ORIGINATION FORM Proposed Revisions to the Specifications (Please provide all information - incomplete forms will be returned)

Date:	Office:
Originator:	Specification Section:
Telephone:	Article/Subarticle:
email:	Associated Section(s) Revisions:

Will the proposed revision require changes to the following Publications:

Publication	Yes	No	Office Staff Contacted	Date
Standard Plans Index				
Traffic Engineering Manual				
FDOT Design Manual				
Construction Project Administration Manual				
Basis of Estimate/Pay Items				
Structures Design Guidelines				
Approved Product List				
Materials Manual				
Maintenance Specs				

Will this revision necessitate any of the following:

Design Bulletin Construction (DCE Memo)

Estimates Bulletin

Materials Bulletin

Have all references to internal and external publications in this Section been verified for accuracy?

Synopsis: Summarize the changes:

Justification: Why does the existing language need to be changed?

Do the changes affect either of the following types of specifications (Hover over type to go to site.):

Special Provisions Developmental Specifications

List Specifications Affected: (ex. SP3270301, Dev330TL, Dev334TL etc.)

1. Are changes in line with promoting and making meaningful progress on improving safety, enhancing mobility, inspiring innovation, and fostering talent; explain how?

2. What financial impact does the change have; project costs, pay item structure, or consultant fees?

3. What impacts does the change have on production or construction schedules?

4. How does this change improve efficiency or quality?

5. Which FDOT offices does the change impact?

6. What is the impact to districts with this change?

7. Does the change shift risk and to who?

8. Provide summary and resolution of any outstanding comments from the districts or industry.

9. What is the communication plan?

10. What is the schedule for implementation?

INTELLIGENT TRANSPORTATION SYSTEM DEVICE MATERIALS. (REV 9-28-23)

ARTICLE 996-1 is deleted and the following substituted:

996-1 Description.

<u>996-1.1 General:</u> This Section governs the requirements for all permanent intelligent transportation system devices. <u>All equipment shall be permanently marked with manufacturer name or trademark, part number, and date of manufacture or serial number.</u>

996-1.2 Product Acceptance: All specified products shall be items listed on the Department's Approved Product List (APL), unless otherwise noted below. Manufacturers seeking evaluation of products for inclusion on the APL shall submit an application in accordance with Section 6 and include the following documentation. A separate application must be submitted for each product to be evaluated, showing that the product meets the applicable requirements.

Table 996-1		
Documentation	Requirements	
Assembly and Installation Instructions	Include any surface preparations,	
	assembly/installation instructions, operation	
	manual, troubleshooting guides, and repair	
	procedures.	
Independent Laboratory Test Results	Product meets requirements of this Section.	
Product Label Photo	Labeling shows the manufacturer's name,	
	trademark, and product model number/name. Label	
	shows the date of manufacture and/or the	
	manufacturer's batch number. Additional label	
	requirements, as listed within this Section.	
Product Photo	Displays the significant features of the product as	
	required in this section.	
Compliance Matrix	Include completed compliance matrix at	
	https://www.fdot.gov/traffic/traf-sys/product-	
	specifications.shtm	
Manufacturer's Product Specifications	Include product specifications showing electrical	
	requirements, voltages, etc.	
Product Drawings or Cut Sheet	Show mounting points, mechanical details, block	
	diagrams, schematics, etc.	
Parts List	List major parts and field serviceable components.	

996-1.3 Abbreviations: The following abbreviations are used in this Section:

Alternating Current (AC)
Closed Circuit Television (CCTV)
Direct Current (DC)
Electronic Industries Alliance (EIA)
Hypertext Transfer Protocol (HTTP)

Internet Protocol (IP)
Local Area Network (LAN)
Network Time Protocol (NTP)
Pan, Tilt, Zoom (PTZ)
Telecommunications Industry Association (TIA)
Uniform Resource Locator (URL)
Ultraviolet (UV)

ARTICLE 996-2 is deleted and the following substituted:

996-2 Video Equipment.

996-2.1 General: All CCTV camera equipment shall be listed on the Department's Approved Product List (APL). Manufacturers seeking evaluation of their product shall submit an application in accordance with Section 6.

All equipment shall be permanently marked with manufacturer name or trademark, part number, and date of manufacture or serial number. All parts shall be constructed of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal. All fasteners exposed to the elements shall be Type 304 or 316 passivated stainless steel.

996-2.2 CCTV Camera:

996-2.2.1 Camera: CCTV cameras shall be compliant with the Code of Federal Regulations Section 200.216 Prohibition on certain telecommunications and video surveillance services or equipment <u>https://www.ecfr.gov/current/title-2/subtitle-A/chapter-II/part-200/subpart-C/section-200.216</u>. CCTV cameras shall be compatible with the current version of the Department's SunGuide[®] software system. Camera types include dome pan-tilt-zoom (PTZ), external positioner-PTZ, and fixed. Video types include analog and internet protocol (IP). Analog camera produces National Television System Committee (NTSC) composite video output of 1V peak-to-peak (Vp-p) at 75 ohms with a minimum resolution of 470 horizontal and 350 vertical TV lines.

Analog and IP cameras shall provide the following features and

capabilities:

- 1. Day (color)/night (monochrome) switchover.
- 2. Manual and automatic focus.
- 3. Automatic iris.

4. Ability to produce clear, detailed, and usable video images of the areas, objects, and other subjects visible from a roadside CCTV field site. Video produced by the camera is true, accurate, distortion free, and free from transfer smear, oversaturation, and any other image defect that negatively impacts image quality under all lighting and weather conditions in both color and monochrome modes.

average adjustable to 28 dB.

5. User-selectable automatic gain control (AGC) that is peak-

- -

6. A minimum signal-to-noise ratio of 50 dB.7. Automatic color balance that references the white areas of the

scene through the lens.

