

Toward a Resilient Transportation System

Jennifer Carver, Crystal Goodison, Jayantha Obeysekera

August 25, 2020

Toward a Resilient Transportation System

Jennifer Z. Carver, AICP

August 25, 2020

Natural Hazards Impacting Florida

- Hurricane
 Storm Events
- Precipitation
 Events
- Sea Level Rise
- Wildfires
- Drought
- Sinkholes

Irma making landfall in the Florida Keys Credit: NOAA

A law enforcement vehicle patrols a flooded street in Everglades City, Florida, U.S., September 11, 2017. REUTERS/Bryan Woolston

US 98 in Franklin County. FDOT

Presenters

Jennifer Z. Carver, AICP Florida Department of Transportation

Crystal Goodison GeoPlan Center University of Florida

Jayantha Obeysekera, Ph.D., P.E. Sea Level Solutions Center Institute of Environment Florida International University

Sharing Our Ideas

Poll Everywhere – multiple ways to access the polls:

- Visit <u>www.PollEv.com/fdotplanning</u> from your phone, tablet, or laptop to access the polling questions
- Text "FDOTplanning" to 22333 to join the poll and respond to the polls via text message

Important note: A record of the poll responses will be kept for statutory records retention requirements

Web

Text

What type of organization do you represent?

What is your professional area of expertise?

Why Resiliency?

Resiliency -- The ability of the transportation system to adapt to changing conditions and prepare for, withstand, and recover from disruptions.

Why? Mitigate risk, make wiser investment decisions, and provide more reliable transportation.

Fixing America's Surface Transportation (FAST) Act

Resiliency/reliability; reduce stormwater impacts; reduce vulnerability

FDOT 23 Code of Federal Regulations (CFR) Part 667

 Evaluate options for facilities that have been repaired/reconstructed 2+ times due to emergency events

FDOT Resiliency Initiatives

Statewide Planning

- Florida Transportation Plan
- Transportation Asset Management Plan (TAMP)

FDOT Resiliency Policy

SIS Vulnerability Assessment

Tools, Guidance, Standards

- Guidance for MPOs
- Sea Level Scenario Sketch Planning Tool
- Case Studies/Adaptation Planning

Research

Interagency Coordination/Collaboration

Projects

Strategic Intermodal System (SIS) Vulnerability Assessment

Research

FDOT – Completed/Ongoing

- Development of a Methodology for the Assessment of <u>Sea Level Rise Impacts</u> on Florida's Transportation Modes and Infrastructure
- Development of <u>GIS-Based Tool</u> for Assessment of SLR Impacts
- Risk in <u>Transportation Planning</u> & Implications for Planning and <u>Project Implementation</u>
- Transportation Resilience and Vulnerable Populations
- <u>Resilience Index for Transportation System</u>

NCHRP Projects

	Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
	Threats							
	Hacking and cybersecurity threats to							
	public and private transportation	4	4	5	80	Е	Extreme Risk	Avoid
s	New technology causes investment to							
sse	be prematurely obsolete	4	4	5	80	Е	Extreme Risk	Avoid
ne	Intensification of development in high							
snc	hazard areas	5	4	4	80	С	Extreme Risk	Avoid
P	Aging population causes surge in							
s, al	demand for safe mobility options	5	4	3	60	E	High Risk	Coordinate
to	Wildfires disrupt major transportation							
visi	routes and reduce visibility	4	3	4	48	U	Moderate Risk	Mitigate
ts,	New technology systems perform							
den	unsafely or increase liability	3	5	3	45	U	Moderate Risk	Avoid
esic	Failure to evacuate vulnerable							
- Lo	populations due to evacuation routes							
yfe	in high hazard areas	2	5	4	40	U	Moderate Risk	Coordinate
urit	Arterial flooding disrupts major							
sec	transportation routes and systems	4	3	3	36	С	Moderate Risk	Mitigate

