211.81 10.44 68.33 0.47

ANN 1322.14 313.1 1094.03 111.47 23.68 10.19
AR 1322.14 938.71 1094.03 0.12 71 0.01

ANN 1081.29 132.66 2121.45 258.85 12.27 12.2
AR 1081.29 786.53 2121.45 5.49 72.74 0.26

ANN 1230.67 216.49 2215.3 235.26 17.59 10.62
AR 1230.67 797.99 2215.3 5.45 64.84 0.25

ANN 352.18 20.62 1025.19 58.53 5.85 5.71
AR 352.18 264.39 1025.19 7.46 75.07 0.73

ANN 559.64 47.26 1305.36 71.66 8.44 5.49
AR 559.64 395.96 1305.36 0.59 70.75 0.04

ANN 7311.13 1079.43 11602.84 1079.78 14.76 9.31
AR 7311.13 4956.11 11602.84 63.27 67.79 0.55

6

7

Total

Over-
estimates

2

3

4

5

FDOT 
Districts Models Observed 

deficiency

1

Observed 
Non-

deficiency

Under-
estimates

Percent of 
Over-

estimates

Percent of 
Under-

estimates

ANN 1191.25 128.27 1629.7 300.12 10.77 18.42
AR 1191.25 779.78 1629.7 17.79 65.46 1.09

ANN 1573.95 240.86 2211.81 317.71 15.3 14.36
AR 1573.95 1241.46 2211.81 27.03 78.88 1.22

ANN 1322.14 261.04 1094.03 126.95 19.74 11.6
AR 1322.14 1195.64 1094.03 0.12 90.43 0.01

ANN 1081.29 235.41 2121.45 259.12 21.77 12.21
AR 1081.29 886.17 2121.45 2.21 81.95 0.1

ANN 1230.67 207.72 2215.3 400.58 16.88 18.08
AR 1230.67 972.14 2215.3 8.84 78.99 0.4

ANN 352.18 41.28 1025.19 74.13 11.72 7.23
AR 352.18 289.69 1025.19 7.46 82.26 0.73

ANN 559.64 94.63 1305.36 66.09 16.91 5.06
AR 559.64 491.79 1305.36 0.21 87.88 0.02

ANN 7311.13 1209.2 11602.84 1544.7 16.54 13.31
AR 7311.13 5856.65 11602.84 63.65 80.11 0.55

Observed 
deficiency

1

6

7

Total

Over-
estimates

2

3

4

5

FDOT 
Districts Models

Observed 
Non-

deficiency

Under-
estimates

Percent of 
Over-

estimates

Percent of 
Under-

estimates
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Table 6.10 Comparison of Over- and Under-estimates of Three-year forecast 

 

Table 6.11 Comparison of Over- and Under-estimates of Four-year forecast 

 

ANN 1191.25 164.09 1629.7 381.72 13.77 23.42
AR 1191.25 938.33 1629.7 16.81 78.77 1.03

ANN 1573.95 319.5 2211.81 471.89 20.3 21.34
AR 1573.95 1345.92 2211.81 4.96 85.51 0.22

ANN 1322.14 300.89 1094.03 297.16 22.76 27.16
AR 1322.14 1220.28 1094.03 0.12 92.3 0.01

ANN 1081.29 222.86 2121.45 349.96 20.61 16.5
AR 1081.29 966.66 2121.45 1.61 89.4 0.08

ANN 1230.67 209.78 2215.3 401.72 17.05 18.13
AR 1230.67 1088.95 2215.3 1.48 88.48 0.07

ANN 352.18 82.6 1025.19 86.92 23.45 8.48
AR 352.18 278.86 1025.19 0 79.18 0

ANN 559.64 138.39 1305.36 93.36 24.73 7.15
AR 559.64 511.9 1305.36 0.21 91.47 0.02

ANN 7311.13 1438.12 11602.84 2082.73 19.67 17.95
AR 7311.13 6350.88 11602.84 25.19 86.87 0.22

Observed 
deficiency

1

6

7

Total

Over-
estimates

2

3

4

5

FDOT 
Districts Models

Observed 
Non-

deficiency

Under-
estimates

Percent of 
Over-

estimates

Percent of 
Under-

estimates

ANN 1191.25 265.74 1629.7 283.04 22.31 17.37
AR 1191.25 1055.03 1629.7 5.14 88.56 0.32

ANN 1573.95 442.85 2211.81 305.02 28.14 13.79
AR 1573.95 1493.68 2211.81 41 94.9 1.85

ANN 1322.14 498.49 1094.03 44.32 37.7 4.05
AR 1322.14 1218.02 1094.03 59.91 92.12 5.48

ANN 1081.29 385.66 2121.45 98.8 35.67 4.66
AR 1081.29 1009.71 2121.45 2.77 93.38 0.13

ANN 1230.67 446.73 2215.3 225.87 36.3 10.2
AR 1230.67 1142.47 2215.3 23 92.83 1.04

ANN 352.18 107.58 1025.19 65.67 30.55 6.41
AR 352.18 304.69 1025.19 17.16 86.52 1.67

ANN 559.64 218.38 1305.36 42.06 39.02 3.22
AR 559.64 501.93 1305.36 16.13 89.69 1.24

ANN 7311.13 2365.43 11602.84 1064.77 32.35 9.18
AR 7311.13 6725.52 11602.84 165.1 91.99 1.42

Observed 
deficiency

1

6

7

Total

Over-
estimates

2

3

4

5

FDOT 
Districts Models

Observed 
Non-

deficiency

Under-
estimates

Percent of 
Over-

estimates

Percent of 
Under-

estimates
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Table 6.12 Comparison of Over- and Under-estimates of Five-year forecast 

 

It is noted that the ANN models have comparable over- and under-estimation error. 

However, AR models are prone to over-estimation, with much higher over-estimation 

error than under-estimation error. Although the ANN models tended to have higher 

under-estimation error than AR models, it was not justified that the AR models are better 

than ANN models in terms of forecasting capability because AR models had unacceptable 

higher over-estimation error as compared to under-estimation error with over 50% higher 

over-estimation error, which is actually impracticable for real-life forecasting application. 

ANN models produced more accurate, consistent and uniform forecasting than AR 

models. Therefore, ANN models are considered more reliable and better than AR models 

in terms of forecasting capability. 

 

 

 

ANN 1191.25 412.85 1629.7 136.25 34.66 8.36
AR 1191.25 1082.62 1629.7 13.41 90.88 0.82

ANN 1573.95 534.47 2211.81 207.1 33.96 9.36
AR 1573.95 1533.23 2211.81 163.62 97.41 7.4

ANN 1322.14 637.31 1094.03 165.53 48.2 15.13
AR 1322.14 1247.28 1094.03 133.24 94.34 12.18

ANN 1081.29 538.67 2121.45 76.88 49.82 3.62
AR 1081.29 1016.35 2121.45 82.51 93.99 3.89

ANN 1230.67 595.11 2215.3 182.76 48.36 8.25
AR 1230.67 1155.78 2215.3 109.65 93.91 4.95

ANN 352.18 134.77 1025.19 53.84 38.27 5.25
AR 352.18 318.23 1025.19 23.36 90.36 2.28

ANN 559.64 315.2 1305.36 136.41 56.32 10.45
AR 559.64 497.02 1305.36 42.13 88.81 3.23

ANN 7311.13 3168.37 11602.84 958.76 43.34 8.26
AR 7311.13 6850.5 11602.84 567.91 93.7 4.89

Observed 
deficiency

1

6

7

Total

Over-
estimates

2

3

4

5

FDOT 
Districts Models

Observed 
Non-

deficiency

Under-
estimates

Percent of 
Over-

estimates

Percent of 
Under-

estimates
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CHAPTER 7 

SOFTWARE IMPLEMENTATION 

7.1 Software Architecture 

As crucial part of the research, significant effort was made for implementing the ANN 

models in the FDOT PMS. As result of the implementation effort, a software system 

called IPPFS (Integrated Pavement Performance Forecasting System) was developed. 

The IPPFS developed for this research contains four major operational modules: data 

preprocessing, pavement condition forecasting using ANN models, data postprocessing, 

and model upgrading. The software architecture is shown in Figure 7.1. As noticed, the 

direction indicated by the arrow is the direction that the information flows. Provided with 

the FDOT original database, the first module is designed to preprocess the database, 

which included adding missing data and use of the moving average. Then, the processed 

database is fed into the second module, which uses the developed ANN models to 

forecast the future pavement condition. Following the forecasting, the third module is 

used to summarize the forecasted results in formats that can be easily understood and 

directly used by FDOT for budget planning at the network level and rehabilitation 

activities at the project level. The last module is used to upgrade the model parameters, 

which are ANN matrices. This module is important since it ensure the model keep up 

with the information in the newly collected data. To integrate the four major modules in 

the forecasting system, a main interface program is needed. Considering the popularity 

and convenience of programming, a widely used programming language, Visual Basic, is 

employed to code the main interface program. 
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Figure 7.1  Software Architecture 

Main Interface Program 

                          Module 1 

Module 2 

Module 3 

Data Patching Data Filtering Data Conversion 

Data Preprocessing 

ANN Forecasting 

1-year 2-year 3-year 4-year 5-year 

Data Postprocessing 

Forecasting Summary 
- State Level 
- District Level 
- Section Level 

Output Formats 
- Tabulation 
- Graphic 
- Printout 

Module 4 
 

Model upgrading 
- Retrain models with newly collected data 
- Update weight matrices 
- Validate the updated model 
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7.1.1 Data Preprocessing Module 

To minimize the practice inconvenience, the original FDOT pavement condition survey 

database, which is in SAS format, is the original input to the software. The database 

selection interface is shown in Figure 7.2. Users are required to select the database in the 

correct format, which is crucial for this module to work properly. As part of the software 

package, a user manual documents the detail of the format requirement for the input 

database. In addition to the input database, users are required to select the forecasting 

base year of their interest. The base year is the year from which the forecasting occurs. A 

SAS program was developed to preprocess the database, which is called by main 

interface program when necessary. The function of the SAS program is to carry out the 

three data preprocessing tasks: data patching, data filtering, and data conversion. 

Data patching: this step is to add missing data point, if needed, in the database. 

  Data filtering: this step is to filter out high-frequency noise existing in the time series 

of pavement index data. 

  Data Conversion: this step is to convert the data format of the original database into the 

format that can be directly used for the neural network modeling and forecasting.  

The output of this module is the preprocessed database, which will be used as input to the 

next module, the ANN forecasting module. 
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Figure 7.2  Database Selection Interface 

7.1.2 ANN Forecasting Module 

This module consists of 25 ANN forecasting models as shown in Table 7.1. Each model 

has an associated text file to store its weight matrix. The advantage of using external text 

file for storage of ANN weight matrix is the convenience of updating the weight matrix. 

It is can be achieved easily by using any text editor. 

To facilitate the forecasting process, Users were provided with a user-friendly interface 

that allows them to select the forecasting detail of their interest. Specifically, users can 

select the forecasting time window from one to five years and the forecasting level of 

details: state or district. According to the user’s selection, the main program is able to call 

the corresponding ANN models to perform the user-interested forecasting. The 

forecasting interface is shown in Figure 7.3. As one may notice, there is “years to 

deficiency” option in the forecasting scenarios selection box. This function provides 

another format of forecast: the number of years that one particular pavement section can 

serve prior to deficiency. This information becomes crucial when FDOT is interested in 



 77

the comparison of different budget alternatives. 

Table 7.1 ANN Model Classifications 

 

 

 

 

 

 

 

1 year 1-year Crack Index Forecasting Model
2 years 2-year Crack Index Forecasting Model
3 years 3-year Crack Index Forecasting Model
4 years 4-year Crack Index Forecasting Model
5 years 5-year Crack Index Forecasting Model
1 year 1-year Ride Index Forecasting Model
2 years 2-year Ride Index Forecasting Model
3 years 3-year Ride Index Forecasting Model
4 years 4-year Ride Index Forecasting Model
5 years 5-year Ride Index Forecasting Model
1 year 1-year Rut Index Forecasting Model
2 years 2-year Rut Index Forecasting Model
3 years 3-year Rut Index Forecasting Model
4 years 4-year Rut Index Forecasting Model
5 years 5-year Rut Index Forecasting Model
1 year 1-year Crack Index Forecasting Model
2 years 2-year Crack Index Forecasting Model
3 years 3-year Crack Index Forecasting Model
4 years 4-year Crack Index Forecasting Model
5 years 5-year Crack Index Forecasting Model
1 year 1-year Ride Index Forecasting Model
2 years 2-year Ride Index Forecasting Model
3 years 3-year Ride Index Forecasting Model
4 years 4-year Ride Index Forecasting Model
5 years 5-year Ride Index Forecasting Model

Description

Flexible

Crack

Ride

Rut

Forecast 
Interval

Rigid

Crack

Ride

Pavement IndexPavement Type
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Figure 7.3  Forecasting Interface 

7.1.3 Data Postprocessing Module 

In this module, the forecasted results are summarized in two levels; state level and district 

level. At the state level, lane-mile deficiency forecasts for 7 districts are provided. At the 

district level, lane-mile deficiency forecasts for 3 systems, which are arterial, interstate, 

and turnpike, are provided. Considering convenience of users, a detailed list of 

section-by-section forecasting is provided in addition to the two levels of forecasts. As 

output of the module, the forecast results are presented in three formats: table, graphic, 

and listing. Users can either print out the output or simply save the outputs into files for 

later checks. The major output interfaces are shown in Figure 7.4, 7.5, and 7.6. 
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Figure 7.4  Tabulation of Deficiency Summary 
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Figure 7.5  Distribution of Lane-mile Deficiency 
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Figure 7.6  Distribution of Overall Pavement Condition 
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7.1.4 Pavement Deficiency Forecasts for the Next Five Years Using the developed ANN 

Models 

In this section, the developed ANN models was applied to forecast the pavement overall 

deficiency condition in the future in terms of PCR. Since the latest available data in the 

database is year 2001 data, forecasting of pavement deficiency condition from 2002 to 

2006 was performed using the developed ANN models. The results are summarized in 

Table 7.2 and Figure 7.7. 

