STRUCTURES FOUNDATIONS – DYNAMIC TESTING WITH TEST PILES. (REV 6-26-12) (7-14)

Articles 455-1 through 455-12 are deleted and the following substituted:

455-1 General Requirement.

The Contractor may examine available soil samples and/or rock cores obtained during the soil boring operations at the appropriate District Materials Office.

455-1.1 Protection of Existing Structures: When the Plans require foundation construction operations in close proximity to existing structures, take all reasonable precautions to prevent damage to such structures. The requirements described herein apply to all types of structures (on or off the right-of-way) that may be adversely affected by foundation construction operations (including phase construction) due to vibrations, ground loss, ground heave, or dewatering. Protect utilities as described in-the applicable provisions of Section 7.

Monitor structures for settlement in a manner approved by the Engineer, recording elevations to 0.001 foot. Monitor the following structures:

- (1) shown in the Plans.
- (2) within a distance, in feet, of pile driving operations equal to 0.5 times the square root of the impact hammer energy based on the theoretical energy of the ram at impact, in foot-pounds. Take required measurements before the initiation of driving and then daily on days when driving occurs or as indicated in the Plans and weekly for two weeks after driving has stopped.
- (3) within a distance of ten shaft diameters or the estimated depth of excavation, whichever is greater.
- (4) within a distance of three times the depth of excavation for the footing. Obtain the Engineer's approval of the number and location of monitoring points. Take elevation:
 - (1) before beginning construction,
 - (2) daily during the driving of any casings, piling, or sheeting,
 - (3) weekly for two weeks after stopping driving,
 - (4) during excavation,
 - (5) during blasting,
 - (6) or as directed by the Engineer.

Notify the Engineer of any movements detected and immediately take any remedial measures required to prevent damage to the existing structures.

Employ a qualified Specialty Engineer to survey all structures, or portions thereof, within:

- (1) a distance, in feet, of pile driving operations equal to 0.25 times the square root of the impact hammer energy based on the theoretical energy of the ram at impact, in foot-pounds
- (2) a distance of ten shaft diameters or the estimated depth of drilled shaft excavation, whichever is greater
 - (3) three times the excavation depth for footings and caps
 - (4) or as shown in the Plans

The Department will make the necessary arrangements to provide right-of-way entry for the Contractor's engineer to survey. Adequately document the condition of the

structures and all existing cracks with descriptions and pictures. Prepare two reports documenting the condition of the structures: one report before beginning foundation construction operations and a second report after completing foundation construction operations. The Department will take ownership of both reports. Do not perform pre-driving and post-driving surveys of the condition of bridges owned by the Department except when shown in the Contract Documents.

When shown in the Contract Documents, employ a qualified Specialty Engineer to monitor and record vibration levels during the driving of casings, piling, sheeting, or blasting operations. Provide vibration monitoring equipment capable of detecting velocities of 0.1 in/s or less.

Upon detecting settlement or heave of 0.005 foot, vibration levels reaching 0.5 in/s, levels otherwise shown in the Contract Documents, or damage to the structure, immediately stop the source of vibrations, backfill any open drilled shaft excavations, and contact the Engineer for instructions.

When the Plans require excavations for construction of footings or caps, the Contractor is responsible for evaluating the need for, design of, and providing any necessary features to protect adjacent structures. When sheeting and shoring are not detailed in the Plans, employ a Specialty Engineer to design the sheeting and shoring, and to sign and seal the Plans and specification requirements. Send these designs to the Engineer for his record before beginning construction.

When shown in the Contract Documents or when authorized by the Engineer, install the piling to the depth required to minimize the effects of vibrations or ground heave on adjacent structures by approved methods other than driving (preformed holes, predrilling, jetting, etc.). In the event the Department authorizes the use of preformed pile holes to meet this requirement, the Department will pay for this work as described in 455-5.9.3.

If not otherwise provided in the Plans, the Contractor is responsible for evaluating the need for, design of, and providing all reasonable precautionary features to prevent damage, including, but not limited to, selecting construction methods and procedures that will prevent damaging caving of the shaft excavation and monitoring and controlling the vibrations from construction activities, including driving of casings, driving of sheeting, and blasting.

When shown in the Plans or directed by the Engineer, install a piezometer near the right-of-way line and near any structure that may be affected by lowering the ground water when dewatering is required. Monitor the piezometer and record the ground water elevation level daily. Notify the Engineer of any ground water lowering near the structure of 12 inches or more.

455-1.2 Excavation: Complete all excavation of the foundations prior to installing piles or shafts unless otherwise authorized by the Engineer. After completing pile/shaft installation, remove all loose and displaced materials from around the piles/shafts, leaving a clean, solid surface. Compact the soil surface on which concrete is to be placed or which will support the forming system for the concrete to support the load of the plastic concrete without settling or causing the concrete to crack, or as shown in the Contract Documents. The Engineer will not require the Contractor to compact for excavations made below water for seals or when the footing or cap or forming system (including supports) does not rest on the ground surface.

455-1.2.1 Abutment (End Bent) Fill: Place and compact the fill before installing end-bent piling/shafts, except when:

- (1) driving specified test piling in end bents or,
- (2) the Plans show uncased piles through proprietary retaining wall fills.

When installing piles/shafts or casing prior to placing fill, take necessary precautions to prevent displacement of piles/shafts during placing and compacting fill materials within 15 feet of the piles/shafts or casing. Reference and check the position of the piles/shafts or casing at three approximately equal intervals during construction of the embankment.

Place embankment material in 6 inch loose lifts in the 15 foot area around the piles/shafts or casing. Compact embankment material within the 15 foot area adjacent to the piles/shafts or casing to the required density with compaction equipment weighing less than 1,000 pounds. When installing piles/shafts prior to the completion of the surrounding fills, do not cap them until placing the fills as near to final grade as possible, leaving only the necessary working room for construction of the caps.

Provide permanent casings installed prior to placement of the fill, for all drilled shafts through mechanically stabilized fills (for example, behind proprietary retaining walls) for shafts installed after fill placement. Install temporary casings through the completed conventional fill when permanent casings are not required.

Provide permanent casings, if required, before the fill is placed extending a sufficient distance into the existing ground to provide stability to the casings during construction of the abutment fill.

455-1.3 Cofferdams: Construct cofferdams as detailed in the Plans. When cofferdams are not detailed in the Plans, employ a Specialty Engineer to design cofferdams, and to sign and seal the Plans and specification requirements. Send the designs to the Engineer for his records before beginning construction.

Provide a qualified diver and a safety diver to inspect the conditions of the foundation enclosure or cofferdam when the Contract Documents require a seal for construction. Equip these divers with suitable voice communications, and have them inspect the foundation enclosure and cofferdam periphery including each sheeting indentation and around each piling or drilled shaft to ensure that no layers of mud or other undesirable materials were left above the bottom of seal elevation during the excavation process. Also have the divers check to make sure the surfaces of the piles or drilled shafts are sufficiently clean to allow bond of the concrete down to the minimum bottom of seal elevation. When required, ensure that there are no mounds of stone, shell, or other authorized backfill material left after placement and grading. Assist the Engineer as required to ensure that the seal is placed as specified and evaluate the adequacy of the foundation soils or rock. Correct any deficiencies found by the divers. Upon completion of inspection by the divers, the Department may also elect to inspect the work before authorizing the Contractor to proceed with subsequent construction operations. Furnish the Engineer a written report by the divers indicating the results of their underwater inspection before requesting authorization to place the seal concrete.

455-1.4 Vibrations on Freshly Placed Concrete (Drilled Shafts and Piers): Ensure that freshly placed concrete is not subjected to vibrations greater than 1.5 in/sec from pile driving and/or drilled shaft casing installation sources located within the greater dimension of three shaft diameters (measured from the perimeter of the shaft closest to the vibration source) or 30 feet (from the nearest outside edge of freshly placed concrete to the vibration source) until that concrete has attained its final set as defined by ASTM C-403 except as required to remove temporary casings before the drilled shaft elapsed time has expired.

455-2 Static Compression Load Tests.

455-2.1 General: Employ a professional testing laboratory, or Specialty Engineer with prior load test experience on at least three projects, to conduct the load test in compliance with

these Specifications, to record all data, and to furnish reports of the test results to the Engineer except when the Contract Documents show that the Department will supply a Geotechnical Engineer to provide these services.

Perform the load test by applying a load up to the load required in the Contract Documents or to the failure load, whichever occurs first.

Do not apply test loads to piles sooner than 48 hours (or the time interval shown in the Plans) after driving of the test pile or reaction piles, whichever occurs last.

Allow up to four weeks after the last load test for the analysis of the load test data and to provide all the estimated production tip elevations. If the Contractor is willing to construct production foundation elements in areas designated by the Engineer, tip elevations will be determined in these areas beginning seven days after the receipt of the load test data which represents the designated area.

Do not begin static load testing of drilled shafts until the concrete has attained a compressive strength of 3,400 psi. The Contractor may use high early strength concrete to obtain this strength at an earlier time to prevent testing delays.

Load test piles/shafts in the order directed by the Engineer. The Department will furnish certain load test equipment and/or personnel when shown in the Plans. Inspect all equipment to be furnished by the Department at least 30 days prior to use, and notify the Engineer of any equipment that is not in satisfactory operating condition. The Department will consider any necessary repairs ordered by the Engineer to place the equipment in satisfactory operating condition as Unforeseeable Work. Provide the remainder of the equipment and personnel needed to conduct the load tests. Unless shown otherwise in the Contract Documents, provide all equipment, materials, labor, and technical personnel required to conduct the load tests, including determination of anchor reaction member depths. In this case, provide a loading apparatus designed to accommodate the maximum load plus an adequate safety factor.

While performing the load test, provide safety equipment, and employ safety procedures consistent with the latest approved practices for this work. Include with these safety procedures adequate support for the load test plates and jack to prevent them from falling in the event of a release of load due to hydraulic failure, test pile/shaft failure, or any other cause.

Include in the bid the cost of transporting load test equipment and instrumentation supplied by the Department from their storage location to the job site and back. Handle these items with care. The Contractor is responsible for the safe return of these items. After completion of the static load tests, return all Department furnished equipment in satisfactory operating condition. Repair all damage to the test equipment furnished by the Department to the satisfaction of the Engineer. Clean all areas of rust on structural steel items, and recoat those areas in accordance with Section 560. Return all load test equipment supplied by the Department within 30 days after completing the load tests.

The Contractor is responsible for the equipment from the time it leaves its storage area until the time it is returned. During this time, insure the equipment against loss or damage for the replacement cost thereof (the greater of \$150,000 or the amount shown in the Plans) or for the full insurable value if replacement cost insurance is not available.

Notify the Engineer at the preconstruction conference or no later than 30 days before beginning test pile installation of the proposed testing schedule so that items supplied by the Department may be reserved. Notify the Department at least ten working days before pick-up or return of the equipment. During pick-up, the Department will complete a checklist of all equipment placed in the Contractor's possession. The Department will later use this checklist to

verify that the Contractor has returned all equipment. Provide personnel and equipment to load or unload the equipment at the Department's storage location. Provide lifting tongs or nylon slings to handle Department owned test girders. Do not perform cutting, welding, or drilling on Department owned girders, jacks, load cells, or other equipment.

