Drainage Review: SR 29 from SR 78 to US 27

Financial Project ID: 1939572-2-52-01 Reviewer: H. Dan Thomas (PBSJ)

Date: April 8, 2004

Parsons Brinckerhoff Quade & Douglas, Inc. reviewed the existing drainage structures for this segment of SR 29 and made recommendations to increase the size of the four pipe cross drains along this segment of road. The southern most cross drain between bridges 050035 and 050033 has experienced flooding of the southbound lane on a somewhat regular basis (twice during summer of 2003) during the wet season of the year.

In addition to water on the roadway, the pipes have experienced joint leakage, and settlement of the roadway has to be periodically repaired by maintenance forces. Mr. Shone Phillips, LaBelle Maintenance Engineer, advises that it has been approximately two years since Maintenance has performed this work, and that it is not a significant problem as maintenance has to patch the road on a regular basis.

The discharge and stages in the Parson's report are suspect as there is significant storage upstream from the structures between bridges 05035 (Lone Pine Creek) and 050033 (Chaparral Slough) which was not accounted for in the stormwater model run.

It is agreed that the existing structures do not meet the existing design criteria, and that the structures should probably be increased in size. There are problems associated with increasing the size of the existing structures in that wetland encroachment and impacts to downstream property owners are involved. To increase the size of the existing structures would probably require mitigation of the wetland areas filled and the possible purchase of flood rights from downstream property owners.

An alternative recommendation of raising the pavement elevation in conjunction with enlarging the structures with weirs and metering devices to replicate the existing condition is also expensive and also impacts wetlands.

In order to adequately assess the size and number of structures needed to bring the highway up to current standards, an extensive amount of survey information will be needed. It is suspected that the drainage basin for Chaparral Slough is overtopping and entering into the Lone Pine Creek Basin. Survey data will also be necessary to determine the reason for the high tailwater being observed at the Chaparral Slough and Lone Pine Creek bridges and is assumed to be caused by downstream obstructions. Lone Pine Creek drains into a wetland area downstream of SR 29 prior to draining into Deadmans Branch and into the Caloosahatchee River.

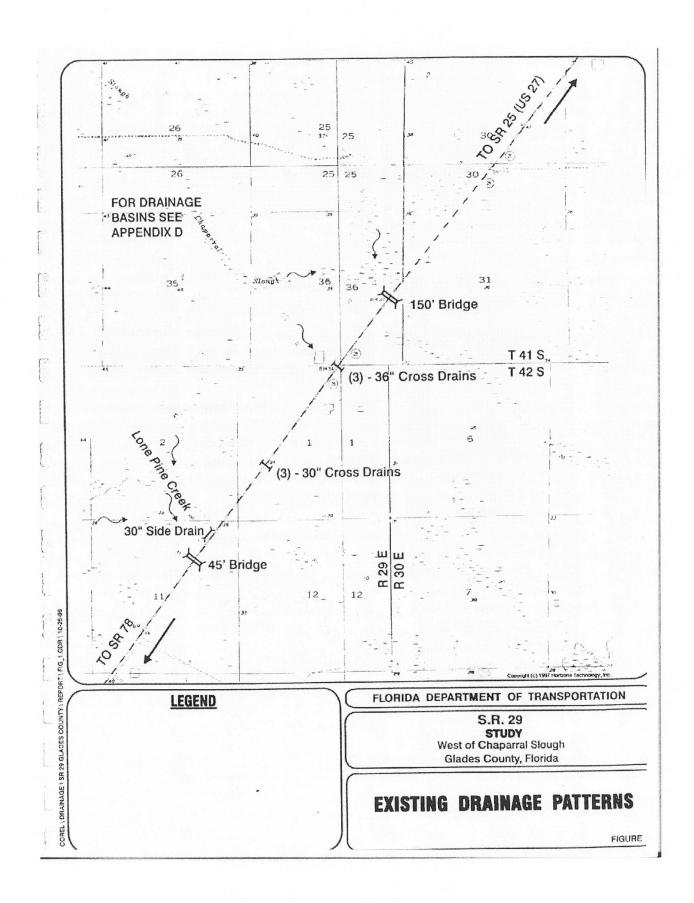
The flooding of the southbound SR 29 lane in the vicinity of the triple 30 inch cross drains generally occurs during the rainy season and after approximately 3 to 4 inches of rain within a one day period. Mr. Shone Phillips advises that it takes approximately one to two days after the rainfall for the lane to flood, and then approximately one day for the water to recede from the pavement if no additional rain occurs. The two 72 inch diameter side drain pipes recommended in Mr. Larry Gaddy's (PBS&J) October 1999, analysis of Drainage Inventory No. 05090-1 have been installed by the Department's maintenance forces. While the side drain pipes have not

prevented the stormwater runoff from encroaching onto the southbound lane, they are allowing a quantity of stormwater to bypass the triple 30 inch cross drain and flow through the Lone Pine Creek bridge.

RECOMMENDATION

The flooding area at the triple 30 inch cross drain is located within a low area in the pavement grade between the Lone Pine Creek (Bridge 050035) and Chaparral Slough (Bridge 050033) bridges. It is not cost effective to either raise all of the SR 29 grade or to replace the existing cross drains within the limits of this project in order to bring the highway up to current design standards, and the Department has proceeded with its resurfacing contract on SR 29 without replacing the existing cross drain structures. It is recommended that the grade in the vicinity of the existing triple 30 inch cross drain at station 356+15 be raised to an elevation of 35.7 feet (USGS '29 Datum). The result of raising the grade from sta. 336+00 to sta. 372+00 will force more of the stormwater runoff to the southwest to Lone Pine Creek and minimize the frequency of the flooding of the southbound SR 29 lane.

It is further recommended that the Department's Pavement Design and Geotechnical Engineers evaluate the roadway pavement between stations 336+00 and 372+00 to determine if the pavement can be overlaid without constructing a crack relief layer.

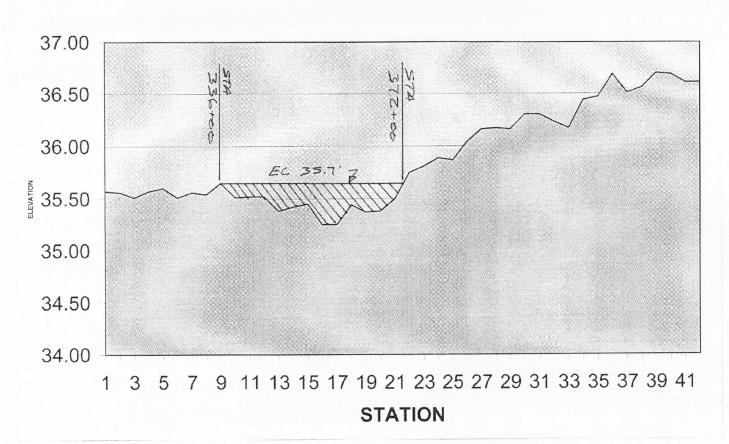

The following costs are estimated for raising the pavement grade in conjunction with the proposed resurfacing project with and without milling.

PROPOSED COST OF OVERLAY WITH MILLING

Superpave AC	1,578 Tons	\$50.00/Ton	\$78,900.	
Embankment	1,883 CY	\$ 4.70/CY	\$ 8,850.	
TOTAL	*		\$87,750.	