8. An automatic electronic shutter that is user selectable from 1/60

to 1/10,000 of a second.

9. PTZ cameras shall include a minimum 10x digital zoom.

10. PTZ cameras shall include programmable azimuth and compass display with ability to display pan and tilt position with a 1 degree resolution.

CCTV cameras shall provide titling and masking features including, but not limited to, programmable camera title, programmable preset titles for each preset position, and programmable privacy zones. Programmable titles shall allow a minimum of 18 characters per line.

996-2.2.2 Lens: Standard definition PTZ cameras shall include a minimum 22x motorized optical zoom lens with automatic iris. High definition <u>PTZCCTV</u> cameras shall include a minimum 18x motorized optical zoom lens with automatic iris. Fixed cameras shall have a 3-9 mm varifocal lens with automatic iris <u>unless otherwise shown in the Plans</u>. The lens shall have a maximum aperture of at least f/1.6 and the depth of field shall provide a clear image of roadside areas under all lighting conditions.

996-2.2.3 Pan/Tilt Mechanism for Dome-Type Cameras: Dome PTZ cameras shall meet the following requirements:

1. Have an integrated pan/tilt mechanism that provides 360 degree continuous pan with a minimum 90 degree tilt range (i.e., 0 degrees to minus 90 degrees);

2. Provide for variable speed control;

3. Have a preset position return accuracy of plus or minus 0.36 degree, or less than 0.10% or better;

4. Support a minimum of 64 presets; support a minimum of one tour with a minimum of 32 presets; and support a minimum of eight programmable blackout zones.

The positioner within the dome-type CCTV camera shall have a minimum automatic pan speed of 240 degrees per second to a preset camera position, a maximum manual pan speed of 80 degrees per second minimum and a maximum manual tilt speed of 40 degrees per second minimum.

996-2.2.4 Pan/Tilt Mechanism for External Positioner-Type Cameras: External positioner-type CCTV cameras shall include a pan/tilt mechanism that provides 360 degree continuous pan with a minimum 115 degree tilt range (i.e., minus 90 to plus 25 degrees), provide for variable speed control, have a preset position return accuracy of plus or minus 0.36 degree or less than 0.10% or better, and support a minimum of 32 presets.

996-2.2.5 Communication: Analog CCTV cameras shall support the National Transportation Communications for ITS Protocol (NTCIP) 1205 v1.08. The camera shall communicate with other devices using Telecommunications Industry Association/Electronic Industries Alliance (TIA/EIA)-232 or TIA-422 at a rate of 9600 bps, transmission control protocol (TCP)/IP, or user datagram protocol (UDP)/IP. All CCTV cameras shall provide for remote firmware upgrades via the communication interface.

IP cameras shall support either NTCIP 1205v01.08 or the Open Network Video Interface Forum (ONVIF) Core, Streaming, and Media Service specifications.

The camera shall implement all objects, operations, and commands required by SR-682-1.2.1-01, Supplemental CCTV Camera NTCIP and ONVIF Requirements, as published on the Department's State Traffic Engineering and Operations Office website at the following URL: https://www.fdot.gov/traffic/Traf_Sys/Product-Specifications.shtm. **996-2.2.6 Electrical Requirements:** Cameras shall operate on a nominal voltage of 120 V_{AC} . Provide an appropriate voltage converter for devices that require operating voltages of less than 120 V_{AC} .

996-2.2.7 Mechanical Requirements: Camera housings and hardware shall be light in color.

Camera housings shall include a sunshield to reduce the solar heating of the camera. The total weight of dome-type CCTV cameras (including the housing, sunshield, and all internal components) shall be less than 17.0 lbs. The lower dome of the camera housing shall be constructed of distortion free clear plastic.

Pressurized dome-type housings shall be capable of pressurization at 5 psi using dry nitrogen, have a low-pressure alarm feature, and a NEMA 4X/IP-67 rating.

If a non-pressurized dome-type housing enclosure is used, the unit shall be vented with a thermostat-controlled heater and blower. The non-pressurized enclosure shall have a NEMA 4/IP-66 rating.

The total weight of external positioner-type CCTV cameras (including housing, sunshield, all internal components, and external pan and tilt mechanism) shall be less than 35 lb.

996-2.2.8 Environmental Requirements: CCTV cameras shall perform all required functions during and after being subjected to the environmental testing procedures described in NEMA TS_2_2021, Sections 2.2.7, 2.2.8, and 2.2.9.

All CCTV cameras, mounting hardware, and any other camera-related material that is exposed to the environment shall be designed for 150 mph wind speeds and meet the requirements of the Department's Structures Manual.

996-2.2.9 Additional Requirements for IP Cameras:

996-2.2.9.1 Video Encoding: The camera shall utilize the Moving Picture Experts Group's MPEG4 part 10 (H.264) video compression technology in accordance with the ISO and IEC requirements detailed in the ISO/IEC 14496-10:2009 Standard.

Cameras shall establish unicast and multicast sessions using the Real-Time Streaming Protocol (RTSP) and provide for a 99.999% error free operation. The encoded video shall transmit using programmable bit rates and the camera supports, at a minimum, a fixed bit rate mode.

996-2.2.9.2 Encoded Video Requirements: The camera's encoded video shall support resolutions that include; but are not limited to, those defined in Table 996-1. The camera shall deliver color and monochrome video at 30 frames per second (fps), regardless of resolution.

Table 996-1		
Minimum Resolution Requirements		
Format Vertical Resolutions		
H.264 240, 480		
Note: The resolutions attained depend on the data transmission rate		

Note: The resolutions attained depend on the data transmission rate.

996-2.2.9.3 Network Interface: The camera's Local Area Network (LAN) connection shall support the requirements detailed in the IEEE 802.3 Standard for 10/100 Ethernet connections. The camera shall have a minimum of one 10/100 Base-TX connection Ethernet port.

