Comments: (7-15-19, Internal)
I understand the rationale behind this; however I’m not in favor, as there could be a billet of bars that arrive onsite that are purposed for more than sheet pile bulkheads which are part of the same LOT. Suggest deleting.

Response:

**
Antonio Nanni
305-903-0889
nanni@miami.edu
Comments: (7-19-19)
1. The use of polyester should be categorically excluded. It is proven that they do not provide the necessary durability

Response:

2. Tensile Modulus requirement for BFRP is NOT specified in Tables 3-2, 3-3, 3-4

Response:

**
Pete Renshaw
+64-6-867-8582
pete@pultron.com
Comments: (7-21-19)
In the addition of BFRP, the tensile modulus appears to have been overlooked. Tables 3-3 & 3-4 list tensile modulus for GFRP and CFRP, but not for BFRP. Suggest making the modulus for BFRP identical to that of GFRP as both fibre types are very similar in their modulus characteristics, so the modulus of the resultant composite should be very similar.
Doug Gremel
402-641-7667
douglas.gremel@owenscorning.com

Comments: (8-29-19)
The proposed revision of 9320300 includes the use of basalt FRP bars, however consensus standards such as AASHTO and ACI440 do not yet incorporate the use of basalt fiber. My understanding is that those consensus bodies are lacking peer review research on creep rupture reduction safety factors, performance in accelerated aging protocols that substantiate environmental reduction safety factors, crack width phi factors Kb and other aspects of performance that are less well researched than fibers that appear in those design guidelines. Also there is not an industry consensus ASTM material standard such as D7957 that includes basalt fiber. If basalt FRP bars are not part of AASHTO or ACI or ASTM guidance, how can the state implement them? What evidence on the safety factors does FDOT have that the consensus code writing bodies do not have? Would the state be willing to share any information it has justifying parity with fibers in those standards and participate in further refinement of the standards?

Response:

Jan Schultz
301-657-8000
janschultz@millerandlong.com

Comments: (date)
I represent Miller & Long Co., Inc., a contractor for cast-in-place concrete in the Washington DC metro area. My company has a keen interest in promoting the use of BFRP rebar in the construction industry. We are also strong proponents of rigorous product and design specifications. My comments regard FDOT’s draft 932-03 document released on July 18, 2019.

It appears BFRP rebar will be written into the code using the same specs as GFRP rebar. Our position is that BFRP is a better-performing material than GFRP, and that the performance level should be reflected in the specs. More specifically, we advocate raising BFRP’s tensile modulus to $\geq 7,500$ ksi (≥ 52 GPa). Tensile load should also be raised based on manufacturers’ results from your 2018 STIC study. For clarity, we recommend the following additions: Table 3-2: in the entry for Tensile Modulus, the Requirement reads “$\geq 6,500$ ksi for GFRP; $\geq 18,000$ ksi for CFRP” Add a line that reads “$\geq 7,500$ ksi for BFRP”. Table 3-3: in the entry “Tensile Modulus – Straight Portion,” same comment as above. Table 3-4: in the entry “Tensile Modulus”, same comment as above. Thank you for your consideration.

Response:

Mike Levine
980-2026852
We feel that BFRP rebar minimum spec should be set at 7.5 MSI for tensile modulus. Higher minimum will adequately represent basalt fiber inherent properties and will help the industry in general to adapt FRP products in general by giving civil engineers and specifiers greater choices to be able to find materials better suited for various application. It will also encourage more innovation and better quality for teh industry irrespective of the type of fiber being used.

Response:

Francisco De Caso
305-284-6150
fdecaso@miami.edu

Comments: (8-14-19)
1) 932-3.1 General second paragraph: Consider the follow changes: From: “Use only solid, round, thermoset basalt fiber reinforced polymer (BFRP), glass fiber reinforced polymer (GFRP) or carbon fiber reinforced polymer (CFRP) reinforcing bars. Bars shall be manufactured using pultrusion, variations of pultrusion, or other suitable processes noted in the producer’s Quality Control Plan, subject to the approval of the State Materials Office (SMO). For GFRP, use only bars manufactured using vinyl ester resin systems and glass fibers classified as E-CR that meet the requirements of ASTM D578.” To: “Use only solid, round, thermoset basalt fiber reinforced polymer (BFRP), glass fiber reinforced polymer (GFRP) or carbon fiber reinforced polymer (CFRP) reinforcing bars. Bars shall be manufactured using pultrusion, variations of pultrusion, or other suitable processes noted in the producer’s Quality Control Plan, subject to the approval of the State Materials Office (SMO). Bars shall be made with thermoset resin systems, excluding polyester. For GFRP, use only bars manufactured using vinyl ester resin systems and with glass fibers classified as E-CR that meet the requirements of ASTM D578.”

Rationale: The term ‘thermoset’ is too generic. Most polyester resins are thermoplastics, but polyester can be both a thermoplastic or thermoset, therefore recommend to include “excluding polyester. Moreover, experimental data as well as literature review previously provided to the SMO shows that epoxy based GFRP and BFRP systems meet durability. Additionally, the Carbon Strand/Rebar (CFCC) approved by SMO has an epoxy based system, thus vinyl ester and epoxy type resin systems should be included as long as the material specifications are met.

Response:

2) BFRP and GFRP tensile properties: Based on experimental data expanding the last decade on the tensile mechanical properties of GFRP and BFRP rebars, it appears that the minimum guaranteed tensile load and modulus do not reflect the current state of manufacturing. The recommendation is to increase at minimum 20% this minimum/guaranteed values to reflect the existing state practice and quality of manufacturing, as indicated below. This increases will also benefit the resulting structural design. Table 3-1: Minimum guaranteed tensile load – increase all values by 20% – Table 3-2, Table 3-3 and Table 3-4: Increase minimum modulus from 6,500 to 7,800 ksi (20% increase). Also include ‘BFRP’ in table cell. Furthermore, multiple manufactures for both BFRP and GFRP currently manufacture rebar that exceeds the new proposed minimum values. Lastly, the existing minimum/guaranteed material values are derived
from the first set of recommendation that were historically proposed in ACI440 based on data of rebar using fibers and resins that do not reflect todays state of practice

Response:

3) Degree of Cure: Based on testing for the degree of cure, it is noted that the degree of cure obtain directly from the rebar samples may be variable, and the response of the test per ASTM E2160 non-applicable. This is probably due to the relative high fiber content of the sample used in testing. Tests made from resin only made under the same conditions as the rebar maybe more applicable. To this end consider the following: ¬ Table 3-2: i) Total Enthalpy of Polymerization should state ‘neat resin’ (ie uncured, not mixed); and ii) Degree of cure should include ‘cured resin under same conditions as rebar’ ¬ Table 3-3: Include ‘ASTM 7028 (DMA)’ as a reference and corresponding requirement similar to Table 3-2. ¬ Table 3-4: removing the degree of cure test for project tests should be considered, given that the results may not be meaningful from a FRP system with a high fiber content like a rebar. If needed, this test can be included only when SMO office or FDOT Engineer requires it on a project by project basis based on test results.

Response:

4) 932-3.4.1 Sampling: Similar to bridge structural pads (Section 932-2.3.2) re-testing should be stated if one of the tests per Table 3-4 fails to meet the requirements. Consider adding in this paragraph: ¬ “Each test shall be replicated a minimum of three times per sample. Submit the test results to the Engineer for review and approval prior to installation. Re-testing an additional minimum of three times per sample per property may be conducted for confirmation in the event of failing a test requirement”

Response: