TRANSPORTATION SITE IMPACT TRAINING

Estimating the Transportation Impacts of Growth

FDOT

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION SYSTEMS IMPLEMENTATION OFFICE

Table of Contents

Tab 1. Presentation
Tab 2. Example Problems
Tab 3. FDOT Generalized Tables
Tab 4. Rate vs Equation
Tab 5. Internal Captures
Tab 6. Pass-By-Trips
Tab 7. Final Exercises
Tab 8. ITE Resources
Tab 9. Answers
Tab 10. FDOT FTI Site

Tab 1. Presentation

Introduction

- Presenter Introduction
- 1 day training
- Morning Exercise
- Participants introduction:
(1)
- Name
- In two sentences where do you work and what do you do?
- One Fun Fact about yourself (i.e. hobby, talent, travel, etc.)

Housekeeping

- Set phones to vibrate/silent
- Questions- ask lots of them at any time!
- Breaks
- Lunch
- On your own

Presentation Icons

This will represent quick exercises

This will represent example problems

This will represent Case Studies

Training Objectives

- To understand how to use the Site Impact Applications Guide for reviewing developments
- To understand FDOT's guidance for reviewing various documents
- To demonstrate concepts discussed in the Transportation Site Impact Handbook through realworld examples
- To understand the thought process behind the decisions that go into a traffic study

Agenda Overview

1.5 DAYS THAT WILL INCLUDE TRANSPORTATION SITE IMPACT HANDBOOK REVIEW, SITE IMPACT APPLICATION GUIDE OVERVIEW \& HANDS ON APPLICATION

- Introduction
- Training Overview and Agenda
- Transportation Site Impact Handbook Overview
- Methodology Development
- Study Area Requirements
- Analysis Year
- Traffic Analysis Periods
- Forecasting Methodology
- Existing Conditions Analysis
- Data Collection
- Future Conditions Analysis
- Background Traffic
- Trip Generation
- Trip Distribution
- Multimodal Evaluation
- Assignment of Trips to Network
- Mitigation Analysis
- LOS Analysis
- Overview
- Additional Case Study Group Exercise
- Recap

About this Handbook

Introduction

- Background
- Purpose of the Handbook
- About the Handbook
- Updates to the Handbook

- Provide guidance to transportation partners at all levels of government to enhance coordination in the existing review process

Transportation

Site Impact
Process

Step 1: Methodology Development

- Step 2: Existing Conditions Analysis
- Step 3: Future Conditions Analysis
- Step 4: Mitigation Analysis

Methodology Development

- Make sure everyone is on the same page
- Developer, Consultant Agencies
- How we analyze the impacts of the development
- Avoid wasted time and effort
- Agree on critical features of the study
- Study Area
- Time Horizon
- General Transportation

Example Traffic Impact Area
 Factors

Example 1

Sunshine Palm Inc is planning a mixed use development that will include an high-turnover (sit-down) restaurant and a coffee/donut shop with a drive-through window.

- High-turnover restaurant- 2,500 ft² GFA
- Coffee/donut shop with drive-through- $2,100 \mathrm{ft}^{2} \mathrm{GFA}$
- Brainstorming Activity: What questions should be addressed during the methodology?

Take out Workbook Example for Presentation located in Page 2-1. This example will continue throughout the presentation.

Study Area Requirements

- Determining the "traffic impact area" or simply the "impact area"
- Local, regional, or state critical
- What is needed:
- Site map
- Initial trip generation
- Maximum Service Volume and existing volume of surrounding facilities
- Maximum Service Volume is the maximum volume a roadway segment can support before the LOS target is exceeded

Study Area Requirements

- Project Traffic vs Max Service Volume
- Overview
- Comparison of project traffic to thresholds of the percentage of the maximum service flow rate at an established LOS target (ex: 5\%)

Example 1

Sunshine Palm Inc is planning a mixed use development that will include an high-turnover (sit-down) restaurant and a coffee/donut shop with a drive-through window.

- High-turnover restaurant- 2,500 ft² GFA
- Coffee/donut shop with drive-through- 2,100 ft² GFA

Study area- Decision by City Staff. We will be looking at two intersections and two access driveways for this example.

- Existing Conditions (2017)
- Background Conditions (No-Build) (2019)
- Build Out Conditions (2019)

Example located in Page 2-1.

Other Items to Consider

Methodology
Step 1

- Overview
- Methodology Requirements
- Study Area Requirements
- Analysis Years
- Traffic Analysis Periods
- Forecasting Methods - Other Issues

- Other major committed developments should be considered in any site impact analysis
- Is this a redevelopment? How to account for existing or previously approved or allowed traffic?
- "Discounted"?
- Time of vacancy
- Existing Conditions
- Use of travel demand forecasting models
- Multimodal consideration

Example 1: Methodology

Sunshine Palm Inc is planning a mixed use development that will include a high-turnover (sit-down) restaurant and a coffee/donut shop with a drive-through window.

- High-turnover restaurant- 2,500 ft² GFA
- Coffee/donut shop with drive-through- 2,100 ft^{2} GFA

Study area- Decision by city staff. We will be looking at two intersections and two access driveways for this example.

- Existing Conditions (2017)
- Background Conditions (No-Build) (2019)
- Build Out Conditions (2019)
- Analysis Period
- AM

Example located in Page 2-1.

FDOT

Example located in Page 2-2.

Example Using the Online Too

- Activity Traffic Data Online
- Pull 5 years of historical AADTs near the proposed development site

1. FDOT Traffic Data
2. Under Traffic Data select Florida Traffic Online
3. Navigate to location of interest and turn on layer for Portable Traffic Monitoring Sites
4. Click on Site
$\frac{\text { Portable Tratic Moniterino. Site }}{\text { Road Name WAHNSSH WAY }}$
Road Name
Site 555122
Descripton WAHNISH WAY - 400 N OF
SR 373 OORANGE AVE SR 373 (ORANGE AVE)
Section 55000012) Section 55000012
Miepoint 0076
Lathong 30.41367, -84 28977
AADT 7900
Site Type Portabie
Class Data Nio
Class Data No
KFactor 9
DFactor 64.8
TFactor: 3.5
TRAFFIC REPORTS:
Leon Countr:
Annual Average Dall Iratics
SITE 555122
Intancal AaOI
Synoesis 555122
5. Select Historical AADT

Let's explore the website together

Examples of LOS By Mode for Urban Roadways

Source 2013 FDOT LOS Handbook

Example 1

Let's discuss the information below

Delay and LOS Table				2017 Existing	
Intersection	Control	Analysis Level	Time	Delay LOS	LOS
Cypress Creek Road \& Powerline Road	Signal	Intersection	AM	73.4	E
Cypress Creek Road \& NW $6^{\text {th }}$ Way	Signal	Intersection	AM	37.4	D
Powerline Road \& Bank Driveway	Stop	Westbound Approach	AM	17.9	C
Cypress Creek Road	Stop	Northbound Approach	AM	25.7	D
		Westbound Left	AM	< 1.0	A

Example located in Page 2-3.

Future Conditions

What will the traffic conditions be in the future with and without the development?

- Background traffic
- Development traffic projections without development
- Trip generation
- Trip distribution
- Multimodal evaluation
- Assignment of trips to network

Linear Growth

Future
Conditions
Background Traffic

- Overview
- Manual Method

Growth rate/
trend analysis

- Build-up methods Model Methods

- Based on a straight line developed from historic traffic growth
- Assumes constant growth per year
- Does not consider capacity restraint
- Constant land use growth over time

Decaying Exponential

- Based on declining rate of growth over analysis period
- Dense urbanized area
- Remember: even fast growth areas eventually slow (build out)

Build-Up Method

Future
Conditions
Background Traffic

- Overview
- Manual Method
- Growth rate/ trend analysis
Build-up
methods
- Model Methods

Build-Up Method = approved development + background through traffic

- Access impacts of committed system improvements
- Work with local and state agency staff to identify a subarea
- Identify committed transportation projects and probable travel pattern changes within the subarea
- Identify and add approved development traffic
- Confirm committed projects
- Obtain trip assignment

Future Conditions

What will the traffic conditions be in the future with and without the development?

- Background traffic
- Development traffic projections without development
- Trip generation
- Trip distribution
- Multimodal evaluation
- Assignment of trips to network

How are trip generation rates determined?

Future
Conditions
Trip Generation

- Overview

Trip Generation
Manual

- Internal Capture
- Pass-By Trips
- Diverted Trips

- Traffic is counted at each entrance of a certain land use
- Traffic is then studied in relation to the size of certain "independent
 variables"
- Dwelling units, 1,000 square feet, employees, students, fueling positions, rooms, etc.

Simple Trip Generation Example

- Daily trip generation rate for a single family home development $=X$ trips
- 10 homes being built (known as "Dwelling Units")
- Dwelling Units are the "Independent Variable"
- How many weekday trips (i.e. trip ends) do we project?

Simple Trip Generation Example

Future
Conditions
Trip Generation
Overview
Trip Generation
Manual

- Internal Capture
- Pass-By Trips
- Diverted Trips

- Rate vs Equation

EXAMPLE 3: Rate Vs Equation Examples

For the following examples use the flow chart from the ITE Trip Generation Handbook to determine for each case study if the fitted curve (equation) or average rate should be used to estimate trips, or if local data should be collected. Then calculate the trips.

1. Estimate the trip generation for Land Use Code 140 (Manufacturing) on a weekday during the PM peak hour of adjacent street traffic as a function of gross floor area (GFA). Assume the site will have 800,000 sq. ft. of GFA. Method: \qquad Answer: \qquad
2. Estimate trip generation for Land Use Code 310 (Hotel) on weekday during the PM peak hour of the adjacent street traffic as a function of employees. For this example, assume the hotel will have 100 employees. Method: \qquad Answer: \qquad
3. Estimate trip generation for Land Use Code 813 (Free-Standing Discount Superstore) on a weekday during the AM peak hour of adjacent street traffic as a function of gross floor area. For this example, assume the store size will be 180,000 sq. ft. of GFA. Method: \qquad Answer:
4. Estimate trip generation for Land Use Code 210 (Single-Family Detached Housing) on a weekday during the PM peak hour of adjacent street traffic as a function of Dwelling Units. For this example, assume the number of units is 300 . Method: \qquad Answer: \qquad
5. Estimate trip generation for Land Use Code 090 (Park-and-Ride Lot with Bus or Light Rail Service) on a weekday during the AM peak hour of adjacent street traffic as a function of Parking Spaces. For this example, assume the number of spaces to be 50 . Method: \qquad Answer:
6. Estimate trip generation for Land Use Code 445 (Multiplex Movie Theater) on a weekday during the PM peak hour of adjacent street traffic as a function of Screens. For this example, assume the number of screens to be 20 . Method: \qquad Answer: \qquad

What's Peak Hour?

Future
Conditions
Trip Generation

- Overview

Trip Generation Manual

- Internal Capture
- Pass-By Trips
- Diverted Trips

- Any 4 consecutive 15 -minute periods that equal the highest 1-hour volume
- There are usually morning and evening peaks
- Some lunch time peaks are important
- We are usually using peak hour of Adjacent Street Traffic
- Highest volume on roadway including site traffic

Example 1

For our restaurant and coffee shop example we will use the rate. In your workbook you will find the ITE Land Use sheets for each of these land uses. Fill out the remaining spaces.

Trip Generation AM Peak Period Calculation						
Land use	Land Use Code	Independent Variable	Average Rate	Total Trips	Entering Trips	Exiting Trips
High-Turnover (Sit-Down) Restaurant	932	$2,500 \mathrm{ft}^{2}$		25		
Coffee/Donut Shop with Drive- Through Window	937	$2,100 \mathrm{ft}^{2}$	88.99		92	

Example located in Page 2-4.

	Table 6.1 Unconstrained Internal Person Trip Capture Rates for Trip Origins within a Mixed-Use Development			
			WEEKDAY	
			AM Peak Hour	PM Peak Hour
	From OFFICE	To Retail	28\%	20\%
		To Restaurant	63\%	4\%
		To Cinema/Entertainment	0\%	0\%
Future		To Residential	1\%	2\%
		To Hotel	0\%	0\%
diti	From RETAIL	To Office	29\%	2\%
Conditions		To Restaurant	13\%	29\%
Trip Generation		To Cinema/Entertainment	0\%	4\%
- Overview		To Residential	14\%	26\%
		To Hotel	0\%	5\%
Trip Generation Manual	From RESTAURANT	To Office	31\%	3\%
		To Retail	14\%	41\%
		To Cinema/Entertainment	0\%	8\%
- Internal Capture - Pass-By Trips - Diverted Trips		To Residential	4\%	18\%
		To Hotel	3\%	7\%
	From CINEMA/ENTERTAINMENT	To Office	0\%	2\%
		To Retail	0\%	21\%
		To Restaurant	0\%	31\%
		To Residential	0\%	8\%
		To Hotel	0\%	2\%
	From RESIDENTIAL	To Office	2\%	4\%
		To Retail	1\%	42\%
		To Restaurant	20\%	21\%
		To Cinema/Entertainment	0\%	0\%
		To Hotel	0\%	3\%
	From HOTEL	To Office	75\%	0\%
		To Retail	14\%	16\%
		To Restaurant	9\%	68\%
$\square \mathrm{e}$		To Cinema/Entertainment	0\%	0\%
		To Residential	0\%	2\%
	Source: Bochner, B., K. Hooper, B. Sperry, and R. Dunphy. NCHRP Report 884: Enhanoing Internal Tip Capture Eotimation for Mixed-Use Developments. Washington, DC: Transportation Research Board, Tables 99 and 100, 2011.			

