

Drowning in Scenarios? Decision Making for Sea Level Rise

Office of Policy Planning

ATTENDEE PARTICIPATION PANEL

- » Attendees are automatically muted throughout the webinar
- » Click the ? to open the panel box and submit a question to the panelists
- » Answers to questions will be addressed by the panelists either verbally or in the question box
- » Webinars are being recorded and will be available with other materials on the TransPlex website
- » Please complete the follow up survey that will be sent via email at the conclusion of this webinar

PROFESSIONAL DEVELOPMENT CREDITS

Offered for Planners and Engineers that attend the live session. You must attend the entire session to be eligible for 1.5 hours of credits.

FDOT employees will can download certificates through Learning Curve. All other attendees will receive certificates via email.

CELEBRATING FLORIDA'S PLANNERS

(2020 PLANNING PROFESSIONAL OF THE YEAR NOMINEES)

Sarah Kraum

Space Coast Transportation Planning Organization

Thomas Hawkins 1000 Friends of Florida

FLORIDA TRANSPORTATION PLAN GOALS

FDO

Office of Policy Planning

PRESENTERS

Jennifer Z. Carver, AICP Florida Department of Transportation

Crystal Goodison GeoPlan Center University of Florida

Renee Collini Northern Gulf of Mexico Sentinel Site Cooperative Mississippi State University MS-AL Sea Grant Consortium

INSERT POLL ANSWERS

What are your professional area(s) of expertise?

Multiple choice with multiple answers

NATURAL HAZARDS IMPACTING FLORIDA

Irma making landfall in the Florida Keys

- » Hurricane Storm Events
- Precipitation
 Events
- » Sea Level Rise
- » Wildfires
- » Drought
- » Sinkholes

A law enforcement vehicle patrols a flooded street in Everglades City, Florida, U.S., September 11, 2017. REUTERS/Bryan Woolston

US 98 in Franklin County. FDOT

Credit: Florida Forest Service

WHY RESILIENCY?

- Resiliency -- The ability of the transportation system to adapt to changing conditions and prepare for, withstand, and recover from disruptions.
- » Why? Mitigate risk, make wiser investment decisions, and provide safer, more reliable transportation.
 - » Fixing America's Surface Transportation (FAST) Act
 - » Florida Transportation Plan (FTP)
 - » Transportation Asset Management Plan (TAMP)

FDOT RESILIENCY INITIATIVES

- » Statewide Planning & Policy
- » Interagency Coordination/Collaboration
- » Vulnerability Assessment
- » Tools, Guidance, Standards
 - Guidance for MPOs
 - Sea Level Scenario Sketch Planning Tool
 - Case Studies/Adaptation Planning
- » Research
- » Projects

STRATEGIC INTERMODAL SYSTEM (SIS) VULNERABILITY ASSESSMENT

FDOT RESEARCH

» Completed

- Incorporating Risk in Transportation Planning and Project Implementation
- » Sea Level Rise Risk research led to development of Sea Level Scenario Sketch Planning Tool

» Ongoing

- » Sea Level Scenario Sketch Planning Tool Updates
- » Transportation System Resilience and Vulnerable Populations
- » Resilience Index for Transportation System

	Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
		Threats						
	Hacking and cybersecurity threats to							
	public and private transportation	4	4	5	80	E	Extreme Risk	Avoid
s	New technology causes investment to							
sse	be prematurely obsolete	4	4	5	80	E	Extreme Risk	Avoid
usine	Intensification of development in high	5	4	4	80		Extreme Rick	Avoid
ą	Aging population causes surge in	5	-	-	00		LATCHIC MISK	Avoid
s, and	demand for safe mobility options	5	4	3	60	Е	High Risk	Coordinate
tors	Wildfires disrupt major transportation							
visi	routes and reduce visibility	4	3	4	48	U	Moderate Risk	Mitigate
ţ,	New technology systems perform							
len	unsafely or increase liability	3	5	3	45	U	Moderate Risk	Avoid
esic	Failure to evacuate vulnerable							
2 2	populations due to evacuation routes							
λŧ	in high hazard areas	2	5	4	40	U	Moderate Risk	Coordinate
urit	Arterial flooding disrupts major							
sec	transportation routes and systems	4	3	3	36	С	Moderate Risk	Mitigate

