

Statewide Access Management and Transportation Site Impact WEBINAR SERIES

Webinar Staff

Gina Bonyani

Senior Transportation Planner FDOT Systems Implementation Office <u>Gina.Bonyani@dot.state.fl.us</u>

850-414-4707

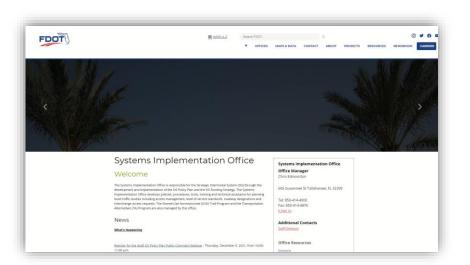
Agenda

Credits and Webinar Material

Crashes Related to Type and Location of Driveway Access

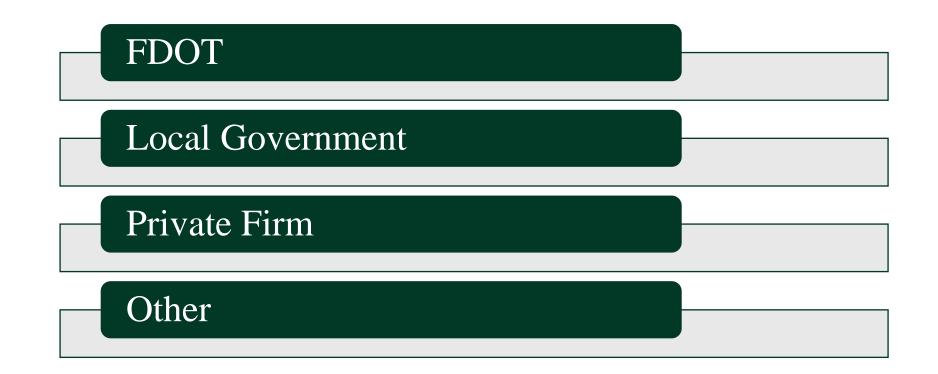
Contact Info

Credits Information


- Certificates will be distributed through email.
- Your participation will be recorded by GoToWebinar.
 - You will need to attend to the entire webinar with the unique link provided by GoToWebinar.

Webinar Material

- Recorded webinars and presentation material will be posted on the Systems Implementation Office website:
 - Training & Webinars
 - Access Management



Statewide Access Management and Transportation Site Impact WEBINAR SERIES

The FDOT Access Management and Transportation Site Impact Webinar Series 2022-2023 have been scheduled for the following dates:

Tue, Aug 16, 2022 | 2:00PM - 3:30PM EDT Tue, Nov 15, 2022 | 2:00PM - 3:30PM EST Tue, Feb 14, 2023 | 2:00PM - 3:30PM EST **Next! Tue, May 16, 2023 | 2:00PM - 3:30PM EDT**

What organization do you represent?

Statewide Access Management and Transportation Site Impact

WEBINAR SERIES

Today's Webinar

Crashes Related to Type and Location of Driveway Access

Tuesday, February 14, 2022 2:00PM – 3:30 PM

Credits: 1.5

How familiar are you with FDOTs Permitting Process (Rule 14-96)

How familiar are you with FDOTs Access Management spacing requirements (Rule 14-97)

Speakers

Crashes Related to Type and Location of Driveway Access

Kristine Williams, FAICP (PI) Cong Chen, PhD, PE, RSP₁ (Co-PI) Pei-Sung Lin, PhD, PE, PTOE (Co-PI) Tia Boyd, Researcher CUTR, University of South Florida

Gina Bonyani (PM), FDOT

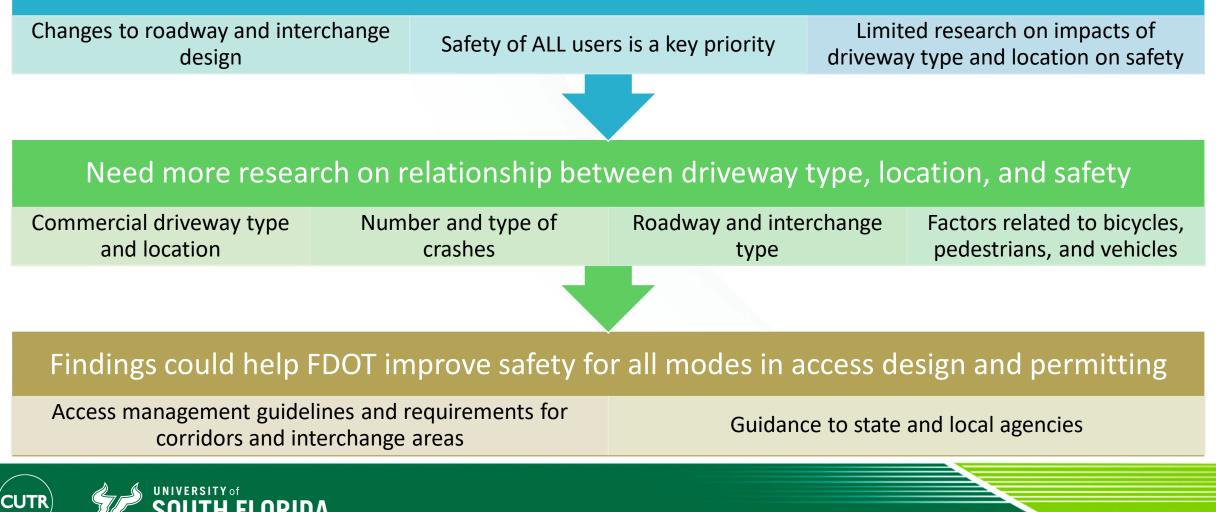
Presented for

FDOT Statewide Access Management and Transportation Site Impact Webinar Series

February 14, 2023

Outline

- 1. Project Subject Background
- 2. Project Objectives
- 3. Literature Review Summary
- 4. Safety Assessment Methodology
- 5. Research Findings
- 6. Recommended Guidance Updates
- 7. Future Research Consideration



Project Subject Background

Driveways and side streets connecting to major roadways are a key source of traffic conflicts and could result in crashes among motorized vehicles, pedestrians and bicyclists.

