

STATEWIDE MULTIMODAL ACCESS MANAGEMENT AND TRANSPORTATION SITE IMPACT

www.fdot.gov/planning/systems

WEBINAR SERIES 2023-2024

Webinar Staff

FLORIDA DEPARTMENT OF TRANSPORTATION

Gina Bonyani

Transportation Senior Planner

SYSTEMS IMPLEMENTATION OFFICE Gina.Bonyani@dot.state.fl.us 850-414-4707

FLORIDA DEPARTMENT OF TRANSPORTATION

Thuraia Sully

Statewide Q/LOS Coordinator

SYSTEMS IMPLEMENTATION OFFICE <u>Thuraia.Sully@dot.state.fl.us</u> 850-414-4725

Agenda

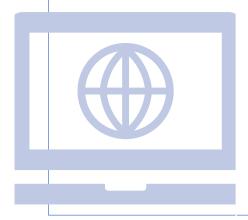
CREDITS AND WEBINAR MATERIAL

MULTIMODAL QUALITY/LEVEL OF SERVICE

CONTACT INFO

Credits Information

Certificates will be distributed through email.

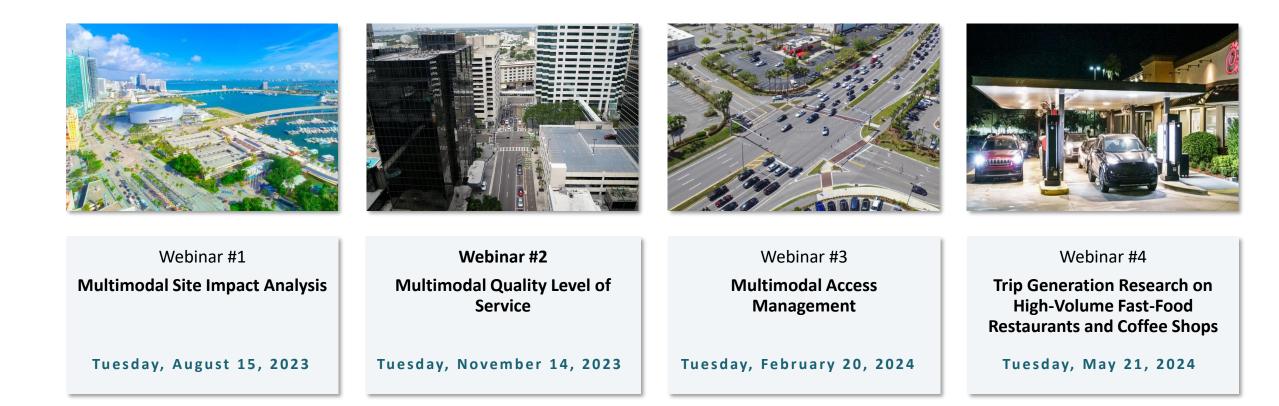

Your participation will be recorded by GoToWebinar.

• You will need to attend to the entire webinar with the unique link provided by GoToWebinar.

Webinar Material

Recorded webinars and presentation material will be posted on the Systems Implementation Office website:

https://www.fdot.gov/planning/systems/systems-management/trainings-webinars



What organization do you represent?

Statewide Multimodal Access Management And Transportation Site Impact

WEBINAR SERIES 2023-2024

Statewide Multimodal Access Management And Transportation Site Impact

WEBINAR SERIES 2023-2024

How familiar are you with Multimodal Quality/Level of Service?

VERY FAMILIAR

SOMEWHAT FAMILIAR

NOT FAMILIAR

Quality/Level of Service and Level of Traffic Stress

Statewide Access Management and Traffic Site Impact Webinar Series 2023-2024

Agenda

Automobile Level of Service

- MMDQLOS Handbook Changes between 2020-23
- Definitions
- LOS Letter Grades
- LOS Target Policy

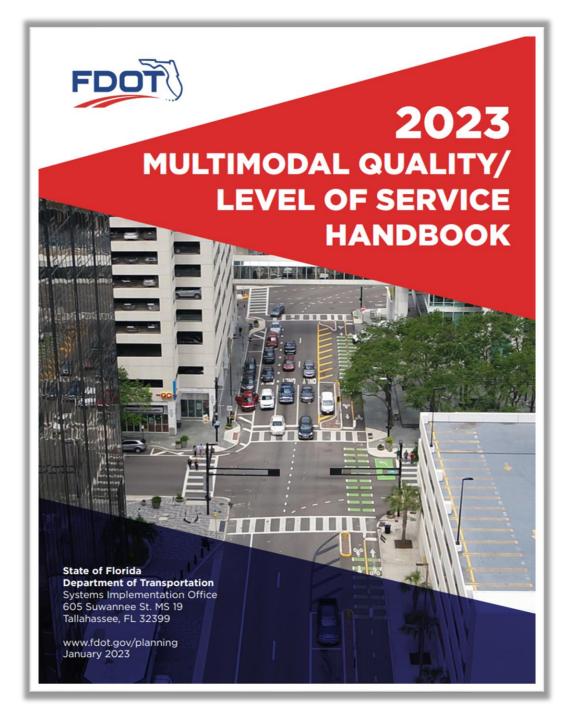
Generalized Service Volume Tables

- What They Are
- How They Are Developed
- How To Select And Use The Tables

EXAMPLES

Bicycle and Pedestrians Levels of Traffic Stress

- Overview
- Background


Bicycle and pedestrian Level of Traffic Stress

- LTS Descriptions
- Bicycle and Pedestrians LTS Inputs
- Level of Traffic Stress Flowcharts

EXAMPLES

Multimodal Quality/Level of Service Handbook

Definitions

Quality of Service

• A **traveler-based assessment** of how well a service or facility is operating

Level of Service

 A quantitative stratification of the "quality of service" of a service or facility into six letter grade levels with "A" describing the highest quality and "F" describing the lowest quality

Multimodal

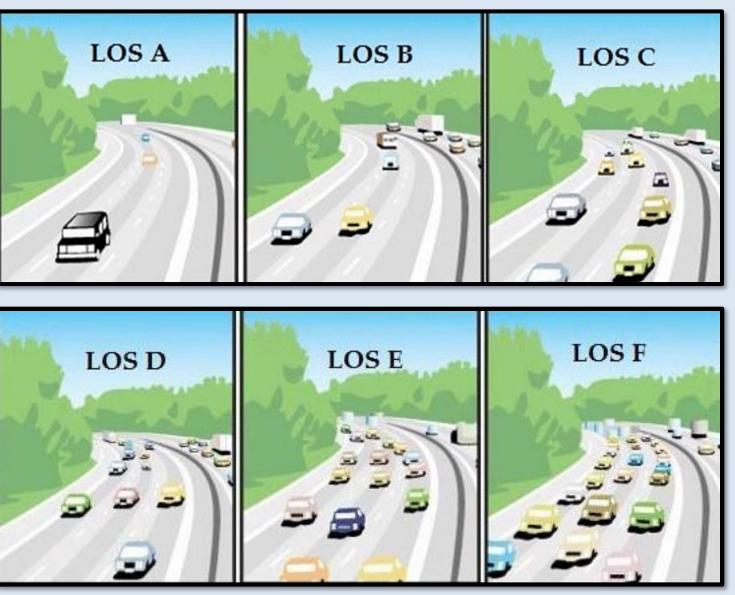
• More than one highway mode (auto, bicycle, bus, pedestrian, truck)

Definitions

Capacity

• The maximum number of vehicles that can pass a point during a specified time period under **prevailing** roadway, traffic, and control conditions

Maximum Service Volumes


• The **highest number** of vehicles for a given level of service

Generalized Planning

• A broad type of planning application that includes statewide analyses, initial problem identification, and future year analyses

Depictions of Levels of Service

A	Free Flow
B	Reasonably Free Flow
С	Stable Operations
D	Unstable Operations
E	Extremely Unstable
F	Breakdown

Source: Performance Evaluation of a 'Priority-Controlled' Intersection Converted to Signal-Controlled Intersection, Ezenwa Chinenye Amanamba, Vol:10, No:7, 2016

Level of Service Target Policy

Policy No 000-525-006

- Effective April 2017
- Reviewed August 2019

LEVEL OF SERVICE TARGETS FOR THE STATE HIGHWAY SYSTEM

It is the Department's intent to plan, design and operate the State Highway System at an acceptable level of service for the traveling public. The automobile mode level of service targets for the State Highway System during peak travel hours are "D" in urbanized areas and "C" outside urbanized areas. The Department shall work with local governments to establish appropriate level of service targets for multimodal mobility and system design. The targets shall be responsive to all users, for context, roadway function, network design, and user safety.

Why don't we build for LOS A?

Generalized Service Volume Tables What are they?

