

STATEWIDE MULTIMODAL ACCESS MANAGEMENT AND TRANSPORTATION SITE IMPACT

www.fdot.gov/planning/systems

WEBINAR SERIES 2023-2024

Agenda

CREDITS AND WEBINAR MATERIAL

CONTACT INFO

TRIP GENERATION RESEARCH ON HIGH-VOLUME FAST-FOOD RESTAURANTS AND COFFEE SHOPS

Webinar Staff

FLORIDA DEPARTMENT OF TRANSPORTATION

Gina Bonyani

Systems Implementation Office SYSTEMS IMPLEMENTATION OFFICE Gina.Bonyani@dot.state.fl.us

850-414-4725

FLORIDA DEPARTMENT OF TRANSPORTATION

Drew Roark, PE, CTL

ALEX ROARK ENGINEERING Drew@alexroarkeng.com

FLORIDA DEPARTMENT OF TRANSPORTATION

William E. Oliver, PE, PTOE

ALEX ROARK ENGINEERING Bill@weo-pe.com

Credits Information

Certificates will be distributed through email.

Your participation will be recorded by GoToWebinar.

• You will need to attend to the entire webinar with the unique link provided by GoToWebinar.

STATEWIDE MULTIMODAL ACCESS MANAGEMENT AND **TRANSPORTATION SITE IMPACT WEBINAR SERIES 2023-24** FLORIDA DEPARTMENT OF TRANSPORTATION This certifies that Name Last Name has successfully completed the Webinar #1 Course Number: XXXX FBPE Provider number: XXXXXXX XX/XX/XX Presented on: And has qualified for 1.5 CE credits **SIO** FDO Signature of approval authority

Webinar Material

Recorded webinars and presentation material will be posted on the Systems Implementation Office website:

https://www.fdot.gov/planning/systems/systems-management/trainings-webinars

What organization do you represent?

Statewide Multimodal Access Management And Transportation Site Impact

WEBINAR SERIES 2023-2024

Webinar #1 Multimodal Site Impact Analysis

Tuesday, August 15, 2023

Webinar #2 Multimodal Quality Level of Service

Tuesday, November 14, 2023

Webinar #3 Multimodal Access Management

Tuesday, February 20, 2024

Webinar #4

Trip Generation Research on High-Volume Fast-Food Restaurants and Coffee Shops

Tuesday, May 21, 2024

FDOT

Important: Next Webinar Series will be announced through Contact Mailer.

Statewide Multimodal Access Management And Transportation Site Impact

W E B I N A R S E R I E S 2 0 2 3 - 2 0 2 4

Today's Webinar

Trip Generation Research on High-Volume Fast-Food Restaurants and Coffee Shops

> Tuesday, May 21, 2024 2:00PM - 3:30PM

How familiar are you with the Institute of Transportation Engineers (ITE) Manual?

VERY FAMILIAR

SOMEWHAT FAMILIAR

NOT FAMILIAR

TRIP GENERATION STUDY FOR COFFEE SHOP WITH DRIVE-THROUGH AND FAST FOOD WITH DRIVE-THROUGH PM: Gina Bonyani – FDOT
PI: Drew Roark, PE, CTL, Alex Roark Engineering
Bill Oliver, PE, W.E. Oliver, P.E., LLC
Contract Number: BEF47

Presentation Outline

Background/Objectives
Benefits
Scope
Tasks 1-6
Updates & Lessons (so far)
Timeline
Questions

Project Objective

Project Benefits

Qualitative

 A better understanding of trip generation and operational characteristics of these land uses in varying situations.

Quantitative

• Specific requirements for approval (or denial) of new driveway permits for these land uses.

Task 1 – Literature Review

ng

th

Task 2 – Site Selections

Task 3 – Traffic Data Collection

Just the Facts

- For fast food restaurants we sampled 2,347 vehicles utilizing the drive through
- A total of approximately 24,000 vehicles (roughly 10%)
- Coffee shops included 1,157 samples in the drive through
- Generally recorded information:
 - Time of arrival at order station
 - Time order was completed
 - Time vehicle arrived at payment station (if applicable), and if the vehicle was "inhibited" by a vehicle ahead
 - Time payment transaction was completed (if applicable)
 - Time of arrival at pickup station (in some cases, this would be the time an attendant brought the order to the vehicle), and if the vehicle was "inhibited" by a vehicle ahead
 - Time of departure from the pickup lane

Task 4 – Data Analysis

20

Conditions We Saw

Operation of the second sec

- At Fast-Food average 60% (range 25% to 95%) of entering vehicles use drive-through.
- At Coffee/Donut Shops average 62% (range 26% to 85%) of entering vehicles use drive-through .
- Some use of internet ordering in advance.
- Multi-lane ordering, multi-lane pickup operations.

