

U.S. Department of Transportation Federal Highway Administration

Session 3: Peer Exchange – Resilience Investments

August 28, 2020

HOUSEKEEPING

- Keep your lines muted unless speaking
- To ask a question, type into the **chat pod** or "**raise your hand**" using the hand icon in the toolbar to be called on
- Video encouraged, especially during discussions
- Sessions will be recorded

GOALS AND OBJECTIVES

- Share approaches for using the MPO planning process to increase natural hazard resilience.
- Ensure all MPOs in the state share an **understanding of approaches and best practices**.
- Create an opportunity for **peer-to-peer collaboration** on how to integrate resilience into planning at individual agencies.

This session: Hear from MPOs on approaches and lessons learned from their experience with resilience challenges

Speakers:

- Pramod Sambidi & Kathryn Vo, Houston-Galveston Area Council (H-GAC)
- Jennifer Fogliano, North Jersey Transportation Planning Authority (NJTPA)
- Dale Stith, Hampton Roads TPO
- Scott Smith, U.S. DOT Volpe Center

Discussion

PollEverywhere

POLL EVERYWHERE QUESTION

 What was your key takeaway from Session 2: Resilience Needs and Strategies?

Peer Presentations

PRAMOD SAMBIDI & KATHRYN VO, H-GAC

Dr. Pramod Sambidi is a Socioeconomic Modeling Manager at the Houston-Galveston Area Council (H-GAC). Pramod leads H-GAC's efforts in developing longrange demographic, economic, and land use forecasts for the Greater Houston region. He also leads H-GAC's efforts in designing and developing interactive web mapping applications/tools to assist local governments, planners, researchers, and businesses in effective decision-making process. Pramod has more than 15 years of experience in modeling, regional and urban economics, and data management. Pramod holds a Ph.D. in Agricultural Economics from Louisiana State University.

Kathryn Vo is a Senior Planner at the H-GAC. Originally from the San Francisco Bay Area, Kathryn graduated from the University of California, Davis with a degree in Environmental Policy Analysis & Planning with an emphasis in Transportation & Energy.

She is an accomplished transportation planner with five years of planning expertise in bus transit, multimodal transportation, and small-scale placemaking innovations. Kathryn designs equitable, resilient regional transportation systems to protect communities from economic and environmental hardships. If you're in the Loop, you may see Kathryn roller skating along one of Houston's many bayous. 8

H-GAC's Resiliency and Durability to Extreme Weather Pilot Study

Pramod Sambidi PhD and Kathryn Vo

Houston-Galveston Area Council

FHWA-FDOT Resilience Peer Exchange August 28, 2020

Marian

H-GAC serves:

- 13 counties
- 134 cities
- 7 million people
- 3 million jobs
- MPO for 8-county metro area

METROPOLITAN PLANNING

ORGANIZATION

Study Goals

Measure Criticality and Vulnerability of Regional Transportation Assets to Extreme Weather Events

1	High	High	High				
	Criticality	Criticality	Criticality				
	Low	Moderate	High				
	Vulnerability	Vulnerability	Vulnerability				
Criticality	Moderate	Moderate	Moderate				
	Criticality	Criticality	Criticality				
	Low	Moderate	High				
	Vulnerability	Vulnerability	Vulnerability				
	Low	Low	Low				
	Criticality	Criticality	Criticality				
	Low	Moderate	High				
	Vulnerability	Vulnerability	Vulnerability				
Vulnerability							

- Develop Adaptation Strategy Decision Tool that Provide Recommendations for a Resilient Transportation Infrastructure
- Update H-GAC publications and future project selection criteria

RGANIZATIO

11

Transportation Assets

- Freeways (83 segments)
- Major roads (7,696 segments) major arterials minor arterials collectors
- Bridges (3,489) with waterway

ORGANIZATION

Criticality Assessment

Socio-economic importance (20%)

link to airport; link to port; service to activity population

- Operational & usage importance (40%)
 AADT; AADT-truck; transit ridership
- Health & safety importance (30%)

link to hospitals; link to fire stations; service to vulnerable population

Emergency response importance (10%)

evacuation route; link to shelters; link to EOCs; military access

Scope, Climate/ Extreme Weather Threats

14

ORGANIZATIO

Post Harvey Aerial Imagery (2017)

Flight Timeline

• Aug. 30, 2017 - Sept. 8, 2017

BW 8 at Memorial Drive

Measuring Level of Exposure

- Ground Elevation (LiDAR Data)
- Surface Elevation (Roadways and Bridges) (LiDAR Data)
- Water Depth (FEMA, NOAA, H-GAC Modeling)

PLANNING

ORGANIZATION

Digital Elevation Model (DEM) from 2018 LiDAR

Digital Elevation Model (DEM) is a digital representation of a terrain's elevation data derived from 2018 LiDAR.

0.5

High

Low

Digital Surface Model (DSM) from 2018 LiDAR

Digital Surface Model (DSM) represents the elevations of the reflective surfaces of **roadways** and **bridges** elevated above the ground.