- **455-2.2 Loading Apparatus:** Provide an apparatus for applying the vertical loads as described in one of the following:
 - (1) As shown and described in the Contract Documents.
- (2) As supplied by the Contractor, one of the following devices designed to accommodate a load at least 20% higher than that shown in the Contract Documents or described herein for test loads:
- (a) Load Applied by Hydraulic Jack Acting Against Weighted Box or Platform: Construct a test box or test platform, resting on a suitable support, over the pile, and load it with earth, sand, concrete, pig iron, or other suitable material with a total weight greater than the anticipated maximum test load. Locate supports for the weighted box or platform at least 6 feet or three pile/shaft diameters, whichever is greater, measured from the edge of the pile or shaft to the edge of the supports. Insert a hydraulic jack with pressure gauge between the test pile or shaft and the underside of the reaction beam, and apply the load to the pile or shaft by operating the jack between the reaction beam and the top of the pile or shaft.
- (b) Load Applied to the Test Pile or Shaft by Hydraulic Jack Acting Against Anchored Reaction Member: Construct reaction member anchorages as far from the test piles/shafts as practical, but in no case closer than the greater of 3 pile/shaft diameters or 6 feet from the edge of the test pile/shaft. Attach a girder(s) of sufficient strength to act as a reaction beam to the upper ends of the anchor piles or shafts. Insert a hydraulic jack with pressure gauges between the head of the test pile/shaft and the underside of the reaction beam, and apply the test load to the pile/shaft by operating the jack between the reaction beam and the pile/shaft head.

If using drilled shafts with bells as reaction member anchorages, locate the top of the bell of any reaction shaft anchorage at least three shaft diameters below the bottom of the test shaft.

- (c) Combination Devices: The Contractor may use a combination of devices (a) and (b), as described above, to apply the test load to the pile or shaft.
- (d) Other Systems Proposed by the Contractor and Approved by the Engineer: When necessary, provide horizontal supports for loading the pile/shaft, and space them so that the ratio of the unsupported length to the minimum radius of gyration of the pile does not exceed 120 for steel piles, and the unsupported length to the least cross-section dimension does not exceed 20 for concrete piles or drilled shafts. Ensure that horizontal supports provide full support without restraining the vertical movement of the pile in any way.

When required by the Contract Documents, apply a horizontal load to the shaft either separately or in conjunction with the vertical load. Apply the load to the test shaft by hydraulic jacks, jacking against Contractor provided reaction devices. After receiving the Engineer's approval of the proposed method of load application, apply the horizontal load in increments, and relieve it in decrements as required by the Contract Documents.

455-2.2.1 Modified Quick Test:

(a) Loading Procedure: Apply vertical loads concentric with the longitudinal axis of the tested pile/shaft to accurately determine and control the load acting on the pile/shaft at any time. Place the load on the pile/shaft continuously, in increments equal to approximately 5% of the maximum test load specified until approaching the failure load, as indicated by the measuring

apparatus and/or instruments. Then, apply increments of approximately 2.5% until the pile/shaft "plunges" or attains the limiting load. The Engineer may elect to stop the loading increments when he determines the Contractor has met the failure criteria or when a settlement equal to 10% of the pile/shaft width or diameter is reached. Apply each load increment immediately after taking and verifying the complete set of readings from all gauges and instruments. Apply each increment of load within the minimum length of time practical, and immediately take the readings. Complete the addition of a load increment and the completion of the readings within five to 15 minutes. The Engineer may elect to hold the maximum applied load up to one hour.

Remove the load in decrements of about 10% of the maximum test load. Remove each decrement of load within the minimum length of time practical, and immediately take the readings. Complete the removal of a load decrement and the taking of the readings within five to 15 minutes. The Engineer may also require up to two reloading cycles with five loading increments and three unloading decrements. Record the final recovery of the pile/shaft until movement is essentially complete for a period up to one hour after the last unload interval.

- (b) Failure Criteria and Nominal Resistance: Use the criteria described herein to establish the failure load. The failure load is defined as the load that causes a pile/shaft top deflection equal to the calculated elastic compression plus 0.15 inch plus 1/120 of the pile/shaft minimum width or the diameter in inches for piles/shafts 24 inches or less in width, and equal to the calculated elastic compression plus 1/30 of the pile/shaft minimum width or diameter for piles/shafts greater than 24 inches in width. Consider the nominal resistance of any pile/shaft so tested as either the maximum applied load or the failure load, whichever is smaller.
- **455-2.3 Measuring Apparatus:** Provide an apparatus for measuring movement of the test piles/shafts that consists of all of the following devices:
- (1) Wire Line and Scale: Stretch a wire as directed by the Engineer between two supports located at a distance at least:
- (a) 10 feet from the center of the test pile but not less than 3.5 times the pile diameter or width.
- (b) 12 feet from the centerline of the shaft to be tested but not less than three shaft diameters.

Locate the wire supports as far as practical from reaction beam anchorages. At over-water test sites, the Contractor may attach the wire line as directed by the Engineer to the sides of the service platform. Mount the wire with a pulley on one support and a weight at the end of the wire to provide constant tension on the wire. Ensure that the wire passes across the face of a scale mounted on a mirror attached to the test pile/shaft so that readings can be made directly from the scale. Use the scale readings as a check on an average of the dial readings. When measuring both horizontal and vertical movement, mount separate wires to indicate each movement, horizontal or vertical. Measure horizontal movements from two reference wires set normal to each other in a horizontal.

(2) Wooden Reference Beams and Dial Gauges: Attach wooden reference beams as detailed in the Plans or approved by the Engineer to independent supports. For piles, install the greater of 3.5 times the pile diameter or width or 10 feet from the centerline of the test pile. For drilled shafts install at the greater of three shaft diameters or 12 feet from the centerline of the shaft to be tested. Locate the reference beam supports as far as practical from reaction beam anchorages. For over-water test sites, the Contractor may attach the reference beams as directed by the Engineer between two diagonal platform supports. Attach dial gauges, with their stems resting either on the top of the pile/shaft or on lugs or similar reference points on the pile/shaft,

to the fixed beams to record the movement of the pile/shaft head. Ensure that the area on the pile/shaft or lug on which the stem bears is a smooth surface which will not cause irregularities in the dial readings.

For piles, the minimum acceptable method for measuring vertical movement is two dial gauges, each with 0.001 inch divisions and with 2 inch minimum travel, placed at 180 degrees or at the diagonal corners of the pile.

For shafts, ensure that three dial gauges, each with 0.001 inch divisions and with 2 inch minimum travel, placed at 120 degree intervals around the shaft, are the minimum acceptable method for measuring vertical movement. Ensure that four dial gauges, each with 0.001 inch divisions and with 2 inch minimum travel, placed at 90 degree intervals are the minimum required for measuring horizontal movement.

(3) Survey Level: As a check on the dial gauges, determine the elevation of a point near the top of the test pile/shaft (on plan datum) by survey level at each load and unload interval during the load test. Unless approved otherwise by the Engineer, level survey precision is 0.001 foot. Alternately, the surveyor may read an engineer's 50 scale attached near the pile/shaft head. Determine the first elevation before applying the first load increment; make intermediate readings immediately before a load increment or an unload decrement, and after the final unload decrement that completely removes the load. Make a final reading at the time of the last recovery reading or as directed by the Engineer.

For over-water test sites, when shown in the Plans or directed by the Engineer, the Contractor shall drive an H pile through a 36 inch casing to provide a stable support for the level and to protect it against wave action interfering with level measurements. Provide a suitable movable jig for the surveyor to stand. Use a jig that has a minimum of three legs, has a work platform providing at least 4 feet width of work area around the casing, and is approved by the Engineer before use. The described work platform may be supported by the protective casing when approved by the Engineer.

455-2.4 Load Test Instrumentation:

(1) General: The intent of the load test instrumentation is to measure the test load on top of the pile/shaft and, when provided in the Contract Documents, its distribution between side friction and end bearing to provide evaluation of the preliminary design calculations and settlement estimates and to provide information for final pile/shaft length design. Ensure that the instrumentation is as described in the Contract Documents.

When requested by the Engineer, provide assistance during installation of any instrumentation supplied by the Department. Supply 110 V, 60 Hz, 30 A of AC electric power in accordance with the National Electric Code to each test pile/shaft site during the installation of the instrumentation, during the load testing, and during any instrumented redrives ordered by the Engineer.

Place all of the internal instrumentation on the rebar cage before installation in the test shaft. Construct the rebar cage at least two days before it is required for construction of the test shaft. Provide assistance during installation of instrumentation supplied by the Department, including help to string, place, and tie the instrumentation and any assistance needed in moving or repositioning the cage to facilitate installation. Place the rebar cage in one segment complete with its instrumentation. The Engineer may require multiple lift points and/or a suitable "stiffleg" (length of H pile or other suitable section) to get the cage in a vertical position without causing damage to the instrumentation. Successfully demonstrate the lifting and handling procedures before the installing instrumentation.

(2) Hydraulic Jack and Load Cell: Provide hydraulic jack(s) of adequate size to deliver the required test load to the pile/shaft unless shown otherwise in the Plans. Before load testing begins, furnish a certificate from a reputable testing laboratory showing a calibration of gauge readings for all stages of jack loading and unloading for jacks provided. Ensure that the jack has been calibrated within the preceding six months unless approved otherwise. Recalibrate the jack after completing load testing if so directed by the Engineer. Ensure that the accuracy of the gauge is within 5% of the true load.

Provide an adequate load cell approved by the Engineer that has been calibrated within the preceding six months. Provide an approved electrical readout device for the load cell. Before beginning load testing, furnish a certificate from a reputable testing laboratory showing a calibration of readings for all stages of loading and unloading for load cells furnished by the Contractor. Ensure that the accuracy of the load cell is within 1% of the true load.

If the Department supplies the Contractor with the jack and/or load cell, have the equipment calibrated and include the cost in the cost for static load test.