Table 7.2 Forecasts of Deficient Lane Miles for Year 2002 to 2006 

 

 

 

 

 

2002 2003 2004 2005 2006
2013.7 2343.63 2790.94 2817.31 2978.22
34.90% 40.60% 48.40% 48.90% 51.60%
2537.67 3078.82 3499.87 3570.23 4039.64
32.40% 39.40% 44.70% 45.60% 51.60%
2242.74 2621.89 2719.1 2696.41 3290.09
35.20% 41.20% 42.70% 42.40% 51.70%
1917.1 2049.25 2731.41 2864.66 3075.04
32.40% 34.60% 46.20% 48.40% 52.00%
2111.05 2813.49 3493.53 3643.41 4050.93
28.90% 38.60% 47.90% 49.90% 55.50%
734.63 741.2 838.82 942.3 1055
25.80% 26.00% 29.40% 33.00% 37.00%
825.11 1086.68 1308.55 1324.1 1691.71
20.30% 26.80% 32.20% 32.60% 41.70%

12381.99 14734.97 17382.21 17858.41 20180.64
30.90% 36.80% 43.40% 44.60% 50.40%

Districts Total Lane 
Miles

Deficient Lane Miles / Percentage

1 5767.26

2 7823.91

3 6364.52

4 5916.9

5 7296.72

Total 40078.79

6 2851.69

7 4057.8
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Figure 7.7  Deficient Lane Mile Forecasts for Year 2002, 2003, 2004, 2005 and 2006 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary 

This report documents the research that was conducted to develop appropriate pavement 

performance forecasting models based on artificial neural networks and the 

corresponding software that can implement these models in FDOT’s PMS. As a key 

component of PMS, pavement performance models play a crucial role in PMS at the 

network level where forecasting results provide key information for FDOT to make 

decisions on overall maintenance and budget plans. Therefore, improved accuracy of 

pavement performance models could make a considerable difference in the expenditure 

on pavement maintenance and rehabilitation. Although many highway agencies still use 

regression models in their PMSs, it is noticeable that some agencies are attempting to use 

more advanced and accurate models in their PMSs. In the presence of an extensive 

pavement database, with a multitude of variables involved, ANN models can be 

advantageous as they do not require an explicit function form to be pre-specified. 

Although the training algorithm of the neural network may be complicated, development 

of neural network model is usually accomplished by using professional software. 

This research is a continuing effort of the previous research “ Road Surface Crack 

Condition Forecasting Using Neural Network Work” conducted by University of South 

Florida. In the previous research, crack-index forecasting models were developed using 

neural network technique. The developed crack-index models can perform one to three 

year forecasting for crack index with acceptable accuracy. Inspired by the result of the 

previous research study, this research focused on development and implementation of 

PCR forecasting model with the use of FDOT pavement surface condition survey 

database. As the result of the research, 25 ANN models were developed with each model 
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focusing on a pavement distress index (crack, ride, or rut) forecasting for a specific time 

window (one, two, three, four, or five years). Modeling using neural network is a 

time-consuming process. To reduce the modeling effort, “BrainMaker”, a popular neural 

network training software, was utilized for neural network training. After the training 

process is completed, the ANN model stores all the gained knowledge in its weight 

matrix. Then this matrix can be used by the neural network to forecast the future 

pavement condition at a reasonable accuracy.  

As a part of the research, the results from the ANN model were compared with those 

from a commonly used AR model. To meet FDOT needs in long-term pavement 

performance forecasting and decision-making, one to five year forecasts were carried out 

using both ANN model and AR model, in which both models were used to forecast the 

deficient lane mileage for year 2001. The forecasts were then compared against the 

observed deficiency of lane mileage in year 2001. The comparison showed that ANN 

models produced comparable over- and under-estimation errors. AR models produced 

significantly unbalanced estimation errors with unreasonably higher over-estimation error 

than under-estimation error; and ANN models perform much better than the regression 

models in terms of forecasting accuracy. 

For implementation purposes, the weight matrix obtained by the training process will be 

stored in an easy-to-read text file, which will be used by the developed software to 

forecast the future pavement condition. This facilitates convenient updating of the ANN 

model by simply updating the text file that stores the weight matrix. A software package 

was developed using Visual Basic and SAS language. A preprocessing module was 

developed using SAS language since the input database will be the original FDOT 

pavement surface distress condition database, which is in SAS format. Main interface 

program and other function modules were developed using Visual Basic. The software is 

user-friendly and can be mastered without special training. 
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8.2 Conclusions 

This research study involved developing ANN models for PCR forecasting. Based on the 

foregoing analysis, the ANN model provided an effective alternative to the current 

pavement performance forecasting models. The characteristics of ANN models coincide 

with the very nature of the pavement deterioration mechanism. By undergoing training 

with historical pavement condition data, the trained ANN models can extract underlying 

information contained within the historical database and then make reasonable forecasts 

of pavement condition in the future. This has been verified by comparing model forecasts 

with year 2001 pavement evaluations. 

The theoretical foundation of ANN provides a solid support for pavement condition 

forecasting. By learning the dynamics of pavement condition deterioration history, the 

ANN model can extract the underlying information contained within the database and 

then make reasonable forecasts of pavement condition in the future. This has been 

verified by the ANN forecasts comparing to 2001 observations. 

As found in this research, the original FDOT pavement condition survey database is not 

suitable to be used directly for the ANN model development. Accordingly, a data 

preprocessing procedure was necessary to rectify the database, which includes adding 

missing data, using moving averages of data in the database, transforming the database 

into formats that can be directly used for ANN modeling purpose. A module coded in 

SAS was developed in order to accomplish these tasks automatically.  

Although the ANN training algorithm itself is complicated, the theory behind it is simple 

– gradient decent. In view of its effectiveness as a model tool, many neural network 

software packages, such as BrainMaker, Matlab neural toolbox, etc., are available to 

simplify the training process and reduce the training efforts.  
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To implement the ANN models in FDOT’s PMS, a software package was developed by 

using a popular programming language, Visual Basic. The software includes three 

modules, which will perform three major functions: preprocessing of database, one to 

five year forecasting, and summarization of results. A commercial professional software, 

BrainMaker, was used in this research for the ANN model training. Use of external 

software does not cause an inconvenience because the neural network training can be 

accomplished by using any network training software and separate text files are used to 

store the trained network weight matrices. In practice, FDOT needs to update the network 

weight matrix at regular intervals by retraining the ANN models using newly available 

data. In order to update the weight matrix, FDOT only needs to update the text file of the 

weight matrix. It is hoped that the developed software would aid FDOT in managing 

Florida’s pavement network in a more efficient way. 

With the above consideration in mind, it was concluded in this research that the proposed 

neural network model was an effective tool for pavement maintenance planning process 

in a PMS. Not only does it improve the forecasting accuracy, but it can be easily updated 

by retraining the ANN models with newly collected data. In view of the limitations of the 

existing models, neural networks offer an attractive alternative for the problem at hand. 

Pavement performance based on historical database is likely to play a key role in PMS. 

We hope that the neural networks will prove useful as a means of modeling pavement 

performance and building useful mathematical models for pavement management. 

8.3 Recommendations 

Data preprocessing is the crucial part of the research for successful ANN modeling due to 

the sensitivity of the ANN model to the data used for training purpose. It is recommended 

that survey procedure be as uniform and consistent as possible over time and data should 

be double check for the irregularity before adding to the database. 
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The ANN models were developed based on FDOT’s historical pavement surface distress 

condition survey database. The pavement condition deterioration pattern may change 

over time. It is much helpful to compare the model forecasts with the surveyed data each 

year and retrain the ANN models with newly collected data every a specific time frame, 

say five years. By retraining the ANN models with newly obtained data, the ANN models 

can keep learning the updated information and adjust its hidden weights to ensure the 

forecasting accuracy. 
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APPENDIX A 

Format of Weight Matrix 
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    Input Layer       Hidden Layer          Output Layer 
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Note:  

wij = weight of the ith neuron in the input layer to the jth neuron in the hidden layer 

vij = weight of the ith neuron in the hidden layer to the jth neuron in the output 

layer  

This notation will be used to interpret the weight matrix as follows 
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APPENDIX A-1 

Weight Matrix of the 1-year ANN Crack Model 

Flexible Pavements 
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Input Hidden Weight Matrix 

w1,1   w2,1   w3,1    w4,1    w5,1   w6,1   w7,1   w8,1    w9,1   w10,1   w11,1   w12,1 

w1,1   0.3980   0.6264  -0.0676  -0.9708  -2.3574   0.9974  -1.3026   0.4102  -2.4024  -0.1530  -0.3914  0.6682 

w1,2   2.6984   2.5120   4.9222   3.4154   1.3176   4.8142   1.3396   0.5102   1.1836   2.2466   3.1386   3.8526 

w1,3  -0.1120   1.9842   0.9616  -3.8696  -0.4964  -0.5350   0.8764   0.9564   1.4664  -0.1710  -1.3452   0.7772 

w1,4   0.1806  -0.2116   0.2710   0.7224   1.5482  -0.3580  -1.8640  -0.4274  -1.9804  -1.0264  -1.2600  -0.2142 

w1,5   0.6770   1.4152  -1.3400   1.2196   1.5082  -1.9054  -0.7880   0.0656   2.9464  -1.1580   0.3992  -2.6154 

w1,6  -3.5656  -1.3060  -1.0684  -1.0280   0.5130   0.6652   1.4154   1.1532   0.5456  -1.2440   1.9282   2.0556 

w1,7  -0.3350  -0.4082   0.6726  -2.0434   2.6040   1.5300   0.2394   1.3664  -0.9520   0.5022  -1.1330  -2.3820 

w1,8  -2.2994  -3.1060  -0.5616  -2.8790  -2.5986  -0.2960  -1.2886  -1.7914   0.2156   0.6850   2.9502  -2.8246 

w1,9   2.2960   2.2162   0.3196  -0.7830  -0.3890  -1.1726   2.1896  -0.4722  -0.2434   0.9600  -0.0742  -0.3474 

w1,10 -3.5436  -0.8276  -2.5410  -1.4582  -0.7562  -1.3534  -4.1424  -2.5642  -1.9380  -0.3496  -1.5240  -5.7564 

w1,11 0.2686  -2.2044  -3.8604  -3.1066  -2.1420  -3.3526   0.0516  -1.1974  -0.3340  -2.7206  -0.0244  -4.9596 

w1,12 -3.7134  -2.7126  -1.8970  -1.7672  -0.7424  -3.7992  -0.1014  -2.7636   0.0282  -2.6650   0.9220  -4.6400 

w1,13 0.2506   0.4086   0.4570   0.1660   0.1080  -0.1252  -0.0540   0.0140  -0.0414   0.0616   0.0010   0.0584 

w1,14 -0.5222  -0.3270  -0.1382  -0.4208  -1.1804  -0.5062  -0.1096  -0.2136   0.7124   0.3396   1.4564  -1.6336 

w1,15 0.0716   0.0592   0.0322  -0.4384  -1.0350  -0.4472   0.2646  -0.4110   0.1510  -0.1106  -0.2240   0.1712 

w1,16 -0.0326   0.1222  -0.0266  -0.3036  -0.6124  -0.2014   0.1356  -0.2064  -0.2404  -0.1030  -0.2992  -0.0686 

w1,17 -1.9374  -1.8464  -0.9554  -0.9096   0.1294  -2.7294  -0.0460  -2.7102   0.0276  -1.0354   0.9206  -4.6664 

w1,18 -3.1262  -2.2452  -2.0760  -1.0954  -0.1786  -2.4676   0.1100  -2.1242  -0.8332  -1.7182  -0.5696  -4.1552 

w1,19 -1.0100  -0.8608  -0.9710  -0.8308  -2.2666   0.0360  -0.0164  -0.2124   0.7704  -0.2744   0.5600  -0.9842 

w1,20 -3.6922  -2.7436  -1.7694  -1.7706  -0.7706  -3.7432  -0.0050  -2.6684   0.0408  -4.4406   0.8852  -4.6992 

w1,21 -0.9740  -0.8352  -0.8746  -0.7696  -0.8866  -0.8884  -0.0442  -0.8494   0.4626  -1.0820   0.9126  -0.4166 

w1,22 0.1142   0.3474   0.3336   0.2124   0.0456  -0.1914  -0.1220  -0.0264  -0.1274   0.0162   0.1642  -0.2650 

 

Hidden Output Weight Matrix 

w1,1    w2,1    w3,1     w4,1     w5,1    w6,1    w7,1    w8,1   w9,1    w10,1   w11,1   w12,1 

 [-2.4508  -0.4114  -2.1656   1.7216   1.6176   0.7050   2.5022   0.2884 2.1170  -0.5142  -0.3574  -0.8826   

w13,1   w14,1   w15,1    w16,1    w17,1   w18,1    w19,1   w20,1  w21,1    w22,1   w23,1 
-0.3556  -0.5034  -1.2860  -0.8684  -0.1026   0.2674  -0.9008  -0.8730  -1.7690  -0.2564  -0.1316] 
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APPENDIX A-2 

Weight Matrix of the 1-year ANN Ride Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-0.1564   0.0822  -0.0206  -0.7546  -1.4250   0.4030  -4.0408  -0.3944  -1.6812   0.0408  -1.1542  -0.1356 

-0.1740  -0.3242   4.0076   1.5170   0.5186   2.7350  -0.7534  -1.5882   1.9774  -1.7264   2.8192   2.0754 

 0.2796   1.8504   2.1770  -5.0304  -0.9730  -1.1392   0.6560   0.6950   0.8690   0.2300  -0.4496   0.9122 

 0.3112  -0.1466  -0.0136   0.9986   1.0710  -1.1484  -0.8272  -0.5056  -0.9620  -0.3844  -1.5744  -0.1362 

 0.9200   1.7892  -1.3144   1.8522   1.4546  -1.7466  -0.6740  -0.0032   2.9292  -1.5442   0.8822  -2.5910 

-2.7170  -0.3444  -0.6836   0.1964   1.6640   0.8826   3.5896   1.4322   0.0730   0.0032   3.0270   2.7720 

-0.3220  -0.2832   0.2314  -1.8222   2.3912   1.2024   0.0664   1.2372  -1.5508   0.9550  -1.4264  -2.7986 

 3.1506   0.2508   0.3022  -3.1594   0.4684  -7.2430   5.6634   1.8994   3.6720  -2.3254  -1.9940   6.9432 

 1.7770   2.2420   0.5690   0.1642   0.0864  -1.7296   1.1830  -1.0800  -0.8624   0.6376   0.1520  -1.7900 