UPCOMING RESEARCH & STUDIES

» FDOT

- Incorporation of Climatic and Hydrologic Nonstationarity into FDOT Planning and Design Guidelines & Processes
- » Florida Sea Level Scenario Sketch Tool Extension for Custom Analysis
- Integrating Resiliency in the Transportation Planning Process: A Baseline Assessment of Florida's MPOs Data Needs
- » National Cooperative Highway Research Program (NCHRP)
 - Incorporating resilience in planning & design; business case for resilience; and more

Drowning in Scenarios? Decision-Making for Sea Level Rise

Renee Collini Transplex Webinar October 16, 2020

Overview

Basics

Narrowing Scenarios

Translating Scenarios into Planning Info

Case Studies

Wrap-Up

What does sea-level rise look like?

- Reduced storm drainage
- Exacerbated storm surge
- Increased erosion
- High tide flooding
- Saltwater intrusion

What does it mean for people?

- Health risks
- Safety issues
- Direct damages
 Individuals & Communities
- Economic disruptions
- Reduction in services
- Cultural impacts

Understanding SLR

What is sea-level?

How do we know?

Relative Sea Level Rise

How many inches do you think seas have risen in St. Pete since 1947?

Multiple choice with single answer

Correct Answer: 8.2 inches

How many inches do you think seas have risen in St. Pete since 1995?

Multiple choice with single answer

Correct Answer: 5.5 inches

Relative Sea-Level Rise Scenarios

SLR Projections for Brevard County, FL

Sea Level Rise Scenarios and Future High Tide Flooding for Gulf County, FL

The report, <u>Global and Regional Sea Level Rise Scenarios for the United States (January 2017)</u>, synthesizes the latest sea level rise (SLR) research to provide updated global and regional SLR scenarios. Global SLR scenarios project how average global mean sea level may change in the future. Regional SLR scenarios and states scenarios consider a variety of processes that influence what SLR looks like on a in the U.S. are projected in the U.S. are projected states states in the U.S. are projected states st

Local SLR Projections

- Sweet et al., 2017
- Printable PDF Resource Suite
- On What do the probabilities mean? The updated scenarios, low through extreme, cover the range of scientifically plausible scenarios. Probabilities help us understand the likelihood of each scenario occurring. For example, under RCP8.5, it is 100% likely that there will be at least 1 foot of SLR by 2100, while there is a low probability that there will be 8.2

www.LocalSLR.org

of occurring, you may want to plan for it when protecting long-t

military base or water treatment facility. More information on scenario selection and risk is in Section 6.1 of the report.

Photo: Ocean City, Maryland

t above

Map data @

^{(*}Station Selection Map

Narrowing SLR Scenarios to a Planning Range

Why such a large range?

U.S. NEWS

Big companies' climate climate

US companies act on climate despite Trump: Survey

• Companies are still among the most ambitious in setting targets to combat global warming despite President Donald Trump's plans to quit the Paris

Ireland secures 'fair deal' on carbon emissions under EU pact

n a 2017 "A list" of 159 companies ing climate change and protecting

Implementing the Paris Agreement in the Pacific

over 400 maustries reduced CO2 emission by 2% in 2012-15

PTI | Oct 25, 2017, 02.23 PM IST

1 - We do not know how much carbon will be in the atmosphere.

Three major reasons for scenarios

Global Average Temperature and Carbon Dioxide Concentrations, 1880 - 2004

2 – Natural variability

Three major reasons for scenarios

3 – Still studying the ice sheet melt – the science to watch!

Global Scenarios - 2017

Likelihood of scenarios

Global Sea Level Rise	RCP2.6	RCP4.5	RCP8.5		
Scenario	dramatic	modest	no change		
	reduction of	reduction in	in carbon		
	carbon	carbon	emissions		
	emissions	emissions			
Low	94%	98%	100%		
Intermediate-low	49%	73%	96%		
Intermediate	2%	3%	17%		
Intermediate-high	0.4%	0.5%	1.3%		
High	0.1%	0.1%	0.3%		
Extreme	0.05%	0.05%	0.1%		

What is your flood risk tolerance?