FEMA Harvey Flood Model (2017)

Water Depth Grid =

Modeled Flood Water Surface Elevation – Ground Elevation (DEM)

Miles

0.5

Exposure Depth Grid

Exposure Depth =

Flood Water Surface Elevation – Digital Roadway Surface Elevation

Miles

0.5

0.25

Legend

Exposure Depth Grid	Exposure Description	Exposure Level		
Exposure Level	Not exposed/ Less than 0 foot of	No		
	flood water	No exposure or low risk		
	0 - 1 foot of flood water	Medium-low risk		
Medium-low risk	1 - 2 feet of flood water	Medium risk		
Medium risk	2 - 3 feet of flood water	Medium-high risk		
Medium-high risk	More than 3 feet of flood water	High risk		
High risk				

Vulnerability Assessment VAST Tool

• Exposure Assessment (70%)

Flooding (100-year, 500-year, & Harvey) Storm Surge (Hurricane Category 1 - 5 and Ike) Sea-Level Rise (4 & 5 feet)

- Sensitivity Assessment (20%)

 Bridge Age
 Structural Evaluation
 Channel Conditions
 Scour Ratings
 Pavement Condition
 Past Closure
- Adaptive Capacity Assessment (10%)
 Detour Length
 Repair Cost

Vulnerability: Combined (Flooding 50% + Storm Surge 35% + Sea-Level Rise 15%)

Freeways: 762 centerline miles Major Streets: 6,442 centerline miles High High 13% 12% Moderate Low Low 67% 70% Waller Waller Montgomery Montgomery Liberty Liberty Harris Harris Galveston Galveston Combined Fort Bend Fort Bend Vulnerability: Combined Chambers Chambers High Brazoria Brazoria Moderate 0.0 100.0 200.0 300.0 400.0 500.0 600.0 3,000 0 500 ..000 1.500 2,000 2,500 20 Low

Vulnerability Assessment

High Moderate Low

High Moderate Low

Vulnerability – Criticality Matrix

Criticality (3 types) Vulnerabil

Vulnerability (3 types)

Criticality-Vulnerability Matrix (9 types)

-	High Criticality Low Vulnerability	High Criticality Moderate Vulnerability	High Criticality High Vulnerability
	Moderate Criticality Low Vulnerability	Moderate Criticality Moderate Vulnerability	Moderate Criticality High Vulnerability
	Low Criticality Low Vulnerability	Low Criticality Moderate Vulnerability	Low Criticality High Vulnerability

Freeways: 762 centerline miles

9.5 n	niles (1.2%))	18.2 mi	les (2.4%)						
× ,	127.7	miles (16.8	<mark>3%</mark>) 🗡 17	'6.8 miles (23.2%)		386.55	miles (50.7	7%)	
	43.4	miles (5.7	%)							
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Matrix Summary

Matrix	Miles	%
Total	762.2	100.0%
High Criticality -High Vulnerability	9.5	1.2%
Moderate Criticality -High Vulnerability	23.2	3.0%
High Criticality -Moderate Vulnerability	20.2	2.6%
Low Criticality -High Vulnerability	66.2	8.7%
High Criticality -Low Vulnerability	61.5	8.1%
Moderate Criticality -Moderate Vulnerability	18.3	2.4%
Low Criticality -Moderate Vulnerability	113.7	14.9%
Moderate Criticality -Low Vulnerability	63.1	8.3%
Low Criticality -Low Vulnerability	386.5	50.7%

Freeways Details (excerpt)

Matrix	Name	Miles
High Criticality –	I-45	3.11
High Vulnerability	IH 10 E	6.37
	GULF FWY/IH 45	8.05
High Criticality -Moderate	IH 10 E	6.68
vullerability	IH 69	5.45
	IH 10 E	6.62
	IH 10 W	5.66
Moderate Criticality -High	IH 69	0.85
vullerability	SOUTH FWY/SH 288	3.89
	SOUTH LOOP E	6.14
	IH 10 W	19.50
	IH 45	2.39
High Criticality –	IH 69	7.84
Low Vulnerability	NORTH FWY/IH 45	21.01
	NORTH LOOP	4.90
	SOUTH LOOP E	5.83
	GULF FWY/IH 45	21.07
Low Criticality –	SH 146	16.18
	SH 288	28.94

Vulnerability – Criticality Matrix

Major Streets: 6,442 centerline miles

Matrix Summary

Matrix	Miles	%
Total	6,442.0	100.0%
High Criticality -High Vulnerability	48	0.7%
Moderate Criticality -High Vulnerability	119	1.9%
High Criticality -Moderate Vulnerability	140	2.2%
Low Criticality -High Vulnerability	595	9.2%
High Criticality -Low Vulnerability	364	5.7%
Moderate Criticality -Moderate Vulnerability	191	3.0%
Low Criticality -Moderate Vulnerability	861	13.4%
Moderate Criticality -Low Vulnerability	611	9.5%
Low Criticality -Low Vulnerability	3,512	54.5%

Principal Arterials Details (excerpt)

High Cri Vulr

latrix	Name	Miles
ticality -High	BROADWAY (Galveston)	2.617
erability	SH 3	1.537
	BROADWAY (Houston)	0.777
	COLLEGE	1.199
	CULLEN	0.735
	FAIRMONT PKWY	1.021
	FEDERAL	0.462
	FM 1960	0.142
	KIRBY DR	0.635
	LOCKWOOD DR	0.620
	MEMORIAL DR	0.637
	MONROE	0.134
	NASA RD 1	1.237
	OLD SPANISH TRAIL	0.102
	SH 35	0.794
	SH 146/LOOP 201	0.239
	SHAVER	0.437
	SPENCER HWY	0.463
	LOOP 336	0.119