-0.7442   1.0746  -3.0246  -0.4934  -2.5306   1.0076  -3.0372  -1.5290  -1.0764  -0.3584   0.1632  -0.6752 

 2.6730   0.2852  -0.2054  -0.7590  -0.6544  -2.1906  -2.3122  -0.0176   0.3762  -2.1192  -0.0256  -3.1644 

-1.3806  -1.1564  -0.0630  -1.5810  -1.8082  -6.5912  -3.9934  -4.5376   0.7442  -1.9570   2.8452   5.9944 

 1.0056   1.0060   1.9074   0.4720   0.2806   0.5904  -1.5334   0.0186   1.1144  -0.5014  -0.8994  -1.5530 

 0.1220   0.3034   0.0132  -0.7566  -0.8666  -0.1400  -0.1382  -0.3624  -0.0500  -0.2930  -0.6164   0.4182 

 0.2164   0.3404  -0.0002  -0.8896  -1.0720  -0.2536  -0.2412  -0.4806  -0.0674  -0.4192  -0.6470   0.6110 

 0.1264   0.2762  -0.1132  -0.6810  -0.8176  -0.3026  -0.2942  -0.4844  -0.2122  -0.1122  -0.5632   0.4826 

 0.0874   0.1494   0.3586  -0.0340  -0.7162  -0.9640  -3.1692  -1.8340   0.6984  -1.6540   1.9586  -0.8586 

-0.2966   0.8222   1.4066  -0.3304  -0.2604  -3.5564  -2.6280  -1.4152   3.2460  -1.0494   2.2790  -6.9120 

-1.8756  -1.7530  -1.7512  -0.1940  -0.5062  -3.0416   3.4886  -1.9154   0.5596   2.9236  -0.2396  -5.6726 

-0.0272   0.0742   0.3516  -0.0544  -0.7172  -1.5324  -2.4782  -1.6394   0.6244  -1.0982   1.3904  -0.3642 

-7.4572  -7.1786  -6.8572  -5.1386  -5.1720  -5.0766   0.0010  -7.0734   1.5016   2.8244   3.6820  -4.5114 

 0.1822   0.2992   0.0016  -0.5302  -0.7144  -0.3380  -0.1190  -0.4260  -0.1600  -0.2326  -0.5204   0.3100 

 

Hidden Output Weight Matrix 
[-1.0742  -0.2712  -3.0142   1.1906   1.6424   1.1312   1.3194   0.1726   1.0012   0.5262  -1.7110  0.5124  

-0.0070  -0.6810  -0.7832  -0.7810  -1.3114  -0.8808   1.7220  -1.4242  -0.8612  -0.6946   0.0208] 
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APPENDIX A-3 

Weight Matrix of the 1-year ANN Rut Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-0.0406   0.7714   0.9946  -2.3500  -2.0172   1.0014  -1.1904   0.1282  -2.6286   0.1450  -0.5534   1.2084 

-3.6024  -0.7010   2.5620   1.8722   1.9462  -2.5534   5.3862  -2.9608   3.1974   4.1786   3.8142  -1.9232 

-0.4232   2.1586   2.0874  -5.2910   0.0966  -0.5400   0.1546   0.4734   1.5536   0.1584  -0.1146   0.2914 

 0.9720   0.1714   0.2434   1.8524   1.4420  -1.2310  -1.4062  -0.7636  -1.5910  -1.7390  -1.1616  -1.1260 

-0.6530  -0.6570  -2.5896  -0.0780  -0.5096  -4.6782  -0.4042  -2.3030   1.5346  -0.9894  -0.5564  -5.8480 

-3.7362  -1.5010  -0.2842  -0.1856   0.9308   3.6490  -0.9114   0.7708   1.5926  -1.1522  -0.6194   6.9314 

 0.2282  -0.3176   0.6492  -1.7040   2.0720   0.9916   0.4284   1.2336  -0.9634   1.3120  -1.7520  -2.6534 

 3.0570   0.9646   1.6208  -1.0836  -2.2906   7.0534  -0.0210   2.3182   0.4424   2.4226   4.7686   7.2354 

 2.5826   2.4164   0.7632   0.0374  -0.0332  -0.9664   1.6726   0.0970   0.4006   2.2934  -0.2436   0.3722 

 0.0824   1.3174  -0.6904   0.1196  -1.0022   1.6702  -5.5340  -0.0804   0.2290   0.5530   1.4532  -1.9602 

 3.4706   0.5730  -0.9310  -0.2834  -0.2344  -0.8608   0.6734   0.8314  -1.5302  -0.5342   0.0660  -2.5932 

-0.7972   0.3426  -0.2080  -0.2542  -0.3276  -1.1134  -0.4466  -0.6584  -0.1554  -1.2384  -0.7372  -0.1206 

 0.6920   0.8794   0.5224  -0.4242  -0.3142  -0.0914   0.0380  -0.5462  -0.9144  -0.9530   0.3790  -0.0130 

 0.3502   0.6508   0.3126  -0.6994  -0.6464  -0.7164  -0.8186  -1.1184   0.2400  -1.2108   0.3872  -1.0202 

 0.0108   0.5190   0.3954  -0.4232  -0.2896  -0.3900  -0.0102  -0.5634  -1.7950  -0.8542   0.0752  -0.0992 

 0.2274   0.7090   0.2576  -0.4834  -0.3164  -0.4150  -0.1874  -0.5470  -1.8792  -0.9694   0.1712  -0.3296 

-1.4156  -0.3204  -0.5812  -0.9702  -0.3008  -2.1084  -0.6890  -1.3730   0.1684  -1.3856  -0.8584  -1.9402 

-0.2874   0.1908   0.2990  -0.2644  -0.0844  -2.4244   0.1032  -0.9404   0.0646  -0.8094   0.1280  -2.1664 

 0.3806   0.7042   0.2876  -0.3374  -0.2750  -0.3396  -0.0534  -0.6086  -1.9362  -0.8584   0.1636  -0.2080 

-1.4102  -0.4440  -0.4434  -0.9196  -0.9324  -2.1130  -0.9314  -1.0236   0.1682  -1.4012  -1.2472  -1.6580 

 1.6300   2.1382   0.8550  -0.7916  -1.4334  -0.8690   0.4640   1.0396   0.0086  -0.8690  -1.4516  -3.6406 

 0.2984   0.7708   0.4490  -0.1662  -0.2096   0.0392  -0.0194  -0.1614  -0.9742  -1.0124   0.1792   0.5090 

 

Hidden Output Weight Matrix 
[-2.3310  -0.0380  -3.2890   2.1314   2.9172   0.9690   0.4482   0.0252   1.7696   0.5960   0.7856  -1.8272  

-0.4284  -1.6776  -0.5606  -0.5826  -3.7326  -2.5584  -0.5014  -5.0846  -0.5776  -0.3044 0.2816] 
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APPENDIX A-4 

Weight Matrix of the 2-year ANN Crack Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.4184   0.6030   0.0380  -0.8084  -2.1810   1.1100  -1.2242   0.3790  -2.4280  -0.1264  -0.3384   0.5726 

-0.1492  -0.3014   2.7862   1.8520   0.2604   2.5374   0.6032  -1.7960   0.2602   1.8642   1.2872   1.0934 

-0.2402   1.7690   0.9292  -3.8294  -0.5340  -0.3034   0.5220   0.8754   1.6010   0.0006  -0.9576   0.6746 

 0.3200  -0.0524   0.3850   0.8908   1.6232  -0.7352  -1.7796  -0.4900  -1.9942  -1.1882  -1.7480  -0.2634 

 0.8856   1.6000  -1.2300   1.2686   1.3042  -2.1300  -0.5560  -0.0246   3.2402  -1.2410   0.5994  -2.4700 

-2.9390  -0.7770  -0.8050  -0.6984   0.7166   0.8582   1.0912   1.5670   0.3360  -1.0462   1.3408   2.6770 

-0.1666  -0.2560   0.7042  -2.0402   2.5650   1.3520   0.1412   1.4602  -1.1240   0.6180  -1.4170  -2.2208 

-0.4464  -1.4480   1.0230  -1.2456   0.6984   1.7186   0.5812  -0.5656   0.6008   1.7114   2.5166  -1.0082 

 3.1076   3.0224   1.0604   0.0066   0.2954  -0.9214   1.6502  -0.1606  -0.6182   1.1614  -0.7162   0.3960 

-2.0170  -0.1552  -2.3476  -1.6514  -1.8630  -0.1950  -3.8480  -0.8526   0.3008  -0.6626  -0.4976  -3.3336 

 2.2296  -0.2652  -1.9936  -1.6172  -1.0300  -1.8522   0.1934   0.5570  -1.0836  -2.5480   0.1180  -3.0784 

-1.0262  -0.9760  -0.6622  -0.9032  -0.3614  -1.5864  -0.1014  -0.5792   0.0282  -1.8142   0.4514  -1.8934 

-0.2832  -0.1730  -0.1812  -0.3764  -0.3924  -0.3412  -0.2606  -0.3014  -0.0922   0.0500  -0.1420  -0.1556 

-1.2384  -1.1742  -1.1266  -1.1520  -1.0232  -0.8414   0.3292  -1.2066  -0.0004  -0.3980  -0.4200  -1.2916 

-0.2314  -0.1392  -0.0932  -0.5320  -0.8914  -0.3840  -0.0146  -0.3390   0.3036  -0.0234  -0.1422  -0.1164 

-0.2256  -0.0916  -0.2034  -0.3750  -0.5444  -0.4072  -0.3240  -0.2842  -0.0372  -0.0402  -0.1602  -0.1470 

-0.8166  -0.7760  -0.3794  -0.7300  -0.5116  -0.7640  -0.0460   0.1306   0.0276  -1.9292   0.3676  -1.2496 

-2.0714  -2.0084  -2.0356  -1.9012  -1.3472  -1.6506   0.1100  -1.1304   0.0646  -1.4556  -0.4422  -2.2550 

-0.2626  -0.1208  -0.2224  -0.2532  -0.4454  -0.4552  -0.0374  -0.4540  -0.0536   0.1112  -0.1034  -0.1894 

-1.4722  -1.4570  -0.9804  -1.0520  -0.8674  -1.5596  -0.0050  -0.4782   0.0408  -1.8434  -0.0262  -2.0174 

-0.2212  -0.2562  -0.1908  -0.2040  -0.3492  -0.3810  -0.0576  -0.3080  -0.1562  -0.0184  -0.1044  -0.0854 

-0.2636  -0.1170  -0.2042  -0.3362  -0.5836  -0.3196  -0.1654  -0.2402  -0.1250  -0.0204  -0.2144  -0.2256 

 

Hidden Output Weight Matrix 
[-2.1170  -0.8442  -2.0682   1.6202   1.2406   0.2152   2.0040   0.7106   1.8422   0.0650   0.2232  -0.2326  

-0.6892  -0.4654  -1.0304  -0.7296  -0.3244  -0.2574  -0.7374  -0.1942  -0.6106  -0.7404  -0.5722] 
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APPENDIX A-5 

Weight Matrix of the 2-year ANN Ride Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.0870   0.2276  -0.0982  -0.6440  -1.7110   0.7644  -1.2156   0.1984  -2.6250  -0.3872  -0.4364   0.0908 

-0.0344  -0.1144   3.1560   1.9326   0.1654   1.9692   1.1204  -2.3850   0.7882   1.6126   0.1686   0.6974 

-0.0562   1.6576   0.9210  -3.6834  -0.3912  -0.7592   0.5186   0.7792   1.0966   0.0432  -1.4692   0.4304 

 0.3682   0.0500   0.2956   0.5286   1.1870  -0.6562  -1.6894  -0.6744  -1.9174  -0.8362  -1.3786  -0.2912 

 1.1040   1.8736  -1.1082   1.2694   1.3922  -1.7164  -0.3816  -0.2302   3.2852  -1.1900   0.9570  -2.3490 

-3.4972  -1.4286  -1.3456  -0.8800   0.4620   0.0676   0.4272   0.9062  -0.1224  -0.1706   1.2650   0.8354 

-0.4194  -0.2834   0.6650  -2.1564   2.7396   1.7186   0.1850   1.3854  -1.1192   0.8256  -0.9604  -2.3190 

 2.6130   0.9204   2.4374   0.1300   1.0270   5.4922   1.4136   3.3210   2.2314   0.6026   2.5154   3.9442 

 2.0454   2.2120   0.3716  -0.6386  -0.1584  -1.1494   1.6132  -0.4980  -0.6914   1.0176  -0.6690  -0.5596 

-1.0984   0.3834  -2.0806  -1.2210  -1.6082  -0.9204  -3.9304  -1.8322   0.5342  -0.2092   0.5964  -4.0506 

 2.2760   0.1674  -1.5754  -1.0510  -0.8308  -1.8586   0.1470   0.0630  -0.5942  -2.0074   1.4404  -2.9080 

-2.3730  -1.7484  -1.9208  -1.5522  -0.7666  -2.5176  -0.7224  -2.2812   0.1262  -0.5894   0.6702  -3.2720 

 1.2140   1.2560   1.7152   0.8826   0.9084   1.5064   0.7476   0.9908   0.1656  -0.0810  -0.5364   2.5442 

 0.6696   0.0726   0.7346   0.6052  -0.7600   2.1770   0.6542   1.4566   0.0010   0.1030   0.0020   3.6046 

-0.1212  -0.0884  -0.0402  -0.4980  -0.8986  -0.2544  -0.2002  -0.2484   0.2822  -0.1450  -0.3340   0.0236 

 0.0660   0.0062   0.2022  -0.0822  -0.4956  -0.3592   0.0926  -0.6044  -0.0880   0.0500  -0.8862  -1.1264 

-1.3782  -1.4204  -1.2970  -0.6276  -0.4192  -2.6884  -0.8986  -2.0646   0.1242  -1.0180  -0.0174  -2.7982 

-1.1294  -0.4260  -0.5850   0.2094   0.0944  -1.6500   0.1100  -1.6416   0.0646  -0.0172   0.0302  -2.9842 

 0.8426   1.3842   0.7750   1.3092   1.8306   0.1936  -0.1652  -0.8846   0.0460   2.8670  -0.0040  -0.5982 

-1.9354  -1.8492  -2.3724  -1.6200  -0.8680  -2.6992  -0.7410  -2.2852   0.2322  -0.7950  -1.0666  -3.8080 