Minor Impact High Tolerance for Risk Moderate Impact Moderate Tolerance for Risk Low Tolerance for Risk

Major Impact

Thinking about your risk tolerance

- Scale dependent
- Location dependent
- Cost/value
- Function
 - Critical service?
 - Number of people impacted
- Length of Time
- Adaptability

High Tolerance for Risk

Moderate Tolerance for Risk

Low Tolerance for Risk

Risk Tolerance Examples

Bridge that is

ingress/egress

critical to

Hospital

- High Expense
- Critical function
- Long-term
- Buying A Home
 - Moderate Expense
 - Critical function to me
 - Mid-term (30 years)

Shed

• Minor Expense

Not critical

Short-term

Main route for commerce and/or commuting

Repaving or smaller roads with many alternatives

High Tolerance for Risk

Moderate Tolerance for Risk

Low Tolerance for Risk

Linking risk tolerance & likelihood

Sea level rise scenario	Likelihood
Low	100%
Intermediate-low	96%
Intermediate	17%
Intermediate-high	1.3%
High	0.3%
Extreme	0.1%

Migherhanschafthapppening, happpolitigenapact moderate impact

Hospital in Coastal County

Translating Scenarios into Planning Info

Translate your scenario – new high tide

What does this information help with?

- Low lying areas
- Increased high-tide flooding
- Infrastructure
 - Stormwater outfalls
 - Lift stations
- Transportation
 - Commerce/EMA
 routes
 - Maintenance
 - Design

Translate your scenario – future storm surge

An EESLR-NGOM Story Map

Coastal Dynamics of Sea Level Rise: Simulated Storm Surge

Stillwater Storm Surge

Download the data

By using state-of-the-art high-resolution astronomic tide, wind-wave, and hurricane storm surge modeling, **return period (percent annual chance) stillwater elevation** maps under four different sea level rise scenarios were developed. These 1% and 0.2% annual chance data (commonly referred to as 100 and 500 year flood plains) were developed to assess the effects of future coastal change on stillwater storm surge under different SLR scenarios.

Inundation depth above ground (m)

Stillwater storm surge inundation depth above ground (in meters) in 2100 for Low (+0.2m or 0.7ft in left panel) and intermediate-High (+1.2m or 3.9ft in right panel) sea level rise scenarios. Data ranges shown are equivalent to 0.3 to 19.7 feet.

Shown at right are the **1% annual chance probability** of storm surge inundation in 2100 for **Low** (+0.2m or 0.7ft in <u>left panel</u>) and **Intermediate-High** (+1.2m or 3.9ft in <u>right panel</u>) SLR scenarios.

Try this:

Slide the bar to see changes in storm surge inundation depth between these two scenarios. Enter 'Pensacola, FL' in the location search box (top right) to see storm surge differences near Pensacola, FL.

www.msstate.edu/directory/employee/ of future stillwater levels under Low (left) and

What does this information help with?

- Changes in 1% and 0.2% annual chance flood area
- Changes in inundation depth
 - Considerations for freeboard
- Infrastructure
 - At risk
 - Future design
- Transportation
 - Evacuation routes

Case Studies – How to integrate information into projects

Case Study: County Utility Authority

- Design and construction of new wastewater reclamation facility
- SLR during two-phases
 - Site selection: high-tide
 - Berm design: 0.2% event over 50 years
- Conducting a cost benefit analysis
- Engagement occurred just after 15% design was completed

Case Study: Dauphin Island, AL

Summary

- SLR is already negatively impacting communities
- Resources available to facilitate integration of science into planning
- Adaptation is diverse; today provided foundational tools for a variety of situations
- Leverage the many resources for supporting these efforts
 - Technical expertise UF Geoplan Center, Sea Grant, NOAA OCM
 - Colleagues w/similar efforts Gulf of Mexico Climate and Resilience Community of Practice & Gulf of Mexico Alliance Resilience Team

Thank you!!!

r.collini@msstate.edu

DROWNING IN SCENARIOS? DECISION MAKING FOR SEA LEVEL RISE

Crystal Goodison, Associate Director + Associate Scholar University of Florida GeoPlan Center

Transplex Webinar, October 16, 2020

Fridays in October 9:00 to 10:30 a.m.

www.fdot.gov/planning/transplex No Registration Fee

UNIVERSITY OF FLORIDA GEOPLAN CENTER

The GeoPlan Center is a geospatial research and teaching facility, in the UF School of Landscape Architecture & Planning.