Unshielded twisted pair/shielded twisted pair network cables shall be compliant with the TIA-568 Standard. The network communication shall conform to TCP, UDP, Version 4 of the IP, RTSP, and Version 2 of the Internet Group Multicast Protocol (IGMP), at a minimum. If the camera supports NTCIP, then the camera shall be able to be controlled via TCP/IP or UDP/IP.

996-2.2.9.4 Configuration Management: The camera shall support local and remote configuration and management via serial login, telnet login, or a web-based interface. Configuration and management functions shall include access to all user-programmable features including, but not limited to, network configuration, video settings, device monitoring, and security functions.

996-2.3 Video Display Control System:

996-2.3.1 Display Control System: The video display control system shall allow the operator to control and manage the display of video and computer-generated graphics on the display equipment connected to the system as well as provide selection and switching of multiple sources for display, including video streams available on the <u>Traffic Management Center (TMC)</u> Ethernet network. The display control system shall also allow for operator control of all displays from the same workstation that is used for the SunGuide® operator interface. The video display control system shall decode and display all video streams produced by encoders listed on the APL.

The video display control system simultaneously displays a minimum of 32 video windows, each containing streaming video at a minimum resolution of 720 pixels by 480 pixels and frame rate of 30 fps. The system shall allow any display window to be sized from 1/32 of the total display area up to the total display area, and any size in between.

The video display control system hardware shall be designed to be rack mounted and secured in an EIA 19 inch equipment rack. Any system incorporating Personal Computer (PC) hardware shall use current microprocessor technology and commercial, off-theshelf components, including RAM, hard disk drives, and network interface cards sufficient to provide the functional requirements of the system.

The video display control system shall be expandable and scalable to support any combination of inputs and outputs.

The video display control system shall have a minimum configuration of 4 composite video inputs, 4 component (red, green, and blue (RGB) video inputs, and 4 DVI <u>High-Definition Multimedia Interface (HDMI)</u> inputs as well as network connections, decoders, and associated hardware and software required to display 32 inputs simultaneously at a minimum resolution of 720 pixels by 480 pixels and a frame rate of 30 fps.

The video display control system shall have a minimum configuration of 4 composite video outputs, 2 component (RGB video outputs), and 4 <u>DVI-HDMI</u> outputs.

996-2.3.2 Display Control Software: The display control software shall allow multiple operators to control all features and functions of the video display control system. These features and functions include, but are not limited to, selection of video sources for display; adjusting the size, location, and layout of video and other graphic information the system displays; and system configuration and setup. The control software shall be able to operate a video wall composed of multiple display components as though it were a single, high-resolution display.

The display control software shall include a non-proprietary Software Development Kit (SDK) including, but not limited to, an Application Programming Interface (API) that describes interfaces and protocols which can be used to integrate system features and functions with third-party applications.

996-2.3.3 Controller Inputs and Outputs: The video display control system shall support and display a variety of video and data inputs simultaneously, including composite and component National Television System Committee (NTSC) video, HDMI, Digital Visual Interface (DVI), Video Graphics Array (VGA), Super Video Graphics Array (SVGA), and Super Extended Graphics Array (SXGA) computer graphics. All inputs and outputs shall allow for operator control in order to display any or all of this information on any number of display devices within the system. All inputs and outputs shall be sized with and without constrained proportions across multiple screens and moved at will around any display area and combination of displays.

The video display control system shall be expandable and scalable to support any combination of inputs and outputs. The video display control system with a minimum configuration of 4 composite video inputs, 4 component (RGB video inputs), and 4 DVI-HDMI inputs as well as network connections, decoders, and associated hardware and software required to display 32 inputs simultaneously at a minimum resolution of 720 pixels by 480 pixels and a frame rate of 30 fps, or as shown in the Plans. Provide the video display control system with a minimum configuration of 4 composite video outputs, 2 component (RGB video outputs), and 4 DVI-HDMI outputs. The video display control system can be expanded to accommodate at least 128 discreet inputs and outputs.

A single input shall be able to be routed to multiple displays simultaneously and multiple inputs can be routed to a single display simultaneously for viewing in separate windows. All inputs and outputs shall be synchronized by the video display control system and switching between inputs or outputs does not cause displayed images to unlock, roll, or otherwise exhibit visible distortion.

996-2.3.3.1 Analog Video: The video display control system shall be able to accept S-video, composite, and component video sources, and can digitize these signals for manipulation and display on any display device attached to the system. All analog video inputs shall use BNC connectors.

Analog video sources shall display within their own windows and can be resized up to or beyond their native resolution to conform to the wall display size.

996-2.3.3.2 Digital Video: The video display control system shall be able to accept digital video sources and can manipulate and display these signals on any display attached to the system. All digital video outputs shall use <u>DVI connectors</u>, HDMI connectors or <u>display port connectors</u> unless otherwise directed.

Each MPEG video stream shall display within its own window and be freely movable and sizable up to or beyond its native resolution to conform to the wall display size.

996-2.3.3.3 RGB Video: Include an analog input that enables the TMC operator to project an exact copy of his or her workstation desktop display on the video wall display. Analog RGB inputs shall allow native images up to 1,280 pixels by 1,024 pixels at 60 Hz to be displayed on the video wall.

RGB inputs shall be sizable up to or beyond their native resolution to conform to the wall display size.

996-2.3.3.4 Streaming Media: The video display control system shall be able to display a minimum of 32 compressed video streams simultaneously in MPEG-2 over

TCP/UDP/RTP over IP and supports multicasting as defined in Version 2 of the Internet Gateway Message Protocol (IGMP). The video display control system can display MPEG-4 and H.264. The MPEG video input interface is, at minimum, a 10/100 megabit per second network port per every 15 streams.