Upcoming FDOT Projects

Research

- Incorporation of Climatic and Hydrologic <u>Nonstationarity</u> into FDOT Planning and Design Guidelines & Processes
- Florida Sea Level Scenario <u>Sketch Tool</u> Updates & <u>Enhancement</u>

Study

 Integrating Resiliency in the Transportation Planning Process: A Baseline Assessment of Florida's MPOs

Sharing Our Ideas

Poll Everywhere – multiple ways to access the polls:

- Visit <u>www.PollEv.com/fdotplanning</u> from your phone, tablet, or laptop to access the polling questions
- Text "FDOTplanning" to 22333 to join the poll and respond to the polls via text message

Important note: A record of the poll responses will be kept for statutory records retention requirements

Web

Text

What methods does your organization use to address climate change including sea level rise?

42%

TOWARD A RESILIENT TRANSPORTATION SYSTEM

Crystal Goodison, Associate Director + Associate Scholar, UF GeoPlan Center

UNIVERSITY OF FLORIDA GEOPLAN CENTER

The GeoPlan Center is a geospatial research and teaching facility, in the UF School of Landscape Architecture & Planning.

We support land use, transportation, and environmental planning in the State through the following activities:

- Standardize, enhance, and distribute geospatial data
- Design and maintain enterprise mapping systems and tools for visualization, analysis, and decision support
- Turn data into information
- Training and education

OUTLINE OF PRESENTATION

History of UF GeoPlan resiliency work with FDOT Sea Level Scenario Sketch Planning Tool • Current Features • Updates coming

Upcoming Work:

Assessing MPO Data Needs for Transportation Resiliency

Research Project – Framework for Project Level Analysis

WHERE WE'VE BEEN

SEA LEVEL SCENARIO SKETCH PLANNING TOOL

Geospatial tools and data to assess potential impacts of current and future flooding on the transportation system

Planning-level analyses shows where and when sea level rise is projected to occur in Florida under various SLR scenarios

Data available statewide, but use local SLR projections

> Publicly accessible tool & data: sls.geoplan.ufl.edu

Map Viewer: Visualize areas of inundation and affected infrastructure

GIS Data Layers: SLR Inundation Surfaces & Affected Infrastructure layers

SLR Calculator: Create custom inundation layers

UFGEOPLAN CENTER Florida Sea Level Scenario Sketch Planning Tool

Q

DATA AVAILABLE IN THE

VIEWER

6

Layers

MHHW (3.4 - 3.7 ft)	Î
Affected Transportation	ł
H RSLR by County (2080 C4)	
F SLR Depth Inches (2080 C4)	

	\oplus	Current Flood Risk	6
--	----------	--------------------	---

- 🕀 🗹 Florida Base Layers
- Legend

Florida Base Layers

Coastal Areas Mapped

SLR 2080 USACE High, MHHW Affected Transportation Jump to: COUNTY - BAY Data Available

- 35 coastal counties mapped
 - 5 Sea Level Rise Projections
- Four time periods: 2040, 2060, 2080, 2100

Transportation Analyses

Segment-level analysis of current & future flood risk:

- Future flood risk: from 20 SLR scenarios
- Current flood risk: 100-year & 500-year floodplains, storm surge zones
- Base transportation data used:
- Focus on State owned facilities (RCI on and off system)

~

Help

Basemaps

SLR PROJECTIONS MAPPED

RSLC in feet (LMSL 83-01)

Current SLR projections in Sketch Tool:

USACE 2013

- Upper curve ~ 5ft

 (1.5m) by 2100

 NOAA 2012:
- Upper curve ~ 6ft
 (2m) by 2100

Coming: NOAA 2017:

Upper curve ~ 10ft
 (3m) by 2100

NOAA et al. 2017 Relative Sea Level Change Scenarios for : KEY WEST

MAPPING INPUTS

- USACE Sea Level
 Change Calculator (calculates
 USACE & NOAA SLR
 Projections) http://corpsmapu.usace.army.mil/rccinfo/slc/slcc_calc.html
- 2. NOAA Sea Level Trends
- 3. NOAA Tidal Grids (regional MHHW conditions)
- 4. High resolution elevation data

Consider regional Unified SLR Projections when choosing inputs

The map above illustrates regional trends in sea level, with arrows representing the direction and magnitude of change. Click on an arrow to access additional information about that station.