Vulnerability – Criticality Matrix

Economic Impact Analysis

Scenario 5: US 59

Scenario 6: FM 723 & FM 359

Scenario 7: IH 10

Scenario 8: North-South Connecters along Buffalo Bayou between Memorial Dr and Briar Forest

Scenario 1: IH 10 San Jacinto Bridge

Scenario 2: Gulf Freeway Galveston Causeway

Scenario 3: SH 146 Fred Hartman Bridge

Scenario 4: SH 225/Lawndale St.

Economic Impact Analysis

GDP Loss (Million of Fixed Dollars in 2020) by Scenarios

Scenario	Description	Annual	Month	Week	Day
Scenario 1	IH 10 San Jacinto Bridge	206.9	17.2	4.0	0.6
Scenario 2	Gulf Freeway Galveston Causeway	599.2	49.9	11.5	1.7
Scenario 3	SH 146 Fred Hartman Bridge	205.6	17.1	4.0	0.6
Scenario 4	SH 225/Lawndale St.	191.5	16.0	3.7	0.5
Scenario 5	US 59	182.5	15.2	3.5	0.5
Scenario 6	FM 723 & FM 359	173.6	14.5	3.3	0.5
Scenario 7	IH 10	215.3	17.9	4.1	0.6
Scenario 8	North-South Connecters along Buffalo Bayou between Momorial Dr and Briar	494.8	41.2	9.5	1.4
	Forest				
Scenario 1+3+4		431.0	35.9	8.3	1.2
Scenario 1-8		1,407.5	117.3	27.1	4.0

Source- H-GAC Travel Demand Data and REMI Transight

Resiliency Adaptation Strategies

Resiliency Adaptation Strategies	Criticality			Vulnerability			Climate Stressor		
	Low	Moderate	High	Low	Moderate	High	Flooding	Storm Surge	Sea Level Rise
STORMWATER MANAGEMENT									
1. Increase Number of Swales & Ditches		Х	Х		Х	Х		Х	Х
2. Retention/Detention Basins		Х			X		X		
3. Depressed/Raised Medians		Х			X		X		
4. Bioswales	Х			Х			X		
5. Green Infrastructure	Х	Х		Х	X		X		
MAINTENANCE									
1. Culvert Cleaning		Х	Х		X		X	X	
PLANNING/SOCIAL									
1. Stormwater Management Plan		Х	Х		X		X		
2. Land Use Planning / Climate Justice		Х	Х		X		X	Х	Х
3. Relocate/Abandon Roads	Х					Х	Х		Х
4. Shelter in place	Х	Х	Х	Х			Х		
5. Evacuation/special Route Identification	Х	Х	Х		X	Х	X	X	Х
6. Prohibiting Overweight/Oversize Vehicles			Х	Х	X	Х	Х		
7. Sensor Technologies and Monitoring Programs			х		х	х			
INFRASTRUCTURE									
1. Enhanced Road Surface		Х	Х	Х			Х		
2. Enhanced Sub Grade			Х		X	Х	X	Х	
3. Hardened Shoulders		Х	Х	Х	X		Х	Х	
4. Raised Road Profile			Х		X	Х	Х	Х	Х
5. Geosynthetics/Geotextiles		Х	Х		X	Х	X	Х	
6. Permeable Pavement	Х			Х			Х		
OTHER									
1. Maintain/Restore Wetlands	Х	Х	Х		X	Х	Х		
2. Beach Nourishment/Dune Restoration		Х	Х		X	Х		X	Х
3. Vegetation for Erosion Control	Х	Х		Х	X		Х		
4. Swales/Ditches	Х			Х			X		
5. Wave Attenuation Devices		Х	Х		Х	Х		Х	
6. Debris Deflectors for Bridge Protection		Х	Х		Х	Х			

METROPOLITAN PLANNING ORGANIZATION

Regional Resilience Tools

Next Steps- Resiliency Integration

- Regional Transportation Plan
 - Significant incorporation
 - Highly Vulnerable & Highly Critical transportation infrastructure locations
 - 25 Adaptive Mitigation Strategies

- Transportation Improvement Program
 - Increase resiliency & environmental factors for project scoring to address:
 - Water Quality
 - Cultural Resources/ Open Space
 - Wetlands/ Resource Areas
 - Wildlife Preservation/ Protected habitats

PLANNING

ORGANIZATIO

Next Steps-Resilient Design

- Livable Centers
- Transit Oriented Development
- Low Impact Development
- Complete Streets

Contact and Links

Resilience Tool https://datalab.h-gac.com/resilience/

Contact Information

Pramod Sambidi, PhD- Pramod.Sambidi@h-gac.com

Kathryn Vo- Kathryn.Vo@h-gac.com

ORGANIZATION

POLL EVERYWHERE QUESTION

• Which aspect of the Houston-Galveston Area Council's approach would be most beneficial to your organization?