996-2.3.3.5 Primary Display Output: Video display control system can process the various signal input types to be viewed, such as the RGB feeds from monitor outputs and streaming video feeds. The unit shall provide direct digital streaming video through cable feeds using a digital video decoder. The video display control system shall provide the layout definitions for each signal to be displayed and save the predefined layouts and shall also permit switching of the predefined layouts and accept external alarm triggers to change the layouts.

The output capacity shall have sufficient memory and processing speed to provide fast rendering of video and image displays. The output has, at a minimum, a dual <u>DVI connector HDMI connectors</u> that allows a digital connection of support 1,280 horizontal pixels by 1,024 vertical pixels or greater resolution. The color depth is a minimum of 24 bits per pixel.

996-2.3.4 Electrical Requirements: Provide equipment that operates on $120 V_{AC}$ at a frequency of 60 Hz. Furnish a transformer or other necessary means of power conversion for any device that requires another voltage or frequency.

ARTICLE 996-3 is deleted and the following substituted:

996-3 Network Devices.

996-3.1 General: Network devices shall be listed on the Department's Approved Product List (APL). Manufacturers seeking evaluation of their product shall submit an application in accordance with Section 6.

996-3.2 Managed Field Ethernet Switch:

996-3.2.1 Description: The Managed Field Ethernet Switch (MFES) shall be compliant with the Code of Federal Regulations Section 200.216 Prohibition on certain telecommunications and video surveillance services or equipment

https://www.ecfr.gov/current/title-2/subtitle-A/chapter-II/part-200/subpart-C/section-200.216.

The MFES provides wire-speed fast Ethernet connectivity at transmission rates of 100 megabits per second.

Each MFES shall be managed individually and as a group for switch configuration, performance monitoring, and troubleshooting. The MFES shall include Layer 2+ capabilities, including, <u>Quality of Service (QoS)</u>, IGMP, rate limiting, security filtering, and general management.

The MFES shall support half and full duplex Ethernet communications.

The MFES shall provide 99.999% error-free operation. The MFES shall comply with the Electronic Industries Alliance (EIA) Ethernet data communication requirements using single-mode fiber optic transmission medium and Category 5E copper transmission medium.

The MFES shall have a minimum mean time between failures (MTBF) of 10 years, or 87,600 hours, as calculated using the Bellcore/Telcordia SR-332 standard for reliability prediction.

996-3.2.2 Networking Standards: The MFES shall comply with all applicable IEEE networking standards for Ethernet communications, including but not limited to:

1. IEEE 802.1Q standard for Local and Metropolitan Area Networks -Bridges and Bridged Networks used with port-based Virtual Local Area Networks (VLANs) and Rapid Spanning Tree Protocol (RSTP).

2. IEEE 802.1P standard for Quality of Service (QoS).

3. IEEE 802.3 standard for LAN and Metropolitan Area Network (MAN) access and physical layer specifications.

4. IEEE 802.3u supplement standard regarding 100 Base TX/100 Base

FX.

5. IEEE 802.3x standard regarding flow control with full duplex operation. **996-3.2.3 Optical Ports:** All fiber optic link ports operate at 1,310 or

1,550 nanometers in single mode. All optical ports are Type ST, SC, LC, or FC only. Mechanical transfer registered jack (MTRJ) type connectors are not allowed.

MFES shall provide two optical 100 Base FX ports capable of transmitting data at 100 megabits per second. MFES shall provide optical ports designed for use with a pair of fibers; one fiber will transmit (TX) data and one fiber will receive (RX) data. The optical ports shall have an optical power budget of at least 15 dB.

996-3.2.4 Copper Ports: MFES shall include a minimum of four copper ports. All copper ports shall be Type RJ-45 and shall auto-negotiate speed (i.e., 10/100 Base) and duplex (i.e., full or half). All 10/100 Base TX ports shall meet the specifications detailed in this section and shall be compliant with the IEEE 802.3 standard pinouts.

Ethernet over very high speed digital subscriber line (EoVDSL) ports shall support standard telephone-grade twisted copper pair and automatically negotiate the fastest data rate possible depending on cable length and quality.

996-3.2.5 Management Capability: The MFES shall support all Layer 2 management features and certain Layer 3 features related to multicast data transmission and routing. These features shall include, but not be limited to:

1. An MFES that is a port-based VLAN and supports VLAN tagging that meets or exceeds specifications as published in the IEEE 802.1Q standard and has a minimum 4-kilobit VLAN address table.

2. A forwarding/filtering rate that is a minimum of 14,880 packets per second for 10 megabits per second and 148,800 packets per second for 100 megabits per second. 3. A minimum 4 kilobit MAC address table.

4. Support of, at a minimum, <u>IGMP</u> Version 2-of the Internet Group Management Protocol (IGMP).

5. Support of remote and local setup and management via secure shell (SSH) and secure Web-based GUI.

6. Support of the Simple Network Management Protocol (SNMP) version 1/2/3. Verify that the MFES can be accessed using the resident EIA-232 management port or a telecommunication network.

7. Support of Remote Authentication Dial-In User Service (RADIUS) or Terminal Access Controller Access-Control System Plus (TACACS+)

8. Support of remote monitoring (RMON) of the Ethernet agent and the ability to be upgraded to switch monitoring (SMON), if necessary.

9. Support of Secure Copy (SCP) or Secure File Transfer Protocol (SFTP) and either Network Time Protocol (NTP) or the Simple Network Time Protocol (SNTP). Ensure

that the MFES supports port mirroring for troubleshooting purposes when combined with a network analyzer.

996-3.2.6 Mechanical Requirements: The equipment shall be permanently marked with manufacturer name or trademark, part number, and serial number. Every conductive contact surface or pin shall be gold-plated or made of a noncorrosive, nonrusting, conductive metal. Do not use self-tapping screws on the exterior of the assembly. All parts shall be made of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal.

