

RON DESANTIS GOVERNOR 605 Suwannee Street Tallahassee, FL 32399-0450 KEVIN J. THIBAULT, P.E. SECRETARY

August 20, 2019

Khoa Nguyen Director, Office of Technical Services Federal Highway Administration 3500 Financial Plaza, Suite 400 Tallahassee, Florida 32312

Re: State Specifications Office

Section: 353

Proposed Specification: 3530000 Concrete Pavement Slab Replacement.

Dear Mr. Nguyen:

We are submitting, for your approval, two copies of the above referenced Supplemental Specification.

The changes are proposed by Dale DeFord of the State Materials Office (SMO) to provide the option to use either maturity method or cylinders for open to traffic strength and to expand the tolerance for density from 2 to 3 pounds per cubic foot.

Please review and transmit your comments, if any, within two weeks. Comments should be sent via email to stefanie.maxwell@dot.state.fl.us.

If you have any questions relating to this specification change, please call me at 414-4140.

Sincerely,

Signature on file

Daniel Strickland, P.E. Manager, Program Management Office

DS/dt

Attachment

cc: Florida Transportation Builders' Assoc.

State Construction Engineer

CONCRETE PAVEMENT SLAB REPLACEMENT.

(REV 6-18-198-20-19)

SECTION 353 is deleted and the following substituted:

SECTION 353 CONCRETE PAVEMENT SLAB REPLACEMENT

353-1 Description.

Replace the existing defective area of concrete pavement with portland cement concrete free of any uncontrolled cracks. Repair the damaged area of adjacent slabs, caused by slab removal at no cost to the Department. When using the maturity method, Submit a strength-maturity relationship curve as determined by FM 3-C1074 for opening to traffic during design mix verification.

353-2 Materials.

Meet the following requirements:

Portland Cement Concrete*	Section 346		
Curing Materials	Section 925		
Epoxy Compounds	Section 926		
Dowel Bar Assembly**	Section 931		
Post-Installed Anchor Systems for Structural			
Applications in Concrete Elements	Section 937		
Dowel Bar Assembly	Section 931		
Calcium Chloride			
Accelerating AdmixturesASTM C494, Type C and E			
*For concrete pavement slab replacement, the use of pozzolans and slag is			

optional.

**Concrete pavement containing only dowel bars will be considered non-

353-3 Composition of Concrete.

reinforced concrete.

353-3.1 Mixture Proportions: Designate the actual proportions to be used to produce a concrete with a minimum 28 day compressive strength of 3,000 psi.

Prior to producing concrete, submit the design mix for approval on a form acceptable to the Department. Ensure that the design mix proportions Provide a mix design that will produce a concrete with a minimum compressive strength of 1,600 psi, designated for opening to traffic, at the time period specified in the Contract Documents. Perform the plastic property tests in accordance with Section 346, except when the mix design contains an accelerator, perform the plastic property tests prior to the addition of the accelerator. Use mixes approved by the Department and obtain concrete from a plant that is currently on the Department's Production Facility listing. Producers seeking inclusion on the list shall meet the requirements of Section 105.

Make necessary adjustment to the concrete mix-water to account for the amount of water in the accelerating admixture solution.

353-3.2 Delivery Certification: Submit a delivery ticket in accordance with Section 346.

353-3.3 Demonstration Slab: Prior to batching production concrete, demonstrate the ability to furnish replacement slabs by constructing a demonstration slab. Demonstrate production techniques for slab removal, dowel installation, concrete placement, finishing, slab curing, sample preparation and curing, and proper timing of joint sawing. Demonstrate the ability to achieve the required compressive strengths. Use and dDemonstrate proficiency to the Engineer of the maturity methodability to determine when the concrete has achieved a compressive strength of 1,600 psi in order to open the pavement to traffie by testing concrete cylinders or by using the maturity-strength curve. Use cylinders to verify the concrete compressive strength at 28 days. Schedule construction of the demonstration slab during the same time period specified in the Contract Documents. If the Engineer determines that elements of the demonstration slab fail to meet requirements of the Contract Documents, propose adjustments to the construction processes and/or materials for the Engineer's approval.