- (3) Telltales: When shown in the Contract Documents, provide telltales that consist of an unstressed steel rod placed, with appropriate clearance and greased for reducing friction and corrosion, inside a constant-diameter pipe that rests on a flat plate attached to the end of the pipe at a point of interest shown in the Plans. Construct telltales in accordance with details shown in the Contract Documents. Install dial gauges reading to 0.001 inch with 1 inch minimum travel as directed by the Engineer to measure the movement of the telltale with respect to the top of the pile/shaft.
- (4) Embedded Strain Gauges: When shown in the Contract Documents, provide strain gauges which shall be placed in the test shaft to measure the distribution of the load. Ensure that the type, number, and location of the strain gauges are as shown in the Plans or as directed by the Engineer. Use strain gauges that are waterproof and have suitable shielded cable that is unspliced within the shaft.
- **455-2.5 Support Facilities:** Furnish adequate facilities for making load and settlement readings 24 hours per day. Provide such facilities for the instrumented area, and include lighting and shelter from rain, wind, and direct sunlight.
- 455-2.6 Load Test Personnel Furnished by the Contractor: Provide a certified welder, together with necessary cutting and welding equipment, to assist with the load test setup and to make any necessary adjustments during the load test. Provide personnel to operate the jack, generators, and lighting equipment, and also provide one person with transportation to assist as required during load test setup and conducting of the load tests. Provide qualified personnel, as determined by Specialty Engineer or testing lab, required to read the dial gauges, take level measurements, and conduct the load test, except when the Contract Documents show that the Department will provide these personnel.
- **455-2.7 Cooperation by the Contractor:** Cooperate with the Department, and ensure that the Department has access to all facilities necessary for observation of the conduct and the results of the test.
- **455-2.8 Required Reports:** Submit a preliminary static load test report to the Engineer within five days after completing the load test. When the Contract Documents do not require internal instrumentation, submit the final report within ten days after completing the load test. Furnish the final report of test results for internally instrumented shafts within 30 days after completing the load test. Include in the report of the load test the following information:

- (1) A tabulation of the time of, and the amount of, the load and settlement readings, and the load and recovery readings taken during the loading and unloading of the pile/shaft.
- (2) A graphic representation of the test results, during loading and unloading of pile/shaft top movement as measured by the average of the dial gauge readings, from wireline readings and from level readings.
- (3) A graphic representation of the test results, when using telltales, showing pile/shaft compression and pile/shaft tip movement.
 - (4) The estimated failure and safe loads according to the criteria described herein.
- (5) Remarks concerning any unusual occurrences during the loading of the pile/shaft.
- (6) The names of those making the required observations of the results of the load test, the weather conditions prevailing during the load test, and the effect of weather conditions on the load test.
- (7) All supporting data including jack and load cell calibrations and certificates and other equipment requiring calibration.
- (8) When the Contract Document requires internal instrumentation of the pile/shaft, furnish all of the data taken during the load test together with instrument calibration certifications. In addition, provide a report showing an analysis of the results of axial load and lateral load tests in which soil resistance along and against the pile/shaft is reported as a function of deflection.

Provide the necessary report(s) prepared by the Specialty Engineer responsible for collection and interpretation of the data, except when the Contract Documents show that the Department will provide a Geotechnical Engineer.

455-2.9 Disposition of Loading Material: After completing all load tests, clean, remove all rust and debris from Department equipment, repaint all areas having damage to the paint in accordance with Section 560, and return all load test equipment supplied by the Department to its designated storage area. Repair any structural damage to Department owned equipment to the satisfaction of the Engineer. Notify the Department at least ten working days in advance so that arrangements can be made to unload the equipment. Remove all equipment and materials, which remains the Contractor's property, from the site. Clean up and restore the site to the satisfaction of the Engineer.

455-2.10 Disposition of Tested Piles/Shafts: After completing testing, cut off the tested piles/shafts, which are not to be incorporated into the final structure, and any reaction piles/shafts at an elevation 24 inches below the finished ground surface. Take ownership of the cut-offs and provide areas for their disposal.

B. PILING

455-3 Description.

Furnish and install concrete, steel, or wood piling including driving, jetting, preformed pile holes, cutting off, splicing, dynamic load testing, and static load testing of piling.

455-4 Classification.

The Department classifies piling as follows:

(1) Treated timber piling.

- (2) Prestressed concrete piling.
- (3) Steel piling.
- (4) Test piling.
- (5) Sheet piling.
 - (a) Concrete sheet piling.
 - (b) Steel sheet piling.
- (6) Polymeric Piles (see Section 471 for requirements).

455-5 General Requirements.

455-5.1 Site Preparation:

455-5.1.1 Predrilling of Pile Holes: Predrilled pile holes are either starter holes to the depth described in this section or holes drilled through embankment/fill material down to the natural ground surface. When using low displacement steel piling such as structural shapes, drive them through the compacted fill without the necessity of drilling holes through the fill except when the requirements for predrilling are shown in the Plans. When using concrete or other high displacement piles, drill pile holes through fill, new or existing, to at least the elevation of the natural ground surface. Use the range of drill diameters listed below for square concrete piles.

12 inch square piles	
14 inch square piles	
18 inch square piles	
20 inch square piles	24 to 29 inches
24 inch square piles	30 to 34 inches
30 inch square piles	

For other pile sizes, use the diameter of the drills shown in the Plans or approved by the Engineer. Accurately drill the pile holes with the hole centered over the plan location of the piling. Maintain the location and vertical alignment within the tolerances allowed for the piling.

For predrilled holes required through rock or other hard (i.e. debris, obstructions, etc.) materials that may damage the pile during installation, predrill hole diameters approximately 2 inches larger than the largest dimension across the pile cross-section. Fill the annular space around the piles as described in 455-5.9.1 with clean A-3 sand or sand meeting the requirements of 902-3.3.

In the setting of permanent and test piling, the Contractor may initially predrill holes to a depth up to 10 feet or 20% of the pile length whichever is greater, except that, where installing piles in compacted fill, predrill the holes to the elevation of the natural ground surface. With prior written authorization from the Engineer, the Contractor may predrill holes to greater depths to minimize the effects of vibrations on existing structures adjacent to the work and/or for other reasons the Contractor proposes. Perform such work the Engineer allows but does not require at no expense to the Department. When the Engineer requires such work, the Department will pay for such work as preformed pile holes as described in 455-5.9.

455-5.1.2 Underwater Driving: Underwater driving is defined as any driving through water which is above the pile head at the time of driving.

When conducting underwater driving, provide a diver equipped with voice communications to aid in placing the hammer back on the pile for required cushion changes or for subsequent redriving, to attach or recover instrumentation the Engineer is using, to inspect the condition of the pile, or for other assistance as required.

Select one of the following methods for underwater driving:

(a) Accomplish underwater driving using conventional driving equipment and piling longer than authorized so that the piling will extend above the water surface during final driving. When choosing this option, furnish a pile hammer that satisfies the requirements of this Section for use with the longer pile.

(b) Accomplish underwater driving using an underwater hammer that meets the requirements of this Section and is approved by the Engineer. When choosing this option, provide at least one pile longer than authorized at each pile group, extending above the water surface at final driving. At each group location, drive the longer pile first. The Engineer will evaluate the adequacy of the underwater driving system. The Engineer may use the pile tip elevation of the longer pile that the Contractor has driven and the Engineer has accepted, to evaluate the acceptability of the piles driven with the underwater hammer.

(c) Accomplish underwater driving using conventional driving equipment with a suitable approved pile follower. When choosing this option, provide at least one pile longer than required at each pile group, extending above the water surface at final driving. At each group location, drive the full length pile first without using the follower. The Engineer will evaluate the adequacy of the follower used for underwater driving. The Engineer may choose to perform a dynamic load test on the first pile the Contractor drives with the follower in each group. The Engineer may use the pile tip elevation of the longer pile, that the Contractor has driven and the Engineer has accepted, to evaluate the acceptability of the piles driven with the follower.

Prior to use, submit details of the follower for the Engineer's evaluation and approval along with the information required in 455-10. Include the weight, cross-section details, stiffness, type of materials, and dimensions of the follower.

455-5.2 Pile Hammers: All equipment is subject to satisfactory field performance. Use a variable energy hammer to drive concrete piles. Hammers will be rated based on the energy transfer documented by dynamic monitoring. When requested, furnish to the Engineer all technical specifications and operating instructions related to hammer equipment.

455-5.2.1 Air/steam: Variable energy air/steam hammers shall be capable of providing at least two ram stroke lengths. The short ram stroke length shall be approximately half of the full stroke for hammers with strokes up to 4 feet and no more than 2 feet for hammers with maximum strokes lengths over 4 feet.

455-5.2.2 Diesel: Variable energy diesel hammers shall have at least three fuel settings that will produce reduced strokes. Operate and maintain diesel hammers within the manufacturer's specified ranges.

Provide and maintain in working order for the Engineer's use an approved device to automatically determine and display ram stroke for open-end diesel hammers.

Equip closed-end (double acting) diesel hammers with a bounce chamber pressure gauge, in good working order, mounted near ground level so the Engineer can easily read.

455-5.2.3 Hydraulic: Variable energy hydraulic hammers shall have at least three hydraulic control settings that provide for predictable stroke control. The shortest stroke shall be a maximum of 2 feet for the driving of concrete piles. The remaining strokes shall include full stroke and approximately halfway between minimum and maximum stroke.

Determine the hammer energy according to the manufacturer's recommendations. When pressure measuring equipment is required to determine hammer energy, calibrate the pressure gauges before use.

455-5.2.4 Vibratory: Vibratory hammers of sufficient capacity (force and amplitude) may be used to drive steel sheet piles and, with approval of the Engineer, to drive steel bearing piles a sufficient distance to get the impact hammer on the pile (to stick the pile). The Engineer will determine the allowable depth of driving using the vibratory hammer based on site conditions. However, in all cases, use a power impact hammer for the last 15 feet or more of the final driving of steel bearing piles for bearing determinations after all piles in the bent/pier have been driven with a vibratory hammer. Do not use vibrating hammers to install concrete piles, or to install support or reaction piles for a load test.

455-5.3 Cushions and Pile Helmet:

455-5.3.1 Capblock: Provide a capblock (also called the hammer cushion) as recommended by the hammer manufacturer. Use commercially manufactured capblocks constructed of durable manmade materials with uniform known properties. Do not use capblocks constructed of asbestos materials. Maintain capblocks in good condition, and change them when charred, melted, or otherwise significantly deteriorated. The Engineer will inspect the capblock before driving begins and weekly or at appropriate intervals determined by the Engineer based on field trial. Replace or repair any hammer cushion which loses more than 25% of its original thickness, in accordance with the manufacturer's instructions, before permitting further driving.

455-5.3.2 Pile Cushion: Provide a pile cushion that is adequate to protect the pile from being overstressed in compression and tension during driving. Use a pile cushion sized so that it will fully fill the lateral dimensions of the pile helmet minus one inch but does not cover any void or hole extending through the top of the pile. Maintain pile cushions in good condition and change when charred, splintered, excessively compressed, or otherwise deteriorated to the point it will not protect the pile against overstressing in tension and/or compression.

Reuse pile cushions in good condition to perform all set-checks and redrives. Use the same cushion to perform the set-check or redrive as was used during the initial driving, unless this cushion is unacceptable due to deterioration, in which case use a similar cushion.

455-5.3.3 Pile Helmet: Provide a pile helmet suitable for the type and size of piling being driven. Use a pile helmet deep enough to adequately contain the required thickness of pile cushion and to assist in maintaining pile-hammer alignment. Use a pile helmet that fits loosely over the pile head and is at least 1 inch larger than the pile dimensions. Use a pile helmet designed so that it will not restrain the pile from rotating.

455-5.4 Leads: Provide pile leads constructed in a manner which offers freedom of movement to the hammer and that have the strength and rigidity to hold the hammer and pile in the correct position and alignment during driving. When using followers, use leads that are long enough and suitable to maintain position and alignment of the hammer, follower, and pile throughout driving.