EXPLORE THE DATA

EXPLORE & EXPORT ATTRIBUTE TABLE

COMPARE SCENARIOS WITH SWIPE TOOL

GET THE DATA...

WHAT'S COMING: THIS FALL

Our website: sls.geoplan.ufl.edu Crystal Goodison, cgoody@ufl.edu

UPCOMING RESEARCH (2020 - 22)

2020-21: State of the Practice & Data Needs for MPO Resiliency

Deep dive into resiliency activities in FL, obstacles, and data needs for implementing resiliency into the planning process

2021 -22: Building Geospatial Framework to Move from Planning to Project Scale

- Expanding beyond SLR to incorporate other data sources/climate. For ex: precipitation, inland flooding, etc.
- Looking for partners to help us develop data and determine interoperability
- Building online tool and geoprocessing framework to facilitate on-demand analysis of specific transportation projects and more comprehensive consideration of future conditions

What are the challenges in applying resiliency principles in project designs?

"Awareness" "	'Funding" "lack of a consist	tent method in applying risk mitigation co	"Unknowns"	"Paying now for later"	"Project scope requirements & fu	nding limitations" "Identify	ng countermeasures" "Bud	lget"
"questionable data"	"Existing policies, current go	overnment approach is not set up to acco	mmodate" "\$\$\$"	"funding" "Money"	"Politics" "Cost"	"how to design for the UNKNOWN"	"Money." "Value ad	dded"
"Cost and resistance"	"Changing Directions"	"Infrastructure planning is not set up to	o look at long-term; too focuse	ed on near-term, especially infrastr	"Fucture in coastal areas"	"Money budget"	"policy" "Collaboration	on"
"POLITICS AFFECTING G	GUIDANCE" "we can do it, bu	ut others may not, so what is the point"	"Funding and politics"	"Funding" "cost-ef	fective solutions" "being ab	e to predict the future" "Insu	"Politics and money	/ ²²
"low buildings" "	Balancing cost vs. benefit" "	Concurrence" "Cost" "Uno	"Reality"	"Money" "Funding - O	"Lack of standards"	"Ever changing conditions"	"PD&E studies used old information	ation"
"Money" "There a	aren't really design standards relate	ed to resiliency." "Agreement on	SLR Scenarios by Government	Agency Stakeholders" "Ele	vating roadways and treatment facil	ities along side existing development	/topography due to increased tail	lwater."
"designing for unknown	n" "Budget" "Gett	ting agency direction on how to address.'	"The design time frame	longer than 20/30 years may not	be realistic. Advances in technology	and real time conditions may change	the scenario." "Buy in"	"future"
"forecasting parameters	"s may change drastically"	Unclear targets " "Funding "	"Politics." "Funding	g" "Uncertainty" "	"Understanding of priority" "n	"Justifying the Cost	"Funding & politics"	
"Funding, sufficient data to make decisions on a project level. There is no universal definition of resiliency." "Subsurface infrastructure maintenance" "Policy" "roadway specs" "Budgeting these requirements" "Money"								
"technology changes in	"No standards for de	esign" "Point of diminishing return	"Accepting change	by public" "Funding!!!! The	ese are expensive projects."	"D" "feasible design criteria	"Drainage challenges"	
"Politics" "Fun	"Public perception	"FDOTPLANNING" "Geome	tric constraints" "gui	dance and cost." "Politics	" "Funding" "Cost.	lack of Consistency or Policy"	"Politics" "Funding"	
"Amount of existing R/W	N or the need to pay for additional	R/W to allow for a resilient TF."	modeling inaccuracies"	"knowledge	"Public perception"	"funding" "Data" "I	Budget constraints" "Unk	nowns"
					"Lack of projects demons	"trating success" "Impacts to a	djacent land uses" "Mon	ney"
"Green infrastructure de	esigns that are seen as more resilie	ent are more maintenance intensive. Ther	e is a lack of long-term mainte	nance data." "Current lar	nd use." "New poll" "S	cope" "Money" "being fle	xible, learning to address uncerta	ainty"
"iustification for return	on investment, making a case,"	"Funding" "funding"						