The demonstration slab may be used in the final work with the approval of the Engineer. No slab replacements will be constructed until the demonstration slab is approved. The Engineer may require additional demonstration slabs until a demonstration slab conforms to the Contract Documents.

353-4 Batching and Mixing Concrete.

Obtain concrete that meets the requirements of Section 346 with the following additional requirements:

Add all the concrete ingredients, excluding the accelerator to the truck mixer at the plant.

Add the accelerator to the load at the job site and record the amount on the delivery ticket. Mix the concrete for 30 additional revolutions at mixing speed after the accelerator is added to the mixer. Do not add accelerator to any concrete which has attained the age of 60 minutes, measured from the beginning of the initial mixing at the plant.

Incorporate the accelerator into the concrete design mix in accordance with the recommendations of the admixture manufacturer. Do not exceed the <u>manufacturer's written</u> recommendations of the manufacturer's technical data sheet for the dosage rate of the accelerating admixture.

353-5 Test Requirements.

353-5.1 General: Perform concrete sampling and testing in accordance with Section 346. Unit weightwith the addition of Density measurement testing is required. Perform the plastic property tests after all ingredients have been added to the load, except when the mix design contains an accelerator; perform the plastic property tests prior to the addition of the accelerator. Concrete strength determination can be done using test cylinders or by using the maturity method. If test cylinders are used, prepare after the addition of accelerator.

353-5.2 Field Delivered Mix Consistency: Test the concrete for consistency subject to the following tolerances—from the approved mix design values:

Slump Toleranceplus or minus 1.5 inches

Unit Weightplus or minus 2.0 pounds

Temperaturenot to exceed 100°F

*For values as specified in the approved design mix prior to the addition of accelerating mixture.

Table 353-1

Slump and Density Tolerances Prior to Accelerator Addition

Slump Tolerance	± 1.5 inches
Density Tolerance	$\pm 3.0 \text{ lb/ft}^{3}$

Reject concrete with a slump or unit weight content that does not fall within the specified tolerances and immediately notify the concrete production facility that an adjustment of the concrete mixture is required. If a load does not fall within the tolerances, test each subsequent load and the first adjusted load. If concrete not within the specified tolerances is not rejected or adjustments are not implemented, the Engineer may reject the concrete and terminate further production until corrections are implemented.

353-5.3 Verification of Maturity Curve Data: <u>Develop Aa</u> new maturity curve will be required should<u>if</u> any of the plastic properties or the <u>unit weight measuredensity</u> results exceed the tolerances specified in Table 353-1, for the initial sampling.

Table 1				
Property	Tolera	nce	Test Method	
Slump	± 1.0 in.		ASTM C143	
Unit Weight	± 2.0 lbs.		ASTM C138	
<u>Table 353-1</u>				
Slump and Density Tolerances Prior to Accelerator Addition				
Slump Tolerance	± 1.5 inches		± 1.5 inches	
Density Tolerance		$\pm 3.0 \text{ lb/ft}^3$		

Use <u>either</u> the maturity method <u>specified</u> in <u>this Section FM 3-C1074</u> or <u>concrete</u> <u>cylinder testing</u> to determine if the concrete has achieved 1,600 psi and can be opened to traffic. Use the maturity value <u>or concrete cylinder test results</u> to verify the strength of the last slab of each day's placement. Additional maturity meters <u>or concrete cylinder testing</u> may be used to open other locations to traffic prior to the last slab of each day, as needed, provided each location has achieved the minimum strength.

353-5.4 Cylinder Fabrication and Testing: The requirements of Section 346 apply to this Section.

If cylinders will be used for opening to traffic strength determination, Ffabricate three test cylinders for opening to traffic strength and maturity curve correlation testing. Fabricate the compressive strength cylinders three cylinders for 28 day strength after all ingredient materials, including the accelerator, are added. If the maturity method will be used for opening to traffic strength, fabricate three test cylinders for maturity curve correlation testing and three for 28 day strength.

The compressive strength cylinders and maturity curve correlation testing will be performed for the firstat the beginning of each production day, when the mix design is changed to another mix design, at the discretion of the Engineer for each remaining placement week, when a new maturity curve is required, or until terminated by the Engineer.

353-6 Concrete Slab Acceptance and Testing.