Maximum Hourly Trip Generation

Actual Trip Generation

Weekday Lunch (highest) Trip Generation

Weekday Lunch (highest) Trip Generation

ITE vs. Actual – Fast Food

ITE vs. Actual – Coffee Shop

Is Adjacent Street Volume a Better Independent Variable?

Queueing – Drive-Through Usage

Percent Trips Through Drive-Through

How To Estimate Queue Length

Queue lengths depend on three factors:
Rate and duration of arrivals (e.g. trip generation). More arrivals, longer queues.
Rate at which orders are filled and vehicles depart. Faster rate shortens queues.
Lengths of vehicles in queue.

How to Estimate Queue Length

Arrival Rates

- At Fast-Food Restaurants ranged from 40 To 628 veh/hr, averaged 245
- At Coffee-Donut Shops ranged from 22 To 485 veh/hr, averaged 199

Service Rates

- At Fast-Food Restaurants ranged from 21 To 205 veh/hr, averaged 86
- At Coffee-Donut Shops ranged from 33 To 107 veh/hr, averaged 73

Conclude: Different restaurants have different operating styles. These parameters even vary within store brands. **Cannot generalize**.

How to Estimate Queues

We tried different methods: Applied classical equations
Applied micro-simulation

Application of Classical Equations

RMS error > 30.24

Classical Equations Don't Do a Good Job

As volume:capacity ratios approach 1.00, queues increase exponentially. For queues to increase exponentially, vehicles need to arrive exponentially. But demands fall off after the peak period, and queues dissipate.

Classical Equations Don't Do a Good Job

 They are based on a "negative exponential" distribution of service times, actual service times follow a "lognormal" distribution.

Natural Log Better Fit

Unique, lognormallydistributed service time distributions can be entered into TransModeler

	Service Time Distributions for TransModeler											
				Order Times				Pickup Times				
	Average:			47.0	42.5	54.3	75.1	27.9	40.3	55.7	144.0	
	Standard Dev:			34. 47	41.22	38.10	65.42	25.60	37.46	45.14	118.49	
	Capacity:		77	85	66	48	129	89	65	25		
			Λ									
	Modeler											
	Table		% to which	Order	Order	Order	Order	Pickup	Pickup	Pickup	Pickup	
	Row	Percentile	Applicable	Time 1	Time 2	Time 3	Time 4	Time 1	Time 2	Time 3	Time 4	
	1	2%	3.5%	6.9	2.0	12.0	2.0	3.0	3.0	7.0	12.9	
	2	5%	4.0%	9. <u>2</u>	3,0	13.8	4.0	5.0	5.0	9.0	26.6	
	3	10%	4.5%	13 D	6.0	17.0	8.0	7.0	9.0	14.0	37.3	
	4	14%	5.5%	15. D	10.0	20.0	20.0	8.0	11.0	16.2	43.0	
	5	21%	5.5%	19,0	16.0	24.0	28.0	10.2	15.0	21.0	52.0	
	6	25%	6.0%	21. D	18.5	27.0	32.0	12.0	16.0	24.0	61.0	
	7	33%	6.5%	26.0	24.0	32.0	42.0	14.0	21.0	30.0	77.7	
	8	38%	5.5%	30. 0	29.0	35.1	47.0	16.0	23.0	34.0	88.0	
	9	44%	6.0%	34. 0	32.0	40.0	54.0	18.0	25.8	38.0	100.0	
	10	50%	6.0%	37. 0	35.0	46.0	60.0	20.0	29.0	42.0	109.0	
	11	56%	6.0%	41. D	39.0	51.0	67.0	23.0	35.0	49.0	125.0	
	12	62%	5.5%	48.0	43.0	55.9	74.0	26.0	39.0	53.9	142.3	
	13	67%	5.5%	54.0	48.0	60.0	84.0	29.0	42.8	59.0	158.0	
	14	73%	5.5%	60.1	55.0	68.0	100.0	35.0	47.0	68.0	180.0	
	15	78%	5.0%	67.0	60.0	75.5	109.5	39.3	52.6	80.5	209.0	
	16	83%	5.0%	77.0	69.0	84.0	124.0	44.5	61.0	92.0	237.2	
	17	88%	5.0%	90.0	79.6	96.0	142.5	53.0	78.0	106.2	269.4	
	18	93%	4.5%	105.0	96.1	114.8	174.0	65.0	102.0	126.6	340,4	
	19	97%	3.0%	133.4	122.7	140.7	225.4	89.0	135.9	169.5	419.6	
	20	99%	2.0%	161.6	176.1	203.5	310.2	134.6	191.0	238.0	592.2	
			100.0%									