JENNIFER FOGLIANO, NJTPA

Jennifer Fogliano, AICP, is a principal environmental planner for the North Jersey Transportation Planning Authority (NJTPA), focused on issues of sustainability and resiliency, in particular climate change adaptation and mitigation in relation to the transportation system.

She previously worked as a planner for the Metropolitan Transportation Authority in New York City. For fifteen years, Jennifer has coordinated short and long term plans and projects with government agencies and organizations (at the federal, state, regional and local level), nonprofits, consultants and the public. She has a Bachelor of Science in Sociology from Saint Joseph's University in Philadelphia and a Masters of Urban Planning from Hunter College, CUNY in New York. Using the MPO Planning Process to Increase Transportation System Resilience

Session 3: Peer Exchange – Resilience Investments August 28, 2020

Jennifer Fogliano, Principal Planner North Jersey Transportation Planning Authority

NJTPA Region

Bergen Essex Hudson Hunterdon Jersey City Middlesex Monmouth

Morris Newark Ocean Passaic Somerset Sussex Union Warren

North Jersey Transportation Planning Authority

The Metropolitan Planning Organization for Northern New Jersey

STANDING COMMITTEES

Planning & Economic Development Committee Project Prioritization Committee Freight Initiatives Committee Regional Transportation Advisory Committee

Planning Goals

•Protect the environment

- •Provide affordable, accessible transportation
- •Retain and increase economic activity
- •Enhance system connectivity across all modes
- •Maintain a reliable transportation system
- •Create great places
- •Improve safety

Regional Capital Investment Strategy (RCIS)

RCIS Investment Principles

- ✓ Help Northern New Jersey Grow Wisely
- ✓ Make Travel Safer
- ✓ Fix it First
- ✓ Expand Public Transit
- ✓ Improve Roads but Add Few
- ✓ Move Freight More Efficiently
- Manage Incidents and Apply Transportation Technology
- ✓ Support Walking and Bicycling
- ✓ Increase Regional Resiliency*
 * New for Plan 2045

Increase Regional Resiliency Investment Guidelines

• Prioritize transportation investments that offer additional benefits for resiliency, for system preservation projects as well as upgrades and expansions.

• Incorporate vulnerability and risk assessments into project development.

• Scrutinize investments that are in places highly vulnerable to potential flooding/sea level rise.

Increase Regional Resiliency Investment Guidelines continued...

• Invest in alternate fuel infrastructure in support of energy independence.

• Coordinate investments within and across modes to strengthen routes, enhance regional connectivity, increase mode options, and increase network redundancy.

• Make investments that support the targets of the Global Warming Response Act of 2007, addressing New Jersey's GHG reduction goals and NJ State Plan recommendations.

Performance Measures

The Together North Jersey Plan

Priority Goals

- Grow a strong regional economy. ۲
- Create great places. igodol
- Increase access to opportunity. ۲
- **Protect the environment.**
- Work together.

Countywide Economic System Evaluation and Future Growth Analysis for Sussex County

EFFICIENT

Monmouth County Bus Rapid Transit Opportunities Study

LIVABLE.

Essex County Complete Streets Implementation Action Plan

RESILIENT.

Newark Greenstreets Initiative

Connecting People, Places, and Potential

Resilient Strategies

- Adapt infrastructure
- Identify vulnerabilities
- Improve management and mitigate impacts

storms, more frequent lesser storms and sea level rise will make inundated roads and nuisance flooding more common in the future, leading to regular road closures and ongoing damage and disruption.

The NJTPA will continue to work with partner agencies to assess vulnerabilities and prepare investments and emergency plans to ensure resiliency. Coordinating across state and regional lines is particularly important given the potential for widespread impacts. One notable effort is NJTPA's participation in FHWA's Post Hurricane Sandy Transportation Resilience Study in NY, NJ and CT conducted through a partnership with agencies in the three states, including NJ TRANSIT and the Port Authority of New York & New Jersey. Recommendations of this study must be addressed in ongoing planning and investments. Example strategies include climate-risk-adjusted benefit-cost analyses during the planning phases for adaptation strategies and programming adaptation strategies at appropriate time frames given the possible pace of climate change.

Study of vulnerabilities and resiliency strategies within the region are also important. For example, the NJTPA is coordinating a study to **develop** a climate resilience and adaptation plan for the New Jersey portion of the Passaic River Basin. Other study and planning efforts have been undertaken along Resiliente Identify the region's vulnerabilities to extreme weather and climate change (Strategy 10.1)

NJTPA Regional Transportation Plan for Northern New Jersey 101

Plan 2050

- Background paper on climate change
- Planning for electric vehicles
- Coordinating with state and local partners

Thank You! Jennifer Fogliano, AICP Principal Planner

Defining the Vision. Shaping the Future.

Contact: jfogliano@njtpa.org

follow us on

POLL EVERYWHERE QUESTION

 Which aspect of the North Jersey Transportation Planning Authority's approach would be most beneficial to your organization?

DALE STITH, HRTPO

Dale Stith is a Principal Transportation Planner with the Hampton Roads Transportation Planning Organization (HRTPO) and has been with the agency since 2006. At the HRTPO, Dale manages the development of the Long-Range Transportation Plan for Hampton Roads, which includes coordinating long-range planning efforts with regional stakeholders and other agency initiatives, overseeing the application and maintenance of the HRTPO Project Prioritization Tool as well as the Regional Travel Demand Model.