Reject any Concrete not meeting the plastic property requirements of this Section 346. Acceptance will be based on achieving a 1,600 psi compressive strength prior to opening the slab to traffic based on the maturity method, and a 28 day compressive strength of 3,000 psi.

Determine opening- to- traffic strength using the maturity method or concrete cylinder testing, and determine 28 day strength using concrete cylinder testing.

Meet the requirements of 346-8 and 346-9. Perform Quality Control (QC) tests for temperature, slump, and unit weightdensity, and prepare compressive strength cylinders once per LOT. A LOT is defined as one day's production, Section 346-9.2 does not apply.

The Engineer will evaluate the particular circumstances in each instance where a strength deficiency occurs. Strength deficiencies will be addressed in accordance with Section 346.

For each Lost quality control (QC) cylinders that is lost, missing, damaged or destroyed, payment for that LOT will be reduced by \$750.00 per 1,000 psi of the specified design strength [Example: loss of two QC cylinders that have no verification data will require the element to be cored and a payment reductions will be assessed (3,000 psi / 1,000 psi) x \$750 x 2 = \$4,500]. This reduction will be in addition to any pay adjustment for low strength concrete will be addressed in accordance with Section- 346.

Controlled cracks are cracks designed to occur at specific locations based on the pavement design. All other cracks in the pavement are uncontrolled cracks. Repair uncontrolled cracked slabs, which occur during the life of the contract, by removing and replacing the pavement across the full width of all affected lanes or shoulders and to the nearest transverse joint in each direction. Investigate and implement immediate effective solutions to eliminate further cracks, in consultation with, and subject to the approval of, the Engineer.

353-7 Placing, Striking Off, Consolidating and Finishing Concrete.

The requirements of Section 350 are applicable to this Section.

Perform straight-edging while the concrete is still in plastic state after floating is completed and the excess water removed. Furnish and operate a 10 foot straightedge meeting the requirements of Section 350. Hold the straightedge in successive positions parallel to the road centerline, in contact with the surface, testing until the replacement slab is straight edged from one side to the other. Advance along the road in successive stages of not more than one-half the length of the straightedge. Fill any depressions immediately with freshly mixed concrete, consolidate, strike-off, and refinish. Cut down and refinish any high areas. Continue straightedge testing and surface correction until the entire surface conforms to the required grade and cross section. Ensure that transverse slope deviations of the finished pavement do not exceed 1/8 inch with the straightedge laid in a direction perpendicular to the centerline. When portland cement concrete pavement abuts bridge approaches or pavement not under this Contract, ensure that the longitudinal slope deviations of the finished pavement do not exceed 1/8 inch in 10 foot length. Produce a uniform, gritty textured final finish longitudinally along the pavement by dragging a broom or seamless strip of damp burlap, having at least 3 feet in contact with the pavement.

If the Engineer identifies a surface irregularity determined to be objectionable, straightedge with a 10 foot long straightedge and address all deficiencies in excess of 1/8 inch by grinding in accordance Section 352.

When required in the Contract Documents, produce a pavement surface that is true to grade and uniform in appearance with a longitudinal line type texture by grinding in accordance with Section 352.

353-8 Curing.

Cure the slab as specified in Section 350, except for time and temperature restrictions. Use a Type I (with dye) or Type ID (clear with dye) curing compound and apply within 1/2 hour after completing the finishing operations. After the curing compound has been applied, cover the

surface and exposed edges with two layers of white burlap-polyethylene curing blanket conforming to Section 925 or insulating blankets approved by the Engineer. Continue curing the slab until the concrete achieves the required 1,600 psi compressive strength indicated by the maturity value.

353-9 Joints.

353-9.1 General: Construct transverse joints as specified in Section 350 and as shown in the Standard Plans, except that dowels bars are installed per this Section. Tie bars will not be placed along the longitudinal joints unless shown in the Contract Documents. Apply a bond breaker to all vertical faces of the adjacent slabs. Submit the proposed bond breaker and manufacturer's technical data to the Engineer for approval.

Clean and seal joints in accordance with Section 350.

353-9.2 Dowel Bars: Provide dowel bars in accordance with the details shown in the Contract Documents.

353-9.2.1 Dowel Bars at Transverse Joint Between two Replacement Slabs: Follow the requirements of 350-12 when providing dowel bars at a transverse joint between two freshly placed replacement slabs.