C2T, C4, C5, & C6

Motor Vehicle Arterial Generalized Service Volume Tables

T	Peak Hour Directional							Peak Hour Two-Way						AADT					
		В	С	D	E			В	С	D	E			В	С	D	E		
MI I O'THAN	1 Lane	*	720	940	**		2 Lane		1,310	1,710	**		2 Lane		13,800	18,000	**		
1	2 Lane	*	1,140	1,640	**		4 Lane		2,070	2,980	**		4 Lane		21,800	31,400	**		
ral	3 Lane		2,120	2,510	**		6 Lane		3,850	4,560	**		6 Lane		40,500	48,000	••		
		В	C	D	E			В	C	D	E			В	С	D	E		
	1 Lane	*	•	870	1,190		2 Lane			1,580	2,160		2 Lane		*	17,600	24,0		
	2 Lane	*	1,210	1,790	2,020		4 Lane	*	2,200	3,250	3,670		4 Lane		24,400	36,100	40,8		
T	3 Lane	*	2,210	2,810	2,990		6 Lane		4,020	5,110	5,440		6 Lane		44,700	56,800	60,4		
an II)	4 Lane	*	2,590	3,310	3,510		8 Lane		4,710	6,020	6,380		8 Lane		52,300	66,900	70,9		
"																			
						1		-						-	-	-	-		
		В	C	D	E			В	С	D	E			B	С	D	E		
	1 Lane		*	690	1,080		2 Lane	*		1,250	1,960		2 Lane			13,900	21,8		
	2 Lane	*	1,290	1,900	2,130		4 Lane	*	2,350	3,450	3,870		4 Lane		26,100	38,300	43,0		
	3 Lane		1,410	2,670	3,110		6 Lane		2,560	4,850	5,650		6 Lane		28,400	53,900	62,8		

8 Lane

8 Lane

٠

5,290

(C6-Urbar

(C5-Urban

D E C D E B С D . *** 1,440 1,870 * *** 790 1,030 2 Lane 2 Lane 16,000 *** . *** 1.490 1.920 4 Lane 2,710 3,490 4 Lane 30,100 *** *** 2,730 2,940 4,960 5,350 55,100 6 Lane 6 Lane

5,910

6,470 6,620

6,350

6-Urban 4 Lane * Core) Adjustment Factors

4 Lane

1 Lane

2 Lane

3 Lane

٠

С

The peak hour directional service volumes should be adjust by multiplying by 1.2 for one-way facilities The AAD' service volumes should be adjusted by multiplying 0.6 for one way facilities 2 Lane Divided Roadway with an Exclusive left Trun Lane(s): Multiply by 0.5 2 lane Undivided Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.80

3,490

2,910 3,560 3,640

3,250

Exclusive right turn lane(s): Multiply by 1.05 Multilane Undivided Roadway with an Exclusive Left Turn Lane(s): Multiply by 0.95 Multilane Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.75 Non-State Signalized Roadway: Multiply by 0.90

8 Lane

8 Lane

.

58,800 71,900 73,600

E

20.800

38,800

59,400

65.700 70.600

This table does not constitute a stundard and should be used only for general planning applications. The table should not be used for control or intersection design, where more refined techniques exist. "Cannot be achieved using table input value defaults." "Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached "ISOS thresholds are not applicable for CB as CG roadway facilities are neither planned nor designed to achieve automobile LOS C.

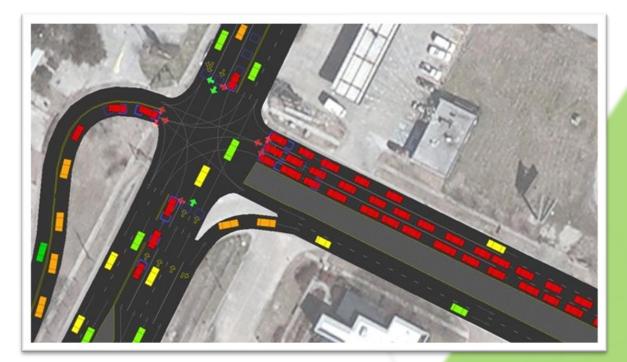
The Multimodal Q/LOS Handbooks main generalized planning tool

It shows **maximum service volumes** for each letter grade based on

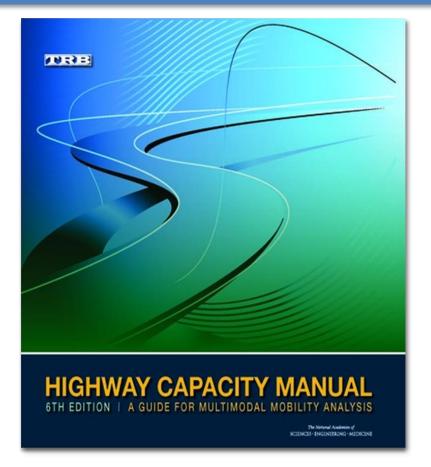

Averaged Variables

Area Type

Context Classification


Other Defaults

Generalized Service Volume Tables How were they developed?



The National Academies of CIENCES - ENGINEERING - MEDICENE The HCM is the most widely recognized and acceptable analysis tool for motorized vehicles.

Generalized Service Volume Tables How were they developed?

Based on the Highway Capacity Manual (HCM) methodologies using Highway Capacity Software (HCS) analysis

The generalized planning tool used in the Quality Level of Service Handbook uses many defaults including...

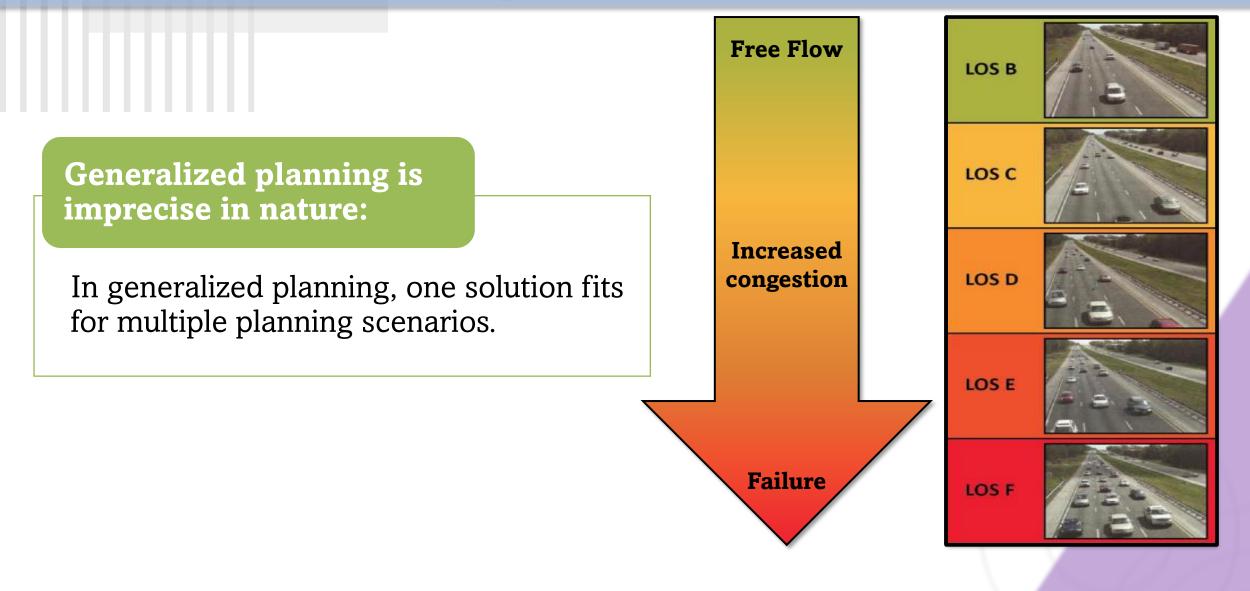
Source: Alexander Sparteni / Getty Images

Defaults

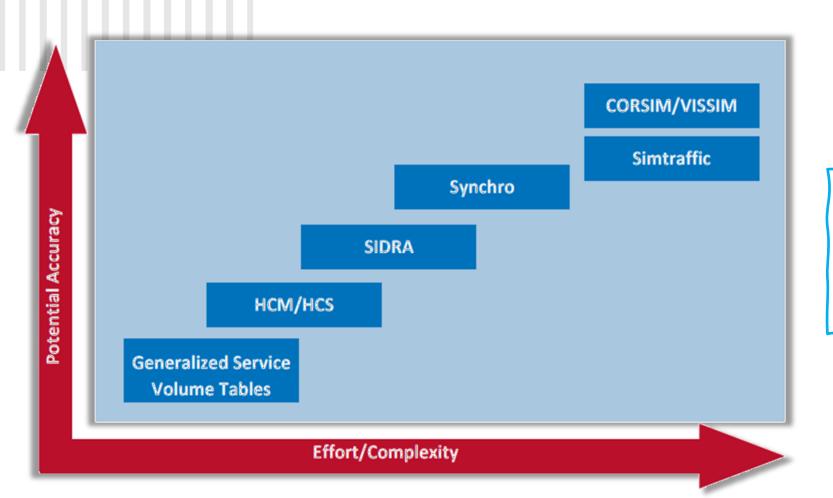
C2T, C4, C5, & C6

Motor Vehicle Arterial Generalized Service Volume Tables

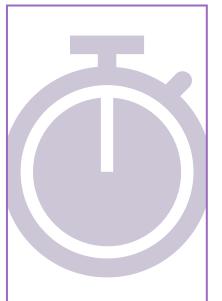
Input Parameters


Roadway Characteristics

	C2T	C4	C5	C6
Number of Lanes (one direction)	1-3	1-4	1-4	1-4
Posted Speed (mph)	40	45	35	30
Facility Length (miles)	0.78	1.83	1.18	0.74
Number of Signals	4	9	9	7


Traffic Characteristics

	C2T	C4	C5	C6
Planning Analysis Hour Factor (K)	0.095	0.09	0.09	0.09
Directional Distribution Factor (D)	0.55	0.55	0.55	0.55
Peak Hour Factor (PHF)	0.92	0.95	0.95	0.95
Base Saturation Flow Rate	1,700	1,950	1,950	1,950
Heavy Vehicle Percent (%)	5	3	2	2
Lane Width	11	11	10	10
Median Type	Non Restrictive	Non Restrictive	Non Restrictive	Non Restrictive
Roadway Edge Type	Curb	Curb	Curb	Curb
On-Street Parking	50%	100%	100%	100%


Generalized Planning

Generalized Planning

Note: Other operational analysis tools are more complex and precise but may be time-intensive and costly.