FDOT is advancing complete streets and access management strategies

Project Objectives

Obtain additional research-based insight on how driveways impact safety

Evaluate the impact of driveway type and location on crashes in Florida

Translate the findings into guidance

Along major roadway corridors and in the vicinity of interchanges

Literature Review

- Synthesized methodologies and findings of previous studies on the relationship between driveway location and type on the number and type of driveway-related crashes
 - Driveway Density and Spacing
 - Driveway Location: Corner Clearance, Median Openings
 - Interchange Area: upstream/downstream driveway, driveway offset, vehicle and ped/bike conflicts
 - Driveway Type

Literature Review - Key Takeaways

- Relatively few studies have explored how driveway type and location may influence crash frequency and severity.
- Access density, commercial driveways or land use intensity, inadequate corner clearance are identified in the literature as factors in roadway safety.
- Little insight into other topics, such as influence of driveway design or interactions with roadway characteristics on crash frequency and severity.
- Confirmed our methodology as appropriate for the study

Safety Assessment Methodology

Data Collection

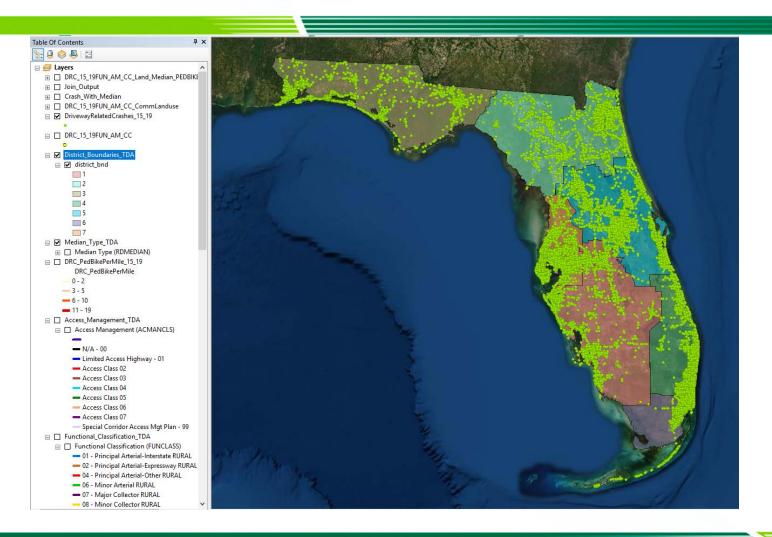
- Develop data collection plan
- Identify candidate study sites using GIS crash search
- Select study sites
- Specify data source and collection methods
- Collect data based on the data collection plan
- Perform data screening
- Finalize data sets for analysis

Assessment of Safety Effects and Risks

- Develop safety assessment methodology
- Perform comprehensive qualitative and quantitative data analyses
- Model safety effects and risks for commercial driveways on corridors and those near interchanges
- Document analysis results and major findings

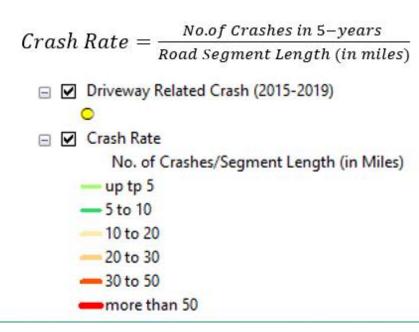
Case Studies

 Select 6 case study sites on corridors and near interchanges

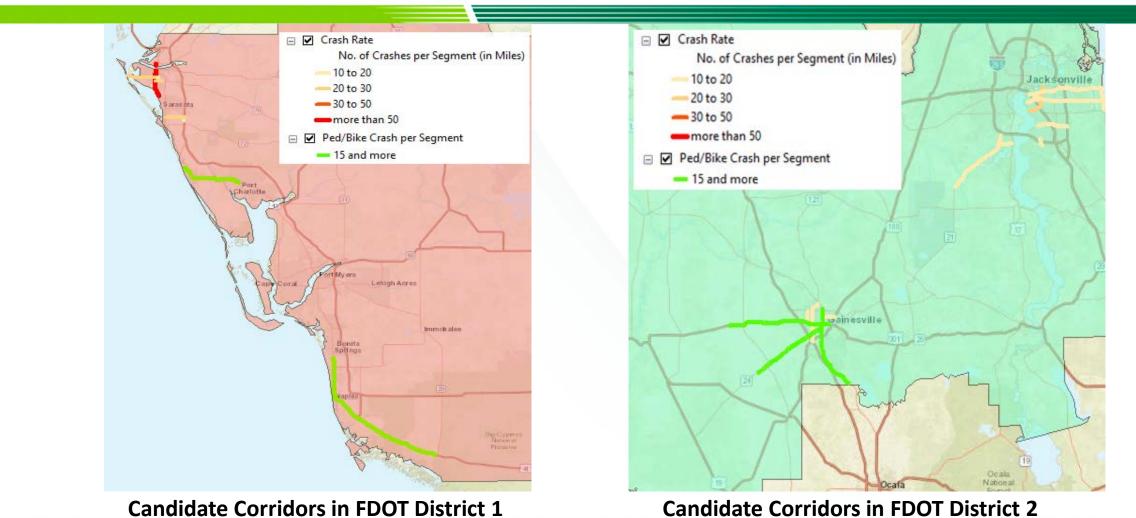

- Collect data for study sites
- Review crash reports at case study sites
- Provide illustrations, descriptions and highlights

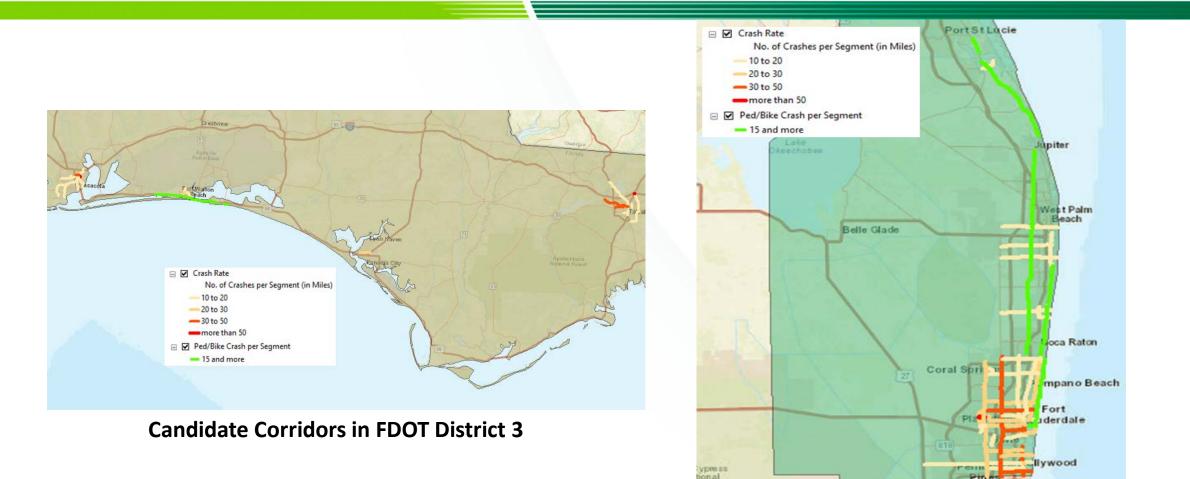
Data Used for Selecting Candidate Sites

- 2015-2019 Statewide Driveway Access Related Crash Data (Source: FDOT SSOGIS)
- FDOT Roadway Characteristics Data (Source: FDOT Transportation Data Analytics-GIS)
 - Access Classification
 - Roadway Functional Class
 - Roadway Median Type
 - Statewide Interchange Type
- Florida Statewide Land Use and Cover (Source: Florida DEP Geospatial Open Data)
 - Commercial Land Use