Dale has a Bachelor of Science from Old Dominion University, with a double emphasis in Geography and Geographic Information Systems, and a Masters in Transportation and Urban Systems from North Dakota State University.

HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION INTEGRATING RESILIENCE INTO PLANNING

FHWA – FDOT – Peer Exchange Series August 28, 2020 Dale M. Stith, AICP, GISP Principal Transportation Planner

Background on Hampton Roads

HRTPO/HRPDC Resiliency Studies and Planning Efforts

Resiliency in our LRTP Process • Project Prioritization • Scenario Planning Inclusion of Volpe Resilience and Disaster Recovery Metamodel •LRTP/Project Prioritization

•Other Applications

HAMPTON ROADS

- The HRTPO is the Metropolitan Planning Organization for Hampton Roads
 - Comprised of 15 Localities
 - 3 Transit Agencies
 - Federal and State Agencies
 - 4 Virginia General Assembly Members
- Home to 1.7 Million People
- Strategic location for Foreign Trade, Military Facilities, and Tourism

SEA LEVEL RISE IN HAMPTON ROADS

- Hampton Roads is experiencing the highest rate of relative Sea Level Rise on the East Coast
- Sea Level Rise is expected to accelerate
- Sea Level Rise will result in significant impacts:
 - Permanent inundation of some areas
 - More frequent flooding of other areas
 - Some areas that have not seen flooding will start to experience it

Source: National Climate Assessment via EPA, data from Hammar-Klose and Thieler 2001

REGIONAL INVOLVEMENT IN PLANNING FOR SEA LEVEL RISE

HRTPO and HRPDC Partnership

- Environmental Sustainability Best Practices for Transportation symposium
- Partnerships with other stakeholders
 - HRPDC Coastal Resiliency Committee
 - University Efforts (ODU, UVA, W&M, VT)
 - Virginia Institute of Marine Science (VIMS)
- Hampton Roads SLR Intergovernmental Planning Pilot Project
- Hampton Roads Adaptation Forum
- Hampton Roads Dutch Dialogues

HRPDC - RESILIENCY PLANNING EFFORTS

- Localized sea level rise projections and scenarios
- Local datasets property, infrastructure, land use, etc.
- High resolution inundation maps
- GIS data layers
- Policy analysis

Regional Sea Level Rise Policy

Screening values:

- 1.5 feet for near-term planning (2018-2050)
- 3 feet for medium-term planning (2050-2080)
- 4.5 feet for long-term planning (2080-2100)

Risk-based engineering:

- Utilize best available sea level rise projections
- Explicitly account for construction timeline, project lifespan, criticality, and vulnerability to flooding
- Determine possible sea level rise impacts
- Perform benefit-cost analysis of adaptation options

HRTPO STUDIES - VULNERABILITY ANALYSES

Identify Vulnerabilities and Develop Adaptation Strategies

- Identify roadway segments vulnerable to flooding to develop adaptation strategies
- Raise awareness of potential flood locations to consider during design

Project Evaluation and Prioritization

 Use study results to add a "flooding vulnerability" component within the Project Prioritization Tool

INTEGRATING ADAPTION STRATEGIES

 Adaptation strategies reduce potential impacts to ensure transportation system reliability and resiliency

- Wythe Creek Road widening project
 - Coordination between Poquoson, Hampton, and NASA
 - Used inundation mapping tool and modeling to make design modifications

- I-64 Southside High Rise Bridge project
 - As a result of sea level rise planning efforts, VDOT increased bridge design height by 5-feet to account for future sea level rise

HAMPTON ROADS LONG-RANGE TRANSPORTATION PLAN

- Adopted July 2016
- Effective until June 2021

HRTPO PROJECT PRIORITIZATION

HRTPO Project Prioritization Tool

Project Utility: Ability to solve a problem

Economic Vitality: Potential for economic gain

> **Project Viability:** Project readiness

- The HRTPO Project Prioritization Tool has been used in the past 2 LRTP cycles as well as in the identification and prioritization of ("mega") Regional Priority Projects
- Designed to be a dynamic tool that can be updated to reflect current regional priorities, new data sources, etc.

SUMMARY OF SUGGESTED PRIORITIZATION MODIFICATIONS

Suggested Modifications Received from Stakeholders Improved alignment with Include Federal Performance Measures **Federal Performance Measures** Improved alignment with state Include measures from SMART SCALE prioritization process • Align data where possible Establish a Filter/Factor (to gauge how projects might score/rank in SMART SCALE) (SMART SCALE) Climate Change/SLR/Storm Surge/Resiliency Environmental Environmental considerations **Considerations** Refine transit criteria based on findings of Transit Benchmarking and/or future Transit Vision Plan Transit • Smaller scope transit projects (bus routes, bus replacement) Passenger Rail • Refine current Bike/Ped criteria based on findings of Regional Active Transportation Plan and Gaps Analysis **Active Transportation** Add Economic Vitality • Refine Systems Mgmt/TDM/OpImp criteria to allow more RSTP/CMAQ projects to be scored using Tool • Separate rehabilitation/replacement projects from capacity improvements **RSTP/CMAQ** Coordination Add Economic Vitality **Economic Vitality** • Refine Economic Vitality criteria/scoring Incorporate Environmental Justice/Title VI measures Social Equity • Access: housing, essential services, higher education/tech centers Balance scoring components (Economic Vitality and Project Viability were not originally developed to be equally **Balance Components** weighted with Project Utility) Include criteria to award points for projects that incorporate technology (i.e. smart roads) Technology