353-9.2.2 Dowel Bars at Transverse Joints Between Existing and Replacement Slabs: Follow the requirements of Section 350, except drill holes and install dowel bars into the sawed face or end of the existing slab. Develop load transfer between existing and freshly placed replacement slab. The dowels shall be free to move inside the replacement slab and epoxy-bonded into the existing slab.

353-9.2.3 Dowel Bar Installation: Install dowel bars in accordance with Section 416 except as modified herein. Position each dowel such that its final deviation from parallel to the surface of the pavement and parallel to the longitudinal centerline of the pavement does not exceed 1/2 inch. Position each dowel such that its final deviation from centered on the joint does not exceed 2 inches. Position each dowel such that at no point in its length does it deviate from the surface of the pavement as shown in the Plans in excess of 1 inch. Confirm the position of dowel bars by means acceptable to the Engineer, which may include non-destructive testing methods.

Use epoxy compounds in accordance with Section 937. Dispense the epoxy from a cartridge or from metered equipment that indicates the amount of each component material being dispensed.

Inject epoxy into the hole after cleaning and prior to dowel insertion. Start injection at the back of the hole to force the epoxy to move forward during dowel insertion. Twist the dowel a minimum of one full turn during the insertion to ensure that the epoxy completely surrounds the dowel. The injection process and viscosity of the epoxy shall be adequate to ignsure that the space between the surface of the dowel and the inside of the hole is completely filled with epoxy.

Do not allow the epoxy to escape from the front of the hole after inserting the dowel in the hole. Use a grout retention disk-1/8 inch thick, fabricated from nylon or plastic, grout retention disk to hold epoxy in the hole during dowel insertion.

353-10 Protection and Opening to Traffic.

353-10.1 General: The requirements of Section 350 apply to this Section. Keep the placed slabs closed to traffic until the <u>maturity value indicates that the 1,600-psi</u> compressive strength requirement is achieved. Submit <u>a maturity value recordocumentation</u> to the Engineer

indicating that the required strength was achieved prior to opening to traffic. <u>If documentation is not provided, the concrete will not be accepted.</u> The Engineer may allow opening to traffic should the maturity equipment fail to provide a reading. Opening to traffic due to equipment failure does not constitute acceptance of the concrete.

Protect the pavement from all traffic, including construction vehicles, until the maturity value indicates that the required strength has been obtained. The protective measures shall be arranged so as not to interfere with traffic lanes being utilized for required maintenance of traffic.

353-10.2 Maturity Method Testing: Use a maturity curve to estimate the strength of the concrete for opening to traffic for each day of production. Embed temperature sensors at middepth in the slab, at 6 inches from the leading edge of the transverse joint and at 6 inches from the longitudinal joint or at locations designated by the Engineer.

Develop a strength-maturity relationship curve using the Arrhenius maturity function with an activation energy of 33,500 J/mol as outlined in FM 3-C1074, in a laboratory with personnel qualified to perform the method. Compressive strength tests, as specified in FM 3-C1074, will be performed to produce a fivesix point curve with points before and after the anticipated time for opening to traffic. Submit the mix design supporting data and the maturity curve to the Engineer for his approval.

Any changes of a material source or proportion in the concrete mixture will require a new maturity curve.

353-11 Method of Measurement.

The pay quantity for concrete pavement slab replacement, calculated using field-measured horizontal dimensions and thickness of the removed slab, will be the volume, in cubic yards, of calculated concrete volume placed and accepted.

The pay quantity for cleaning and sealing joints will be in accordance with Section 350.

353-12 Basis of Payment.

Price and payment for concrete pavement slab replacement, will be full compensation for all work specified in this Section and shall include demonstration slab construction, all joint construction, including tie bars and dowels, furnishing of test specimens, and all necessary incidentals.

Price and payment for cleaning and sealing joints will be made in accordance with Section 350.

Payment will be made under:

Item No. 353-70- Concrete Pavement Slab Replacement - per cubic yard.

CONCRETE PAVEMENT SLAB REPLACEMENT. (REV 8-20-19)

SECTION 353 is deleted and the following substituted:

SECTION 353 CONCRETE PAVEMENT SLAB REPLACEMENT

353-1 Description.