996-3.2.7 Electrical Requirements: The MFES shall operate on a nominal Voltage of 120 <u>V Alternating Current (V_{AC}VAC)</u>. Supply an appropriate voltage converter for devices that require operating voltages of less than 120 <u>V_{AC}VAC</u>. The MFES shall have diagnostic Light Emitting Diodes (LEDs), including link, TX, RX, and power LEDs.

996-3.2.8 Environmental Requirements: MFES shall operate properly during and after being subjected to the environmental testing procedures described in NEMA TS 2 2021, Sections 2.2.7, 2.2.8., and 2.2.9.

996-3.3 Managed Hub Ethernet Switch:

996-3.3.1 Description: The Managed Hub Ethernet Switch (MHES) shall be compliant with the Code of Federal Regulations Section 200.216 Prohibition on certain telecommunications and video surveillance services or equipment

https://www.ecfr.gov/current/title-2/subtitle-A/chapter-II/part-200/subpart-C/section-200.216. The MHES shall provide Ethernet connectivity at transmission rates of 10/100/1000/10000 megabits per second. The MHES shall support half and full duplex Ethernet communications. The MHES must support 12000 IPv4 routes and 2000 IPv6 routes and all routing protocols shall be performed hardware to ensure maximum speed.

The MHES shall support management individually and as a group for switch configuration, performance monitoring, and troubleshooting. The MHES shall include Layer 2 capabilities, including, QoS, IGMP, rate limiting, security filtering, and general management.

The MHES shall include full Layer 3 capabilities, including Open Shortest Path First (OSPF) routing protocol, Routing Information Protocol (RIP), and Protocol Independent Multicasting (PIM). The MHES includes all license(s) required to utilize all Layer 3 features.

996-3.3.2 Networking Standards: The MHES shall comply with all applicable IEEE networking standards for Ethernet communications, including:

1. IEEE 802.1Q Standard for Local and Metropolitan Area Networks -Bridges and Bridged Networks used with port-based Virtual Local Area Networks (VLANs) and Rapid Spanning Tree Protocol (RSTP).

2. IEEE 802.1P standard for QoS.

3. IEEE 802.3 standard for Local Area Network (LAN) and metropolitan area network (MAN) access and physical layer specifications.

4. IEEE 802.3u supplement standard regarding 100 Base TX/100 Base

<u>FX.</u>

5. IEEE 802.3x standard regarding flow control with full duplex operation.6. IEEE 802.3z supplement standard regarding 1000 Base X.

996-3.3.3 Optical Ports: All fiber optic link ports operate at 1,310 or

1,550 nanometers in single mode. Provide Type LC connectors unless otherwise directed. The

device must support Type ST, SC, LC, and FC connectors. Mechanical transfer registered jack (MTRJ) type connectors are not allowed.

MHES shall provide a minimum of 6 optical ports capable of transmitting data at 10/100/1000/10000 megabits per second. MHES shall provide optical ports designed for use with a pair of fibers; one fiber will transmit (TX) data and one fiber will receive (RX) data. The optical ports shall have an optical power budget of at least 15 dB.

996-3.3.4 Copper Ports: MHES shall include a minimum of 12 copper ports. All copper ports shall be Type RJ-45 and shall auto-negotiate speed (i.e., 10/100/1000 Base) and duplex (i.e., full or half). All 10/100/1000 Base TX ports shall meet the specifications detailed in this section and shall be compliant with the IEEE 802.3 standard pinouts.

996-3.3.5 Management Capability: MHES shall support all Layer 2 management features and all Layer 3 features as defined by this Section. Layer 2 and Layer 3 features must include:

1. Port-based VLAN and VLAN tagging that meets or exceeds specifications as published in the IEEE 802.1Q standard and has a minimum 4-kilobit VLAN address table.

2. A forwarding/filtering rate that is a minimum of 14,880 packets per second for 10 megabits per second, 148,800 packets per second for 100 megabits per second, and 1,488,000 packets per second for 1000 megabits per second.

3. A minimum 4 kilobit MAC address table.

4. Support of IGMP Version 2.

5. Support of remote and local setup and management via secure shell and secure Web-based GUI.

6. Support of the Simple Network Management Protocol (SNMP) version 2 and version 3.

7. Support of Remote Authentication Dial-In User Service (RADIUS) or Terminal Access Controller Access-Control System Plus (TACACS+).

8. Support of remote monitoring (RMON) of the Ethernet agent and the ability to be upgraded to switch monitoring (SMON), if necessary.

9. Support of SCP or SFTP and either Network Time Protocol (NTP) or the Simple Network Time Protocol (SNTP). Ensure that the MHES supports port mirroring for troubleshooting purposes when combined with a network analyzer.

10. Sampled Flow Network Monitoring export protocol capable of being turned on or off on individual Ethernet ports without affecting traffic.

12. OSPF routing protocol. 12000 IPv4 routes and 2000 IPv6 routes. 12. RIP.

13. Virtual Router Redundancy Protocol (VRRP).

996-3.3.6 Mechanical Specifications. Ensure the MHES is no greater than 1-

Rack Unit tall.

Every conductive contact surface or pin shall be gold-plated or made of a noncorrosive, nonrusting, conductive metal. Do not use self-tapping screws on the exterior of the assembly. All parts shall be made of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal.

996-3.3.7 Electrical Specifications. MHES must shall operate on a

nominal voltage of 120 V_{AC} . Supply an appropriate voltage converter for devices that require operating voltages of less than 120 V_{AC} . The MHES shall have diagnostic LEDs, including link, TX, RX, and power LEDs.

