ORIGINATION FORM ## **Proposed Revisions to the Specifications** (Please provide all information - incomplete forms will be returned) | Date: | Office: | | | | |---|---------------------------------------|-------------|------------------|-----------------| | Originator: | Specification Section: | | | | | Telephone: | Article/Subarticle: | | | | | email: | | | | | | Will the proposed revision require changes to: | | | | | | Publication | Yes | No | Office | Staff Contacted | | Standard Plans Index | | | | | | Traffic Engineering Manual | | | | | | FDOT Design Manual | | | | | | Construction Project Administration Manual | | | | | | Basis of Estimate/Pay Items | | | | | | Structures Design Guidelines | | | | | | Approved Product List | | | | | | Materials Manual | | | | | | | l . | 1 | | | | Will this revision necessitate any of the following | ng: | | | | | Design Bulletin Construction Bulletin | Estimates Bulletin Materials Bulletin | | | | | Are all references to external publications current? | | Yes | No | | | If not, what references need to be updated? (Pl | lease inclu | ude changes | in the redline d | ocument.) | | | | | | | | Why does the existing language need to be cha | nged? | | | | | | | | | | | Summary of the changes: | | | | | | | | | | | | | | | | | | Are these changes applicable to all Department If not, what are the restrictions? | t jobs? | Yes | No | | RON DESANTIS GOVERNOR 605 Suwannee Street Tallahassee, FL 32399-0450 KEVIN J. THIBAULT SECRETARY ## MEMORANDUM **DATE:** June 6, 2019 **TO:** Specification Review Distribution List **FROM:** Stefanie D. Maxwell, Manager, Program Management Office SUBJECT: Proposed Specification: 6500202 Vehicular Traffic Signal Assemblies. In accordance with Specification Development Procedures, we are sending you a copy of a proposed specification change. This change was proposed by Jeff Morgan of the State Traffic Engineering Research Lab (TERL) to modify the language. Please share this proposal with others within your responsibility. Review comments are due within four weeks and should be sent to Mail Station 75 or online at http://www2.dot.state.fl.us/ProgramManagement/Development/IndustryReview.aspx. Comments received after July 4, 2019, may not be considered. Your input is encouraged. SM/dt Attachment ## VEHICULAR TRAFFIC SIGNAL ASSEMBLIES. (REV 5-16-19) SUBARTICLE 650-2.2 is deleted and the following substituted: **650-2.2 Twelve Inch Signal Head Assemblies:** Construct the assembly of materials and alloys specified in the ITE Standard for Vehicle Traffic Control Signal Heads. Construct signal housings to allow adjustment in multiple directions for proper signal alignment. If a serrated connection is used for positioning and alignment of the signal, the top and bottom opening of each signal head section must include a circular 72-tooth serrated connection (2 inch nominal I.D.) capable of providing positive positioning and alignment in 5 degree increments. When assembled and tightened, these connections must prevent rotation or misalignment of the signal head as well as misalignment between sections. The connection that mates to the disconnect hanger or other upper signal hanging component must incorporate a secondary fail-safe design that would prevent the signal from turning upon failure/slippage of the connection. The serrated area must start at the outside of the 2 inch hole and be at least 1/8 inch wide. The teeth must have a minimum depth of 3/64 inch between peaks and valleys, be free from burrs or other imperfections, and provide positive locking with the grooves of mating sections, framework, and brackets. The serration on the top circular connection of a signal section must have a valley at the 0 degree position and the serration on the bottom circular connection must have a peak at the 0 degree position, both aligned perpendicular to the front of the section. Connections must permit the assembly of a multi-section signal with the front of each section aligned within 1 degree. Provide at least two latching points with latch pads and manual Type 316 or 304 stainless steel latching devices that are tamper resistant. If backplates are mechanically attached, each signal section must have four backplate mounting attachment points on the back of the signal, on or no more than three inches from each section corner. Attachment points must be capable of accepting No. 10-16x3/8 inch or No. 10-24x3/8 inch Type 316 or 304 stainless steel screws for attaching backplates. Tri-stud washers, when utilized to secure signal sections, must have a minimum thickness of 0.090 inches. For five-section cluster assemblies, tri-stud washers used to attach the