PROPOSED COST OF OVERLAY WITHOUT MILLING

Superpave AC	226 Tons	\$50.00/Ton	\$11,300.	
Embankment	1,883 CY	\$ 4.70/CY	\$ 8,850.	
TOTAL			\$20,150.	



SR 29 GLADES CO.

193957-2-52-01

REFERENCE	STATION	EXIST. C.L. ELEV. (FT)	NEW C.L. ELEV (FT)	RAISE GRADE (FT)		TONS WITH MILLING		TONS W/O MILLING
	312+00				DD# 05			
1	313+50	35.57			BR# 35			
2	315+00	35.56						
3	318+00	35.51						
4	321+00	35.57						
5	324+00	35.60						
6	327+00	35.51						
7	330+00	35.56						
8	333+00	35.54	05.70	0.05				
9	336+00	35.65	35.70	0.05		62.26		
10	339+00	35.51	35.70	0.19		63.36		
11	342+00	35.52	35.70	0.18		97.68		
12	345+00	35.52	35.70	0.18		95.04 132.00		0.00
13	348+00	35.38	35.70	0.32		158.40		0.00 26.40
14	351+00	35.42	35.70	0.28				
15	354+00	35.45	35.70	0.25	2 201 DOD	139.92		7.92
16	356+15	35.25	35.70	0.45	3-30" RCP	132.44		37.84
17	357+00	35.25	35.70	0.45		67.32		29.92
18	360+00	35.44	35.70	0.26		187.44		55.44
19	363+00	35.37	35.70	0.33		155.76		23.76
20	366+00	35.38	35.70	0.32		171.60		39.60
21	369+00	35.50	35.70	0.20		137.28		5.28
22	372+00	35.75	35.70	(0.05)		39.60		
23	375+00	35.81		0.04		4 577 04	TONG	220.40
24	378+00	35.89		0.24		1,577.84	TONS	226.16
25	381+00	35.87						
26	384+00	36.04						
27	387+00	36.16						
28	390+00	36.17						
29	393+00	36.16			2 201 DOD			
30	395+22	36.30			3-36" RCP			
31	396+00	36.30						
32	399+00	36.23					-> 40-	
33	402+00	36.17			/ORK: (2*360	0*28.25*0.2	(5)/27	
34	405+00	36.44		1,883	CY			
35	408+00	36.47						
36	411+00	36.69						
37	414+00	36.51						
38	417+00	36.56						
39	420+00	36.70						
40	423+00	36.69						
41	426+00	36.61			DD# 00			
	426+27	36.61			BR# 33			

GRADES

,	Subject:			
1				
(Comp by:	 Date:	 Sheet Number:	
(Check by:	 Job Number:		

Horse Creal Bridge

expected to flood occassionally. It raised significantly, a relief bridge must be provided to carry the water now carried by overtopping.

"The longer Horse Creek bridge recently constructed would have allowed the road to be raised to elev. 8.44 (m) but the project didn't include this work (see p. 1 i 2 in report).

Karina I reviewed the BHR one can discuss it with you. will be in Tampa an Tursday (oct 13) and out of state for a week I can come to Beirton at end of next weik - Thursday or Friday

Della Sera, Karina

From:

Gaddy, Larry J [LJGaddy@pbsj.com]

Sent:

Tuesday, October 13, 2009 8:40 AM

To:

Della Sera, Karina

Subject:

Larry's schedule

I will be out of state until end of next week and will be in your office on October 23. Hopefully we will have SWFWMD maps of Wauchula flooding area and the remainder of the calculations and review comments (can we get into my old computer files?).

I worked 3 hours yesterday and placed two items on your chair- Horse Creek BHR and SR 29 Flooding Report.

Horse Creek: The BHR addressed road flooding and raising the profile. The project was a bridge replacement only. Raising the roadway to clear infrequent flood elevations would have required a large relief bridge. As I recall, the traffic didn't warrant the expense. When traffic has reached a level that requires four lanes, the road can be raised and the additional bridge added. The current bridge is longer than the old bridge because of a need to locate the abutments at particular points. A secondary benefit to this added length is the added capacity that would allow raising the roadway a small amount. This is explained in the report. I don't know if FDOT chose to take advantage of that option as part of the bridge project.

SR 29: PBSJ provided a drainage study of this problem several years ago (10 years or more). The study went into greater depth than the recent study and identified a multi-step approach, the first of which was to replace an undersized side drain at a drive. The original plans included a large R/W ditch intended to intercept large sheet flows from the north and carry them to a bridge. As I recall, the existing sidedrain pipe was a 30". We recommended replacing with multiple large pipes. If this didn't provide a satisfactory improvement, other steps were outlined. A complication that must be addressed is the fact that the large flooded area north of SR 29 represents attenuating storage for property south of SR 29 and the cross drains are control structures. We can't simply enlarge them without consideration of the downstream impacts. The current report recommends enlarging the triple 36" cross drains to triple 48". This will provide little benefit. I recommend you retrieve the previous report from archives and we can discuss when I return.

Table 7. Comparison of Bulletin 17B (U.S. Water Resources Council, 1982) flood-discharge estimates from this study with Bulletin 17 (U.S. Water Resources Council, 1976) or Bulletin 17A (U.S. Water Resources Council, 1977) estimates from previous studies.

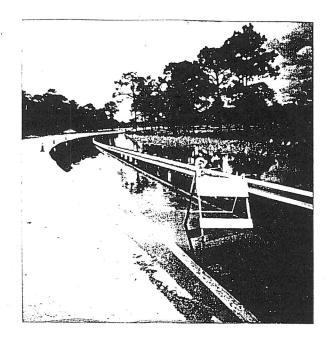
[N, number of years of record used in the analysis]

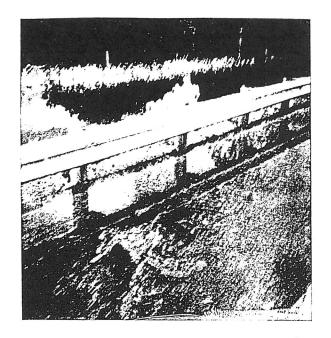
				Flood	lischarge (cı	ıbic feet per	second)		
Investigator	N	Recurrence interval (years)							
		2	5	10	25	50	100	200	500
	02300000	Manatee I	River near l	Bradenton,	Florida (sit	e 37)			
This study (2005)	27	2,420	4,530	6,240	8,770	10,900	13,200	15,800	19,500
Bridges (1982)	27	2,410	4,520	6,260	8,840	11,000	13,400	16,100	20,100
Seijo and others (1979)	27	2,360	4,490	6,340	9,230	11,800	14,800	18,200	23,500
	022973	310 Horse C	reek near	Arcadia, Flo	orida (site 2	(7)			
This study (2005)	52	2,030	3,860	5,470	8,010	10,300	13,000	16,000	20,900
Bridges (1982)	28	2,230	3,580	4,580	5,930	7,000	11,300	13,500	16,600
Seijo and others (1979)	26	2,110	4,020	5,690	8,300	10,600	13,300	16,400	21,200
	02303400	Cypress Ci	reek near S	an Antonio	, Florida (si	te 61)			
This study (2005)	39	120	331	543	898	1,230	1,610	2,050	2,720
Bridges (1982)	15	146	307	450	676	877	1,110	1,370	1,770
Seijo and others (1979)	13	193	497	827	1,440	2,080	2,900	3,950	5,770

