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SUMMARY 

Cracking has an adverse effect on pavement performance, and hence it is an important 

criterion for maintenance intervention. However, statistically reliable detection of the 

extent of cracking can also be one of the major difficulties encountered when 

implementing a pavement management system. The main difficulty is that there is no 

reliable way to directly obtain the information on pavement crack depth without 

destructing the pavement structure. This report summarizes a research project sponsored 

by Florida Department of Transportation (FDOT) to develop a system that can 

automatically and dynamically measure pavement cracks and estimate crack depth 

without destructing the pavement structure. The principle used in the project was to use 

high-accuracy laser sensors to measure the crack opening geometric including crack 

width, crack edge slopes, and measurable crack depth. With these obtained data and a 

neural network model developed in the project, the depth of the crack can be statistically 

estimated. Based on the evaluation results, it was found that the system developed in the 

project can detect pavement crack depth with a statistically reliable accuracy. 

To detect crack depth, two steps are needed: crack identification and crack depth 

estimation. At the early stage of the project, several approaches were proposed. These 

proposed approaches included static ultrasonic method, dynamic ultrasonic sensor 

method, radar sensor method, ground penetrating radar method, and so on.  Based on 

preliminary laboratory experiments and literature search and review, it was concluded 

that these methods were not able to detect crack depth with a statistically reliable 

accuracy or practical applicability. However, it was found that a combination of high-

accuracy laser sensors and estimating models could produce satisfactory results.  

To dynamically identify a crack, two laser sensors were used to minimize the detection 

errors. An algorithm called Partial Cross Correlation (PCC) was developed to enhance 

the crack detection ability. This algorithm was evaluated through field experiments and 

proven that the detection performance of PCC was much better than the approaches used 

in past research studies for identifying pavement cracks.  
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To automatically measure the crack opening geometric, one of the key elements is the 

measurement of longitudinal displacement of the measuring system. A distance sensor 

was used to measure the longitudinal displacement. However, field tests found that the 

sampling rate of the distance sensor had certain effect on the measurement accuracy. 

Thus, a scan-rate-effect-canceling model was developed based on field experimental data 

and modeling results. With the model, the accuracy of the longitudinal displacement 

measurement was significantly improved. 

With the obtained crack opening geometric characteristics and the information on the 

pavement section such as the average daily traffic, pavement life cycle, pavement age, 

and other pavement related information, a neural network model was used to estimate the 

crack depth. The database used for the neural network model development was 

comprised of two parts: one was the distance sensor reading including the geometric 

characteristics of the crack; the other included pavement related variables. The crack 

information data were obtained from 95 pavement sections with the system developed in 

the project and a static ultrasonic measuring system which can statically measure crack 

depth with a reliable accuracy. The pavement related information data were obtained 

from a database provided by the FDOT. In the model development, different network 

architectures and different training algorithms were investigated and tested. An optimal 

architecture was determined based on the tests of different model architectures.  

The system was implemented and installed in a manually operated push-car. This system 

now can measure crack depth at a walking speed. The current system consists of two 

high-accuracy laser sensors, a longitudinal distance measuring sensor, a portable 

computer with an interface to communicate with the sensors, and a comprehensive model 

software used to estimate pavement crack depth using the readings from these sensors 

and the pavement section related information. The system can only be used to measure 

transverse crack depth since the developed neural network model was based on field data 

of transverse cracks. To measure longitudinal crack depth, longitudinal crack data are 

needed for modeling purpose. 



 x 

Although the system is now operated at walking speed, it can be operated in a much 

faster speed close to 55 mph if adequate modifications are implemented to increase the 

sampling interval and the sampling rate by using a more powerful computer such as an 

industry computer.   
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

Since the beginning of Pavement Management System (PMS) implementation in the 

1970’s, one of the key components in a PMS has been the pavement surface condition 

survey [1, 2]. Cracking performance is one of the pavement condition data that need to be 

surveyed. Once initiated, cracking increases in severity and extent and allows water to 

penetrate the pavement. The water will further accelerate the rate of pavement 

deterioration. Thus, to determine the timing and cost of pavement maintenance, the 

information on pavement crack condition is needed. 

Collection of cracking data is difficult and time consuming because a manual survey has 

to be involved in the process. Due to the nature of the subjective survey, it is very 

difficult to obtain results that are accurate, repeatable, and reproducible [3]. Thus, there is 

a need to automate the cracking survey process to improve safety and achieve more 

objective and consistent data of pavement cracking. Crack surveys are performed to 

characterize crack conditions in terms of type, severity, and extent. Compared with other 

characteristics of the crack, such as location, length, and width, crack depth is the most 

difficult one to be detected. On the other hand, the most serious problem affecting the 

service life of a pavement is the formation of cracks due to disruptive stresses from the 

original design or unexpected chemical, physical, or mechanical loading. Thus, crack 

depth is a frequently used factor when reconstruction is performed on pavement surface. 

The assessment technique that can detect crack depth is vital to provide effective 

maintenance of pavements.  

The techniques of detecting pavement cracks have made great progress since later 1980’s, 

and have been implemented on a production basis in last 4 to 5 years. The majority of the 

production work to date has been performed by Roadwave Corp.’s ARAN/Wise Crax 

system, IMS’s PAVUE system, SES’s ROSAN system, and GIE’s LASER VISION 

system [2, 4]. However, the main measurements of these systems only focus on the crack 
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location, crack length, and crack width. Even though some systems can perform so-called 

crack depth measurement, few of them can effectively measure the real depth of cracks 

that are not vertical to the pavement surface. As a result of the literature search and 

survey performed in the project, it can be concluded that the existing methods for the 

measurement of pavement crack can be divided into two classes: destructive testing (DT) 

and nondestructive testing (NDT) methods. The DT method, i.e. core sampling, is both 

time consuming and resource consuming. Unfortunately, through a survey, it was found 

that the DT method is nearly the single method adopted by all the state departments of 

transportation (DOTs) that use crack depth as a factor to evaluate the pavement 

performance. The NDT methods include: (1) contact methods using impact echo or 

ultrasound approaches [5, 6, 7, 8], (2) non-contact methods using laser sensors [3, 9], 

ground-penetrating radar (GPR) [10, 11, 12], and image classification techniques [2]. 

EXISTING METHODS FOR MEASURING CRACK DEPTH 

In the first stage of this project, all of the DOTs in USA were contacted to survey the 

methods used to measure crack depth in their PMS. All of the available databases and 

literature were reviewed to evaluate the relevant technologies that are feasible for 

application in this project. In addition, web sites were searched to identify whether or not 

existing techniques were available to automatically detect crack depth. 

DOT Survey 

In the survey, the following questions were asked to all of the DOTs: 

• Do you measure pavement crack depth in your department of transportation? 

• What methods/systems do you use for pavement crack depth measurement? 

• Do you have any comments or suggestions for the automatic measurement of 

pavement crack depth? 

Over 60% of the DOTs in USA responded to the survey, in which five DOTs did measure 

pavement crack depth for pavement condition evaluation in their PMS. Some other states 
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rate the severity of cracking solely based on the crack width. It was concluded from the 

survey that the core sampling method was the only method that was being used by DOTs 

to collect crack depth for their PMS. From the survey results, it was found that most 

DOTs agree that it is necessary to automatically detect pavement crack depth.  

Literature Review 

In this study, various methods were investigated. However, from the literature review, it 

was found that there are no commercially available systems that can be used to 

dynamically measure pavement crack depth. 

Overview 

Currently, there is no satisfactory method to automatically detect pavement surface crack 

depth. The complexity of the crack creation and propagation mechanism makes the 

problem more difficult. Nevertheless, increasingly state-of-art technologies have been 

applied in this field with promising experiment results [4, 6, 9, 11, 13]. It is rather 

difficult to systematically classify methods for crack measurement due to the different 

crack shapes and crack dimensions. However, almost all the methods to measure crack 

depth depend on the following physical phenomena: 

• Reflection (with large reflectors) 

• Scatter (with small reflectors) 

• Diffraction (at the peaks) 

• Wave conversion (e.g. on surface cracks) 

From these physical phenomena, useful information about crack depth might be 

evaluated from: 

• The echo pulse (shape, spectrum) 
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• The time of flight 

• The probe position (directional characteristics) 

Each of the methods introduced previously has different levels of impact on realizing 

pavement crack depth detection. A detailed introduction will be given in the following 

sections. The classification and relationship of these methods is illustrated in Fig. 1-1. 

 

Figure 1-1. Crack Detection Method Classification 

Contact Measuring Technology 

There are several existing NDT methods that can be used to measure surface opening 

crack depth. Among these methods, impact echo [6, 7, 8] and ultrasonic pulse echo [5] 

are widely used. For the impact-echo method as shown in Fig. 1-2, receiving transducers 

(sensors 1 and 2 shown in Fig. 1-2 (a)) are used to monitor the surface displacements 

caused by the arrival of wave reflections from internal defects and external boundaries. 

Recorded displacement waveforms (shown in Fig. 1-2 (b)) can be analyzed either in the 

time domain or in the frequency domain. Since its development in the mid-1980s, the 

impact-echo method has been used successfully for measuring the thickness of, and 

detecting flaws in plate-like structures, such as bridge decks, slabs, and walks. At present, 
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for the determination of the depth of surface-opening cracks in concrete plates, a 

relatively mature test scheme is available. 

For this method, a transient stress pulse (applied at point A) is introduced into a structure 

by mechanical impact at a point on the surface. This pulse travels into the structure as 

dilatational (P-) waves, distortional (S-) waves and along the surface as Rayleigh (R) 

waves. P-waves are of primary importance in impact-echo testing because the 

displacements caused by P-waves are much larger than those caused by S-waves at points 

located close to the impact point. When an impact is performed adjacent to a surface-

opening crack, the presence of the crack changes the pattern of wave propagation. When 

portions of the P-wavefronts are incident on the crack tip, diffraction occurs.  

 

 

 

 

 

 

 (a) Testing Configuration   (b) Output Waveforms from the Transducers 

Figure 1-2. Time-of-Flight Technique for Crack Depth Detection 

Given the wave speed and the geometric relationship between transducers (H1, H2, and 

H3), crack depth can be estimated by means of calculating the time-of-flight through a 

developed equation. For a vertical surface-opening crack, the crack depth can be 

accurately determined by the method mentioned above. However, if the depth of inclined 

or curved cracks is to be estimated, the positions of the sensors (H1, H2, and H3) should 

be adjusted so that the diffracted wave can be clearly identified. 
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Ultrasonic techniques are well established for measuring wave velocities and transit 

times, from which the material's elastic properties, sample dimensions, and anomaly 

properties can be determined. There are many methods such as scattered pulse, time-of-

flight, spectroscopic analysis and so on. As a contact NDT technique, ultrasonic 

technique is the same as impact-echo technique in essentials. At present, there are many 

commercial systems using these two methods to perform NDT, such as LLC’s Impact-

Echo Test System and James’ V-Meter Mark 2. 

Non-Contact Measuring Technology 

Ground Penetrating Radar (GPR) is a well-established method of using radio waves to 

detect objects and determine their distance (range) from echoes they reflect. GPR is a 

noninvasive and nondestructive tool that has been used to map subsurface conditions in a 

variety of applications. In recent years, several investigators have attempted to use GPR 

to detect subsurface problems including cracking [1, 10, 11, 12]. GPR systems generate 

short pulses of electromagnetic energy that penetrates pavement surface. Reflections 

from changes between these layers are detected and displayed. The primary components 

of a GPR system are illustrated in Fig. 1-3. Two types of GPR systems are commercially 

available: monostatic and bistatic. The former uses a single antenna for transmission and 

reception. The latter uses two separate but identical antennas. 

 

Figure 1-3. Major Components of a GPR System 

The transmit/receive unit consists of a transmitter for signal generation, a receiver for 

signal detection and timing electronics for synchronizing the transmitter and receiver. 