	Table 6.2 Unconstrained Internal Person Trip Capture Rates for Trip Destinations within a Mixed-Use Development			
			Weekday	
			AM Peak Hour	PM Peak Hour
	To OFFICE	From Retail	4\%	31\%
		From Restaurant	14\%	30\%
		From Cinema/Entertainment	0\%	6\%
		From Residential	3\%	57\%
		From Hotel	3\%	0\%
- Overview - Trip Generation Manual - Internal Capture - Pass-By Trips - Diverted Trips	To RETAIL	From Office	32\%	8\%
		From Restaurant	8\%	50\%
		From Cinema/Entertainment	0\%	4\%
		From Residential	17\%	10\%
		From Hotel	4\%	2\%
	To RESTAURANT	From Office	23\%	2\%
		From Retail	50\%	29\%
		From Cinema/Entertainment	0\%	3\%
		From Residential	20\%	14\%
		From Hotel	6\%	5\%
	To CINEMA/ENTERTAINMENT	From Office	0\%	1\%
		From Retail	0\%	26\%
		From Restaurant	0\%	32\%
		From Residential	0\%	0\%
		From Hotel	0\%	0\%
	To RESIDENTIAL	From Office	0\%	4\%
		From Retail	2\%	46\%
		From Restaurant	5\%	16\%
		From Cinema/Entertainment	0\%	4\%
		From Hotel	0\%	0\%
	To HOTEL	From Office	0\%	0\%
		From Retail	0\%	17\%
		From Restaurant	4\%	71\%
		From Cinema/Entertainment	0\%	1\%
2		From Residential	0\%	12\%
	Source: Bochner. B., K. Hooper, B. Sperry, and R. Dunphy. NCHRP Report 884: Enhancing intemal Tinp Capture Estimation for Mixed-Use Developments. Washington, DC: Transportation Research Board, Tables 101 and 102, 2011.			

Example 8: Pass-By-Trips

For the following examples use the provided pass-by pages from the ITE handbook to determine the pass-by percentage.

Future
Conditions
Trip Generation

- Overview
- Trip Generation

Manual

- Internal Capture
- Pass-By Trips
- Diverted Trips

1. Land Use Code 813 - Free Standing Discount Superstore, Saturday, Mid-Day Peak Period. Answer:
2. Land Use Code 853 - Convenience Market with Gasoline Pumps, Weekday, PM Peak Period Answer:
3. Land Use Code 934 - Fast-Food Restaurant with Drive - Through Window, Weekday, PM Peak Period. Answer: \qquad
4. Land Use Code 945 - Gasoline/Service Station with Convenience Market, Weekday, PM Peak Period.
\qquad

For the following example apply pass by. The land use is a fast-food restaurant with a drive through window. The PM peak hour od adjacent street traffic is being analyzed. Fill in the blank:

Land Use	Land Use Code	Independent Variable	Average Rate	Total Trip	Entering Trips	Exiting Trips
Fast-Food Restaurant with Drive-Through	934	$1,200 \mathrm{ft}^{2}$	32.67			
Pass By						
External Trips New to the System						

Let's practice with pass by in Tab 6

Pass-By Reasonableness Checks

- FDOT Guidelines: The number of pass-by trips should not exceed 10 percent of the adjacent street traffic during peak hour
- Strong justification must be provided to document pass-by rates greater than 25 percent of the total external trip generation of the development's retail portion
- Ensure proposed development displays characteristics to generate pass-by trips

External Trips New to the System Example				
	Apartment	Retail	Office	TOTAL
Total Trip Generation	310	3740	745	4795
Exiting Internal Capture	26	43	62	131
Entering Internal Capture	52	66	13	131
- Total Internal Capture	78	109	75	262
External Trips	232	3631	670	4533
Pass-by Percent	0\%	20\%	0\%	
- Pass-by Trips	0	726	0	726
External Trips New to System	232	2905	670	3807

Diverted Trip

Future
Conditions
Trip Generation

- Overview
- Trip Generation Manual
- Internal Capture
- Pass-By Trips
- Diverted Trips

- In most cases, attempting to account for diverted trips presents an unnecessary complication in the analysis.
- For cases which a heavily traveled corridor is the following things accounting for diverted trips may be useful:
- 1. Within the study area,
- 2. Not immediately adjacent to the site, and
- 3. Expected to serve as the source for a number of retail trips
- In most cases, separating diverted trips from new trips is not necessary

Example 1

Example located in Page 2-5.

Future Conditions

What will the traffic conditions be in the future with and without the development?

- Background traffic
- Development traffic projections without development
- Trip generation
- Trip distribution
- Multimodal evaluation
- Assignment of trips to network

Future Conditions

What will the traffic conditions be in the future with and without the development?

- Background traffic
- Development traffic projections without development
- Trip generation
- Trip distribution
- Multimodal evaluation
- Assignment of trips to network

Multimodal Evaluation

- Estimating the number of travelers between zones that are anticipated to use modes other than automobiles in the TIA (transit, bicycle, walking, etc.)
- Provide justification on any transit, bicycle, or pedestrian adjustment reducing vehicle trips
- FDOT's Transit Office has developed the transit analysis tool TBST (The Transit Boarding Estimation and Simulation Tool) used in transit assessment

Manual Methods

- Manual trip assignment assigns traffic based on existing or anticipated future turning and through movement percentages
- Trips may be added and subtracted to the roadway network between major intersections and corridors to reflect local area origins and destinations
- Assigned trips such as primary, pass-by, and diverted trips are distinguishable and can be easily reviewed

Example 1

Assign the percentages to the movements

Example located in Page 2-7.

Example 1

Is there only ONE answer? Let's discuss

Example located in Page 2-8.

Example 1

Apply your volumes to the percentages. Remember there are two volumes.... What are they?

Example located in Page 2-8.

LOS Analysis

- There are several tools that are available for LOS analysis for a particular location
- Highway Capacity Manual (HCM)

LOS and
Mitigation
LOS Analysis

- Mitigation
- Overview
- Highway Capacity Software (HCS)
- FDOT Quality/Level of Service (Q/LOS)

Handbook

- Generalized Service Volume Tables

Bicycle and Pedestrian LOS

- Pedestrian LOS based on four variables:
- Existence of a sidewalk
- Lateral separation of pedestrians from motorized vehicles
- Motorized vehicle volumes
- Motorized vehicle speeds

LOS Overview

- Each local and state government establishes a LOS standard for each public facility
- Establishing the comparison of existing and future (for all analysis years) estimated LOS of the study area is critical

Example 1

Delay and LOS Table				2017 Existing		2019 No Build		2019 Build	
Intersection	Contr ol	Analysis Level	Time	$\begin{gathered} \text { Delay } \\ \text { LOS } \end{gathered}$	LOS	Delay LOS	LOS	$\begin{gathered} \text { Delay } \\ \text { LOS } \end{gathered}$	LOS
Cypress Creek Road \& Powerline Road	Signal	Intersection	AM	73.4	E	80.9	F	85.2	F
Cypress Creek Road \& NW 6 ${ }^{\text {th }}$ Way	Signal	Intersection	AM	37.4	D	37.3	D	37.4	D
Powerline Road \& Bank Driveway	Stop	Westbound Approach	AM	17.9	C	18.3	C	26.3	D
Cypress Creek Road \&		Northbound Approach	AM	25.7	D	26.7	D	38.3	E
Bank Driveway	Stop	Westbound Left	AM	< 1.0	A	< 1.0	A	3.9	A

Example located in Page 2-10.

Mitigation

- If LOS is found to be unacceptable, improvements should be suggested and modeled to show the improvements needed to accommodate the proposed development traffic
- Planned improvements should be vetted with plans and programs from any applicable MPO and transportation authority, as well as the State Transportation Plan and applicable FDOT Work Program

Mitigation-Proportionate Share Contribution

Number of trips from the proposed development expected to reach roadways during the peak hour from the stage or phase being approved
Proportionate
Construction cost of the improvement to maintain or achieve the adopted LOS
\(x \quad \begin{gathered}Change in the peak hour
maximum service volume of\end{gathered}\) roadways resultin adways resulting fro construction of an improvement necessary to maintain or achieve the adopted LOS

Mitigation- Case Studies \#1

A traffic study performed for the City for a major development in the Central Business District (CBD) with access to non-State roadways has identified impact to a nearby Interstate off-ramp. The developer's traffic engineer has identified improvements to the ramp that the developer is willing to make to you (FDOT Traffic Operations Engineer). The intersection LOS analysis indicates that the improvement will mitigate the project's impacts, but the interchange intersection will continue to operate at a poor LOS. FDOT has an ongoing PD\&E Study at the interchange currently, but it will not be completed soon. As an FDOT Traffic Operations Engineer, you are not clear what authority you have in this situation? How do you proceed?

Tab 7: Additional Exercises

Tab 2. Example Problems

Workbook Example for Presentation

PRESENTATION EXAMPLE 1

Sunshine Palm Inc is planning a development that will include a high-turnover (sit-down) restaurant and a coffee/donut shop with a drive-through window.
$2,500 \mathrm{ft}^{2}$
2,100 ft^{2}
Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

METHODOLOGY

Study Area Determination

For this example, the study area was determined and will include 2 intersections and 2 access driveways.

Scenarios

Existing Conditions (2017)
Background Conditions (no-build) (2019)
Buildout Conditions (2019)
Analysis Period
AM
Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXISTING CONDITIONS ANALYSIS

Data Collection

Notes:
\qquad

Analysis of Existing Conditions

Delay and LOS Table				2017 Existing	
Intersection	Control	Analysis Level	Time	Delay LOS	LOS
Cypress Creek Road \& Powerline Road	Signal	Intersection	AM	73.4	E
Cypress Creek Road \& NW $6^{\text {th }}$ Way	Signal	Intersection	AM	37.4	D
Powerline Road \& Bank Driveway	Stop	Westbound Approach	AM	17.9	C
Cypress Creek Road \& Bank Driveway	Stop	Northbound Approach	AM	25.7	D
\& Bank Driveway		Westbound Left	AM	< 1.0	A

Notes:

\qquad

FUTURE CONDITIONS ANALYSIS

Growth Rate- For this analysis we will use a 1% growth rate

Trip Generation

Attached are the Trip Generation Tables.

Trip Generation AM Peak Period Calculation							
Land use	Land Use Code	Independent Variable	Average Rate	Total Trips	Entering Trips	Exiting Trips	
High-Turnover (Sit-Down) Restaurant Coffee/Donut Shop with Drive-Through Window	932	$2,500 \mathrm{ft}^{2}$		25			
	937	$2,100 \mathrm{ft}^{2}$	88.99		95	92	

Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pass-by is not available for these land uses in the AM peak period. For this example, we will use the passby of 50% for the restaurant and 50% for the coffee/donut shop.

1. 10% Rule

Look back on our data collection

- North-Side Roadway: $1,396+1,153=2,549$
- East-West Roadway: 1,186+1,793 = 2,979
- Adjustment Shared Volume: $122+137=259$
- $2,549+2,979-259=5,269$
- $5,269 \times 0.01=530$

2. Calculate pass by and New External Trips

Trip Generation AM Peak Period Calculation						
Land use	Land Use Code	Independent Variable	Average Rate	Total Trips	Entering Trips	Exiting Trips
High-Turnover (Sit-Down) Restaurant Coffee/Donut Shop with Drive-Through Window	932	2,500 ft ${ }^{2}$	9.94	25	14	11
	937	2,100 ft ${ }^{2}$	88.99	187	95	92
			Total	212	109	103
Pass by						
High-Turnover (Sit-Down) Restaurant (50\% AM Pass By) Coffee/Donut Shop with Drive-Through Widow (50\% AM Pass By)				12		
				94		
*Total Pass by Trips				106	53	53
External Trips New to the System						

Total Pass by Calculated is 106 which is less than the 10% cap of 530
Because this is not a mixed-use development internal capture is not considered.

Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trip Distribution

Distribution of trips to and from the site was determined manually, based on knowledge of the local network, current traffic volumes, and discussion with City staff. The following general assumptions were made:

Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trip Assignment

Consider:

- Driver tendencies and local behavior (such as the percentage of drivers who choose the first available driveway when multiple options exist, and whether the use will draw local, daily users or regional drivers who are not likely to be familiar with the network)
- Internal circulation design (outbound trips tend to be more evenly distributed amount multiple exits comparted to inbound trips).
- Congestion and travel times by time of day (drivers familiarity with the area may consider avoid a congested left turn, for example).
- Planned network improvements that could modify assignment in one or more horizon years.
- One-way street or other factors that would lead to different inbound and outbound paths.

Notes:
\qquad

Calculate the project volume for each movement using the distribution and the trip generation.

Notes:

\qquad

Analysis of Future Conditions

Delay and LOS Table				2017 Existing		2019 No Build		2019 Build	
Intersection	Control	Analysis Level	Time	Delay LOS	LOS	Delay LOS	LOS	Delay LOS	LOS
Cypress Creek Road \& Powerline Road	Signal	Intersection	AM	73.4	E	80.9	F	85.2	F
Cypress Creek Road \& NW $6^{\text {th }}$ Way	Signal	Intersection	AM	37.4	D	37.3	D	37.4	D
Powerline Road \& Bank Driveway	Stop	Westbound Approach	AM	17.9	C	18.3	C	26.3	D
 Bank Driveway	Stop	Northbound Approach	AM	25.7	D	26.7	D	38.3	E
Bank Driveway		Westbound Left	AM	< 1.0	A	< 1.0	A	3.9	A

Notes:
\qquad

MITIGATION

- Mitigation is required at locations that are found to operate unacceptable. Agencies set their own criteria for unacceptable operations, and these may vary by agency type and geographic location.
- Typically, individual turning movements or overall intersections operating at LOS E or LOS F are considered to operate unacceptably, and require mitigations.
- Mitigation strategies for locations that are determined to operate unacceptably should be discussed with the review agency.
- When trips from a proposed development cause a deficiency, the proportionate share contribution shall be calculated using the formula below.
\(\left.$$
\begin{array}{ccc}\text { Construction } \\
\text { cost of the } \\
\text { improvement } \\
\text { to maintain } \\
\text { or achieve } \\
\text { Share } \\
\text { the adopted } \\
\text { LOS }\end{array}
$$ \quad \begin{array}{c}Number of trips from the proposed

development expected to reach

roadways during the peak hour from

the stage or phase being approved\end{array}\right\}\)| Change in the peak hour maximum |
| :---: |
| service volume or roadways resulting |
| from construction of an improvement |
| necessary to maintain or achieve the |
| adopted LOS |

If the road is determined to have a deficiency without the project traffic, the improvements necessary to correct the deficiency is the funding responsibility of the entity which maintains the roadway, and the costs to correct that deficiency shall be removed from the project's proportionate-share calculation. The development's proportionate share is then based only on the needed transportation improvements that are greater than that identified deficiency with the necessary improvements in place.

Results of Case Study

In this case study, although LOS F operations were identified at one intersection, it was determined that the deficiencies of this intersection will be addressed as part of the County's Transit Oriented Concurrency system.
Additionally, although LOS E can be expected for each driveway during at least one peak period, this was deemed acceptable as queuing would be contained on site.
No mitigation measures were recommended as part of the study.