-0.3870  -0.4590  -0.4184  -0.1460   0.1660  -0.0008  -0.3492  -0.0922   0.2422   0.0776  -0.3124  -0.1262 

 1.3142   1.3790   1.8484   1.0772   0.9602   1.8130   0.7266   1.2066  -0.8764   0.0576  -0.0764   2.9742 

 

Hidden Output Weight Matrix 
[-1.5920  -0.8410  -1.4700   1.1094   1.5204   0.4972   2.4866   0.0836   0.8174   0.2826  -0.8124  -0.1220  

-0.0646   0.0914  -0.9442  -0.4064  -0.5076  -0.4106   0.3552  -0.1312   0.3144  -0.0384  -0.4654] 
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APPENDIX A-6 

Weight Matrix of the 2-year ANN Rut Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.1980   0.4608   1.5266   0.2770  -3.7406   0.6930  -0.8346   0.7508  -2.1152   0.1536  -1.0596   0.0262 

-0.8330  -1.1064   2.6262   1.6234  -1.4526   1.1242   0.5116  -2.3126   0.8770   1.6432   1.2752  -0.3766 

-0.4146   1.8762   2.1832  -2.9614  -2.7032  -0.6362   0.7786   1.6566   1.2254  -0.0132  -1.0520   0.7190 

 0.2972   0.1940  -0.0508   0.2520   2.2108  -0.6656  -1.4340  -0.8950  -1.5694  -0.8376  -0.9464  -0.5704 

 1.2564   2.0476  -1.3608   1.0860   1.9426  -2.0964  -0.4220  -0.4252   2.6244  -0.3122   0.8136  -2.9100 

-2.6954  -0.3682  -0.8342  -0.7496   1.5282   1.5154   0.9256   0.7452   0.6386   0.4416  -0.7826   3.7036 

 0.0590  -0.1256  -0.5566  -3.1592   4.4110   1.3864   0.0610   0.9142  -1.1244   1.1640  -0.8604  -2.2740 

 1.6870  -2.5684  -0.1056  -4.2254  -0.9608  -7.9480  -0.5272   5.9626   0.4424   1.2492  -6.5964  -0.5604 

 4.5214   4.1866   1.9604   0.6830   1.3856   0.3702   2.1686  -0.1072   0.4076   2.0296   0.0114   0.9682 

-3.9472  -1.9272  -4.6094  -3.0900  -1.7290  -5.5700  -4.3134  -7.2126  -1.8026   1.3022  -3.8542   7.4002 

 3.5486   1.6186   2.3162   2.2200  -0.3234  -0.5830  -1.2274   2.6430  -7.6342  -6.9556   5.6982   1.2462 

-1.6642  -0.8972  -1.4908  -1.4862  -0.2266  -3.7820  -1.5620  -4.1236  -0.0130   0.1240  -1.0710  -4.1612 

-0.7116  -0.5610  -0.1444  -0.4130  -1.4554   0.0660  -0.4802   0.5664  -1.4316  -0.0540  -0.0830   1.1170 

 0.6826   0.7292   1.5402   1.7662  -0.1524  -0.9516  -0.8254  -0.0384   1.8432  -0.4634  -0.0410  -6.6650 

-0.5814  -0.6356   0.0340  -0.2106  -1.6132  -0.3212  -0.2384   0.1054  -1.0086   0.0180  -0.1546   0.7708 

-0.6808  -0.5972  -0.1608  -0.4042  -1.5632   0.1008  -0.3890   0.4570  -1.1836  -0.0040  -0.1422   0.9746 

-1.2354  -1.1114  -0.7030  -0.5656  -1.8144  -3.0392  -1.5226  -1.7164  -0.3430  -1.4932  -2.4094  -2.4696 

-1.6816  -0.4290  -0.8470  -0.9452  -0.0334  -4.9300  -0.7094  -4.4054   0.1202   0.6594  -1.5452  -5.4632 

-1.1456  -0.3656  -0.8520  -0.9342   0.6490  -3.2712   0.2940  -3.3670  -0.7446  -0.6924  -0.4772  -4.0610 

 4.1470   5.1610   7.1716   7.1556   7.2590   0.1756  -4.1564   5.6174  -0.0316  -1.9842  -6.1464  -1.7324 

-0.9562   0.0026  -0.3402  -0.2792   0.7324  -2.2542   0.2930  -2.5710   0.0832  -0.7130  -0.2796  -3.6612 

-0.6906  -0.5212  -0.1352  -0.3606  -1.4674  -0.0920  -0.6186   0.5824  -1.1326  -0.1450  -0.1956   0.8912 

 

Hidden Output Weight Matrix 
[-2.0406  -1.4126  -1.5986   1.2250   1.1382   0.9726   2.7722  -0.2134   1.6760   4.0334   0.0410   3.8110  

-0.4524  -1.5580  -0.8332  -0.5308  -3.8902   3.6524   3.7274  -0.1714   3.7264  -0.5364  -0.5954] 
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APPENDIX A-7 

Weight Matrix of the 3-year ANN Crack Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.0040   0.7634   0.9560  -0.1064  -4.1944   0.6252  -0.5630   0.7230  -1.6992  -0.3642  -0.5400   1.3012 

-0.7744   0.3960   3.9602   3.3402   1.1626   1.0084  -5.7786  -1.3642   0.0844   0.7026   4.3372   4.7230 

-0.5486   2.0946   1.7512  -3.2812  -2.3046  -0.3736   1.0184   1.0626   1.9930  -0.1970  -1.1596   1.5930 

 0.2642  -0.4590  -0.4534   0.1722   2.7210  -0.7874  -2.0686  -0.6880  -1.9676  -1.3272  -0.9830  -0.8330 

 0.2834   1.1220  -1.8074   1.4412   3.7184  -2.1806  -0.3734  -0.1936   2.7880  -0.3046  -0.4166  -3.3506 

-6.4206  -4.3214  -4.6944  -4.8352  -3.0202  -1.8460   1.7410  -1.2536   1.2030  -1.9244  -0.1836  -1.5036 

 0.3084  -0.5180  -0.5266  -2.9676   4.9056   1.0308  -0.0252   1.4676  -1.3476   0.2874  -0.3156  -3.3350 

-3.5542  -4.5870  -2.4240  -4.6802  -2.3066  -1.5022   1.6060  -2.9390   0.7752   0.2876   2.2536  -5.2926 

 4.9940   4.5460   1.9106   0.9244   1.7820  -0.0172   3.1886   0.8622  -0.5142   1.2052  -0.9492   1.9290 

-6.9934  -3.1986  -2.3742  -0.0672   1.2770  -6.1864  -6.1846  -3.0382   0.7072  -6.1456  -5.9946   3.0644 

-5.7586   7.7452   6.4322  -7.7796  -7.4302  -4.9560   4.1120  -5.1104  -1.4042  -0.8570   3.6664   6.3044 

-4.9304  -5.0712  -4.8012  -4.6004  -2.2660  -5.0686   0.9604  -4.6134  -1.5424  -4.3304  -1.8584  -5.6314 

-0.8116  -0.3930   0.1002   0.0294  -0.4772  -0.3570  -2.3150  -0.0260  -0.4720  -0.0362   0.0944  -0.3994 

 4.7070   5.4574  -7.7490  -7.7054  -7.0314   7.7382  -0.1096  -3.8260   0.1470  -2.6508  -3.8202   4.2752 

-0.4900   0.0344   0.3906  -0.0066  -1.4094  -0.4410  -0.6192  -0.0256   0.0634   0.2408   0.4440   0.3766 

-0.7106  -0.4342   0.0934   0.2100  -0.5162  -0.3736  -2.0100  -0.0450  -0.5454  -0.0500  -0.0506  -0.5696 

 6.1914  -7.5708  -5.0374  -5.4456  -7.7264  -7.9802  -0.0460  -5.8710   0.0276   2.5332  -3.6730   3.6374 

 6.8270  -7.1330  -5.9074  -3.8826  -2.6062   4.5544   0.1100  -4.3174   0.0646   0.6890  -4.7980   2.8032 

-3.4100  -3.6330  -3.9982  -4.0966  -3.4744  -2.8744   0.6242  -2.4040   0.3172  -2.7902  -1.9014  -4.4252 

-0.0274   1.5908   1.6270   1.5484   6.9250  -0.2572  -0.0050   5.2102   0.0408   1.7606  -5.5804  -2.3108 

-7.7720  -7.7296  -7.6546  -7.6272  -7.5692   4.8666  -0.0442  -4.0062   0.0086  -7.5324  -3.6870  -7.6924 

-0.7332  -0.3562   0.1396   0.2390  -0.5624  -0.4240  -2.0656  -0.0400  -0.6552  -0.0560  -0.0384  -0.5352 

 

Hidden Output Weight Matrix 
[-1.9486  -0.4862  -1.3086   1.1376   1.5982   2.9462   2.5952   3.4574   2.1650   1.7216  -0.5862   3.3614  

-0.8812   0.2320  -1.1008  -1.0224  -0.6806  -0.3962   3.2386   0.0990  -0.1524  -0.9752  -0.4044] 
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APPENDIX A-8 

Weight Matrix of the 3-year ANN Ride Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-0.5154  -0.4308  -0.6706  -1.2570  -2.3292   0.8372  -1.8732  -0.1456  -2.4826  -0.1892  -0.9162  -0.5790 

 0.7922   0.9746   4.3250   2.8980   1.0642   3.1436   1.1782  -2.4214   0.5060   3.9160   5.3410   0.9514 

-0.2256   1.7536   0.9024  -3.6662  -0.7260  -0.2726   0.0292   1.1500   1.1094  -0.1880  -1.1536   0.8506 

 0.4350   0.2224   0.2826   0.5906   1.3380  -0.8808  -1.7916  -1.0036  -1.8650  -0.6924  -1.2116  -0.5774 

 1.1182   1.9730  -0.9350   1.4308   1.7716  -2.0050  -0.1852  -0.6344   3.5354  -0.7984   1.4420  -2.6902 

-3.9810  -1.7062  -1.5870  -1.3890   0.1096  -0.9684  -0.6694   0.0930   0.1124  -1.5970   3.0262  -0.1080 

-0.3616  -0.2720   0.7624  -1.9812   3.3790   1.4000  -0.0684   1.2122  -1.0324   0.8826  -1.8794  -2.7586 

 3.8100   5.3610   7.9442   5.4856   6.8484  -2.0332   3.2494  -7.8016  -1.1874   0.2644  -0.1874  -3.6864 

 2.8806   3.0970   0.9766  -0.0562   0.4322  -0.9912   1.9908  -0.2260  -0.8714   1.1206   0.7004   0.0256 

-1.2384   0.1094  -2.2210  -2.0908  -2.7196  -2.6526  -2.9626  -2.4206   0.5606  -2.0590   0.6210  -6.5230 

 3.5052   1.1744  -0.9508  -0.5696  -0.0922  -1.3352   1.4890   1.6154  -0.9786  -5.6206   2.2622  -3.3120 

-1.9320  -2.2092  -1.6894  -1.5610  -0.2726  -4.8808  -1.0862  -2.7036  -2.1254  -2.5146   2.7704  -4.8464 

 0.0354  -0.0472  -0.0352  -0.3934  -0.6714  -0.1046  -0.4236  -0.2496  -0.1342   0.0670  -1.6662  -0.2100 

 0.2604   0.4156   0.6374   0.5840  -0.0824  -0.6204   0.3020  -1.0540   0.0380   0.2572  -0.4010  -2.1526 

-0.2704  -0.0822  -0.1706  -0.6634  -1.2700  -0.0326  -0.3144  -0.2936   0.1502   0.0302   0.1282  -0.1356 

-0.0436  -0.0482  -0.3710  -0.6480  -1.0272  -0.0326  -0.5746  -0.1236   0.4584   0.1202  -1.2180   0.4282 

 0.3624   0.6536   0.8142   0.3872   0.2722  -1.1952   0.3362  -0.8792  -0.9434  -0.1710  -0.3606  -3.0076 

-0.1026   0.9632   1.6576   0.8508   0.8354  -2.9050  -0.0386  -2.5890  -1.4252  -1.3430   6.6824  -7.2532 

 0.1650   0.2160   0.1056   0.0380   0.0260  -5.4046  -0.0164  -5.3694   0.0460  -2.5482  -0.0040  -7.9186 

-2.2374  -2.3780  -1.6360  -1.6880  -0.4934  -4.7124  -1.0356  -2.4404  -2.0650  -2.4356   2.3906  -4.9854 

 0.2714   0.3292   0.5932   0.3156  -0.3750  -0.9882   0.6082  -1.0312  -0.1416   0.2632  -0.5308  -1.9660 

-0.0026  -0.0152  -0.2406  -0.5008  -0.9508  -0.0352  -0.4554  -0.2172   0.2976  -0.0110  -1.6364   0.0664 

 

Hidden Output Weight Matrix 
[-1.8260  -0.7900  -1.0740   1.0290   1.3510   2.0904   2.2472  -0.0242   1.1514  -1.0662   0.3510   2.1954  

-0.5836  -0.3302  -1.3022  -0.5922  -0.6894  -0.5406  -0.1176   2.2734  -0.5554  -0.6364  -0.5782] 
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APPENDIX A-9 

Weight Matrix of the 3-year ANN Rut Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.0940   0.9880   1.1164  -0.5634  -3.3434   0.8910  -2.7286  -0.2122  -4.5064  -1.5736  -1.8234  -0.6314 

-1.0584  -0.2200   2.5062   0.9490   0.4920   0.5682   0.9310  -2.4042  -2.3422   0.3582   1.5786  -2.8922 

-1.3682   2.1584   2.8596  -3.5600  -3.6090   0.0116   2.2186   0.1476  -0.1546   0.6396  -1.2714   1.6684 

 0.9572   0.4686  -0.1166   0.4634   2.3704  -1.0150  -0.7816  -0.2100  -1.8692  -1.4084  -2.0882  -0.7076 

 0.9684   1.6840  -1.6672   1.7452   2.4120  -1.9374   1.2440   0.7462   4.2892  -0.8604   0.9436  -2.3134 

-1.7780  -0.4506  -1.4344  -1.0554   1.7096   5.5444   0.4466   5.9956   2.3734   1.6680  -1.8514  -6.8308 