We support land use, transportation, and environmental planning in the State with our geospatial expertise:

- Develop and distribute standardized geospatial data.
- Design, develop, and maintain enterprise mapping systems and decision support tools for visualization, analysis, and facilitation of business processes.
- Helping to turn data into information.
- Training and education.

OUTLINE OF PRESENTATION

Sea Level Scenario Sketch Planning Tool
Features & Functionality
Updates and new data
How to Use the Data
Live Demo/ Using the viewer

SEA LEVEL SCENARIO SKETCH PLANNING TOOL

 Online geospatial mapping tool to assess potential impacts of current and future flooding on the transportation system

 Planning-level analyses shows where and when sea level rise is projected to occur in Florida under various scenarios and time periods

 Public map viewer & GIS data: sls.geoplan.ufl.edu

UFGEOPLAN CENTER Florida Sea Level Scenario Sketch Planning Tool

Q

X

FEATURES &

Jump to: COUNTY - BAY

FUNCTIONALITY

- + RSLR by County (2080 C4)
- F SLR Depth Inches (2080 C4)
- + Current Flood Risk
- Florida Base Layers
- Legend

Florida Base Layers

SLR 2080 USACE High, MHHW

Areas Mapped

- 35 coastal counties + 2 inland counties
- View and Compare Local Sea Level Rise Scenarios
 - USACE & NOAA scenarios mapped for local context
- Decades in map viewer: 2040, 2060, 2080, 2100 (2070 coming!)
- Quickly visualize and compare multiple scenarios

Transportation Analyses

Segment and asset-level analysis of future flooding (SLR) and current flood risk

~

Download GIS Data

Download statewide or by county

52

Help

Basemaps

SEA LEVEL RISE SCENARIOS MAPPED

5 total SLR scenarios:

U.S. Army Corps of Engineers (USACE 2013)

 Upper curve ~ 5ft (1.5m) by 2100

National Oceanic & Atmospheric Administration (NOAA 2012):

 Upper curve ~ 6ft (2m) by 2100

Adding (November): NOAA 2017

- 6 scenarios
- Upper curve ~ 10ft (3m) by 2100

RUTGERS

≊USGS

U.S. DEPARTMENT OF COMMERCE

NOAA National Oceanic and Atmospheric Administrat

National Ocean Service Center for Operational Oceanographic Products and Services

MAPPING LOCAL SCENARIOS

- U.S. Army Corps of Engineers Sea Level Change Curve Calculator - SLR values by tide station.
- Mean Higher High Water (MHHW) tidal datum
- > High resolution elevation data
- Modified bathtub inundation models (account for surface hydrologic connectivity)
- Locally and regionally standardized models align with regional compacts/ collaboratives and unified SLR Projections

(2 of 5)

Name

Roads (2060 C5)

W OLYMPIA AVE

TRANSPORTATION ANALYSIS

Segment and asset-level analysis of current & future flood risk:

- Future flood risk: from USACE & NOAA SLR scenarios over 7 decades
- Current flood risk: 100-year & 500year floodplains, storm surge zones

Transportation assets analyzed:

- Roadways (RCI and Tiger)
- Airports, seaports, freight terminals, rails
- SIS designations

SKETCH TOOL UPDATES: WHAT'S NEW?

Data will be live in mid-November

That's a lot of data – what do we do with it??

UFGEOPLAN CENTER Florida Sea Level Scenario Sketch Planning Tool

Q

Jump to: COUNTY - BAY

USACE NOAA

Projection Curve(NOAA)

Low Int Low Int High High

Time Period

SKETCH TOOL: WHY AND HOW TO =• USE IT?

6

SLR 2080 USACE High (C4) F SLR Depth Inches (2080 C4)

Ð	Current Flood Risk
Đ	Florida Base Layers

Legend

Florida Base Layers

SLR	2080	USACE	High,	MHHW
A ff.	acted	Trancoo	station	4

Uses (to name a few...):

- High level vulnerability assessments to get big picture of permanently inundated areas
- Evaluate local SLR scenarios over time and determine broad tipping points for impacts
- Start conversation with community about long-term SLR impacts.
- Then narrow down focus to asset level and do high level asset screening: risk-based approach

Not Intended for:

Not intended for engineering design, stormwater or drainage design, property assessment, or permitting.