When to use generalized planning

- Planning level analysis
- Widescale analysis
- Long range planning studies
- Quick comparison of alternatives

When not to use generalized planning

- Where precision is required
- Where the facility exceeds capacity

Determine your roadway type

FREEWAYS

High speed multilane facility with limited access

UNINTERRUPTED FLOW HIGHWAYS

Non-freeway facilities with signalized intersection spacing > two miles

ARTERIALS

Interrupted flow facilities have fixed causes of delay with average spacing less than or equal to two miles

Context Classification

For arterials, determine your context classification

Context classification has been applied to highway and arterials generalized service volume tables Higher stratification than area types

8 context classifications applied to highways and arterials

An implementation of complete streets and supporting system towards target zero

What is context classification?	A classification system which considers land use, connectivity and other factors. Useful in the implementation of complete streets.
How do we	You can find context classification defined in:
determine	 RCI with feature code 126
context	On Connect Ped
classification?	 The guidance included in the Complete Street's Guidebook table 2
C1- Natural C2- Rural C2T- Ru	ural Town C3R- Suburban C3C- Suburban C4-Urban General C5- Urban Center C6- Urban Core
	RURAL MORE URBAN

Context Classification

For freeways, determine your Area Type

Rural Area

• Population of less than 5,000

Core Urbanized Area

• Population of 1,000,000 or more

Urbanized Area

• Other urbanized areas with a population of 50,000 or more

Transitioning Area

 Transitioning from rural into urbanized areas

Choose your column and row based on the information you have available and the question you are trying to answer

	S	D factor applied					K and D factor applied								
	Peak Hour Directional						Peak Hour Two-Way				AADT				
		В	С	D	Ε		В	С	D	E		В	С	D	E
Area type or	2 Lane					4 Lane					4 Lane				
context	3 Lane					6 Lane					6 Lane				
classification	4 Lane					8 Lane					8 Lane				
classification	5 Lane					10 Lane			3 3		10 Lane				
	6 Lane					12 Lane					12 Lane				1

Directional Distribution Factor

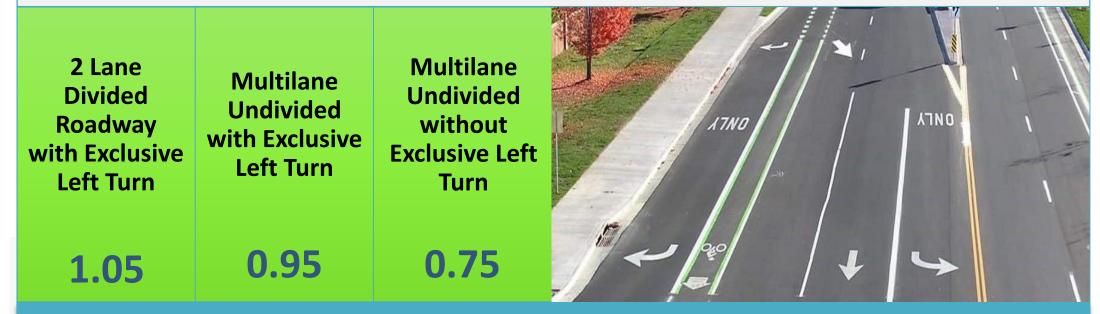
• The percentage of the total, two-way peak hour traffic that occurs in the peak direction.

K Factor

• The proportion of AADT that occurs during the peak hour.

Adjustment factors are included to account for a roadway characteristics that vary significantly from the averages used in the tables. These adjustments should be applied to the service volumes on the tables.

LIMITED ACCESS


Adjustment factors are included to account for a roadway characteristics that vary significantly from the averages used in the tables. These adjustments should be applied to the service volumes on the tables.

Two lane Exclusive Multilane Multilane Two lane **One Way** divided Undivided **VUND Right Turn** undivided Facility ATNO undivided With with no with Lane No **Exclusive Exclusive** exclusive **Exclusive** left turn Left Turn Left Turn Left Turn Lane Lane Lane 1.05 0.60 1.05 0.95 0.75 0.8

ARTERIALS

Adjustment factors are included to account for a roadway characteristics that vary significantly from the averages used in the tables. These adjustments should be applied to the service volumes on the tables.

HIGHWAYS

Adjustment factors are included to account for a roadway characteristics that vary significantly from the averages used in the tables. These adjustments should be applied to the service volumes on the tables.

NON-STATE

Non-State-Owned Facility

0.9

Type of problems you can solve for with the GSVTs

Determine LOS based on number of lanes and volume

Determine growth allowable before reaching a particular level of service

Determine number of lanes required for level of service given a volume

EXAMPLES USING TABLES

EXAMPLE 1 I-10/SR 8, D2

What is the LOS of a **4-lane** limited access roadway within a rural area? It has an AADT of **39,500**.

Limited Access

What is

Freeway Generalized Service Volume Tables

		Peak Hou	r Directi	onal			Peak H	our Two-	Nay			AADT				
AADT: 39,500			В	С	D	E		В	С	D	E		В	С	D	Е
		2 Lane	2,400	3,170	3,970	4,150	4 La	ne 4,360	5,760	7,220	7,550	4 Lane	51,300	67,800	84,900	88,800
	(Core	3 Lane	3,390	4,600	5,810	6,130	6 La	ne 6,160	8,360	10,560	11,150	6 Lane	72,500	98,400	124,200	131,200
Context class: N/A	Urbanized)	4 Lane	4,340	6,060	7,700	8,170	8 La	ne 7,890	11,020	14,000	14,850	8 Lane	92,800	129,600	164,700	174,700
Context class. IV A		5 Lane	5,480	7,450	9,680	10,390	10 La	ne 9,960	13,550	17,600	18,890	10 Lane	117,200	159,400	207,100	222,200
		6 Lane	6,630	9,220	11,520	12,760	12 La	ne 12,050	16,760	20,950	23,200	12 Lane	141,800	197,200	246,500	272,900
Roadway type: LA											1					
5 51			В	С	D	E		В	С	D	E		В	С	D	E
		2 Lane	2,500	3,300	4,070	4,240	4 La	ne 4,550	6,000	7,400	7,710	4 Lane	50,600	66,700	82,200	85,700
Area type: Rural	• Rural (Urbanized)	3 Lane	3,570	4,900	6,080	6,360	6 La	,	8,910	11,050	11,560	6 Lane	72,100	99,000	122,800	128,400
mea type. Rafa		4 Lane	4,720	6,500	8,090	8,490	8 La		11,820	14,710	15,440	8 Lane	-	131,300	163,400	171,600
		5 Lane	5,790	8,020	10,020	10,610	10 La	10,530 ie	14,580	18,220	19,290	10 Lane	117,000	162,000	202,400	214,300
Number of lanes: 4 lanes																
Number of failes. 4 failes			В	С	D	E		В	С	D	E		В	С	D	E
		2 Lane	2,430	3,180	3,790	3,910	4 La	ne 4,420	5,780	6,890	7,110	4 Lane	45,100	59,000	70,300	72,600
	(Transitioning)	3 Lane	3,520	4,670	5,610	5,870	6 La	ne 6,400	8,490	10,200	10,670	6 Lane	65,300	86,600	104,100	108,900
Vhat is the Level of service?		4 Lane	4,630	6,170	7,440	7,830	8 La	ne 8,420	11,220	13,530	14,240	8 Lane	85,900	114,500	138,100	145,300
		5 Lane	5,690	7,640	9,220	9,800	10 La	ne 10,350	13,890	16,760	17,820	10 Lane	105,600	141,700	171,000	181,800
a) LOS A			В	с	D	E		В	с	D	E		В	с	D	E
aj LOSA	1	2 Lane	2,010	2,770	3,270	3,650	4 La		5,040	5,950	6,640	4 Lane	34,800	48,000	56,700	63,200
	(Rural)	3 Lane	2,820	3,990	4,770	5,470	6 La		7,250	8,670	9,950	6 Lane	48,900	69,000	82,600	94,800
		4 Lane	3,630	5,220	6,260	7,300	8 La		9,490	11,380	13,270	8 Lane		90,400	108,400	, 126,400
b) LOS B										-						
		Adjustmen	t Factors													
)				n Analysis Dire Adjustment: N		ment: +1,000			t in Analysis Di t Adjustment:					n Analysis Dire Adjustment: N		
c) LOS C			-					-				lesign, where more r			Autoply by 1.	/5
		mis table udes r	ior constitute a	i stanuaru and :	snodia pe dsea	only for general	higuning abbii	nuons. me table	snodiu not de u	sea for corridor	or intersection o	esign, where more r	enned techniq	ues expl.		
d) LOS D																
2																

	В	С	D	E
4 Lane	34,800	48,000	56,700	63,200
6 Lane	48,900	69,000	82,600	94,800
8 Lane	62,900	90,400	108,400	126,400

EXAMPLE 2 SR-820 / Pines Blvd, D4

What is the maximum AADT to maintain LOS D for this roadway? The context classification is 3CR. It is an arterial with 4 lanes. There is an exclusive right turn lane.

AADT: ?

Context class: C3R

Roadway type: arterial

Number of lanes: 4

Level of service: D

Features right turn lanes

C3C & C3R

В

*

*

*

*

С

760

1,520

2,360

3,170

D

1,070

1,810

2,680

3,180

Е

**

**

**

**

Peak Hour Directional

1 Lane

2 Lane

3 Lane

4 Lane

Peak Hour Two-Way

2 Lane

4 Lane

6 Lane

8 Lane

В

*

*

*

*

AADT

Motor Vehicle Arterial Generalized Service Volume Tables

	В	С	D	E
2 Lane	*	15,300	21,700	**
4 Lane	*	30,700	36,600	**
6 Lane	*	47,700	54,100	**
8 Lane	*	64,000	64,200	**

		В	С	D	E
	1 Lane	*	970	1,110	**
	2 Lane	*	1,700	1,850	**
1	3 Lane	*	2,620	2,730	**
C. I. I.					

	В	С	D	E
2 Lane	*	1,760	2,020	**
4 Lane	*	3,090	3,360	**
6 Lane	*	4,760	4,960	**

С

1,380

2,760

4,290

5,760

D

1,950

3,290

4,870

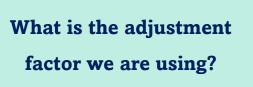
5,780

Е

**

**

**


**

		В	С	D	E]
	2 Lane	*	19,600	22,400	**	
	4 Lane	*	34,300	37,300	**	Σ
	6 Lane	*	52,900	55,100	**	

(C3R-Suburban Residential)

(C3C-Suburban

Commercial)

- a) 1.05
- b) 0.80
- c) 0.90
- d) 0.75

Adjustment Factors

The peak hour directional service volumes should be adjust by multiplying by 1.2 for one-way facilities The AADT service volumes should be adjusted by multiplying 0.6 for one way facilities 2 Lane Divided Roadway with an Exclusive Left Turn Lane(s): Multiply by 1.05 2 Lane Undivided Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.80 Exclusive right turn lane(s): Multiply by 1.05 Multilane Undivided Roadway with an Exclusive Left Turn Lane(s): Multiply by 0.95 Multilane Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.75 Non-State Signalized Roadway: Multiply by 0.90

This table does not constitute a standard and should be used only for general planning applications. The table should not be used for corridor or intersection design, where more refined techniques exist. * Cannot be achieved using table input value defaults.

** Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached.

	В	C	D	E
2 Lane		19,600	22,400	**
4 Lane	•	34,300	37,300	**
6 Lane	*	52,900	55,100	**

MSV for level of service D on a 4-lane facility with exclusive right turn lanes?

37300 × 1.05 = **39,165**

Example 3 Colonial Dr from SR 527 to Summerlin Av, D5

What is the LOS of a **4-lane** arterial with a **context classification C4** and an AADT of **41,000**?

C2T, C4, C5, & C6

Motor Vehicle Arterial Generalized Service Volume Tables

Peak Hour Directional R С D Е 124 41/1 ** 1 Lane * 720 940 ** die. 2 Lane * 1,140 1,640 ** * 2,120 2,510 3 Lane (C2T-Rural Town)

- T					
1112		В	С	D	E
	1 Lane	*	*	870	1,190
(C4-Urban General)	2 Lane	*	1,210	1,790	2,020
	3 Lane	*	2,210	2,810	2,990
	4 Lane	*	2,590	3,310	3,510
General					

Peak Ho	Peak Hour Two-Way								
	В	С	D	E					
2 Lane	*	1,310	1,710	**					
4 Lane	*	2,070	2,980	**					
6 Lane	*	3,850	4,560	**					

С

*

2,200

4,020

4,710

D

1,580

3,250

5,110

6,020

D

1,440

2,710

4,960

5,910

В

*

*

*

В

*

*

*

2 Lane

4 Lane

6 Lane

8 Lane

2 Lane

4 Lane

6 Lane

8 Lane

AADT				
	В	С	D	E
2 Lane	*	13,800	18,000	**
4 Lane	*	21,800	31,400	**
6 Lane	*	40,500	48,000	**

	В	С	D	E
2 Lane	*	*	17,600	24,000
4 Lane	*	24,400	36,100	40,800
6 Lane	*	44,700	56,800	60,400
8 Lane	*	52,300	66,900	70,900
	4 Lane 6 Lane	2 Lane * 4 Lane * 6 Lane *	2 Lane * * 4 Lane * 24,400 6 Lane * 44,700	2 Lane * * 17,600 4 Lane * 24,400 36,100 6 Lane * 44,700 56,800

В

В

*

*

*

*

2 Lane

4 Lane

6 Lane

8 Lane

heating		В	С	D	E
L. L. L. L.	1 Lane	*	*	690	1,080
FIL	2 Lane	*	1,290	1,900	2,130
171	3 Lane	*	1,410	2,670	3,110
(C5-Urban Center)	4 Lane	*	2,910	3,560	3,640
Center)					

В

*

*

С

D

790

1,490

2,730

3,250

		В	С	D	E
	2 Lane	*	*	1,250	1,960
	4 Lane	*	2,350	3,450	3,870
	6 Lane	*	2,560	4,850	5,650
	8 Lane	*	5,290	6,470	6,620
-					

С

2 Lane	*	*	13,900	21,800
4 Lane	*	26,100	38,300	43,000
6 Lane	*	28,400	53,900	62,800
8 Lane	*	58,800	71,900	73,600

С

С

D

D

16,000

30,100

55,100

65,700

Е

Е

20,800

38,800

59,400

70,600

Adjustment Factors

1 Lane

2 Lane

3 Lane

4 Lane

The peak hour directional service volumes should be adjust by multiplying by 1.2 for one-way facilities The AADT service volumes should be adjusted by multiplying 0.6 for one way facilities 2 Lane Divided Roadway with an Exclusive Left Turn Lane(s): Multiply by 1.05

Е

1,030

1,920

2,940

3,490

2 Iane Undivided Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.80

Exclusive right turn lane(s): Multiply by 1.05

Е

1,870

3,490

5,350

6,350

Multilane Undivided Roadway with an Exclusive Left Turn Lane(s): Multiply by 0.95 Multilane Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.75 Non-State Signalized Roadway: Multiply by 0.90

This table does not constitute a standard and should be used only for general planning applications. The table should not be used for corridor or intersection design, where more refined techniques exist. * Cannot be achieved using table input value defaults.

** Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached

AADT: 41,000

Context class: C4

Roadway type: arterial

Number of lanes: 4 lanes

	В	С	D	E
2 Lane	*	*	17,600	24,000
4 Lane	*	24,400	36,100	40,800
6 Lane	*	44,700	56,800	60,400
8 Lane	*	52,300	66,900	70,900

The peak hour directional service volumes should be adjust by multiplying by 1.2 for one-way facilities The AADT service volumes should be adjusted by multiplying 0.6 for one way facilities 2 Lane Divided Roadway with an Exclusive Left Turn Lane(s): Multiply by 1.05 2 Iane Undivided Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.80

How can we achieve LOS D or better on this facility?

- a) Add exclusive left turn
- b) Add exclusive right turn
- c) Add a lane on both sides

d) Both a and b

Exclusive right turn lane(s): Multiply by 1.05 Multilane Undivided Roadway with an Exclusive Left Turn Lane(s): Multiply by 0.95 Multilane Roadway with No Exclusive Left Turn Lane(s): Multiply by 0.75 Non-State Signalized Roadway: Multiply by 0.90

LOS F

AADT: 41,000

Context class: C4

Number of lanes: 4 lanes

Example 4 Ingraham Highway, D4

What is the growth allowable of 2-lane highway with a **context classification C2** and AADT of 2,600, before reaching LOS C?

C1 & C2

Motor Vehicle Highway Generalized Service Volume Tables

AADT: 2,600

Context class: C2

Roadway type: highway

Number of lanes: 2 lanes

T T	Peak Hour Directional						Peak Hour Two-Way					AADT					
		В	С	D	E		В	С	D	E			В	С	D	E	
	1 Lane	240	430	730	1,490	2 La	ne 440	780	1,330	2,710		2 Lane	4,600	8,200	14,000	28,500	00 7
	2 Lane	1,670	2,390	2,910	3,340	4 La	ne 3,040	4,350	5,290	6,070		4 Lane	32,000	45,800	55,700	63,900	
	3 Lane	2,510	3,570	4,370	5,010	6 La	ne 4,560	6,490	7,950	9,110		6 Lane	48,000	68,300	83,700	95,900	
tural & ural)					,					<u> </u>							

-Kulaij

Adjustment Factors

2 Lane Divided Roadway with Exclusive Left Turn Adjustment: Multiply by 1.05 Multilane Undivided Highway with Exclusive Left Turn Adjustment: Multiply by 0.95 Multilane Undivided Highway without Exclusive Left Turn Adjustment:: Multiply by 0.75

What is the growth allowable before

reaching LOS C?

- a) 2,600
- **b)** 11,400
- c) 5,600

This table does not constitute a standard and should be used only for general planning applications. The table should not be used for corridor or intersection design, where more refined techniques exist.

AADT

	В	С	D	E		
2 Lane	4,600	8,200	14,000	28,500		
4 Lane	32,000	45,800	55,700	63,900		
6 Lane	48,000	68,300	83,700	95,900		

8200-2600=5600

Bicycle and Pedestrian Level of Traffic Stress

As outlined in the Multimodal Quality/Level of Service Handbook 2023

How familiar are you with Level of Traffic Stress?

Somewhat Familiar

Very Familiar

Overview/Background

Bike and Ped quality of service is not based on level of service but instead on Level of Traffic Stress (LTS)

LTS provides a simple methodology that works with **easily obtainable** inputs

Based on methodology developed in 2012 by the Minneta Transportation Institute at San Jose State University

What is level of traffic stress?

- Level of traffic stress or LTS, measures the quality of service for pedestrians and bicyclists (BLTS, PLTS).
- The scale is defined by the type of user that find the facility comfortable. Levels

 being the most comfortable for most users and 4 being the most
 uncomfortable for most user.
- LTS applies to context classifications C2T, C3C, C3R, C4, C5, C6.

Level of Traffic Stress as a Measure of Quality of Service

A traveler-based/user's perception of how well a transportation service or facility operates.

What it is not

- A measure of safety
- A measure of ADA accessibility

How may it be used in FDOT

- For QLOS handbook, to evaluate a facility and the performance of the system at a high level
- Assist in determining needs
- Compare alternatives

Most children can use confidently. BLTS 1

Will be tolerated by most adults. BLTS 2

Tolerated by confident cyclists who still prefer having their own dedicated space for riding.

Tolerated only by those with limited route
or mode choice or cycling enthusiasts that
choose to ride under stressful conditions.