top signal section to the multi-signal bracket and the multi-signal bracket to the bottom four signal sections must have a minimum thickness of 3/8 inches. When fastened together, washer distortion is not allowed. Design each signal section to prevent the accumulation of standing water within the assembly. All sections comprising a single multi-section assembly must be securely fastened together to form a rigid and weather-proof unit. 650-2.2.1 Doors: Construct each signal section with at least two hinges for mounting a door. Hinge pins must be captive. Doors must remain captive and secure at all times and be capable of either left or right swing. The door latch must hold the door tightly closed. The door must include slotted pads that allow the door to be opened and closed by engaging or disengaging the latching device. The outside face of the door must include four holes equally spaced around the circumference of the lens opening for the attachment of a visor. The lens opening in the door must have a diameter of 11 to 11-1/2 inches. **650-2.2.2 Visors:** The rear of the visor must have four tabs, notches, or holes for securing the visor to the signal housing door. The visor mounting method must permit the visor to be rotated and secured at 90 degrees for horizontal signal head installations. All visors must have a minimum length of 9-1/2 inches, and a minimum downward tilt of 3.5 degrees measured from the center of the lens. Tunnel visors must encircle and shield the lens from 300 degrees, plus or minus 10 degrees. Louvers may only be used in combination with full circle visors. Light must not escape between the visor and the door. **650-2.2.3 Gaskets:** Gaskets must be constructed of weather-resistant material and be glued or sealed where they meet to provide one continuous length of gasket capable of providing a weatherproof seal for the signal assembly. Provide seals between the housing and door, between the lens and the door, and between any other mating surfaces where dust and moisture could enter. Gasket material must meet NEMA 250 and be constructed of temperature stabilized material that prevents any residue from collecting on the internal surfaces of the signal head. **650-2.2.4 Terminal Blocks:** Provide at least one five-connection terminal block in all three or more section signal head assemblies and at least three five-connection terminal blocks in all five section signal head assemblies. Terminal block connections in the signal assembly must not require any tools other than a screwdriver. Mount terminal blocks to the signal housing with Type 316 or 304 passivated stainless steel hardware. Use only non-corrosive wire attachment screws approved by the Department. **650-2.2.5 Color and Finish**: The housing, doors, visors and backplates must be powder coated dull black (Federal Standard 595-37038) with a reflectance value not exceeding 25 percent as measured by ASTM E1347. For plastic heads, the black color must be incorporated into the plastic material before molding. The finish on interior and exterior surfaces of aluminum signal head assemblies, visors, doors, and housing, must be painted in accordance with Military Standard MIL-PRF-24712A or American Architectural Manufacturers Association-2603-02 and must meet the requirements of ASTM D3359, ASTM D3363, and ASTM D522. Surface erosion, flaking, or oxidation must not occur within the normal life expectancy under typical installation conditions. **650-2.2.6 Plastic Signal Housings and Visors:** Construct signal housing assembly, door, and visors of UV stabilized plastic with a minimum thickness of 0.1 inches, plus or minus, 0.01 inches, with the following physical properties: - 1. Specific Gravity: 1.17 minimum, as per ASTM D792 - 2. Vicat Softening Temperature: 305-325 F (152-163 C), as per **ASTM D1525** 3. Brittleness Temperature: Below -200 F (-129 C), as per ASTM D746 - 4. Flammability: Self-extinguishing, as per ASTM D635 - 5. Tensile Strength, yield: 8500 PSI (58 MPa) minimum, as per ASTM D638 - 6. Elongation at yield: 5.5-8.5 %, as per ASTM D638 - 7. Shear, strength, yield: 5500 PSI (38 Mpa) minimum, as per ASTM D732 8. Izod impact strength, [notched, 1/8 inch]: 15 ft-lb/in (800 j/m) minimum, as per ASTM D256 9. Fatigue strength at 2.5 mm cycles: 950 PSI (6.5 MPa) minimum, as per ASTM D671 **650-2.2.7 Backplates:** Backplates may be constructed of either aluminum or plastic. Minimum thickness for aluminum backplates is 0.060 inch and the minimum thickness for plastic backplates is 0.120 inch. The required width of the top, bottom, and sides of backplates must measure between five to six inches. Color of backplates must be black