The control unit is the operator interface that controls the overall operation of the radar 
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system, sending the received data to the data storage and display unit. At the control unit, 

the reflected signals are represented by a waveform of voltage changes as a function of 

time. These waveforms are the signals that are stored and displayed. One display 

technique is to graphically stack sequential waveforms to create a profile of horizontal 

distance over the pavement surface as a function of time. This profile is a depiction of 

impedance changes as a function of horizontal survey travel along the surface of the 

ground and radar signal travel-time into the ground, and thus, represents an anomaly map 

in radar space. Fig. 1-4 shows a typical output picture of a commercially available GPR. 

 

Figure 1-4. Pavement Profile from GPR 

To obtain the quantitative information of the cracking, the interpretation of measured 

reflected waves is a key. Up to now, most of the commercially available GPR cannot 

provide accurate methods for obtaining detailed information. Thus, the detecting process 

usually requires the interaction of a skilled user. 

Laser has its own advantages such as high accuracy and high measurement speed [3, 4, 9]. 

In early 1990’s, Texas State Department of Highways and Public Transportation 

developed a laser system to identify pavement cracks. The hardware of the system 

includes the Selcom Laser Probes, the Motorola open-ended VME architecture, and a 

Compaq portable personal computer. The software implements two crack detection 

algorithms and crack reporting procedures. This system uses distance measurement to 

estimate crack width. The measurement is based on a triangulation principle as illustrated 

in Fig. 1-5. In order to identify pavement cracks, two algorithms were adopted: 

Autocorrelation Difference Method (Codiff) and Running-Mean Downup Method 

(Downup). The Codiff method is more sensitive to the severity of cracking. The Downup 

method can provide good results for all kinds of cracking levels. The basic idea for the 
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Downup method is that a crack can usually be identified by a sharp negative slope 

followed by a positive slope. The algorithm computes the slope of the crack by taking the 

difference between each averaged point of a base length. The Downup method can 

estimate both crack width and depth and can be executed sufficiently faster to be suited to 

real time application. Because the Selcom sensor can provide high-speed light source 

control, the system affords real time processing at speeds up to 60mph. However, based 

on the measurement principle mentioned above, the system function is limited by laser’s 

inherent limitation: It cannot detect all crack characteristics. 

 

Figure 1-5. Triangulation Measurement Principle 

Currently, there are several commercially available laser systems to detect pavement 

cracks, such as GIE’s LASER VISION system and SES’s ROSAN system. It is 

worthwhile to mention the LASER VISION system of GIE (LVI). With a combination of 

triangulation and defocusing technology, the LVI employs three laser beams to measure 

the 3-D distress characteristics of road surface at highway speed. To cover a standard 

highway lane with a width of 3.6m, the system uses six laser sensors to make both 

transversal measurements and longitudinal measurements. Due to the huge amount of 

data, a parallel processing architecture array of Digital Signal Processors (DSP) is 

adopted. The system architecture is shown in Fig. 1-6. In the system, each acquired road 

profile is processed in real-time and every event detected (e.g. cracks) is stored with its 
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characteristics: position, width and depth, in which crack and rut data allow a graphical 

reconstruction of 3-D images of specified road sections. 

 

Figure 1-6. Architecture of the Laser Vision System 

Image Processing is another crack detection technology that is being widely used [2]. 

Although the automated systems vary, most employ an image-capture process that uses 

artificial light and high-resolution cameras to record pavement surface images in either an 

analog or digital format. If the image is captured in analog format, it will be digitized. 

The digital image is then analyzed with image processing software that evaluates the 

changes in pixel brightness, looking for the contrast created by crack edges. Once a crack 

is detected, then additional image processing logic is used to capture the length of the 

entire crack and its width. However, up to now, even if with the most avant-garde 

technology, it is nearly impossible to quantify the crack depth through the changes in 

brightness. 

Summary 

A DT method is fundamentally different from a NDT method. The DT method is time-

consuming and resource-consuming. Besides, it is difficult to determine the exact 

location and extent of the coring.  
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Currently, the NDT method is a popular means for estimating pavement crack depth. For 

contact-type NDT method, the impact stress or ultrasound methods can estimate crack 

depth with relatively high accuracy. They can determine the depth of vertical, inclined, 

curved, and air- or water- filled surface-opening cracks. However, these methods need 

the accurate value of wave speed in the medium (pavement) and can only be statically 

operated, which is very time-consuming. Since the wave speed is not an absolute constant 

in pavement materials, the application of these types of methods is very limited. 

As a non-contact NDT method, GPR technologies overcome many inherent shortcomings 

of the contact methods. With some quick scanning techniques such as color intensity 

plots (produced by commercial radar software), GPR technologies can enable high-speed 

field inspection. However, most of the current commercially available systems are 

limited to estimating the location and gross quantities of the deterioration. Few of them 

can provide a more accurate method for obtaining detailed information. In many cases, an 

expert is needed to locate the problem areas. Sometimes, the manual interpretation 

system is disappointing. A second drawback of GPR technologies is their heavy system 

configuration, which makes it very expensive. In order to perform the on-site and real-

time data interpretation, it is necessary to adopt a new approach to signal processing. 

As compared to the rich information about internal features given by GPR, a laser system 

is limited to analysis of only the visible parts (i.e. the vertical part of a crack). This 

limitation is due to the laser’s short-wave characteristics. However, the descriptive results 

of a laser sensor are much more clear than the implicit outputs of a GPR. If the accurate 

data set from a laser sensor is adequately used and models for estimating crack depth are 

developed, the detection of pavement crack depth will become possible. 

Image processing technique is the only way that provides the picture of the crack in its 

entirety. Perhaps, with the adding of some more effective models, a combined approach 

can make it possible to provide a comprehensive report about pavement cracks. 

Nevertheless, among all of the methods mentioned above, image processing is apparently 

the least effective in detecting crack depth characteristics.  
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In the field of NDT, most techniques are applied to structural cracks or cracks in metal 

materials. Although some techniques have been used for crack evaluation of metallic 

materials, most of these methods are only valid for homogenous and isotropic materials. 

This study focuses on the cracks in the pavement surface, which is mainly composed of 

nonmetallic materials such as concrete. It is neither homogenous nor isotropic. But if the 

method is applied in a low frequency case (the wavelength is much larger than the size of 

the aggregate particles in pavement) and averaged values are used, pavement may be 

considered homogenous and globally isotropic materials. Therefore, the NDT techniques 

can be conditionally applied to pavement applications as measurement references to 

calibrate the neural network models for estimating pavement crack depth. The details will 

be discussed later. 

RESEARCH OBJECTIVES 

The main purpose of this project was to develop an automatic system to estimate 

pavement crack depth on Florida roadways. The main objectives of this project were: 

• To search and review the existing literature databases to identify technologies and 

methodologies that have the potential for automatic pavement crack depth 

measurement; 

• To perform laboratory and field experiments to further prove the feasibility of 

selected technologies; and 

• To develop a prototype that can be used to measure pavement crack depth on 

Florida roadways. 

RESEARCH APPROACH 

Preliminary Experiments 

Before the research approach was finalized, a series of preliminary experiments were 

conducted to select the best detecting method applicable to the system requirements, 

including sensor accuracy, sensor resolution, sensor detecting speed, sampling rate, 
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feasibility to measure crack depth, hardware cost, etc. The detailed results of the 

preliminary experiments were documented in an interim report of this project. Based on 

the preliminary experimental results, a practically feasible approach was recommended 

and submitted to FDOT project manager for review and approval. The research approach 

is described in the following sections. 

Approach Description 

Although some existing technologies may provide certain possibilities to measure 

pavement crack depth, due to the special characteristics of the pavement crack and the 

basic requirements of the detecting system, direct use of these technologies cannot satisfy 

the feasibility requirements. A feasible way to automatically and dynamically identify a 

crack and estimate its depth is to use high-speed and high-accuracy sensors to obtain the 

microscopic characteristics of the crack opening, including width of the crack opening, 

the downward slopes on both sides of the crack, and the measurable crack depth. With 

the measurements and pavement related information, a neural network model was used to 

statistically estimate pavement crack depth.  The basic concept of the system architecture 

design is illustrated in Fig. 1-7. 

 

Figure 1-7. System Architecture for Measuring Pavement Crack Depth 
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Crack Information 

Crack information includes width of the crack opening, the downward slopes of both 

sides of the crack, and the physically measurable crack depth. These data are measured 

by two laser probes (sensors) and one distance sensor. Several models (algorithms) are 

used to ensure the accuracy of these data.  

Pavement Information 

Pavement information includes pavement type, age, materials, roadway function, and 

average daily traffic. These data can be obtained from FDOT database. The main purpose 

of using the pavement information is to provide additional information (in addition to 

crack information) to the relationship model (the model used to statistically estimate 

crack depth) so that the estimation of crack depth is reliable. 

Relationship Model 

The relationship model is the one used to statistically estimate crack depth. For this 

purpose, crack information and pavement information are used as the model input. After 

careful review and assessments of available model types, the neural network model was 

selected in the project as the relationship model. Development of the model (including 

model calibration and training) was performed in the project. To develop the model, two 

types of data were needed. The first type refers to crack information and pavement 

information (model inputs), and the second type refers to real crack depth. The first type 

of data was obtained through the measurements by laser sensors and distance sensor and 

from the FDOT database. The second type of data was measured by a contact-type NDT 

system with relatively good accuracy.  

Model Development 

Development of the model was divided into two phases. In the first phase, two types of 

data were collected. The first type of data included crack information, such as width of 

the crack opening, the downward slopes on both sides of the crack, and the measurable 

crack depth. These data were measured by the two laser probes (sensors) and one 
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distance sensor. The second type of data included the corresponding crack depth 

measured by a contact-type NDT system with relatively good accuracy and pavement 

information including pavement type, age, materials, roadway function, and average daily 

traffic. In the second phase, these two types of data were used for model development. To 

develop the models for estimating crack depth, the neural network model was selected. 

During the model development process, part of data was used for model training, part of 

data was used for model testing, and the rest of the data was used for model validation. In 

fact, many neural network model structures were trained and tested to determine the best 

one in terms of estimating errors. With the final model, the data for validation were used 

to justify the model quality. 

REVIEW OF NEURAL NETWORK APPLICATIONS 

In the field of pavement engineering, advances in computer technology have led to the 

use of more complex, and arguably more sophisticated approaches to develop optimizing 

strategies using the pavement serviceability-performance concept. A characteristic 

feature of pavement performance models is the prediction of pavement performance 

based on a set of easily and cheaply measurable characteristics, which may yield large 

savings to the agencies responsible for the pavements. Even though researchers 

traditionally use multiple linear regression techniques, no single prediction model applies 

to all pavements due to the high variability in the number and type of pavement 

characteristics measured by each agency for its pavements, as well as the pavement 

performance indicator. As to the crack evaluation, each agency determines its own 

criteria for its PMS. Recently, applications of neural networks in this area have become 

increasingly popular. Many research studies regarding the comparison between the neural 

network model and the traditional statistical model have been done, and the advantages of 

the neural network over statistical models were summarized [14]. However, all the neural 

network applications in pavement performance prediction focus only on the macroscopic 

effects of the cracks. The modeling of the microscopic characteristics for cracks can be 

found in the field of material science. Although the crack formation mechanism in 

material science is very different from that of pavement engineering, from the point of 
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view of the neural network application, it is also a good reference to this study. The 

following section summarizes the major achievements in these two different fields. 

Macroscopic Models 

The application of artificial neural networks (ANN) has been introduced recently in the 

field of pavement performance prediction. Most studies are concentrated either on the 

comparison between the ANNs and regression methods or the effect of the parameter and 

architecture on the prediction performance. Owusu-Ababio investigated the effect of 

neural network topology on flexible pavement cracking prediction for the Connecticut 

Department of Transportation (ConnDOT) [15]. The database used for this study was 

extracted from the distress survey files of the ConnDOT. The network inputs consisted of 

ESAL, pavement surface age, and pavement surface thickness, where ESAL is a 

converted form of traffic volume. Analysis of variance conducted to examine the effect of 

pavement regional location on the amount of cracking indicated no significant differences 

between the regions with different environmental variables. Based on the analysis, it was 

concluded that a one-hidden-layer topology might be sufficient in achieving satisfactory 

results in cracking prediction, and increasing the number of layers might not add any 

significant benefit to the performance of the model. 