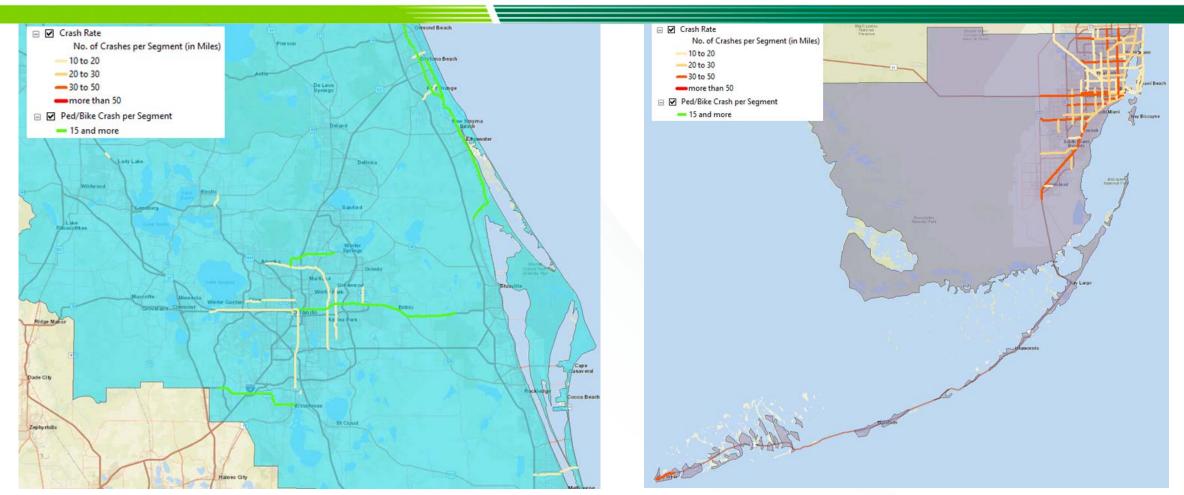


Length_Mi	¥2015	¥2016	¥2017	Y2018	¥2019	TotalCrash	Shape Length	CrashPerMie DIST	RICT ROADWAY	Y NAME A	17. 6		OF ALL ST	安美公社 市	2		
0.726262	14			10		10	1168 84046	68.84375 4	06110500	W SUNRISE BLVD	CALLE.	A	Non-	「おんちまた	to and stands	- 10 C	deP.
0.287893	5	3	1	â		17	463 319231	59.049789 6	87030001	SE 2 ST	136 1 200	24	11000	ALC: N	1 1 1 1 1 1	1.1	
0.583863		6	2	4	11	34	939.638081	58.232852 3	48008000	AIRPORT BLVD	A DOMESTIC		1 CELE	TOTAL D	5 W 12 W	1 1 1 1 1	10
6.221207	102	60	126	120	60	476	13230.777272	57 099030 1	13010000	TAMAMI TRL		2 2 4	110	Jan 19		ALC: NO	127
0.114276	- 1	<54,d>	2	1	. 2	8	183 909649	52 504495 3	55321000	KILLEARN CENTER BLVD	ALL REPORT		-16-	C IN	CLERK!		302
3.661402	29	42	39	52	8	170	5892.467087	46.430302 6	87028005	NW 183 STIMIA GONS D	Art Barre	The Second	Sil Fair	STA .	100	1.11	35
4.685245	31			73		216	7540 185559	46.102181 6	87019000	NW 27 AVENUE	1000	State State	ATTE	114000	All and a state	and the second of	The second
0.809985		11		. 5		32	1303 547582	45.679843 4	86000067	PETERS RD	CAN SHE	Sh & L	A SALLE	1.1 - mail 12.001	No Color	2226172	20
8.43969	72		95	105		372	13582.391432	44 077449 6	87044000	SW 40 ST/BIRD ROAD	1.00	ALL ALL ST	A a direct	100 2 3.	1 Filen	- Harris	80
9.717247	107	96		118		421	15638 424367	43.325028 6	87038000	E 49 ST	100 CO. 100	a market	1 1 mar an and	Une Liver	- 42.00	2	1
1.083801	7	13		÷		41	1744.212063	37.829824 3	48116000	ARPORT BLVD	-2 -2 - BY 93	CONTRACTOR OF	10000	Cana .	1.		10
7.499508	66	58	- 67	74	13	278	12069.311938	37.0691 6	87053000	W FLAGLER ST +	10.0000	ADD TO CALLE	No work	least	Contraction of the	1000	
e				ielected)								S D			1 Partie		
		「日本の日日	である		「たち」							N.	A STATE	and and a set	市		A CONTRACTOR