Table 8. Comparison of regression flood-discharge estimates from this study with regression estimates from previous studies. [N, number of years of record used in the analysis]

				Flood d	lischarge (cu	ibic feet per s	econd)		
Investigator	N	Recurrence interval (years)							
		2	5	10	25	50	100	200	500
	02300000	Manatee F	River near E	radenton,	Florida (site	37)			
This study (2005)	27	1,720	3,330	4,760	7,010	8,950	11,200	13,700	17,400
Bridges (1982)	27	1,640	2,990	4,060	5,610	6,890	8,280	9,740	11,900
Seijo and others (1979)	27	1,810	3,360	4,690	6,760	8,600	10,700	13,100	16,900
	022973	10 Horse C	reek near A	Arcadia, Flo	orida (site 2	7)			
This study (2005)	52	2,400	4,710	6,790	10,100	13,000	16,300	20,100	25,800
Bridges (1982)	28	2,890	5,130	6,910	9,480	11,600	13,900	16,400	20,100
Seijo and others (1979)	26	3,340	6,160	8,560	12,300	15,500	19,300	23,600	30,200
	02303400	Cypress Cr	eek near S	an Antonio	, Florida (si	te 61)			
This study (2005)	39	402	767	1,070	1,520	1,900	2,330	2,780	3,460
Bridges (1982)	15	505	978	1,370	1,940	2,420	2,950	3,490	4,320
Seijo and others (1979)	13	405	757	1,060	1,540	1,960	2,440	3,000	3,860

FLOODING/HIGH WATER REPORT

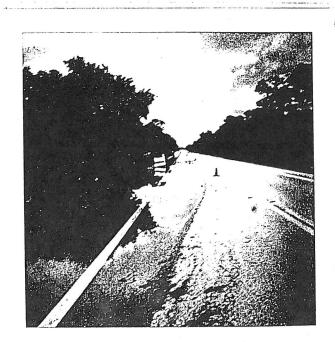

in flooders

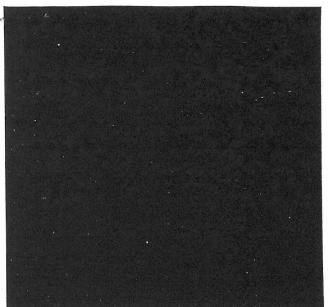

1.	Person(s) Observing: Jimmy DAVIS			
2.	Person(s) Observing: $\frac{1}{14} - \frac{1}{4} = \frac{1}{200}$			
3.	Section No.: 04060 State Road: 72 SLD M	P: 4.	5+1-	
4.	Section: Township: 365 Range:	23 E		
5.	Physical Tie: Horse Creek			
6.	If the water is over the road, what is the depth in inches on the copoint? 2 inches / 10 inches Or	nterline at	the deepest	یا ر
7.	What is the approximate length, in feet, of the roadway under water	25	D ft	
8.	If the location is at a bridge or culvert, describe the water elevation components of the structure (i.e. top of deck, top of cap, top of end	tion in rewall, box	lation to the culvert, etc.)	;
9.	Duration Flooding/High Water condition existed, if known,	hours	3 days.	
10.	Are photographs available? Are they attached? yes yes	no no		

11. Additional Information/Remarks:

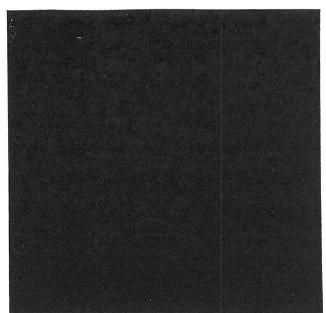
T.S. Gabrielle

^{*}Use additional sheets for information if necessary.

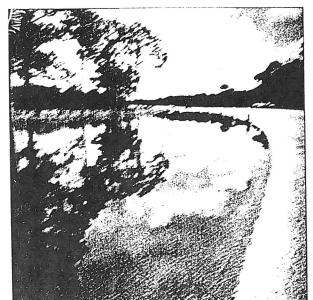



Sh 72 Horse Grad SR 72 Horse Crack

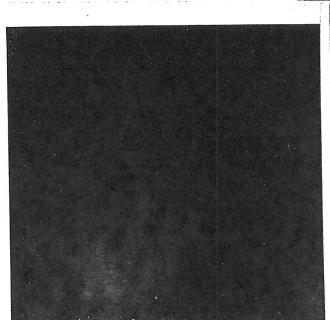
SR112 Harse Creuk



SR 72 Horse Greek



03133059108


POLAKUIO 032

133059108 PULAKUNG32

St 72. House Crock

U3133659108

PULAKUN JE

DEPARTMENT OF TRANSPORTATION

District One * Post Office Box 1249 * Bartow, Florida 33831-1249 (941) 519-2272 * (941) 519-1988 (Fax) * MS 1-14

THOMAS F. BARRY, JR. SECRETARY

MEMORANDUM

Date:

December 10, 1997

To:

District Environmental Management Office

Rhett Harper, Project Manager

From:

Michael D. Finch, P.E., District Drainage Engineer MDF

References:

1. Final Analysis of Drainage Structures SR72

2. Bridge Hydraulics Report, SR 72 at Horse Creek

Subject:

Location Hydraulics Report Memorandum

SR 72 from the Sarasota County Line to SR 70

State Project No. 04067-1507

W.P.I. No.

1110453

DeSoto County

The Florida Department of Transportation proposes to improve SR 72 from the Sarasota County Line to SR 70 in DeSoto County. The improvements include widening the 3m travel lanes to 3.6m, adding 1.5m paved shoulders, moving side drains out to meet 3R standards, adjusting frontslopes to meet 3R standards, roadway realignment in the vicinity of Horse Creek, and replacement of the bridge at Horse Creek.

The referenced reports and this memorandum have been prepared according to the requirements set forth in Executive Order 11988, Floodplain Management and Federal-Aid Policy Guide 23CFR650A.

The project involves both modification to and replacement of drainage structures, and will result in an insignificant change in their capacity to carry floodwater. The structures proposed for replacement will perform hydraulically in a manner equal to or greater than the existing structures, and the backwater surface elevations are not expected to increase. These changes will cause minimal increases in flood heights and limits. These minimal increases will not result in any significant adverse impacts on the natural and beneficial floodplain values or any significant change in flood risks or damage. There will not be a significant change in the potential for interruption or

termination of emergency service or emergency evacuation. Therefore, it has been determined that this encroachment is not significant.

Floodplain impacts were determined based on 100-year frequency floodplains as mapped by FEMA and the proposed Roadway Plans. Elevations for the 100-year flood have been determined by FEMA for Horse Creek and the Peace River, but not for the other floodplains adjacent to SR 72. Horse Creek, in the vicinity of SR 72, is not a regulated floodway as defined by the Flood Insurance Study for DeSoto County, no FEMA regulated floodways are identified within the project limits. Elevations for those floodplains not studied in detail by FEMA were estimated using two procedures, an approximation based on terrain controls or, where drainage structures controlled, an analysis of the structure. No flooding problems due to FDOT drainage facilities within this project have been reported. Floodplain impacts will be kept to a minimum by using the existing alignment and right of way to the extent possible.