Another attempt of applying ANN was made by Attoh-Okine to examine the effect of 

gradient-descent parameters (namely, momentum and learning rate) on pavement 

performance models [16]. In this study, real pavement condition and traffic data and 

specific architecture were used to investigate the effect of learning rate and momentum 

on backpropagation algorithm neural network trained to predict flexible pavement 

performance. It was concluded that an extremely low learning rate around 0.001-0.005 

combination and momentum between 0.5-0.9 did not give satisfactory results for the 

specific data set and the architecture used. 

Microscopic Models 

In the field of non-destructive testing (NDT), neural network models are currently used to 

evaluate the crack sizing, crack opening load, and crack propagation in various pavement 
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materials. Zgonc et al incorporated a neural network for crack sizing classification [17]. 

In his study, a finite element  (FE) program generated a set of back - and forward - 

scattered signals for cracks of various lengths. Data obtained in this way were used to 

train a neural network classifier that categorized the data according to the crack length. 

The application of ANN provided improved reliability and produced results in a short 

time. The results showed that the ANN could be further utilized to estimate crack sizes 

from the ratio between the reflected ultrasonic signals and through-transmitted signals. 

Kang et al developed a one-hidden-layer neural network to determine the crack opening 

load from differential displacement signal curves, in which 100 data points of the signal 

were used as the network inputs [18]. In order to examine the measurement accuracy and 

precision of the neural network method, computer simulation was extensively performed 

for various combinations of crack opening levels and signal-to-noise ratios. 

Issues 

From these studies described above, it can be seen that ANN is an applicable tool for 

predicting pavement performance macroscopically and microscopically. On the other 

hand, it is evident that most applications use the backpropagation method to train the 

networks with one-hidden-layer architecture. With different applications and databases, 

parameters of the neural network models will vary. Neural network models have been 

known to produce wide variations in their predictive properties for even small changes in 

the network design. Therefore, it is necessary to enhance the performance as much as 

possible. Although early work shows that the application of neural network did yield 

much more improvement in the related areas, some problems do exist as described in 

what follows: 

• When should the training be stopped? Using a high-speed computer, it will take 

just a short time to train the network for thousands of epochs. With continual 

network training and suitable algorithms, the error rate may be reduced to any 

desired minimum. However, in this situation, the network can become overfitting 

to the training set data. Further, it may cause bad performance on new data. In 

most of the past studies, the network training was stopped when a desired 
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accuracy was attained. In fact, it is impossible to know what accuracy the network 

will gain. Therefore, this kind of pre-determined accuracy will usually cause 

either overfitting or under-fitting. 

• Is it necessary to do the comparison between different algorithms? Although the 

standard backpropagation method is widely used, it is not the only choice.  

Compared with many new algorithms, its convergence is very slow. It is also 

tedious to tune the learning rate and the momentum in practice. 

• Is the data preprocessing necessary? According to the literature review, it can be 

seen that many applications directly use the original data as network inputs. The 

quality of the database may limit the network performance. Especially in 

macroscopic modeling area, many data are obtained from manual surveys. It is 

difficult to gain a representative database without data preprocessing. On the other 

hand, there may exist correlated data in the original database, which will further 

reduce the network efficiency. 
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CHAPTER 2. SYSTEM DESIGN 

BASIC CONCEPT 

This research was to build a feasible system capable of detecting pavement surface crack 

depth in an automatic and real-time mode with high efficiency and high accuracy. At the 

same time, the system should be economic and practical in field applications. Thus, a 

prototype system was designed and implemented. With a personal laptop computer, the 

system has a friendly interface for data collection, processing, and management. The 

system is capable of providing an accurate description of pavement surface profile and 

automatic detecting of pavement surface cracks. Fig. 2-1 shows the basic parameters 

collected by the system and their geometric relationship. To describe a crack, two sources 

of information are required: X-direction and Z-direction. Therefore, the system design 

focused on how to obtain these two sources of data. 

   

   Figure 2-1. Crack Detection Geometric Description 

HARDWARE DESCRIPTION 

The prototype and its main components are shown in Fig. 2-2. Compared with other 

sensors, a laser sensor has its own advantages such as high accuracy and high 

measurement speed. However, its measurement is based on a triangulation principle (as 

shown in Fig. 1-5). Thus, there is an angle between incident laser beam and reflecting 

laser beam. The smaller the angle, the higher the detection ability is. To increase the 
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sensitivity of the laser sensor for detecting a crack, the sensor should have a very small 

beam diameter or spot size so that even a tiny crack can be detected. In this project, two 

Microtrak 7000 laser sensors were selected. These sensors have a high resolution and 

high sampling rate. The specification of the laser measurement unit is listed in Tab. 2-1. 

With the dual-channel capability (two laser sensors), two sets of data can be obtained. 

The two-channel structure design can significantly increase the crack detection ability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 2-2. Pictures of the Prototype and its Components 

 

(1) 

(2) 

(1) Central Processing and Control Unit 

(2) Laser Sensor Heads 

(3) Analog Speed Sensor 
(3) 
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  Table 2-1. Specification of the Laser Measurement Unit 

Measuring Range 3.0 in. 

Resolution 200 µin. 

Accuracy ± 0.1% of range 

Sampling Frequency 100 kHz 

Spot Size 0.006 × 0.010 in. 

Head Type Diffuse 

Analog Output - 10 to + 10 VDC 

To obtain X-direction displacement information, a speed sensor is used. Through some 

simple procedure, speed measurement can be transformed to displacement quantity, i.e. 

X-direction information. An analog-to-digital converter (NI-DAQ Card 1200) scans and 

samples the analog readings from the two laser sensors and the speed sensor. The NI 

DAQ Card 1200 is a low-cost, low power analog input, digital output, digital I/O, and 

timing I/O card for PCs equipped with a Type II PC Card slot. The small size and light 

weight of the NI-DAQ Card 1200 coupled with its low-power consumption make this 

card ideal for use in portable computers, making portable data acquisition practical in 

field applications. Fig. 2-3 shows the connections between the card and the measurement 

units. The card contains a 12-bit, successive - approximation analog-to-digital converter 

with eight inputs. A laptop computer processes the digital output of the card and obtain 

results. The system architecture diagram is shown in Fig. 2-4. 

SOFTWARE DESCRIPTION 

The system software is written in Visual Basic 6.0 and runs on the Microsoft Windows 

98 platform. Based on the operation platform, the function of the software interface can 

be classified into low-level and high-level tasks. With the NI-DAQ application-

programming interface (API), which comes with NI-DAQ card, the software completes 
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some low-level hardware operations such as system initialization and data scanning. The 

architecture and function of the software are summarized in Fig. 2-5. The major function 

is logically divided into four modules: 

 

 

 

 

 

 

 

  Figure 2-3. Connections between Measurement Sensors and the NI-DAQ Card 1200 

 

Figure 2-4.  System Hardware Architecture 
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Data Sampling: The main task of this part is the communication between CPU and the 

NI-DAQ Card that converts the analog outputs of the sensors into digital signals. To 

automatically locate cracks, speed signal is converted into distance signal which is then 

converted into digital signal by the NI-DAQ Card. 

 

                Figure 2-5. System Software Architecture and Function Diagram 

Data Processing: The distance signal is processed by a Scan-Rate-Effect-Canceling 

model to calibrate the X-direction distance measurement to enhance the system accuracy. 

The digital signals from the laser sensors are preprocessed by a high-pass filter to filter 

out some low-frequency noise. The preprocessed signals are then processed by the crack-

detection-algorithm (called Partial-Cross-Correlation algorithm) to identify cracks and 

the corresponding locations as well as crack opening geometry parameters. Meanwhile, 
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with the pavement section relevant information, the preprocessed signals are processed 

by the neural network model to estimate corresponding crack depths. The data-processing 

unit is the key part of the software. The flow chart of this unit is shown in Fig. 2-6. 

Database Management: The final crack report including information on crack location, 

crack opening geometry parameters, and crack depth is stored in a database. The database 

also contains some other information related to data collection, such as date, pavement 

section ID, and road conditions. 

File Operation: All the original data and processed data can be saved as fixed file formats 

for later processing and analysis. The formats are compatible with other general window 

software such as MS Excel.  

 

Figure 2-6. Data Processing Flow Chart of the Software 

MODEL FOR CRACK DEPTH ESTIMATION 

Basic Concept 

Currently, there is no technique available to directly measure pavement surface crack 

depth with reasonable accuracy. Based on the preliminary experiments conducted in the 

research project, the indirect method (using neural network model and basic 

measurements from the laser sensors and speed sensor to estimate crack depth) was 
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proposed by the research team and approved by the project manager. The modeling 

approach can be conceptually expressed by the following equation: 

( ).Geometry.. Opening ,Percentage Truck Age, AADT,f  Depth Crack =  (2-1) 

where                     

AADT = Average Annual Daily Traffic; 

Age = Age of the Pavement Section; 

Truck Percentage = Percentage of Truck in the Total Traffic; 

Opening Geometry = Crack Opening Geometric Characteristics such as width, 

depth, and slopes. 

Inspired by the structure of the human brain, ANN method has been widely applied to 

fields such as pattern classification, signal processing, coding, forecasting, control, etc., 

because of their ability to solve cumbersome or intractable problems by learning directly 

from the data. Use of ANN has been introduced recently in the field of pavement 

engineering. As stated previously, research studies involving the use of ANN in 

pavement engineering have concentrated either on demonstration of ANN in pavement 

condition and performance prediction or comparison between ANN and regression 

methods. In this project, a neural network was developed to map the relationship between 

the measures from the system and the actual crack depth. 

Artificial Neural Network 

ANNs are collections of mathematical models that emulate some of the observed 

properties of biological nervous systems and draw on the analogies of adaptive biological 

learning. A neural network resembles the brain in two respects [19]: 

• Knowledge is acquired by the network through a learning process; and 

• Interneuron connection strengths known as synaptic weights are used to store the 

knowledge. 

The key element of the ANN paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected processing 
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elements that are analogous to neurons and are tied together with weighted connections 

that are analogous to synapses. A neuron is an information-processing unit that is 

fundamental to the operation of a neural network. It consists of three basis elements: a set 

of synapses or connection links, an adder for summing the input signals and an activation 

function of limiting the amplitude of the output of a neuron. The model of a neuron is 

shown in the Fig. 2-7.  

  

         Figure 2-7. Mathematical Model of a Neuron 

In mathematical terms, a neuron may be described by the following equation: 

( ) ( )ττ −⋅=−∑= xwfxwfy
d

ii
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     (2-2) 

The single output y is related to the multiple inputs [x1, x2…, xd], encoded as a column 

vector x, and to the strengths of the synaptic connections (weights) w=[w1, w2…, wd], and 

firing threshold τ through a memoryless activation function f, which defines the output of 

a neuron in terms of the activity level at its input. With different applications, the 

activation function may assume different forms. Choice of f that reflects thresholding 

behavior of a neuron is a sign function as defined in the following equation: 
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For graded responses, a so-called sigmoidally shaped non-linearity is adopted, i.e. a 

function that is continuously differentiable, increasing, and has a range of (0, 1). The 

following equation (Eq. 2-4) is an example of this form, called logistic function: 

( )
xe

xf α−+
=

1
1          (2-4) 

Actually, most applications of neural networks are related problems either of 

approximating to given functions or to noisy data sets [20]. In practice, the functions will 

be specified not by algorithms but by a table or a training set T consisting of n argument-

value pairs, i.e. a d-dimensional argument x and an associated target value t that is the 

goal. Then, t will be approximated by a network output. The function to be constructed 

will be fitted to the following equation: 

( ){ }n:i:t,xT ii 1==         (2-5) 

Usually, the training set T is considered noisy and the goal is not to reproduce it exactly 

but rather to construct a network function that produces a smoothened reconstruction that 

generalizes (learns) well to new function values. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANN as well [19]. Learning typically occurs by example through training, or exposure to 

a set of input/output data where the training algorithm iteratively adjusts the connection 

weights (synapses). Multi-class problems may also be solved by having a number of 

neurons operating in parallel. With the structure described above, the ANN method offers 

the following useful properties and capabilities: 

Computation: In principle, neural networks can compute any computable function, i.e., 

they can do everything a normal digital computer can do. A neural network, made up of 

an interconnection of neurons, is itself nonlinear, which gives it an advantage for dealing 

with complex, real-world problems. 