Replace the existing defective area of concrete pavement with portland cement concrete free of any uncontrolled cracks. Repair the damaged area of adjacent slabs, caused by slab removal at no cost to the Department. When using the maturity method, submit a strength-maturity relationship curve as determined by FM 3-C1074 for opening to traffic during design mix verification.

353-2 Materials.

optional.

Meet the following requirements:

Portland Cement Concrete*	Section 346	
Curing Materials	Section 925	
Epoxy Compounds	Section 926	
Dowel Bar Assembly**	Section 931	
Post-Installed Anchor Systems for Structural		
Applications in Concrete Elements	Section 937	
Accelerating AdmixturesASTM C494, Type C and E		
*For concrete pavement slab replacement, the use of pozzolans and slag is		

**Concrete pavement containing only dowel bars will be considered non-reinforced concrete.

353-3 Composition of Concrete.

353-3.1 Mixture Proportions: Designate the actual proportions to be used to produce a concrete with a minimum 28 day compressive strength of 3,000 psi.

Prior to producing concrete, submit the design mix for approval on a form acceptable to the Department. Provide a mix design that will produce a concrete with a minimum compressive strength of 1,600 psi, designated for opening to traffic, at the time period specified in the Contract Documents. Perform the plastic property tests in accordance with Section 346 prior to the addition of the accelerator. Use mixes approved by the Department and obtain concrete from a plant that is currently on the Department's Production Facility listing. Producers seeking inclusion on the list shall meet the requirements of Section 105.

Make necessary adjustment to the concrete mix-water to account for the amount of water in the accelerating admixture solution.

353-3.2 Delivery Certification: Submit a delivery ticket in accordance with Section 346.

353-3.3 Demonstration Slab: Prior to batching production concrete, demonstrate the ability to furnish replacement slabs by constructing a demonstration slab. Demonstrate production techniques for slab removal, dowel installation, concrete placement, finishing, slab curing, sample preparation and curing, and proper timing of joint sawing. Demonstrate the ability

to achieve the required compressive strengths. Demonstrate proficiency to the Engineer the ability to determine when the concrete has achieved a compressive strength of 1,600 psi by testing concrete cylinders or by using the maturity-strength curve. Use cylinders to verify the concrete compressive strength at 28 days. Schedule construction of the demonstration slab at the time specified in the Contract Documents. If the Engineer determines that elements of the demonstration slab fail to meet requirements of the Contract Documents, propose adjustments to the construction processes and/or materials for the Engineer's approval.

The demonstration slab may be used in the final work with the approval of the Engineer. No slab replacements will be constructed until the demonstration slab is approved. The Engineer may require additional demonstration slabs until a demonstration slab conforms to the Contract Documents.

353-4 Batching and Mixing Concrete.

Obtain concrete that meets the requirements of Section 346 with the following additional requirements:

Add all the concrete ingredients, excluding the accelerator to the truck mixer at the plant.

Add the accelerator to the load at the job site and record the amount on the delivery ticket. Mix the concrete for 30 additional revolutions at mixing speed after the accelerator is added to the mixer..

Incorporate the accelerator into the concrete design mix in accordance with the recommendations of the admixture manufacturer. Do not exceed the manufacturer's written recommendations for the dosage rate of the accelerating admixture.

353-5 Test Requirements.

353-5.1 General: Perform concrete sampling and testing in accordance with Section 346, with the addition of density measurement testing is required. Perform the plastic property tests prior to the addition of the accelerator. Concrete strength determination can be done using test cylinders or by using the maturity method. If test cylinders are used, prepare after the addition of accelerator.

353-5.2 Verification of Maturity Curve Data: Develop a new maturity curve if any of the plastic properties or the density results exceed the tolerances specified in Table 353-1, for the initial sampling.

Table 353-1		
Slump and Density Tolerances Prior to Accelerator Addition		
Slump Tolerance	± 1.5 inches	
Density Tolerance	$\pm 3.0 \text{ lb/ft}^3$	

Use either the maturity method in FM 3-C1074 or concrete cylinder testing to determine if the concrete has achieved 1,600 psi and can be opened to traffic. Use the maturity value or concrete cylinder test results to verify the strength of the last slab of each day's placement. Additional maturity meters or concrete cylinder testing may be used to open other locations to traffic prior to the last slab of each day, as needed, provided each location has achieved the minimum strength.