RESILIENCY/FLOODING VULNERABILITY MEASURES

Candidate project is in a vulnerable area for sea level rise/storm surge/recurrent flooding (Yes/No)

- Vulnerable Area Developed planned improvements or adaptation strategies to address future sea level rise/storm surge/recurrent flooding and the project includes design features that make it resilient to flooding
 - Yes points awarded
 - No no points awarded
- Not in Vulnerable Area points awarded (due to no vulnerability)

Level of access provided by the candidate project to critical areas or facilities* that are projected to be disrupted by flooding or related effects of climate change

• High, Medium Low (sliding scale of points)

*(e.g. hospitals, Fire-EMS, emergency shelters, dense employment area, and single entry/exit point for flood prone areas or neighborhoods)

SCENARIO PLANNING CONSIDERATIONS

Regional Economic Drivers

- Military
- Port
- •Tourism
- New Industries

Multimodal Connectivity and Technology

- •High Capacity Transit Corridors
- Passenger Rail
 Active Transportation
 - •Connected and Automated Vehicles
 - •TNC/Ride Sharing

<u>Resiliency/ Geographic</u> Considerations

Sea Level Rise and Storm Surge
Coastal Resiliency
Flooding Resiliency

Demographic Considerations

Aging PopulationMillennialsAlternative Growth Scenarios

Funding

- •Hampton Roads Transportation Fund
- •Transportation Revenues •SMART SCALE

Hampton Roads Transportation Planning Organization

HRTPO REGIONAL SCENARIO PLANNING

- Plausible Futures
- Identify Projects that Fare Best
 - Most cumulative benefit regardless of alternative future scenario

Evaluate and Rank Projects <u>Across All Scenarios:</u> **Most Robust Projects**

HRTPO REGIONAL SCENARIO PLANNING

- Plausible Futures
- Identify Projects that Fare Best
 - Most cumulative benefit regardless of alternative future scenario

Sea Level Rise Assumption: 3 Feet for all scenarios

RESILIENCE AND DISASTER RECOVERY METAMODEL (RDRM)

- USDOT/Volpe partnership with HRTPO/HRPDC
 - May 2016 Hampton Roads Climate Impact Quantification Initiative
 - Goal: cost tool that considers financial impacts in infrastructure planning due to climate change and severe weather
 - April 2017 Hampton Roads Infrastructure Resiliency Quantification Initiative (IRQI)
 - Goal: robust, nationally-replicable modeling tool that quantifies direct and indirect costs of disruptive events on transportation infrastructure
 - July 2019 Resilience and Disaster Recovery Metamodel (RDRM)

HRTPO Objectives with RDRM:

- Support objective, data-driven resiliency measures for use in Project Prioritization Tool
- Identification of inundation and extent (SLR, low and high frequency events)
- Quantify congestion as a result of flooding
- Quantify avoided congestion of mitigating flooding
- Cost-benefit ratio of resiliency improvements
- Model multiple flooding scenarios efficiently
 - Highest priority quantify congestion with 3' of SLR

RESILIENCE AND DISASTER RECOVERY METAMODEL (RDRM)

LRTP Planning Process

- Identification of vulnerable projects
- LRTP project evaluation/selection (input into Project Prioritization Tool)
- Fiscal-constraint (ensure most critical projects that can be constrained are included)
- Prioritizing build order

Other applications

- Project design/cost refinement
- Other regional studies

CURRENT LRTP SCENARIO PLANNING PROCESS

LRTP SCENARIO PLANNING PROCESS WITH RDRM

THANK YOU!

Dale M. Stith, AICP, GISP Principal Transportation Planner dstith@hrtpo.org

POLL EVERYWHERE QUESTION

• Which aspect of the Hampton Roads TPO's approach would be most beneficial to your organization?

SCOTT SMITH, VOLPE CENTER

Scott Smith is a senior level operations research analyst with over 25 years of experience in applying technology to improve transportation operations and safety across all modes. At the Volpe Center, his project sponsors have included most of the modal administrations in U.S. DOT and local agencies. He is the travel demand modeling lead for our resilience and disaster recovery project with US DOT. In 2019, he organized and documented a peer review on an MPO's use of robust decision-making.

Before joining the Volpe Center, Dr. Smith worked in private industry developing decision support tools to assist motor carriers and railroads with operations, and shippers with transportation procurement.