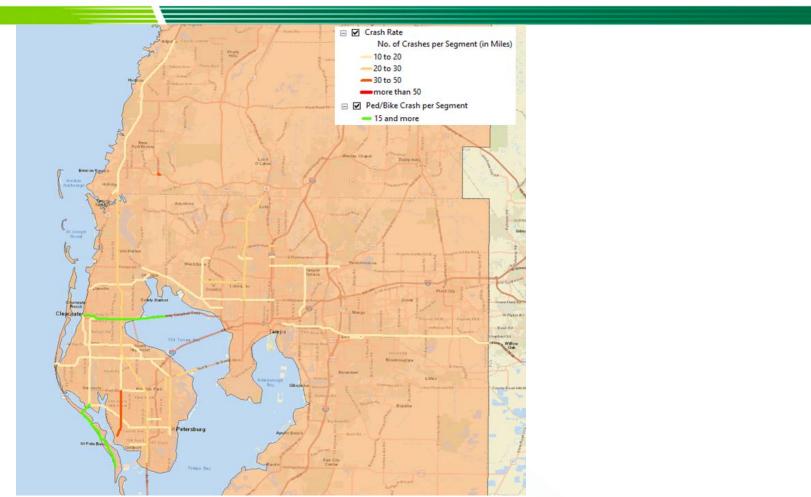



Additional Corridor Driveway Sites with High Ped/Bike Crashes

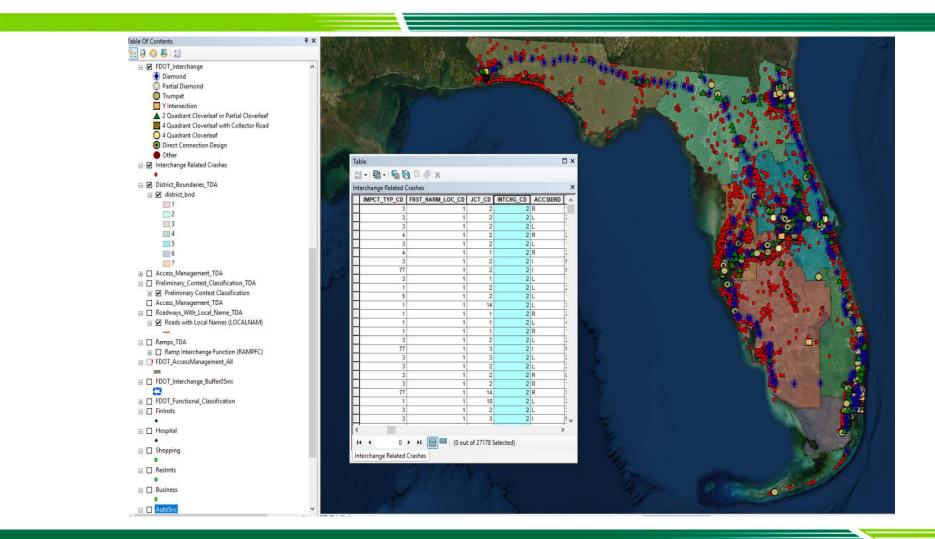
						1		1					
				Arts	K	1		1.			1. D	-	
	and the second					×	-	{ {	Nor M	he top	TAKI	N.	
	Ball and the					200	The state	Sel .	the f		- C \ 🔏	2	
2							1	5	Þ- í				
	H 200 324							14	and a second		1 45		
1.											1 12	\sim	
1									_th	18 B. O. 18 B.	~ ;	\mathcal{A}	
											¥ 1	<u></u>	
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - <		
												17 4	
	and a	100											
Ta	ble								□ ×		~~	~~~	
0-		🖣 🚱 🛛 🖓 🗙									XZ	1.	
_											-> fra	A A	
Pe	destrian and	Bicycle Crash (2015-2	2019)						×		$\langle \rangle$	totor In	
	ROADWAY	SUM_Shape_Leng	RdwyLength_Mi	Y2015	Y2016	Y2017	Y2018	Y2019	Total_PedBike_15_19	9.7	× × -+ 1		
	90010000	7302.2087	4.537373	29	21	22	5	7	84	And Include			
	15150000	51947.5826	32.278667	14	17	19	8	13	71	. A .	untra 14	Share I	
	86020000	24629.6346	15.304115	11	8	12	19	12	62	لياد ا	2. That		
	86100000	39585.5977	24.597301	8	10	18	15	8	59			Ý, Ý	
	86220000	38175.4736	23.721092	14	11	13	11	9	58		T' I TT		
	87030000	40883.0552	25.403502	11	19	7	10	7	54	Y 🖓			
	15120000	20762.8922	12.901437	9	7	15	11	10	52	S.L.		1 19	N.
	15030000	15698.0469	9.754295	12	7	13	8	11	51	77	F.	Con la la	
	75010000	22862.7914	14.206252	4	12	12	9	10	47				Lt:
	15010000	34131.8247	21.20849	9	7	6	9	13	44			5	A A
	75060000	46619.3849	28.967885	8	9	7	6	12	42		The		~
	93070000	39369.2683	24.46288	7	10	9	6	7	39	1. A A A A A A A A A A A A A A A A A A A	113		
	10110000	38239.0577	23.760601	2	6	6	8	11	33		A Ser	State State	<u>_</u> _
	86090000	15635.2949	9.715302	8	3	9		<nul></nul>	31		1 March		× 📲
	12010000	53781.4904	33.418202	6	9 5	6 11		<nul⊳< td=""><td>30</td><td></td><td>Contra la</td><td>Limiter 1-1</td><td></td></nul⊳<>	30		Contra la	Limiter 1-1	
	72100000 72190000	30586.7208 23791.7913	19.005669 14.783504	5 9	5	11	6	2	29 29		P	State Provent	
	75050000	25722.4396	14.783504	9	4	9	5	4	29		L.	and the second	
	87120000	29162.8198	18.1209	8	6	9	4	2	29		A.		
	71070000	23325.3006	14.493641	5	7	7	6	2	29		and the second		
	13040000	13709.6592	8.51877	8	2	7	6	3	26			A CONTRACTOR	. · · · · · · · · · · · · · · · · · · ·
	14030000	31672.2539	19.680187	7	6	7	2	4	26				
	57030000	36311.9238	22.563138	4	5	5	6	5	25			A STORE	1033
	86120000	12580.9947	7.817452	6	5	4	2	8	25			and the second	
	89010000	37264.7546	23.155199	7	3	5	6	4	25 🗸			aburt	aver 8
							-1		>				
F													
<													
1	• •	0 + +I 📃	(0 out of 714 Sele	ected)						100	-	and and	


Candidate Corridors in FDOT District 1

Candidate Corridors in FDOT District 4



Candidate Corridors in FDOT District 5


Candidate Corridors in FDOT District 6

Candidate Corridors in FDOT District 7

Interchange Driveway Site Selection Process

Interchange Driveway Site Selection Process

Interchange Driveway Site Selection Process

Data Collection for Analysis

Roadway Data

- Roadway functional classification
- FDOT context classification
- Access class information
- Interchange type (i.e., diamond, full cloverleaf, partial cloverleaf, diverging diamond)

• Traffic Volume Data (AADT)

2015-2019 Driveway-related Crash Data

- Commercial driveways along corridors
- Commercial driveways near interchanges (.5 mile or first signalized intersection)

Driveway Characteristics Data

- Driveway location (i.e., intersection functional area, roadway segment)
- Driveway geometric characteristics (i.e., number of lanes, radius/flare, channelization, driveway throat length)

- Driveway entry and exit movements (i.e., one-way, two-way, right-in/right-out)
- Median opening type (i.e., full opening, directional opening, no opening)
- Median end treatment (i.e., no left-turn lane, one leftturn lane, two left-turn lanes)
- Traffic control information

Data Sources

Crash

- Signal Four Analytics
- FDOT SSOGIS

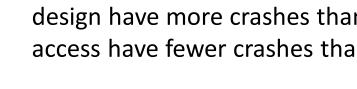
Geometry

- o FDOT GIS inventory
- o Google Earth Aerial Images
- o FDOT Access Class KMZ file