Tab 3. FDOT Generalized Tables

Example 2: Applying FDOT Generalized Tables

For the following examples use the 12/18/12 FDOT Generalized Service Volume Tables to determine the LOS along the roadway segments.

1. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 30,000. The roadway is a 4-lane divided state signalized arterial in an urbanized area with a posted speed limit of 50 mph .
Answer: \qquad
2. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 37,900. The roadway is a 4-lane undivided state signalized arterial in an urbanized area with a posted speed limit of 50 mph with exclusive left lanes.
Answer: \qquad
3. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 65,100. The roadway is a 6-lane freeway in a transition area with auxiliary lanes present in both directions. Answer: \qquad
4. What is the LOS of a roadway that has a Peak Hour directional volume of 1,530 . The roadway is a 4-lane divided Highway located in a Rural Undeveloped Area.
Answer: \qquad
5. What is the LOS of a roadway that has a Peak Hour Two-Way volume of 2,500 . The roadway is a 4-lane divided Non-State Signalized Roadway with a posted speed limit of 30 mph located in a transition area.
Answer: \qquad
6. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 45,000. The roadway is a 6-lane divided state signalized arterial in an urbanized area with a posted speed limit of 50 mph .
Answer: \qquad

TABLE 1 (continued)

Generalized Annual Average Daily Volumes for Florida's
Urbanized Areas

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities		Interrupted Flow Facilities				
	Freeways	Core Freeways	Highways	Class I	Clase Arterials I	Bicycle	Pedestrian

ROADWAY CHARACTERISTICS

Area type (u,lu)	lu	lu	u	u	u	u	u	u	u	u
Number of through lanes (both dir.)	4-10	4-12	2	4-6	2	4-8	2	4-8	4	4
Posted speed (mph)	70	65	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	70	55	55	50	55	35	35	50	50
Auxiliary Lanes (n, y)	n	n								
Median (n, nr, r)			n	r	n	r	n	r	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1	1
\% no passing zone			80							
Exclusive left turn lane impact (n, y)			[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)					n	n	n	n	n	n
Facility length (mi)	4	4	5	5	2	2	1.9	1.8	2	2
Number of basic segments	4	4								
TRAFFIC CHARACTERISTICS										
Planning analysis hour factor (K)	0.090	0.085	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.547	0.547	0.550	0.550	0.550	0.560	0.565	0.560	0.565	0.565
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)			1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	4.0	4.0	2.0	2.0	1.0	1.0	1.0	1.0	2.5	2.0
Local adjustment factor	0.91	0.91	0.97	0.98						
\% left turns					12	12	12	12	12	12
\% right turns					12	12	12	12	12	12

CONTROL CHARACTERISTICS

Number of signals					4	4	10	10	4	6
Arrival type (1-6)					3	3	4	4	4	4
Signal type $(\mathrm{a}, \mathrm{c}, \mathrm{p})$					c	c	c	c	c	c
Cycle length (C)					120	150	120	120	120	120
Effective green ratio (g/C)					0.44	0.45	0.44	0.44	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)									n, 50\%, y	n
Outside lane width (n, t, w)									t	t
Pavement condition (d, t, u)									t	
On-street parking (n, y)										
Sidewalk (n, y)										n, 50\%, y
Sidewalk/roadway separation(a, t, w)										t
Sidewalk protective barrier (n, y)										n

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highways		Arterials		Bicycle	Ped	Bus
	Density	Two-Lan	Multilane	Class I	Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats	ats			
B	≤ 17	> 83.3	≤ 17	> 31 mph	$>22 \mathrm{mph}$	≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	> 17 mph	≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	> 66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$	≤ 4.25	≤ 4.25	<3
E	≤ 39	> 58.3	≤ 35	$>15 \mathrm{mph}$	$>10 \mathrm{mph}$	≤ 5.00	≤ 5.00	<2

$\% \mathrm{ffs}=$ Percent free flow speed ats $=$ Average travel speed

TABLE 2 (continued)

Generalized Annual Average Daily Volumes for Florida's Transitioning and
Areas Over 5,000 Not In Urbanized Areas
12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities			Interrupted Flow Facilities					
				State Arterials				Class I	
	Freeways	Highways		Class I		Class II		Bicycle	Pedestrian
ROADWAY CHARACTERISTICS									
Area type (t,uo)	t	t	t	t	t	t	t	t	t
Number of through lanes (both dir.)	4-10	2	4-6	2	4-6	2	4-6	4	4
Posted speed (mph)	70	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	55	55	50	55	35	35	50	50
Auxiliary lanes (n, y)	n	n	n						
Median (n, nr, r)		n	r	n	y	n	y	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1
\% no passing zone		60							
Exclusive left turn lane impact (n, y)		[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)				n	n	n	n	n	n
Facility length (mi)	8	5	5	1.8	2	2	2	2	2
Number of basic segments	4								
TRAFFIC CHARACTERISTICS									
Planning analysis hour factor (K)	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.555	0.550	0.550	0.550	0.570	0.570	0.565	0.570	0.570
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	9.0	4.0	4.0	2.0	3.0	2.0	3.0	3.0	3.0
Local adjustment factor	0.85	0.97	0.95						
\% left turns				12	12	12	12	12	12
\% right turns				12	12	12	12	12	12

CONTROL CHARACTERISTICS

Number of signals				5	4	10	10	4	6
Arrival type (1-6)				4	3	4	4	4	4
Signal type (a, c, p)				c	c	c	c	c	c
Cycle length (C)				120	150	120	150	120	120
Effective green ratio (g/C)				0.44	0.45	0.44	0.45	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)								n, 50\%, y	n
Outside lane width ($\mathrm{n}, \mathrm{t}, \mathrm{w}$)								t	t
Pavement condition (d, t, u)								t	
On-street parking (n, y)								n	n
Sidewalk (n, y)									n, 50\%, y
Sidewalk/roadway separation (a, t, w)									t
Sidewalk protective barrier (n, y)									n

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highways		Arterials		Bicycle	Ped	Bus
	Density	Two-Lane	Multilane	Class I	Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats	ats			
B	≤ 17	> 83.3	≤ 17	$>31 \mathrm{mph}$	$>22 \mathrm{mph}$	≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	$>17 \mathrm{mph}$	≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	> 66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$	≤ 4.25	≤ 4.25	< 3
E	≤ 39	> 58.3	≤ 35	$>15 \mathrm{mph}$	$>10 \mathrm{mph}$	≤ 5.00	≤ 5.00	<2

[^0]TABLE 3
Generalized Annual Average Daily Volumes for Florida's Rural Undeveloped Areas and Developed Areas Less Than 5,000 Population ${ }^{1}$

12/18/12

INTERRUPTED FLOW FACILITIES					UNINTERRUPTED FLOW FACILITIES									
STATE SIGNALIZED ARTERIALS					FREEWAYS									
Lanes	B	C	D	E	Lanes	B	C	D	E					
2	*	12,900	14,200	**	4	28,800	43,000	52,300	60,000					
4	*	29,300	30,400	**	6	43,000	64,000	78,300	92,500					
6	*	45,200	45,800	**	8	57,500	85,400	104,400	123,500					
Non-State Signalized Roadway Adjustments (Alter corresponding state volumes by the indicated percent.) Non-State Signalized Roadways - 10\%					Freeway Adjustments Auxiliary Lanes Present in Both Directions $+20,000$									
$\begin{gathered} \text { Lanes } \\ 2 \\ 2 \\ 2 \\ \text { Multi } \\ \text { Multi } \end{gathered}$	Median \& Turn Lane Adjustments				UNINTERRUPTED FLOW HIGHWAYS									
	Median Left Lan	Right Lanes		Factors $+5 \%$	Rural Undeveloped									
	No	No		-20\%	Lanes	Median		D	E					
	Yes	No			2	Undivided	4,700	14,300	28,600					
	No	No		-52\%		Divided	25,700	-51,000	57,900					
	-	Ye		+5\%	6	Divided	38,800	0 76,700	86,800					
	One-Way Facility Adjustment Multiply the corresponding two-directional volumes in this table by 0.6				$\begin{gathered} \text { Lanes } \\ 2 \\ 4 \\ 6 \end{gathered}$	Developed Areas								
					Undivided	8,700	0 23,100	31,500						
					Divided	25,900	-52,400	59,600						
					Divided	38,800	0 78,400	89,500						
						Passing Lane Adjustments Alter LOS B-D volumes in proportion to the passing lane length to the highway segment length								
BICYCLE MODE ${ }^{2}$ (Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)														
					Lanes	Median	Exclusive left	s Adjustm	ent factors					
Rural Undeveloped						2	Divided	Yes		5\%				
					Multi	Undivided	Yes							
Shoul					Multi	Undivided	No		5\%					
Lane	B	C	D	E										
	*	1,300	2,000	3,200	${ }^{1}$ Values shown are presented as two-way annual average daily volumes for levels of service and are for the automobile/truck modes unless specifically stated. This table									
	1,000	2,100	3,200	10,600	$\begin{aligned} & \text { service a } \\ & \text { does not } \end{aligned}$	$\begin{aligned} & \text { are for the auto } \\ & \text { nstitute a stand } \end{aligned}$	$\begin{aligned} & \text { ile/truck modes } \\ & \text { nd should be us } \end{aligned}$	specifically stated for general planni	ng					
	2,600	3,900	18,500	>18,500	applicat more spe	. The compute ic planning ap	dels from which ions. The table	ble is derived shou iving computer mo	ld be used for dels should					
	Developed Areas				not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual and the Transit Capacity and Quality of Service Manual.									
Shoulder/Bicycle														
Lane	B	C	D	E	${ }^{2}$ Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehicles, not number of bic yclists or pedestrians using the facility.									
	*	2,300	4,900	15,600	* Cannot be achieved using table input value defaults.									
	1,700	4,500	13,300	18,500										
	5,900	18,500	18,500		** Not applicable for that level of service letter grade. For the auto mobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bic ycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.									
(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)														
Sidewa	B	C	D	E										
	*	*	2,700	9,200	Source:									
	*	1,500	8,400	14,900	Florida Department of Transportation Systems Planning Office									
	3,600	10,200	16,700	>19,200	www.dot.state.fl. us/planning/systems/sm/los/default.shtm									

TABLE 3 (continued)

Generalized Annual Average Daily Volumes for Florida's
Rural Undeveloped Areas and
Developed Areas Less Than 5,000 Population
12/18/12

[^1]

TABLE 4 (continued)

Generalized Peak Hour Two-Way Volumes for Florida's Urbanized Areas

12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities		Interrupted Flow Facilities			
			State Arterials		Class I	
	Freeways	Highways	Class I	Class II	Bicycle	Pedestrian

ROADWAY CHARACTERISTICS

Area type (lu, u)	lu	u	u	u	u	u	u	u	u
Number of through lanes (both dir.)	4-12	2	4-6	2	4-8	2	4-8	4	4
Posted speed (mph)	70	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	55	55	50	55	35	35	50	50
Auxiliary lanes (n,y)	n								
Median (n, nr, r)		n	r	n	r	n	r	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1
\% no passing zone		80							
Exclusive left turn lane impact (n, y)		[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)				n	n	n	n	n	n
Facility length (mi)	4	5	5	2	2	1.9	1.8	2	2
Number of basic segments	4								
TRAFFIC CHARACTERISTICS									
Planning analysis hour factor (K)	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.547	0.550	0.550	0.550	0.560	0.565	0.560	0.565	0.565
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	4.0	2.0	2.0	1.0	1.0	1.0	1.0	2.5	2.0
Local adjustment factor	0.91	0.97	0.98						
\% left turns				12	12	12	12	12	12
\% right turns				12	12	12	12	12	12

CONTROL CHARACTERISTICS

Number of signals				4	4	10	10	4	6
Arrival type (1-6)				3	3	4	4	4	4
Signal type (a, c, p)				c	c	c	c	c	c
Cycle length (C)				120	150	120	120	120	120
Effective green ratio (g/C)				0.44	0.45	0.44	0.44	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)								$\mathrm{n}, 50 \%, \mathrm{y}$	n
Outside lane width ($\mathrm{n}, \mathrm{t}, \mathrm{w}$)								t	t
Pavement condition (d, t, u)								t	
On-street parking (n, y)								n	n
Sidewalk (n, y)									n, 50\%, y
Sidewalk/roadway separation (a, t, w)									t
Sidewalk protective barrier (n, y)									n

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highways		Arterials		Bicycle	Ped	Bus
	Density	Two-Lane	Multilane	Class I	Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats	ats			
B	≤ 17	> 83.3	≤ 17	$>31 \mathrm{mph}$	> 22 mph	≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	$>17 \mathrm{mph}$	≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	>66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$	≤ 4.25	≤ 4.25	< 3
E	≤ 39	> 58.3	≤ 35	> 15 mph	> 10 mph	≤ 5.00	≤ 5.00	<2

[^2]| INTERRUPTED FLOW FACILITIES | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STATE SIGNALIZED ARTERIALS | | | | | |
| Class I (40 mph or higher posted speed limit) | | | | | |
| Lanes | Median | B | C | D | E |
| 2 | Undivided | * | 1,300 | 1,460 | ** |
| 4 | Divided | * | 3,060 | 3,200 | ** |
| 6 | Divided | * | 4,690 | 4,820 | ** |
| Class II (35 mph or slower posted speed limit) | | | | | |
| Lanes | Median | B | C | D | E |
| 2 | Undivided | * | 580 | 1,200 | 1,280 |
| 4 | Divided | * | 890 | 2,590 | - 2,850 |
| 6 | Divided | * | 1,440 | 4,040 | - 4,280 |
| Non-State Signalized Roadway Adjustments
 (Alter corresponding state volumes by the indicated percent.)
 Non-State Signalized Roadways -10\% | | | | | |
| Median \& Turn Lane Adjustments | | | | | |
| | | Exclusive | Exclu | | Adjustment |
| Lanes | Median | Left Lanes | Right L | | Factors |
| 2 | Divided | Yes | No | | +5\% |
| 2 | Undivided | No | No | | -20\% |
| Multi | Undivided | Yes | No | | -5\% |
| Multi | Undivided | No | No | | -25\% |
| - | - | - | Ye | | +5\% |
| One-Way Facility Adjustment
 Multiply the corresponding two-directional volumes in this table by 0.6 | | | | | |

UNINTERRUPTED FLOW FACILITIES				
Lanes	B	FREEWAYS		
4	3,970	C	D	E
6	5,860	7,710	6,200	6,460
8	7,660	10,230	12,190	9,990
10	9,550	12,750	15,190	13,500
			17,010	

Freeway Adjustments

```
    Auxiliary Lanes
    Present in Both Directions
    +1,800 +5%
```

UNINTERRUPTED FLOW HIGHWAYS

Lanes	Median	B	C	D	E
2	Undivided	820	1,550	2,190	2,990
4	Divided	3,170	4,460	5,660	6,260
6	Divided	4,750	6,700	8,480	9,400

Uninterrupted Flow Highway Adjustments

Lanes	Median	Exclusive left lanes	Adjustment factors
2	Divided	Yes	$+5 \%$
Multi	Undivided	Yes	-5%
Multi	Undivided	No	-25%

${ }^{1}$ Values shown are presented as peak hour two-way volumes for levels of service and
are for the automobile/truck modes unless specific ally stated. This table does not
constitute a standard and should be used only for general planning applications. The
computer models from which this table is derived should be used for more specific
planning applications. The table and deriving computer models should not be used for
corridor or intersection design, where more refined techniques exist. Calculations are
based on planning applications of the Highway Capacity Manual and the Transit
Capacity and Quality of Service Manual.
${ }^{2}$ Level of service for the bic ycle and pedestrian modes in this table is based on number
of motorized vehicles, not number of bic yc lists or pedestrians using the facility.
${ }^{3}$ Buses per hour shown are only for the peak hour in the single direction of the higher traffic
flow.
${ }^{*}$ Cannot be achieved using table input value defaults.
** Not applicable for that level of service letter grade. For the auto mobile mode,
volumes greater than level of service D become F because intersection capacities have
been reached. For the bicycle mode, the level of service letter grade (including F) is not
achievable because there is no maximum vehicle volume threshold using table input
value defaults.