Dr. Smith holds Project Management Professional (PMP), Certified Analytics Professional (CAP) certification and is a member of the Institute for Operations Research and the Management Sciences (INFORMS) and the Project Management Institute. He is a member of the Standing Committee on Transportation Planning Analysis and Application of the Transportation Research Board. Dr. Smith holds a doctorate in Civil Engineering from MIT.
Resilience and Disaster Recovery Metamodel Overview

FHWA/FDOT peer exchange Scott Smith, Volpe Center, US DOT <u>scott.smith@dot.gov</u>

August 28, 2020

Resilience and Disaster Recovery (RDR) Project

- □ Objective develop a tool that:
 - Is nationally replicable.
 - Addresses a variety of hazard conditions that affect transportation.
 - Enables State DOTs and Metropolitan/Regional Planning Organizations to incorporate the costs and benefits of resilience into the project prioritizing process.
- □ Concept:
 - Geospatially explicit tool.
 - Leverage existing tools as appropriate.
 - Enable scenario comparisons for resilience investment return.

□ Outcome: Help DOTs, MPOs and others make informed infrastructure investments.

RDR Process

Exploratory modeling approach, based on TMIP-EMAT (1)

- Core models
 - TDM: The full MPO travel demand model, which takes hours to run.
 - Faster shortest path and routing model to explore disruption scenarios
- RDR Meta-model
 - A much faster model that uses a few results from the core model to explore the range of uncertainty by running many scenarios

1. Travel Model Improvement Program, Exploratory Modeling and Analysis Tool (see 2018 Innovations in Travel Modeling conference presentation)

Overall Framework

eXternal factors

- Land use changes (patterns of growth in the region)
- Sea level rise
- Frequency / severity of inundation events
- New technology
- Changes in user attitudes: travel and mode choice
- Fuel prices

policy Levers

- Transportation investments
- Resilience
 - investments
- Financial incentives
- Land use policies

Relationships

- Baseline trips, network flows, travel times
- Inundation recovery times and effects on the network
- Effect of network disruptions on trips, flows and travel times
- Monetization: recovery cost, lost trips, extra travel time and distance
- Comparison of many scenarios

Metrics

- Trips
- Person Hours
 Traveled (PHT)
- Person and Vehicle
 Miles Traveled
- Increase in PHT, PMT, VMT
- Monetized value of the scenario
- Regret

This is the XLRM framework from Robust Decision-Making under Deep Uncertainty, used in TMIP-EMAT

Modeling a single event / resilience investment

□ Costs

- Direct cost to repair / replace / clean up
- Degradation in network performance
 - Lost trips
 - Circuitous travel
- A recovery process has a time dimension
- □ Full recovery
 - Hazard has receded
 - Asset is repaired

Toolbox

TDM	AequilibraE	Metamodel
Detailed outputs for selected combinations of projects	Detailed outputs for projects under different disruption scenarios	All possible combinations of projects and disruption scenarios, less detail, statistical model

Disruption Effects

Network with resilience investments

Depin Gra (2P.S.H.) s data to the second se

Flood with a 3-ft sea level rise

Disrupted network with removed or degraded links

□ Inputs

- GIS-formatted version of the network
 - Resilience investments: links exempt from inundation
- GIS-formatted flood inundation depth grid.

Outputs

- Maximum inundation depth on each link
- Binned option: Exposure of 0 = link available, depth up to x = a% capacity, depth up to y = b% capacity.
- Binary option: Exposure > 0, link unavailable
- Exposure-disruption curve: equation defines capacity based on hazard exposure.

The script is a starting point: it is important to review individual assets

Trip Adjustments

- \Box If new_travel_time = ∞
 - new_demand = 0
- □ else if new_travel_time < old_travel_time
 (within a tolerance)</pre>
 - new_demand = old_demand
 (Includes the case where travel_time = 0)

□ else

new_demand = old_demand x
(new_travel_time / old_travel_time)^{elasticity}

Core Models

□ Travel Demand Model

- Standard four-step model
- Typically takes hours to run end-to-end
- □ Simplified Routing Model
 - Open-source code to provide simple shortest-path and user equilibrium routing capability
 - <u>http://aequilibrae.com/python/latest/</u>
 - Running time is typically measured in minutes

 using demand for one time period

Project Prioritization

- Baseline Scenarios: these are defined by the parameters of uncertainty
 - Demographics (...)
 - Land use (...)
 - Transport supply (...)
 - Hazard Features (...)
 - Recovery process (...)
- Project Alternatives: any resiliency project alternatives that will be tested in the baseline scenarios, includes the no-action baseline
- Project Alternative Scenario/Outcomes: network performance of project alternative tested in a given baseline scenario, includes:
 - Person Hours Traveled (PHT),
 - Vehicle Miles Traveled (VMT),
 - Trips,
 - and Asset Damage.