 0.2100  -0.1684  -0.5670  -2.5944   3.8542   0.7352  -0.1766   1.6882  -0.1054   1.6430  -0.4592  -3.4430 

-4.1024  -4.3924  -1.7170  -4.3110  -4.9980  -4.8242  -2.8012  -5.0924  -1.9960  -1.8464   7.5850   7.3444 

 4.2176   5.2344   0.6486   2.4762   3.3224   7.7350   2.5008   4.2410  -5.8834  -7.3236  -1.2704   0.5784 

-6.2190  -4.0322  -6.2150  -6.0490  -7.1426   5.2076   1.3674   3.1992  -4.9020  -1.0656   5.4154  -7.7494 

 3.0012   0.5072  -0.8540  -0.6474  -0.8810  -2.0932  -0.6134   0.4862  -4.6382  -3.1882   1.6210  -7.3072 

-1.4640  -1.0290  -1.0092  -0.7524   0.4792  -3.5082  -1.4762  -1.8170   1.9272   0.2814  -0.6686  -3.3494 

-0.0574   0.2452  -0.7172  -0.3832   0.3610  -1.1492   1.1508  -1.0392  -0.8700   0.0852   0.0170  -1.5750 

-2.0082  -2.0680  -2.4472  -2.3124  -1.5260  -3.8040  -0.0154  -2.5384   1.6454   1.1550  -0.5842  -3.6076 

 0.1770   0.2408  -0.4214  -0.2434   0.4302  -0.9310   0.4784  -0.9466  -1.2094  -0.2110  -0.1296  -1.7256 

-0.0686   1.0794  -0.0950   0.3406   1.0874  -0.4240   0.4436  -1.1310  -2.5484  -0.3200   0.4814  -1.8270 

 1.3276  -1.5134  -2.7790  -3.9224  -1.5382   4.2502  -0.1160  -5.9174   2.2610  -1.6736  -6.0372   5.1966 

-3.1784  -1.9664  -1.5396  -1.3424  -2.8690  -5.1324  -1.2808  -4.5114  -1.6040  -1.5208   0.6234  -5.3030 

 0.0622  -0.0086  -1.0766   0.1254   1.7984  -1.3612  -0.0684  -0.9074   1.1910   0.1602  -0.1922  -2.1610 

-3.1350  -1.9000  -1.4040  -1.9410  -3.3154  -3.5156  -1.2546  -4.7310  -1.4712  -2.2324  -1.1844  -5.0108 

 7.8192  -5.2494  -5.1924  -3.1490  -3.2926  -2.0390  -0.9732   2.6032   0.6262  -5.7820  -4.9694   0.1322 

-6.8116  -4.9232  -4.8394  -5.3242   7.6006  -0.0060  -2.6486   1.8532   7.8130  -5.9750   2.4642  -3.4592 

 

Hidden Output Weight Matrix 
[-2.2986   1.4374  -2.0794   1.2290   0.5900   0.8882   1.3420  -4.4844   0.2982   3.7456  -5.4192   5.8502   

4.9846  -0.0982   5.0930   1.5854   0.4642   6.6208   5.0586   6.6426   2.1982  -2.2756  -1.4306] 
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APPENDIX A-10 

Weight Matrix of the 4-year ANN Crack Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.4850   1.3704   0.9646  -0.6334  -4.1974   0.8694  -0.2100   0.6644  -1.7026  -0.2290  -0.7600   0.8140 

-1.9046  -1.2566   2.4142   1.3044  -0.6170   0.7640  -1.5508  -1.3610   0.2436   0.8290   4.2224  -0.9946 

-0.3904   2.3462   1.7726  -3.5090  -1.9182  -0.5576   1.0600   1.2306   1.2172  -0.1702  -0.5500   0.3710 

-0.2520  -1.0370  -0.4430   0.8582   4.5046  -0.7346  -2.6496  -1.1246  -2.9962  -1.4086  -0.2954  -2.0504 

-0.0790   0.6470  -1.8904   1.7844   5.0020  -2.1126  -0.4822  -0.0104   2.7902  -0.1170   0.6852  -4.3342 

-3.8744  -0.6534  -0.3482  -0.4794  -0.0814   0.8734   0.9034   1.6582   0.3308   0.0794  -0.0056   1.3342 

-0.4932  -1.0894  -0.1206  -2.0370   5.2408   1.0882  -0.3220   1.3322  -1.6666   0.6266  -0.9212  -3.6966 

-2.2522  -3.2106  -0.7626  -3.1082  -1.3780  -0.0552   0.5466   3.0184   0.2782   5.0080  -2.4344  -5.4364 

 3.8914   3.7440   1.8754   1.0340   1.9290  -0.4952   0.9264  -0.1896  -0.8324   1.6874  -1.5012   0.5730 

-3.0466  -0.6490  -3.0486  -2.1310  -2.1002  -1.0576  -5.7320  -2.1744   0.7534  -1.0136   0.2796  -5.0414 

 2.2292  -0.0802  -2.0444  -2.2784  -3.2454  -2.1142  -0.5666   0.3296  -1.3580  -2.8542   0.1442  -2.9980 

-1.1732  -0.8222  -0.8706  -1.2010  -2.4712  -1.9532  -1.5926  -0.2804  -0.3686  -0.1432  -0.4120  -1.3324 

-0.5834  -0.4446  -0.3596  -0.8712  -1.5534  -1.1132  -0.9500   0.1234   0.2184   0.2792  -0.1914  -0.9100 

-0.8132   0.2070   0.0472  -0.2466  -1.2482  -0.9086  -2.0850   0.2692   0.4674   0.2554  -0.5742   0.4070 

-1.4010  -1.1886  -1.1266  -1.5740  -2.3456  -1.6416   0.5900  -0.2754  -0.1872  -0.4522   0.1540  -1.6832 

-1.6106  -1.2492  -1.3700  -1.6294  -2.2470  -1.6850   0.5476  -0.4408  -0.5262  -0.5408   0.0974  -1.8410 

-1.2612  -0.8782  -0.8424  -1.2834  -2.4860  -1.7844  -1.5510  -0.3346  -0.3984  -0.6006  -0.4446  -1.4186 

-1.6330  -1.0102  -0.9684  -1.3270  -2.3720  -1.9260  -1.2506  -0.5896  -0.4116  -0.4556  -0.6800  -1.5964 

-1.6450  -0.8476  -0.9004  -1.2266  -2.5352  -1.9244  -1.5302  -0.6794  -0.4260  -0.3530  -0.0934  -1.4554 

-0.7208  -1.9224  -3.9400  -4.4608  -4.5762  -3.9422  -2.0276  -3.1076   0.1486  -3.0644  -2.6350  -3.2182 

-0.2874  -0.0194   0.0108  -0.3676  -1.4214  -1.0930  -1.6236  -0.3784  -0.4414  -0.5314   0.4410  -0.3992 

-1.2770  -0.2520  -0.1910   0.1356  -1.1760  -0.7042  -1.8236  -0.8656   0.5814   1.0044   0.7508   1.3474 

 

Hidden Output Weight Matrix 
[-1.2816  -0.4226  -0.9762   1.3604   2.1726  -0.4844   2.0494  -0.1740   1.6108  -3.6886   7.8580  -4.5354  

-1.3450  -0.7280  -1.4506  -1.5286  -4.5456  -4.4982  -4.5590   2.9912  -3.0364  -0.7394  -0.6456] 
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APPENDIX A-11 

Weight Matrix of the 4-year ANN Ride Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-0.1736  -0.1004  -0.5704  -0.9776  -1.8220   0.7056  -1.6234  -0.0670  -2.5154  -0.3014  -0.0484   0.0452 

-0.0606  -0.4480   2.4656   1.6106   0.0810   1.4814   0.4476  -2.7846   0.0596   2.2976   0.3432  -0.6674 

-0.2216   1.6000   0.5994  -3.9600  -0.5502  -0.2684   0.4902   1.3312   2.0222  -0.3906  -0.8608   1.4162 

 0.3066   0.0608   0.3316   0.3970   0.8270  -0.9640  -1.7046  -0.5354  -2.1022  -1.1676  -1.4126  -0.7352 

 0.9654   1.9050  -0.9924   1.4854   1.5450  -2.2250  -0.4820  -0.1584   3.2530  -1.2780   1.3214  -2.8222 

-4.6470  -2.4200  -2.2066  -2.4874  -0.6730  -2.5250   0.9686  -0.9834   0.0876   0.3932   3.3672  -1.9680 

-0.2984  -0.2700   0.7846  -2.0652   2.6700   1.2814   0.0490   1.3206  -1.4370   1.1734  -1.4984  -2.6674 

 6.2736   5.5252  -7.9992   5.5174   7.1946  -5.1444   2.6900   6.0552   2.5702   3.4044   2.5154  -5.4600 

 3.4920   3.6736   1.8582   0.7816   0.9202  -0.2764   2.1270  -0.3540  -0.6804   1.2226  -0.7560   0.5646 

 0.1242   2.2156  -0.2920   0.0952  -0.5346   1.3374  -2.9086  -0.2716   0.6820  -0.3310   0.5472  -2.2920 

 1.8576  -0.5670  -2.3524  -1.9666  -1.4808  -3.6076  -0.1684  -0.2956  -1.4510  -1.9790  -0.2054  -5.6352 

 0.2014   0.7686   0.6152   0.2786  -0.0226  -2.5122   1.6610  -1.6842  -0.4564  -2.3090  -0.5964  -1.4536 

-0.1756  -0.2482  -0.2964  -0.7062  -0.8332  -0.1140  -0.4850   0.0534  -0.2070   0.4466   0.2692   0.0914 

-0.1664  -0.1902  -0.1392  -0.5454  -0.7280  -0.1824  -0.3172  -0.0252  -0.6650   0.5250  -0.1846   0.1440 

-0.0952  -0.1932  -0.1780  -0.6216  -0.9112  -0.4180  -0.4792  -0.2802   0.1456   0.1960   0.6034   0.0316 

-0.0830  -0.2262  -0.3946  -0.6734  -0.8806  -0.1574  -0.3856  -0.0946  -0.1682   0.3586   0.4308   0.1426 

 0.5920   0.2762   0.0852  -0.2584   0.3142  -0.9282   0.7420  -0.1746  -0.4436  -0.9200  -0.3610  -1.2434 

 0.7704   0.6970   0.3362  -0.0832  -0.1942  -0.4886   0.8352  -0.5250   0.1408  -0.7320   0.1674  -1.8830 

-0.7750  -0.7492  -0.9154  -0.6304  -0.8516  -2.3000  -0.0606  -1.7992  -0.6708  -0.1730   0.4442  -2.0174 

-0.8344  -0.1894  -0.7724  -1.0476  -1.3286  -2.8356   0.2670  -1.5036  -0.2020  -2.0492   0.6904  -2.2756 

-0.1930  -0.2572  -0.2874  -0.6308  -0.8876  -0.2270  -0.5422  -0.1630  -0.1924   0.2608   0.4380   0.1408 

-0.1072  -0.1716  -0.3424  -0.5246  -0.8466  -0.3472  -0.5446  -0.0156  -0.0116   0.2674   0.4882  -0.1276 

 

Hidden Output Weight Matrix 
[-1.8082  -0.2400  -1.8036   0.7296   1.4452   1.7492   1.5814   0.0356   2.0402   0.3412   1.0524  -0.7974  

-0.6970  -0.5466  -1.0242  -0.7352  -0.5112  -0.4540  -3.9754  -2.0432  -0.8894  -0.8708  -0.4314]  
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APPENDIX A-12 

Weight Matrix of the 4-year ANN Rut Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-0.9408  -0.3890  -0.9086  -1.6702  -3.7456  -0.2974  -2.3240  -1.3490  -4.1326  -0.7372  -1.3832  -1.5206 

 1.1306  -1.3050   0.6552  -0.0330  -2.9472  -2.6480   4.8892  -2.1832   0.8500  -3.2722  -1.6976  -7.8466 

-0.3640   2.2576   1.7754  -3.6134  -1.9962  -0.6202   1.2000   0.1776   1.3512  -0.1512  -0.9502   1.5984 

 0.9162   0.2336   0.4966   1.0426   2.2466  -0.3512  -1.5114  -0.2260  -1.9126  -1.4740  -0.7450  -0.2386 

 1.5190   1.7106  -1.4020   1.0504   1.8344  -1.4530   1.1508   0.8880   3.0114  -0.5606   0.9306  -2.4432 

-1.5560   0.5000   0.3882   0.7112   2.4700   2.2182  -0.0724   3.1044  -1.1992   0.3146   0.0764   2.9542 

-0.0864  -0.6760   0.3092  -2.7072   2.1366   1.3452   0.7742   1.4734   0.6196   1.1030  -0.7986  -2.1936 

-1.1194  -1.7484   0.2540  -2.3326  -1.9430  -1.3082   0.3334  -5.1126  -0.2416  -0.8646   4.3902  -6.8234 

 6.7804   0.7172  -1.0936  -0.0386  -1.5600   6.8222   2.8894   7.3306  -3.8334   4.5906   0.8564  -6.6392 

-6.0140  -2.7972  -6.9202  -3.6470  -4.2210  -6.4896  -3.4306  -7.2262  -0.0354   0.2080  -0.2030   6.0130 

 2.1484  -0.0520  -2.0670  -1.6706   0.3074  -3.4440  -0.3732  -1.0916  -0.8922  -1.1012  -0.7834  -4.9610 

 0.1332   0.4884   0.0170   0.4266   1.4910  -1.9182  -0.3596  -0.7362  -1.2374   0.7232  -0.2302  -2.6240 

-1.3276  -1.7222  -1.0106  -1.5416  -0.3486  -2.5594   1.3108  -2.4920  -0.2904   0.9808   0.1810  -3.1812 

-1.2810  -1.6842  -0.9446  -1.4680  -0.3304  -2.7716   1.1990  -1.7422  -0.3004   1.0008   0.1910  -3.2210 

 1.4844   1.6212   1.0652  -0.1066  -2.2614  -1.8364   5.4146  -0.1904  -2.7336  -1.8814   3.5836  -3.6324 

 5.7382   3.2094   3.0954  -1.3110  -6.4420  -0.6902  -4.7064   3.6710   0.0064  -5.0830   0.0472   5.6814 

-0.7230  -0.5430  -0.3016   0.4504   1.5408  -0.8450   0.5230  -0.2480   0.3608  -0.6686  -0.6036  -2.4410 