[^3]TABLE 5
(continued)

Generalized Peak Hour Two-Way Volumes for Florida's Transitioning Areas and
Areas Over 5,000 Not In Urbanized Areas
12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities			Interrupted Flow Facilities					
				State Arterials				Class I	
	Freeways	Highways		Class I		Class II		Bicycle	Pedestrian
ROADWAY CHARACTERISTICS									
Area type (t,uo)	t	t	t	t	t	t	t	t	t
Number of through lanes (both dir.)	4-10	2	4-6	2	4-6	2	4-6	4	4
Posted speed (mph)	70	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	55	55	50	55	35	35	50	50
Auxiliary lanes (n,y)	n	n	n						
Median (n, nr, r)		n	r	n	y	n	y	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1
\% no passing zone		60							
Exclusive left turn lane impact (n, y)		[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)				n	n	n	n	n	n
Facility length (mi)	8	5	5	1.8	2	2	2	2	2
Number of basic segments	4								
TRAFFIC CHARACTERISTICS									
Planning analysis hour factor (K)	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.555	0.550	0.550	0.550	0.570	0.570	0.565	0.570	0.570
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	9.0	4.0	4.0	2.0	3.0	2.0	3.0	3.0	3.0
Local adjustment factor	0.85	0.97	0.95						
\% left turns				12	12	12	12	12	12
\% right turns				12	12	12	12	12	12

CONTROL CHARACTERISTICS

Number of signals				5	4	10	10	4	6
Arrival type (1-6)				4	3	4	4	4	4
Signal type (a, c, p)				c	c	c	c	c	c
Cycle length (C)				120	150	120	150	120	120
Effective green ratio (g/C)				0.44	0.45	0.44	0.45	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)							$\mathrm{n}, 50 \%, \mathrm{y}$	n	
Outside lane width $(\mathrm{n}, \mathrm{t}, \mathrm{w})$						t	t		
Pavement condition (d, $\mathrm{t}, \mathrm{u})$						t			
On-street parking (n, y)							n	n	
Sidewalk (n, y)							$\mathrm{n}, 50 \%, \mathrm{y}$		
Sidewalk/roadway separation $(\mathrm{a}, \mathrm{t}, \mathrm{w})$									t
Sidewalk protective barrier (n, y)								n	

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highways		Arterials		Bicycle	Ped	Bus
	Density	Two-Lane	Multilane	Class I	Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats	ats			
B	≤ 17	> 83.3	≤ 17	$>31 \mathrm{mph}$	$>22 \mathrm{mph}$	≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	$>17 \mathrm{mph}$	≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	> 66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$	≤ 4.25	≤ 4.25	<3
E	≤ 39	> 58.3	≤ 35	> 15 mph	> 10 mph	≤ 5.00	≤ 5.00	<2

$\% \mathrm{ffs}=$ Percent free flow speed ats $=$ Average travel speed

TABLE 6 (continued)

Generalized Peak Hour Two-Way Volumes for Florida's
Rural Undeveloped Areas and
Developed Areas Less Than 5,000 Population
12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities		Interrupted Flow Facilities		
	Freeways	Highways	Arterials	Bicycle	Pedestrian

ROADWAY CHARACTERISTICS

Area type (ru, rd)	rural	ru	ru	rd	rd	rd	rd	ru	rd	rd
Number of through lanes (both dir.)	4-8	2	4-6	2	4-6	2	4-6	4	4	2
Posted speed (mph)	70	55	65	50	55	45	45	55	45	45
Free flow speed (mph)	75	60	70	55	60	50	50	60	50	50
Auxiliary lanes (n,y)	n									
Median (n, nr, r)		n	r	n	r	n	r	r	r	n
Terrain (1,r)	1	1	1	1	1	1	1	1	1	1
\% no passing zone		20		60						
Exclusive left turn lanes (n, y)		[n]	y	[n]	y	y	y	y	y	y
Exclusive right turn lanes (n, y)						n	n	n	n	n
Facility length (mi)	14	10	10	5	5	1.9	2.2	4	2	2
Number of basic segments	4									
TRAFFIC CHARACTERISTICS										
Planning analysis hour factor (K)	0.105	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095
Directional distribution factor (D)	0.555	0.550	0.550	0.550	0.550	0.550	0.550	0.570	0.570	0.550
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,300	1,700	2,200	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	12.0	5.0	12.0	4.0	4.0	3.0	3.0	6.0	3.5	3.0
Local adjustment factor	0.84	0.88	0.73	0.97	0.82					
\% left turns						12	12		12	12
\% right turns						12	12		12	12

CONTROL CHARACTERISTICS

Number of signals						5	6	2	4	4
Arrival type (1-6)						3	3	3	3	3
Signal type (a, c, p)						c	c	a	a	a
Cycle length (C)						90	90	60	90	90
Effective green ratio (g/C)						0.44	0.44	0.37	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)								n,50\%,y	n,50\%, y	n
Outside lane width (n, t, w)								t	t	t
Pavement condition (d, t, w)								t	t	
Sidewalk (n, y)										n,50\%, y
Sidewalk/roadway separation(a, t,w)										t
Sidewalk protective barrier (n, y)										n

LEVEL OF SERVICE THRESHOLDS

LEVEL OF SERVICE THRESHOLDS						
Level of Service	Freeways	Highways				
		Two-Lane ru		Two-Lane rd	Multilane ru	Multilane rd
	Density	\%tsf	ats	\%ffs	Density	Density
B	≤ 14	≤ 50	≤ 55	>83.3	≤ 14	≤ 14
C	≤ 22	≤ 65	≤ 50	>75.0	≤ 22	≤ 22
D	≤ 29	≤ 80	≤ 45	> 66.7	≤ 29	≤ 29
E	≤ 36	>80	≤ 40	> 58.3	≤ 34	≤ 34
Level of	Art			Bicycle		trian
Service	Major C	(ats)		Score		
B	>3			≤ 2.75		
C	>23			≤ 3.50		
D	>18			≤ 4.25		
E	> 1			≤ 5.00		

[^4]

TABLE 7 (continued)

INPUT VALUE ASSUMPTIONS

Generalized Peak Hour Directional Volumes for Florida's
Urbanized Areas
12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities		Interrupted Flow Facilities			
	Freeways	Highways	State Arterials		Class I	
		Class II	Bicycle	Pedestrian		

ROADWAY CHARACTERISTICS

Area type (lu, u)	lu	u	u	u	u	u	u	u	u
Number of through lanes (both dir.)	4-12	2	4-6	2	4-8	2	4-8	4	4
Posted speed (mph)	70	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	55	55	50	55	35	35	50	50
Auxiliary lanes (n,y)	n								
Median (n, nr, r)		n	r	n	r	n	r	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1
\% no passing zone		80							
Exclusive left turn lane impact (n, y)		[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)				n	n	n	n	n	n
Facility length (mi)	4	5	5	2	2	1.9	1.8	2	2
Number of basic segments	4								
TRAFFIC CHARACTERISTICS									
Planning analysis hour factor (K)	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.547	0.550	0.550	0.550	0.560	0.565	0.560	0.565	0.565
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	4.0	2.0	2.0	1.0	1.0	1.0	1.0	2.5	2.0
Local adjustment factor	0.91	0.97	0.98						
\% left turns				12	12	12	12	12	12
\% right turns				12	12	12	12	12	12

CONTROL CHARACTERISTICS

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)								$\mathrm{n}, 50 \%, \mathrm{y}$	n
Outside lane width (n, t, w)								t	t
Pavement condition (d, t, w)								t	
On-street parking (n, y)								n	n
Sidewalk (n, y)									$\mathrm{n}, 50 \%, \mathrm{y}$
Sidewalk/roadway separation (a, t, w)									t
Sidewalk protective barrier (n, y)								n	

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highways		Arterials		Bicycle	Ped	Bus
	Density	Two-Lane	Multilane	Class I	Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats	ats			
B	≤ 17	> 83.3	≤ 17	> 31 mph	$>22 \mathrm{mph}$	≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	$>17 \mathrm{mph}$	≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	> 66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$	≤ 4.25	≤ 4.25	<3
E	≤ 39	> 58.3	≤ 35	> 15 mph	$>10 \mathrm{mph}$	≤ 5.00	≤ 5.00	<2

$\% \mathrm{ffs}=$ Percent free flow speed ats = Average travel speed

TABLE 8 (continued)

Generalized Peak Hour Directional Volumes for Florida's
Transitioning and
Areas Over 5,000 Not In Urbanized Areas

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities			Interrupted Flow Facilities					
				State Arterials				Class I	
	Freeways	Highways		Class I		Class II		Bicycle	Pedestrian
ROADWAY CHARACTERISTICS									
Area type (t,uo)	t	t	t	t	t	t	t	t	t
Number of through lanes (both dir.)	4-10	2	4-6	2	4-6	2	4-6	4	4
Posted speed (mph)	70	50	50	45	50	30	30	45	45
Free flow speed (mph)	75	55	55	50	55	35	35	50	50
Auxiliary lanes (n, y)	n	n	n						
Median (n, nr, r)		n	r	n	y	n	,	r	r
Terrain (1,r)	1	1	1	1	1	1	1	1	1
\% no passing zone		60							
Exclusive left turn lane impact (n, y)		[n]	y	y	y	y	y	y	y
Exclusive right turn lanes (n, y)				n	n	n	n	n	n
Facility length (mi)	8	5	5	1.8	2	2	2	2	2
Number of basic segments	4								
TRAFFIC CHARACTERISTICS									
Planning analysis hour factor (K)	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Directional distribution factor (D)	0.555	0.550	0.550	0.550	0.570	0.570	0.565	0.570	0.570
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,100	1,950	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	9.0	4.0	4.0	2.0	3.0	2.0	3.0	3.0	3.0
Local adjustment factor	0.85	0.97	0.95						
\% left turns				12	12	12	12	12	12
\% right turns				12	12	12	12	12	12
CONTROL CHARACTERISTICS									
Number of signals				5	4	10	10	4	6
Arrival type (1-6)				4	3	4	4	4	4
Signal type (a, c, p)				c	c	c	c	c	c
Cycle length (C)				120	150	120	150	120	120
Effective green ratio (g/C)				0.44	0.45	0.44	0.45	0.44	0.44
CONTROL CHARACTERISTICS									
Paved shoulder/bicycle lane (n, y)								n, 50\%, y	n
Outside lane width ($\mathrm{n}, \mathrm{t}, \mathrm{w}$)								t	t
Pavement condition ($\mathrm{d}, \mathrm{t}, \mathrm{u}$)								t	
On-street parking (n, y)								n	n
Sidewalk (n, y)									n, 50\%, y
Sidewalk/roadway separation (a, t, w)									t
Sidewalk protective barrier (n, y)									n
LEVEL OF SERVICE THRESHOLDS									
Level of Service	Freeways	Highways		Arterials			Bicycle	Ped	Bus
	Density	Two-Lane	Multilane	Class I		Class II	Score	Score	Buses/hr.
		\%ffs	Density	ats		ats			
B	≤ 17	> 83.3	≤ 17	> 31 mph	$>22 \mathrm{mph}$		≤ 2.75	≤ 2.75	≤ 6
C	≤ 24	> 75.0	≤ 24	$>23 \mathrm{mph}$	$>17 \mathrm{mph}$		≤ 3.50	≤ 3.50	≤ 4
D	≤ 31	> 66.7	≤ 31	$>18 \mathrm{mph}$	$>13 \mathrm{mph}$		≤ 4.25	≤ 4.25	< 3
E	≤ 39	> 58.3	≤ 35	> 15 mph		mph	≤ 5.00	≤ 5.00	<2

\% ffs = Percent free flow speed ats = Average travel speed

INTERRUPTED FLOW FACILITIES					
STATE SIGNALIZED ARTERIALS					
Lanes	Median	B	C	D	E
1	Undivided	*	670		0 **
	Divided	*	1,530	1,580	**
3	Divided	*	2,360	2,400	(**
	Non-State Signalized Roadway Adjustments (Alter corresponding state volumes by the indicated percent.)				
	Non-State Signalized Roadways			10\%	
Median \& Turn Lane Adjustments					
${ }_{1}^{\text {Lanes }}$	Median	Exclusive Left Lanes	ExclusiveRight Lanes		Adjustment
					Factors
	Divided	Yes	N		+5\%
1	Undivided	No	N		-20\%
Multi	Undivided	Yes	N		-5\%
Multi	Undivided	No	N		-25\%
	-	-	Y		+5\%
One-Way Facility Adjustment Multiply the corresponding directional volumes in this table by 1.2					

