March 8, 2021

Khoa Nguyen
Director, Office of Technical Services
Federal Highway Administration
3500 Financial Plaza, Suite 400
Tallahassee, Florida 32312

Re: State Specifications Office
Section: **346**
Proposed Specification: **REVISED 3460304 STRUCTURAL PORTLAND CEMENT CONCRETE.**

Dear Mr. Nguyen:

We are submitting, for your approval, two copies of the above referenced Supplemental Specification.

The changes are proposed by Jose Armenteros from the State Materials Office to clarify language in Table 346-4, add colored concrete, modify maximum allowable transit time, and simplify language in the Standard Specification.

Please review and transmit your comments, if any, within two weeks. Comments should be sent via email to daniel.strickland@dot.state.fl.us.

If you have any questions relating to this specification change, please call me at 414-4130.

Sincerely,

Signature on file

Daniel Strickland, P.E.
State Specifications Engineer

DS/dh
Attachment
cc: Florida Transportation Builders' Assoc.
State Construction Engineer
STRUCTURAL PORTLAND CEMENT CONCRETE

(REV 10-2612-3-203-8-21)

SUBARTICLE 346-3.4.1 is deleted and the following substituted:

346-3.4 Durability for Concrete Construction:

346-3.4.1 Minimum Cementitious Materials Content: Ensure that the produced concrete meets the minimum amount of cementitious materials content in Table 346-4.

<table>
<thead>
<tr>
<th>Concrete Application Class</th>
<th>Environmental Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extremely Aggressive</td>
</tr>
<tr>
<td>I, I (Pavement), II, and III (Seal)</td>
<td>470</td>
</tr>
<tr>
<td>II (Bridge Deck), III, IV, IV (Drilled Shaft), V, V(Special), VI and VII Reinforced Concrete (\dagger)</td>
<td>600 550 510</td>
</tr>
<tr>
<td>Non-reinforced Concrete</td>
<td>470</td>
</tr>
</tbody>
</table>

Notes:

\(\dagger\) The Engineer may allow a lower total amount of cementitious materials content in concrete Class I, Class I (Pavement), Class II and Class III.

SUBARTICLE 346-6.4 is deleted and the following substituted:

346-6.4 Plastic Property Tolerances: Reject concrete with slump or air content that does not fall within the specified tolerances, **except as noted below**, and immediately notify the concrete production facility that an adjustment of the concrete mixture is required. If a load does not fall within the tolerances, test each subsequent load and the first adjusted load. If failing concrete is not rejected or adjustments are not implemented, the Engineer may reject the concrete and terminate further production until the corrections are implemented.

Do not allow concrete to remain in a transporting vehicle to reduce slump. Water may be added only upon arrival of the concrete to the jobsite and not thereafter.

At the Contractor’s risk, water may be added at the placement site immediately after completion of the initial slump test, either to correct a low slump or to increase the concrete workability, provided the addition of water does not exceed the water to cementitious materials ratio as defined by the mix design.

After adding water, perform an additional slump test to confirm the concrete is within the slump tolerance range. If the slump is outside the tolerance range, reject the load. If an adjustment is made at the concrete production facility, perform a slump test on the next load to ensure the concrete is within the slump tolerance range. Do not place concrete represented by slump test results outside of the tolerance range. Include water missing from the water storage tanks upon arrival at the project site in the jobsite water added.
Do not allow concrete to remain in a transporting vehicle to reduce slump.

SUBARTICLE 346-7.2 is deleted and the following substituted:

346-7.2 Transit Truck Mixing: Produce a completely uniform mixed concrete in a truck mixer for 70 to 100 revolutions at the mixing speed designated by the truck manufacturer.

Prior to starting the discharge of the concrete at the jobsite, when water is added, record the added quantity, and mix the concrete 30 additional drum mixing revolutions. Do not make more than two mix adjustments. Seek approval from the Engineer prior to using a central mixer and depositing the batch into a truck mixer.