Learning and Training: In practice, neural networks are especially useful for 

classification and function approximation/mapping problems which are tolerant of some 

imprecision, which have lots of training data available, but to which hard and fast rules 
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(such as those that might be used in an expert system) cannot easily be applied. Almost 

any finite-dimensional vector function on a compact set can be approximated to arbitrary 

precision by neural networks through a learning process.  

Architectures and Algorithms for Designing ANN 

Among many interesting properties of a neural network, the most significant one is the 

ability to learn from its environment and to improve its performance through learning. 

Learning is a process by which the free parameters of a neural network are adapted 

through a continuing process of stimulation by the environment in which the network is 

embedded. There are many kinds of learning algorithms that have been and are being 

developed. The two main kinds of learning algorithms are supervised and unsupervised:  

Supervised Learning: The correct results (target values, desired outputs) are known and 

are given to the ANN during training so that the ANN can adjust its weights to match its 

outputs to the target values. After training, the ANN is tested by giving it only input 

values, not target values, and seeing how close it comes to outputting the correct target 

values.  

Unsupervised Learning: The ANN is not provided with the correct results during 

training. Unsupervised ANN usually performs some kind of data compression, such as 

dimensionality reduction or clustering [21].  

The distinction between supervised and unsupervised methods is not always clear-cut. An 

unsupervised method can learn a summary of a probability distribution; then, that 

summarized distribution can be used to make predictions. Furthermore, supervised 

methods come in two sub-varieties: auto-associative and hetero-associative. In auto-

associative learning, the target values are the same as the inputs, whereas in hetero-

associative learning, the targets are generally different from the inputs. Many 

unsupervised methods are equivalent to auto-associative supervised methods.  

The manner in which the neurons of a neural network are structured is intimately linked 

with the learning algorithm used to train the network. In general, there are two major 

kinds of network topology: 
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Feed-forward ANN: The connections between units do not form cycles. Feed-forward 

ANN usually produces a response to an input quickly. Most feed-forward ANN can be 

trained using a wide variety of efficient conventional numerical methods.  

Feedback or recurrent ANN: There are cycles in the connections. In some feedback 

ANN, each time an input is presented, the ANN must iterate for a potentially long time 

before it produces a response. Feedback ANN are usually more difficult to train than 

feed-forward ANN.  

With different architectures and learning algorithms, diverse neural networks may be 

realized. In this study, a supervised multi-layer feed-forward network, called multi-layer 

perception (MLP), was developed to estimate actual crack depth from some field 

measured quantities and pavement section related information. There are one or more 

hidden layers to intervene between the external input and the network output in a multi-

layer network. Its architecture is illustrated in Fig. 2-8. Compared with other neural 

networks, a distinctive characteristic of a MLP is its ability to learn complex tasks by 

extracting progressively more meaningful features from the input patterns (vectors). 

 

Figure 2-8. Multi-layer Feed-forward Network Architectures 
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Comparison between MLP and Other Statistical Methods 

There is considerable overlap between the fields of neural networks and statistics [22]. 

Many methods in the statistical literature can also be used for flexible nonlinear 

modeling. These methods include: polynomial regression, Fourier series regression, local 

polynomial smoothing, multivariate adaptive regression splines (MARS) and projection 

pursuit, etc. 

A MLP tends to be useful in the same situations as projection pursuit regression, i.e.:  

• the number of inputs is fairly large,  

• many of the inputs are relevant, and  

• most of the predictive information lies in a low-dimensional subspace.  

The main advantage of MLP over projection pursuit regression is that computing 

predicted values from MLP is simpler and faster [22]. In addition, MLP is better at 

learning moderately pathological functions than are many other methods with stronger 

smoothness assumptions. 

Backpropagation Algorithm for Gradient Evaluation 

As described in Eq. 2-5, the final objective of any neural network application is to select 

a net N so that the output yi = N(xi, w) is close to the desired output ti for the input xi. The 

notion of closeness on the training set T is typically formalized through an error of 

objective function or metric of the form written as follows: 

( ) ∑ −=
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ii tyn

1

2

2
1δ         (2-6) 

The error is a function of weights, w. The network training, therefore, is a nonlinear 

optimization procedure. In practice, the weights are usually trained by using an iterative 

gradient descent-based optimization routine called Backpropagation (BP) algorithm [19], 

in which the goal is to find a set of network weights that minimize the objective function. 

A feed-forward network trained by Backpropagation is called a BP network. The detailed 
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derivation of the algorithm can be found in many references [19, 23, 24]. Here, only the 

vital relationships are summarized. 

In a BP network, there are two kinds of signals, which are identified as Function Signals 

and Error Signals. The function signal is an input signal (stimulus) that comes in at the 

input end of the network, i.e. xi in Eq. 2-5. The function signal propagates forward 

through the network, and emerges at the output end of the network as an output signal, 

i.e. yi in Eq. 2-6. An error signal originates at an output neuron of the network, i.e. δ(n) in 

Eq. 2-6. It propagates backward through the network. 

The computation of the back-propagation algorithm consists of two distinct passes: 

forward pass and backward pass. In the forward pass, the synaptic weights remain 

unaltered throughout the network. The function signal appearing at the output of neuron j 

can be computed through the following equation: 

( ) ( ) ( )
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0
ϕ        (2-7) 

where 

p = the total number of inputs applied to neuron j, 

wji(n) = the synaptic weight connecting neuron i to neuron j, and 

 yi(n) = the input signal of neuron j. 

The function signals of the network are computed on a neuron-by-neuron basis until the 

end of the network. Then, the final output is compared with the target value, i.e. ti in Eq. 

2-5 to obtain the error signal for the relative output neuron. 

In the backward pass, on the other hand, the signal starts at the output layer by passing 

the error signals backward through the network, layer by layer, to recursively adjust the 

weights between each layer according to a so-called delta rule, which is described in the 

following equation:  

kkkk gww α−=+1
        (2-8) 
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where, wk is a vector of current network connections; gk is the current gradient; and αk is 

the learning rate. The gradient represents a sensitivity factor, determining the direction of 

search in weight space for the relative weight. It is computed from the error signals of all 

the neurons to which that hidden neuron is directly connected. With the different location 

of neuron j, the computation of the gradient varies. The recursive computation is 

continued, layer-by-layer, by propagating the changes to all synaptic weights made. 

In brief, the Backpropagation algorithm can be summarized as follows: 

Initialization: Start with a reasonable network configuration, and set all the synaptic 

weights and the activity level of the network. 

Forward Computation: Present the network with the training examples. Compute the 

activation potentials and function signals of the network by proceeding forward through 

the network, layer by layer. 

Backward Computation: Compute the local gradients of the network by proceeding 

backward, layer by layer. Adjust the synaptic weights of the network between each layer 

according to the delta rule mentioned above. 

Iteration: Iterate the computation by presenting all the training examples to the network 

until the network stabilize their values and the average error over the entire training set is 

at a minimum or acceptably small value. 
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CHAPTER 3. DISTANCE MEASUREMENT 

INTRODUCTION 

The system developed in the project has two measuring units to obtain the microscopic 

longitudinal profile of the pavement surface. Laser measuring unit (with two laser 

sensors) measures the Z-direction distance, whereas a speed sensor collects X-direction 

information (as shown in Fig. 2-1). Based on field and laboratory test results, it was 

proven that the accuracy of laser measurement unit is high enough for this application. It 

can also be seen from the specifications listed in Tab. 2-1 that the resolution of the laser 

sensor is very small. However, the speed sensor used in the system has certain limitation 

if no calibrating model is used. The main reason for this is that the signal from the speed 

sensor needs to be converted to distance signal and the sampling rate of the speed sensor 

has direct impact on the accuracy of the speed sensor readings. In the project, field data 

were collected to calibrate the impact of the sampling rate on speed sensor accuracy. This 

chapter presents the details about the X-direction distance measurement and calibration. 

PRINCIPLE OF THE DISTANCE MEASUREMENT 

There are mainly two types of commercially available non-contact speed/displacement 

measurement sensors. One is Doppler radar sensor such as the Doppler Radar Speed 

Sensor from GMH Engineering and DRS1000 Speed Sensor by Datron Technology 

Limited. The other type is the magnetic speed sensor such as the MP1A Magnetic Pickup 

by Daytronic Corp., and 3010 series VRS Sensors by Invensys Control Systems. A 

permanent magnet is the heart of a magnet sensor and establishes a fixed magnetic field. 

An output signal is generated by changing the strength of this field. The alternating 

presence and absence of ferrous metal (gear tooth) varies the reluctance, or “resistance of 

flow” of the magnetic field, which dynamically changes the magnetic field strength and 

further changes the output signal. The Doppler radar sensors are easy to use, and they 

have a wide speed measurement range. Nevertheless, the price of the Doppler sensor is 

usually much higher than magnetic sensors. Based on the cost/performance comparison 

among many commercial magnetic sensors, the M12x1-180ASAw Analog Speed Sensor 
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by Sensor Solutions Corp. (as shown in Fig. 3-1) was selected as the X-direction distance 

measurement unit.  

 

 

 

 

 

 

Figure 3-1. M12x1-180ASAw Analog Speed Sensor by Sensor Solutions Corp. 

The analog speed sensor provides an analog output voltage proportional to the speed of a 

rotating gear or moving rack. Unlike a variable reluctance (VR) speed sensor that 

produces a sine wave, the Analog Speed Sensor produces a DC voltage that varies with 

speed. The full-scale frequency and response time of these sensors is set with a few 

internal components, so no external parts are needed. The relationship between the analog 

voltage output and the target rotating frequency is shown in Fig. 3-2. Based on the 

reading from the analog output, the frequency of the sensor can be obtained. The X-

direction distance measurement can be illustrated by Fig. 3-3. Mathematically, the X-

direction distance is obtained through the following equation: 
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where 

D = X-direction distance, 
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di = Sub-distance between each sampling, 

a = Transformation factor between direct analog output of speed sensor 

and X-direction linear speed, 

vi = Direct analog output of the speed sensor, and 

ti = Time interval between each sampling, i.e. the reciprocal of the scan 

rate. 

According to Fig. 3-3, the entire distance, D, is a summation of a series sub-distance, i.e. 

di, where, di is the operating distance in each DAQ Card sampling period. 

 

 

 

 

 

 

 

 

      xxx = Full Scale Frequency 

      Figure 3-2. Analog Speed Sensor Output - Target Rotating Frequency Relationship 

 

 

 

 

      Figure 3-3. X - Direction Distance Measurement 
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To obtain distance information, uniform motion of the measuring system is assumed in 

each ti. Because the time interval between each sampling period is very small (the scan 

rate range is between 1 kHz ~ 10 kHz), this assumption is feasible in real application. 

In fact, in order to obtain the estimated distance information with reasonable accuracy, 

the model shown in Eq. 3-2 should be calibrated with field data including the distance 

data calculated from Eq. 3-2 and the real distance data measured by field engineers. Thus, 

field experiments were conducted in the project to calibrate the speed sensor so that 

distance data can be obtained by the system.   

SPEED SENSOR CALIBRATION 

Field Data Collection and Analysis 

Through field experiments, it was found that the speed sensor could not provide accurate 

distance information if no calibrating model was used. Mainly, the measurement error of 

distance information is from three sources:  

• Inaccurate demarcated frequency, 

• System mechanism error, and 

• Approximate calculation. 