BICYCLE MODE ${ }^{2}$

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Rural Undeveloped

Paved Shoulder/Bicycle

Lane Coverage	B	C	D	E
$0-49 \%$	$*$	70	110	170
$50-84 \%$	60	120	180	580
$85-100 \%$	140	210	1,000	$>1,000$

Developed Areas
Paved Shoulder/Bicycle

Lane Coverage	B	C	D	E
$0-49 \%$	$*$	120	260	840
$50-84 \%$	100	240	720	1,000
$85-100 \%$	320	1,000	$>1,000$	$* *$

PEDESTRIAN MODE ${ }^{2}$

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	B	C	D	E
$0-49 \%$	$*$	$*$	120	460
$50-84 \%$	$*$	80	430	770
$85-100 \%$	180	520	860	$>1,000$

FREEWAYS

Lanes	B	C	D	E
2	1,680	2,500	3,040	3,500
3	2,500	3,720	4,560	5,400
4	3,360	4,980	6,080	7,200

Freeway Adjustments
Auxiliary Lanes
Present in Both Directions

$$
+1,000
$$

UNINTERRUPTED FLOW HIGHWAYS

Rural Undeveloped					
Lanes	Median	B	C	D	E
1	Undivided	240	430	740	1,490
2	Divided	1,340	2,100	2,660	3,020
3	Divided	2,020	3,150	4,000	4,530
		Developed Areas			
Lanes	Median	B	C	D	E
1	Undivided	450	850	1,200	1,640
2	Divided	1,350	2,120	2,730	3,110
3	Divided	2,020	3,180	4,090	4,670

Passing Lane Adjustments

Alter LOS B-D volumes in proportion to the passing lane length to the highway segment length

Uninterrupted Flow Highway Adjustments

Lanes
Median
Exclusive left lanes
Adjustment factors
1

Multi
Yes
Yes
$+5 \%$
No - -5% ${ }^{1}$ Values shown are presented as peak hour directional volumes for levels of service and
are for the automobile/truck modes unless specifically stated. This table does not
constitute a standard and should be used only for general planning applications. The
computer models from which this table is derived should be used for more specific
planning applications. The table and deriving computer models should not be used for
corridor or intersection design, where more refined techniques exist. Calculations are
based on planning applications of the Highway Capacity Manual and the Transit
Capacity and Quality of Service Manual.
${ }^{2}$ Level of service for the bic ycle and pedestrian modes in this table is based on number
of motorized vehicles, not number of bic yclists or pedestrians using the facility.

* Cannot be achieved using table input value defaults.
** Not applicable for that level of service letter grade. For the automobile mode,
volumes greater than level of service D become F because intersection capacities have
been reached. For the bicycle mode, the level of service letter grade (including F) is not
achievable because there is no maximum vehicle volume threshold using table input
value defaults.
Source:
Florida Department of Transportation
Systems Planning Office
www.dot.state.fl.us/planning/systems/sm/los/default.shtm

TABLE 9 (continued)

Generalized Peak Hour Directional Volumes for Florida's Rural Undeveloped Areas and Developed Areas Less Than 5,000 Population

12/18/12

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities			Interrupted Flow Facilities		
	Freeways	Highways	Arterials	Bicycle	Pedestrian	

ROADWAY CHARACTERISTICS

Area type (ru, rd)	rural	ru	ru	rd	rd	rd	rd	ru	rd	rd
Number of through lanes (both dir.)	4-8	2	4-6	2	4-6	2	4-6	4	4	2
Posted speed (mph)	70	55	65	50	55	45	45	55	45	45
Free flow speed (mph)	75	60	70	55	60	50	50	60	50	50
Auxiliary lanes (n, y)	n									
Median (n, nr, r)		n	r	n	r	n	r	r	r	n
Terrain (1,r)	1	1	1	1	1	1	1	1	1	1
\% no passing zone		20		60						
Exclusive left turn lanes (n, y)		[n]	y	[n]	y	y	y	y	y	y
Exclusive right turn lanes (n, y)						n	n	n	n	n
Facility length (mi)	14	10	10	5	5	1.9	2.2	4	2	2
Number of basic segments	4									
TRAFFIC CHARACTERISTICS										
Planning analysis hour factor (K)	0.105	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095
Directional distribution factor (D)	0.555	0.550	0.550	0.550	0.550	0.550	0.550	0.570	0.570	0.550
Peak hour factor (PHF)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Base saturation flow rate (pcphpl)		1,700	2,300	1,700	2,200	1,950	1,950	1,950	1,950	1,950
Heavy vehicle percent	12.0	5.0	12.0	4.0	4.0	3.0	3.0	6.0	3.5	3.0
Local adjustment factor	0.84	0.88	0.73	0.97	0.82					
\% left turns						12	12		12	12
\% right turns						12	12		12	12

CONTROL CHARACTERISTICS

Number of signals						5	6	2	4	4
Arrival type (1-6)						3	3	3	3	3
Signal type (a, c, p)						c	c	a	a	a
Cycle length (C)						90	90	60	90	90
Effective green ratio (g/C)						0.44	0.44	0.37	0.44	0.44

MULTIMODAL CHARACTERISTICS

Paved shoulder/bicycle lane (n, y)							$\mathrm{n}, 50 \%, \mathrm{y}$	$\mathrm{n}, 50 \%, \mathrm{y}$	n
Outside lane width (n, $\mathrm{t}, \mathrm{w})$						t	t		
Pavement condition (d, $\mathrm{t}, \mathrm{u})$						t			
Sidewalk (n, y)						t			
Sidewalk/roadway separation(a, t,w)									
Sidewalk protective barrier (n, y)									

LEVEL OF SERVICE THRESHOLDS

LEVEL OF SERVICE THRESHOLDS						
Level of Service	Freeways	Highways				
		Two-Lane ru		Two-Lane rd	$\begin{gathered} \hline \text { Multilane ru } \\ \hline \text { Density } \end{gathered}$	Multilane rd Density
	Density	\%tsf	ats	\%ffs		
B	≤ 14	≤ 50	≤ 55	> 83.3	≤ 14	≤ 14
C	≤ 22	≤ 65	<50	>75.0	≤ 22	≤ 22
D	≤ 29	≤ 80	<45	> 66.7	≤ 29	≤ 29
E	≤ 36	> 80	≤ 40	> 58.3	≤ 34	≤ 34
Level of	Art			Bicycle		rian
Service	Major Cit	(ats)		Score		
B	>31			≤ 2.75		
C	>23			≤ 3.50		
D	>18			≤ 4.25		
E	> 15			≤ 5.00		

[^5]
Tab 4. Rate vs Equation

Process for Selecting Average Rate or Equation in Trip Generation Manual Data (ITE Trip Generation Handbook $3^{\text {rd }}$ Edition)

Example 3: Rate Vs Equation Examples

For the following examples use the flow chart from the ITE Trip Generation Handbook to determine for each case study if the fitted curve (equation) or average rate should be used to estimate trips, or if local data should be collected. Then calculate the trips.

1. Estimate the trip generation for Land Use Code 140 (Manufacturing) on a weekday during the PM peak hour of adjacent street traffic as a function of gross floor area (GFA). Assume the site will have 800,000 sq. ft. of GFA.
Method: \qquad Answer: \qquad
2. Estimate trip generation for Land Use Code 310 (Hotel) on weekday during the PM peak hour of the adjacent street traffic as a function of employees. For this example, assume the hotel will have 100 employees.
Method: \qquad Answer: \qquad
3. Estimate trip generation for Land Use Code 813 (Free-Standing Discount Superstore) on a weekday during the AM peak hour of adjacent street traffic as a function of gross floor area. For this example, assume the store size will be $180,000 \mathrm{sq}$. ft. of GFA.
Method: \qquad Answer: \qquad
4. Estimate trip generation for Land Use Code 210 (Single-Family Detached Housing) on a weekday during the PM peak hour of adjacent street traffic as a function of Dwelling Units. For this example, assume the number of units is 300 .
Method: \qquad Answer: \qquad
5. Estimate trip generation for Land Use Code 090 (Park-and-Ride Lot with Bus or Light Rail Service) on a weekday during the AM peak hour of adjacent street traffic as a function of Parking Spaces. For this example, assume the number of spaces to be 50.
Method: \qquad Answer: \qquad
6. Estimate trip generation for Land Use Code 445 (Multiplex Movie Theater) on a weekday during the PM peak hour of adjacent street traffic as a function of Screens. For this example, assume the number of screens to be 20.
Method: \qquad Answer: \qquad

Brief Math Lesson

Defining Variables

- T=Trips
- X= Independent Variable

Using Rate

- Example: Average Rate is 1.16
- Calculate the estimated number of trips by multiplying the average rate by the independent variable. $\mathrm{T}=1.16$ (X)

Using Fitted Curve Equation

- $\mathrm{T}=0.94(\mathrm{X})+26.49$
- Solve this equation by simply replacing X with your variable.
- $\quad \operatorname{Ln}(T)=0.95 \operatorname{Ln}(X)+0.36$
- Steps for solving natural log equations

1. Take the exponential of both sides of the equations (Assume $X=10$)

- $\mathrm{e}^{\operatorname{Ln}(T)=} \mathrm{e}^{\left(0.95^{*} \ln (10)+0.36\right)}$

2. The exponential of a natural log is 1 therefore:

- $\mathrm{T}=\mathrm{e}^{\left(0.95^{*} \operatorname{Ln}(10)+0.36\right)}$
- $\mathrm{T}=13$ Trips

Tab 5. Internal Captures

Example 4: Internal Capture | 2 Land Uses

GROSS TRIP GENERATION							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail					180	150
	Restaurant					45	40
	Cinema/Entertainment						
	Residential						
	Hotel						
	Total					225	190
	INTERNAL TRIPS (Minimums)						
	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						
	Total						
	\% Reduction						
EXTERNAL TRIPS							
$\begin{aligned} & 5 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail					164	137
	Restaurant					32	24
	Cinema/Entertainment						
	Residential						
	Hotel						

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
	(Exit) Land Use	(Enter) Land Use						Total Exit
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail			13				
	Restaurant							16
	Cinema/Entertainment							
	Residential							
	Hotel							
Total Enter			16	13				

Example 5: Internal Capture | 2 Land Uses

GROSS TRIP GENERATION							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office					18	98
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential					315	185
	Hotel						
	Total 333283						
INTERNAL TRIPS (Minimums)							
55050	Land Use	Dail		A.M. Hou		P.M. Ho	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						
	Total						
	\% Reduction					2.9	
EXTERNAL TRIPS							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 5 \end{aligned}$	Land Use	Dail		A.M. Hou		$\begin{array}{r} \text { P.M. } \\ \hline \end{array}$	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ***								
$\begin{aligned} & \underline{Z} \\ & \dot{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter							

Example 6: Internal Capture |3 Land Uses

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
$\begin{aligned} & \underline{Y} \\ & \frac{1}{4} \\ & \underset{\Delta}{2} \end{aligned}$	$\begin{gathered} \text { (Exit) } \\ \text { Land Use } \end{gathered}$	(Enter) Land Use						Total Exit
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter							

Example 7: Internal Capture | 3 Land Uses

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** BASED ON EXIT ${ }^{* * *}$								
$\begin{aligned} & \frac{\Sigma}{4} \\ & \underset{\Delta}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{gathered} \text { (Exit) } \\ \text { Land Use } \end{gathered}$	(Enter) Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	Exit trips multiplied by the Origin percentages
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
			BASED	ENTER ***				
	(Exit)			(Ent) Land Use			
\geq	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
4	Office							
\square	Retail							multiplied
	Restaurant							by the
\geq	Cinema/Entertainment							Destination
0	Residential							percentages
	Hotel							

*** MINIMUM ***								
$\begin{aligned} & \underline{Z} \\ & \dot{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter							

Tab 6. Pass-By-Trips

Example 8: Pass-By-Trips

For the following examples use the provided pass-by pages from the ITE handbook to determine the passby percentage.

1. Land Use Code 813 - Free Standing Discount Superstore, Saturday, Mid-Day Peak Period.

Answer: \qquad
2. Land Use Code 853 - Convenience Market with Gasoline Pumps, Weekday, PM Peak Period.

Answer: \qquad
3. Land Use Code 934 - Fast-Food Restaurant with Drive - Through Window, Weekday, PM Peak Period.

Answer: \qquad
4. Land Use Code 945 - Gasoline/Service Station with Convenience Market, Weekday, PM Peak Period.
Answer: \qquad

For the following example apply pass by. The land use is a fast-food restaurant with a drive through window. The PM peak hour od adjacent street traffic is being analyzed. Fill in the blank:

Land Use	Land Use Code	Independent Variable	Average Rate	Total Trip	Entering Trips	Exiting Trips
Fast-Food Restaurant with Drive-Through	934	$1,200 \mathrm{ft}^{2}$	32.67			
Pass By						

Tab 7. Final Exercises

Workbook Example Analysis 1

MIXED USE DEVELOPMENT SEGMENT ANALYSIS

Proposed Land uses:
Convenience Market with Gasoline Pumps (8 pumps)
General Office (100,000 square feet)
High-Turnover (Sit-Down) $(5,700)$
Fast-Food Restaurant with Drive-Through Window $(7,500)$

TRIP GENERATION

Trip Generation PM Peak Period Calculation							
Land use	Land Use Code	Independent Variable	Average Rate	Total Trips	Entering Trips	Exiting Trips	
Convenience Market with Gasoline Pumps	853	16 fueling positions	23.04				
General Office	710	$100,000 \mathrm{ft}^{2}$	1.15				
High-Turnover (Sit-Down) Restaurant	932	$5,700 \mathrm{ft}^{2}$	9.77				
Fast-Food Restaurant with Drive- Through Window	934	$7,500 \mathrm{ft}^{2}$	32.67				

INTERNAL CAPTURE REDUCTION

Through the methodology meeting it was determined that the internal capture reduction would be capped at 15%.