~

Help

Basemaps

MEASURING VULNERABILITY

Vulnerability The propensity or predisposition to be adversely affected. A function of exposure + sensitivity + adaptive capacity

Vulnerability

Exposure

Adaptive Capacity The ability of a community, system,

or structure to adjust or cope with climate variability or future climate impacts.

Adaptive Capacity

Sensitivity

Sensitivity The degree to which a community, system, or structure are

affected by a climate stressor.

Exposure

The presence of a community, people, system, or structure in places that could be adversely affected by a climate change stressor

FHWA VULNERABILITY ASSESSMENT & ADAPTATION FRAMEWORK

- SLR is often one part of a larger process
- Other stressors and factors considered in planning process
- Process is cyclical and needs to be revisits as better data, models, and science are developed

Define objectives & scope • Determine climate stressors, timeframe, assets **Compile Data** • Asset data, Climate Stressors REASSESS AND **Assess Vulnerability** • Assess risk, stakeholder input, narrow options MONITOR **Adaptation Options** • Identify, Analyze, Prioritize Adaptation Options Risk based approach Incorporate Results into Decision-Making • LRTPs, Hazard Mitigation, Asset Mgmt

VULNERABILITY ASSESSMENTS

VISION - PLAN - IMPLEMEN

Sketch Tool provides ready-to-use, standardized data for coastal areas. This has facilitated VA by numerous municipalities, regional transportation agencies.

Natural Hazard Risk and Vulnerability Analysis Satellite Beach, Florida			ی	🔏 _ St. Luc	Trans Plann Orgar	portation ing nization	on	Vulnerability Assessment and Adaptation Pilot Project
	River to Sea		Sea L	evel Rise M	apping	d and		Hillsborov Vulnerability Assessment and Adaptat
	Transportation Planning Organization		2090	NOAA Int High Projection	Manner		_	santiid iz Broward Metropolitan
Contraction of the second s	Sea Level Rise Vulnerability Assessment	Road Name	Segment from	Segment to	Length of Segment (ft)	Feet Affected	% Affecte	Parage organizationa saming by Parsons Britisherhoff, Inc.
STORM SURGE COASTAL EROSION SEA LEVEL RISE FLOODING	July 2016	N. BEACH CSWY	US-1	Indian River County Line	40852	2337	6%	BRINCKERHOFF
		BINNEY DR	Entire Road	Entire Road	3870	640	17%	
		5. OCEAN DR	Harbour Isle Dr.	Martin County Line	133056	13731	12%	
		1014	2100	NOAA Int High Projection	1	10/01	1070	
OTTY OF		Road Name	Segment from	Segment to	Length of Segment (ft)	Feet Affected	% Affecte	
		S. INDIAN RIVER DR	Savannah Rd.	Martin County Line	61421	366	1%	
		AVE H	N. 7th St.	Coast	2032	838	41%	
January 2015		AVE C	US-1 US-1	N. Indian River Dr.	40852	196	16%	
		BINNEY DR	Entire Road	Entire Road	3870	3001	78%	PLANING COMMISSION USponted
Prepared by the East Central Florida Regional Planning Council for the City of Satellite Beach and the Florida Department of Environmental Protection.		S. OCEAN DR	Harbour Isle Dr.	Martin County Line	88333	61010	69%	Vital Martine Annual
		SEAWAY DR	US-1	Harbour Isle Dr.	6569	255	4%	601 East Reinnay Soulavard Tampa, FL 33602
		Tota			204275	74002	36%	here the
								rreparea by: Cambridge Systematics, Inc. with Jacobs Engineering Group, Inc. Fordia Attantic University

Urban Land

Final Report

-October 2014

THE

CA

RFS

BUSINESS

SE

IN SOUTHEAST FLORIDA

Regional Economic Benefits of Climate

61

South Florida Climate Change nerability ssment

SPACE COAST TPO VULNERABILITY ASSESSMENT (2018)

East Central Florida Regional Planning Council

- Time frames: 2040, 2070, 2100
- SLR Scenarios: Low, Intermediate High
- Assets: Evac routes, roads, bus stops, trails, special assets