Runoff from the project between approximately Station 4+00 and Station 22+50 discharges into the Big Slough Watershed. Runoff from the project between approximately Station 22+50 and Station 121+06 discharges to the Horse Creek Watershed. Runoff from the project between approximately Station 121+06 and Station 180+50 discharges to the Peace River Watershed.

I hereby certify that I am a registered professional engineer in the state of Florida practicing with the Florida Department of Transportation and that I approve of the evaluation, findings, opinions, conclusions, or technical advice hereby reported for the subject project.

I acknowledge that the procedures and references used to develop the results contained in the attached Final Analysis of Drainage Structures and Bridge Hydraulics Reports are standards to the professional practice of transportation engineering and planning as applied through professional judgement and experience.

Name:

Michael D. Finch, P.E.

Florida Registration No.:

40118

Signature:

Date:

DEPARTMENT OF TRANSPORTATION

District One * Post Office Box 1249 * Bartow, Florida 33831-1249 (941) 519-2272 * (941) 519-1988 (Fax) * MS 1-14

THOMAS F. BARRY, JR. SECRETARY

MEMORANDUM

Date:

December 10, 1997

To:

District Environmental Management Office

Rhett Harper, Project Manager

From:

Michael D. Finch, P.E., District Drainage Engineer

References:

1. Final Analysis of Drainage Structures SR72

2. Bridge Hydraulics Report, SR 72 at Horse Creek

Subject:

Location Hydraulics Report Memorandum

SR 72 from the Sarasota County Line to SR 70

State Project No. 04067-1507 W.P.I. No. 1110453

DeSoto County

The Florida Department of Transportation proposes to improve SR 72 from the Sarasota County Line to SR 70 in DeSoto County. The improvements include widening the 3m travel lanes to 3.6m, adding 1.5m paved shoulders, moving side drains out to meet 3R standards, adjusting frontslopes to meet 3R standards, roadway realignment in the vicinity of Horse Creek, and replacement of the bridge at Horse Creek.

The referenced reports and this memorandum have been prepared according to the requirements set forth in Executive Order 11988, Floodplain Management and Federal-Aid Policy Guide 23CFR650A.

The project involves both modification to and replacement of drainage structures, and will result in an insignificant change in their capacity to carry floodwater. The structures proposed for replacement will perform hydraulically in a manner equal to or greater than the existing structures, and the backwater surface elevations are not expected to increase. These changes will cause minimal increases in flood heights and limits. These minimal increases will not result in any significant adverse impacts on the natural and beneficial floodplain values or any significant change in flood risks or damage. There will not be a significant change in the potential for interruption or

termination of emergency service or emergency evacuation. Therefore, it has been determined that this encroachment is not significant.

Floodplain impacts were determined based on 100-year frequency floodplains as mapped by FEMA and the proposed Roadway Plans. Elevations for the 100-year flood have been determined by FEMA for Horse Creek and the Peace River, but not for the other floodplains adjacent to SR 72. Horse Creek, in the vicinity of SR 72, is not a regulated floodway as defined by the Flood Insurance Study for DeSoto County, no FEMA regulated floodways are identified within the project limits. Elevations for those floodplains not studied in detail by FEMA were estimated using two procedures, an approximation based on terrain controls or, where drainage structures controlled, an analysis of the structure. No flooding problems due to FDOT drainage facilities within this project have been reported. Floodplain impacts will be kept to a minimum by using the existing alignment and right of way to the extent possible.

Runoff from the project between approximately Station 4+00 and Station 22+50 discharges into the Big Slough Watershed. Runoff from the project between approximately Station 22+50 and Station 121+06 discharges to the Horse Creek Watershed. Runoff from the project between approximately Station 121+06 and Station 180+50 discharges to the Peace River Watershed.

I hereby certify that I am a registered professional engineer in the state of Florida practicing with the Florida Department of Transportation and that I approve of the evaluation, findings, opinions, conclusions, or technical advice hereby reported for the subject project.

I acknowledge that the procedures and references used to develop the results contained in the attached Final Analysis of Drainage Structures and Bridge Hydraulics Reports are standards to the professional practice of transportation engineering and planning as applied through professional judgement and experience.

Name:

Michael D. Finch, P.E.

Florida Registration No.:

40118

Signature:

Date:

M E M O R A N D U M
Florida Department of Transportation

Date:

January 28, 1997

To:

Nicole Hoffarth, Project Manager

2272

From:

Michael D. Finch, P.E., District Drainage Engineer

Copies:

Terry Puckett, P.E., District Geotechnical Engineer

John Previte, P.E., District Structures Engineer

Larry Gaddy, P.E., PBS&J

S. W. Ragan, Drainage — 227/

Subject:

BRIDGE HYDRAULICS REPORT CONCURRENCE

Horse Creek at S.R. 72, Bridge No. 040038

State Project No.: 04060-1507

WPI No.: 1111267 De Soto County

I have reviewed the above Bridge Hydraulic Report (BHR), dated January 1997. It appears that all previous comments have been addressed and that the BHR meets FDOT and FHWA criteria. Therefore, I concur with its recommendation.

Please ensure that the Geotechnical and Structures Departments and the project file receive sufficient copies of the BHR. If there are any questions, please contact me.

The review comments are not intended to be inclusive of all errors and omissions. The consultant is responsible for the technical accuracy, project decisions, engineering judgement, and quality of the project. These comments are not intended to change the scope of work, specify direction for the project, or to be contrary to FHWA or FDOT design criteria or good engineering judgement. The intent is to identify some apparent inconsistencies, and to further clarify design documentation and design decisions made by the consultant.

MDF/swr

Table 4-2. Notable Peak Flows and Stages in the Peace River Watershed 1960-Present Gage Station Date Peak Peak Approx.							
Gage Station	Date	Discharge (cfs)	Stage (ft. NGVD)	Frequency (years) ^a			
Gages with a long-term record (most reliable flood frequency relationships).							
Peace River @ Bartow	Sept 13, 1960 Sept 23, 1962 July 30, 1974 Sept 29, 1982 Sept 14, 1988 Aug 19, 1992	3,470 598 784 1,640 1,150 872	98.6 94.9 95.2 95.8 96.0 95.5	50 <2 <2 2 2 <2			
Peace River @ Zolfo Springs	Sept 12, 1960 Sept 23, 1962 July 7, 1974 June 20, 1982 Sept 9, 1988 Aug 12, 1992	17,000 6,270 4,870 6,370 6,490 3,020	53.8 48.3 47.3 49.6 49.7 45.2	50 2.33-5 2.33 5 5 <2			
Peace River @ Arcadia	Sept 15, 1960 Sept 24, 1962 July 8, 1974 June 23, 1982 Sept 12, 1988 June 29, 1992	21,000 11,200 11,800 17,000 11,700 5,440	24.1 21.1 21.9 23.8 22.0 18.7	10-25 2.33-5 5 10 5 <2			
Charlie Creek near Gardner	Aug 1, 1960 Sept 22, 1962 July 7, 1974 June 21, 1982 Sept 10, 1988 June 30, 1992	8,160 5,900 5,770 7,910 3,960 1,280	40.4 38.8 39.1 39.4 37.6 32.8	50 10 10-25 10-25 5 <2			
Joshua Creek @ Nocatee	Sept 11, 1960 Sept 22, 1962 July 7, 1974 June 19, 1982 Sept 8, 1988 June 27, 1992	4,160 8,220 3,100 4,340 3,540 3,630	20.4 23.0 20.5 21.9 21.3 21.5	10 25-50 10 10-25 10-25 10-25			
Horse Creek near Arcadia	Aug 1, 1960 Sept 21, 1962 July 7, 1974 June 18, 1982 Sept 9, 1988 June 27, 1992	11,700 6,690 3,910 6,260 5,430 8,960	28.9 27.7 26.3 28.3 27.6 28.7	50 10 5 25 10 50			
Gages with a shorter-term record (flood long-term record). Discharge is based of	frequency relation n regional analysi	ships are less s or rainfall/rur	reliable than t noff methods.	hose with a			
Peace Creek near Alturas	Sept 12, 1960 Sept 21, 1962 Sept 11, 1974	1,620 328 N/A	110.5 104.8 106.0	25 <2 2			
Peace Creek near Wahneta (new gage approximately 1.2 miles downstream)	Aug 16, 1992	475	105.1	2.33-5			