Land use	Internal Capture Trips		External Trips		
	Entering Trips	Exiting Trips	Entering Trips	Exiting Trips	Total Trips
Convenience Market with Gasoline Pumps					
General Office					
High-Turnover (Sit-Down) Restaurant					
Fast-Food Restaurant with Drive- Through Window					
Totals	55	63	310	356	666

PASS-BY TRAFFIC

Land use					
Land Use Code	Pass-By Trip Percentage	Total Pass-By Trips	Pass-By Entering Trips	Pass-By Exiting Trips	
Convenience Market with Gasoline Pumps	853	66%			
General Office	710	-			
High-Turnover (Sit-Down) Restaurant	932	43%			
Fast-Food Restaurant with Drive- Through Window	934	50%			

Pass-By Check PM Peak:

North-South Roadway: $855+906=1,761$
East-West Roadway: $1,523+1,804=3,327$
Shared Volume: $319+272=591$
$1,761+3,327-591=4,497$
10% of $4,497=450$
The calculated pass-by is less/more?

	Project Trip Summary		
	Total Trips	Entering Trips	Exiting Trips
Gross Total Trips	784	365	419
Internal Capture Reduction			
External Trips			
Net New External Trips			

SEGMENT ANALYSIS

Segments that are significantly impacted by the proposed development will be analyzed. For this example, the roadways where the development traffic makes up 3\% or more of the maximum service volume at the adopted level-of-service target during the PM peak hour will be included in the analysis.

Segment Study Area Determination											
Roadway Segment	No. of Lanes	PHPD Serv. Vol	Project Dist.		Project Dir.		New Project Trips		\% Significant		Study Segment
			$\begin{gathered} \hline \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \hline \text { NB/ } \\ \text { EB } \end{gathered}$	$\begin{aligned} & \hline \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \hline \text { NB/ } \\ E B \end{gathered}$	$\begin{aligned} & \hline \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { /EB } \end{aligned}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	
$9^{\text {th }}$ Street											
SR 50/Colonial Drive to Story Road	2	713	1\%	1\%	Out	In					
Story Road to SR 438/Plant Street	2	713	3\%	3\%	Out	In					
Dillard Street											
Beard Road to SR 50	4	1,530	11\%	11\%	In	Out					
SR 50 to Project Entrance	4	1,530	15\%	35\%	In	Out					
Project Entrance to SR 438	4	1,530	25\%	25\%	Out	In					
SR 438 to Story Road	4	1,530	15\%	15\%	Out	In					
Story Road to Book Street	4	1,530	10\%	10\%	Out	In					

Segment Analysis									
Roadway Segment	No. of Lanes	PHPDServ.Vol	2020 Background.		New Project Trips		Total Trips		Deficiency
			$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \text { NB/ } \\ \text { EB } \end{gathered}$	$\begin{aligned} & \hline \text { SB/ } \\ & \text { WB } \end{aligned}$	NB/EB	SB/WB	
Dillard Street									
SR 50 to Project Entrance	4	1,530	1,000	1,021					
Project Entrance to SR 438	4	1,530	1,100	1,021					

Workbook Example Analysis 2

STUDY INFORMATION

Land Uses:

High Rise Apartment - 464 Units
Retail (Shopping Center) - 7,000 square feet

Analysis Period

AM Peak Hour
PM Peak Hour
Trip Generation
Fill in the table below and determine if you should use the equation or the rate.

Available Trip Generation Average Rates and Equation							
Land use	Land Use Code	Independent Variable	Average Rate	Equation	R^{2}	Method you Should Use	
$\sum \sum$	High-Rise Apartment						
Retail (Shopping Center)							
High-Rise Apartment							

Use the average rate for the completion of the table below.

Trip Generation - Use Average Rate								
			AM			PM		
Land use	Land Use Code	Size and Units	IN	OUT	Total	IN	OUT	Total
High-Rise Apartment		464 Units						
Retail (Shopping Center)		7,000 ft ${ }^{2}$						
Totals								

Use attached Internal Capture Sheets

	AM Internal Trips		PM Internal Trips	
Land use	IN	OUT	IN	OUT
High-Rise Apartment				
Retail (Shopping Center)				

External Trips

| AM Trips | Trip Generation | | Internal Trips | | External Trips | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total | |
| High-Rise Apartment | | | | | | | | |
| Retail (Shopping Center) | | | | | | | | |
| Totals | | | | | | | | |
| PM Trips | Trip Generation | Internal Trips | | External Trips | | | | |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total | |
| High-Rise Apartment | | | | | | | | |
| Retail (Shopping Center) | | | | | | | | |
| Totals | | | | | | | | |

Multimodal Reduction

Within the Central Business District (CBD) where the project is proposed, the recommended transit reduction is approximately 23 percent, and the recommended pedestrian reduction is 10 percent. Taken together, a 33 percent multimodal reduction was applied to the estimated number of external trips during both the morning and evening peak hours.

AM Trips	External Trips		Multimodal Trips		Net New External Trips		
Land use	IN	OUT	IN	OUT	IN	OUT	Total
High-Rise Apartment							
Retail (Shopping Center)							
Totals							
PM Trips	Exte	Trips	Multi	Irips	Net	Exter	Trips
Land use	IN	OUT	IN	OUT	IN	OUT	Total
High-Rise Apartment							
Retail (Shopping Center)							
Totals							

Workbook Example Analysis 2 | Internal Capture Sheets

GROSS TRIP GENERATION							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						
Total							
INTERNAL TRIPS (Minimums)							
	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						
	Total						
	\% Reduction			2.3		14.	
$\begin{aligned} & 5 \\ & 2 \\ & 0 \\ & 5 \\ & 0 \end{aligned}$	EXTERNAL TRIPS						
	Land Use	Dail		A.M. Hou		$\begin{array}{r} \text { P.M. } \\ \mathrm{Ho} \\ \hline \end{array}$	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential						
	Hotel						

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		28\%	63\%	0\%	1\%	0\%	
	Retail	29\%		13\%	0\%	14\%	0\%	
	Restaurant	31\%	14\%		0\%	4\%	3\%	
	Cinema/Entertainment	0\%	0\%	0\%		0\%	0\%	
	Residential	2\%	1\%	20\%	0\%		0\%	
	Hotel	75\%	14\%	9\%	0\%	0\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		32\%	23\%	0\%	0\%	0\%	
	Retail	4\%		50\%	0\%	2\%	0\%	
	Restaurant	14\%	8\%		0\%	5\%	4\%	
	Cinema/Entertainment	0\%	0\%	0\%		0\%	0\%	
	Residential	3\%	17\%	20\%	0\%		0\%	
	Hotel	3\%	4\%	6\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
$\begin{aligned} & \frac{Y}{4} \\ & \underset{\sim}{4} \\ & \underset{4}{8} \\ & \hline \end{aligned}$	(Exit) Land Use	(Enter) Land Use						Total Exit
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter							

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ***								
	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter							

Tab 8. ITE Resources

Tab 8 | Table of Contents ITE Trip Generation Manual Tables

	Land Use \\| ITE Code	Page
090	Park and Ride Lot with Bus or Light Rail Service	8-1
140	Manufacturing	8-2
210	Single Family Detached Housing	8-3
222	Multifamily Housing (High-Rise) One hour between 7 and 9am	8-4
222	Multifamily Housing (High- Rise) One hour between 4 and 6pm	8-5
310	Hotel	8-6
445	Multiplex Movie Theater	8-7
520	Elementary School	8-8
710	General Office Building	8-9
813	Free- Standing Discount Superstore	8-10
820	Shopping Center One hour between 7 and 9am	8-11
820	Shopping Center One hour between 4 and 6pm	8-12
853	Convenience Market with Gasoline Pumps	8-13
932	High Turnover (Sit-Down) Restaurant	8-14
934	Fast Food Restaurant with Drive Through Window	8-15
937	Coffee/Donut Shop with Drive-Through Window	8-16
	ITE Pass By and Non-Pass By Trips	Page
813	Table E. 4 Pass-By and Non-Pass-By Trips Saturday, Mid-Day Peak Period Land Use Code 813- Free Standing Discount Superstore	8-17
853	Table E. 16 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 853-Convenience Market with Gasoline Pumps	8-18
934	Table E. 32 Pass-By and Non-Pass By Trips Weekday, PM Peak Period Land Use Code 934-Fast Food Restaurant with Drive Through Window	8-19
945	Table E. 38 Pass-By and Non-Pass By Trips Weekday, PM Peak Period Land Use Code 945-Gasoline/Service Station with Convenience Market	8-20

Park-and-Ride Lot with Bus or Light Rail Service (090)

Vehicle Trip Ends vs: Parking Spaces
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 78
Avg. Num. of Parking Spaces: 538
Directional Distribution: 79\% entering, 21\% exiting
Vehicle Trip Generation per Parking Space

Average Rate	Range of Rates	Standard Deviation
0.42	$0.06-1.19$	0.26

Data Plot and Equation

Manufacturing (140)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 52
1000 Sq. Ft. GFA: 152
Directional Distribution: 31% entering, 69% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.67	$0.07-11.37$	0.94

Data Plot and Equation

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 190
Avg. Num. of Dwelling Units: 242
Directional Distribution: 63\% entering, 37\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	$0.44-2.98$	0.31

Data Plot and Equation

Multifamily Housing (High-Rise)
 (222)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 25
Avg. Num. of Dwelling Units: 372
Directional Distribution: 24\% entering, 76\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.31	$0.18-0.48$	0.08

Data Plot and Equation

Multifamily Housing (High-Rise)
 (222)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 25
Avg. Num. of Dwelling Units: 372
Directional Distribution: 61\% entering, 39\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	$0.23-0.53$	0.06

Data Plot and Equation

Hotel (310)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Employees: 183
Directional Distribution: 54% entering, 46% exiting
Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.89	$0.52-1.67$	0.38

Data Plot and Equation

Multiplex Movie Theater (445)

Vehicle Trip Ends vs: Movie Screens
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. Num. of Movie Screens: 17
Directional Distribution: 51\% entering, 49\% exiting
Vehicle Trip Generation per Movie Screen

Average Rate	Range of Rates	Standard Deviation
13.73	$9.38-23.69$	5.87

Data Plot and Equation

Elementary School (520)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. Num. of Employees: 61
Directional Distribution: 48\% entering, 52\% exiting
Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
1.78	$0.45-3.98$	1.04

Data Plot and Equation

General Office Building

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 32
1000 Sq. Ft. GFA: 114
Directional Distribution: 16\% entering, 84% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.15	$0.47-3.23$	0.42

Data Plot and Equation

Free-Standing Discount Superstore (813)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 70
1000 Sq. Ft. GFA: 194
Directional Distribution: 56\% entering, 44\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.85	$0.81-3.86$	0.76

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 84
1000 Sq. Ft. GLA: 351
Directional Distribution: 62\% entering, 38\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
0.94	$0.18-23.74$	0.87

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 261
1000 Sq. Ft. GLA: 327
Directional Distribution: 48\% entering, 52\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
3.81	$0.74-18.69$	2.04

Data Plot and Equation

Convenience Market with Gasoline Pumps (853)

Vehicle Trip Ends vs: Vehicle Fueling Positions
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 69
Avg. Num. of Vehicle Fueling Positions: 6
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
23.04	$5.75-57.80$	11.91

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant

(932)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 107
1000 Sq. Ft. GFA: 6
Directional Distribution: 62\% entering, 38\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.77	$0.92-62.00$	7.37

Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 185
1000 Sq. Ft. GFA: 3
Directional Distribution: 52\% entering, 48\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
32.67	$8.17-117.22$	17.87

Data Plot and Equation

Coffee/Donut Shop with Drive-Through Window

(937)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 61 1000 Sq. Ft. GFA: 2
Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
88.99	$18.32-353.57$	48.19

Data Plot and Equation

Table E. 4 Pass-By and Non-Pass-By Trips Saturday, Mid-Day Peak Period Land Use Code 813-Free-Standing Discount Superstore

$\begin{aligned} & \text { SIZE (1,000 } \\ & \text { SQ. FT. GFA) } \end{aligned}$	LOCATION	SURVEY DATE	NO. OF INTERVIEWS	TIME PERIOD	PASS-BY TRIP (\%)	NON-PASS-BY TRIP (\%)			ADJ. STREET PEAK HOUR VOLUME	SOURCE
						PRIMARY	DIVERTED	TOTAL		
205	Louisville, KY	Sept.-Nov. 2007	360	12:00-4:00 p.m.	28	-	-	72	6,144	651-652
216	Pasadena, TX	Sept.-Nov. 2007	240	12:00-4:00 p.m.	16	-	-	84	11,898	651-652
213	Cedar Falls, IA	Sept.-Nov. 2007	156	12:00-4:00 p.m.	13	-	-	87	7,484	651-652
204	Pueblo, CO	Sept.-Nov. 2007	300	12:00-4:00 p.m.	11	-	-	89	4,764	651-652
185	Plano, IL	Sept.-Nov. 2007	162	12:00-4:00 p.m.	18	-	-	82	3,871	651-652
217	Sheboygan, WI	Sept.-Nov. 2007	441	12:00-4:00 p.m.	22	-	-	78	8,256	651-652
213	San Antonio, TX	Sept.-Nov. 2007	748	12:00-4:00 p.m.	28	-	-	72	12,332	651-652
226	Colonial Heights, VA	Sept.-Nov. 2007	270	12:00-4:00 p.m.	26	-	-	74	12,995	651-652
220	Milford, PA	Sept.-Nov. 2007	123	12:00-4:00 p.m.	26	-	-	74	7,024	651-652
222	Marysville, CA	Sept.-Nov. 2007	810	12:00-4:00 p.m.	25	-	-	75	5,429	651-652

Average Pass-By Trip Percentage: 21
"-" means no data were provided

Table E. 16 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 853-Convenience Market with Gasoline Pumps

$\begin{gathered} \text { SIZE }(1,000 \\ \text { SQ. FT. } \\ \text { GFA) } \\ \hline \end{gathered}$	LOCATION	WEEKDAY SURVEY DATE	NO. OF INTERVIEWS	TIME PERIOD	$\begin{aligned} & \text { PASS-BY } \\ & \text { TRIP (\%) } \end{aligned}$	NON-PASS-BY TRIPS (\%)			ADJ. STREET PEAK HOUR VOLUME	SOURCE
						PRIMARY	DIVERTED	TOTAL		
2.8	Louisville area, KY	1993	-	4:00-6:00 p.m.	62	11	27	38	2,875	Barton-Aschman Assoc.
2.4	Louisville area, KY	1993	-	4:00-6:00 p.m.	58	13	29	42	2,655	Barton-Aschman Assoc.
4.2	Louisville area, KY	1993	61	4:00-6:00 p.m.	58	26	16	42	2,300	Barton-Aschman Assoc.
2.6	Crestwood, KY	1993	68	4:00-6:00 p.m.	67	15	18	33	950	Barton-Aschman Assoc.
3.7	Louisville area, KY	1993	70	4:00-6:00 p.m.	61	16	23	39	2,175	Barton-Aschman Assoc.
3.0	New Albany, IN	1993	80	4:00-6:00 p.m.	65	15	20	35	1,165	Barton-Aschman Assoc.
2.3	Louisville, KY	1993	67	4:00-6:00 p.m.	57	16	27	43	1,954	Barton-Aschman Assoc.
2.2	New Albany, IN	1993	115	4:00-6:00 p.m.	48	16	36	52	820	Barton-Aschman Assoc.
3.6	Louisville area, KY	1993	60	4:00-6:00 p.m.	56	17	27	44	2,505	Barton-Aschman Assoc.
2.6	Seminole Co., FL	1989	82	4:00-6:00 p.m.	73	20	7	27	-	Tipton Associates Inc.
2.6	Seminole Co., FL	1989	98	4:00-6:00 p.m.	81	15	4	19	-	Tipton Associates Inc.
2.6	Seminole Co., FL	1989	115	4:00-6:00 p.m.	69	16	15	31	-	Tipton Associates Inc.
2.6	Volusia Co., FL	1989	98	4:00-6:00 p.m.	74	15	11	26	-	Tipton Associates Inc.
2.4	Volusia Co., FL	1989	38	4:00-6:00 p.m.	74	24	2	26	-	Tipton Associates Inc.
2.7	Volusia Co., FL	1989	82	4:00-6:00 p.m.	87	8	5	13	-	Tipton Associates Inc.
2.6	Seminole Co., FL	1989	99	2:00-4:00 p.m.	64	28	8	36	-	Tipton Associates Inc.
2.4	Volusia Co., FL	1989	38	2:00-4:00 p.m.	68	21	11	32	-	Tipton Associates Inc.