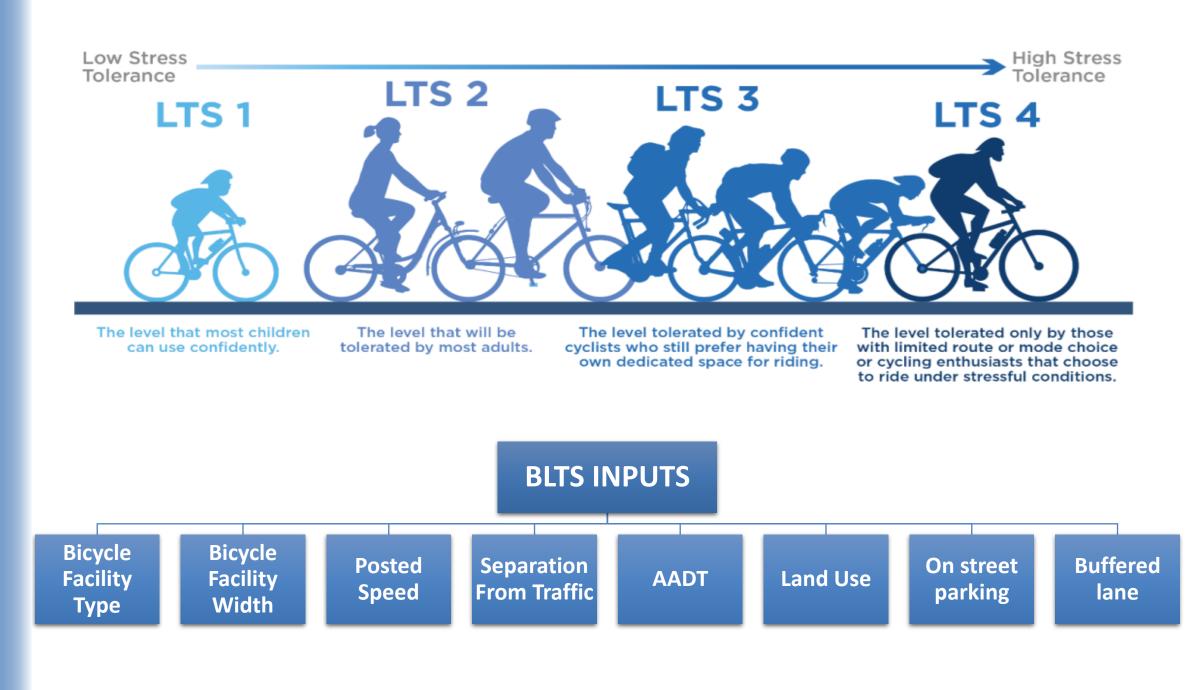
LTS Levels

Suitable for all users including teenagers traveling alone, the elderly, and people using a wheeled mobility device. People feel safe and comfortable on the pedestrian facility and all users are willing to use the facility.

All users can use the facility and most users are willing to use the facility.

TS Levels

Some users are willing to use this facility, but others may only use the facility when there are limited route and mode choices available.


PLTS 4

PLTS 1

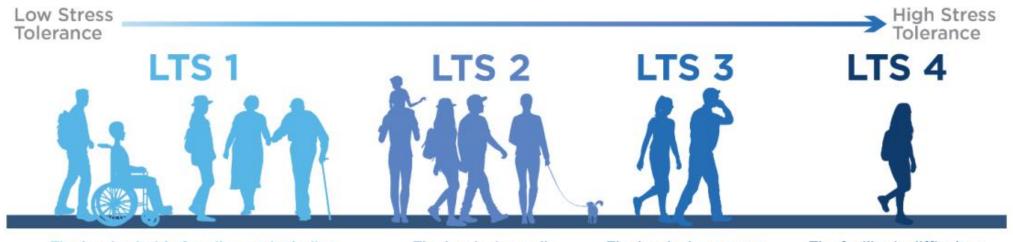
PLTS 2

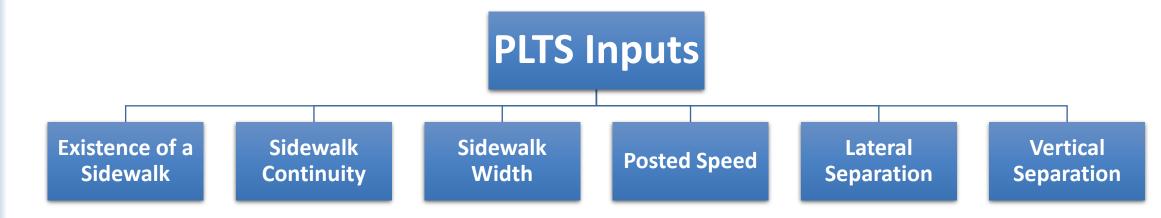
PLTS 3

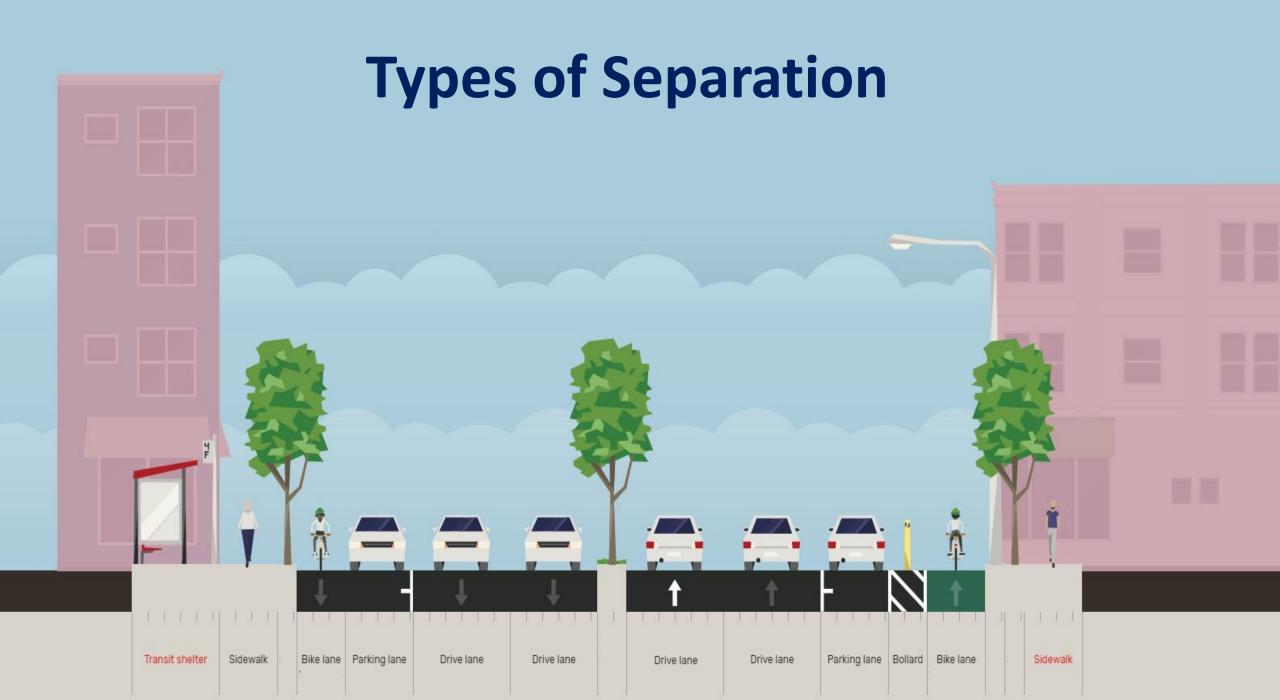
Difficult or impassible by a wheeled mobility device or users with other limitations in their movement and most likely used by users with limited route and mode choice.