-1.9122  -1.9852  -2.4296  -0.5200   0.7090  -5.4554  -0.9924  -1.8430  -1.4180  -1.3522  -1.1322  -7.6536 

-0.2204  -0.0314  -0.2444   0.2154   1.3536  -2.2250   1.0764  -0.6422   0.5256  -0.2546  -0.7464  -2.2184 

-0.3666  -0.0066  -0.2114  -0.6910   1.1936  -0.5354  -1.4950  -0.7852  -0.2022  -1.5860  -1.2792  -1.6608 

 0.2534  -0.1410  -0.4130   0.8808   1.3864  -0.2772  -0.7850  -1.0862   0.5162   0.4874  -0.7196  -3.4814 

 3.0808   3.8350   3.3602   3.8550   2.4444  -0.4514  -1.6656   1.3542  -4.7030  -2.5930   2.3102  -2.8600 

 

Hidden Output Weight Matrix 
[-3.9912   0.2462  -2.1026   0.8500   1.3460   0.9804   1.1342  -4.2920   0.0584   5.2912   4.6044   2.0592   

4.8204   4.8270  -0.4720   0.2142   4.4836   6.0776   3.6030   4.4774   4.6412  -0.4080  -1.2950] 
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APPENDIX A-13 

Weight Matrix of the 5-year ANN Crack Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-3.5616  -1.7602  -1.1800  -5.3364   0.9724  -1.5490  -1.6014  -1.6636  -2.6136  -1.5316   0.5350   4.6444 

-5.3750  -4.3274  -0.8606  -2.2182  -4.6166  -0.7954   3.0950  -3.6162   0.3764   2.1716   1.6706  -2.5636 

-3.6026   0.2940   0.6320   7.0960  -0.3920  -1.7710  -1.1494  -0.3050  -0.2876   0.7966   0.9936   5.2120 

 1.7160  -1.5546   2.2344   2.4992   1.5676   7.0762  -1.4836   6.2236  -3.1256  -7.3682  -5.9156  -0.9924 

 0.7234   1.7308   0.4762   7.8204   0.8766  -0.7230   1.4126   0.5252  -1.0830   1.5244  -0.4772   7.2124 

-5.2690  -2.8072  -3.4962  -1.3610   5.4736  -5.3874  -1.3366  -2.7836  -0.4670  -2.1674  -1.0436   4.7630 

 2.9532   4.9810   6.0766   3.0672  -6.3584   4.5516  -2.3514  -6.4350  -4.6120  -0.3342  -5.0170  -3.0680 

-4.3492  -5.4840  -4.3908   7.5826  -6.9272  -4.5786   6.4020   0.4556  -4.9854  -4.7342  -1.1784  -5.9294 

 0.3742  -0.0176  -1.3662   0.2204  -7.9974  -1.4654   0.1364  -0.4162  -1.3712  -0.2446  -0.9710  -4.4660 

-5.3756  -2.8942  -5.4272  -7.0580  -7.9976  -2.8526  -6.2232  -3.0470   0.9774  -1.1570  -0.3376  -2.9466 

 2.3460   0.3902  -0.6930   0.4040   2.7334  -3.8144   6.0608  -0.2096  -5.5576  -3.3740  -6.7844   6.9562 

-5.3110  -4.5260  -3.9956  -2.9080  -1.3372  -5.0810   2.2036  -4.2552   1.2156  -4.6430   2.6808  -7.0042 

-2.5434  -2.4522  -2.4322  -3.9064  -5.9934  -1.9304  -3.0012  -0.6982  -2.0310  -2.9670   1.0866  -3.1844 

-6.0924  -5.2414  -5.0424  -3.9708  -3.2464  -3.0104  -3.8284  -2.2312  -1.3866  -3.0306   0.8204  -7.9140 

-0.1532  -0.7152  -1.6264  -2.1216  -2.3396   0.3534  -2.5470   1.2708  -1.5834  -2.1966   0.2816  -2.8102 

-0.8666   0.6856   1.5876   0.3840  -1.9342   0.2542  -3.0732   1.4482  -1.9550  -0.7742   0.3144  -1.6156 

-4.2886  -5.7800  -1.5922   2.4960  -7.9906  -3.4516  -4.0770  -0.7560  -0.4642   0.0770  -1.0020   0.7260 

-4.5144  -2.8556  -2.7450  -2.7904  -3.4370  -4.2344   0.3594  -1.0652   1.4830  -0.0440   2.7224  -4.1096 

-7.8134  -6.4776  -7.4324  -7.9954   3.3016  -3.7070  -2.3454  -4.9056   1.6926  -3.5714   0.0544  -3.9600 

-0.8554  -3.4576   0.0044   2.5592   6.5656  -3.4406  -4.4614   0.6046  -0.6884  -4.2582  -0.6636   0.6136 

-0.1682  -0.7362  -0.2500   1.3136   4.5284   0.0500  -0.0634   0.3886  -0.3490   0.4908  -0.0242  -5.0694 

-5.6944  -3.6080  -3.4544  -5.5180  -7.9962  -3.7294   1.1762  -1.2686  -0.2714   0.9002   3.3050  -1.8034 

 

Hidden Output Weight Matrix 
[-1.7290   2.0872  -3.3570  -0.2624   5.3946   0.2300   0.4926  -0.4520  -5.7850  -6.0684   0.3700  2.5004  

-5.6122  -0.0756   7.2920  -1.7970   0.5276  -4.1960  -6.7094   1.0150   4.8036  -7.7930  -3.6006] 
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APPENDIX A-14 

Weight Matrix of the 5-year ANN Ride Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
0.0602   0.1662  -0.1404  -0.7114  -1.2350   0.6660  -1.4474  -0.1702  -2.9832  -0.4022  -0.6572  -0.5362 

-1.0522  -1.4700   1.7862   0.9672  -0.6950   1.1174   0.8276  -2.2480  -0.1966   1.9636   1.5942  -0.3166 

-0.1744   1.8544   0.8960  -3.7752  -0.3400  -1.0084   1.1494   0.4654   1.0454  -0.8170  -1.7602   0.5624 

 0.3906  -0.0594   0.3884   0.6152   1.3554  -0.7852  -1.9100  -0.8700  -2.0342  -1.2234  -0.2366  -0.7756 

 1.2744   1.8976  -1.0640   1.3270   1.5196  -2.2850  -0.1930  -0.6930   3.7684  -1.5582   1.5402  -2.9676 

-3.0532  -0.6808  -0.7564  -1.0264  -0.5116   0.9412  -0.1190   1.3408   0.5316   0.4056  -0.1220   3.5042 

-0.4750  -0.5914   0.7012  -1.8536   3.1314   1.5152  -0.2240   1.1108  -0.9254   1.2104  -0.3254  -3.0810 

 2.8240   1.6956   4.2312   1.8330   3.4212   4.9736   2.9004   3.6092   2.3632   3.4846   0.4650   5.8866 

 3.0330   3.1160   1.0694  -0.1206   0.1122  -1.0204   1.9708  -0.7446  -0.0210   1.4872  -1.8372  -0.4490 

-0.3686   1.0074  -1.5794  -1.2820  -2.3532  -0.6146  -3.8114  -1.1740   0.8262  -1.6746  -0.4908  -3.8374 

 1.4446  -2.0102  -3.8162  -3.8030  -3.4534  -5.6360  -1.5704  -1.7046  -1.7544  -3.2872  -2.7000  -7.2444 

-5.4260  -5.3708  -5.5114  -7.2576  -5.3220  -7.5830  -5.6826  -7.4066  -1.9384  -3.6382   1.9976   6.6022 

-0.3282  -0.4600  -0.3700  -0.7706  -0.8280  -1.4146   0.8524  -0.7772  -0.6846  -0.4234   0.7140  -1.9202 

-0.0584  -0.0176   0.0360  -0.2242  -0.5504  -0.9586   0.8956  -0.8686  -0.5800  -0.3824   0.9086  -1.6992 

-0.3336  -0.2122  -0.1916  -0.4170  -0.8660  -0.4110  -0.4672  -0.4774  -0.4152   0.0800   0.2196   0.2576 

 0.1934  -0.1486  -0.1596  -0.2982  -0.7350  -0.6220  -0.6502  -0.2896  -0.6674   0.0106   0.3626  -0.1462 

 0.1102   0.2094  -0.2820  -0.4292  -0.5870  -1.5296   0.7020  -0.7974  -0.4190  -0.4022   2.0604  -2.3192 

-0.3470  -0.1566  -0.8040  -0.8734  -1.0952  -1.7320   0.1820  -1.0710  -0.1100  -1.0572   2.5274  -1.7484 

-3.1720  -4.8204  -4.9320  -5.0452  -4.9520   7.4140  -3.6356  -5.0082  -1.6896  -3.4214  -0.1794   7.1382 

-2.7464  -2.6570  -2.6312  -2.7506  -1.1984  -6.3250   0.4862  -6.3572  -1.8024  -0.0446   3.8326   7.8912 

-0.5296  -0.5776  -0.5902  -0.6012  -0.3526  -1.6584  -1.7466  -1.7614  -0.0160  -1.3234   2.6324  -2.0284 

-0.5540  -0.6190  -0.6850  -0.9920  -1.3194  -1.8206   0.2750  -1.4962  -0.7572  -1.0024   0.6826  -3.3354 

 

Hidden Output Weight Matrix 
[-0.9330  -0.3612  -0.9308   1.0262   1.0426  -1.1534   2.1062  -0.3074   2.2146  -0.8000   0.1542  -0.0320  

-1.2706  -0.9286  -1.0400  -0.8126  -1.2970  -2.2074   0.2416  -0.9130  -1.9270  -0.7504  -0.9696] 
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APPENDIX A-15 

Weight Matrix of the 5-year ANN Rut Model 

Flexible Pavements 
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Input Hidden Weight Matrix 
-2.1784  -1.3236  -1.4804  -2.3786  -6.3406  -1.0562  -2.7830  -1.7492  -4.6640  -1.1554   0.1554  -1.9422 

-3.8370  -2.9060   0.2334  -1.3484  -5.4446  -2.5704  -0.4452  -6.5740  -3.1744  -0.3604   1.9326  -4.4364 

-7.4764  -4.3330  -4.6480   7.1112  -6.4814   4.9424   0.2484   7.7790   0.9744  -2.9554   0.5504   4.8736 

 0.8990  -0.3750  -0.5872   0.5542   4.3896  -0.0708  -0.0316  -0.0790  -1.0774  -1.5942  -0.9886  -1.6182 

 0.1830   0.8642  -1.6912   0.8674   1.8946  -1.2452  -0.1004   0.1204   1.3006   0.2954   0.9562  -1.9250 

-2.8410  -0.8540  -0.5534  -0.0836   2.2782  -0.6314  -2.6352  -0.2656   0.7000  -0.3464   0.1760   0.9652 

-0.2044  -0.4034   0.5090  -2.4908   3.1206   1.0046  -1.6790   0.6710   0.7830   1.1666   0.1244  -2.7870 

-0.0846  -1.6532   0.3622  -1.9480   1.6280   0.2920   1.6434  -2.0810   1.6820   0.9570   1.4292  -1.8140 

 0.0880   0.5952  -0.8146  -0.9622   2.3670  -0.3114   2.4250  -1.2156   2.6832   3.3320  -3.3770   5.8442 

-1.8652  -1.6000  -2.9362  -2.3604  -3.3700  -4.1072  -3.3730  -4.6204   0.6576  -1.5680   0.0340  -7.3550 

-1.0202  -1.9526  -3.7172  -1.8360  -0.5702  -6.8294   0.2712  -5.4540  -0.7754  -3.4086  -0.5970   4.4160 

 0.3450   0.0754  -0.0080   0.0492   2.4136  -1.3180  -1.7390  -1.7708   0.4840   0.2030  -0.8870  -2.8256 

 7.3404  -5.2940  -3.9452  -3.8596  -4.0554  -0.8776   5.1464   3.1272   1.2860  -3.2520  -3.5034  -2.4442 

 1.4956  -1.0462  -0.8992  -0.9154   1.0322  -1.0672   0.9854  -1.5312   1.2606   0.3912  -4.1680   0.1564 

-0.3514  -1.8960  -1.5824  -3.5474  -5.4256  -3.6246  -6.5530  -4.9086  -3.6106  -5.1746  -0.4274   4.3696 

 6.9340  -5.9734  -5.6872  -5.2108  -6.1634  -1.3816   3.6616   2.0976  -1.8140  -6.8492  -0.0702  -3.6852 

-0.0452   0.3126   0.6696   1.1020   3.9392  -1.5944   0.6662  -0.7722  -2.6844   1.0290   1.0556  -3.2306 

 3.5296  -2.3246  -4.2130  -4.1156   0.9760  -2.2970   0.9634  -1.6910   0.7860   0.3844   6.4786  -2.5742 

-1.4120   0.2356  -0.2154   1.4906   2.3426  -6.4816  -1.7564  -5.5630   0.5770  -1.4732  -2.1924   5.5884 

 0.2922  -0.0572   0.1090  -0.0042   2.3870  -1.1122  -1.3396  -1.8236   0.5576   0.0752  -1.1210  -2.8356 

-4.4640  -2.6616  -1.0452   0.3196  -0.4454   6.5652  -4.1190   7.3666  -3.7814  -0.2632  -2.1910  -0.5760 

 2.3308   0.8874  -0.2506  -0.9120  -1.1230   0.2712  -0.9384   0.1184   2.4690  -0.3026  -5.3620  -2.4256 

 

Hidden Output Weight Matrix 
[-7.0208   7.7056   0.3966   1.7494   0.8482   0.4464   1.3284   4.0910  -0.2106  -3.9454   0.0534   1.8152 

1.1140   0.6242  -3.0094   6.5384   0.9762   0.9500   0.3476   1.9274   0.6974   0.1844  -2.1290] 
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APPENDIX A-16 

Weight Matrix of the 1-year ANN Crack Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.5540  -0.8052  -0.2250  -0.3094  -0.3734  -2.4184  -0.1090  -0.6810   0.0322   1.7226 

 1.3220  -0.7926  -2.3196  -0.8360   0.2912  -0.7042  -0.3894  -0.2646  -0.0844   0.8902 

-0.3650   1.4046   0.0472  -0.2506  -1.6122   0.0360  -2.0380   2.0294   2.1282   1.8246 