-	97310 HORSE CREEK NEAR ARCADIA FL PE	AK FLOW.PRT.txt
1 Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis following Bulletin 17-B Guidelines	Seq.000.000 s Run Date / Time 07/16/2009 13:45
	PROCESSING OPTIONS	
	Plot option = None Basin char output = None Print option = Yes Debug print = No Input peaks listing = Long Input peaks format = WATSTORE peal	k file
02297310 HORSE CREEK		ES\PKFQWIN\TEST\DATA_IN\USGS
HORSE CREEK NEAR ARCA	Output file(s): main - C:\PROGRAM FILES\PKFQWIN ADIA FL	\TEST\DATA_IN\USGS 02297310
1		
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysi following Bulletin 17-B Guidelines	Seq.001.001 s Run Date / Time 07/16/2009 13:45
Stat	ion - 02297310 HORSE CREEK NEAR ARC	CADIA FL
	INPUT DATA SUMMARY	•
Peak Syst Hist Year Gene Skew Gage User User	er of peaks in record = s not used in analysis = ematic peaks in analysis = oric peaks in analysis = s of historic record = ralized skew = Standard error = Mean Square error = option = s base discharge = supplied high outlier threshold = supplied low outlier criterion = sting position parameter = extended = supplied low outlier criterion = sting position parameter = supplied low outlier criterion = sting position parameter = supplied supplied low outlier criterion = sting position parameter = supplied supplied low outlier criterion = sting position parameter = supplied sup	59 0 59 0 0 -0.053 0.550 0.303 WEIGHTED 0.0
******* NOTICE ******* User re	Preliminary machine computation esponsible for assessment and interpr	ns. ******** retation. *******
WCF195T-NO LOW C	MATIC PEAKS WERE BELOW GAGE BASE. DUTLIERS WERE DETECTED BELOW CRITERIO OUTLIERS OR HISTORIC PEAKS EXCEEDED	0.0 ON. 188.4 HHBASE. 21266.2

Program PeakFq Ver. 5.2 11/01/2007 U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis following Bulletin 17-B Guidelines Page 1 Seq.001.002 Run Date / Time 07/16/2009 13:45

USGS 02297310 HORSE CREEK NEAR ARCADIA FL PEAK FLOW.PRT.txt Station - 02297310 HORSE CREEK NEAR ARCADIA FL

ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

	FLOOI) BASE	LOGARITHMIC		
	DISCHARGE	EXCEEDANCE PROBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE		1.0000 1.0000	3.3013 3.3013	0.3625 0.3625	-0.041 -0.044

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17B LOWER	NCE LIMITS ESTIMATES UPPER
0.9950 0.9900 0.9500 0.9500 0.8000 0.5000 0.5000 0.2300 0.4292 0.2000 0.0400 0.0400 0.0200 0.0200 0.0050 0.0020	225.2 279.5 501.8 684.0 993.2 1404.0 2014.0 2337.0 4048.0 5811.0 8522.0 10900.0 13590.0 16610.0 21170.0	225.7 279.9 502.2 684.2 993.1 1404.0 2013.0 2336.0 4047.0 5812.0 8529.0 10910.0 13610.0 16640.0 21220.0	204.7 259.3 484.5 669.1 982.1 1398.0 2014.0 2340.0 4092.0 5935.0 8852.0 11490.0 14570.0 18150.0 23770.0	145.2 186.6 366.2 520.9 790.5 1152.0 1681.0 1954.0 3331.0 4661.0 6602.0 8234.0 10020.0 11980.0	314.7 381.1 643.7 853.4 1207.0 1682.0 2413.0 2815.0 5088.0 7623.0 11790.0 15640.0 20180.0 25470.0 33770.0

Program PeakFq Ver. 5.2 11/01/2007 U. S. GEOLOGICAL SURVEY Annual peak flow frequency analysis following Bulletin 17-B Guidelines

Seq.001.003 Run Date / Time 07/16/2009 13:45

Station - 02297310 HORSE CREEK NEAR ARCADIA FL

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	2830.0 810.0 6680.0 4790.0 4960.0 1870.0 442.0 1910.0 2540.0 3870.0		1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	1880.0 1420.0 6260.0 1960.0 1100.0 614.0 970.0 2060.0 5430.0 217.0	
1960	11700.0		1990	742.0	
			Page 2		

		02207210 HODGE	CDEEK	NICAD	ADCADTA		PEAK FLOW.PRT.t	v+
	USGS	02297310 HORSE	CREEK	NEAK	AKCADIA	FL		Λ.
1961		2100.0			1991		1940.0	
1962		6690.0			1992		8960.0	
1963		1090.0			1993		1250.0	
1964		970.0			1994		4180.0	
1965		1960.0			1995		2260.0	
1966		1680.0			1996		2790.0	
1967		2240.0			1997		2520.0	
1968		3080.0			1998		5870.0	
1969		1930.0			1999		1100.0	
1970		1570.0			2000		1230.0	
1971		1420.0			2001		6710.0	
1972		1540.0			2002		2500.0	
1973		1440.0			2003		11000.0	
1974		3910.0			2004		4940.0	
1975		828.0			2005		1950.0	
1976		693.0			2006		928.0	
1977		1430.0			2007		376.0	
1978		2350.0			2008		767.0	
1979		1780.0						

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K	3 8 3+8 4 6 OR C	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization
Н	7	Historic peak

- Minus-flagged discharge -- Not used in computation -8888.0 -- No discharge value given Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	07/16/2009 13:45

Station - 02297310 HORSE CREEK NEAR ARCADIA FL

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1960 2003 1992 2001 1962 1952 1982 1998 1988	11700.0 11000.0 8960.0 6710.0 6690.0 6680.0 6260.0 5870.0 5430.0	0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500 Page 3	0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500
		9	