Sharrow

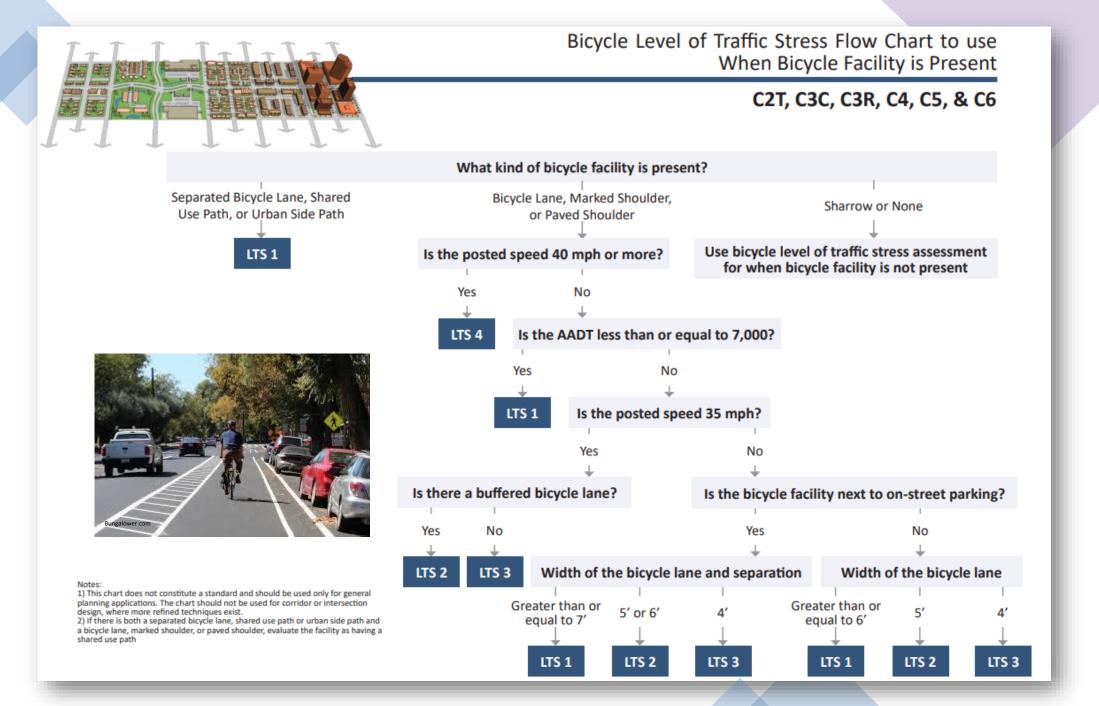
Marked Shoulder/Paved shoulder

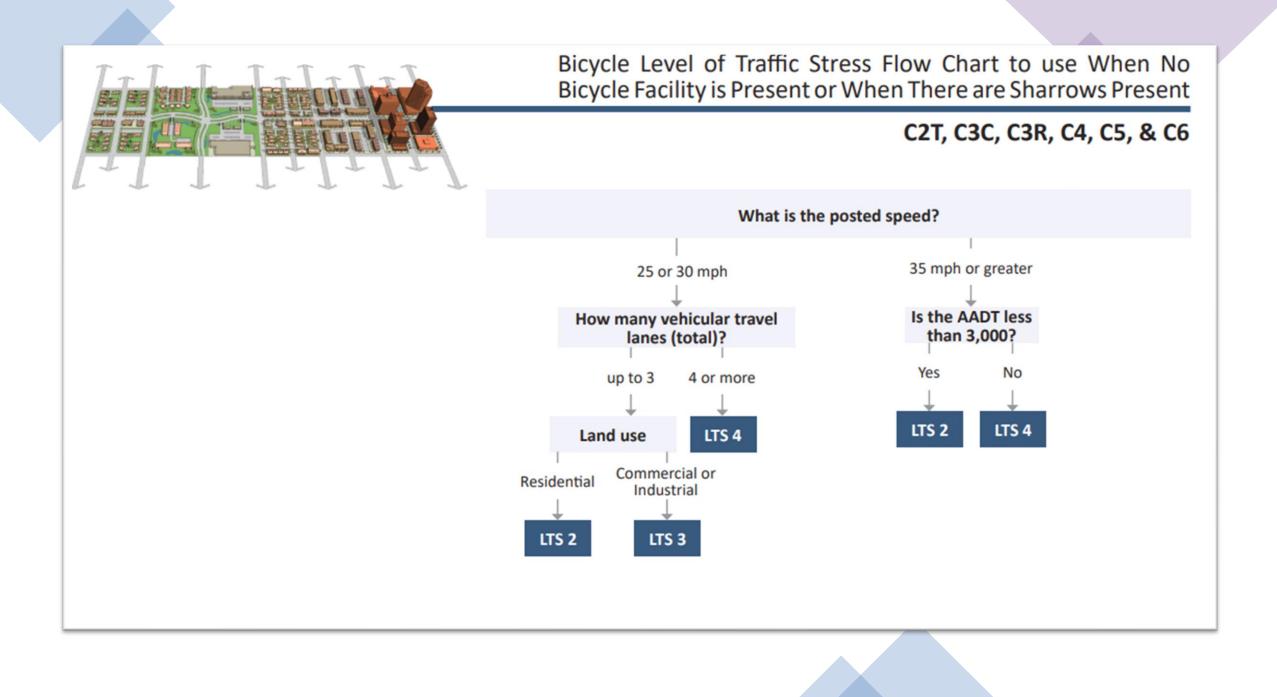

Separated Bike Lane

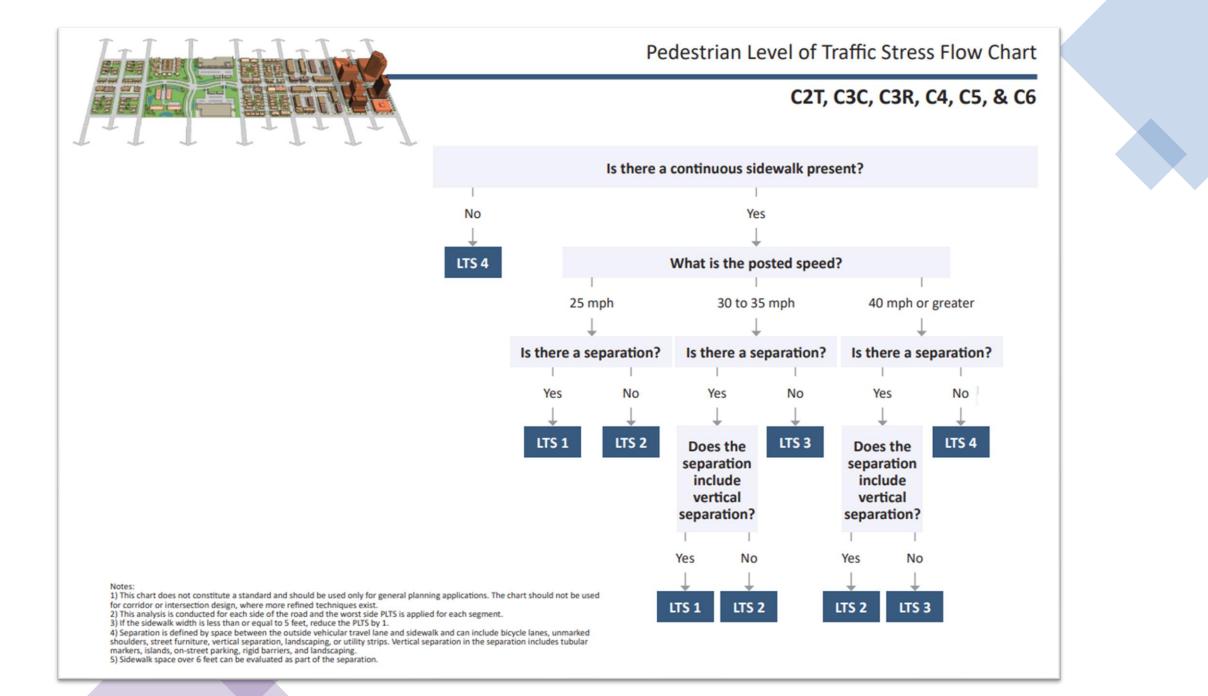




The level suitable for all users including teenagers traveling alone, the elderly, and people using a wheeled mobility device. People feel safe and comfortable on the pedestrian facility and all users are willing to use the pedestrian facility. The level where all users are able to use the facility and most users are willing to use the facility. The level where some users are willing to use this facility, but others may only use the facility when there are limited route and mode choices available. The facility is difficult or impassible by a wheeled mobility device or users with other limitations in their movement and most likely used by users with limited route and mode choice.


Level of Traffic Stress Considerations


LTS considers a few important factors that allow a quick simple analysis, it does not include some other important factors such as:


- Delay at intersections
- Network connectivity
- Pavement condition
- Driveway density
- Lighting

Note: This is the first iteration of the Level of Traffic Stress Flowcharts by FDOT.

Through user experience and data availability over time, the flowcharts will continue to be improved

 This chart does not constitute a standard and should be used only for general planning applications.

 For both BLTS and PLTS, scores are calculated separately for each side of the road, and the higher (more stressful) value is assigned as the overall score for the segment.

Pedestrian LTS Notes:

If the sidewalk width is less than or equal to 5 feet, **increase the PLTS** by 1.

Vertical separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping. Separation is defined by space between the outside vehicular travel lane and sidewalk

Sidewalk space over 6 feet can be evaluated as part of the separation.

Bicycle LTS Notes:

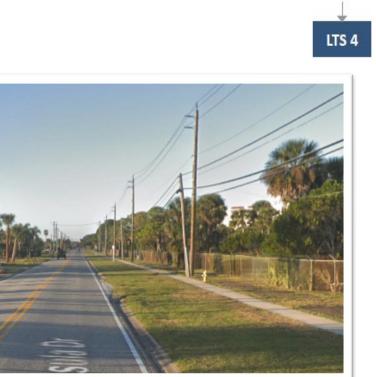
If there is both a separated bicycle lane, shared use path or urban side path and a bicycle lane, marked shoulder, or paved shoulder, evaluate the facility as having a shared use path.

What is the minimum width of the sidewalk before it experiences a traffic stress increase of one LTS point?

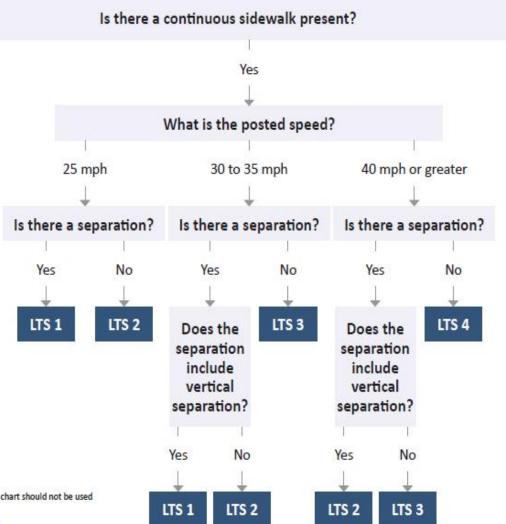
- **A)** 6
- B) 5
- C) 4
- D) 7

EXAMPLES USING FLOWCHARTS

EXAMPLE 1


SR 441, VOLUSIA COUNTY

Bicycle Facility: None Sidewalk: One side Sidewalk Width: 4 ft Posted Speed: 40 mph AADT: 5.8 K



Pedestrian Level of Traffic Stress Flow Chart

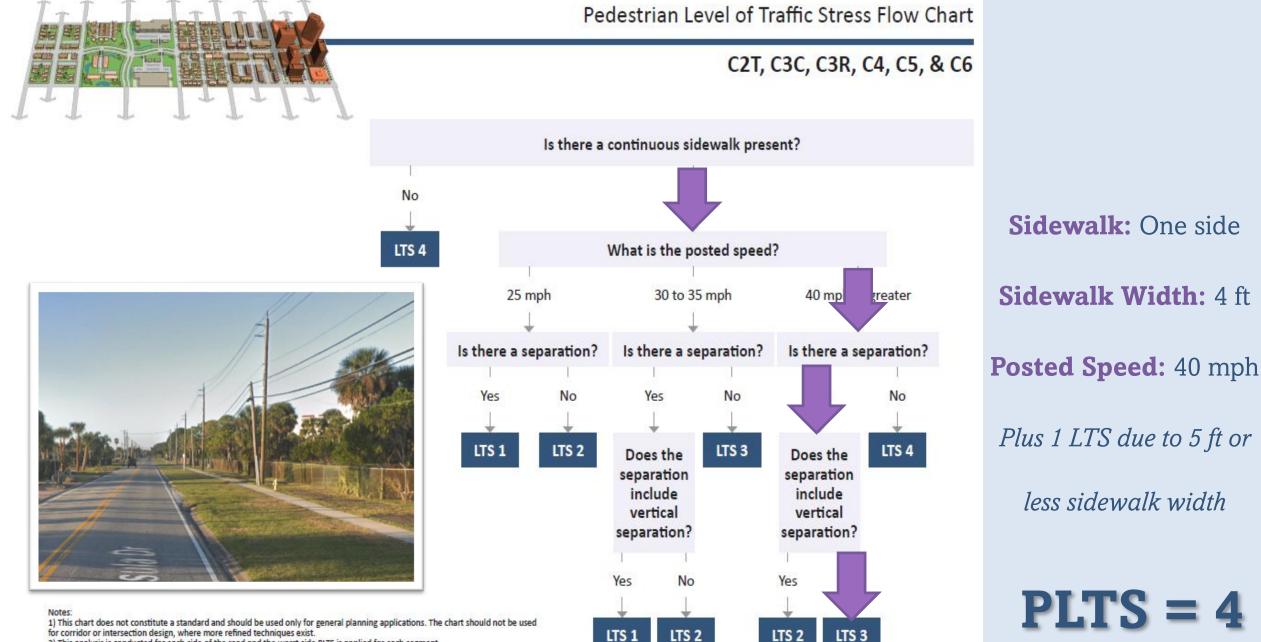
C2T, C3C, C3R, C4, C5, & C6

No

Sidewalk: One side

Sidewalk Width: 4 ft

Posted Speed: 40 mph


Notes:

 This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.