353-5.4 Cylinder Fabrication and Testing: If cylinders will be used for opening to traffic strength determination, fabricate three test cylinders for opening to traffic strength and three cylinders for 28 day strength after all materials, including the accelerator, are added. If the

maturity method will be used for opening to traffic strength, fabricate three test cylinders for maturity curve correlation testing and three for 28 day strength.

The compressive strength cylinders and maturity curve correlation testing will be performed at the beginning of each production day, when the mix design is changed to another mix design, at the discretion of the Engineer for each remaining placement week, when a new maturity curve is required, or until terminated by the Engineer.

353-6 Concrete Slab Acceptance and Testing.

Reject any Concrete not meeting the plastic property requirements of Section 346. Acceptance will be based on achieving a 1,600 psi compressive strength prior to opening the slab to traffic, and a 28 day compressive strength of 3,000 psi. Determine opening to traffic strength using the maturity method or concrete cylinder testing, and determine 28 day strength using concrete cylinder testing.

Perform Quality Control (QC) tests for temperature, slump, and density, and prepare compressive strength cylinders once per LOT. A LOT is defined as one day's production.

The Engineer will evaluate the particular circumstances in each instance where a strength deficiency occurs. Strength deficiencies will be addressed in accordance with Section 346.

Lost quality control cylinders and payment reductions for low strength concrete will be addressed in accordance with Section 346.

Controlled cracks are cracks designed to occur at specific locations based on the pavement design. All other cracks in the pavement are uncontrolled cracks. Repair uncontrolled cracked slabs, which occur during the life of the contract, by removing and replacing the pavement across the full width of all affected lanes or shoulders and to the nearest transverse joint in each direction. Investigate and implement immediate effective solutions to eliminate further cracks, in consultation with, and subject to the approval of, the Engineer.

353-7 Placing, Striking Off, Consolidating and Finishing Concrete.

The requirements of Section 350 are applicable to this Section.

Perform straightedging while the concrete is still in plastic state after floating is completed and the excess water removed. Furnish and operate a 10 foot straightedge meeting the requirements of Section 350. Hold the straightedge in successive positions parallel to the road centerline, in contact with the surface, testing until the replacement slab is straight edged from one side to the other. Advance along the road in successive stages of not more than one-half the length of the straightedge. Fill any depressions immediately with freshly mixed concrete, consolidate, strike-off, and refinish. Cut down and refinish any high areas. Continue straightedge testing and surface correction until the entire surface conforms to the required grade and cross section. Ensure that transverse slope deviations of the finished pavement do not exceed 1/8 inch with the straightedge laid in a direction perpendicular to the centerline. When portland cement concrete pavement abuts bridge approaches or pavement not under this Contract, ensure that the longitudinal slope deviations of the finished pavement do not exceed 1/8 inch in 10 foot length. Produce a uniform, gritty textured final finish longitudinally along the pavement by dragging a broom or seamless strip of damp burlap, having at least 3 feet in contact with the pavement.

If the Engineer identifies a surface irregularity determined to be objectionable, straightedge with a 10 foot long straightedge and address all deficiencies in excess of 1/8 inch by grinding in accordance Section 352.

When required in the Contract Documents, produce a pavement surface that is true to grade and uniform in appearance with a longitudinal line type texture by grinding in accordance with Section 352.

353-8 Curing.

Cure the slab as specified in Section 350, except for time and temperature restrictions. Use a Type I (with dye) or Type ID (clear with dye) curing compound and apply within 1/2 hour after completing the finishing operations. After the curing compound has been applied, cover the surface and exposed edges with two layers of white burlap-polyethylene curing blanket conforming to Section 925 or insulating blankets approved by the Engineer. Continue curing the slab until the concrete achieves the required 1,600 psi compressive strength.

353-9 Joints.

353-9.1 General: Construct transverse joints as specified in Section 350 and as shown in the Standard Plans, except that dowels bars are installed per this Section. Tie bars will not be placed along the longitudinal joints unless shown in the Contract Documents. Apply a bond breaker to all vertical faces of the adjacent slabs. Submit the proposed bond breaker and manufacturer's technical data to the Engineer for approval.