Analysis Methods

- Detailed data analysis and safety assessment of:
 - Crash types (vehicular and ped/bike crashes) and severities
 - How commercial driveway types interact with roadway and interchange characteristics relative to safety and crash risk.
- Statistical analysis of differences in crash frequency and crash severity by driveway type and study area (interchange and corridor)
- Crash data modeling to quantify safety effects of selected variables on crash frequency and severity of targeted crash types
 - Negative binomial model (crash frequency analysis, for both vehicular and ped/bike crashes)
 - Multinomial logit model (crash severity analysis, for both vehicular and ped/bike crashes)
- Exploratory case studies

Research Findings


Crash Frequency Analysis Summary

- Overall, variables found to have a significant influence on commercial driveway-related crashes were:
 - Number of lanes on connecting street, driveway design, driveway number of lanes, traffic control devices, and bike lane type.
- On corridors, significant variables for driveway-related crashes were:
 - Median type (undivided/painted, NTM, TWLTL) for all crashes.
 - Median opening type (no physical median, no opening, directional, full opening) for ped/bike crashes.
- Near interchanges, significant variables for driveway-related crashes were:
 O Right-turn lane type (exclusive, shared, or no right turn lane)

All Crash Frequency at Commercial Driveways - Corridors

- Driveway crashes along corridors tend to:
 - o increase as number of lanes on connecting street increases
 - increase as number of driveway lanes increases
 - increase as AADT increases, but not always significantly
 - decrease as speed limit increases
 - decrease with non-traversable median and TWLTL
 - driveway design features show mixed effects (radial design have more crashes than flare; wide open access have fewer crashes than flare)

Crash Frequency at Commercial Driveways along Corridors (All Crashes)

Variables	Categories	Statistically Significant**	Crash Frequency	Notes
	One Lane*			
Number of Lanes	Two Lanes	Yes	+65.2%	Number of lanes is a surrogate for roadway
on Connecting Street	Three Lanes	Yes	+118.0%	AADT. More lanes indicate increased lane
	Four Lanes or More	Yes	+192.9%	changing behavior and potential for traffic conflicts.
	35mph or lower*		-	
Speed Limit on	40-45mph	Yes	-15.2%	Higher speed limits usually indicate higher
Connecting Street	50mph or higher	Yes	-44.9%	levels of access control, whereas lower speed limits generally indicate higher access densities and more complex traffic.
	Curb Flare*			
	Flush Radial	Yes	+39.8%	Flared curbed driveways generally have low
Driveway Design	Curb Radial	Yes	+24.7%	driveway traffic; flush or curb radial designs
Features	Wide Open Access	Yes	-37.4%	are more common at higher traffic driveways as they allow for efficient ingress and egress; however, they can also increase crash risk.
	One Lane*			Cidshitisk.
Driveway	Two Lanes	Yes	+26.5%	Driveway number of lanes is a surrogate
Number of Lanes	Three Lanes	Yes	+179.1%	measure for driveway volume. Multi-lane or
(including both directions if available)	Four Lanes or more or Wide- open Access	Yes	+57.5%	wide-open driveways can experience more complex traffic movements with increased potential for conflicts.
	Undivided or Painted Median*			
Median Type	Non-traversable Median	Yes	-19.9%	Both non-traversable medians (NTM) and continuous Two-Way Left-Turn Lanes (TWLTL) reduce crash risk compared to undivided roadways. NTMs tend to serve higher-volume roads and have different levels of conflict depending on median opening spacing, location, and type.
	TWLTL	Yes	-24.7%	TWLTLs provide space for vehicles to maneuver and stop as they turn or merge into traffic without blocking through lanes, but allow more conflicts than NTMs.
	AADT<10,000*			
Connecting	(10,000, 20,000]	No	N/A	The average number of crashes tended to
	(20,000, 30,000]	No	N/A	increase for all AADT categories, but only one category is found statistically significant.
Street 5-year	(30,000, 40,000]	Yes	+258.1%	
Average AADT	(40,000, 50,000]	No	N/A	
	(50,000, 60,000]	No	N/A	
	(60,000, 70,000]	No	N/A	1

Indicates base category for analysis of each variable

Significant at 95% confidence level

Ped/Bike Crash Frequency at Commercial Driveways - Corridors

- Ped/bike crashes at driveways along corridors tend to:
 - increase with sign control or signal control versus no control
 - increase with presence of conventional bike lane compared to no bike lane
 - o decrease when there is a median with no opening or directional opening
 - o driveway design features show mixed effects

Pedestrian/Bicycle Crash Frequency at Commercial Driveways along Corridors

Variable	Values and Base	Statistically	Crash Frequency	Note
	Category	Significant**	(±%)?	
Number of Lanes on Connecting Street	One Lane*			
	Two Lanes	No	N/A	The variable is significant in explaining
	Three Lanes	No	N/A	crash frequency; however, none of the
	Four Lanes or More	No	N/A	categorical values are statistically significant relative to the base category. More lanes entail longer crossing times and greater exposure of pedestrians or bicyclists to through- traffic conflicts.
	Curb Flare*			
	Flush Radial	Yes	-52.0%	Radial return designs are generally
	Curb Radial	Yes	+35.2%	used on high-volume driveways, which
Driveway Design	Wide Open Access	No	N/A	have higher crash potential. On flush
Feature				shoulder roadways, FDOT prefers
. cotor c				sidewalk placement outside the clear
				zone or five feet beyond the shoulder
				pavement to provide adequate
				protection for pedestrians or bicyclists.
	No Physical Median*			
	No Opening	Yes	-21.3%	Physical medians (both no opening and
	Directional Opening	Yes	-36.9%	directional opening) provide buffer
Median Opening	Full Opening	No	N/A	space for pedestrians and cyclists to
Туре				wait to cross, reducing collision risk
Type				with through traffic.
				No median opening or a directional
				median opening limits vehicular
				turning movements thereby also
				reducing driveway conflicts.
	No Control*			
	Sign Control	Yes	+52.2%	Driveways with sign or traffic signal
Traffic Control Device	Traffic Signal Control	Yes	+137.9%	controls tend to have higher traffic
				volume and more complex traffic than
				locations with no traffic controls, and
				therefore experience higher crash
	No Piko Lanot			frequencies.
Painted Bike Lane	No Bike Lane* No Paint	Yes	+39.7%	Conventional bike lanes without paint
	Painted	No	+39.7% N/A	do not necessarily provide protection.
	rainteu	NO	N/A	Motor vehicles must cross bike lanes to
				enter or exit driveways, leading to
				conflicts with bicyclists in the bike lane.
			1	connect menorgenses in the site fulle.

for analysis of each variable.