Towards a Resilient Transportation System in a Changing Environment of Climate Change: Paradigm Change

Jayantha Obeysekera ('Obey'), Ph.D.,P.E. Director and Research Professsor Sea Level Solutions Center Institute of Environment

FDOT Transportation Symposium

Web: https://environment.fiu.edu

http://slsc.fiu.edu Facebook: @FIUWater | Twitter: @FIUWater

Outline

Changing environment: Need a new paradigm for infrastructure design (coastal and interior regions)

➢ Rising Sea Levels

Changing Rainfall Extremes

Dealing with Uncertainty: Dynamic Adaptive Pathways in Project Implementation

Drivers of Change: Sea Level Rise and increases in Riverine Flooding

Impacts of Changing Climate and Rising Sea Levels

Non-uniform water table increase: modeling results (Miami Dade)

Higher water table & more runoff

Hydrologic Design: Moving from Stationarity to Nonstationarity

	TYPE STORM DRAIN	FREQUENCY
	General design	3-year
Historical Observations	 General design work that involves replacement of a roadside ditch with a pipe system by extending side drain pipes General design on work to Interstate Facilities 	10-year
	• Outfalls	25-year
	 Interstate Facilities for which roadway runoff would have no outlet other than a storm drain system, such as in a sag inlet or cut section Outlets of systems requiring pumping stations 	50-year

Relevant FDOT Literature

- FDOT Drainage Manual dated January 2020
- FDOT Drainage Design Guide dated January 2020
- Regional guidance documents developed by regional district, if applicable
- FHWA Hydraulic Engineering Circular No. 17, 2nd Edition
- FHWA Hydraulic Engineering Circular No. 25, Second Edition or any updates
- Design Storm Surge Hydrographs For the Florida Coast (September 2003)
- NOAA ATLAS 14 Point Precipitation Frequency Estimates
- NOAA Sea Level Trends at Tide Gages around Florida
- NOAA Regional Sea Level Projections
- Regional Sea Level Projections published by various organizations such as the SE Florida Climate Compact in Florida and the Tampa Bay region.

"...sea level rise coupled with storm surges can inundate coastal roads that would not have inundated in the past, necessitate more emergency evacuations, and require costly, and sometimes recurring, repairs to damaged infrastructure. Inland flooding from unusually heavy downpours can disrupt traffic, damage culverts, and reduce service life. High heat can degrade materials, resulting in shorter replacement cycles and higher maintenance costs." (HEC-17)

Causes & Detection of Nonstationarity

Natural Factors	Atmospheric and oceanic (climate) variability Wildfires and forest fires Volcanic eruptions and earthquakes Land subsidence Landslides
Anthropogenic (Human-Induced) Factors	Land use changes Climate Change Development of water resources projects

≊USGS

Statistical Methods: **Parametric & Nonparametric** US Army Corps of Engineers: Nonstationarity Detection Tool (NSD) – PROD <u>http://corpsmapu.usace.army.mil/cm_apex/f?p=257:1:0</u>

Sources of Global and Regional Sea Level Change

Planning for Sea Level Rise

Return Period under Stationarity

FLORIDA INTERNATIONAL UNIV

Nonstationarity: Extreme Floods

Why Designs under Stationary assumption may fail?