-1.9280  -1.3730   1.4910  -0.4104   0.7112   0.6080   4.0670  -1.8994  -1.3250   2.5836 

 0.7054  -2.4774   2.8940   0.0416   1.8352  -0.3936  -0.0606  -0.2244   0.1570  -1.8610 

 0.0016  -0.3416   1.2572  -0.7830  -2.6014   0.2304   1.9112   0.8312  -0.5584   1.2166 

-0.8506  -4.9652   0.9082  -0.2050  -1.1836  -2.4940  -2.5402  -2.1462  -2.6116  -2.7826 

 0.0212   1.9286  -1.2346   0.5040  -3.3812   0.0820   0.0672  -0.5824   0.2570   0.2592 

 2.4222   1.4708  -0.1816   1.6808  -0.1586  -2.2716   0.1056   0.4452   1.6504   0.5352 

-0.3394   2.0300   1.5444  -2.9256   2.0506  -0.0744   0.6822   1.1476   0.8622  -0.5840 

-1.1456  -0.8446  -0.6406  -0.5464  -0.1690  -0.9222   0.1956   0.1666  -0.1112  -2.3942 

-1.1600  -0.9982  -0.7452  -0.5946  -0.2610  -0.9872   0.1586   0.1782   0.2456  -2.3234 

-0.4126  -0.4066  -0.1946  -0.1534   0.0604  -0.2606   0.6242   0.5970   0.8812  -0.5550 

-1.2332  -0.7606  -0.6524  -0.6016  -0.1386  -0.9194   0.2184   0.4110   0.0214  -2.3452 

-1.1814  -0.7426  -0.7144  -0.5686  -0.1066  -0.8312   0.1792   0.0206   0.0256  -2.3316 

-0.6724  -0.5894  -0.4556  -0.2908  -0.0690  -0.3886   0.1292   0.5372   0.2434  -1.3552 

-1.5052  -1.0800  -0.9900  -0.9896  -0.9286  -2.7014  -1.6214  -2.7384  -2.5854  -2.8240 

-1.1566  -0.7890  -0.6712  -0.5884  -0.2180  -0.7262   0.2134  -0.0872  -0.0660  -2.4372 

 

Hidden Output Weight Matrix 
[-1.8102  -1.3450   0.8580   0.9806   3.1824  -1.9134  -1.0456  -1.7180  -0.5150   1.3690   0.4656   0.4344   

0.3616   0.4212   0.4114   0.2174  -0.4364   0.4372  -1.0496] 
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APPENDIX A-17 

Weight Matrix of the 1-year ANN Ride Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.7886  -0.9910  -0.0490  -0.3036  -0.2122  -2.0780  -0.1342  -0.6956  -0.3062   1.5952 

 1.1306  -1.0254  -2.2920  -0.8824   0.4114  -0.2350  -0.5504  -0.3900   0.1508   0.7294 

-0.1092   1.7024  -0.0222  -0.1054  -1.7366   0.0206  -2.5496   1.9666   3.7222   1.8374 

-0.9974   0.0172   2.7414   0.6862   1.4452  -0.9076   4.9480  -1.1504   0.8664   5.0536 

 1.7006  -1.9420   2.8472  -0.3042   1.0366  -1.0114  -0.1594  -0.8196  -1.2266  -1.7408 

-0.6180  -0.8510   1.1456  -0.7552  -2.4666   0.3994   1.4204   0.9202  -0.1656   0.7732 

-0.2672  -3.8996   0.9030  -0.2192  -1.6252  -2.1930  -1.4766  -2.0276  -2.3912  -2.6096 

-0.4600   1.6510  -1.1826   0.4714  -3.2020   0.3792   0.2350  -0.0960  -0.3696   0.2726 

 2.3064   1.4714   0.0480   1.7120   0.1112  -2.1520  -0.0196   1.3144   2.0760  -0.0344 

-0.0300   2.1924   1.4094  -2.9160   1.9066  -0.3466   0.7716   1.1474   1.0214  -0.6702 

-0.5036  -0.5510  -0.9210  -0.4440  -0.4026  -2.3694  -1.4626  -2.4592  -2.4394  -2.5184 

 0.3108   0.5232   0.2686   0.5226   0.4430  -0.2246   0.0900   0.1892  -0.1140  -0.0452 

 0.2454   0.3252   0.3016   0.4026   0.4156  -0.0970   0.2002   0.1922   0.0060   0.0134 

-0.1602   0.0284  -0.1114   0.1362   0.1976  -0.7974   0.9602   0.1956   0.5584  -0.6860 

-1.0334  -1.4376  -1.0342  -0.9664  -0.9410  -2.4624  -1.9600  -2.4766  -1.8894  -2.4844 

 0.2890   0.4766   0.3966   0.4716   0.4532  -0.1642   0.0546   0.2612  -0.1246  -0.1666 

-0.9552  -1.0384  -1.0176  -1.0072  -0.9460  -1.5590  -0.5134  -1.5764   0.0472  -2.6710 

-0.0332   0.0208  -0.1414   0.1164   0.1210  -0.6746   0.9682   0.2794   1.0512  -1.0010 

 

Hidden Output Weight Matrix 
[-1.5400  -0.8602   0.5504   0.4308   2.3776  -1.3814  -0.1902  -1.2276  -0.7580   0.8534  -0.0180   0.6756   

0.6234   0.2156  -0.1494   0.6652  -0.1672   0.2236  -1.4700] 
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APPENDIX A-18 

Weight Matrix of the 2-year ANN Crack Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.9624  -1.2206  -0.5242  -0.5146  -0.2882  -2.6664   0.0194  -0.4902   0.0106   1.4014 

 1.1276  -1.0308  -2.5144  -0.9796   0.3222  -0.6364  -0.2580  -0.1690  -0.1072   0.8926 

-0.0984   1.7326   0.2408  -0.1704  -1.6732  -0.0062  -2.7892   1.6606   2.3100   2.0076 

-1.5200  -0.9334   1.8376  -0.1646   0.7364   0.6308   3.6980  -1.8706  -1.0442   2.8744 

 1.0436  -2.2410   3.1490   0.2312   1.9586  -1.1046   0.3492  -0.4150  -0.2482  -1.8642 

-0.2812  -0.5734   0.9960  -1.0010  -2.8950   0.6044   1.7642   0.7102  -0.1032   1.1622 

 0.2280  -3.8730   1.0810  -0.0366  -1.2708  -0.7542  -0.7794  -0.4640  -0.7374  -1.0692 

-0.3814   1.5062  -1.5002   0.3590  -3.3310  -0.1444   0.1330  -0.3404  -0.5052  -0.3408 

 2.4314   1.6164   0.0774   1.9606   0.2552  -2.1802   0.3564   1.5972   1.1114   0.4726 

-0.5826   1.7750   1.2842  -3.1400   1.8108  -0.4326   0.7544   1.2846   1.5342  -0.7340 

-0.5270  -0.5656  -0.3236  -0.2844  -0.1284  -0.7280  -0.2262  -0.5890   0.0036  -0.7602 

-0.2842  -0.0642  -0.1646  -0.0054   0.0806  -0.4894  -0.1394   0.0994   0.1186  -0.5490 

 0.0434   0.0382   0.2096   0.2182   0.2922  -0.1106  -0.0916   0.0212   0.3216  -0.1732 

-0.2596  -0.0680   0.0864   0.1160   0.2940  -0.2950  -0.0770   0.0390   0.3256  -0.4516 

-0.3464  -0.1930  -0.1844  -0.0212   0.1754  -0.3834  -0.1242   0.1112   0.2034  -0.5560 

-0.1202   0.0274   0.1742   0.1640   0.1950  -0.2660  -0.1662   0.1574   0.3508  -0.3922 

-0.1490  -0.1842   0.0084   0.1036   0.3042  -0.3252  -0.1282   0.0556   0.4206  -0.6114 

-0.1252  -0.0762  -0.0556   0.0026  -0.0822  -0.0652  -0.5792  -0.5906  -0.4900  -0.2810 

 

Hidden Output Weight Matrix 
[-1.3976  -1.1836   0.5574   0.5280   3.1802  -1.9814  -0.2352  -1.0370  -0.9974   1.1704  -0.0354   0.1694   

0.3402   0.2812   0.1884   0.2854   0.2874  -0.2124  -1.5176] 
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APPENDIX A-19 

Weight Matrix of the 2-year ANN Ride Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-1.0934  -1.3176  -0.5594  -0.5182  -0.2034  -2.4994  -0.0930  -0.4340   0.1560   1.4014 

 1.0544  -1.0642  -2.4166  -0.7624   0.6250  -0.6076  -0.3070   0.1244   0.0704   0.8942 

 0.0424   1.7794   0.2026  -0.2334  -1.8782   0.0924  -2.6694   1.5136   2.1426   2.3562 

-1.3810  -0.8208   1.9026  -0.1362   0.6196   0.5964   3.8426  -1.8614  -1.2374   3.0610 

 1.9030  -1.5980   3.2680  -0.1816   0.9220  -0.2830   0.2870  -1.1764  -0.5292  -0.7562 

-0.7022  -0.9120   0.8800  -0.8010  -2.3956   0.1064   1.7834   1.4100   0.0020   0.5870 

 0.6080  -3.4944   1.2564   0.2536  -1.2162  -0.3000  -0.1506  -0.0146  -0.3080  -0.6242 

-0.6780   1.2694  -1.6162   0.2536  -3.2766  -0.2712   0.0000  -0.1744  -0.6860  -0.5908 

 2.3794   1.5990   0.2030   2.1626   0.5816  -2.0912   0.2016   1.9352   1.6932   0.7046 

-0.2074   2.1322   1.4604  -3.1330   1.6180  -0.2534   0.7644   1.0444   1.1184  -0.5392 

 0.0380  -0.0040   0.0792   0.0892   0.1066  -0.2476   0.1012   0.0306  -0.0444  -0.3052 

 0.0594   0.1990   0.0080   0.0790  -0.0240  -0.2552   0.0222   0.0142  -0.0466  -0.2146 

 0.1846   0.1736   0.2032   0.1604   0.1442   0.0144   0.1304   0.0272  -0.0800  -0.0580 

-0.0296   0.1194   0.0990   0.0664   0.1054  -0.1808   0.1024  -0.0360  -0.0424  -0.2300 

 0.0034   0.0914  -0.0030   0.0832   0.0990  -0.2292   0.0340   0.0242   0.1374  -0.2332 

 0.1280   0.2224   0.1980   0.1386   0.0914  -0.1042  -0.0036   0.0934  -0.0954  -0.1244 

 0.0916   0.0082   0.0306   0.0536   0.1122  -0.2802   0.0422  -0.0194   0.1724  -0.3966 

 0.0706   0.0966   0.0480   0.0714   0.0136  -0.0420   0.1114   0.0106   0.0212  -0.2712 

 

Hidden Output Weight Matrix 
[-1.2670  -0.8196   0.6892   0.3742   2.2262  -1.0054  -0.1824  -0.6476  -1.0614   0.5924   0.2032   0.2244   

0.3142   0.2020   0.1752   0.2890   0.2014   0.1642  -1.5936] 
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APPENDIX A-20 

Weight Matrix of the 3-year ANN Crack Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.9506  -1.2800  -0.5816  -0.6216  -0.5394  -2.7472  -0.1056  -0.1044  -0.3196   1.4412 

 1.0764  -1.2214  -2.6464  -1.1734   0.0180  -0.8060  -0.2930  -0.1296  -0.4700   0.9144 

-0.1584   1.7374   0.1932  -0.1384  -1.6346   0.0630  -2.7530   1.6720   2.2770   1.7572 

-1.6834  -1.0526   1.7834  -0.1386   0.7966   0.6210   3.8544  -2.1860  -1.2440   2.3586 

 1.2366  -2.0680   3.2292   0.4084   2.2800  -0.4614   0.4572  -0.5192  -0.2692  -1.8946 

-0.3842  -0.7462   0.8944  -1.1642  -3.1908   0.3484   1.5774   0.5384  -0.2796   1.3252 

-0.6334  -4.7330   0.3472  -0.3264  -1.4886  -1.2196  -0.9902  -0.9522  -1.2140  -1.5294 

-0.4480   1.3864  -1.5874   0.2162  -3.4300  -0.3552   0.0100  -0.4660  -1.1774  -0.1556 

 2.5180   1.6552   0.1694   2.0040   0.3490  -2.2982   0.2764   1.5242   1.0300   0.5794 

-0.8352   1.5374   1.0246  -3.4666   1.5094  -0.2860   0.8154   0.9108   1.2560  -0.8942 

-0.8560  -0.8504  -0.5264  -0.4880  -0.2436  -0.7302  -0.0606  -0.9274  -1.0526  -1.1920 

-0.6332  -0.4894  -0.6164  -0.3322  -0.2024  -0.7820  -0.1510  -0.9794  -1.0306  -1.1642 

-0.5600  -0.5610  -0.4676  -0.3244  -0.2286  -0.4686  -0.2640  -0.7152   0.0996  -0.8924 

-0.7812  -0.6316  -0.5856  -0.4186  -0.3056  -0.8032  -0.2566  -0.8920   0.0104  -1.0312 

-0.9624  -0.8634  -0.7124  -0.6284  -0.1366  -0.7324  -0.5186  -1.0062  -0.6754  -1.1662 

-0.9184  -0.8026  -0.6022  -0.6464  -0.4530  -0.8576  -0.3886  -0.8366  -0.4880  -1.1202 

-0.8772  -0.9382  -0.6824  -0.6570  -0.1392  -0.7376  -0.4980  -1.0722  -0.6600  -1.3452 

-0.1332  -0.1952  -0.1662  -0.2000  -0.1642  -0.0332  -0.4444  -0.6740  -0.7624  -0.1680 

 

Hidden Output Weight Matrix 
[-1.5896  -1.4308   0.5450   0.8482   3.3612  -2.4486  -0.3640  -0.8480  -1.1070   0.7386  -0.1980  -0.2586  

-0.0434  -0.1142  -0.2808  -0.1736  -0.2812  -0.3616  -1.5294] 
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APPENDIX A-21 

Weight Matrix of the 3-year ANN Ride Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-1.1366  -1.5892  -0.8664  -0.7690  -0.5556  -2.2570  -0.7182  -0.3762   0.3584   1.0012 

 1.3144  -0.7670  -2.0332  -0.4724   0.8152  -0.5640  -0.9204   0.0686   0.2734   0.1324 