** Significant at 95% confidence level.

All Crash Frequency at Commercial Driveways near Interchanges

- Vehicular crashes at driveways near interchanges tend to:
 - increase as the number of lanes on connecting street increases, but not all significant;
 - increase with shared right-turn lane or no right-turn lane, compared to exclusive right-turn lane
 - $\ensuremath{\circ}$ increase with curb radial driveway design
 - $\ensuremath{\circ}$ increase as the number of driveway lanes increases
 - decrease when a bike lane is available (regardless of the colored paint)
 - o decrease as AADT increases on connecting street

Crash Frequency at Commercial Driveways near Interchanges

	crash Frequency			
Variable and	Values and Base	Statistically	Crash	Note
Base Category	Category One Lane*	Significant**	Frequency***	
Number of Lanes		No	NI/A	Number of lange is a surragete for
on Connecting	Two Lanes Three Lanes	No Yes	N/A +87.8%	Number of lanes is a surrogate for roadway AADT; More lanes indicate
Street	Three Lanes	res	+87.8%	increased lane changing behavior and
Street	Four Lanes or More	Yes	+113.5%	potential conflict points.
	Exclusive Right-turn Lanes*			
	Shared/continuous			Compared to exclusive right-turn
	right-turn lane	Yes	+99.1%	lanes, shared right-turn lanes or
Right-turn Lane	No Right-turn Lane	Yes	+177.9%	locations with no right-turn lane
Type				serve more than one driveway site,
				leading to lower driver expectancy as
				to where turns will occur and
				creating a higher potential for
				conflicts and rear-end collisions.
	Curb Flare*			
	Flush Radial	No	N/A	Both flare and curb radial tend to
	Curb Radial	Yes	+93.9%	increase crash frequency but only
Driveway Design	Wide Open Access	No	N/A	curb radial design had a significant
Feature				influence. Flush or curb radial are
				used at higher traffic driveways, and
				large radius or flare allows for quick
				and more efficient ingress and egress but increases crash risk.
	One Lane*			but nicreases crash risk.
	Two Lanes	No	N/A	Driveway number of lanes could be a
Driveway	Three Lanes	Yes	+148.8%	surrogate measure for driveway
Number of Lanes	Four Lanes or more or			volume; Driveways with multiple
(including both	Wide-open Access			lanes or wide-open access can
directions if available)		Yes	+133.8%	experience more complex traffic
available)				movements with increased potential
	No Control*			
	Sign Control	Yes	+34.8%	Locations with sign control tend to
Traffic Control	Traffic Signal Control	No	N/A	have higher traffic volume and more
Device				complex traffic than location with no
				traffic controls, and therefore still
	No Diko Lono*			experience higher crash frequencies.
	No Bike Lane* Conventional Bike	Yes	-26.8%	Other bike lane types were also
	Lane	162	-20.670	found to decrease crash frequency
Bike Lane Type	Other Bike Lane Types	No	N/A	but not significantly. Therefore,
	Other bike Lane Types	NO	N/A	presence of a bike lane at
				commercial driveways near
				interchanges helps to reduce crash
				frequency, regardless of bike lane
				type.
	AADT≪10,000*			
	(10,000, 20,000]	Yes	-46.1%	It is possible that fewer driveways
Connecting	(20,000, 30,000]	Yes	-61.9%	were permitted in the interchange
Street 5-year	(30,000, 40,000]	Yes	-54.9%	influence area as the AADT increased
Average AADT	(40,000, 50,000]	Yes	-56.3%	on connecting streets, thereby
	(50,000, 60,000]	Yes	-58.2%	 reducing the average number of
	[50,000, 00,000]	165	-50.270	driveway-related crashes.

Crash Severity Analysis Findings Summary

- Variables significant in explaining injury severity of more than one crash group include:
 - Speed limit on connecting street, driveway design features, driveway number of lanes, driveway channelization, driveway throat length, bike lane type, connecting street AADT
- In the same crash group, some variables were significant in explaining more than one injury severity level.
 - Driveway throat length, for example, is significant in explaining minor injury and severe injury/fatality for all crashes at driveways along corridors.
- A few other crash-related variables (e.g., type of shoulder, alcohol/drug involvement, lighting conditions) were confirmed to have significant influence on crash severity.

All Crash Severity Analysis - Corridors

- Increased severe injury/fatality risk: 1) shoulder curb; 2) short driveway throat length
- Decreased severe injury/fatality risk: 1) rain weather; 2) daylight condition; 3) lower speed limit; 4) shared right-turn lane; 3) curb flare; 4) channelized driveway; 5) no median opening
- Increased minor injury risk: 1) unpaved shoulder or curb; 2) cloudy weather; 3) flush radial; 4) full traffic movement at driveway; 5) short driveway throat length; 6) 60K -70K AADT on connecting street
- Decreased minor injury risk: 1) lower speed limit; 2)curb flare; 3) left-in/out driveway; 4) no exclusive bike lane; 5) conventional bike lane; 6) lighting condition

Crash Variable	Significant Categorical Value (Severity Level)*	Quantitative Influence (on Specific Severity Level)	Note
Type of Shoulder	Unpaved Shoulder (MI)	+16.4% (MI)	Vehicular traffic near interchanges is often relatively high speed, and turning at
	Curb (MI, SI)	+33.6% (MI) +79.3% (SI)	driveways may lead to hitting or running over the curb, causing minor injury collisions.
Weather Condition	Cloudy (MI)	+12.1% (MI)	Drivers may be more cautious and drive at relatively slower speeds in inclement
Weather condition	Rain (SI)	-59.3% (SI)	weather, thereby reducing the potential for severe crashes.
Lighting Condition	Daylight (SI)	-29.8% (SI)	Daylight or sufficient lighting ensures good visibility and reduce crash severity.
Speed Limit on	35 mph or lower (MI, SI)	-27.5% (MI) -69.9% (SI)	Lower speed limits create less kinetic energy upon collision thereby reducing
Connecting Street	40-45 mph (MI, SI)	-18.1% (MI) -43.6% (SI)	impact on the body.
Right-turn Lane Type	Shared/continuous right- turn lane (SI)	-35.3% (SI)	Drivers tend to travel at lower speeds on shared right-turn lanes while attempting to locate their target driveway.
	Flush Radial (MI)	+20.5% (MI)	Flush radial design is generally used to allow efficient (higher-speed) turning
Driveway Design Feature	Curb Flare (MI, SI)	-15.6% (MI) -43.0% (SI)	movements. Curb flare design generally indicates lower driveway traffic and curb delineation at driveway sites forces drivers to slow down.
	Full Traffic Movements (MI)	+17.3% (MI)	Full traffic movement driveways increase the potential risk of minor injuries.
Driveway Traffic Operations	Left-in/Left-out (MI)	-34.5% (MI)	Left-in/left-out only driveways have fewer potential conflicts than full movement driveways.
Driveway Channelization	With Channelization (SI)	-19.8% (SI)	This result verifies the protective effects of driveway channelization by separating opposing traffic flows and preventing encroachment.
	No Exclusive Bike Lane (MI)	-23.6% (MI)	A conventional bike lane reduces minor injury crashes, but absence of a bike lane
Bike Lane Type	Conventional Bike Lane (MI)	-20.6% (MI)	also has this effect, perhaps due to sidewalk use. Severe injury crashes are not reduced as vehicles in the adjacent through lane may still easily encroach into the bike lane and a conventional bike lane across a driveway entrance may also increase the rear-end or angle-collision risk, thereby inducing more injuries.
Driveway Throat Length	Short Driveway Throat Length (MI, SI)	+4.7% (MI) +60.5% (SI)	This result verifies the safety importance of sufficient driveway throat length.
Median Opening Type	No Opening (SI)	-44.5% (SI)	No openings in the physical median prevent left-turn movements, thereby significantly reducing the potential for severe injuries.
Connecting Street AADT at Crash Year	(60,000, 70,000] (MI)	+17.0% (MI)	Only this AADT categorical value was statistically significant in explaining crash severity outcomes. ity level listed in the parenthesis.