1954 2004 1953 1974 1974 1959 1968 1950 1958 1997 2002 1978 1967 1967 1963 1967 1969 1957 1970 1957 1970 1972 1973 1971 1971 1993 1994 1995 1996 1996 1997 1998 1998 1998 1998 1998 1998 1998	USGS	4960.0 4940.0 4790.0 4180.0 3910.0 3870.0 3080.0 2790.0 2540.0 2520.0 2500.0 2240.0 2100.0 2060.0 1960.0 1960.0 1970.0 1880.0 1870.0 1780.0 1680.0 1570.0 1540.0 1440.0 1430.0 1420.0 1420.0 1230.0 1100.0 1230.0 1100.0 1230.0 1200.0 1210.0	0.1667 0.1833 0.2000 0.2167 0.2333 0.2500 0.2667 0.2833 0.3000 0.3167 0.3333 0.3500 0.3667 0.3833 0.4500 0.4167 0.4833 0.5000 0.5167 0.5333 0.5500 0.5667 0.5833 0.6000 0.6167 0.6833 0.7000 0.7167 0.7333 0.7500 0.7167 0.7333 0.7500 0.7667 0.7833 0.7500 0.7667 0.7833 0.8500 0.8667 0.8833	ARCADIA FL PEAK	FLOW.PRT.txt
2006 1975 1951		928.0 828.0 810.0	0.8333 0.8500 0.8667	0.8333 0.8500 0.8667	

1

End PeakFQ analysis.
Stations processed:
Number of errors:
Stations skipped:
Station years: 1 0 0 59

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.)

Page 4

USGS 02297310 HORSE CREEK NEAR ARCADIA FL PEAK FLOW.PRT.txt (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 02297310

USGS HORSE CREEK NEAR ARCADIA FL

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

Item Comm Phases Group D Display WP01 Seg_Comm Location Change_Hist Status_Hist Phase_Est Phase_Sum Items Rel_Item

FDOT - Work Program Administration 07-16-2009 Item/Segment Definition Item Managing District: 01 Box Item: N (y/N) Item: 193894 Segment: 1 Geo District: 01 County: 04 DESOTO Project Mgr: RWC-BCP- • !_
Trans System: 05 NON-INTRASTATE STATE HIGHWAY Contract Type: 5 Trans System: 05 Measure Type : E Work Mix . : 0421 REPLACE LOW LEVEL BRIDGE As of: 11-12-1991 Status . .: 100 LINE ITEM COMPLETED Old Item Number: 1110462 Box Code . : E EMRG: Related Items: N
Description : (Version: Displayed - AD ADOPTED Requested - AD) HORSE CREEK SR72 AT BR # 040038 Project Length: 0.271 MI Work Length: 0.271 Type (1=xdesc, 2=misc) Item Segment Comments SR70.4 1 WORK TO BE DONE ON ITEM # 1110453 PEC/W.K. DAUGHERTY 1

Successfully displayed. No more data to display. F7=Bkwd F8=Frwd F15=Logoff F1=Help F3=Exit

WPI: 1110453

Proj', 04060.3507 Brt: 040038

USGS SITE: 02297310

Drainage Complaint - Inventory Data Sheet

DAN 2758 DAN FI

SECTION I. LOCATION

Location - MP 4.400

TOR# 040056

Road Description - Two lane rural

County-Desoto

State Road-SR 72

Map Reference Number- 04060-1

Section/Township/Range-S2, T38S, R23E

SECTION II. PROBLEM DESCRIPTION

Problem Description- Roadway flooded 3" deep for approximately 100' for 2 days around 3/19/98.

How frequently does problem occur? Flooding has occurred approximately 3 to 4 times this past year.

Estimated High Water- N/A

Nearest wetland, lake or pond- N/A

History of Problem- Flooding occurs approximately once a year on average.

Outfall description- Horse Creek

Persons Interviewed-Robert Strickland - FDOT

SECTION III. PROBLEM ANALYSIS

What is the cause of the flooding? Roadway profile is too low with respect to downstream water elevations.

Who is responsible for maintenance of the outfall? N/A

What efforts have been made to fix the problem? N/A

What damages or harm results from the flooding? Flooding impedes traffic and poses a safety hazard

SECTION IV. PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

Mark water elevations in the ditches, on the bridge, and along the sides of the roadway where flooding occurs. Photograph flooding as soon as possible.

Program PeakFq

U. S. GEOLOGICAL SURVEY

S=4.000.000

Ver. 5.2

Annual peak flow frequency and 1751s

Run Date / Time

11/01/2007

following Bulletin 11-B Guidelines

07/16/2009 14:12

--- PROCESSING OPTIONS ---

Plot option = Graphics device

Basin char output = WATSTORE

Print option

= Yes

Debug print

= Yes

Input peaks listing = Long

Input peaks format = WATSTORE peak file

Input files used:

peaks (ascii) - C:\PROGRAM FILES\PKFQWIN\TEST\DATA_IN\USGS 02297310 HORSE CREEK NEAR ARCADIA FL

specifications - PKFQWPSF.TMP

Output file(s):

main - C:\PROGRAM FILES\PKFQWIN\TEST\DATA_IN\USGS 02297310 HORSE CREEK NEAR ARCADIA FL

bcd - USGS 02297310 HORSE CREEK NEAR ARCADIA FL PEAK

FLOW.BCD

Program PeakFo	q U. S. GEOLOGICAL SURVEY	Seq	.001.001
Ver. 5.2	Annual peak flow frequency ana	ysis Run	Date / Time
11/01/2007	following Bulletin 17-B Guidel	nes 07/	16/2009 14:12
	station - 02297310 HORSE CREEK NE.	AR ARCADIA FL	
	INPUT DATA SUMMA	R Y	
	Number of peaks in record	= 59	
	Peaks not used in analysis	= 0	
	Systematic peaks in analysis	= 59	
	Historic peaks in analysis	= 0	
	Years of historic record	= 0	
	Generalized skew	= -0.053	
	Standard error	= 0.550	
	Mean Square error	= 0.303	
	Skew option	= WEIGHTED	
	Gage base discharge	= 0.0	
	User supplied high outlier threshold	=	
	User supplied low outlier criterion	=	
	Plotting position parameter	= 0.00	
****** NO	TICE Preliminary machine computa	cions.	*****
****** Us	er responsible for assessment and int	erpretation.	*****
PeakFQ-DEBUG	OPTION SET = 1		
WCF001J-FLO	OD FREQUENCY, BULLETIN 17-B. VER 2.6	P (12/19/83)	
-PRE	LIMINARY MACHINE COMPUTATIONS. USER	IS RE-	
-SPO	NSIBLE FOR ASSESSMENT AND INTERPRETAT	ION.	
WCF101L-INP	UT PARAMS- GENSKU OPT STD-ERR GAGEB	PUOIHQ TUOWIQ	NHIST HISTPD
	-0.053 0 0.550 0.0	0.0	.0 0 0.0
WCF103L-INP	UT PEAKS, HISTORIC FIRST. TOTAL NO =	59	
	2830.0 810.0 6680.0	4790.0	4960.0