Clean and seal joints in accordance with Section 350.

353-9.2 Dowel Bars: Provide dowel bars in accordance with the details shown in the Contract Documents.

353-9.2.1 Dowel Bars at Transverse Joint Between two Replacement Slabs: Follow the requirements of 350-12 when providing dowel bars at a transverse joint between two freshly placed replacement slabs.

353-9.2.2 Dowel Bars at Transverse Joints Between Existing and

Replacement Slabs: Follow the requirements of Section 350, except drill holes and install dowel bars into the sawed face or end of the existing slab. Develop load transfer between existing and freshly placed replacement slab. The dowels shall be free to move inside the replacement slab and epoxy-bonded into the existing slab.

353-9.2.3 Dowel Bar Installation: Install dowel bars in accordance with Section 416 except as modified herein. Position each dowel such that its final deviation from parallel to the surface of the pavement and parallel to the longitudinal centerline of the pavement does not exceed 1/2 inch. Position each dowel such that its final deviation from centered on the joint does not exceed 2 inches. Position each dowel such that at no point in its length does it deviate from the surface of the pavement as shown in the Plans in excess of 1 inch. Confirm the position of dowel bars by means acceptable to the Engineer, which may include non-destructive testing methods.

Use epoxy compounds in accordance with Section 937. Dispense the epoxy from a cartridge or from metered equipment that indicates the amount of each component material being dispensed.

Inject epoxy into the hole after cleaning and prior to dowel insertion. Start injection at the back of the hole to force the epoxy to move forward during dowel insertion. Twist the dowel a minimum of one full turn during the insertion to ensure that the epoxy surrounds the dowel. The injection process and viscosity of the epoxy shall be adequate to ensure that the space between the surface of the dowel and the inside of the hole is filled with epoxy.

Do not allow the epoxy to escape from the front of the hole after inserting the dowel in the hole. Use a 1/8 inch thick nylon or plastic grout retention disk to hold epoxy in the hole during dowel insertion.

353-10 Protection and Opening to Traffic.

353-10.1 General: The requirements of Section 350 apply to this Section. Keep the placed slabs closed to traffic until the 1,600 psi compressive strength requirement is achieved. Submit documentation to the Engineer indicating that the required strength was achieved prior to opening to traffic. If documentation is not provided, the concrete will not be accepted. The Engineer may allow opening to traffic should the maturity equipment fail to provide a reading. Opening to traffic due to equipment failure does not constitute acceptance of the concrete.

Protect the pavement from all traffic, including construction vehicles, until the required strength has been obtained. The protective measures shall be arranged so as not to interfere with traffic lanes being utilized for required maintenance of traffic.

353-10.2 Maturity Method Testing: Use a maturity curve to estimate the strength of the concrete for opening to traffic for each day of production. Embed temperature sensors at middepth in the slab, at 6 inches from the leading edge of the transverse joint and at 6 inches from the longitudinal joint or at locations designated by the Engineer.

Develop a strength-maturity relationship curve using the Arrhenius maturity function with an activation energy of 33,500 J/mol as outlined in FM 3-C1074, in a laboratory with personnel qualified to perform the method. Compressive strength tests, as specified in FM 3-C1074, will be performed to produce a six point curve with points before and after the anticipated time for opening to traffic. Submit the mix design supporting data and the maturity curve to the Engineer for his approval.

Any changes of a material source or proportion in the concrete mixture will require a new maturity curve.

353-11 Method of Measurement.

The pay quantity for concrete pavement slab replacement, calculated using field-measured horizontal dimensions and thickness of the removed slab, will be the volume, in cubic yards, of calculated concrete volume placed and accepted.

The pay quantity for cleaning and sealing joints will be in accordance with Section 350.

353-12 Basis of Payment.

Price and payment for concrete pavement slab replacement, will be full compensation for all work specified in this Section and shall include demonstration slab construction, all joint construction, including tie bars and dowels, furnishing of test specimens, and all necessary incidentals.

Price and payment for cleaning and sealing joints will be made in accordance with Section 350.

Payment will be made under:

Item No. 353-70- Concrete Pavement Slab Replacement - per cubic yard.