in accordance with 650-2.2.5. Backplate thickness measurement must not include the retroreflective sheeting thickness. If backplates are mechanically attached, provide a minimum of four corner mounting attachment points per signal section (for example, a three-section signal assembly would have 12 mounting points). Attachment points must not interfere with the operation of traffic signal section doors. Backplate outside corners must be rounded and all edges must be deburred. If louvers are provided, louver orientation must be vertical on sides and horizontal on top and bottom of the backplate and must be at least 1/2 inch from the inner and outer edge of the backplate panel. Universal backplates must fit all traffic signals listed on the APL. Mount the backplate securely to the signal assembly with Type 316 or 304 passivated stainless steel installation hardware. Backplates, if mechanically attached, must be marked in accordance with 650-2.1, on the long sides of the backplate. Backplates must include retroreflective borders using Type IV yellow retroreflective sheeting listed on the APL. Place a 2 inch border on the entire outer perimeter of the backplate panel, no closer than 1/2 inch from any louvers. 650-2.2.8 Light-Emitting Diode Optical Unit: The LED optical unit must conform to the requirements of ITE's Performance latest LED Purchase Specification, "Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Circular Signal Supplement, dated June 27, 2005" or Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement, dated July 1, 2007, with the following exceptions. **650-2.2.8.1 Physical and Mechanical Requirements:** Retrofit LED signal modules must be compatible with all traffic signal housings listed on the APL. The rear of the LED signal module must be marked in accordance with 650-2.1. 650-2.2.8.2 LED Signal Module Lens: The lens must be tinted with an appropriate color (red, amber, or green) to reduce sun phantom affect and enhance on/off contrast. The tinting must be uniform across the face of the lens and be free from streaks, wrinkles, chips, bubbles, or other imperfections. If a polymer lens is used, a surface coating must be incorporated to provide abrasion resistance. 650-2.2.8.3 Minimum Maintained Luminous Intensity Values: Red and green modules must meet the current requirements of ITE's Performance Specification, Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Circular Signal Supplement, dated June 27, 2005, with the exception that y. Yellow modules must be 1.7 times brighter than the ITE specification. Arrow modules must meet the requirements of ITE's Performance Specification, Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement, dated July 1, 2007. **650-2.2.9 Electrical:** Electrical conductors for LED signal modules must be a minimum of 36 inches in length. Each lead from the LED module must be terminated with insulated slide-on terminals. The conductors must be color coded to identify the color of the module as follows: 1. White must identify the neutral lead. - 2. Red circular signals must be identified with a red lead, yellow circular signals with a yellow lead, and green circular signals with a green lead. - 3. Red arrows must be identified with a red and black tracer lead, yellow arrows with a yellow and black tracer lead, and green arrows with a green and black tracer lead. SUBARTICLES 650-3.12 and 650-3.13 are deleted and the following substituted: - **650-3.12 Emergency Signal Heads:** For new emergency fire stations signals, install 12 inch signal heads for all three indications. For existing 8 inch emergency fire station signals, retrofit with 8 inch LED modules. The 8 inch LED optical unit must conform to the requirements of the ITE's Performance Specification, Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Circular Signal Supplement, dated June 27, 2005. - 650-3.13 Transit Signal Heads: For transit signal priority at signalized intersections with bus queue jumper lanes, install 12 inch two-lens signal head assembly per the MUTCD, Figure 8C-3. The 12 inch LED optical unit indications must comply with the MUTCD, Section 8C.11 and as illustrated in Figure 8C-3. The 12 inch LED optical unit must conform to the requirements of the ITE's Performance Specification, Vehicle Traffic Control Signal Heads-Light Emitting Diode (LED) Circular Signal Supplement, dated June 27, 2005 regarding environmental requirements, transient protection, operating voltage range, and electronic noise. The indication (bar symbol) must measure 1-1/2 inches wide by 9 inches long. The indication must be capable of being displayed in any angle of orientation from horizontal to vertical.