455-5.5 Followers: Obtain the Engineer's approval for the type of follower, when used, and the method of connection to the leads and pile. Use followers constructed of steel with an adequate cross-section to withstand driving stresses. When driving concrete piles, ensure that the cross-sectional area of the follower is at least 18% of the cross-sectional area of the pile. When driving steel piles, ensure that the cross-sectional area of the follower is greater than or equal to the cross-sectional area of the pile. Provide a pile helmet at the lower end of the follower sized according to the requirements of 455-5.3.3. Use followers constructed that maintain the alignment of the pile, follower, and hammer and still allow the pile to be driven within the

allowable tolerances. Use followers designed with guides adapted to the leads that maintain the hammer, follower, and the piles in alignment.

Use information from driving full length piles described in 455-5.1.2 compared to driving piles with the follower and/or dynamic load tests described in 455-5.13 to evaluate the adequacy of the follower.

455-5.6 Templates and Ground Elevations: Provide a fixed template, adequate to maintain the pile in proper position and alignment during driving with swinging leads or with semi-fixed leads. Where practical, place the template so that the pile can be driven to cut-off elevation before removing the template. Ensure that templates do not restrict the vertical movement of the pile.

Supply a stable reference close to the pile, which is satisfactory in the opinion of the Engineer, for determination of the pile penetration. At the time of driving piles, furnish the Engineer with elevations of the original ground and template at each pile or pile group location. Note the highest and lowest elevation at each required location and the ground elevation at all piles.

455-5.7 Water Jets: Use jet pumps, supply lines, and jet pipes that provide adequate pressure and volume of water to freely erode the soil. Do not perform jetting without prior approval by the Engineer or unless allowed by the Plans.

Do not perform jetting in the embankment or for end bents. Where conditions warrant, with approval by the Engineer, perform jetting on the holes first, place the pile therein, then drive the pile to secure the last few feet of penetration. Only use one jet for prejetting or jetting through piles constructed with a center jet-hole. Use two jets when using external jets. When jetting and driving, position the jets slightly behind the advancing pile tip (approximately 3 feet or as approved by the Engineer). When using water jets in the driving, determine the pile bearing only from the results of driving after withdrawing the jets, except where using jets to continuously eliminate soil resistance through the scour zone, ensure that they remain in place as directed by the Engineer and operating during pile bearing determination. Where practical, perform jetting on all piles in a pile group before driving begins. When large pile groups or pile spacing and batter make this impractical, or when the Plans specify a jet-drive sequence, set check a sufficient number of previously driven piles in a pile group to confirm their capacity after completing all jetting.

455-5.8 Penetration Requirements: Measure the penetration of piles from the elevation of natural ground, scour elevation shown in the Plans, or the bottom of excavation, whichever is lower. When the Contract Documents show a minimum pile tip elevation or a minimum depth of penetration, drive the tip of the pile to this minimum elevation or this minimum penetration depth. In all such cases, the Engineer will accept the bearing of a pile only if the Contractor achieves the required bearing when the tip of the pile is at or below the specified minimum tip elevation or depth of penetration and below the bottom of the preformed or predrilled pile hole.

When the Plans do not show a minimum depth of penetration, scour elevation, or minimum tip elevation, ensure that the required penetration is at least 10 feet into firm bearing material or at least 20 feet into soft material unless otherwise permitted by the Engineer. If a scour elevation is shown in the Plans, achieve these penetrations below the scour elevation. The Engineer may accept a penetration between 15 and 20 feet when there is an accumulation of five consecutive feet or more of firm bearing material. Firm bearing material is any material offering a driving resistance greater than or equal to 30 tons/ft² of gross pile area as determined by Dynamic Load Testing (455-5.11.4). Soft material is any material offering less than these

resistances. The gross pile area is the actual pile tip cross-sectional area for solid concrete piles, the product of the width and depth for H piles, and the area within the outside perimeter for pipe piles and voided concrete piles.

Do not drive piles beyond practical refusal (20 blows per inch). To meet the requirements in this Subarticle, provide penetration aids, such as jetting or preformed pile holes, when piles cannot be driven to the required penetration without reaching practical refusal.

If the Contractor encounters unforeseeable, isolated obstructions that the Contractor cannot practically penetrate by driving, jetting, or preformed pile holes, and the Contractor must remove the pile to obtain the required pile penetration, the Department will pay the costs for such removal as Unforeseeable Work.

455-5.9 Preformed Pile Holes:

455-5.9.1 Description: Preformed pile holes serve as a penetration aid when all other pile installation methods fail to produce the desired penetration and when authorized by the Engineer to minimize the effects of vibrations on adjacent structures. Preformed pile holes are necessary when the presence of rock or strong strata of soils will not permit the installation of piles to the desired penetration by driving or a combination of jetting and driving, when determined necessary by the Engineer, or when authorized by the Engineer to minimize the effects of vibrations on adjacent existing structures. The Engineer may require preformed holes for any type of pile. Drive all piles installed in preformed pile holes to determine that the bearing requirements have been met.

For preformed holes which are required through material that caves during driving to the extent that the preformed hole does not serve its intended purpose, case the hole from the surface through caving material. After installing the pile to the bottom of the casing, remove the casings unless shown otherwise in the Plans. Determine bearing of the pile after removing the casing unless shown otherwise in the Plans. Fill all voids between the pile and soil remaining after driving through preformed holes with clean A-3 sand or sand meeting the requirements of 902-3.3, after the pile has achieved the required minimum tip elevation, unless grouting of preformed pile holes is shown in the Plans. If pile driving is interrupted during sand placement, drive the pile at least 20 additional blows after filling all of the voids between the pile and soil with sand at no additional compensation.

455-5.9.2 Provisions for Use of Preformed Pile Holes: The Department generally anticipates the necessity for preformed pile holes and includes directions in the Contract Documents. The Department will pay for preformed piles holes when the Contractor establishes that the required results cannot be obtained when driving the load bearing piles with specified driving equipment, or if jetting is allowed, while jetting the piles and then driving or while jetting the piles during driving.

455-5.9.3 Conditions Under Which Payment Will Be Made: The Department will make payment for preformed pile holes shown in the Plans, required by the Engineer or where the Contractor demonstrates that such work is necessary to achieve the required penetration of the pile. The Department considers, but does not limit to, the following conditions as reasons for preformed pile holes:

- (a) Inability to drive piles to the required penetration with driving and jetting equipment.
- (b) To penetrate a hard layer or layers of rock or strong stratum that the Engineer considers not sufficiently thick to support the structure.

- (c) To obtain greater penetration into dense (strong) material and into dense material containing holes, cavities or unstable soft layers.
- (d) To obtain penetration into a stratum in which it is desired to found the structure.
 - (e) To minimize the effects of vibrations or heave on adjacent existing

structures.

(f) To minimize the effects of ground heave on adjacent piles.

455-5.9.4 Construction Methods: Construct preformed pile holes by drilling, or driving and withdrawing a suitable punch or chisel at the locations of the piles. Construct a hole that is equal to or slightly greater than the largest pile dimension for the entire length of the hole and of sufficient depth to obtain the required penetration. Carefully form the preformed hole by using a drill or punch guided by a template or other suitable device, and do not exceed the minimum dimensions necessary to achieve the required penetration of the pile. When the Plans call for grouting the preformed pile holes, provide the minimum dimension of the pile hole that is 2 inches larger than the largest pile dimension. Construct the holes at the plan position of the pile and the tolerances in location, and ensure the hole is straight and that the batter is the same as specified for the pile. Loose material may remain in the preformed pile hole if the conditions in 455-5.9.3 are satisfied.

455-5.9.5 Grouting of Pile Holes: Grout preformed pile holes for bearing piles, when the Plans require grouting after driving. Clean the preformed pile holes, and fill them with cement grout as shown in the Plans. Use grout that has a minimum compressive strength of 3,000 psi at 28 days or as specified. Pump the grout through three or more grout pipes initially placed at the bottom of the preformed hole. The Contractor may raise the grout pipes when necessary to prevent clogging and to complete the grouting operations. Maintain the grout pipes below the surface of the previously placed grout. Continue grouting until the grout reaches the ground surface all around the pile. Provide divers to monitor grouting operations when the water depth is such that it is impractical to monitor from the ground surface. When grouting is shown in the Plans, include the cost in the price for piles. In the event that the Engineer determines the Contractor must grout and the required grouting is not shown in the Plans, the Department will pay for the grouting work as Unforeseeable Work.

455-5.10 Bearing Requirements:

455-5.10.1 General: Drive piles to provide the bearing capacities required for carrying the loads shown in the Plans. The Engineer will determine pile capacities using dynamic load test equipment utilizing internally or externally mounted sensors according to the methods described herein. Install external sensors before driving, when used, and assist the engineer in monitoring the effects of all blows delivered to each pile. For all types of bearing piles, consider the driving resistance as determined by the methods described herein sufficient for carrying the specified loads as the minimum bearing which is accepted for any type of piles.

If the internally mounted system fails to communicate properly with the receiving system, allow the Engineer sufficient time to mobilize back-up equipment for performing Dynamic Load Testing.

The Engineer may accept a driven pile when the pile has achieved minimum penetration and the minimum required bearing capacity obtained for 6 inches of consecutive driving. At his discretion, the Engineer may also accept a driven pile when the minimum penetration is achieved and driving has reached practical refusal in firm material.

455-5.10.2 Bearing Criteria: The Engineer will determine the bearing resistance of the pile using the data received from dynamic load testing equipment utilizing internally or externally mounted sensors according to the methods described in 455-5.11.

455-5.10.3 Practical Refusal: Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting which does not exceed the maximum pile stresses specified in 455-5.11.2 and less than 1/4 inch rebound per blow. Stop driving as soon as the Engineer determines that the pile has reached practical refusal. The Engineer will generally make this determination within 2 inches of driving. When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting or preformed pile holes.

455-5.10.4 Set-checks and Pile Redrive:

(a) Set-checks: In the event that the Contractor has driven the pile to approximately 6 inches above cut-off without reaching the required resistance, the Engineer may require the Contractor to interrupt driving up to two hours prior to performing a set-check. Provide an engineer's level or other suitable equipment for elevation determinations to determine accurate pile penetration during the set-checks. In the event the results of the initial set-checks are not satisfactory, the Engineer may direct additional set-checks. The Engineer may accept the pile as driven when a set-check shows that the Contractor has achieved the minimum required pile bearing and has met all other requirements of this Section.

(b) Pile Redrive: Pile Redrive consists of redriving the pile after the following working day from initial driving to determine time effects, to reestablish pile capacity due to pile heave, or for other reasons determined by the Engineer. Redrive piles as directed by the Engineer.

(c) Uninstrumented Set-Checks and Uninstrumented Pile Redrive: [N/A] (d)Instrumented Set-Checks and Instrumented Pile Redrive: When considered necessary by the Engineer, dynamic load tests will be used to determine whether the pile bearing is sufficient. The Engineer may consider the pile to have sufficient bearing resistance when dynamic measurements demonstrate the static pile resistance during at least one hammer blow exceeds the required pile resistance, the average static pile resistance during the next five hammer blows exceeds 95% of the required pile resistance and the static pile resistance during all subsequent blows exceeds 90% of the required pile resistance.

455-5.10.5 Pile Heave: Pile heave is the upward movement of a pile from its originally driven elevation. Drive the piles in an approved sequence to minimize the effects of heave and lateral displacement of the ground. Monitor piles previously driven in a pile group for possible heave during the driving of the remaining piles. When required by the Engineer, take elevation measurements to determine the magnitude of the movement of piles and the ground surface resulting from the driving process. Redrive all piles that have heaved 1/4 inch or more unless the Engineer determines that the heave is not detrimental to pile capacity. The Department will pay for all work in conjunction with redriving piles due to pile heave under the Pile Redrive item.