346-7.2.1 Transit Time: Ensure compliance with Table 346-8 between the initial introduction of water into the mix and completely discharging all the concrete from the truck.

Reject concrete exceeding the maximum transit time. For critical placements, with the Engineer may approve an extension of the transit time which will be identified on the approval.

Table 346-8

<table>
<thead>
<tr>
<th>Maximum Allowable Transit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Agitator Trucks</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>45 minutes</td>
</tr>
<tr>
<td>75 minutes (1)</td>
</tr>
</tbody>
</table>

Note:
(1) When a water-reducing and retarding admixture (Type D, Type G, or Type II) is used.

346-7.2.2 Placement Time: All the concrete in a load must be in its final placement position a maximum of 15 minutes after the transit time has expired unless a time extension is approved by the Engineer.

For Class IV (Drilled Shaft) mixes, placement time may be extended provided the slump loss time of the first concrete placed is not exceeded throughout the elapsed time.

The Engineer may perform Independent Verification (IV) testing to verify the plastic and hardened properties of the concrete when a time extension is granted.

SUBARTICLE 346-7.6 is deleted and the following substituted:

346-7.6 Adding Water to Concrete at the Placement Site: Water may be added at the placement site provided the addition of water does not exceed the water to cementitious materials ratio as defined by the mix design. After adding water, perform a slump test to confirm the concrete is within the slump tolerance range. If the slump is outside the tolerance range, reject the load. If an adjustment is made at the concrete production facility, perform a slump test on the next load to ensure the concrete is within the slump tolerance range. Do not place concrete represented by slump test results outside of the tolerance range. Include water missing from the water storage tanks upon arrival at the project site in the jobsite water added.

Sample Location: Obtain acceptance samples from the point of final placement.
Where concrete buckets are used to discharge concrete directly to the point of final placement or into the hopper of a tremie pipe, samples will be obtained from the discharge of the bucket. When the concrete is discharged directly from the mixer into the bucket and the bucket is discharged within 20 minutes, samples may be obtained from the discharge of the mixer.

Where conveyor belts, troughs, pumps, or chutes are used to transport concrete directly to the point of final placement or into the hopper of a tremie pipe, samples will be obtained from the discharge end of the entire conveyor belt, trough, pump, or chute system.

Where concrete is placed in a drilled shaft or other element using a tremie pipe and a concrete pump, samples will be obtained from the discharge of the pump line at the location of the tremie hopper.

For all other placement methods, prior to each placement, obtain Department approval for sampling at the discharge of the mixer in lieu of sampling at the point of final placement. Submit the sampling correlation procedure to the Engineer for approval prior to the placement of the concrete. Once the comparative sampling correlation is approved by the Engineer, apply this correlation to the plastic properties tolerances for samples obtained from the discharge of mixer.

Where a concrete pump is used to deposit concrete directly into a drilled shaft which is a wet excavation without the use of a tremie, or other applications as approved by the Engineer, ensure the discharge end of the pump line remains immersed in the concrete at all times after starting concrete placement.

SUBARTICLE 346-7-7 is deleted.
SUBARTICLE 346-3.4.1 is deleted and the following substituted:

346-3.4 Durability for Concrete Construction:

346-3.4.1 Minimum Cementitious Materials Content: Ensure that the produced concrete meets the minimum amount of cementitious materials content in Table 346-4.

<table>
<thead>
<tr>
<th>Concrete Class</th>
<th>Environmental Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extremely Aggressive</td>
</tr>
<tr>
<td>I, I (Pavement), II, and III (Seal)</td>
<td></td>
</tr>
<tr>
<td>II (Bridge Deck), III, IV, IV (Drilled Shaft), V, V(Special), VI and VII</td>
<td>600</td>
</tr>
</tbody>
</table>

SUBARTICLE 346-6.4 is deleted and the following substituted:

346-6.4 Plastic Property Tolerances: Reject concrete with slump or air content that does not fall within the specified tolerances, except as noted below, and immediately notify the concrete production facility that an adjustment of the concrete mixture is required. If a load does not fall within the tolerances, test each subsequent load and the first adjusted load. If failing concrete is not rejected or adjustments are not implemented, the Engineer may reject the concrete and terminate further production until the corrections are implemented.