Allows for assessment of broad tipping points, screening of assets and areas for more study

	Table 5. Roadway by classification inditidation summary								
	Low Curve			Inter	mediate (Curve	High Curve		
Classification	2040	2070	2100	2040	2070	2100	2040	2070	2100
Local - Urban	None	None	None	None	None	None	None	None	0.57 Mi
Local - Rural	None	None	None	None	None	None	None	0.23 Mi	0.62 Mi
Minor Collector - Urban	None	None	None	None	None	None	None	0.11 Mi	8.11 Mi
Major Collector - Urban	None	None	None	None	None	None	None	3.2 Mi	6.71 Mi
Major Collector - Rural	None	None	None	None	None	None	None	None	5.23 Mi
Minor Arterial - Urban	None	None	None	None	None	None	None	<0.1 Mi	11.20 Mi
Principal Arterial - Expressway	None	None	None	None	None	None	None	None	<0.1 Mi
Principal Arterial - Interstate	None	None	None	None	None	None	None	None	<0.1 Mi
Principal Arterial - Urban Other	None	None	None	None	None	None	None	None	8.66 Mi
Principal Arterial - Rural Other	None	None	None	None	None	None	None	None	5.05 Mi
	None	None	None	None	None	None	None	0.68 Mi	46.34 Mi

Table 5: Readway by Classification Inundation Summary

SPACE COAST TPO TRANSPORTATION RESILIENCY MASTER PLAN

Road map for implementing resiliency
Develop Education and Engagement Strategy

Define and Develop Scenarios for shocks and stressors

Define shocks and stressors. Identify critical infrastructure & develop methods to prioritize vulnerable corridors

Master Plan Development

Develop Tailored implementation guides for municipalities with short, mid, and long-term strategies VA: start the conversation

Education & Outreach

> Develop Scenarios

Implementation Guides

CONSIDERATIONS FOR CHOOSING SCENARIOS FOR ASSET LEVEL ANALYSIS

Function: Level of use and criticality to network

Adaptive Capacity: the degree of redundancy in the system

Cost/ Value: cost of replacement, economic loss, environmental impacts, cultural values, or loss of life

Lifespan: Expected / estimated service lifespan

DEMO TIME!

CLOSING THOUGHTS

Things change (climate scenarios, data, models) This process is dynamic and need to be replicable.

- SLR is one (big) piece of puzzle: Other flood threats will impact systems before permanent SLR. Other climate and non-climate stressors to address.
- > We are learning together: building tools to match and meet needs
- Looking to the future: next version of Sketch Tool
 - 2020-21: State of the Practice & Data Needs for MPO Resiliency
 - 2021 -22: Building Geospatial Framework to Move from Planning to Project Scale

WANT TO LEARN MORE?

Sketch Tool Training Webinar Thursday, November 19, 2:00-4:00pm

Interactive virtual training on map viewer and data.

 To receive registration information: sls.geoplan.ufl.edu/training

Contact: Crystal Goodison, goody@geoplan.ufl.edu

Website: https://sls.geoplan.ufl.edu

Questions?

CONTACT INFORMATION

Jennifer Z. Carver, AICP Statewide Community Planning Coordinator Florida Department of Transportation Office of Policy Planning 850.414.4820 Jennifer.carver@dot.state.fl.us Crystal Goodison Associate Director + Associate Scholar, GeoPlan Center University of Florida 352.392.2351 goody@geoplan.ufl.edu Renee Collini Program Coordinator Northern Gulf of Mexico Sentinel Site Cooperative Mississippi State University Mississippi-Alabama Sea Grant Consortium 228.546.1044 r.collini@msstate.edu

FTP VIRTUAL ROOM

- Walk through the seven goal stations to provide your input on the draft strategies and share your ideas for reaching our goals.
- » No specific time, always open!
- » Opening October 5

www.floridatransportationplan.com

THANK YOU FOR ATTENDING

- » Up Next: Discovering the Keys to Access and Opportunity... Friday, October 23 @ 9am
- » Please complete the follow up survey that will be sent via email at the conclusion of this webinar

Please take a moment to visit the FTP Virtual Room and leave your comments www.floridatransportationplan.com