455-5.10.6 Piles with Insufficient Bearing: In the case that the Engineer determines that the safe bearing capacity of any pile is less than the required bearing capacity, the Contractor may splice the pile and continue driving or may extract the pile and drive a pile of greater length, or, if so ordered by the Engineer, drive additional piles until reducing the required bearing per pile to the determined bearing capacity of the piles already driven.

455-5.11 Methods to Determine Pile Capacity:

455-5.11.1 General: Notify the Engineer two work days prior to placement of piles within the template and at least one work day prior to driving piles. Do not drive piles without the presence of the Engineer.

The Engineer will determine the capacity of the piles based on the results of Dynamic Load Tests using EDC equipment and the UF Method of analysis or an externally mounted instrument system. When the contractor selects Dynamic Load Tests using externally mounted instruments, the Engineer will determine pile capacity of the first production pile at locations indicated in the Plans based on the results of a Dynamic Load Test and signal matching analyses. When locations are not indicated in the Plans, allow for signal matching analyses at 5% of the piles at each bent or pier. Allow the Engineer one work day after driving the dynamic load tested pile for the Engineer to complete the signal matching analyses and determine the equipment setting for the subsequent piles.

If the Engineer requires an additional Dynamic Load Test for comparison purposes, the Contractor will be paid as for an additional Dynamic Load Test authorized by the Engineer in accordance with 455-11.5. The Engineer may also require static load tests to confirm pile capacities. When the Contract Documents do not include pay items for Static Load Tests, they will be paid for as Unforeseeable Work.

455-5.11.2 Wave Equation:

(a) General: Use Wave Equation Analysis for Piles (WEAP) programs to evaluate the suitability of the proposed driving system (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance, in blows per 12 inches or blows per inch, to achieve the pile bearing requirements and to evaluate pile driving stresses.

The Engineer may modify the scour resistance shown in the Plans if the dynamic load test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

Use Wave Equation Analyses to show the hammer is capable of driving to a resistance equal to at least 2.0 times the factored design load plus the scour and down drag resistance (if applicable) shown in the Contract Documents, without overstressing the piling in compression or tension and without reaching practical refusal (20 blows per inch). Ensure that the hammer provided also meets the requirements described in 455-5.2.

(b) Required Equipment For Driving: Hammer approval is solely based on satisfactory field trial including dynamic load test results and Wave Equation Analysis. Supply a hammer system that meets the requirements described in the specifications based on the above analysis. Obtain approval from the Engineer for the pile driving system based on satisfactory field performance.

In the event piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

(c) Maximum Allowed Pile Stresses:

(1) General: The maximum allowed driving stresses for concrete, steel, and timber piles are given below.

(2) Concrete Piles: Use the wave equation to evaluate the proposed pile cushioning. Use the following equations to determine the maximum pile stresses measured during driving:

$$s_{apc} = 0.7 f_c' - 0.75 f_{pe}$$
 (1)

$$s_{apt} = 6.5 (f_c')^{0.5} + 1.05 f_{pe}$$
 (2a) for piles less than 50 feet long

$$s_{apt} = 3.25 (f_c')^{0.5} + 1.05 f_{pe}$$
 (2b) for piles 50 feet long and greater

$$s_{apt} = 500$$
 (2c) within 20 feet of a mechanical splice

where:

s_{apc}= maximum allowed pile compressive stress, psi

s_{apt}= maximum allowed pile tensile stress, psi

f'_c= specified minimum compressive strength of concrete, psi

 f_{pe} = effective prestress (after all losses) at the time of driving, psi, taken as 0.8 times the initial prestress force (f_{pe} = 0 for dowel spliced piles).

(3) Steel Piles: Ensure the maximum pile compression and tensile stresses measured during driving are no greater than 0.9 times the yield strength (0.9 f_y) of the steel.

(4) Timber Piles: Ensure the maximum pile compression and tensile stresses measured during driving are no greater than 3.6 ksi for Southern Pine and Pacific Coast Douglas Fir and 0.9 of the ultimate parallel to the grain strength for piles of other wood.

455-5.11.3 Temporary Piles: Submit for the Engineers approval, a Wave Equation analysis signed and sealed by a Specialty Engineer which establishes the driving criteria for temporary piles. The required driving resistance is equal to the design (service) load multiplied by the appropriate factor of safety plus the scour and down drag resistance shown in the Plans (no safety factor is required) or the ultimate bearing capacity shown in the Plans, whichever is higher:

455-5.11.4 Dynamic Load Tests: Dynamic load testing consists of estimating pile capacity by the analysis of electronic data collected from blows of the hammer during driving of an instrumented pile.

455-5.11.5 Static Load Tests: Static load testing consists of applying a static load to the pile to determine its capacity. Use The Modified Quick Test Procedure in accordance with 455-2.2.1.

455-5.11.6 Fender Pile Installation: For piles used in fender systems, regardless of type or size of pile, either drive them full length or jet the piles to within 2 feet of cutoff and drive to cutoff elevation to seat the pile. The Engineer will not require a specific driving resistance unless noted in the Plans. Use methods and equipment for installation that do not

damage the piles. If the method or equipment used causes damage to the pile, modify the methods or equipment at no expense to the Department.

455-5.12 Test Piles: [N/A]

455-5.13 Dynamic Load Tests: The Engineer will take dynamic measurements during the driving of piles designated in the Plans or authorized by the Engineer. Install instruments prior to driving and assist the Engineer in monitoring all blows delivered to the pile. All piles will have dynamic load tests. The Engineer will perform Dynamic Load Tests to evaluate any or all of the following:

- 1. Evaluate suitability of Contractor's driving equipment, including hammer, capblock, pile cushion, and any proposed follower.
 - 2. Determine pile capacity.
 - 3. Determine pile stresses.
 - 4. Determine energy transfer to pile.
 - 5. Determine distribution of soil resistance.
 - 6. Evaluate soil variables including quake and damping.
 - 7. Evaluate hammer-pile-soil system for Wave Equation analyses.
 - 8. Evaluate pile installation problems.
 - 9. Other.

Either install Embedded Data Collectors (EDCs) in the piles in accordance with Design Standards, Index No. 20602 or attach instruments (strain transducers to measure force and accelerometers to measure acceleration) with bolts to the pile for dynamic load testing.

Make each pile to be dynamically tested with externally attached instruments available to drill holes for attaching instrumentation and for wave speed measurements. Support the pile with timber blocks placed at appropriate intervals. Ensure that the pile is in a horizontal position and does not contact adjacent piles. Provide a sufficient clear distance at the sides of the pile for drilling the holes. The Engineer will furnish the equipment, materials, and labor necessary for drilling holes and taking the wave speed measurements. If the Engineer directs dynamic load testing, instrumented set-checks or instrumented redrives, provide the Engineer safe access to the top of the piles for drilling the attachment holes. After placing the leads provide the Engineer reasonable means of access to the piles to attach the instruments and for removal of the instruments after completing the pile driving.

The Engineer will monitor the stresses in the piles with the dynamic test equipment during driving to ensure the Contractor does not exceed the maximum allowed stresses. If necessary, add additional cushioning, replace the cushions, or reduce the hammer stroke to maintain stresses below the maximum allowable. If dynamic test equipment measurements indicate non-axial driving, immediately realign the driving system. If the cushion is compressed to the point that a change in alignment of the hammer will not correct the problem, add cushioning or change the cushion as directed by the Engineer.

Drive the pile to the required penetration and resistance or as directed by the Engineer. Dynamic load testing of a pile may average up to two hours longer than for driving an uninstrumented pile.

When directed by the Engineer, perform instrumented set-checks or redrives. Do not use a cold diesel hammer for a set-check or redrive unless in the opinion of the Engineer it is impractical to do otherwise. Generally, warm up the hammer by driving another pile or applying at least 20 blows to a previously driven pile or to timber mats placed on the ground.

455-5.14 Pile Lengths: Authorized lengths are provided as Production Pile Order Lengths in the Pile Data Table in the Structure Plans. Use these lengths for furnishing the permanent piling for the structure.

455-5.15 Allowable Driving Tolerances:

455-5.15.1 General: Meet the tolerances described in this Subarticle to the piles that are free standing without lateral restraint (after the template is removed). After the piles are driven, do not move the piles laterally to force them to be within the specified tolerances. The Contractor may move battered piles laterally to overcome the dead load deflections caused by the pile's weight. When this is necessary, submit calculations signed and sealed by a Specialty Engineer to the Engineer that verify the amount of dead load deflection prior to moving any piles.

455-5.15.2 Position: Ensure that the final position of the pile head at cut-off elevation is no more than 3 inches laterally in the X or Y coordinate from the plan position indicated in the Plans.

455-5.15.3 Axial Alignment: Ensure that the axial alignment of the driven piles does not deviate by more than 1/4 in/ft from the vertical or batter line indicated in the Plans.

455-5.15.4 Elevation: Ensure that the final elevation of the pile head is no more than 1 1/2 inches above, or more than 4 inches below, the elevation shown in the Plans. Do not embed the pile less than 6 inches below the elevation shown in the Plans unless a minimum cap or footing embedment is shown.

For fender piles, cut off piles at the elevation shown on the Plans to a tolerance of +0.0"/-2.0" using sawing or other means as approved by the Engineer to provide a smooth level cut.

455-5.15.5 Deviation From Above Tolerances: When the Contractor has failed to meet the above tolerances, the Contractor may propose a redesign to incorporate piles driven out of tolerance into pile caps or footings. Incorporate piles driven out of tolerance at no expense to the Department. Ensure the Contractor's Engineer of Record performs any redesign and signs and seals the redesign drawings and computations. Do not begin any proposed construction until the redesign has been reviewed for acceptability and approved by the Engineer.

455-5.16 Disposition of Pile Cut-offs, Test Piles, and Load Test Materials: 455-5.16.1 Pile Cut-offs:

(a) Steel Piling: Unless shown otherwise in the Plans, the Department will retain ownership of cut-off sections, or portions of cut-off sections, and unused piling 20 feet long or longer that are not damaged. Deliver them to the Department's nearest maintenance yard. Ensure that sections of piles delivered to the maintenance yard are straight and undamaged. Cut off the damaged portions prior to delivery. Take ownership of cut-off sections less than 20 feet long. Remove them from the job, and dispose of them.

(b) Other Pile Types: Upon completion of all work under the Contract in connection with piling, unless shown otherwise in the plan, take ownership of any unused cut-off lengths remaining, and remove them from the right-of-way. Provide areas for their disposal.

455-5.16.2 Test Piles: [N/A]

455-6 Timber Piling.

455-6.1 Description: Drive timber piles constructed of round timber of the kind and dimensions specified in the Plans at the locations and to the elevations shown in the Plans, or as directed by the Engineer.

455-6.2 Materials: Meet the timber piling requirements of Section 953. Treat the piles according to the applicable provisions of Section 955. Treat all cuts and drilled holes in accordance with 470-3.