Average Pass-By Trip Percentage: 66
"-" means no data were provided

Table E. 32 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 934-Fast-Food Restaurant with Drive-Through Window

SEATS	$\begin{aligned} & \text { SIZE } \\ & (1,00 \\ & \text { SO. } \\ & \text { FT. } \\ & \text { GFA } \end{aligned}$	LOCATION	WEEKDAY SURVEY DATE	NO. OF INTERVIEWS	TIME PERIOD	$\begin{aligned} & \text { PASS- } \\ & \text { BY } \\ & \text { TRIP } \\ & (\%) \end{aligned}$	NON-PASS-BY TRIPS (\%)			$\begin{aligned} & \text { ADJ. } \\ & \text { STREET } \\ & \text { PEAK } \\ & \text { HOUR } \\ & \text { VOLUME } \end{aligned}$	SOURCE
							PRIMARY	DIVERTED	total		
-	~ 2.6	Minn-St. Paul, MN	1987	50	3:00-7:00 p.m.	25	27	48	75	-	-
-	<5.0	Chicago suburbs, IL	1987	80	3:00-6:00 p.m.	38	-	-	62	-	Kenig, O'Hara, Humes, Flock
-	<5.0	Chicago suburbs, IL	1987	100	3:00-6:00 p.m.	55	-	-	45	-	Kenig, O'Hara, Humes, Flock
-	<5.0	Chicago suburbs, IL	1987	159	3:00-6:00 p.m.	56	-	-	44	-	Kenig, O'Hara, Humes, Flock
-	<5.0	Chicago suburbs, IL	1987	225	3:00-6:00 p.m.	48	-	-	52	-	Kenig, O'Hara, Humes, Flock
-	<5.0	Chicago suburbs, IL	1987	88	3:00-6:00 p.m.	35	-	-	65	-	Kenig, O'Hara, Humes, Flock
-	<5.0	Chicago suburbs, IL	1987	84	3:00-6:00 p.m.	44	-	-	56	-	Kenig, O'Hara, Humes, Flock
88	1.3	Louisville area, KY	1993	-	4:00-6:00 p.m.	68	22	10	32	2,055	BartonAschman Assoc.
120	1.9	Louisville area, KY	1993	33	4:00-6:00 p.m.	67	24	9	33	2,447	BartonAschman Assoc.
87	4.2	New Albany, IN	1993	-	4:00-6:00 p.m.	56	25	19	44	1,632	BartonAschman Assoc.
150	3.0	Louisville area, KY area, KY	1993	-	4:00-6:00 p.m.	31	31	38	69	4,250	BartonAschman Assoc.
-	3.1	$\underset{F L}{\text { Kissimmee, }}$	1995	28	2:00-6:00 p.m.	71	-	-	29	-	TPD Inc.
-	3.1	Apopka, FL	1996	29	2:00-6:00 p.m.	38	-	-	62	-	TPD Inc.
-	2.8	Winter Springs, FL	1995	47	2:00-6:00 p.m.	66	-	-	34	-	TPD Inc.
-	4.3	Longwood, FL	1994	304	2:00-6:00 p.m.	62	-	-	38	-	TPD Inc.
-	3.2	Altamonte Springs, FL	1996	202	2:00-6:00 p.m.	40	39	21	60	-	TPD Inc.
-	2.9	Winter Park, FL	1996	271	2:00-6:00 p.m.	41	41	18	59	-	TPD Inc.
-	3.3*	several	1996	varies	4:00-6:00 p.m.	62	-	-	38	-	Oracle Engineering

*Average of several combined studies.
Average Pass-By Trip Percentage: 50
"-" means no data were provided

Table E. 38 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period Land Use Code 945-Gasoline/Service Station with Convenience Market

$\begin{gathered} \text { SIZE (1,000 } \\ \text { SQ. FT. } \\ \text { GFA) } \end{gathered}$	VEHICLE FUELING POSITIONS	LOCATION	WEEKDAY SURVEY DATE	NO. OF INTERVIEWS	TIME PERIOD	PASS-BY TRIP (\%)	NON-PASS-BY TRIPS (\%)			ADJ. STREET PEAK HOUR VOLUME	SOURCE
							PRIMARY	DIVERTED	TOTAL		
0.8	8	Louisville area, KY	1993	83	4:00-6:00 p.m.	52	8	40	48	4,965	BartonAschman Assoc.
0.6	8	Louisville, KY	1993	60	4:00-6:00 p.m.	53	20	27	47	1,491	BartonAschman Assoc.
0.7	10	Louisville, KY	1993	-	4:00-6:00 p.m.	57	19	24	43	1,812	BartonAschman Assoc.
0.7	8	Louisville area, KY	1993	-	4:00-6:00 p.m.	72	7	21	28	2,657	BartonAschman Assoc.
0.7	10	Louisville area, KY	1993	-	4:00-6:00 p.m.	55	16	29	45	2,657	BartonAschman Assoc.
0.8	8	Silver Spring, MD	1992	36	4:00-6:00 p.m.	67	14	19	33	3,095	RBA
0.4	8	$\begin{aligned} & \text { Derwood, } \\ & \text { MD } \end{aligned}$	1992	46	4:00-6:00 p.m.	46	11	43	54	3,770	RBA
2.1	8	Kensington, MD	1992	31	4:00-6:00 p.m.	52	13	35	48	1,785	RBA
1	8	Silver Spring, MD	1992	35	4:00-6:00 p.m.	54	3	43	46	7,080	RBA

Average Pass-By Trip Percentage: 56
"-" means no data were provided

Tab 9. Answers

Example 2: Applying FDOT Generalized Tables

For the following examples use the 12/18/12 FDOT Generalized Service Volume Tables to determine the LOS along the roadway segments.

1. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 30,000. The roadway is a 4-lane divided state signalized arterial in an urbanized area with a posted speed limit of 50 mph .
Answer: C
2. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 37,900. The roadway is a 4-lane undivided state signalized arterial in an urbanized area with a posted speed limit of 50 mph with exclusive left lanes.
Answer: F
3. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 65,100. The roadway is a 6-lane freeway in a transition area with auxiliary lanes present in both directions. Answer: B
4. What is the LOS of a roadway that has a Peak Hour directional volume of 1,530 . The roadway is a 4-lane divided Highway located in a Rural Undeveloped Area.
Answer: C
5. What is the LOS of a roadway that has a Peak Hour Two-Way volume of 2,500 . The roadway is a 4-lane divided Non-State Signalized Roadway with a posted speed limit of 30 mph located in a transition area.
Answer: E
6. What is the LOS of a roadway that has an Annual Average Daily Traffic (AADT) volume of 45,000. The roadway is a 6-lane divided state signalized arterial in an urbanized area with a posted speed limit of 50 mph .
Answer: C

Example 3: Rate Vs Equation

For the following examples use the flow chart from the ITE Trip Generation Handbook to determine for each case study if the fitted curve (equation) or average rate should be used to estimate trips, or if local data should be collected. Then calculate the trips.

1. Estimate the trip generation for Land Use Code 140 (Manufacturing) on a weekday during the PM peak hour of adjacent street traffic as a function of gross floor area (GFA). Assume the site will have $800,000 \mathrm{sq}$. ft. of GFA.
Method: Weighted Average Answer: $=\underline{800 * 0.67=536}$
2. Estimate trip generation for Land Use Code 310 (Hotel) on weekday during the PM peak hour of the adjacent street traffic as a function of employees. For this example, assume the hotel will have 100 employees.
Method: Weighted Average Answer: $\underline{100 * 0.89=89}$
3. Estimate the daily trip generation for Land Use Code 520 (Elementary School) on a weekday during the PM peak hour for adjacent street traffic as a function of employees. For this example, assume 70 employees.
Method: Weighted Average Answer: = $\underline{70 * 1.78=125}$
4. Estimate trip generation for Land Use Code 813 (Free-Standing Discount Superstore) on a weekday during the AM peak hour of adjacent street traffic as a function of gross floor area. For this example, assume the store size will be 180,000 sq. ft. of GFA.
Method: Weighted Average Answer: $=\underline{1.85 * 180=333}$
5. Estimate trip generation for Land Use Code 210 (Single-Family Detached Housing) on a weekday during the PM peak hour of adjacent street traffic as a function of Dwelling Units. For this example, assume the number of units is 300 .
Method: Fitted Curve Answer: $\operatorname{Ln}(T)=0.96 \operatorname{Ln}(X)+0.20=292$
6. Estimate trip generation for Land Use Code 090 (Park-and-Ride Lot with Bus or Light Rail Service) on a weekday during the AM peak hour of adjacent street traffic as a function of Parking Spaces. For this example, assume the number of spaces to be 50.
Method: Fitted Curve Answer: $\operatorname{Ln}(T)=0.85 \operatorname{Ln}(X)-0.07=26$
7. Estimate trip generation for Land Use Code 445 (Multiplex Movie Theater) on a weekday during the PM peak hour of adjacent street traffic as a function of Screens. For this example, assume the number of screens to be 20.
Method: Collect Local Data Answer: \qquad

Example 4: Internal Capture | 2 Land Uses

 KEY

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ***								
	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail			13				13
	Restaurant		16					16
	Cinema/Entertainment							
	Residential							
	Hotel							
	Total Enter		16	13				

Example 5: Internal Capture | 2 Land Uses

KEY

GROSS TRIP GENERATION							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office					18	98
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential					315	185
	Hotel						
Total 333283							
INTERNAL TRIPS (Minimums)							
52050	Land Use	Da		A.M. Hou		$\begin{aligned} & \text { P.M. P } \\ & \text { Hol } \end{aligned}$	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office					7	2
	Retail						
	Restaurant						
	Cinema/Entertainment						
	Residential					2	7
	Hotel						
	Total					9	9
	\% Reduction					2.9	
EXTERNAL TRIPS							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 5 \\ & 0 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office					11	96
	Retail					0	0
	Restaurant					0	0
	Cinema/Entertainment					0	0
	Residential					313	178
	Hotel					0	0

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & \frac{\Sigma}{4} \\ & \mathbf{L} \\ & \dot{Q} \\ & 0 \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
$\begin{aligned} & \frac{Y}{4} \\ & \frac{1}{Q} \\ & \underset{0}{2} \end{aligned}$	(Exit) Land Use	(Enter) Land Use						Total Exit
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office					2		2
	Retail							
	Restaurant							
	Cinema/Entertainment							
	Residential	7						7
	Hotel							
	Total Enter	7				2		

Example 6: Internal Capture | 3 Land Uses

 KEY

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & \frac{\Sigma}{4} \\ & \mathbf{L} \\ & \dot{Q} \\ & 0 \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
$\begin{aligned} & \underline{Z} \\ & \frac{1}{4} \\ & \underset{0}{2} \end{aligned}$	(Exit) Land Use	(Enter) Land Use						Total Exit
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office		15			6		21
	Retail	4				46		50
	Restaurant							
	Cinema/Entertainment							
	Residential	4	19					23
	Hotel							
	Total Enter	8	34			52		

Example 7: Internal Capture | 3 Land Uses

 KEY

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & Y \\ & \frac{Y}{4} \\ & \dot{Q} \\ & \dot{Q} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
$\begin{aligned} & \underline{Z} \\ & \frac{1}{4} \\ & \underset{0}{2} \end{aligned}$	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office			1		1		2
	Retail							
	Restaurant	1				4		5
	Cinema/Entertainment							
	Residential	9		6				15
	Hotel							
	Total Enter	10		7		5		

Example 8: Pass-By-Trips

For the following examples use the provided pass-by pages from the ITE handbook to determine the pass-by percentage.

1. Land Use Code 813 - Free Standing Discount Superstore, Saturday, Mid-Day Peak Period.

Answer: 21\%
2. Land Use Code 853 - Convenience Market with Gasoline Pumps, Weekday, PM Peak Period.