Future Year

Shingle

New Paradigm: Return Period and Risk under Nonstationarity

Return Period is defined as the "expected time for the first exceedance" (expected waiting time)

$$T = E[X] = 1 + \sum_{x=1}^{\infty} \prod_{t=1}^{x} (1 - p_t)$$

$$T = 1/p$$

Methods under stationarity

≻Risk

$$R = 1 - \prod_{i=1}^{n} (1 - p_i)$$

$$R = 1 - 1 - p)^n$$

Example: Key West

Hydrologic Design considering Nonstationarity

 Expected Waiting Time – Return Period (EWT)
 ✓ Waiting time for the first execeedance

- Expected Number of Events (ENE)
 - ✓ Tolerance for frequency of flooding

Design Life Level (DLL)

 ✓ Design for a specified risk (say, 5%)

Hydrological Sciences Journal

et use det det de une 2155 ASIS (Online) journal homesque ingrassing de la review
j. D. Salas, J. Obeysekera & R. M. Vogel

et use de la review
J. D. Salas, J. Obeysekera & R. M. Vogel

Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events

Jose D. Salas, M.ASCE¹; and Jayantha Obeysekera, M.ASCE²

Rainfall Flooding and Heat Stress

Historic Palm Beach Flooding January 9-10 2014

Climate Projection Uncertainties

Spatial Trends in Florida (Temperature)

FIU Sea Level Solutions Center Florida International University

NOAA Atlas 14 Volume 9

PDS-based depth-duration-frequency (DDF) curves Latitude: 25.7906°, Longitude: -80.3164°

HEC-17 Approach: Climate Change Indicator

If CCI < 0.4, historical data likely sufficient

If CCI > 0.8 further analysis of projected conditions may be warranted.

Extreme rainfall: Is there any skill?

Determination of Future Intensity-Duration-Frequency Curves for Level of Service Planning Projects

Extreme Rainfall Analysis in Climate Model Outputs to Determine Temporal Changes in Intensity-Duration-Frequency Curves

- BCCA bias corrected downscaling method used by US Bureau of Reclamation: mute out the extremes
- Much lower and less variable extremes in the downscaled models compared to the observational dataset
- Bias is larger than delta

Lat 28

NOAA Atlas 14

of the United States

Volume 9 Version 2.0: Southeastern States

Precipitation-Frequency Atlas

Alabama, Arkansas, Florida, Georgia

NOAA Atlas 14 weather stations and closest UBR BCSD5/BCCA grid cell centers

Atlas 14

UBR

-82

-80

-84

Lon

Multiplicative Quantile Delta Mapping (probably a better method)

Dynamic Adaptive Policy Pathways (DAPP)

Decisions are made over time in dynamic interaction with the system and cannot be considered independently.

- An approach that explicitly includes decision making over time and sequences of decisions (pathways) under uncertainty.
- Supports planners to design a dynamic adaptive plans: short-term actions, long-term options, adaptation signals.

"Different roads leading to Rome"

Haasnoot et al. (2013) Glob. Env. Change. 10.1016/j.gloenvcha.2012.12.006

Dynamic Adaptive Policy Pathways (DAPP)

Flood Risk Management in Miami-Dade County : C-7 basin

Sea Solu

Florida Internatio

Summary: Five Resilience Principles

- Adopt a system's approach;
- Look at beyond-design events;
- Build and prepare infrastructure according to 'remain functioning'
- Increase recovery capacity by looking at social and financial capital; and
- ➢Remain resilient into the future

Resilience in practice: Five principles to enable societies to cope with extreme weather events

Karin de Bruijn^{a,*}, Joost Buurman^b, Marjolein Mens^a, Ruben Dahm^a, Frans Klijn^{a,c}

Questions?

Contact Information

Jennifer Z. Carver, AICP Statewide Community Planning Coordinator Florida Department of Transportation Office of Policy Planning 850.414.4820 Jennifer.carver@dot.state.fl.us

Crystal Goodison Associate Director + Associate Scholar, GeoPlan Center University of Florida 352.392.2351 goody@geoplan.ufl.edu Jayantha Obeysekera, Ph.D., P.E. Director, Sea Level Solutions Center Research Professor, Institute of Environment Florida International University 305.919.4119 jobeysek@fiu.edu