-0.1530   1.6340  -0.1186  -0.5762  -2.0260  -0.3014  -2.0192   1.6836   2.7230   2.0834 

 0.5614   1.1376   3.8414   1.7866   2.5406  -1.0092   3.2882  -1.5866   0.6494   4.9156 

 1.9880  -1.6432   3.2272  -0.4624   0.7974  -0.4496  -0.0252  -0.9400  -0.8390  -0.7336 

-0.6572  -0.9008   1.0952  -0.5422  -2.2634   0.5132   1.6340   1.3710  -0.0584   1.0924 

 1.0136  -3.1136   2.1564   1.0316  -0.3608  -2.3082  -1.4046  -1.5600  -1.8916  -2.6014 

-1.0720   0.8766  -2.3240  -0.3974  -3.9232   0.5942   0.9574   0.5290   0.0342   0.4372 

 2.0862   1.2804  -0.3854   1.5824  -0.0382  -1.8714  -0.8076   1.8486   2.2894   1.4980 

-0.2920   2.0660   1.3102  -3.2086   1.6156  -0.1456   0.5722   0.9772   0.8676  -0.0034 

-0.0106   0.0986   0.1606   0.1446   0.2110  -0.0506   0.7608   0.1782  -0.6616   0.5096 

 0.2580   0.5382   0.5510   0.5972   0.5302   0.6980   0.5126   0.3156   0.1484   1.3476 

 0.0034  -0.0464  -0.0232  -0.0806   0.0734  -0.4140   0.6630  -0.0184   0.2520  -0.3226 

 0.0520   0.3340   0.3906   0.3686   0.4410   0.4136   0.7534   0.1306  -0.2234   0.8016 

-0.0260   0.2226   0.0770   0.1334   0.2856  -0.4556   0.6174   0.0712   0.4260  -0.1732 

-0.0394   0.1386   0.1740   0.1024  -0.0330  -0.3082   1.0254   0.3904  -1.4340   0.7034 

 0.4402   0.3572   0.3960   0.3962   0.0580  -0.9900  -0.0254  -1.5044   0.0520  -2.4584 

 0.1602   0.2914   0.2342   0.1630   0.0916  -0.4384   1.1130   0.2542  -1.3846   0.6704 

 

Hidden Output Weight Matrix 
[-1.2966  -0.6762   0.8086   0.3982   2.3810  -1.3430   0.1570  -0.6500  -0.9402   0.8716   0.1732   0.2264   

0.3166   0.2710   0.2482   0.1540   0.0710   0.1680  -1.6462] 
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APPENDIX A-22 

Weight Matrix of the 4-year ANN Crack Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.8932  -1.2326  -0.4900  -0.4726  -0.3916  -2.8142   0.1892  -0.3484  -0.1202   1.2676 

 1.2544  -0.9532  -2.4482  -0.9766   0.1854  -0.6862  -0.3512  -0.0426  -0.4966   0.8570 

 0.2294   2.0282   0.4670   0.0884  -1.4308   0.3852  -3.3416   2.1036   1.7530   2.5044 

-1.5308  -0.8384   1.9572   0.1052   1.0820   0.7692   3.6822  -2.0122  -0.6496   2.5956 

 1.2256  -2.0216   3.1556   0.2012   2.1740  -0.3966   0.3614  -0.6292  -0.0850  -1.7062 

-0.4000  -0.7324   0.8666  -1.2442  -3.3904   0.2046   1.7164   0.6534  -0.5196   1.0300 

-0.7702  -4.8470   0.2272  -0.3874  -1.5120  -1.3246  -1.3340  -1.0694  -1.3544  -1.6500 

 0.0782   1.9002  -1.2324   0.6106  -3.3736   0.0214   0.4574   0.2892  -0.7136   0.0690 

 2.5206   1.6324   0.1196   2.0256   0.2424  -2.3710   0.2802   1.6712   1.3754   0.5764 

-0.7854   1.5854   1.1026  -3.2722   1.8162  -0.1820   0.6208   0.8608   1.4204  -0.7204 

-0.6842  -0.6950  -0.3546  -0.3196  -0.0304  -0.7230  -0.6182  -0.3370  -1.0156  -1.2286 

-0.6560  -0.5024  -0.4260  -0.1004  -0.1574  -0.7552  -0.6554  -0.3786  -0.2766  -1.1820 

-0.1674  -0.1360   0.0224   0.0410   0.2720  -0.0596  -0.5146   0.1210  -0.0374  -0.7520 

-0.2306  -0.0186   0.0650   0.1462   0.3902  -0.1370  -0.6000   0.0982  -0.1052  -0.9784 

-0.5286  -0.4194  -0.2430  -0.1304  -0.0436  -0.4802  -0.6526  -0.6032  -0.6746  -1.1646 

-0.2340  -0.0620   0.0420   0.1022   0.2684  -0.1746  -0.6750   0.1522  -0.0646  -0.9064 

-1.0126  -1.0854  -1.0250  -0.5096  -0.1736  -1.0652  -1.1170  -1.3972  -1.3308  -1.4944 

-0.8604  -0.8114  -0.5876  -0.5382  -0.3310  -0.7422  -0.6042  -0.8280  -0.9808  -1.2792 

 

Hidden Output Weight Matrix 
[-1.3824  -1.0822   0.6596   0.9276   2.9890  -2.4206  -0.4240  -1.4132  -1.3630   0.9930  -0.0056   0.0086   

0.2924   0.2834  -0.0240   0.2890  -0.1632  -0.0812  -1.5672] 
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APPENDIX A-23 

Weight Matrix of the 4-year ANN Ride Model 

Rigid Pavements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 138

Input Hidden Weight Matrix 
-0.9370  -1.1422  -0.3606  -0.2890  -0.0160  -1.8512  -0.0050  -0.5792   0.0310   2.1682 

 1.0866  -0.9380  -2.2734  -0.7132   0.7112  -0.3670  -0.3922   0.0014  -0.1000   0.9186 

-0.0296   1.5960   0.0140  -0.4030  -2.1252  -0.4842  -2.5306   1.5124   3.0956   1.4204 

-0.2700   0.2936   3.0484   0.9932   1.7466   0.3172   2.8834  -1.1672   0.0080   4.1986 

 2.1002  -1.4202   3.4980   0.0026   1.0436  -0.3642   0.3410  -0.7174  -0.3902  -0.8836 

-0.6672  -0.7190   1.1040  -0.6572  -2.2180   0.5026   1.5906   1.3870   0.0034   0.9872 

 0.6144  -3.5016   1.2886   0.1656  -1.2454  -1.4310  -1.1866  -1.0736  -1.4260  -1.7114 

-0.5020   1.5076  -1.3100   0.6170  -2.8370   0.5896   0.2336   0.0702   0.0804   0.2956 

 2.3866   1.6000   0.3312   2.3000   0.7026  -1.2062   0.3616   1.9106   1.8916   1.5252 

-0.0004   2.1002   1.3120  -3.2302   1.4954  -0.6404   0.5816   1.1114   1.5110  -0.9580 

-0.0902  -0.1216  -0.1740  -0.1760  -0.1466  -1.1740   0.1104   0.1850  -0.0002  -1.3344 

 0.1922   0.3262   0.0794   0.1446   0.0752  -0.3494   0.2526   0.2482  -0.0022  -0.4284 

 0.1236   0.1000   0.0086  -0.0408  -0.0240  -0.3962   0.3890   0.2782  -0.0350  -0.6460 

 0.2244   0.3800   0.2392   0.1972   0.2232  -0.1714  -0.2374   0.1466   0.0520  -0.5206 

 0.2814   0.0964  -0.0022   0.0574   0.0952  -1.3406  -0.8966  -0.6420  -0.6012  -1.4036 

 0.4074   0.4350   0.3794   0.3374   0.1808  -0.4244   0.2390   0.1502   0.1674  -0.4634 

 0.3574  -0.0202   0.0184   0.0186   0.0796  -1.4402  -0.3346  -0.9954  -0.3290  -1.5836 

 0.0922   0.1340   0.1108   0.1270   0.0800  -1.1834  -0.3666  -0.1530  -0.2100  -1.3926 

 

Hidden Output Weight Matrix 
[-1.5314  -1.0274   1.3540   0.1740   2.2622  -1.2304  -0.3526  -0.9866  -0.6730   1.3102   

0.2196   0.5254   0.4396   0.5676   0.1242   0.6276   0.0440   0.1808  -1.6214] 
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APPENDIX A-24 

Weight Matrix of the 5-year ANN Crack Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-0.9652  -1.3500  -0.7984  -0.8404  -0.7212  -3.3894   0.4076  -0.6860  -0.0224   0.8290 

 1.4516  -0.5980  -2.1956  -0.8352   0.0822  -0.9722   0.1892  -0.2708  -0.3470   1.1516 

-0.4716   1.5864  -0.1994  -0.5508  -1.6056   0.4336  -3.3234   2.2850   2.9572   2.1620 

-2.0740  -1.1386   1.8272  -0.0360   1.1308   0.6160   3.6886  -1.7906  -1.9162   2.0442 

 0.8934  -1.9762   3.2970   0.2466   2.2554  -0.2670   0.3316  -0.4002  -0.8582  -2.1146 

 0.3742  -0.0916   1.4930  -0.6046  -3.0094  -0.1486   2.4766   0.5012  -0.1956   1.7302 

 0.3902  -3.7802   1.2152   0.1120  -1.2460  -0.7008  -1.2226  -1.3044  -2.4300  -0.5540 

 0.4220   1.9632  -0.9234   0.8816  -3.1244  -0.5490   0.1794  -0.3594   0.3872   0.2024 

 2.1040   1.1960  -0.2456   1.6604  -0.1584  -3.1706   0.6162   1.5842   1.7220  -0.1086 

-0.9134   1.4832   0.9722  -3.1726   1.9154   0.1402   0.4366   1.4110   1.6410  -1.0014 

 0.2082  -0.0784  -0.1836  -0.2942  -0.3874  -0.7020   0.0216  -0.9652  -2.4674  -0.4212 

-1.3516  -1.2064  -0.8970  -0.3636   0.0112  -1.4312  -1.4464  -1.5020  -0.1782  -2.2920 

-0.1480   0.0492   0.3184   0.4374   0.5736   0.5490  -0.1960   0.4230   0.0790   0.1790 

-0.2562   0.1770   0.2870   0.4640   0.6852   0.4782  -0.1308   0.3860   0.0852   0.0946 

 0.6666   0.4754   0.1362   0.2444   0.0686   0.2040  -0.0108  -0.8730  -1.8810   1.0452 

-0.2130   0.1110   0.3270   0.4312   0.5516   0.4390  -0.3766   0.5020   0.0944   0.2210 

 0.0972  -0.2286  -0.4014  -0.4756  -0.4080  -0.8636   0.1914  -1.0696  -2.3676  -0.0320 

 0.8460   0.6332   0.2856   0.4050   0.0814   0.3180   0.0316  -0.8884  -1.7540   1.0990 

 

Hidden Output Weight Matrix 
[-1.5544  -1.5462   1.2704   1.1300   3.2684  -2.7292  -0.9020  -1.5610  -1.5206   1.6784  -0.6296  -0.4034   

0.6500   0.6430  -0.2336   0.6144  -0.8200  -0.3264  -1.5812] 

 

 

 

 

 

 

 

 

 

 

 



 141

 

 

 

 

 

 

 

 

 

 

APPENDIX A-25 

Weight Matrix of the 5-year ANN Ride Model 

Rigid Pavements 
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Input Hidden Weight Matrix 
-1.1652  -1.3784  -0.5910  -0.5012  -0.1990  -2.5526  -0.1964  -0.4714   0.4906   1.4422 

 1.0522  -1.0786  -2.4490  -0.8266   0.5822  -0.6446  -0.3062   0.0216   0.2682   0.9206 

 0.0684   1.7952   0.2136  -0.2436  -1.8808   0.1312  -2.5856   1.6876   2.1406   2.3670 

-1.4152  -0.8632   1.8430  -0.2150   0.5422   0.5602   3.8756  -2.0160  -1.5564   2.5772 

 1.8552  -1.6630   3.2260  -0.2826   0.7856  -0.1234   0.4502  -0.9334  -0.7472  -0.7874 

-0.7208  -0.9206   0.8752  -0.8234  -2.3842   0.0040   1.8472   1.3834   0.2982   0.6576 

 0.4560  -3.6596   1.1450   0.0844  -1.3350  -0.3106  -0.2366   0.0334  -0.2886  -0.6044 

-0.6582   1.3036  -1.5820   0.3440  -3.1944  -0.1910  -0.0636  -0.0542  -0.5156  -0.5946 

 2.3924   1.6074   0.1960   2.1690   0.5786  -1.9554   0.0972   1.8536   1.6972   0.7830 

-0.2872   2.0300   1.3812  -3.2056   1.5184  -0.2932   0.8316   1.0774   1.0666  -0.5650 

 0.1422   0.0996   0.2000   0.1980   0.2190  -0.3514  -0.0454  -0.1632  -0.3650  -0.3392 

 0.0570   0.1902   0.0194   0.0856  -0.0094  -0.3090   0.0824   0.1430  -0.0696  -0.2582 

 0.2130   0.1940   0.2276   0.1746   0.1700   0.0474   0.2094   0.1408  -0.0692  -0.0040 

 0.2020   0.3366   0.3354   0.2930   0.3406  -0.2712   0.0132  -0.2430  -0.3044  -0.3064 

 0.1980   0.2860   0.2060   0.2660   0.2912  -0.2434  -0.0108  -0.1566  -0.2272  -0.2502 

 0.0404   0.1350   0.1310   0.0636   0.0160  -0.2062   0.0584   0.2210  -0.0706  -0.2424 

 0.0950   0.0120   0.0508   0.0510   0.1120  -0.2280  -0.0254  -0.0602   0.0472  -0.4346 

 0.2936   0.3210   0.2874   0.3036   0.2482  -0.1676  -0.0354  -0.2536  -0.3200  -0.3434 

 

Hidden Output Weight Matrix 
[-1.4008  -0.9022   0.5684   0.4090   2.1804  -0.5532  -0.2630  -0.6012  -0.9734   0.7780   0.0900   0.1796   

0.2854   0.1676   0.0962   0.2124  -0.0122   0.1242  -1.7322] 

 