Project Prioritization: Analysis Approaches

Breakeven Analysis:

- Computes the highest theoretical cost reduction that could be achieved if a hazard were fully mitigated
- Requires: performance and repair costs for each baseline scenario

□ Benefit Cost Analysis:

- Standard BCA approach to compare projects using the sum of discounted net of benefits across all scenarios
- Requires: annual hazard frequency, cost of project, and the difference of the performance and repair costs between the project alternative outcome and the baseline scenario

□ Regret Analysis:

- Regret measures "what you would rather have done" for a given scenario
- Compares a project against the project with the highest net benefit, for a given scenario
- Requires: net benefits of each project in the given scenario

Output Visualization Dashboard (Tableau)

Current dashboard screenshots use notional data to expand the results of the test run to demonstrate the scale of the metamodel results

□ Three levels of dashboard:

- Asset (multiple projects for a given asset)
- Asset-project (a specific project option at an asset)
- All assets (comparing projects and assets)

U N C E R T A	INTIES							As	set				
Future Frequency	All values	Dashboard 🗸 🗹 🗳 🖓											
Initial Flood Depth (ft.)	All values		I am considering X different projects for a single asset.										
Flooding Duration (days)	All values	_	Each of the resiliency projects has different costs and/or mitigation levels.										
Trip Elasticity	All values		Ran	<u>ık</u>	Mean	Mean		Std. Dev.	. Mear	Std. Dev.			
Year	All values	Project	Project Regret All		Regret Asset	Net Benefits		Net Benefits	its BCR	BCR	VMT Throughout the Event (days)		
Economic Scenario	All values		ocena		Abbet								
SYSTEM PER	FORMANCE	0	2		0	\$14,997,7	'40	\$2,640,8	34				
VMT (level)	All values	1	5		1	\$13,000,3	52	\$2,636,3	58 7.5	1.3			
VMT (vs. base)	All values	2	8		2	\$11,011,0)78	\$2,646,2	48 3.8	0.7	+		
VMT \$ (level)	All values	_											
VHT (level)	All values	3	11	<u> </u>	3	\$9,013,8	75	\$2,645,7	62 2.5	0.4			
VHT (vs. base)	All values						_						
VHT \$ (level)	All values	X-a: VMT (le	X-axis Variable Y-axis Variable X-axis Variable Y-axis Variable VMT (level) Trips (level) BCA (level) Initial Flood Depth (ft.)								X-axis Variable VHT (level) Asset Damage (vs. ba.		
Trips (level)	All values					,							
Trips (vs. base)	All values	10K-				ilda.		3.0			1.0		
Trips \$ (level)	All values	8K-						26-			0.8		
Damage Duration (days)	All values						н (Г)	2.5			pase		
Damage Recovery	All values	(le) eK-					Dept	2.0			<u>\$</u> 0.6		
Asset Damage (level)	All values	 รู่ 4ห−					Flood				0.4		
Asset Damage (vs. base)	All values	F					litial	1.5-			set		
Asset Damage \$ (level)	All values	2К-					-	10			∛ 0.2-		
Asset Damage \$ (vs. base)	All values	ОК	24. 8		No.	X		1.0			0.0		
BCA (level)	All values		OK	2K	4K 6	к 8к		0M 51	M 10M 15N	1 20M 25M	0K 2K 4K 6K 8K		
BCA (vs. base)	All values				level)	VHT (level)							
BCR (level)	All values												
Regret-All	All values	Resiliency	Scenario	Year	Initial Flo	ood Duration (Entire Eve	of nt	Expsoure Recovery Path	Economic	Trip Loss			
Regret-Asset	Airvalues			2020	1	(days)		1	1	0	PLACEHOLDER-		
A S S E T - P R	OJECTS		1	2040	1	1		1	1	0	MAP		
Asset ID	2		2	2020	1	1		1	1	0			
Asset Dreiset Cest	All values	0	3	2040	1	1		1	1	0			
Asset-Project Cost \$	All values	0	3					_					

Near Term Modeling Next Steps

□ Pilot with HRTPO/HRPDC/VDOT

- Test model components using HRTPO TDM outputs.
- Gather input/feedback on metamodel functions for refinement/enhancement.
- □ Finalize RDRM development, integration of components, testing
 - Currently working on regression function to expand/interpolate among sampled scenarios, recovery/repair cost components, final Tableau dashboard, among others.
- Technical feedback group
 - Several MPOs to provide breadth of feedback/input on tool.
- Dissemination and outreach
 - Release targeted for early 2021.

RDR Team

FHWA (Sponsor) PM: Mike Culp

OST-R PM:

Shawn Johnson

OST Participants:

Alasdair Cain (OST-R) Aimee Flannery Mike Callahan (S60) Jason Flennoy

Volpe PM

Kristin Lewis, Ph.D. kristin.lewis@dot.gov

Volpe Team (alphabetical)

David Arthur (CMMI) Jonathan Badgley (Economics / Analysis / Visualizer) Katherine Buckingham (Disaster Recovery) Dan Flynn (Data Science/Regressions) Olivia Gillham (Metamodel Development) Peter Herzig (Technical Document, GIS) Kristin Lewis (Project Manager) Alexander Oberg (GIS / Disruption Analysis) Amy Plovnick (Technical Document, Resilience) Alan Rao (Modeling Support) Gretchen Reese (General Support) Scott Smith, Ph.D. (Metamodel Development) Kevin Zhang (Recovery Module)

Advising:

Gary Baker, Gregg Fleming, Ryan Keefe, Don Pickrell, Sari Radin, Julianne Schwarzer

POLL EVERYWHERE QUESTION

• Which aspect of the Volpe Center's approach would be most beneficial to your organization?

Panel Discussion: Challenges and Opportunities

WRAP UP

• Monday: Session 4 - Lessons Learned

- Equity and economic development
- Synthesis of lessons learned
- Available resources from FHWA
- Remaining needs and next steps