455-6.3 Preparation for Driving:

455-6.3.1 Caps: Protect the heads of timber piles during driving, using a cap of approved type, that will distribute the hammer blow over the entire cross-section of the pile. When necessary, cut the head of the pile square before beginning pile driving.

455-6.3.2 Collars: Provide collars or bands to protect piles against splitting and brooming at no expense to the Department.

455-6.3.3 Shoes: Provide piles shod with metal shoes, of a design satisfactory to the Engineer, at no expense to the Department. Shape pile tips to receive the shoe and install according to the manufacturer's directions.

455-6.4 Storage and Handling: Store and handle piles in the manner necessary to avoid damage to the piling. Take special care to avoid breaking the surface of treated piles. Do not use cant dogs, hooks, or pike holes when handling and storing the piling.

455-6.5 Cutting Off: Saw off the tops of all timber piles at the elevation indicated in the Plans. Saw off piles which support timber caps to the exact plane of the superimposed structure so that they exactly fit it. Withdraw and replace broken, split, or misplaced piles.

455-6.6 Build-ups: The Engineer will not permit splices or build-ups for timber piles. Extract piles driven below plan elevation and drive a longer pile.

455-6.7 Pile Heads:

455-6.7.1 Piles with Timber Caps: On piles wider than the timber caps, dress off to a slope of 45 degrees the part of the pile head projecting beyond the sides of the cap. Coat the cut surface with the required preservative over which place a sheet of copper, of a weight of 10 oz/ft^2 or greater, meeting the requirements of ASTM B 370. Provide a cover that measures at least 4 inches more in each dimension greater than the diameter of the pile. Bend the cover down over the pile and fasten the edges with large head copper nails or three wraps of No. 12 copper wire.

455-6.7.2 Fender and Bulkhead Piles: First paint the heads of fender piles and of bulkhead piles with preservative and then cover with copper as provided above for piles supporting timber caps.

455-7 Prestressed Concrete Piling.

455-7.1 Description: Provide prestressed concrete piles that are manufactured, cured, and driven in accordance with the requirements of the Contract Documents. Provide piles full length without splices when transported by barge or the pile length is less than or equal to 120 feet. When piles are transported by truck and the pile length exceeds 120 feet but is less than the maximum length for a three point pick-up according to Index 20600, and splicing is desired, provide minimal splices. Include the cost of the splices in the cost of the pile.

455-7.2 Manufacture: Fabricate piles in accordance with Section 450. When EDCs will be used for dynamic load testing, supply and install EDCs in square prestressed bridge foundation piles in accordance with Design Standards, Index No. 20602. Ensure the EDCs are installed by personnel approved by the manufacturer.

455-7.3 Storage and Handling:

455-7.3.1 Time of Driving Piles: Drive prestressed concrete piles at any time after the concrete has been cured in accordance with Section 450, and the concrete compressive strength is equal to or greater than the specified 28 day compressive strength.

455-7.3.2 Storage: Support piles on adequate dunnage both in the prestress yard and at the job site in accordance with the locations shown in the Standard Indexes to minimize undue bending stresses or creating a sweep or camber in the pile.

455-7.3.3 Handling: Handle and store piles in the manner necessary to eliminate the danger of fracture by impact or of undue bending stresses in handling or transporting the piles from the forms and into the leads. In general, lift concrete piles by means of a suitable bridge or slings attached to the pile at the locations shown in the Standard Indexes. Construct slings used to handle piles of a fabric material or braided wire rope constructed of six or more wire ropes which will not mar the corners or the surface finish of the piles. Do not use chains to handle piles. During transport, support concrete piles at the lifting locations shown in the Standard Indexes or fully support them throughout 80% or more of their length. In handling piles for use in salty or brackish water, exercise special care to avoid damaging the surface and corners of the pile. If an alternate transportation support arrangement is desired, submit calculations, signed and sealed by the Specialty Engineer, for approval by the Engineer prior to transporting the pile. Calculations must show that the pile can be transported without exceeding the bending moments calculated using the support locations shown in the Plans.

455-7.4 Cracked Piles: The Engineer will reject any pile that becomes cracked in handling to the point that a transverse or longitudinal crack extends through the pile, shows failure of the concrete as indicated by spalling of concrete on the main body of the pile adjacent to the crack, or which in the opinion of the Engineer will not withstand driving stresses. The Engineer will not reject any pile for the occasional minor surface hairline cracking caused by shrinkage or tensile stress in the concrete from handling.

Do not drive piling with irreparable damage, which is defined as any cracks that extend through the pile cross-sectional area that are, or will be, below ground or water level at the end of driving. Such cracks are normally evidenced by emitting concrete dust during their opening and closing with each hammer blow. Remove and replace broken piles or piles cracked to the extent described above at no expense to the Department. The Engineer will accept cracks less than 0.005 inch which do not extend through the pile. Using approved methods, cut off and splice or build-up to cut-off elevation piles with cracks greater than 0.005 inch at the pile head or above ground or water level, and piles with cracks above ground or water level which extend through the cross-sectional area of the pile. The Engineer, at his discretion, may require correction of pile damage or pile cracks by cutting down the concrete to the plane of sound concrete below the crack and rebuilding it to cut-off elevation, or the Engineer may reject the pile. Extract and replace rejected piles that cannot be repaired, at no expense to the Department.

Take appropriate steps to prevent the occurrence of cracking, whether due to handling or driving. When cracking occurs during driving take immediate steps to prevent additional cracking by using thicker cushions or reducing the ram stroke length. Revise handling and transporting equipment and procedures as necessary to prevent cracking during handling and transportation.

455-7.5 Preparation for Transportation: Cut any strands protruding beyond the ends of the pile flush with the surface of the concrete using an abrasive cutting blade before transporting the piles from the casting yard.

Cut and patch the metal lifting devices in accordance with 450-9.2.1.

455-7.6 Method of Driving: Unless otherwise directed, drive piles by a hammer or by means of a combination of water jets and hammer when jetting is allowed. When using jets in combination with a hammer, withdraw the jets and drive the pile by the hammer alone, to secure

final penetration and to rigidly fix the tip end of the pile. Keep jets in place if they are being used to continuously eliminate the soil resistance in the scour zone.

455-7.7 Extensions and Build-ups Used to Increase Production Lengths:

455-7.7.1 General: Where splices and build-ups for concrete piles are necessary, construct such splices and build-ups in accordance with Standard Index 20601. The Contractor may construct build-ups less than 2 feet in length in accordance with 455-11.8. When splicing a prestressed precast section onto the original pile and, after driving, the length of spliced section below cut-off elevation is 4 feet or less, remove the pile concrete to the cut-off elevation and leave the dowels in place to be incorporated into the cap as directed by the Engineer. The Contractor may cut the length of dowels which becomes exposed to a length of 48 inches from the plane of pile-splice.

These requirements are not applicable to specially designed piling. Make splices for special pile designs as shown in the Plans.

455-7.7.2 Extensions to be Driven or Those 21 feet or Longer: Construct extensions to be driven or extensions 21 feet or longer in length in accordance with the details shown in the Plans and in a manner including the requirements, sequences, and procedures outlined below:

- (a) Cast a splice section in accordance with Section 450 with the dowel steel in the correct position and alignment.
- (b) Drill dowel holes using an approved steel template that will position and align the drill bit during drilling. Drill holes a minimum of 2 inches deeper than the length of the dowel to be inserted.
- (c) Clean the drilled dowel holes by inserting a high pressure air hose to the bottom of the hole and blowing the hole clean from the bottom upward. Eliminate any oil, dust, water, and other deleterious materials from the holes and the concrete surfaces to be joined.
 - (d) Place forms around joints between the pile sections.
- (e) Mix the adhesive components in accordance with the manufacturer's directions. Do not mix sand or any other filler material with the epoxy components unless it is prepackaged by the manufacturer for this specific purpose. Use adhesives meeting the requirements of Section 926 for Type B Epoxy Compounds.
- (f) After ensuring that all concrete surfaces are dry, fill the dowel holes with the adhesive material.
- (g) Insert the dowels of the spliced section into the adhesive filled holes of the bottom section and position the spliced section so that the axes of the two sections are in concentric alignment and the ends of the abutting sections are spaced 1/2 inch apart. The Contractor may use small steel spacers of the required thickness provided they have 3 inches or more of cover after completing the splice. Fill the space between the abutting sections completely with the adhesive.
- (h) Secure the spliced sections in alignment until the adhesive is cured in accordance with the manufacturer's directions for the time appropriate with the prevailing ambient temperatures. Do not utilize the crane to secure the pile extension during the adhesive cure time. Utilize alignment braces to maintain the proper pile alignment during the epoxy cure time.
- (i) After curing is completed, remove alignment braces and forms and clean and dress the spliced area to match the pile dimensions.

455-7.7.3 Precast Reinforced Build-ups: Construct Precast Reinforced Build-ups in accordance with the requirements of this Subarticle, Section 346, and Section 400. Provide the same material for the form surfaces for precast build-ups as was used to form the prestressed piles. Use concrete of the same mix as used in the prestressed pile and dimension the cross-section the same as piling being built up. Install build-ups as specified in 455-7.7.2(b) through 455-7.7.2(i). Apply to the build-ups the same surface treatment or sealant applied to the prestressed piles.

455-7.8 Pre-Planned Splices: Splices shall be made by the doweled splice method contained in the Standard Indexes or may be made using proprietary splices which are listed on the Department's QPL. Splice test piles in the same manner as the production piles. Include in the pile installation plan, the chosen method of splicing and the approximate locations of the splice. Generally, place the splice at approximately the midpoint between the estimated pile tip and the ground surface, considering scour if applicable. Stagger the splice location between adjacent piles by a minimum of 10 feet. Obtain the Engineer's approval prior to constructing any pile sections. Construct piles which are to be spliced using the doweled splice with preformed dowel holes in the bottom section and embedded dowels in the upper section.

When the electing to use dowel splices, assist the Engineer in performing a dynamic load test on each dowel spliced pile to verify the splicing integrity at the end of driving. Replace any damaged pile splices in accordance with 455-11.2.7. Provide the Engineer 48 hours advance notification prior to driving piles with epoxy-bonded dowel splices.

Mechanical pile splices shall be capable of developing the following capacities in the pile section unless shown otherwise in the Plans and capable of being installed without damage to the pile or splice:

a) Compressive strength = (Pile Cross sectional area) x (28 day concrete strength)

b) Tensile Strength = (Pile Cross sectional area) x 900 psi

Pile Size (inches)	Bending Strength (kip-feet)
18	245
20	325
24	600
30	950

455-7.9 Pile Cut-offs: After the completion of driving, cut piles off which extend above the cut-off elevation with an abrasive saw. Make the cut the depth necessary to cleanly cut through the prestressed strands. Take ownership and dispose of cut-off sections not used elsewhere as allowed by this Section.

455-8 Steel Piling.

455-8.1 Description: Furnish, splice, drive, and cut off structural steel shapes to form bearing piles. Include in this work the installation of bracing members of structural steel by bolting or welding, construction of splices and the filling of pipe piles with the specified materials.

455-8.2 Material: For the material in steel piles, pile bracing, scabs, wedges, and splices, meet the requirements of Section 962.