The first two sources belong to the system inherent error. Both of them come from the 

transformation factor, “a” shown in Eq. 3-2. The third one is due to the assumption of 

uniform motion in each sampling period. From Eq. 3-2, it can be seen that two variables 

may affect the synthetic error, i.e. system operating speed and analog-to-digital card scan 

rate. In order to evaluate the effects of operating speed and scan rate, three field 

experiments were done at different field locations and with different operating ranges. In 

each field experiment, the system was operated at low-speed, medium-speed, and high-

speed, respectively. With a fixed scan rate K, two sets of data were obtained. The first set 

of data contained the actual distance, and the second set of data contained the distance 

data measured by the system. Then, more data were obtained by changing the scan rate 
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K. With these data, the relationship curves for speed effect and scan rate effect were 

obtained. Two sets of curves were selected as examples (as shown in Figs. 3-4 and 3-5). 

In the figures, Da refers to the actual distance and Dm refers to the distance measured by 

the system. According to Fig. 3-4, the scan rate has a certain effect on the distance 

measurement. Thus, the speed sensor should be calibrated for the scan rate. According to 

Fig. 3-5, the operating speed has little effect on the X-direction distance measurement. 

 

 

 

 

 

 

 

Figure 3-4. Relationships between Dm and Da with Different Scan Rates 

 

 

 

 

 

 

 

Figure 3-5. Relationships between Dm and Da with Different Operating Speeds 
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Calibration for Distance Measurement 

Field experiments showed that the synthetic error is linear and its source is complex. 

Thus, the statistical method is more practical for canceling scan rate effect [5]. The basic 

concept for performing the calibration is to obtain the statistical relationship between the 

X-direction distance data and scan rates. For a given test section and a selected scan rate 

K, the distance measurement from the system Dm can be rectified into its corresponding 

actual distance Da through Eq. 3-3: 

Da = f(K, Dm)         (3-3) 

where, f (.) is a function of K and Dm which can be obtained by curve-fitting methods. A 

linear function was used to fit f (K, Dm). The function has the following form: 

Da = A(K) + B(K)Dm        (3-4) 

where, A(K) and B(K) are parameter functions of K. To estimate these parameters, several 

test sections were selected for data collection with different scan rates. Based on Fig. 3-2, 

for a given scan rate, the parameters A(K) and B(K) can be obtained. Thus, a matrix was 

obtained as shown in Tab. 3-1. 

      Table 3-1. Field of Test Results Form for Scan Rate Effect Canceling 

Test Section Number Scan Rate (K) A (K) B (K) 

1 x x x 

2 x x x 

… … … … 

M x x x 

Note: The element x in the table is a representative of the real value.  
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The relationship curves between parameters A and B and scan rate K are shown in Figs. 

3-6 and 3-7. With the linear regression method, the following equation was obtained: 

Da = 0.0014 K – 0.0644 + (0.0081K + 0.503)Dm    (3-5) 

Eq. 3-5 is the final Scan-Rate-Effect-Canceling (SEC) model. That is, with a given scan 

rate, the correct X-direction distance can be estimated through Eq. 3-5.  

 

 

 

 

 

 

 

Figure 3-6. Scan-Rate-Canceling Model - Coefficient (A) versus Scan Rate (K) 

 

 

 

 

 

 

Figure 3-7. Scan-Rate-Canceling Model - Coefficient (B) versus Scan Rate (K) 
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Field Validation 

To evaluate whether the calibrating model (SEC model) can provide distance data with 

reasonable accuracy, validation experiments were performed through field tests. In the 

validation experiments, real distance data were obtained and the distance data measured 

by the system and calibrated by the SEC model were recorded. Both distance data were 

compared to obtain the error and accuracy measures. Fig. 3-8 shows the distance 

measurement accuracy. From this figure, it can be concluded that the relative error of the 

distance measurement is less than 0.5%. Such an accuracy can ensure the quality of 

distance measurement. 

 

 

 

 

 

 

 

      Figure 3-8. X-Direction Distance Measurement Accuracy 
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CHAPTER 4. CRACK IDENTIFICATION 

INTRODUCTION 

Accurate identification of cracks is the prerequisite to the automatic detection of crack 

depth. Performance of the algorithm to identify cracks directly affects the system 

efficiency and its real-time characteristics. However, selection of the algorithm and the 

corresponding software development depend on the hardware performance of the laser 

sensors. This chapter summarizes the development of the algorithm and evaluation of the 

algorithm. 

PAST ALGORITHMS 

In the past, several algorithms have been developed to identify pavement surface 

cracking [3], among which a method called Running-Mean Downup Method (Downup) 

produces better results [9]. The basic idea behind the Downup method is that a crack can 

usually be identified by a sharp negative (down) slope and followed by a sharp positive 

(up) slope. A running mean algorithm filters the noise of the data and establishes a 

reference plane. A parameter mbar denotes the number of points used for the running 

average in the Downup algorithm. The algorithm identifies the down and up slopes by 

means of a difference sequence. First, the algorithm computes the slope, called diff, by 

taking the difference between each averaged point for a base length sbar. Then, a preset 

threshold value is used to determine the crack location. To make sure that the algorithm 

performs well, two additional parameters are used to obtain more reasonable results, i.e. 

width, a maximum acceptable crack width and tc, a maximum acceptable crack depth. 

The Downup method can be executed sufficiently faster to be suited to real-time 

application. However, a common drawback of these existing algorithms including the 

Downup method is their complexity. Usually, there are too many parameters that need to 

be determined, and with different parameters the algorithm will produce different results. 

Especially, when used for pavements with different surface conditions, different sets of 

parameters are required. Such kind of parameter determination is difficult for practical 

applications. 
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PARTIAL-CROSS-CORRELATION ALGORITHM 

Primarily, the complexity of the past algorithms is caused by the limitation of the laser 

sensor. With the use of a narrow laser beam to scan the pavement surface, massive 

amounts of information across the lane may be missed and many false cracks could be 

detected due to the roughness of the pavement surface. However, with the algorithms 

mentioned previously, these false cracks could be misinterpreted as cracks. In order to 

prevent the inclusion of false cracks, a new algorithm, called Partial-Cross-Correlation 

(PCC) algorithm, was developed in this research project. As mentioned previously, the 

system has two laser sensor heads. Through the dual-channels (each laser head uses one 

channel to connect to the lap top computer), two sets of data are obtained. Development 

of the PCC algorithm is based on the fact that the possibility of two false cracks occurring 

at the same position is almost zero. Mathematically, the profile data scanned by a laser 

sensor can be divided into two signals: X(n) and Ran(n), where X(n) is a deterministic 

signal related to crack information and Ran(n) is a random noise signal. The two sets of 

data from the two laser sensors can be expressed the following equation: 

S1(n) = X1(n) + Ran1(n)        

S2(n) = X2(n) + Ran2(n)       (4-1) 

where, S1(n) and S2(n) are data sequence from laser channels one and two, respectively. 

The cross-correlation analysis [25] between S1 and S2 can be performed as follows: 

R(m) = E{[S1(n)S2(n+m)]} 

 = E{[X1(n) + R1(n)][X2(n+m) + R2(n+m)]} 

 = E[X1(n)X2(n+m)] + E[X1(n)R2(n+m)] + E[X2(n+m)R1(n)]+E[R1(n)R2(n+m)] 

 (4-2) 

where, E(.) denotes the expectation of a random variable. It can be proven that the last 

three items of Eq. 4-2 are equal to zero because they are uncorrelated signals. Thus, 
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R(m) = E[X1(n)X2(n+m)]       (4-3) 

From Eq. 4-3, it can be seen that the cross-correlation analysis removes the interference 

caused by the noise which is represented by the false cracks due to the roughness of the 

pavement surface. Thus, the algorithm can prevent the existence of false cracks.  

To determine the exact location of a crack, each data set needs to be broken down into 

many small sub-sections. Then, the cross-correlation between the two respective sub-

sections is performed one by one. The determination of the sub-section length should 

meet two criteria: 

• The length of the sub-section should cover the entire crack width or most part of the 

crack width, and 

• The length of the sub-section should not exceed the extent required by the X-direction 

crack detection accuracy. 

Thus, the original data, S1(n) and S2(n) can be divided into K sub-sequences respectively, 

i.e. ss1(n) and ss2(n), and the length of each sub-sequence is M. The sub-section data can 

be described as follows: 
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where, ss1,2 = ss1 or ss1,2 = ss2 and S1,2 = S1 or S1,2 = S2, depending on whether channel one 

or channel two is used. Finally, the PCC algorithm is described by: 
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where, LMax denotes the local maximum among all the cross-correlation values for the 

respective sub-section. A software was developed to implement the PCC algorithm in the 

project. In the software, the maximum of R(m) in each sub-section is calculated. Then 

with the use of a preset threshold, the local maximums P are searched and validated to 

determine the position of a crack. This threshold is the single parameter in the algorithm 

to detect the cracks. It should be mentioned that using the convolution theorem and 

implementing it through the Fast Fourier Transform (FFT) could offer a numerically 

more effective way to calculate the correlation function. The algorithm developed here 

makes good use of the correlated and uncorrelated characteristics between the two sets of 

data to enhance the system power for crack detection.  

FIELD TESTS OF THE PCC ALGORITHM 

To evaluate the performance of the old algorithms used in past research studies and the 

PCC algorithm developed in this project, field tests were performed with the data 

collected from six different pavement sections. In each section, the data were obtained 

through sampling the pavement surface with the sampling interval of 0.25 mm (0.01 in.). 

Fig. 4-1 shows a part of the original data from the two laser channels. The real and false 

cracks were surveyed in the field. With the old crack detection algorithms, it is possible 

to identify some relatively small false cracks by means of carefully selected algorithm 

parameters. Nevertheless, if the size of a false crack is comparable with a real crack, it is 

impossible to correctly identify it. 

Since it is difficult to prevent the existence of false cracks if only one channel is used, the 

PCC algorithm with two channels was used to combines the two sources of data to 

enhance the detection ability. To do the correlation analysis, the two original sets of data 

were filtered by a high-pass digital filter as the pre-processing. The filtered data are 

shown in Fig. 4-2. In this research, the PCC algorithm is based on the prerequisite that 

the two sets of data from the two channels are correlated. As shown in Fig. 4-3, the cross-

correlation sequence values increase significantly as the lag (the variable "m" used in Eq. 

4-3) is down to zero. This proves that the prerequisite is satisfied. After decomposing the 

data, the PCC algorithm results are shown in Fig. 4-4. From Fig. 4-4, it can be seen that 
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the four real cracks can be clearly detected with a preset threshold. The effect of the sub-

section length to the PCC algorithm performance is shown in Fig. 4-5. As the length of 

each sub-section increases, the PCC values become bigger, resulting in better detection of 

a crack. However, the extension of the sub-section will decrease the X-direction accuracy 

for crack detection. Therefore, the final sub-section length was determined to be 50-point 

long or 12.5mm (0.5 in.) in length. The entire process of the PCC algorithm is performed 

by the software developed in the project. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: R - Real Crack, F - False Crack 

Figure 4-1. Original Field Data Sampled at Every 0.25 mm 

 

(b) Data from Channel Two 

(a) Data from Channel One 
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Figure 4-2. Data Filtered by a High-Pass Filter 

 
Figure 4-3. Integrate Cross-Correlation Analysis to Filtered Data 

 

(a) Filtered Data from Channel One 

(b) Filtered Data from Channel Two 
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Figure 4-4. Partial Cross-Correlation Analysis Result 

 
Figure 4-5. PCC Algorithm Evaluation Results with Different Sub-Section Length 
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To quantify the performance of the PCC algorithm, two performance indices (CDR and 

FDR) were used. The crack detection rate (CDR) is defined as the ratio of the number of 

cracks that are correctly detected to the total number of cracks in a selected field section, 

whereas the false crack detection rate (FDR) is defined as the ratio of the number of 

cracks that were incorrectly detected to the total number of cracks. Tab. 4-1 presents the 

performance comparison results between the Downup algorithm and the PCC algorithm. 