996-3.3.8 Environmental Specifications. Ensure that the MHES has an operating temperature range of -34° Celsius to 74° Celsius. Ensure that the MHES can withstand 90 percent non-condensing relative humidity at 40° Celsius.

996-3.34 Device Server:

996-3.34.1 Description: The device server allows the connection of serial devices with EIA-232, EIA-422, and EIA-485 connections to an Ethernet network. The device server provides a TCP/IP interface to one or more field devices using EIA-232/422/485 standard connections. The device server supports TCP/IP, <u>User Datagram Protocol (UDP)</u>/IP, Dynamic Host Configuration Protocol (DHCP), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), Simple Network Management Protocol (SNMP), Hypertext Transfer Protocol (HTTP), and telnet.

The device server shall provide 99.999% error-free operation and EIAcompatible Ethernet data communication by way of a Category 5E copper or fiber optic transmission medium.

The device server is resistant to all electromagnetic interference.

Data security shall comply with Version 2 of the Secure Shell Protocol (SSHv2), or the NIST requirements as defined in the Federal Information Processing Standard (FIPS) Publication (PUB)-197 for the Advanced Encryption Standard (AES).

The device server has a minimum mean time between failures (MTBF) of 10 years, or 87,600 hours.

996-3.34.2 Serial Interface: The device server provides a minimum of one serial data interface and connector that conforms to EIA-232/422/485 standards. The serial interface supports 2-wire and 4-wire EIA-485 connections. The serial ports support data rates up to 230 kbps; error detection procedures utilizing parity bits (i.e., none, even, and odd); and stop bits (1 or 2).

The device server provides flow control (request to send [RTS]/clear to send [CTS] and transmit on/transmit off [XON/XOFF]), as well as allow control of the Data Terminal Ready (DTR), Data Carrier Detect (DCD), Data Set Ready (DSR), CTS, and RTS signals. The device server supports RTS toggle for half-duplex emulation.

996-3.34.3 Network Interface: The device server includes a minimum of one Ethernet port, which shall provide a 10/100 Base TX or a 10/100 Base FX connection as specified in the Plans. All copper-based network interface ports utilize registered jack (RJ)-45 connectors. The optical ports are Type ST, SC, LC, or FC only. Mechanical transfer registered jack (MTRJ) type connectors are not allowed.

996-3.34.4 Configuration and Management: The device server shall support local and remote configuration and management, which shall include access to all user-programmable features, including but not limited to addressing, port configuration, device monitoring, diagnostic utilities, and security functions. The device server shall support configuration and management via SNMP, telnet login, and browser-based interface.

996-3.34.5 Mechanical Requirements: The equipment shall be permanently marked with manufacturer name or trademark, part number, date of manufacture and serial number. Do not use self-tapping screws on the exterior of the assembly. All parts are made of

corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or goldplated metal.

996-3.34.6 Electrical Requirements: The device server operates using a nominal input voltage of 120 V_{AC} VAC. If the device requires nominal input voltage of less than 120 V_{AC} VAC, furnish the appropriate voltage converter. The maximum power consumption shall not exceed 12 watts. The device server has diagnostic LEDs, including link, TX, RX, and power LEDs.

996-3.34.7 Environmental Requirements: The device server performs all required functions during and after being subjected to the environmental testing procedures described in NEMA TS_2-2021, Sections 2.2.7, 2.2.8, and 2.2.9.

996-3.45 Digital Video Encoder and Decoder:

996-3.45.1 Description: The Digital Video Encoder (DVE) and Digital Video Decoder (DVD) are specialized network-based hardware devices and software which allow video and data signals to be transmitted across IP networks. The video and data packets produced by the DVE and placed onto the network allow reconstruction of digital video signals by hardware-based and software-based DVDs that are also attached to the network.

996-3.45.2 Software: All setup, control programs, and diagnostic software related to the DVE or DVD shall be provided. All equipment licenses, where required for any software or hardware in the system, shall be provided.

996-3.45.3 MPEG-2 Format: DVE and DVD components utilize the Moving Picture Experts Group's MPEG-2 video compression technology in accordance with the International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) requirements detailed in the ISO/IEC 13818 standard. The DVE and DVD are capable of unicast and multicast operation. DVEs support the Session Announcement Protocol (SAP) as recommended by the Internet Engineering Task Force (IETF) RFC 2974. The DVE provides 99.999% error-free operation. The MPEG-2 DVE and DVD equipment support programmable bit rates. MPEG-2 equipment supports fixed bit rate mode.

996-3.45.4 H.264 Format: DVE and DVD components utilize the video compression technology in accordance with the International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) requirements detailed in the ISO/IEC 14496-10:2009 standard. The DVE and DVD are capable of unicast and multicast operation. DVEs shall support the Session Announcement Protocol (SAP) as recommended by the Internet Engineering Task Force (IETF) RFC 2974, and Real Time Streaming Protocol (RTSP). The DVE provides 99.999% error-free operation. H.264 DVE and DVD equipment support programmable bit rates. H.264 equipment supports fixed bit rate mode.

996-3.45.5 Digital Video Encoder: The DVE is a hardware-based network device that is able to accept a minimum of one analog National Television System Committee (NTSC) video input and digitize it for transport across IP networks. The DVE provides a minimum of one serial data interface for transmission of command and control data to other devices (typically camera PTZ commands), as well as console and configuration functions. Provide compatible decoder software along with the DVE.

996-3.45.6 Hardware-based Decoder: The hardware-based DVD has a minimum of one video output. The DVD that has a minimum of one data interface for configuration functions. The DVD includes an Ethernet interface for connection to IP networks.

996-3.45.7 Interoperability: The DVE is compatible and fully interoperable with software and hardware DVDs from the DVE manufacturer, as well as a minimum of two

software and hardware DVDs from other manufacturers. The DVD is compatible and fully interoperable with DVEs from the DVD manufacturer, as well as a minimum of two other DVEs from other manufacturers. The DVE and DVD can be controlled using SunGuide® or support stream selection and switching using ONVIF commands.