Answer: 66\%
3. Land Use Code 934 - Fast-Food Restaurant with Drive - Through Window, Weekday, PM Peak Period.
Answer: 50\%
4. Land Use Code 945 - Gasoline/Service Station with Convenience Market, Weekday, PM Peak Period.
Answer: 56\%

For the following example apply pass by. The land use is a fast-food restaurant with a drive through window. The PM peak hour od adjacent street traffic is being analyzed. Fill in the blank:

Land Use	Land Use Code	Independent Variable	Average Rate	Total Trip	Entering Trips	Exiting Trips
Fast-Food Restaurant with Drive-Through	934	$1,200 \mathrm{ft}^{2}$	32.67	39	20	19
Pass By					20	10
External Trips New to the System						19

Workbook Example Analysis 1

MIXED USE DEVELOPMENT SEGMENT ANALYSIS
 ANSWER KEY

Proposed Land uses:
Convenience Market with Gasoline Pumps (8 pumps)
General Office (100,000 square feet)
High-Turnover (Sit-Down) $(5,700)$
Fast-Food Restaurant with Drive-Through Window $(7,500)$

TRIP GENERATION

Trip Generation PM Peak Period Calculation							
Land use	Land Use Code	Independent Variable	Average Rate	Total Trips	Entering Trips	Exiting Trips	
Convenience Market with Gasoline Pumps	853	16 fueling positions	23.04	368	184	184	
General Office	710	$100,000 \mathrm{ft}^{2}$	1.15	115	19	96	
High-Turnover (Sit-Down) Restaurant	932	$5,700 \mathrm{ft}^{2}$	9.77	56	35	21	
Fast-Food Restaurant with Drive- Through Window	934	$7,500 \mathrm{ft}^{2}$	32.67	245	127	118	

INTERNAL CAPTURE REDUCTION

Through the methodology meeting it was determined that the internal capture reduction would be capped at 15%.

Land use	Internal Capture Trips		External Trips		
	Entering Trips	Exiting Trips	Entering Trips	Exiting Trips	Total Trips
Convenience Market with Gasoline Pumps	28	28	156	156	312
General Office	3	14	16	82	98
High-Turnover (Sit-Down) Restaurant	5	3	30	18	48
Fast-Food Restaurant with Drive- Through Window	19	18	108	100	208
Totals	55	63	310	356	666

PASS-BY TRAFFIC

Pass-By Reduction					
Land use	Land Use Code	Pass-By Trip Percentage	Total Pass-By Trips	Pass-By Entering Trips	Pass-By Exiting Trips
Convenience Market with Gasoline Pumps	853	66%	206	103	103
General Office	710	-	-	-	-
High-Turnover (Sit-Down) Restaurant	932	43%	21	10	11
Fast-Food Restaurant with Drive- Through Window	934	50%	104	52	52
Total Calculated Pass-By					

Pass-By Check PM Peak:

North-South Roadway: $855+906=1,761$
East-West Roadway: $1,523+1,804=3,327$
Shared Volume: $319+272=591$
$1,761+3,327-591=4,497$
10% of $4,497=450$
The calculated pass-by is less/more?

Project Trip Summary			
	Total Trips	Entering Trips	Exiting Trips
Gross Total Trips	784	365	419
Internal Capture Reduction	118	55	63
External Trips	$\mathbf{6 6 6}$	$\mathbf{3 1 0}$	$\mathbf{3 5 6}$
Pass-By Reduction	331	165	166
Net New External Trips	$\mathbf{3 3 5}$	$\mathbf{1 4 5}$	$\mathbf{1 9 0}$

SEGMENT ANALYSIS

Segments that are significantly impacted by the proposed development will be analyzed. For this example, the roadways where the development traffic makes up 3\% or more of the maximum service volume at the adopted level-of-service standard during the PM peak hour will be included in the analysis.

Segment Study Area Determination											
Roadway Segment	No. of Lanes	PHPD Serv. Vol	Project Dist.		Project Dir.		New Project Trips		\% Significant		Study Segment
			$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	
$9^{\text {th }}$ Street											
SR 50/Colonial Drive to Story Road	2	713	1\%	1\%	Out	In	2	1	0\%	0\%	No
Story Road to SR 438/Plant Street	2	713	3\%	3\%	Out	In	6	4	1\%	1\%	No
Dillard Street											
Beard Road to SR 50	4	1,530	11\%	11\%	In	Out	16	21	1\%	1\%	No
SR 50 to Project Entrance	4	1,530	15\%	35\%	In	Out	22	67	1\%	4\%	Yes
Project Entrance to SR 438	4	1,530	25\%	25\%	Out	In	48	36	3\%	2\%	Yes
SR 438 to Story Road	4	1,530	15\%	15\%	Out	In	29	22	2\%	1\%	No
Story Road to Book Street	4	1,530	10\%	10\%	Out	In	19	15	1\%	1\%	No

Segment Analysis									
Roadway Segment	No. of Lanes	PHPD Serv. Vol	2020 Background.		New Project Trips		Total Trips		Deficiency
			$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	$\begin{gathered} \mathrm{NB} / \\ \mathrm{EB} \end{gathered}$	$\begin{aligned} & \text { SB/ } \\ & \text { WB } \end{aligned}$	NB/EB	SB/WB	
Dillard Street									
SR 50 to Project Entrance	4	1,530	1,000	1,021	22	67	1,022	1,088	No
Project Entrance to SR 438	4	1,530	1,100	1,021	48	36	1,148	1,057	No

Workbook Example Analysis 2

KEY

Land Uses:

High Rise Apartment - 464 Units
Retail (Shopping Center) - 7,000 square feet

Analysis Period

AM Peak Hour
PM Peak Hour
Trip Generation
Fill in the table below and determine if you should use the equation or the rate and then calculate trip generation

	Available Trip Generation Average Rates and Equation						
	Land use	Land Use Code	Independent Variable	Average Rate	Equation	R^{2}	Method Used
$\underset{\gtrless}{\sum}$	High-Rise Apartment	222	Units	0.31	$\mathrm{T}=0.28(\mathrm{X})+12.86$	0.90	Equation
	Retail (Shopping Center)	820	Square Feet	0.94	$\mathrm{T}=0.50(\mathrm{X})+151.78$	0.50	Equation
\sum_{2}	High-Rise Apartment	222	Units	0.36	$\mathrm{T}=0.34(\mathrm{X})+8.56$	0.96	Equation
	Retail (Shopping Center)	820	Square Feet	3.81	$\begin{aligned} & \operatorname{Ln}(T)= 0.74 \operatorname{LN}(X)+ \\ & 2.89 \end{aligned}$	0.82	Equation

Trip Generation - Used Rate for these for simplicity								
			AM			PM		
Land use	Land Use Code	Size and Units	IN	OUT	Total	IN	OUT	Total
High-Rise Apartment	222	464 Units	35	109	144	102	62	167
Retail (Shopping Center)	820	$7,000 \mathrm{ft}^{2}$	4	3	7	13	14	27
Totals				39	112	151	115	79

Use attached Internal Capture Sheets

	AM Internal Trips		PM Internal Trips	
Land use	IN	OUT	IN	OUT
High-Rise Apartment	1	1	5	14
Retail (Shopping Center)	1	1	14	5

External Trips

| AM Trips | Trip Generation | | Internal Trips | | External Trips | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total | |
| High-Rise Apartment | 35 | 105 | 1 | 1 | 34 | 104 | - | |
| Retail (Shopping Center) | 19 | 12 | 1 | 1 | 18 | 11 | - | |
| Totals | 54 | 117 | 2 | 2 | 52 | 115 | - | |
| PM Trips | Trip Generation | Internal Trips | External Trips | | | | | |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total | |
| High-Rise Apartment | 98 | 63 | 5 | 14 | 93 | 49 | - | |
| Retail (Shopping Center) | 48 | 53 | 14 | 5 | 34 | 48 | - | |
| Totals | 146 | 116 | 18 | 18 | 127 | 97 | - | |

Multimodal Reduction

Within the Central Business District (CBD) where the project is proposed, the recommended transit reduction is approximately 23 percent, and the recommended pedestrian reduction is 10 percent. Taken together, a 33 percent multimodal reduction was applied to the estimated number of external trips during both the morning and evening peak hours.

| AM Trips | External Trips | | Multimodal Trips | | Net New External Trips | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total |
| High-Rise Apartment | 34 | 104 | 11 | 34 | 23 | 70 | - |
| Retail (Shopping Center) | 18 | 11 | 6 | 4 | 12 | 7 | - |
| Totals | 52 | 115 | 17 | 38 | 35 | 77 | - |
| PM Trips | External Trips | Multimodal Trips | Net New External Trips | | | | |
| Land use | IN | OUT | IN | OUT | IN | OUT | Total |
| High-Rise Apartment | 93 | 49 | 31 | 16 | 62 | 33 | - |
| Retail (Shopping Center) | 34 | 48 | 11 | 16 | 23 | 32 | - |
| Totals | 127 | 97 | 42 | 32 | 85 | 65 | - |

Workbook Example Analysis 2 | Internal Capture

GROSS TRIP GENERATION							
$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail			19	12	48	53
	Restaurant						
	Cinema/Entertainment						
	Residential			35	105	98	63
	Hotel						
	Total			54	117	146	116
$\begin{aligned} & 5 \\ & \frac{5}{2} \\ & 5 \\ & 0 \end{aligned}$	INTERNAL TRIPS (Minimums)						
	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail			1	1	5	14
	Restaurant						
	Cinema/Entertainment						
	Residential			1	1	14	5
	Hotel						
	Total			2	2		
	\% Reduction			2.3		14.5	
EXTERNAL TRIPS							
	Land Use	Daily		A.M. Peak Hour		P.M. Peak Hour	
		Enter	Exit	Enter	Exit	Enter	Exit
	Office						
	Retail			18	11	43	39
	Restaurant						
	Cinema/Entertainment						
	Residential			34	104	84	58
	Hotel						

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		28\%	63\%	0\%	1\%	0\%	
	Retail	29\%		13\%	0\%	14\%	0\%	
	Restaurant	31\%	14\%		0\%	4\%	3\%	
	Cinema/Entertainment	0\%	0\%	0\%		0\%	0\%	
	Residential	2\%	1\%	20\%	0\%		0\%	
	Hotel	75\%	14\%	9\%	0\%	0\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
$\begin{aligned} & \underline{Y} \\ & \underset{\sim}{4} \\ & \dot{\Sigma} \\ & \dot{4} \end{aligned}$	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		32\%	23\%	0\%	0\%	0\%	
	Retail	4\%		50\%	0\%	2\%	0\%	
	Restaurant	14\%	8\%		0\%	5\%	4\%	
	Cinema/Entertainment	0\%	0\%	0\%		0\%	0\%	
	Residential	3\%	17\%	20\%	0\%		0\%	
	Hotel	3\%	4\%	6\%	0\%	0\%		

*** BASED ON EXIT ${ }^{* * *}$								
$\begin{aligned} & \underline{Y} \\ & \underset{\sim}{4} \\ & \dot{\Sigma} \\ & \dot{4} \end{aligned}$	$\begin{gathered} \hline \text { (Exit) } \\ \text { Land Use } \end{gathered}$	(Enter) Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	Exit trips multiplied by the Origin percentages
	Office							
	Retail					2		
	Restaurant							
	Cinema/Entertainment							
	Residential		1					
	Hotel							
			BASED O	ENTER ***				
	(Exit)			(Ent) Land Use			
$\underline{~}$	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
$\overline{4}$	Office							
-	Retail					1		multiplied
	Restaurant							by the
	Cinema/Entertainment							Destination
$\dot{\mathbb{L}}$	Residential		2					percentages
	Hotel							

*** MINIMUM ${ }^{* * *}$								
	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail					1		1
	Restaurant							
	Cinema/Entertainment							
	Residential		1					1
	Hotel							
	TotalEnter		1			1		

	Table 6.1 Unconstrained Internal Person Trip Capture Rates							
	for Trip Origins within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		20\%	4\%	0\%	2\%	0\%	
	Retail	2\%		29\%	4\%	26\%	5\%	
	Restaurant	3\%	41\%		8\%	18\%	7\%	
	Cinema/Entertainment	2\%	21\%	31\%		8\%	2\%	
	Residential	4\%	42\%	21\%	0\%		3\%	
	Hotel	0\%	16\%	68\%	0\%	2\%		

	Table 6.2 Unconstrained Internal Person Trip Capture Rates							
	for Trip Destinations within a Mixed-Use Development (P.M. Peak Hour)							
	Origin Land Use	Destination Land Use						
		Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	From ITE Trip Generation Handbook
	Office		8\%	2\%	1\%	4\%	0\%	
	Retail	31\%		29\%	26\%	46\%	17\%	
	Restaurant	30\%	50\%		32\%	16\%	71\%	
	Cinema/Entertainment	6\%	4\%	3\%		4\%	1\%	
	Residential	57\%	10\%	14\%	0\%		12\%	
	Hotel	0\%	2\%	5\%	0\%	0\%		

*** MINIMUM ${ }^{* * *}$								
	(Exit)	(Enter) Land Use						Total Exit
	Land Use	Office	Retail	Restaurant	Cinema/Ent.	Residential	Hotel	
	Office							
	Retail					14		14
	Restaurant							
	Cinema/Entertainment							
	Residential		5					5
	Hotel							
	TotalEnter		5			14		

Tab 10. FDOT FTI Site

FDOT FTI Site |Original View

Site Impact Applications Guide FDOT

FDOT FTI Site | Zoom

FDOT FTI Site | Layers

Site Impact Applications Guide FDOT\}

FDOT FTI Site | Legend

FDOT FTI Site | Data Window

FDOT FTI Site | Reports

FDOT FTI Site | Reports

FDOT | Florida Traffic Information

FDOT | Traffic Analysis Tool-V03.a

FDOT | Traffic Analysis Tool-V03.a

[^0]: \% ffs = Percent free flow speed ats = Average travel speed

[^1]: $\% \mathrm{tsf}=$ Percent time spent following $\quad \% \mathrm{ffs}=$ Percent of free flow speed \quad ats $=$ Average travel speed $\mathrm{ru}=$ Rural undeveloped $\quad \mathrm{rd}=$ Rural developed

[^2]: \% ffs = Percent free flow speed ats = Average travel speed

[^3]: Source:
 Florida Department of Transportation
 Systems Planning Office
 www.dot.state.fl.us/planning/systems $/ \mathrm{sm} / \mathrm{los} /$ default.shtm

[^4]: \%tsf $=$ Percent time spent following $\quad \% \mathrm{ffs}=$ Percent of free flow speed \quad ats $=$ Average travel speed \quad ru $=$ Rural undeveloped \quad rd $=$ Rural developed

[^5]: $\% \mathrm{tsf}=$ Percent time spent following $\quad \% \mathrm{ffs}=$ Percent of free flow speed \quad ats $=$ Average travel speed $\quad \mathrm{ru}=$ Rural undeveloped $\quad \mathrm{rd}=$ Rural developed