In the cement concrete pavement sections, both algorithms produced good results due to 

the relatively smooth pavement surface condition. As for asphalt concrete pavement 

sections, the FDR of Downup method was significantly higher than that of the PCC 

algorithm. Thus, it is indicated that the PCC algorithm based on the cross-correlation 

theory has better crack detection ability as compared to the Downup algorithm. 

   

  Table 4-1. Performance Comparison between Downup Method and PCC Algorithm 

Downup Algorithm PCC Algorithm Section 
Number 

Pavement  
Type 

Number 
Of Cracks CDRa FDRb CDR FDR 

1 
Asphalt 
Concrete 

41 95.1% 24.4% 92.7% 4.8% 

2 
Cement 
Concrete 

29 96.6% 6.9% 96.6% 0.0% 

3 
Asphalt 
Concrete 

32 90.6% 25.0% 96.9% 6.3% 

4 
Asphalt 
Concrete 

37 92.3% 12.0% 87.5% 3.7% 

5 
Asphalt 
Concrete 

45 91.0% 21.0% 92.3% 5.4% 

6 
Asphalt 
Concrete 

40 97.26% 43.0% 95.7% 8.3% 

a refers to Crack Detection Rate. 
b refers to False Crack Detection Rate. 
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DISCUSSION 

In pavement performance evaluation, monitoring of the longitudinal crack depth is even 

more important as compared to transverse cracks. The PCC algorithm developed in the 

research is not able to identify longitudinal cracks because the scanning direction of the 

laser sensors in the prototype is parallel to longitudinal cracks. Thus, the algorithm 

basically will filter out longitudinal cracks and only keep transverse cracks. The 

capability of filtering out longitudinal cracks and the impacts of longitudinal cracks to 

identification of transverse cracks were not assessed in the research. The test sites 

selected in the research did not present significant amount of longitudinal cracks. Such an 

assessment is recommended to be performed in the future research. 

To automatic identify longitudinal cracks and estimate crack depth, the current sensor 

system should be improved. Scanning laser sensors with laser angle being dynamically 

changed should be used. This type of laser sensors are available in markets. The scanning 

direction of the laser sensors should be perpendicular to the direction of longitudinal 

cracks. The sensors should be able to obtain information such as crack width, crack 

slopes, measurable crack depth, etc. Similar to transverse cracks, estimating models 

should be developed to estimate the depth of longitudinal cracks. Practically, such a 

system will not aim at detecting all longitudinal cracks. This type of system will focus on 

the longitudinal cracks on wheel paths. The scanning laser sensors will only scan the 

cracks on wheel paths. It is possible that some longitudinal cracks on wheel paths will not 

be picked up by the laser sensors. However, statistically, the system will be able to 

provide longitudinal crack depth distribution on a specific pavement section. 
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CHAPTER 5.  MODEL DEVELOMENT AND SYSTEM IMPLEMENTATION 

INTRODUCTION 

The automatic system has three basic subsystems: (1) distance measurement, (2) crack 

identification, and (3) crack depth estimation. The implementation of the system is to put 

all these three subsystems together in terms of software and hardware. In last two 

chapters, the first two subsystems were described and evaluation results were presented. 

To estimate crack depth, a neural network model was developed based on training and 

testing results. Two sources of field data were used for training, testing, and validation 

purposes. The first set of data were collected by the two laser sensors and the speed 

sensor to scan the surface geometric of cracks, and the second set of data were obtained 

from a non-contact type of measuring system (impact echo) to statically measure crack 

depth. With the two data sets and pavement section related information, the neural 

network model was developed. The pavement section related information includes 

AADT, age, truck factor, etc. These pavement-related variables could be obtained 

directly from the FDOT pavement database. The output of the model is the estimated 

crack depth. This chapter summarizes the modeling procedure and presents the 

performance evaluation results of the model for crack depth estimation. 

DATA COLLECTION 

Field Data Collection 

The major part of the data used for the model development was collected in the field. 

From the point of view of the neural network model development, the scope and extent of 

the data will directly affect the efficiency of the model. A critical issue in developing a 

neural network model is generalization, i.e. to have the outputs of the model approximate 

target values given inputs that are not in the training set. A neural network model that is 

not sufficiently complex can fail to fully detect the signal in a complicated data set, 

leading to under-fitting. However, if the model is so complex as to fit both the noise and 

the signal, it will cause over-fitting. Overfitting is especially dangerous because it can 
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easily lead to predictions that are far beyond the range of the training. Over-fitting can 

also produce wild predictions in multi-layer feed-forward network even with noise-free 

data [26, 27]. To avoid under-fitting and over-fitting, and, therefore, gain good 

generalization, the following conditions are necessary: 

• The first necessary condition is that the inputs to the network contain sufficient 

information pertaining to the target, so that there exists a mathematical function 

relating correct outputs to inputs with the desired degree of accuracy.  

• The second necessary condition is that the function that the network is trying to learn 

(that relates inputs to correct outputs) be, in some sense, smooth. In other words, a 

small change in the inputs should, most of the time, produce a small change in the 

outputs. For continuous inputs and targets, smoothness of the function implies 

continuity and restrictions on the first derivative over most of the input space. 

• The third necessary condition for good generalization is that the training data set be a 

sufficiently large and representative subset of the set of all cases that the network is 

expected to generalize. 

Actually, the best way to achieve satisfactory generalization is to use as much training 

data as possible. However, the amount of the data is limited by many factors in practice. 

In order to realize the necessary conditions mentioned above, during the data collection, 

the following rules are used to guide the selection of pavement sections: 

• The pavement related variables should be evenly distributed over all the selected 

sections. 

• The range of the crack depth should cover all the possible values of the actual crack 

depth. 

In the project, 95 state road sections were selected from the FDOT pavement section 

database, which includes the pavement relevant variables such as AADT, Age, etc. All 

the sections distribute over the five counties in Florida (as listed in Tab. 5-1). To obtain 

the actual crack depth of the cracks, an Impact-Echo Test System by Physical Acoustics 
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Corporation was used. Fig. 5-1 shows the main components of the Impact-Echo Test 

System. 

    Table 5-1. Distribution of Pavement Sections for Field Data Collection 

County Name Number of Pavement Sections 

Hillsborough 18 

Pasco 8 

Manatee 13 

Sarasota 9 

Pinellas 27 

Total 75 

 

 

 

 

 

 

 

 

 

Figure 5-1. Impact Echo Test System 

The crack depth measurement accuracy of Impact Echo Test System is within 4% ~ 10 % 

of the measurement range. The accuracy was verified by the company. The field data 

collection by the Impact Echo Test System includes four steps described as follows: 
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• Wave Speed Measurement: The travel speed of the impact wave in pavement 

surface was needed for the estimation of crack depth. Field test was conducted to 

estimate travel speed of the impact wave as shown (see Fig. 5-2). 

 

 

 

 

 

 

Figure 5-2. Impact Echo Wave Speed Testing 

• Determination of Measurement Points (see Fig. 5-3): This step was to determine 

the geometric relationships between the transducers, the impactor, and the crack. 

 

 

 

 

 

 

  Figure 5-3. Determination of Measurement Points for Impact Echo Testing 

• Pavement Surface Polishing (see Fig. 5-4): A grinder was used to polish the 

measurement points to enhance the coupling condition between the pavement 
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surface and the transducers. This step is useful to increase the signal to noise ratio 

of the measurement units. 

 

 

 

 

 

 

Figure 5-4. Pavement Surface Polish for Impact Echo Testing 

• Crack Depth Measurement (see Fig. 5-5): The computer can automatically record 

the travel time of the impact wave and further estimate the crack depth according 

to the determined geometry relation. 

 

 

 

 

 

 

 

Figure 5-5. Crack Depth Measurement Using Impact Echo Testing System 

In the project, the entire procedure of measuring the crack depth in the field by the static 

method took about five months from November 2000 to March 2001. It was very time-
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consuming to actually measure the crack depth by this static method. Traffic control and 

safety devices were used to close at least one traffic lane in the test site so that field 

engineers could be protected and traffic could be guided. During the field data collection, 

over 1500 cracks were measured from the 75 sections. In the mean time, the automatic 

crack depth measuring system developed in the project was also used to scan these same 

cracks to obtain crack opening geometric characteristics.  

Core Sample Data Collection 

In addition to field data, some core samples with cracks were obtained from FDOT. 

Crack depth of each core sample was measured with a measuring scale and the opening 

geometric characteristics were measured by the automatic crack depth measuring system. 

These core samples were used for the system validation to verify the system performance 

in terms of accuracy. Fig. 5-6 shows an example of the core sample. A total of 257 

cracked core samples were collected in the project.   

 

 

 

 

 

 

 

 

 

Figure 5-6. Data Collection from Pavement Core Samples 
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Development of a Database 

With the data collected from field measurement and core samples, a pavement crack 

depth database was setup, which encompassed all of the variables used as the input and 

the output of the estimation model. The variables included in the database are listed in 

Tab. 5-2. The database also includes detailed information about the pavement sections, 

such as the RoadID, road name, starting position, and ending position. According to that 

information, the location of the pavement section can be easily determined. Distributions 

of the major variables are shown in Figs. 5-7 to 5-9. 

Table 5-2. List of Variables Used in Model Development 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 5-7. Distribution of AADT 
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Pavement 
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Number of Lanes N/A 
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Figure 5-8. Distribution of Truck Percentage 

 

 

 

 

 

Figure 5-9. Distribution of Pavement Age 

 

MODEL DEVELOPMENT 

Model development is a procedure in which the network tries to learn the inside 

relationship between the input and output vectors. The objective of the model 

development is to find a network with the best performance by means of adjusting the 

network architecture and tuning the inside connections of the network. In the research, to 

enhance the network training efficiency, the original data in the database were 

preprocessed. Furthermore, different training algorithms were compared. The flow chart 

of the neural network development is shown in Fig. 5-10. 
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Figure 5-10. The Flow Chart for Neural Network Model Development 

Data Preprocessing 

As mentioned earlier, the model development is a nonlinear optimization problem in 

which the training algorithm keeps looking for the so-called global minimum in an error 

surface with many local minima. The inherent difficulty of the problem is aggravated by 

the typically very high dimension of the weight space. The original database gained from 

the data collection is comprised of a variety of quantities with different units and different 

value ranges. At the same time, some variables in the database are correlated. All of these 

will increase the dimension of the weight space and the irregularity of the error surface 

and further decrease the training efficiency. The data preprocessing and coding is useful 

to enhance the training efficiency. The procedure can be summarized as follows: 

• Normalization: The normalization procedure normalizes the data (both inputs and 

targets) so that they will have zero mean and unity standard deviation. It will make 

the training process better behaved by improving the numerical condition. 
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• Principal Component Analysis: This step orthogonalizes the components of the input 

vectors (so that they are uncorrelated with each other). It orders the resulting 

orthogonal components (principal components) so that those with the largest variation 

come first, and it eliminates those components which contribute the least to the 

variation in the data set. 

Even though there are many applications in which the importance of the inputs has been 

evaluated, the question of which features in the training set are used by a particular feed-

forward network can be excruciatingly difficult to answer [28]. The main point is that 

there is no single measure of importance that is appropriate for all the applications. A 

common measure of the importance of an input is the change in the error function when 

the input is removed from the network. Unfortunately, it is not practical and may even be 

impossible to try all the possible combinations of the input vectors to evaluate the error 

function. On the other hand, it is important to retrain the network after removing each 

input, which can be time-consuming. Otherwise, the outputs of the network are likely to 

be meaningless. Nevertheless, there is no developed rule to guide the selection of an 

optimal subset of inputs according to the measure of importance. More importantly, 

removal of some inputs may affect the importance of the others in the model. Since the 

number of the input variables in this study is under the control of the neural network 

model, all the available variables listed in Tab. 5-2 are used in this project.   