1870.0	442.0	1910.0	2540.0	3870.0
11700.0	2100.0	6690.0	1090.0	970.0
1960.0	1680.0	2240.0	3080.0	1930.0
1570.0	1420.0	1540.0	1440.0	3910.0
828.0	693.0	1430.0	2350.0	1780.0
1880.0	1420.0	6260.0	1960.0	1100.0
614.0	970.0	2060.0	5430.0	217.0
742.0	1940.0	8960.0	1250.0	4180.0
2260.0	2790.0	2520.0	5870.0	1100.0
1230.0	6710.0	2500.0	11000.0	4940.0
1950.0	928.0	376.0	767.0	

WCF134I-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE.
WCF203J-PLOTTING POSITIONS OF TOP TEN PEAKS. SYS

0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500 0.1667 WCF217L-FREQUENCY CURVE PARAMS -- SYS 1.0000 3.3013 0.3625 -0.0410

3.3013 0.3625 -0.0410

WCF219J-FREQ CURVE ORDINATES SYS 2-YR (.50) 10-YR (.10) 100-YR (.01)

2013.0 5812.2 13608.2

WCF195I-NO LOW OUTLIERS WERE DETECTED BELOW CRITERION. 188.4

WCF163I-NO HIGH OUTLIERS OR HISTORIC PEAKS EXCEEDED HHBASE. 21266.2

WCF203J-PLOTTING POSITIONS OF TOP TEN PEAKS. 17B

0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500 0.1667

WCF217L-FREQUENCY CURVE PARAMS -- 17B 1.0000 3.3013 0.3625 -0.0437

3.3013 0.3625 -0.0410

WCF219J-FREQ CURVE ORDINATES 17B 2-YR (.50) 10-YR (.10) 100-YR (.01)

2013.7 5810.8 13586.0 WCF238J-FREQ CURVE 17B-EXPECT-PROB. 2013.7 5935.3 14569.5 WCF239J-FREQ CURVE CONF LIMS B17B 95.0 2413.4 7623.2 20180.9 1680.7 4660.7 10022.8

0.0

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.002
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	07/16/2009 14:12

Station - 02297310 HORSE CREEK NEAR ARCADIA FL ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

FLOOD BASE LOGARITHMIC

EXCEEDANCE STANDARD

DISCHARGE PROBABILITY MEAN DEVIATION SKEW

SYSTEMATIC PKS

ABOVE BASE --- --- 3.3013 0.3625 -0.041

BULL.17B-ADJ PKS

ABOVE BASE --- --- 3.3013 0.3625 -0.041

SYSTEMATIC RECORD 0.0 1.0000 3.3013 0.3625 -0.041

BULL.17B ESTIMATE 0.0 1.0000 3.3013 0.3625 -0.044

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES ANNUAL 'EXPECTED 95-PCT CONFIDENCE LIMITS EXCEEDANCE BULL.17B SYSTEMATIC PROBABILITY' FOR BULL. 17B ESTIMATES PROBABILITY RECORD **ESTIMATE** ESTIMATE LOWER UPPER 0.9950 225.2 225.7 204.7 145.2 314.7 0.9900 279.5 279.9 259.3 186.6 381.1 0.9500 501.8 502.2 484.5 366.2 643.7 0.9000 684.0 684.2 669.1 520.9 853.4 0.8000 993.2 993.1 982.1 790.5 1207.0 0.6667 1404.0 1404.0 1398.0 1152.0 1682.0 0.5000 2014.0 2013.0 2014.0 1681.0 2413.0 0.4292 2337.0 2336.0 2340.0 1954.0 2815.0 0.2000 4048.0 4047.0 4092.0 3331.0 5088.0 0.1000 5811.0 5812.0 5935.0 4661.0 7623.0 0.0400 8522.0 8529.0 8852.0 6602.0 11790.0 0.0200 10900.0 10910.0 11490.0 8234.0 15640.0 0.0100 13590.0 13610.0 14570.0 10020.0 20180.0 0.0050 16610.0 16640.0 18150.0 11980.0 25470.0

21220.0

23770.0

14850.0

0.0020

21170.0

33770.0

Program PeakFq U. S. GEOLOGICAL STAVEY

Seq.001.003

Ver. 5.2

Annual peak frow frequency analysis

Run Date / Time

11/01/2007

feriowing Bulletin 17-B Guidelines

07/16/2009 14:12

Station - 02297310 HORSE CREEK NEAR ARCADIA FL

INPUT DATA LISTING

WA	TER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
	1950	2830.0		1980	1880.0	
	1951	810.0		1981	1420.0	
	1952	6680.0		1982	6260.0	
	1953	4790.0		1983	1960.0	
	1954	4960.0		1984	1100.0	
	1955	1870.0		1985	614.0	
	1956	442.0		1986	970.0	
	1957	1910.0		1987	2060.0	
	1958	2540.0		1988	5430.0	
	1959	3870.0		1989	217.0	
	1960	11700.0		1990	742.0	
	1961	2100.0		1991	1940.0	
	1962	6690.0		1992	8960.0	
	1963	1090.0		1993	1250.0	
	1964	970.0		1994	4180.0	
	1965	1960.0		1995	2260.0	
	1966	1680.0		1996	2790.0	
	1967	2240.0		1997	2520.0	
	1968	3080.0		1998	5870.0	
	1969	1930.0		1999	1100.0	
	1970	1570.0		2000	1230.0	
	1971	1420.0		2001	6710.0	
	1972	1540.0		2002	2500.0	

1973	1440.0	2003	11000.0
1974	3910.0	2004	4940.0
1975	828.0	2005	1950.0
1976	693.0	2006	928.0
1977	1430.0	2007	376.0
1978	2350.0	2008	767.0
1979	1780.0		

Explanation of peak discharge qualification codes

P	eakFQ	NWIS	
	CODE	CODE	DEFINITION
	D	3	Dam failure, non-recurrent flow anomaly
	G	8	Discharge greater than stated value
	X	3+8	Both of the above
	L	4	Discharge less than stated value
	K	6 OR C	Known effect of regulation or urbanization
	Н	7	Historic peak

- Minus-flagged discharge -- Not used in computation
 -8888.0 -- No discharge value given
- Minus-flagged water year -- Historic peak used in computation

Ver. 5.2 Annual peak flow frequency analysis Run Date / Time

11/01/2007 following Bulletin 17-B Guidelines

07/16/2009 14:12

Station - 02297310 HORSE CREEK NEAR ARCADIA FL

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1960	11700.0	0.0167	0.0167
2003	11000.0	0.0333	0.0333
1992	8960.0	0.0500	0.0500
2001	6710.0	0.0667	0.0667
1962	6690.0	0.0833	0.0833
1952	6680.0	0.1000	0.1000
1982	6260.0	0.1167	0.1167
1998	5870.0	0.1333	0.1333
1988	5430.0	0.1500	0.1500
1954	4960.0	0.1667	0.1667
2004	4940.0	0.1833	0.1833
1953	4790.0	0.2000	0.2000
1994	4180.0	0.2167	0.2167
1974	3910.0	0.2333	0.2333
1959	3870.0	0.2500	0.2500
1968	3080.0	0.2667	0.2667
1950	2830.0	0.2833	0.2833
1996	2790.0	0.3000	0.3000
1958	2540.0	0.3167	0.3167
1997	2520.0	0.3333	0.3333
2002	2500.0	0.3500	0.3500
1978	2350.0	0.3667	0.3667