996-3.45.8 Video Requirements: Composite video inputs and outputs utilize BNC connectors. Analog video inputs and outputs support 1 volt peak-to-peak (Vp-p) NTSC composite video. The DVE and DVD operate with both color and monochrome video, and DVEs allow the user to select and adjust video resolution. The DVE and DVD support resolutions that include, but are not limited to, those defined in Table 996-2. The DVE and DVD are capable of delivering color and monochrome video at 30 fps regardless of resolution.

Table 996-2 Resolution Requirements		
Format Resolutions		
MPEG-2 352 x 240, 352 x 480, 720 x 480		
H.264 176 x 120, 352 x 240, 720 x 480		
Note: The resolutions attained depend on the data transmission rate.		

996-3.45.9 Serial Interface: Hardware-based DVEs provide a minimum of one serial data interface that support EIA/TIA-232 and TIA-422. The serial ports support data rates up to 115 kbps; error detection procedures utilizing parity bits (i.e., none, even, and odd); and stop bits (1 or 2).

Hardware-based DVEs provide a TCP/IP interface to their serial port using a network socket connection with configurable IP address and port number. Serial interface ports may utilize RJ-45 connectors, D-sub connectors, or screw terminals.

996-3.45.10 Network Interface: The DVE/DVD LAN connection supports the requirements detailed in the IEEE 802.3 standard for 10/100 Ethernet connections. The DVE/DVD has a minimum of one Ethernet port, which shall be a 10/100 Base TX connection or a 100 Base FX ST, SC, LC or FC interface. The connector complies with applicable EIA and TIA requirements. Copper-based network interface ports shall utilize RJ-45 connectors. Fiber ports are single mode with a minimum link budget of 30 dB.

The network communication conforms to User Datagram Protocol (UDP), Version 4 of the Internet Protocol (IP) and <u>IGMP</u> Version 2-of the Internet Group Multicast <u>Protocol (IGMP)</u>.

996-3.45.11 Front Panel Status Indicators: DVEs and DVDs have LED displays, Liquid Crystal Displays (LCDs), or similar illuminated displays to indicate status for power and data activity.

996-3.45.12 Configuration and Management: DVEs and DVDs shall support local and remote configuration and management. Configuration and management functions shall include access to all user-programmable features, including but not limited to addressing, serial port configuration, video settings, device monitoring, and security functions. DVE and DVD support configuration and management via serial login, telnet login, web browser, or Simple Network Management Protocol (SNMP).

996-3.4<u>5</u>.13 Mechanical Requirements: The equipment shall be permanently marked with manufacturer name or trademark, part number, date of manufacture and serial

number. Do not use self-tapping screws on the exterior of the assembly. All equipment uses parts made of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal.

996-3.45.14 Electrical Requirements: All equipment operates on a nominal voltage of 120 \underline{V}_{AC} VAC. If the device requires operating voltages of less than 120 \underline{V}_{AC} vAC, supply the appropriate voltage converter.

996-3.45.15 Environmental Requirements: DVEs and DVDs installed in roadside cabinets shall perform all required functions during and after being subjected to the environmental testing procedures described in NEMA TS_2-2021, Sections 2.2.7, 2.2.8, and 2.2.9. Hardware DVD installed in a climate-controlled environment, such as a TMC computer room, has an operating temperature range of 32 to 104°F.

996-3.56 Media Converter:

996-3.56.1 Description: The media converter connects different transmission media for the purposes of transmitting Ethernet data.

996-3.56.2 Network Interface: The media converter LAN connection supports requirements detailed in the IEEE 802.3 standard for 10/100 Ethernet connections. The media converter has a minimum of one Ethernet port, which shall be, at a minimum, a 10/100 Base TX connection or a 100 Base FX ST, SC, LC or FC interface. The connector complies with applicable EIA and TIA requirements. Copper-based network interface ports utilize RJ-45 connectors. Fiber ports are single mode with a minimum link budget of 30 dB.

996-3.56.3 Mechanical Requirements: The equipment shall be permanently marked with manufacturer name or trademark, part number, date of manufacture and serial number. All <u>Every</u> conductive contact surface or pin <u>are shall be gold-plated</u> or made of a noncorrosive, nonrusting, conductive metal. Do not use self-tapping screws on the exterior of the assembly. All parts shall be made of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal.

996-3.56.4 Electrical Requirements: Ethernet to coax media converters shall operate using Power Over Ethernet (POE). Media converters shall operate on a nominal voltage of 120 $V_{AC}V_{AC}$ if POE is unavailable. Supply an appropriate voltage converter for devices that require operating voltages of less than 120 $V_{AC}V_{AC}$. Ensure that the media converter has diagnostic LEDs, including link, TX, RX, and power LEDs.

996-3.56.5 Environmental Requirements: Ensure media converters perform all required functions during and after being subjected to the environmental testing procedures described in NEMA TS_2–2021, Sections 2.2.7, 2.2.8, and 2.2.9.

SUBARTICLE 996-4.2.4 is deleted and the following substituted:

996-4.2.4 SPD for Low-Voltage Power, Control, Data and Signal Systems:

The SPD devices shall comply with the minimum functional requirements shown in Table 996-3 for all available modes (i.e., power L-N, N-G; L-G, data and signal center pin-to-shield, L-L, L-G, and shield-G where appropriate).