Usage of the Database 

In this project, the preprocessed database was divided into the three sub-sets as shown in 

Fig. 5-11. Each set had different purpose as described as follows: 

 

 

 

Figure 5-11. Usage of Database 

Training Set (40%)

Testing Set (40%)

Validation Set (20%)
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• Training set: A set of data used for learning or fitting the parameters [i.e., weights] of 

the neural network.  

• Testing set: A set of data used to tune the parameters [i.e., architecture, not the 

weights] and assess the performance of the network.  

• Validation set: A set of data used to confirm the performance [generalization] of a 

fully specified network and control the training procedure.  

As shown in Fig. 5-10, the procedure for neural network model development comprises 

two stages. In the first stage, with the use of the training and testing data set, the training 

algorithm and network architecture will be determined. In the second stage, with the 

determined network model, validation set is used to control the tuning of the network 

weights, whereas, the testing data set will be used to gain an unbiased estimation of the 

generalization error. 

Network Architecture 

Mathematically, a network is represented by a weighted and directed graph, in which a 

collection of nodes are connected by directed or oriented links that carry associated 

weights as shown in Fig. 2-7. As to the multi-layer feed-forward network, there are two 

major indices for network topology description, i.e. the number of layers and the number 

of units in each layer. Furthermore, in this project, the hidden layer and hidden units in 

each hidden layer are of more concern since the input and the output layer are fixed. The 

network topology determines the function implemented by the network. Generally, one 

hidden layer with an arbitrarily large number of units suffices to achieve universal 

approximation problems [19]. Nevertheless, the need to construct a two-hidden layer 

network arises in some special problems, such as image and speech recognition. The 

multiple hidden layer architectures are motivated by attempts to incorporate spatially or 

temporally localized features. Unfortunately, using more than two hidden layers 

exacerbates the problem of local minima, and it is important to use many random 

initializations or other methods for global optimization. Therefore, in this project, only 
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one and two-hidden layer architectures are investigated. As to the number of the hidden 

units in each layer, in most situations, there is no way to determine the best number of 

hidden units without training several networks and estimating the generalization error of 

each. Too few hidden units will get high training error and high generalization error due 

to under-fitting and high statistical bias, whereas too many hidden units may get low 

training error but still have high generalization error due to over-fitting and high variance.  

In practice, the best number depends in a complex way on:  

• Numbers of input and output units,  

• Number of training cases,  

• Amount of noise in the targets,  

• Complexity of the function or classification to be learned,  

• Network architecture,  

• Type of hidden unit activation function,  

• Training algorithm, and  

• Regularization.  

Even though some books and articles offer rules of thumb for choosing architecture, the 

best number of hidden units may be determined through network training experiments. In 

addition, as mentioned previously, the activation functions for the hidden units are 

needed to introduce non-linearity into the network. With non-linearity, hidden units 

would make the network more powerful. Almost any nonlinear function does the job. In 

this study, the activation function used by the backpropagation learning must be 

differentiable and bounded. The sigmoidal functions such as logistic and tanh and the 

Gaussian function are the most common choices. Nevertheless, functions such as tanh 

and tansig that produce both positive and negative values tend to yield faster training than 

functions that produce only positive values such as logistic, because of better numerical 

conditioning. Finally, the tansig activation function is applied due to its faster Matlab 

implementation. Its algorithm is given in the following equation: 

( ) 1
21

2 −
∗−+

=
xexp

y        (5-1) 
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Selection of Network Training Algorithm 

Methods for network training have been studied for hundreds of years, and there is a huge 

literature based on the subject fields such as numerical analysis, operations research, and 

statistical computing. Actually, there is no single best method for solving a given 

problem. The method selection is based on the characteristics of the problem to be 

solved. For feed-forward networks with the most popular differentiable activation 

functions and error functions, three general types of algorithms have been found to be 

effective for most practical purposes:  

• For a small number of weights, stabilized Newton and Gauss-Newton algorithms, 

including various Levenberg-Marquardt (LM) and trust-region algorithms, are 

efficient. The memory required by these algorithms is proportional to the square of 

the number of weights. 

• For a moderate number of weights, quasi-Newton algorithms are efficient. The 

memory required is proportional to the square of the number of weights.  

• For a large number of weights, various conjugate-gradient algorithms are efficient. 

The memory required by these algorithms is proportional to the number of weights.  

Another important consideration in the choice of the algorithms is that neural networks 

are often ill-conditioned, especially when there are many hidden units. Algorithms that 

use only first-order information, such as steepest descent and standard Backpropagation, 

are notoriously slow for ill-conditioned problems. Generally speaking, an algorithm using 

more second-order information may result in better behave under ill-conditions [29]. 

Compared with other algorithms, the quasi-Newton methods and the LM algorithm [30] 

use more second-order information. In the Newton method, the network connections 

(weights and bias) are updated by the following equation: 

kkkk gAww 1
1

−
+ −=         (5-2) 

where, A is the Hessian matrix (second derivatives) of the performance index at the 

current values of the weights and biases.  



 62 

Newton’s method often converges faster than other methods. Unfortunately, it is complex 

and expensive to compute the Hessian matrix for feed-forward neural networks. The LM 

algorithm, like the Newton's method, is designed to approach second-order training speed 

while it uses Jacobian matrix to approximate the Hessian matrix. The Jacobian matrix can 

be computed through a standard backpropagation technique that is much less complex 

than computing the Hessian matrix. Thus, the basic step of the LM algorithm has the 

following equation: 

[ ] k

T

kk gIJJww
1

1

−

+ +−= µ       (5-3) 

and the gradient can be computed by: 

k

T

k eJg =          (5-4) 

where, J is the Jacobian matrix which contains first derivatives of the network errors with 

respect to the weights and biases, and ek is a vector of network errors. When the scalar µ 

is zero, this is just the Newton's method. When µ is large, this becomes gradient descent 

with a small step size. The aim is to shift towards Newton’s method as quickly as 

possible. Thus, µ is decreased after each successful step and is increased only when a 

tentative step would increase the performance function. In this way, the performance 

function will always be reduced at each iteration of the algorithm. Therefore, in this 

research, the LM algorithm was finally selected to train the neural network.  

Neural Network Training and Testing 

The main goal of training and testing is to determine the network with the best 

performance. In this project, various networks with different architectures were trained 

by minimizing an appropriate error function defined with respect to a training data set. 

The training software, called MATLAB, was used as the major tool for network 

development. The Neural Network Toolbox in MATLAB is a powerful collection of 

functions for design, training, and simulation of neural networks, and it supports a wide 

range of network architectures with an unlimited number of processing elements and 

interconnections (up to operating system constraints). MATLAB supports various 
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architectures and training methods. It includes several variations on backpropagation 

(including the fast Levenberg-Marquardt algorithm). The Toolbox is delivered as 

MATLAB M-files, enabling users to see the algorithms and implementations, as well as 

to make changes or create new functions to address a specific application.  

Overall, the training algorithm can be implemented in two different ways: incremental 

mode and batch mode. In the incremental mode, the gradient is computed and the weights 

are updated after each input is applied to the network. In the batch mode, all of the inputs 

are applied to the network before the weights are updated. The incremental learning is 

often used for on-line, constructive, or sequential learning [31]. Since the objective of the 

modeling was to develop a network that could be used as a component in the final system 

for crack depth prediction, there was no need for on-line learning. Thus, the batch mode 

was used, i.e. the weights and biases of the network were updated only after the entire 

training set had been applied to the network. 

In the standard backpropagation algorithm, it is difficult to decide the exact value for the 

learning rate. A low learning rate makes the network learn slowly, and a high learning 

rate will make the weights and objective function diverge.  Figs. 5-12 and 5-13 show the 

training procedures with low and high learning rates, respectively. 

 

 

 

 

 

 

 

Figure 5-12. Network Training with Low Learning Rates (lr) 
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Figure 5-13. Network Training with High Learning Rates (lr) 

In this research, the training performance, mse, was calculated by the following equation: 
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where t represents the network targets, a represents the network outputs, and N represents 

the number of outputs. Actually, as to the typical feed-forward neural network with 

hidden units, the objective function has many local and global optima [31]. Hence, the 

optimal learning rate often changes dramatically during the training process. Thus, there 

is no need to use a constant learning rate like the standard backpropagation method. As 

mentioned earlier, there are more efficient, reliable, and convenient methods, in which 

the learning rate is adjusted automatically according to the training process. A brief 

introduction of each algorithm is provided in Tab. 5-3. With the different algorithms, the 

training processes were compared and the comparison results are presented in Fig. 5-14. 

In the figure, it is indicated that the function, trainlm which is a LM algorithm, yields the 

fastest training. It is further proved that the algorithm selection was reasonable to this 

application. 

To determine the network architecture, i.e. the number of hidden layers and the number 

of hidden units in each layer, a practical way is to train several networks and estimate the 
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training error and the generalization error [26]. The network prediction error was used as 

the major measure of the generalization error in the project. There are many combinations 

of network architectures. Figs. 5-15 and 5-16 present part of the experimental results for 

one-hidden layer and two-hidden layer architectures, respectively. 

     Table 5-3. Summary of Different Training Algorithms 

 

 

 

 

 

 

 

 

 

 

In Fig. 5-15, one-hidden layer was used for network training, in which the number of 

hidden units were changed from 5 to 15 (Testing_5 – Testing_15). In Fig. 5-16, two-

hidden layer network was used. However, the number of hidden units in the first hidden 

layer was fixed at 10 and the number of hidden units in the second hidden layer was 

changed from 1 to 10 (Testing_10 to Testing_10_10). 

From Figs. 5-15 and 5-16, it can be seen that the network training error keeps decreasing 

while the number of the hidden layer and the number of hidden units in each layer 

increases. However, the testing errors, a measure of the network generalization error, 

begin to increase after the number of hidden units increase to a certain number. 

Function Name in 
MATLAB 

Description 

traingd 
Basic gradient descent, slow response, can be used in 
incremental mode training. 

traingdx 
Adaptive learning rate, faster training than traingd, but 
can only be used in batch mode training. 

trainrp 
Resilient backpropagation, simple batch mode training 
algorithm with fast convergence and minimal storage 
requirements. 

traincgp 
Polak-Ribiére conjugate gradient algorithm, slightly 
larger storage requirements than traincgf, faster 
convergence on some problems. 

trainbfg 

BFGS quasi-Newton method, requires storage of 
approximate Hessian matrix and has more 
computation in each iteration than conjugate gradient 
algorithms, but usually converges in fewer iterations. 

trainlm 
Levenberg-Marquardt algorithm, fastest training 
algorithm for networks of moderate size, has memory 
reduction feature for use when the training set is large. 
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According to the training experimental results shown in the Figs. 5-15 and 5-16, it is 

indicated that a network with ten hidden units in the first hidden layer and five hidden 

units in the second hidden layer yields the best performance. 

  

 

 

 

 

 

 

 

 

Figure 5-14. Network Training with Different Training Algorithms  

 

 

 

 

 

 

 

       Figure 5-15. Training with Different Network Architectures (One-Hidden Layer) 
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     Figure 5-16. Training with Different Network Architectures (Two-Hidden Layer) 
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selected as the architecture for the neural network model for crack depth estimation. As 

indicated by the experimental results, the network with such an architecture may result in 

the best performance in terms of the estimation accuracy.  
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function using data which is independent of that used for training. This approach is called 

the hold out method [32]. Since this procedure can itself lead to some over-fitting to the 

testing data set, the performance of the selected network should be confirmed by 

measuring its performance on a second independent data set - validation set.  

With the use of the training data set and testing data set on the network model, the 

process of network training is shown in Fig. 5-17. 

 

 

 

 

 

 

Figure 5-17. Network Training Process Using the Final Model Selected 
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project, the validation set proportion was set to 20% and both the training and testing set 

consisted of 40% of the whole data set. Fig. 5-18 shows the training process in which the 

early stopping was applied in the project. With the application of early stopping, an 

unbiased estimation of network generalization error could be gained according to the 

network performance on the testing data set. The results are shown in Fig. 5-19, in which 

linear regression was performed to illuminate the network performance. 