1995	2260.0	0.3833	0.3833
1967	2240.0	0.4000	0.4000
1961	2100.0	0.4167	0.4167
1987	2060.0	0.4333	0.4333
1965	1960.0	0.4500	0.4500
1983	1960.0	0.4667	0.4667
2005	1950.0	0.4833	0.4833
1991	1940.0	0.5000	0.5000
1969	1930.0	0.5167	0.5167
1957	1910.0	0.5333	0.5333
1980	1880.0	0.5500	0.5500
1955	1870.0	0.5667	0.5667
1979	1780.0	0.5833	0.5833
1966	1680.0	0.6000	0.6000
1970	1570.0	0.6167	0.6167
1972	1540.0	0.6333	0.6333
1973	1440.0	0.6500	0.6500
1977	1430.0	0.6667	0.6667
1971	1420.0	0.6833	0.6833
1981	1420.0	0.7000	0.7000
1993	1250.0	0.7167	0.7167
2000	1230.0	0.7333	0.7333
1984	1100.0	0.7500	0.7500
1999	1100.0	0.7667	0.7667
1963	1090.0	0.7833	0.7833
1964	970.0	0.8000	0.8000
1986	970.0	0.8167	0.8167
2006	928.0	0.8333	0.8333
1975	828.0	0.8500	0.8500
1951	810.0	0.8667	0.8667

2008	767.0	0.8833	0.8833
1990	742.0	0.9000	0.9000
1976	693.0	0.9167	0.9167
1985	614.0	0.9333	0.9333
1956	442.0	0.9500	0.9500
2007	376.0	0.9667	0.9667
1989	217.0	0.9833	0.9833

End PeakFQ analysis.

Stations processed :

Number of errors :

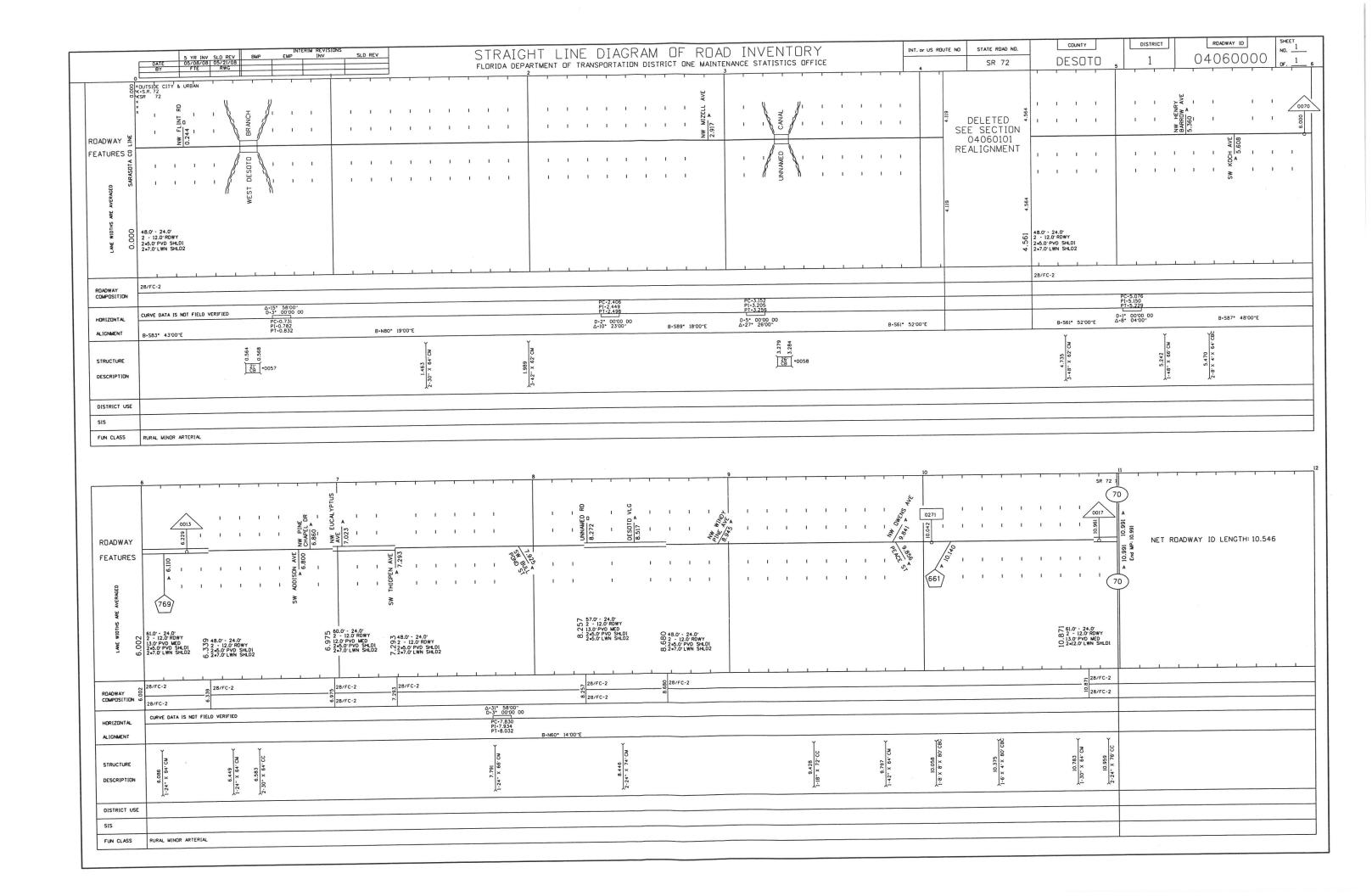
Stations skipped : 0

Station years : 59

Data records may have been ignored for the stations listed below.

(Card type must be Y, Z, N, H, I, 2, 3, 4, or \star .)

(2, 4, and * records are ignored.)


For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 02297310 USGS HORSE CREEK NEAR ARCADIA FL

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

S YR INV SLD REV BMP EMP INV SLD REV	STRAIGHT LINE DIAGRAM OF ROAD INVENTORY	INT. or US ROUTE NO STATE ROAD NO.	COUNTY DISTRICT ROA	DWAY ID SHEET
	FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT ONE MAINTENANCE STATISTICS OFFICE	SR 72	DESOTO 1 040	60101 of. 1
S TOUTSIDE CITY & URBAN SR 72			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.
× x				
RODGERS CREEK				
AT &				
$(G')_{-1}$ $(G')_{-1}$ $(G')_{-1}$ $(G')_{-1}$ $(G')_{-1}$.442			
&, Z, , , , , , , , , , , , , , , ,				
41.0' - 24.0' 2 - 12.0 ROWY				
1.0' - 2.4.0'				
7.0° PVD SHLDI - RT 46.0° - 24.0° 4.0° LWN SHLD2 - RT 2 - 12.0° RDWY 4.0° LWN SHLD2 - RT				
45.0" - 24.0"				
1945C 4				
AY ZOFFC-4				*
Δ-29° 00'00" D-3° 11'00 00 CURVE DATA IS NOT FIELD VERIFIED Δ-5° 00'00"				
PC-0.000 P1-0.091 P1-0.173 B-N89* 08:00°E B-N84* 00:00°E	*			
108E				
517' •0056				
PTION				
CT USE				
ASS RURAL MINOR ARTERIAL				