Crash Severity at Commercial Driveways along Corridors

* Percentage value of influence in increasing (+) or decreasing (-) the risk of specific crash severity level in the parenthesis.

Ped/Bike Crash Severity at Commercial Driveways along Corridors

- Increased severe injury/fatality risk: 1) alcohol or drug involvement, 2) two-lane driveway; 3) four-or-more-lane driveway or wide-open access; 4) short driveway throat length
- Decreased severe injury/fatality risk: 1) paved shoulder
- Increased minor injury risk: 1) 50k-60k AADT on connecting street; 2) paved shoulder
- Decreased minor injury risk: 1) paved shoulder; 2) two-lane driveway; 3) no bike lane (may however increase severe injury/fatality risk)

Pedestrian/Bicycle Crash Severity at Commercial Driveways along Corridors

Crash Variable	Significant Categorical Value (Severity Level) *	Quantitative Influence (on Specific Severity Level)**	Note
Type of Shoulder	Paved Shoulder (MI, SI)	-2.0% (MI) -37.6% (SI)	Paved shoulders should be considered near commercial driveways in areas with high pedestrian/bicycle activity.
Alcohol or Drug Involvement	Alcohol or Drug Involved (SI)	+208.95% (SI)	Although not specific to access management, this verifies the serious adverse impact of substance use on traffic safety.
Driveway Number	Two Lanes (MI, SI)	-1.4% (MI) +162.2% (SI)	Multiple driveway lanes suggest more complex traffic conditions, relatively higher
of Lanes	Four Lanes or More OR Wide-open Access (SI)	+231.5% (SI)	vehicle speeds, and more pedestrian/bicycle exposure, therefore inducing severe injury.
Bike Lane Type	No Bike Lane (MI)	-8.8% (MI)	If no bike lane is available, many bicyclists travel on the sidewalk to avoid mainstream traffic; if they travel next to the travel lane severe injuries or fatalities are likely when a crash occurs.
Driveway Throat Length	Short Driveway Throat Length (SI)	+46.4% (SI)	Sufficient driveway throat length at commercial driveways is important to pedestrian and bicycle safety along corridors.
Connecting Street AADT at Crash Year	(50,000, 60,000] (MI)	+15.5% (MI)	Only this AADT categorical value was statistically significant in explaining crash severity outcomes.

* Variable that is significant in explaining the potential of specific injury severity level listed in the parenthesis.

** Percentage value of influence in increasing (+) or decreasing (-) the risk of specific crash severity level in the parenthesis.

All Crash Severity at Commercial Driveways near Interchanges

Increased severe injury/fatality risk:

1) one-lane driveway; 2) distance from taper end to each unsignalized driveway or signalized intersection is less than 500 ft

 Increased minor injury risk: 1) alcohol or drug involvement; 2) dawn/dusk lighting condition; 3) speed limit 50 mph or higher; 4) conventional bike lane

Crash Variable	Significant Categorical Value (Severity Level Explained)*	Quantitative Influence (on Specific Severity Level)**	Note
Alcohol or Drug	Alcohol or Drug	+170.9% (MI)	This verifies the serious adverse impact of
Involvement	Involved (MI)		substance use on traffic safety.
Lighting Condition	Dawn/Dusk (MI)	+74.6% (MI)	Sufficient lighting ensures good visibility and improves traffic safety, while dawn/dusk is often associated with fatigue or drowsiness.
Speed Limit on Connecting Street	50 mph or higher (MI)	+101.3% (MI)	Speed limit is an indicator of traffic operating speed, and higher speed limits suggest a greater impact upon vehicle collision.
Driveway Number of Lanes	One Lane (SI)	+180.6% (SI)	One-lane driveways are difficult to identify due to narrow widths, and sudden maneuvers upon entry (or potential for lack of compliance on site) may increase severe injury crashes. Warning or guidance signs may be needed.
Bike Lane Type	Conventional Bike Lane (MI)	+24.3% (MI)	Conventional bike lanes do not provide a physical barrier or buffer to sufficiently reduce exposure to nearby traffic, and therefore increase the injury risk to bicyclists.
Distance From Taper End Unsignalized Driveway or Signalized Intersection	(0, 500 ft) (SI)	+261.0% (SI)	Commercial driveways in interchange influence areas create conflicts with interchange traffic and insufficient travel distances for vehicles to slow before diverging from or merging with through traffic.

Motor Vehicle Crash Severity at Commercial Driveways near Interchanges

* Variable that is significant in explaining the potential of specific injury severity level listed in the parenthesis.

** Percentage value of influence in increasing (+) or decreasing (-) the risk of specific crash severity level in the parenthesis.

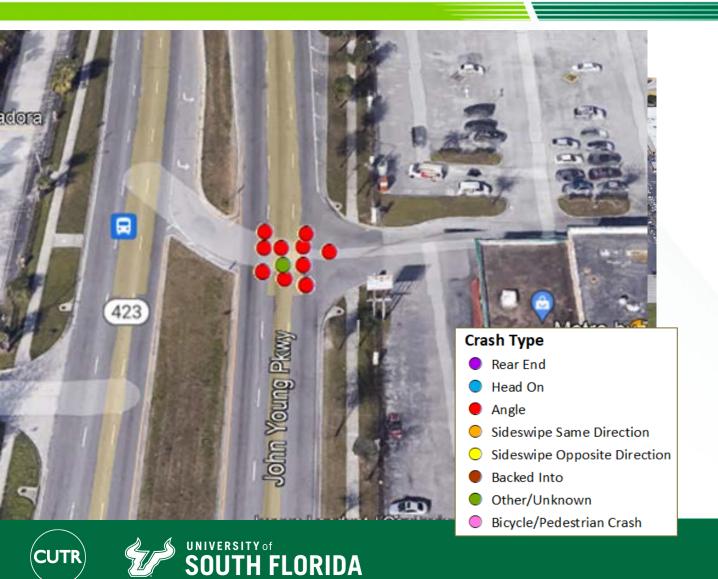
Exploratory Case Studies

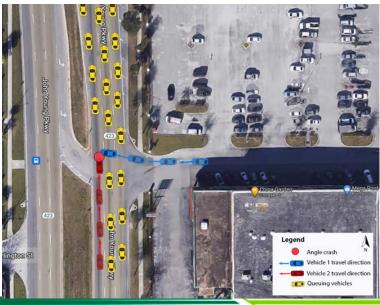
UNIVERSITY of

(1) John Young Parkway at W. Colonial Drive, Orlando
(2) East Bay Drive (State Road 686), Largo
(3) West Tennessee Street, Tallahassee
(4) State Road 932, Hialeah
(5) West Hallandale Beach Boulevard at I-95 Interchange
(6) Scenic Highway at I-10 Interchange