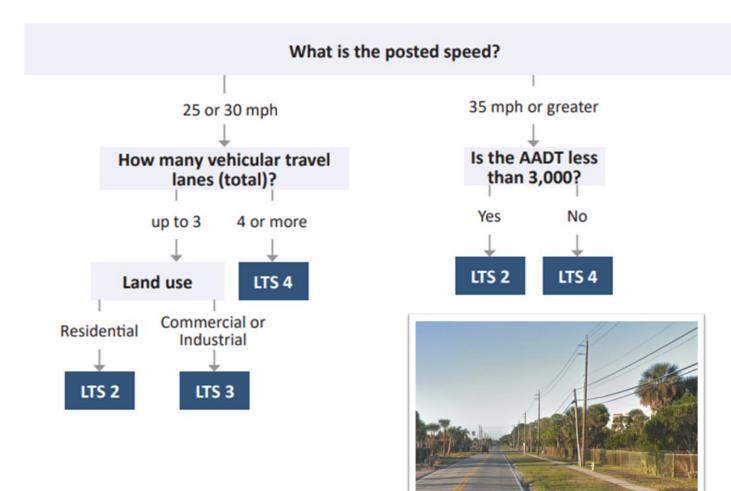
2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.

3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping. 5) Sidewalk space over 6 feet can be evaluated as part of the separation.

for corridor or intersection design, where more refined techniques exist.

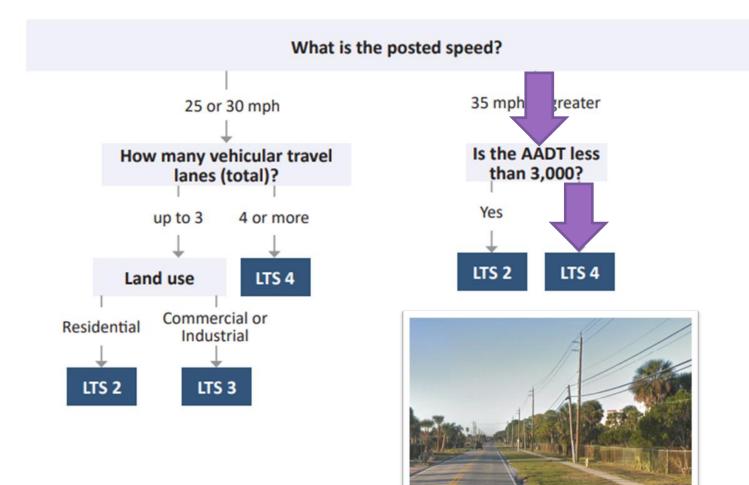
2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.


3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping.

5) Sidewalk space over 6 feet can be evaluated as part of the separation.

Bicycle Level of Traffic Stress Flow Chart to use When No Bicycle Facility is Present or When There are Sharrows Present


C2T, C3C, C3R, C4, C5, & C6

Bicycle Facility: None
Posted Speed: 40 mph
AADT: 5.8 k

Bicycle Level of Traffic Stress Flow Chart to use When No Bicycle Facility is Present or When There are Sharrows Present

C2T, C3C, C3R, C4, C5, & C6

Bicycle Facility: None
Posted Speed: 40 mph
AADT: 5.8 k

BLTS = 4

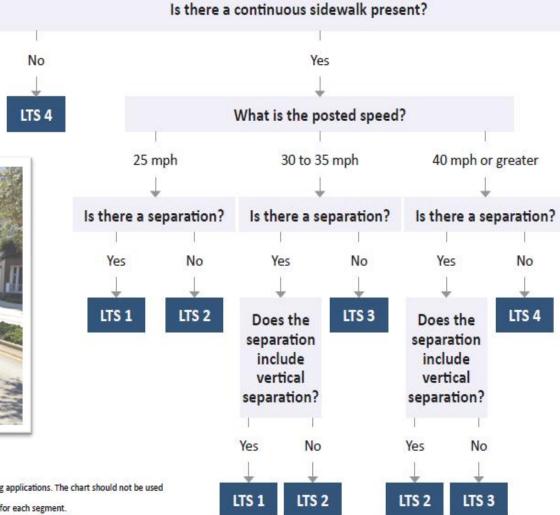
EXAMPLE 2

US 1, BROWARD COUNTY

Bicycle Facility: Marked shoulder Sidewalk: Both sides Sidewalk Width: 7 ft Posted Speed: 35 mph AADT: 33 K

Is there separation present (lateral) for the sidewalk on this facility?

- A) Yes
- B) No



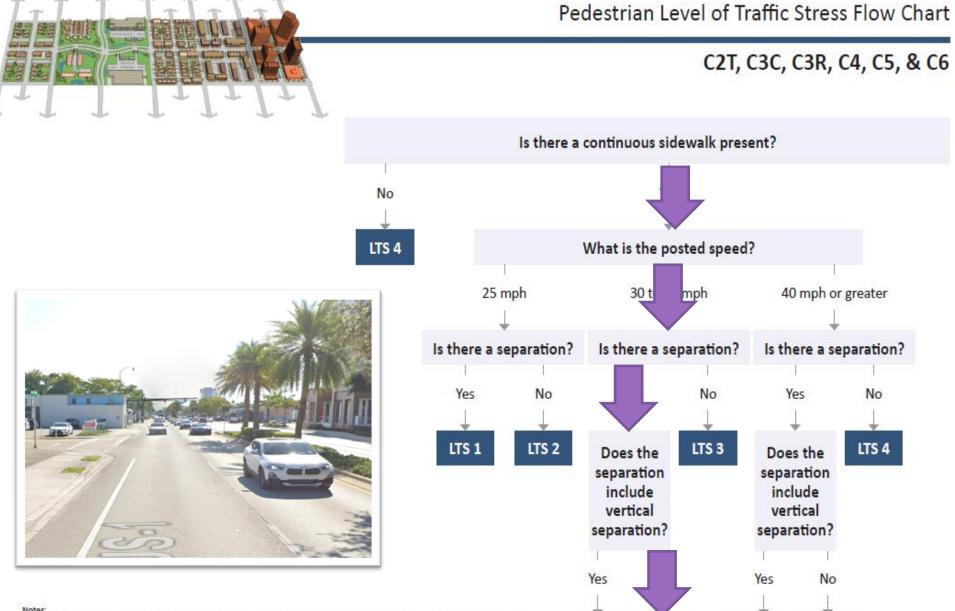
Pedestrian Level of Traffic Stress Flow Chart

C2T, C3C, C3R, C4, C5, & C6

No

Sidewalk: Both sides Sidewalk Width: 7 ft Posted Speed: 35 mph

Notes:


1) This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.

2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.

3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping.

5) Sidewalk space over 6 feet can be evaluated as part of the separation.

LTS 1

LTS 2

LTS 2

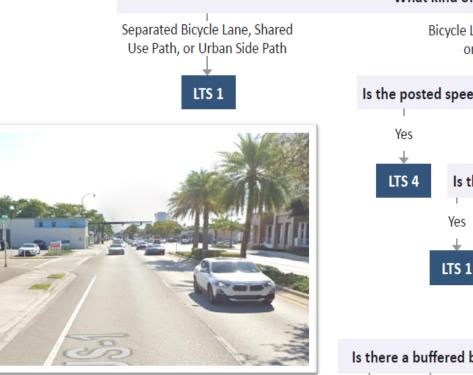
LTS 3

Sidewalk: Both Sides Sidewalk Width: 7 ft Posted Speed: 35 mph

PLTS=2

Notes:

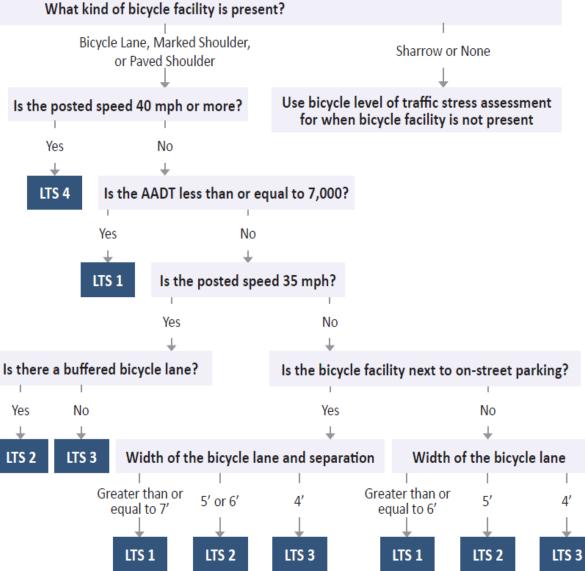
1) This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.


2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.

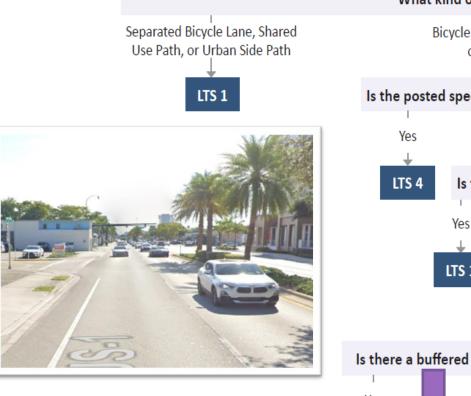
3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping. 5) Sidewalk space over 6 feet can be evaluated as part of the separation.