455-8.3 Pile Splices: Order and use the full authorized pile length where practicable. Do not splice to obtain authorized lengths less than 40 feet except when shown in the Plans. Locate all splices in the authorized pile length in portions of the pile expected to be at least 15 feet below the final ground surface after driving. When it is not practicable to provide authorized pile lengths longer than 40 feet in a single length, use no more than one field splice per additional 40 feet of authorized pile length. Shop splices may be used to join single lengths of pile which are at least 20 feet in length. One shorter segment of pile may be used to achieve the authorized pile length when needed.

Where the pile length authorized is not sufficient to obtain the required bearing value or penetration, order an additional length of pile and splice it to the original length.

Make all splices in accordance with details shown in the Plans and in compliance with the general requirements of AWS D1.1 or American Petroleum Institute Specification 5L (API 5L).

455-8.4 Welding: Make all welded connections to steel piles by electric arc welding, in accordance with details shown in the Plans and in compliance with the general requirements of AWS D1.5. Electroslag welding is not permitted. Welds will be inspected by visual methods.

455-8.5 Pile Heads and Tips: Cut off all piles at the elevation shown in the Plans. If using a cutting torch, make the surface as smooth as practical.

Where foundation material is so dense that the Contractor cannot drive the pile to the required penetration and firmly seat it without danger of crumpling the tip, reinforce the tips with approved cast steel point protectors as shown in the Plans or required by the Engineer. Construct point protectors in one piece of cast steel meeting the requirements of ASTM A 27, Grade 65-35 heat treated to provide full bearing for the piles. Attach points by welding according to the recommendations of the manufacturer.

455-8.6 Pile Bent Bracing Members: Place structural steel sway and cross bracing, and all other steel tie bracing, on steel pile bents and bolt or weld in place as indicated in the Plans. Where piles are not driven into position in exact alignment as shown in the Plans, the Engineer may require the use of fills and shims between the bracing and the flanges of the pile. Furnish and place all fills and shims required to square and line up faces of flanges for cross bracing at no additional expense to the Department.

455-8.7 Coating: Coat exposed parts of steel piling, wedging, bracing, and splices in accordance with the provisions for coating structural steel as specified in Section 560.

455-8.8 Storage and Handling: While handling or transporting the piles from the point of origin and into the leads, store and handle in the manner necessary to avoid damage due to bending stresses. In general, lift steel piles by means of a suitable bridge or a sling attached to the pile at appropriate points to prevent damage. Lift the pile from the horizontal position in a manner that will prevent damage due to bending of the flanges and/or web.

455-8.9 Filling Pipe Piles: When required by the Plans, fill pipe piles with the specified materials. Use clean concrete sands and concrete meeting the requirements of Section 346. Place concrete in pipes containing water using methods in accordance with 455-15.9 with modified tremie and pump line sizes. Concrete may be placed directly into pipes which are dry. Construct and place reinforcement cages in accordance with 455-16. Reinforcement cages may be installed before concrete placement or after concrete placement is completed if proper alignment and position is obtainable.

455-9 Sheet Piling.

455-9.1 Description: Leave permanent piling in place as part of the finished work and generally remove temporary piling after each construction phase.

455-9.2 Materials: Meet the following requirements:

Concrete	Section 346
Bar Reinforcement	Section 931
Prestressing Reinforcement	Section 933
Steel Sheet Piles*	

*For temporary steel sheet piles meet the requirements specified in the Plans.

455-9.3 Steel Sheet Piling: Drive steel sheet piling and cut off true to line and grade. Install steel sheet piling with a suitable hammer. Remove and replace any section damaged during handling and installation at no additional expense to the Department.

455-9.3.1 Method of Installation: Where rock or strong material is encountered such that the sheet piles cannot be set to grade by driving, remove the strong material by other acceptable means, such as excavation and backfilling or by punching. When the Plans do not indicate the existence of rock or strong material, work of removing, drilling or punching the strong material or rock will be paid for as Unforeseeable Work.

455-9.4 Concrete Sheet Piling:

455-9.4.1 Description: Ensure that Concrete Sheet Piling is of prestressed concrete construction and manufactured, cured, and installed in accordance with the requirements of the Contract Documents. Use these piles in bulkheads and abutments and at other locations as shown in the Plans.

455-9.4.2 Manufacture of Piles: Ensure that the piles are fabricated in accordance with Section 450.

455-9.4.3 Method of Installation: Jet concrete sheet piling to grade where practical. The Engineer will require a minimum of two jets. Provide water at the nozzles of sufficient volume and pressure to freely erode material adjacent to the piles. Where encountering rock or strong material, such that the sheet piles cannot be set to grade by jetting, remove the strong materials by other acceptable means, such as excavation and backfilling, drilling or by punching with a suitable punch. When the Plans do not indicate the existence of rock or strong material and the piles cannot be set by jetting, the Department will pay for the work of removing, drilling or punching the strong material or rock as Unforeseeable Work.

455-9.4.4 Grouting and Caulking: Concrete sheet piles are generally detailed to have tongues and grooves on their lower ends, and double grooves on their upper ends. Where so detailed, after installation, clean the grooves of all sand, mud, or debris, and fully grout the grooves. Use approved plastic bags (sheaths) which will meet the shape and length of the groove to be grouted to contain the plastic grout within the double grooves. Provide grout composed of one part cement and two parts sand. The Contractor may use clean local sand or sand meeting the requirements of Section 902 in this grout. In lieu of sand-cement grout, the Contractor may use concrete meeting the requirements of Section 347, using small gravel or crushed stone coarse aggregate. Deposit the grout through a grout pipe placed within a watertight plastic sheath (bag) extending the full depth of the double grooves and which, when filled, completely fills the slot formed by the double grooves.

455-9.5 Storage and Handling: Handle and store all sheet piles in a manner to prevent damage. Handle long sheet piles with fabric slings or braided wire rope constructed of six or more wire ropes placed at appropriate lift points to prevent damage due to excessive bending.

455-10 Pile Installation Plan.

- **455-10.1 General:** Complete the Pile Driving Installation Plan form provided by the Engineer. Return the Pile Driving Installation Plan information to the Engineer at the preconstruction conference or no later than 30 days before driving the first pile. Ensure the Pile Driving Installation Plan information includes the following:
- 1. List and size of proposed equipment including cranes, barges, driving equipment, jetting equipment, compressors, and preformed pile hole equipment. Include manufacturer's data sheets on hammers.
- 2. Methods to determine hammer energy in the field for determination of pile capacity. Include in the submittal necessary charts and recent calibrations for any pressure measuring equipment.
 - 3. Detailed drawings of any proposed followers.
 - 4. Detailed drawings of templates.
- 5. Details of proposed load test equipment and procedures, including recent calibrations of jacks and required load cells.
 - 6. Sequence of driving of piles for each different configuration of pile layout.
 - 7. Proposed schedule for test pile program and production pile driving.
- 8. Details of proposed features and procedures for protection of existing structures.
 - 9. Required shop drawings for piles, cofferdams, etc.
- 10. Methods and equipment proposed to prevent displacement of piles during placement and compaction of fill within 15 feet of the piles.
- 11. Methods to prevent deflection of battered piles due to their own weight and to maintain their as-driven position until casting of the pile cap is complete.
- 12. Proposed pile splice locations and details of any proprietary splices anticipated to be used.
- **455-10.2 Acceptance of Equipment and Procedures:** All equipment and procedures are subject to satisfactory field performance. Make any required changes that may result from unsatisfactory field performance. The Engineer will give final acceptance after the Contractor makes necessary modifications. Do not make any changes in the driving system after acceptance without authorization of the Engineer. A hammer repaired on site or removed from the site and returned is considered to have its performance altered (efficiency increased or decreased), which is considered a change in the driving system and is subject to a Dynamic Load Test in accordance with 455-5.13 at no additional compensation.

455-11 Method of Measurement (All Piling).

455-11.1 Treated Timber Piling: The quantity to be paid for will be the length, in feet, furnished, placed, and accepted according to the authorized lengths list, including any additions and excluding any deletions thereto, as approved by the Engineer.

455-11.2 Prestressed Concrete Piling:

455-11.2.1 General: The quantity to be paid for will be the length, in feet, of Prestressed Concrete Piling furnished, driven and accepted according to the authorized lengths list, including any additions and excluding any deletions thereto, as approved by the Engineer.

455-11.2.2 Furnished Length: The furnished length of precast concrete piles will be considered as the overall length from head to tip. Final pay length will be based on the casting length as authorized in accordance with 455-5.14.3 subject to provisions of 455-11.2.3 through 455-11.2.8, 455-11.8, 455-11.9 and 455-11.13.

455-11.2.3 Build-ups: The lengths of pile build-ups authorized by the Engineer, measured from the plane of cutback or the joint between the sections, to head of build-up, will be included in the quantities of Piling.

455-11.2.4 Piles Requiring Cut-offs: No adjustments in the length, in feet, of Piling will be made if cut-offs are required after the pile has been driven to satisfactory bearing.

455-11.2.5 Piles Driven Below Cut-off Elevation: Where a pile is driven below cut-off elevation and satisfactory bearing is obtained so that no further driving is required, the length of pile will be measured from cut-off elevation to tip of the pile.

455-11.2.6 Driving of Splice: If a pile is driven below cut-off and satisfactory bearing is not obtained, and additional driving is required after construction of a satisfactory splice, an additional 10 feet of piling will be paid for the additional driving. This compensation for driving of splice, however, will not be allowed for test piles that are spliced and redriven.

455-11.2.7 Replacing Piles: In the event a pile is broken or otherwise damaged by the Contractor to the extent that the damage is irreparable, in the opinion of the Engineer, the Contractor shall extract and replace the pile at no additional expense to the Department. In the event that a pile is mislocated by the Contractor, the Contractor shall extract and replace the pile at no expense to the Department except when a design change proposed by the Contractor is approved by the Department as provided in 455-5.15.5.

In the event that a pile is driven below cut-off without obtaining the required bearing, and the Engineer elects to have the pile pulled and a longer pile substituted, it will be paid for as Unforeseeable Work. In the event a pile is damaged or mislocated, and the damage or mislocation is determined to be the Department's responsibility, the Engineer may elect to have the pile extracted, and it will be paid for as Unforeseeable Work. If the extracted pile is undamaged and driven elsewhere the pile will be paid for at 30% of the Contract unit price for Piling. When the Department determines that it is responsible for damaged or mislocated pile, and a replacement pile is required, compensation will be made under the item for Piling, for both the original pile and replacement pile.

The Contractor may substitute a longer pile in lieu of splicing and building-up a pile. In this event, the Contractor will be paid for the original authorized length of the pile, plus any additional length furnished by the Contractor up to the authorized length of the build-up, as Piling. The Contractor will be paid 30 feet of piling as full compensation for extracting the original pile.

455-11.2.8 Underwater Driving: When the Contractor selects one of the optional underwater driving methods, payment will be made by selecting the applicable method from the following:

(a) Using a pile longer than the authorized length: Payment for piling will be made only for the authorized length at that location unless the length of pile from cut-off elevation to the final tip elevation is greater than the authorized length, in which case payment for piling will be made from cut-off elevation to final tip elevation. No payment will be made for pile splice, when this option is selected, unless the pile is physically spliced and the splice is driven below cut-off elevation to achieve bearing. When making and driving a pile splice below cut-off elevation to achieve bearing, the length to be paid for piling will be the length between cut-off elevation and final pile tip elevation.