 

 

 

 

 

 

 

Figure 5-18. Network Training Process With Early Stopping 

 

 

 

 

 

 

 

Figure 5-19. Network Performance Based on Testing Data Set 
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The performance analysis results based on the entire data set (including training, testing, 

and validation) are presented in Fig. 5-20. Figs. 5-21 and 5-22 present the network 

prediction-error range and its distribution, respectively. Performance analysis results 

based on different data sets (such as training, testing, and validation data sets) can also be 

compared. The estimation errors based on different data sets are presented in Fig. 5-23. 

The performance results presented in these figures show that the network outputs tracked 

the target reasonably well. According to the performance analysis results, it can be 

concluded that the neural network model developed in the research can be used to 

estimate the actual crack depth with reasonable accuracy. 

 

 

 

 

 

 

                    Figure 5-20. Network Performance Based on the Entire Data Set 

 

 

 

 

 

 

Figure 5-21. Network Estimation Error 
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            Figure 5-22. Network Estimation Error Distribution 

 

 

 

 

 

 

 

Figure 5-23. Estimation Errors Corresponding to Different Data Sets 
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FDOT Materials Office. Then, the estimated crack depth was compared with the real 

crack depth manually measured in the lab. However, the information on crack types 

(transverse crack or longitudinal crack) was not available. Thus, the bias caused by crack 

type factor could be introduced in the validation. The validation results are shown in Figs. 

5-24 to 5-26. Fig. 5-24 shows the goodness of fit of the estimated crack depth data with 

the actually crack depth data measured from core samples. The estimated crack depth 

data were obtained by the automatic crack depth measuring system developed through the 

project. Fig. 5-25 presents the estimation error between the real crack data and the 

estimated crack depth data. Fig. 5-26 depict the error distribution. From these figures, it is 

indicated that the validation analysis showed that the system including the hardware and 

software can produce reasonable estimation results. However, as compared with the 

validation results from the data collected by the impact echo system, the validation results 

from core samples did not show as good accuracy as the validation results from the 

impact echo data. Part of the main reasons for this could be due to the fact that no 

information on crack types was available for the crack data from the core samples. 
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Figure 5-24. Goodness of Fit from Validation Analysis  

CONCLUSION 

The model developed in the research and modeling results presented in this chapter 

indicated that neural network models can be used to estimate crack depth. The model 

inputs should include crack opening geometric characteristics and pavement section 
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related information. However, since the real cracks measured in the field by the system 

and the impact echo were only transverse and block cracks (no sufficient field support to 

measure longitudinal cracks.), the model development (called modeling) was based on 

transverse and block cracks only. To make the model applicable to longitudinal cracks, 

more field data collection efforts should be conducted to get more longitudinal cracks. 

 

 

 

 

 

 

Figure 5-25. Estimation Error from Validation Analysis 

 

 

 

 

 

 

 

Figure 5-26. Validation Error Distribution 
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As stated previously, the system mainly consists of three major sub-systems. The first 

sub-system is to automatically measure the distance traversed by the system; the second 

sub-system is to automatically identify cracks; and the third sub-system is to estimate 

crack depth with the data obtained from the first two sub-systems and the pavement 

section related information. The main element in the third sub-system is the neural 

network model which can estimate crack depth based on crack opening geometric 

characteristics and pavement section related information. With the combination of all 

three sub-systems, the system can automatically measure cracks and estimated crack 

depth while moving along the pavement section. 
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CHAPTER 6. SUMMARIES, CONCLUSIONS, AND RECOMMENDATIONS 

SUMMARIES 

Cracking is a predominant form of pavement distress manifestation and, hence, crack 

evaluation is an important task to pavement management. Rapid and reliable methods for 

estimating crack depth will indeed facilitate more effective pavement maintenance and 

rehabilitation decision-making. 

In recent years, research studies have been performed to develop automatic and non-

destructive techniques to evaluate pavement surface cracking. However, based on the 

literature review, it was found that most of the existing systems only focus on identifying 

crack location, crack length, and crack width. Up to now, core sample method is the only 

way used by departments of transportation in US to collect crack depth data for pavement 

management. As a destructive method, core sampling is both time and resource 

consuming.  

To realize automatic detection of pavement surface crack depth on Florida roadways in a 

non-destructive way, a research project was performed in last two years by the 

Department of Civil and Environmental Engineering at the University of South Florida 

and sponsored by Florida Department of Transportation. In the project, the research team 

reviewed existing documents and information databases to search available technologies 

applicable to the application. Based on the literature search and review, no technologies 

available to be used in fields to dynamically estimate pavement surface crack depth. 

Some preliminary experiments were performed to test which types of sensors can be used 

for the application. Based on the preliminary experimental results, it was concluded that 

laser sensors with high resolution, high accuracy, and high sampling rate could be used to 

indirectly measure pavement crack depth. However, a model was needed to estimate 

crack depth with the support of information on crack opening geometric characteristics 

and pavement section characteristics. This concept to indirectly estimate crack depth was 

presented at a project meeting attended by pavement and materials engineers from 

Florida Department of Transportation and was approved in the meeting. 
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In the project, a prototype system was developed to automatically and dynamically 

measure pavement cracks and estimate the crack depth. The prototype system can 

automatically detect the existence of cracks and their exact positions on the roadways. 

Then, crack depth can be estimated by the neural network model installed in the system. 

The system mainly consists of three sub-systems, including distance measuring, crack 

identifying, and crack depth estimation. The main efforts in the research were to develop 

these sub-systems and calibrate the models in these sub-systems by collect field data or 

core samples. 

The system hardware includes two Microtrak 7000 laser measurement units and one 

M12x1-180ASN-500 analog speed measuring unit. A NI-DAQCard-1200 is used for data 

acquisition and digitalization. A TOSHIBA laptop computer with a Pentium II processor 

performs the system central control and signal processing. The measurement units 

installed in the prototype system can accurately record the microscopic pavement profile, 

including detailed vertical texture changes. With a user-friendly interface, the system 

software achieves the signal processing and data management. In the system signal 

processing, a Scan-Rate-Effect-Canceling (SEC) model developed in the project is used 

to calibrate the distance measurement. The SEC model further enhances the system 

measurement accuracy. In the project, a new algorithm, called Partial Cross Correlation 

(PCC) algorithm, was developed for crack identification. The PCC algorithm can 

effectively reduce the possibility of false crack detection and significantly enhances the 

accuracy for crack identification. To estimate crack depth, a neural network model was 

developed to map the relationship between the system measures and the actual crack 

depth. The main inputs to the neural network model are crack opening geometric 

characteristics and pavement section related information. 

In the prototype system, the laser sensors are installed with the face close to pavement 

surface. For practical use, the space between sensor surface and pavement surface should 

be large enough so that the sensors will not be damaged when the vehicle is moving at 

high speed. Thus, new laser sensors will be searched to ensure the space between the 

sensor surface and pavement surface is large enough. 
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To develop and calibrate the neural network model, field data were collected from five 

counties in Florida with the use of an impact echo system and the prototype system. The 

impact echo system was used to statically measure actual crack depth and the prototype 

system was used to measure the crack opening geometric characteristics. In addition, 

many core samples were collected from Florida Department of Transportation for the 

purpose of model validation. The data collected from fields by the impact echo system 

and the prototype system were used for the training and testing of the neural network 

model. Based on a series of training and testing experiments, different network training 

algorithms and network architectures were investigated and compared. With the 

determined architecture and algorithm, early stopping was introduced into the final 

network training and testing. Early stopping technique efficiently avoids the over-fitting 

to the given data. According to the final testing and validation results, it was proved that 

the developed estimation model could produce satisfactory generalization and reasonable 

accuracy for crack depth estimation. 

CONCLUSIONS 

Based on literature review and preliminary experiments performed in the research, it was 

concluded that no existing technologies available to directly measure highway pavement 

surface crack depth, and laser sensors plus a model could be used to indirectly and 

dynamically estimate pavement crack depth. Current available technologies can only 

statically estimate crack depth for the structures with uniform materials such as concrete 

and metal materials. Such technologies cannot be practically applied to highway 

pavement situation. Therefore, it was decided to use laser sensors plus estimating models 

for the application. 

Three models were developed in the research to measure distance traversed by the 

system, to identify cracks, and to estimate crack depth, respectively. Development and 

calibration of the three models were based on field data collected during the research. 

Based on field experimental results, the following conclusions can be made: 

• The prototype system can accurately measure the distance with an error of less 

than 0.5%. 
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• The prototype can identify cracks and locate crack locations with reasonably good 

accuracy as shown in Table 4-1. The algorithm developed in the project to 

identify cracks performed better than other algorithms developed in past years, in 

terms of crack detection rate and false crack detection rate. 

• Based on training and testing results, a two-hidden-layer neural network model 

with 10 hidden units in the first hidden layer and 5 hidden units in the second 

hidden layer was finally selected as the architecture for the neural network model 

for crack depth estimation. Performance evaluation results indicated that the 

prototype system can estimate crack depth with a reasonably good accuracy as 

shown in Figs. 5-19 and 5-20. The correlation coefficient (R2 value) between the 

crack depth data estimated by the prototype system and the crack depth data 

obtained from field data collection by the impact echo system was larger than 

0.866. However, based on the validation results, the correlation coefficient 

between the crack depth data estimated by the prototype system and the core 

crack measurements was 0.4861 (Figure 5-24). It should be noted that there were 

only 257 core samples available for validation purpose. The insufficient number 

of core samples could result in poor correlation. 

The prototype system can automatically identify cracks and estimate crack depth. The 

main technologies used in the system are sensor technology, computer interface 

technology, signal processing technology, and modeling technology. With the use of the 

automatic system, the current process for crack depth estimation can be greatly improved, 

in terms of time, cost, and efficiency. 

The crack data collected from fields were all transverse or block cracks. Thus, the model 

for crack depth estimation may be applicable to transverse or block cracks only. More 

data from other types of cracks will be needed to develop models to estimate crack depth 

of all types.  

The prototype system uses a laptop computer to sample data with very high sampling 

density (very small sampling interval). Also, the prototype displays the pavement 

microscopic texture profile graphics in real time format, which definitely costs significant 



 79 

computer time and greatly limits the moving speed of the prototype with given sampling 

interval. Thus, the system with current format cannot be moved at high speed due to the 

limitation of sampling rate. To practically use the system for real crack depth estimation 

at normal traffic speed, at least three steps should be taken: (1) an industrial computer 

with higher sampling frequency should be used; (2) a lower sampling density (interval) 

should be adopted; and (3) the system should not display real-time profile graphics, but 

only display data information. With such improvements, the system will be able to move 

at normal traffic speed.  

Overall, the methodologies developed in the project are applicable to the application. The 

results obtained from the project show promising to develop a real system to dynamically 

and automatically estimate pavement crack depth.  

RECOMMENDATIONS 

The current format of the prototype can only be used as an experimental tool. It cannot be 

practically used in real application. A much larger scale research is needed to implement 

the research finding obtained in the research. The proposed research to be performed in 

the future will be to develop a system that can be operated at normal traffic speed to 

dynamically and automatically measure cracks (including transverse and longitudinal 

cracks) and estimate crack depth with statistically good accuracy. The system will be 

actually used in real application. 

To fully develop the system, the proposed research will have three phases. The first phase 

will focus on designing the system and putting together all necessary parts including a 

vehicle, sensors and transducers, an industrial type computer. The system to be developed 

through this phase can actually measure cracks, but cannot estimate crack depth. In the 

second phase, a much larger scale field data collection activity will be performed for the 

model development. In this phase, longitudinal and transverse cracks will be measured to 

obtain crack depth data. Based on the data, a better neural network model will be 

developed. In the third phase, the system developed in phases one and two will be tested 

in fields and modifications to the system will be made based on field tests. 
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