Selected Case Study Findings

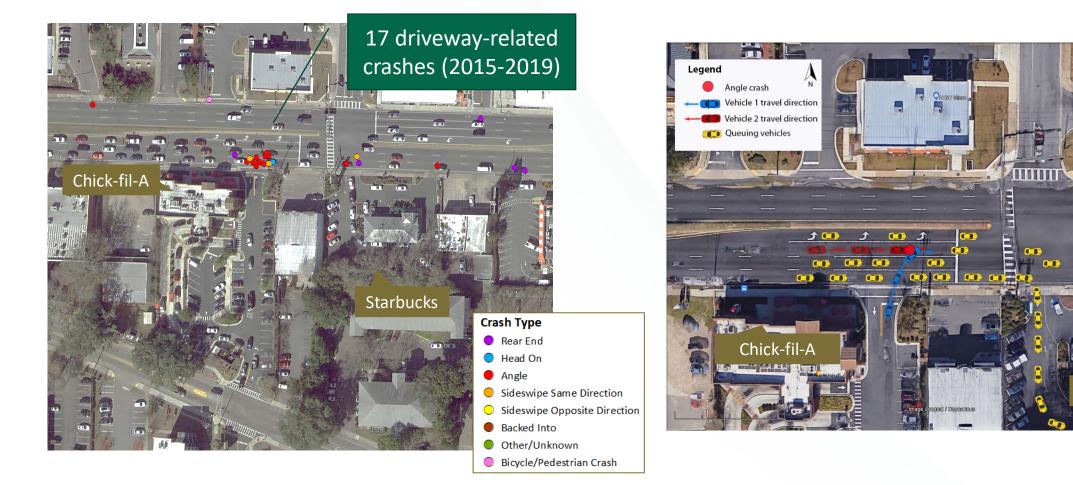
- Allowing commercial driveway access in the functional area of major roadway intersections may still be unsafe, despite mitigating techniques such as nontraversable medians and directional median openings.
- Aligning higher-volume commercial driveways at unsignalized full median openings was observed to result in a variety of conflicts and crashes.
- Closely-spaced high-volume commercial driveways that experience similar peak periods require special attention to ensure that adequate space is provided onsite for circulation and queueing.
- Drivers looking at oncoming traffic while exiting commercial driveways do not notice bicyclists crossing driveways from the opposite direction, resulting in bicycle-involved crashes.
- Commercial driveway access near interchange ramps creates several safety issues.





John Young Parkway, Orange County

East Bay Drive, Largo



West Tennessee Street, Tallahassee

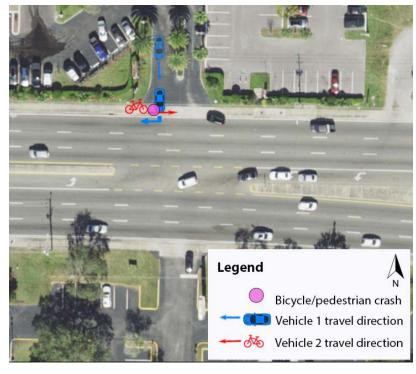
the sale

r

Starbucks

Google

Starbuck


West Tennessee Street, Tallahassee

Typical Bicycle Crashes

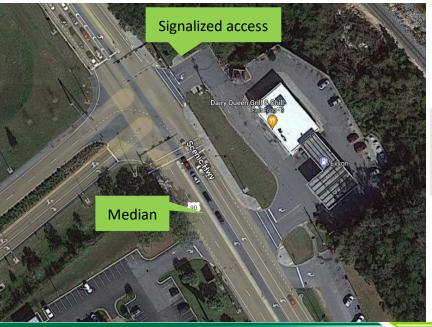
"Wrong way" cyclists hit as drivers look left while exiting driveways

East Bay Drive, Largo

W Hallandale Beach Blvd @ I-95

I-95@ W Hallandale Beach Blvd Interchange Area

Bicycle/Pedestrian Crash


Scenic Highway @ I-10 Interchange Area

UNIVERSITY of SOUTH FLORIDA

Before reconstruction

After reconstruction

Scenic Highway @ I-10 Interchange Area (Before Reconstruction)

UNIVERSITY of SOUTH FLORIDA

Recommended Guidance Updates

- 1) Consider using traffic volume and land use context, as well as speed, as primary criteria for minimum driveway spacing.
- 2) Avoid permitting higher-volume commercial driveways on opposite sides of a roadway at or within close proximity to a full median opening that is not signalized.
- 3) Carefully consider the crash potential of the "good Samaritan" effect when permitting high-volume commercial driveways in the functional area of intersections or interchanges.
- 4) Avoid using conventional bike lanes on major roadways with frequent commercial driveway access unless mitigating actions are taken at commercial driveway locations.
- 5) Prohibit new access in the vicinity of interchange ramps whenever feasible and use policy, design and funding methods to relocate and/or mitigate the effects of such access in existing developed areas.
- 6) Consider taking a more active role in advancing off-system network development along the state highway system to reduce commercial driveways on major corridors and near highway interchanges for improved safety.

Future Research Consideration

The safety effects of following driveway and traffic characteristics on commercial driveway safety:

Traffic Operation Characteristics

• Higher posted speed limits on connected street

Connected Street 5-year Average AADT

Roadway Facility Features

- Wide-open access or other driveway design types
- Traffic control devices on pedestrian/bicycle safety
- Conventional bike lanes (without a physical separator or surface paint)

For further information:

kristinewilliams@usf.edu

congchen1@usf.edu

www.cutr.usf.edu

Questions

Thank you!

Contact Info

- <u>Gina.Bonyani@dot.state.fl.us</u>
- Jenna.Bowman@dot.state.fl.us
- Karla.Matos@dot.state.fl.us

Thank you!