(b) Using an underwater hammer: Payment for piling and pile splices will be in accordance with 455-11.2.1 through 455-11.2.7 and 455-11.9.2. The Contractor shall furnish additional lengths required to provide the full length confirmation pile at no expense to

the Department. Payment for piling for the full length confirmation pile will be the authorized length of the pile, unless the length driven below cut-off elevation is greater than the authorized length, in which case the length to be paid for will be the length between cut-off elevation and the final tip elevation. Splices in confirmation piles will be paid for only when the splice is driven below cut-off elevation.

(c) Using a pile follower: When a pile follower is used with a conventional pile driving system, the method of payment will be the same as shown above in 455-11.9.2.

455-11.3 Steel Piling:

455-11.3.1 General: The quantity to be paid for will be the length, in feet, of Steel Piling furnished, spliced, driven and accepted, up to the authorized length, including any additions and excluding any deletions thereto as approved by the Engineer.

455-11.3.2 Point Protectors: The quantity to be paid for will be each for the total of point protectors authorized, furnished, and properly installed.

455-11.4 Test Piles: The quantity to be paid for of test piles of various types, will be the length, in feet, of Test Piling furnished, driven and accepted, according to the authorized length list, and any additions or deletions thereof as approved by the Engineer.

Where a test pile is left in place as a permanent pile, it will be paid for only as Test Piles. Any extensions necessary to continue driving the pile for test purposes, as authorized by the Engineer, will be paid for as Test Piles. Other build-ups made only to incorporate the pile into the structure as a permanent pile will be included in the quantities of regular Piling and will not be paid for as Test Piling.

455-11.5 Dynamic Load Tests: Payment will be based on the number of dynamic load tests authorized by the Engineer, completed and accepted in accordance with the Contract Documents, but which were not shown in the Contract Documents.

Payment for attaching equipment to each production pile for dynamic load testing prior to initial driving and as authorized by the Engineer will be 20 feet of additional pile when dynamic testing of that pile is not shown in the Contract Documents.

455-11.6 Steel Sheet Piling: The quantity to be paid for will be the plan quantity area, in square feet, measured from top of pile elevation to the bottom of pile elevation and beginning and end wall limits as shown in the Plans with no allowance for variable depth surface profiles. Approved alternate support structures would be paid for as plan quantity computed for sheet pile. Sheet piling used in cofferdams and to incorporate the Contractor's specific means and methods, and not ordered by the Engineer, will be paid for as required in Section 125.

455-11.7 Concrete Sheet Piling: The quantity to be paid for will be the product of the number of such piles satisfactorily completed, in place, times their lengths in feet as shown in the Plans or authorized by the Engineer. This quantity will be based upon piles 2 1/2 feet wide.

When the Engineer approves, the Contractor may furnish the concrete sheet piling in widths wider than shown in the Plans; then the number of piles shall be the actual number of units completed times the width used divided by the width in the Plans.

455-11.8 Pile Splices: The quantity to be paid for authorized splices in concrete piling, and test piling, which are made for the purpose of obtaining authorized pile lengths longer than shown as the maximum length in the Standard Indexes, for obtaining greater lengths than originally authorized by the Engineer, to incorporate test piling in the finished structure, for further driving of test piling, or for splices shown in the Plans, will be 30 feet of additional prestressed concrete piling.

For concrete piles, where the head of the pile to be spliced is not more than 2 feet below the elevation of cut-off, the pile build-up may be cast with the cap. The reinforcing steel and pile dimensions shall generally conform in every respect to a standard splice. The quantity to be paid for will be 9 feet of piling as compensation for drilling and grouting the dowels and reinforcing steel and concrete used for-build up and all other costs for which provision has not otherwise been made.

The quantity to be paid for authorized splices in steel piling and test piling for the purpose of obtaining lengths longer than the lengths originally authorized by the Engineer will be as 20 feet of additional steel piling.

455-11.9 Set-Checks and Redrives:

455-11.9.1 Set Checks/Test Piles: There will be no separate payment for the initial four set-checks performed the day of and the working day following initial driving. For each additional set-check ordered by the Engineer and performed within the following working day of initial driving, an additional quantity of 10 feet of piling will be paid.

455-11.9.2 Set Checks/Production Piles: There will be no separate payment for the initial two set-checks performed the day of and the working day following initial driving. For each additional set-check ordered by the Engineer and performed within the following working day of initial driving, an additional quantity of 10 feet of piling will be paid.

455-11.9.3 Redrives: The quantity to be paid for will be the number of redrives, each, authorized by the Engineer. Payment for any pile redrive (test pile or production pile) ordered by the Engineer will consist of 20 feet of additional piling.

455-11.10 Pile Extraction: Piles authorized to be extracted by the Engineer and successfully extracted as provided in 455-11.2.7 will be paid for as described in 455-11.2.7. No payment for extraction will be made for piles shown in the Plans to be extracted or piling damaged or mislocated by the Contractor that are ordered to be extracted by the Engineer.

455-11.11 Protection of Existing Structures: The quantity to be paid for will be at the Contract lump sum price. When the Contract Documents do not include an item for protection of existing structures, the cost of settlement monitoring as required by these Specifications will be included in the cost of the piling items; however, work in addition to settlement monitoring will be paid for as Unforeseeable Work when such additional work is ordered by the Engineer.

455-11.12 Static Load Tests: The quantity to be paid for will be the number of static load tests of the designated tonnages, each, as shown in the Plans or authorized by the Engineer, actually applied to piles, completed and accepted in accordance with the Plans and these Specifications.

455-11.13 Preformed Pile Holes: The quantity added to the payment for piling will be 30% of the length of completed preformed pile holes from existing ground or the bottom of any required excavation, whichever is lower, to the bottom of preformed hole acceptably provided, complete for the installation of the bearing piles, regardless of the type of pile (test pile or production pile) installed therein. Only those holes authorized to be paid for, as provided in 455-5.9.3, will be included in the measurement for payment. The Engineer will authorize payment for preformed pile holes only when the pile has been placed in proper position and has achieved the required penetration.

455-12 Basis of Payment (All Piling).

455-12.1 Treated Timber Piling: Price and payment will be full compensation for furnishing all materials, including collars, metal shoes, copper cover sheets, preservatives and tar, and for wrapping pile clusters with wire cable, where so shown in the Plans.

- **455-12.2 Prestressed Concrete Piling:** Price and payment will be full compensation for the cost of furnishing and placing all reinforcing steel, predrilled holes, furnishing the material for and wrapping pile clusters with wire cable where so shown in the Plans and grouting of preformed pile holes when shown in the Plans.
- **455-12.3 Steel Piling:** Price and payment will be full compensation for all labor, equipment, and materials required for furnishing and installing Steel Piling, including welding and painting as specified and the cost of predrilling pile holes described in 455-5.1.1. The cost of any sand or concrete fill and reinforcing steel in pipe piles will be included in the price for Steel Piling.

Bracing and other metal parts attached to or forming a part of piling or bracing and not otherwise classified, will be measured and paid for as provided in Section 460.

455-12.4 Test Piles: Price and payment will be full compensation for all incidentals necessary to complete all the work of this item except splices, build-ups, pile extractions and preformed pile holes authorized by the Engineer and paid for under other pay items or payment methods. The cost of all additional work not listed above necessary to ensure required penetration and attain required bearing of the test piles will be included in the price bid per foot of Test Pile, including driving and all other related costs.

455-12.5 Dynamic Load Tests:

455-12.5.1 Dynamic Load Tests/ Test Piles: Price and payment will be full compensation for all labor, equipment, materials, instrumentation and installation required to assist the engineer in performing this work. All test piles will require dynamic load tests, and include all costs associated with dynamic load tests in the pay items for test piles.

455-12.5.2 Dynamic Load Tests/ Production Piles: Price and payment will be full compensation for all labor, equipment, materials, instrumentation and installation required to assist the Engineer in performing this work.

455-12.6 Steel Sheet Piling:

455-12.6.1 Permanent Sheet Piling: Price and payment will be full compensation for all labor, equipment, and materials required for furnishing and installing steel sheet piling including preformed holes and coating, but will not include furnishing and placing anchors when an anchored wall system is designed and detailed in the Plans. In such cases, furnishing and installing anchors will be paid for separately.

455-12.6.2 Temporary Sheet Piling: For critical temporary steel sheet pile walls, walls which are necessary to maintain the safety of the traveling public or structural integrity of nearby structures, roadways and utilities during construction, that are detailed in the Plans, price and payment will be full compensation for all labor, equipment, and materials required for furnishing and installing steel sheet piling including preformed holes when shown in the Plans, and including wales, anchor bars, dead men, soil anchors, proof tests, creep tests, and other incidental items when an anchored wall system is required. Removal of the sheet piling, anchors, and incidentals will be included in the cost per square foot for Steel Sheet Piling (Critical Temporary). When the temporary steel sheet pile walls are not detailed in the Plans, the cost of furnishing and installation shall be incidental to cost of other related items and no separate payment shall be made. If the wall is not shown in the Plans, but deemed to be critical as determined by the Engineer, then a design shall be furnished by the Department and paid for separately under Steel Sheet Piling (Critical Temporary).

- **455-12.7 Concrete Sheet Piling:** Price and payment will be full compensation for furnishing all materials, including reinforcing steel, grouting, plastic filter fabric, preformed holes and installation.
- **455-12.8 Preformed Pile Holes:** There is no separate pay item for preformed pile holes. Payment will be made at the unit price for piling of the applicable pile type. Payment will be full compensation for all labor, equipment, casings and materials required to perform this work.
- **455-12.9 Protection of Existing Structures:** Price and payment will be full compensation for all labor, equipment, and materials required to perform this work.
- **455-12.10 Point Protectors:** Price and payment will be full compensation for all labor, equipment, and materials required to perform this work.
- **455-12.11 Static Load Tests:** Price and payment will be full compensation for all labor, equipment, and materials required to perform this work.
- **455-12.12 Pile Cut-Off:** Anticipate all piles will require cutting-off, and include all costs associated with pile cut-off in the pay items for piling.

455-12.13 Payment Items: Payment will be made under:

•	3
Item No. 455- 2-	Treated Timber Piling - per foot.
Item No. 455- 14-	Concrete Sheet Piling - per foot.
Item No. 455- 18-	Protection of Existing Structures - lump sum.
Item No. 455- 34-	Prestressed Concrete Piling - per foot.
Item No. 455- 35-	Steel Piling - per foot.
Item No. 455- 36-	Concrete Cylinder Piling - per foot.
Item No. 455-119-	Test Loads - each.
Item No. 455-120-	Point Protection - each.
Item No. 455-133-	Steel Sheet Piling - per square foot.
Item No. 455-143-	Test Piles (Prestressed Concrete) - per foot.
Item No. 455-144-	Test Piles (Steel) - per foot.
Item No. 455-145-	Test Piles (Concrete Cylinder) - per foot.