	Table 996-3			
SPD Minimum Requirements				
Circuit Description	Clamping Voltage	Data Rate	Surge Capacity	Maximum Let-Through Voltage
12 V _{DC}	15-20 volts	N/A	5kA per mode (8x20 µs)	<150 Vpk
24 V _{AC}	30-55 volts	N/A	5kA per mode (8x20 µs)	<175 Vpk
48 V _{DC}	60-85 volts	N/A	5kA per mode (8x20 µs)	<200 Vpk
120 V _{AC} at POU	150- 200 volts	N/A	20kA per mode (8x20 µs)	<550 Vpk
Coaxial Composite Video	4-8 volts	N/A	10kA per mode (8x20 μs)	<65 Vpk (8x20 µs/1.2x50µs; 6kV, 3kA)
RS422/RS485	8-15 volts	Up to 10 Mbps	10kA per mode (8x20 µs)	<30 Vpk
T1	13-30 volts	Up to 10 Mbps	10kA per mode (8x20 µs)	<30 Vpk
Ethernet Data	7-12 volts	Up to 1 Gbps	1kA per mode (10x1000 μs)	<30 Vpk
P <mark>⊖</mark> oE	60-70 volts	Up to 1 Gbps	5kA per mode (8x20 µs)	<200Vpk (100kHz 0.5µs; 6kV, 500A)
PoE+, PoE++	<u><150</u>	<u>1 Gbps</u>	<u>1kA L-G</u> (8x20 μs)	<u><350V</u>

SPDs for PoE, PoE+, and PoE++ applications shall meet IEEE 8802-3.

The SPDs shall meet the requirements of UL 497B or UL 497C, as applicable, and are listed by a NRTL.

SUBARTICLE 996-4.2.5 is deleted and the following substituted:

996-4.2.5 Mechanical Specifications: The equipment shall be permanently marked with manufacturer name or trademark, part number, and date of manufacture or serial number.

All parts shall be made of corrosion-resistant materials, such as plastic, stainless steel, anodized aluminum, brass, or gold-plated metal.

SUBARTICLE 996-4.2.6 is deleted and the following substituted:

996-4.2.6 Environmental Specifications: The SPDs shall operate properly during and after being subjected to the temperature and humidity test described in NEMA TS 2-2021, Section 2.2.7, and the vibration and shock tests described in NEMA TS 2-2021, Sections 2.2.8 and 2.2.9.

SUBARTICLE 996-5.1 is deleted and the following substituted:

996-5 Pull and Splice Boxes.

996-5.1 General: Pull and splice boxes shall be listed on the Department's Approved Product List (APL). Manufacturers seeking evaluation of their product shall submit an application in accordance with Section 6.

Manufacturers of concrete pull and splice boxes and covers seeking inclusion on the APL shall meet the requirements of Section 105 and this Section and be listed on the Department's Production Facility Listing.

The box bodies and covers shall be free of flaws such as cracks, sharp, broken, or uneven edges, and voids.

Ensure in-ground boxes have an open bottom design.

SUBARTICLE 996-5.3 is deleted and the following substituted:

996-5.3 Dimensions:

_____For signalized intersection and lighting applications, pull boxes with nominal cover dimensions of 13 inches wide by 24 inches long or larger and no less than 12 inches deep shall be provided. The inside opening area shall be a minimum of 240 square inches and no inside dimension shall be less than 12 inches.

For fiber optic cable applications, pull boxes with nominal cover dimensions of 24 inches wide by 36 inches long or larger and no less than 24 inches deep shall be provided.

Rectangular splice boxes with nominal cover dimensions of 30 inches wide by 60 inches long or larger and no less than 36 inches deep shall be provided. Round splice boxes with a nominal cover diameter of 36 inches or larger and no less than 36 inches deep shall be provided.

SUBARTICLE 996-6.1 is deleted and the following substituted:

996-6 Camera Lowering Device.

996-6.1 General: Camera lowering devices shall be listed on the Department's Approved Product List (APL). Manufacturers seeking evaluation of their product shall submit an application in accordance with Section 6.

The lowering device shall provide the electrical connection between the control cabinet and the equipment installed on the lowering device without reducing the function or effectiveness of the equipment. The lowering device system support arm shall be capable of withstanding service tension and shear up to 1 kip minimum.

The lowering device shall include a disconnect unit and power, data, and video cables (as applicable) for connecting equipment, a divided support arm, pole attachment provisions, a rotatable pole-top tenon, and a pole-top junction box.

All external components shall be made of corrosion-resistant materials that are powder-coated, galvanized, or otherwise protected from the environment. All finished castings shall have a smooth finish free from cracks, blow-holes, shrinks, and other flaws. All roller fairlead frames shall be corrosion resistant stainless steel or aluminum. All pulleys used in the lowering device and portable lowering tool shall have sealed, self-lubricated or oil-tight bearings, or sintered bronze bushings.

A minimum of 100 feet of composite power and signal cable prewired to the lowering device at the factory shall be provided. Splices will not be allowed.

Lowering devices shall be designed to withstand the design wind speeds defined in the Department's Structures Manual.

SUBARTICLE 996-6.2 is deleted and the following substituted:

996-6.2 Equipment Connection Box: A 1-1/2 inch National Pipe Thread (NPT) pipe connection point <u>and pipe</u> for attaching a camera shall be included. <u>The pipe between the connection box and camera shall be aluminum.</u> The equipment connection box shall have an ingress protection rating of no less than IP55.

SUBARTICLE 996-7.2.7 is deleted and the following substituted:

996-7.2.7 Environmental: UPS assemblies, including batteries, shall provide continuous power with specified wattage and operate properly during and after being subjected to the environmental testing procedures described in NEMA TS_2-_2021, Sections 2.2.7, 2.2.8, and 2.2.9.

SUBARTICLE 996-7.3.5 is deleted and the following substituted:

996-7.3.5 Environmental: The RPMU shall operate properly during and after being subjected to the environmental testing procedures described in NEMA TS_2-2021, Sections 2.2.7, 2.2.8, and 2.2.9.