Bicycle Level of Traffic Stress Flow Chart to use When Bicycle Facility is Present

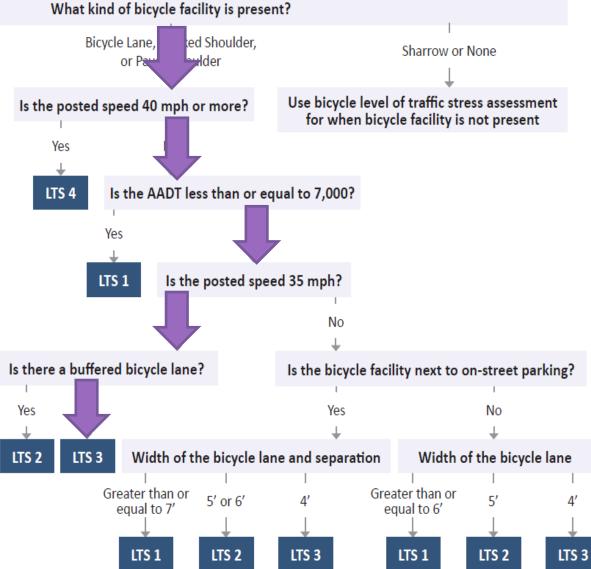

C2T, C3C, C3R, C4, C5, & C6

 This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.


2) If there is both a separated bicycle lane, shared use path or urban side path and a bicycle lane, marked shoulder, or paved shoulder, evaluate the facility as having a shared use path

Bicycle Facility: Marked shoulder

Posted Speed: 35 mph


AADT: 33 k Bicycle Level of Traffic Stress Flow Chart to use When Bicycle Facility is Present C2T, C3C, C3R, C4, C5, & C6

Notes:

 This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.

2) If there is both a separated bicycle lane, shared use path or urban side path and a bicycle lane, marked shoulder, or paved shoulder, evaluate the facility as having a shared use path

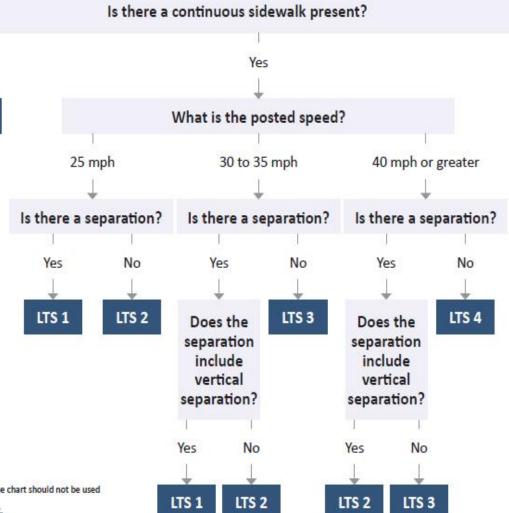
Bicycle Facility: Marked shoulder

Posted Speed: 35 mph

AADT: 33 k

BLTS = 3

EXAMPLE 3


N BLAIRE STONE RD, LEON COUNTY

Bicycle Facility: Marked bicycle lane Sidewalk: Both sides Sidewalk Width: 5 ft Posted Speed: 35 mph AADT: 12 k

Pedestrian Level of Traffic Stress Flow Chart

C2T, C3C, C3R, C4, C5, & C6

Sidewalk: Both sides

Sidewalk Width: 5 ft

Posted Speed: 35 mph

Notes:

1) This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.

No

LTS 4

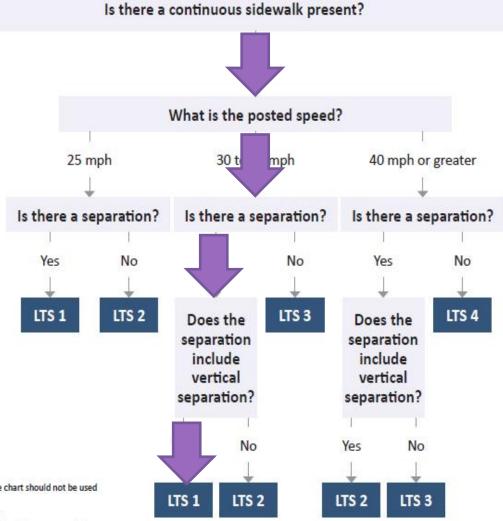
2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.

3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping.

5) Sidewalk space over 6 feet can be evaluated as part of the separation.

C2T, C3C, C3R, C4, C5, & C6


Sidewalk: Both sides

Sidewalk Width: 5 ft

Posted Speed: 35 mph

Minus 1 LTS due to 5 ft or less sidewalk width

PLTS = 2

Notes: 1) This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.

No

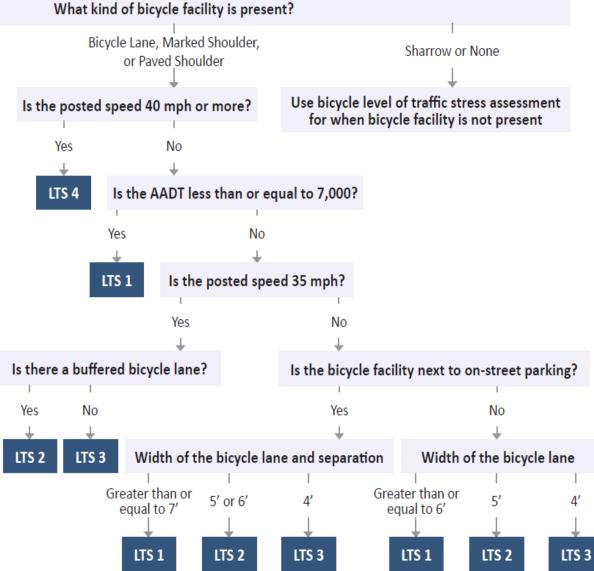
LTS 4

2) This analysis is conducted for each side of the road and the worst side PLTS is applied for each segment.

3) If the sidewalk width is less than or equal to 5 feet, reduce the PLTS by 1.

4) Separation is defined by space between the outside vehicular travel lane and sidewalk and can include bicycle lanes, unmarked shoulders, street furniture, vertical separation, landscaping, or utility strips. Vertical separation in the separation includes tubular markers, islands, on-street parking, rigid barriers, and landscaping.
5) Sidewalk space over 6 feet can be evaluated as part of the separation.

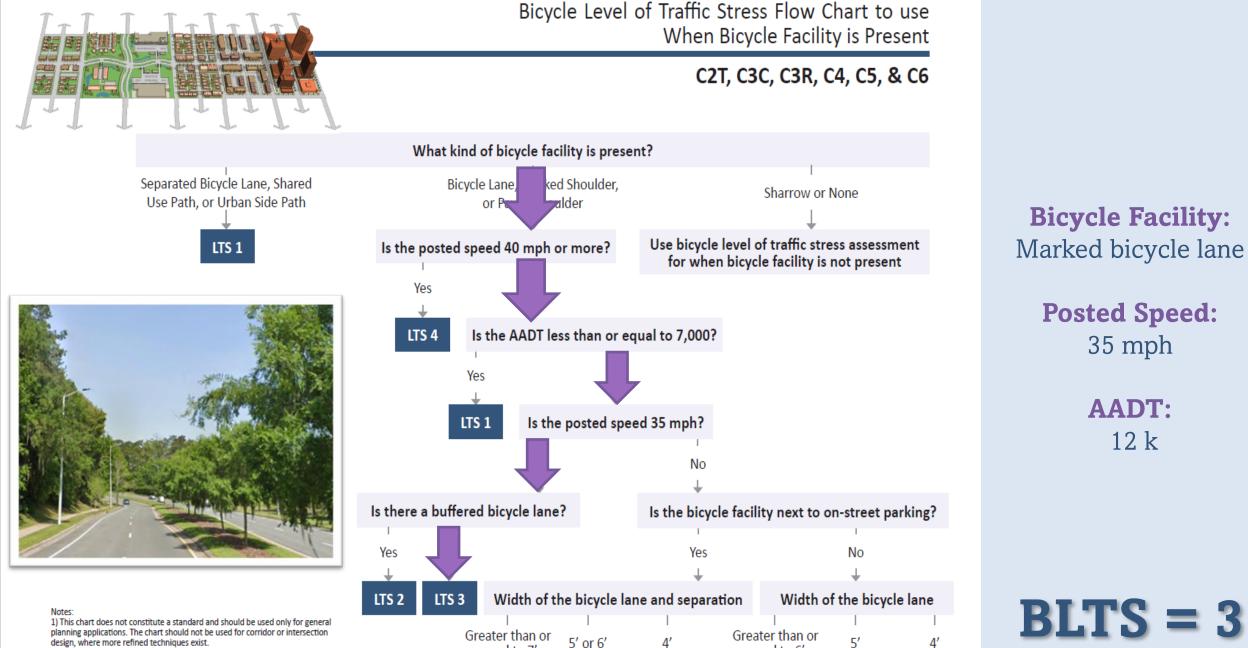
C2T, C3C, C3R, C4, C5, & C6



Separated Bicycle Lane, Shared

Notes:

 This chart does not constitute a standard and should be used only for general planning applications. The chart should not be used for corridor or intersection design, where more refined techniques exist.


2) If there is both a separated bicycle lane, shared use path or urban side path and a bicycle lane, marked shoulder, or paved shoulder, evaluate the facility as having a shared use path

Bicycle Facility: Marked bicycle lane

Posted Speed: 35 mph

AADT: 12 k

equal to 7'

LTS 1

LTS 2

LTS 3

equal to 6'

LTS 1

LTS 3

LTS 2

design, where more refined techniques exist.

If there is both a separated bicycle lane, shared use path or urban side path and a bicycle lane, marked shoulder, or payed shoulder, evaluate the facility as having a shared use path

CONTACT INFO

<u>Gina.Bonyani@dot.state.fl.us</u>

Jenna.Bowman@dot.state.fl.us

Karla.Matos@dot.state.fl.us