As capacity increases, distribution of service times "tightens up"

Application of Micro-Simulation

RMS error = 5.5 veh (compared to >30.24)

		Service Rate (veh/hr)>>>>>>											
		2	1.5	1.2	1	0.86	0.75	0.67	0.6	0.55	0.5		
		30	40	50	60	70	80	90	100	110	120		
	20	0	0	0	0	0	0	0	0	0			
me	40	12	3	0	0	0	0	0	0	0			
olui	60	61	32	11	5	1	0	0	0	0			
2 S	80	113	77	49	26	12	7	2	0	0			
por	100		131	96	65	43	21	13	8	3	0		
× F	120				115	83	60	38	20	15	10		
Pe	140					135	100	78	55	33	22		
	160						153	118	94	72	49		

Queue Length in Vehicles as a Function of Peak Hour Volume and Service Rate

Queue Length based on Volume and Service Rate

Micro-simulation 90th %-ile Queue Estimate Curves

Tasks 5&6 – Teleconference and Report

Updates and Lessons (so far)

- Popularity among different brands varies dramatically, therefore trip generation rates vary dramatically.
- Using ITE Trip Generation for estimates may not be accurate by brand
- Peak hours for fast food are weekday lunch hour, however traffic impact analysis is typically weekday PM Peak Hour

Updates and Lessons (so far)

- Through the pandemic, drivethroughs have seen dramatic changes (increased usage)
- No updates in traffic engineering queuing theory since the 70s. Queueing equations focused on roadway/intersections.
- Performance in drive throughs (service times) vary dramatically
- Different restaurant chains have different operating procedures

Project Timeline

TRIP GENERATION STUDY FOR COFFEE SHOP WITH DRIVE-THROUGH AND FAST FOOD WITH DRIVE-THROUGH DOT-RFP-23-9054-SJ

D	Task Name	Duration	Start	Finish	Predecessors	Successors	2023 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
20	NDS Returns To The Field To Collect Any Missing, Incomplete Or Erroneous Data		Tue 1/30/24	Mon 2/12/24	19	21	
21	ARE Team Review of the Data		Tue 2/13/24	Mon 2/26/24	20	22	
22	Deliverable 3: ARE Team Submits Data To Research Center	0 days	Mon 2/26/24	Mon 2/26/24	21	24	•
23	TRIP GENERATION DATA EVALUATION	30 days	Tue 2/27/24	Mon 4/8/24			
24	Evaluate Trip Generation Comparison Between Sites and Groupings Of Sites		Tue 2/27/24	Mon 3/4/24	22	25	Ĩ
25	Evaluate Drive Through Design Comparison Between Sites and Groupings Of Sites		Tue 3/5/24	Mon 3/11/24	24	26	Ĩ
26	Evaluate Queue Lengths Comparison Between Sites And Groupings Of Sites		Tue 3/12/24	Mon 3/18/24	25	27	ĩ
27	7 Develop Summary Of Methodology Of Analysis For Each Evaluation Of The Sites		Tue 3/19/24	Mon 3/25/24	26	28	
28	28 Develop Summary Of Recommendations For Permitting Driveways For Future Fast Food And Coffee Shop Sites		Tue 3/26/24	Mon 4/1/24	27	29	
29	Deliverable 4 – Report of Recommendations to Research Center		Tue 4/2/24	Mon 4/8/24	28	31	
30	30 FINAL REPORT PREPARATION		Tue 4/9/24	Tue 9/3/24			•
31	1 Deliverable 5a: Draft Final Report		Tue 4/9/24	Mon 6/3/24	29	32,34FS+66 da	· · · · · · · · · · · · · · · · · · ·
32	Deliverable 5b: Closeout Teleconference (Powerpoint Presentation)	15 days	Tue 6/4/24	Mon 6/24/24	31	33	
33	Deliverable 6 – Final Report		Tue 6/25/24	Mon 7/8/24	32	34	
34	Contract End Date		Tue 9/3/24	Tue 9/3/24	31FS+66 day	15	
Project	Tile Generation Colliced Test		Milestooo		Sume		
Date: N 2 of 2	Ann 3/13/23		Milestone	•	Sumn	nary 🗸	Project Summary

TRIP GENERATION **STUDY FOR COFFEE SHOP** WITH DRIVE-**THROUGH AND FAST FOOD** WITH DRIVE-IPDATE THROUGH

QUESTIONS?

PM: Gina Bonyani – FDOT PI: Drew Roark, PE, CTL, Alex Roark Engineering drew@alexroarkeng.com or 850.567.2044

CONTACT INFO

<u>Gina.Bonyani@dot.state.fl.us</u>

Karla.Matos@dot.state.fl.us