At the Contractor’s risk, water may be added at the placement site immediately after completion of the initial slump test, either to correct a low slump or to increase the concrete workability, provided the addition of water does not exceed the water to cementitious materials ratio as defined by the mix design.

After adding water, perform an additional slump test to confirm the concrete is within the slump tolerance range. If the slump is outside the tolerance range, reject the load. If an adjustment is made at the concrete production facility, perform a slump test on the next load to ensure the concrete is within the slump tolerance range. Do not place concrete represented by slump test results outside of the tolerance range. Include water missing from the water storage tanks upon arrival at the project site in the jobsite water added.

Do not allow concrete to remain in a transporting vehicle to reduce slump.

SUBARTICLE 346-7.2 is deleted and the following substituted:

346-7.2 Transit Truck Mixing: Produce a completely uniform mixed concrete in a truck mixer for 70 to 100 revolutions at the mixing speed designated by the truck manufacturer.
Prior to starting the discharge of the concrete at the jobsite, when water is added, record the added quantity, and mix the concrete 30 additional drum mixing revolutions. Do not make more than two mix adjustments. Seek approval from the Engineer prior to using a central mixer and depositing the batch into a truck mixer.

346-7.2.1 Transit Time: Ensure compliance with Table 346-8 between the initial introduction of water into the mix and completely discharging all the concrete from the truck. Reject concrete exceeding the maximum transit time. The Engineer may approve an extension of the transit time which will be identified on the approved mix design.

<table>
<thead>
<tr>
<th>Maximum Allowable Transit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Agitator Trucks</td>
</tr>
<tr>
<td>45 minutes</td>
</tr>
<tr>
<td>75 minutes (^{(1)})</td>
</tr>
</tbody>
</table>

Note: (1) When a water-reducing and retarding admixture (Type D, Type G, or Type II) is used.

346-7.2.2 Placement Time: All the concrete in a load must be in its final placement position a maximum of 15 minutes after the transit time has expired unless a time extension is approved by the Engineer.

For Class IV (Drilled Shaft) mixes, placement time may be extended provided the slump loss time of the first concrete placed is not exceeded throughout the elapsed time.

The Engineer may perform Independent Verification (IV) testing to verify the plastic and hardened properties of the concrete when a time extension is granted.

SUBARTICLE 346-7.6 is deleted and the following substituted:

346-7.6 Sample Location: Obtain acceptance samples from the point of final placement. Where concrete buckets are used to discharge concrete directly to the point of final placement or into the hopper of a tremie pipe, samples will be obtained from the discharge of the bucket. When the concrete is discharged directly from the mixer into the bucket and the bucket is discharged within 20 minutes, samples may be obtained from the discharge of the mixer.

Where conveyor belts, troughs, pumps, or chutes are used to transport concrete directly to the point of final placement or into the hopper of a tremie pipe, samples will be obtained from the discharge end of the entire conveyor belt, trough, pump, or chute system.

Where concrete is placed in a drilled shaft or other element using a tremie pipe and a concrete pump, samples will be obtained from the discharge of the pump line at the location of the tremie hopper.

For all other placement methods, prior to each placement, obtain Department approval for sampling at the discharge of the mixer in lieu of sampling at the point of final placement. Submit the sampling correlation procedure to the Engineer for approval prior to the placement of the concrete. Once the comparative sampling correlation is approved by the
Engineer, apply this correlation to the plastic properties tolerances for samples obtained from the discharge of mixer.

Where a concrete pump is used to deposit concrete directly into a drilled shaft which is a wet excavation without the use of a tremie, or other applications as approved by the Engineer, ensure the discharge end of the pump line remains immersed in the concrete at all times after starting concrete placement.

SUBARTICLE 346-7-7 is deleted.