Technical Memorandum

Projections of Florida Population by County, 2020-2070

Prepared for
Forecasting and Trends Office
FDOT Central Office
FDOT)

March 2020

Introduction

The Multi-use Corridors of Regional Economic Significance (M-CORES) program is created by the Florida Department of Transportation (FDOT) to revitalize rural communities, encourage job creation and provide regional connectivity along the following three corridors:

- The Suncoast Connector, extending from Citrus County to Jefferson County
- The Northern Turnpike Connector, extending from the northern terminus of Florida's Turnpike northwest to the Suncoast Parkway
- The Southwest-Central Florida Connector, extending from Collier County to Polk County

One of the main objectives of the M-CORES program is to evaluate the future demand along the corridors and properly address the need for the corridors and their potential economic and environmental impacts. In order to support the objective, future population projections for the next 50 years from 2020 to 2070 in five-year increment were developed for all 67 counties in Florida. This Technical Memorandum describes the methodology used for the development of population projections and presents the results based on the methodology.

The Bureau of Economic and Business Research (BEBR) at the University of Florida has been making population projections for Florida and its counties since the 1970s. The latest report was published in April 2019 and it contains the most recent set of projections from 2020 to 2045 . To account for uncertainty regarding future population growth, BEBR publishes three series of projections: low, medium, and high. The medium series is typically considered more accurate, while the low and high series provide an indication of the uncertainty surrounding the medium series. It should be noted that these projections include only permanent residents, and tourists or seasonal residents are not included.

The methodology used by the BEBR to develop 2020-2045 population projections has been used for many years and has proven to be both practical and reliable. In consultation with the FDOT Forecasting and Trends Office (FTO), it was determined that for the purpose of the M-CORES program, the medium series of BEBR projections for 2020 to 2045 would be used for years up to to 2045. For years after 2045, i.e., from 2050 to 2070, the BEBR methodology used to generate 2020-2045 population projections in the medium range was deployed. However, to ensure the BEBR methodology was properly applied, a twostep process was followed. The first step involved in replicating the BEBR 2020-2045 population projections with the same methodology and data sources. The second step involved in extending the population projections to the next 20 years from 2050 to 2070 with necessary adjustments and reasonableness checks. The following sections provide more details about the two-step process.

BEBR Methodology and Replicating 2020-2045 Population Projections

State projections

Based on BEBR's methodology, the starting point for the state-level projections was the April 1, 2010 census population count by age, sex, race, and Hispanic origin, as adjusted by the National Center for Health Statistics (NCHS) in the Vintage 2014 bridged race population estimates. Projections were made in one-year intervals using a cohort-component methodology in which births, deaths, and migration are projected separately for each age-sex cohort in Florida for non-Hispanic whites, non-Hispanic nonwhites, and Hispanics.

Three different sets of assumptions are applied to provide low, medium, and high series of projections, although the low and high series do not provide absolute bounds on future population change, they provide a reasonable range in which Florida's future population is likely to fall. The medium projections of total population for 2019-2023 were adjusted to be consistent with the state population forecasts for those years produced by the State of Florida's Demographic Estimating Conference (DEC) held February 6,2019 . None of the projections after 2023 had any further adjustments.

BEBR recommended that medium series is the most likely to provide accurate forecasts in most circumstances. Therefore, the medium projections of state total population for 2020-2045 were directly used when replicating projections of county population for 2020-2045.

County projections

The cohort-component method is a good way to make population projections at the state level but is not necessarily the best way to make projections at the county level. Many counties in Florida are so small that the number of persons in each age-sex category is inadequate for making reliable cohort-component projections, giving the lack of detailed small-area data. Even with more importation, county growth patterns are so volatile that a single technique based on data from single time period may produce misleading results. As a result, BEBR recommended use of several different techniques and historical base periods to project the total population at the county level.

BEBR started with the population estimate constructed for April 1, 2018, and made projections for each county using the following five different techniques:

- Linear - the population will change by the same number of persons in each future year as the average annual change during the base period.
- Exponential - the population will change at the same percentage rate in each future year as the average annual rate during the base period.
- Share-of-growth - each county's share of state population growth in the future will be the same as its share during the base period.
- Shift-share - each county's share of the state population will change by the same annual amount in the future as the average annual change during the base period.
- Constant-share - each county's share of the state population will remain constant at its 2018 level.

For the linear and share-of-growth techniques BEBR used base periods of two, ten, and twenty years (2016-2018, 2008-2018, and 1998-2018), yielding three sets of projections for each technique. For the
exponential and shift-share techniques, BEBR used base periods of five and fifteen years (2013-2018 and 2003-2018), yielding two sets of projections for each technique. The constant-share method was based on data for a single year (2018). Table 1 shows a summary of the techniques used, the corresponding base period(s), and the number of population projection sets created based on the techniques.

Table 1 Population Projection Techniques and Base Periods

Technique	Base Period	Number of Projection Set
Linear	2016-2018 (two-year period) 2008-2018 (ten-year period) 1998-2018 (twenty-year period)	3
Exponential	2013-2018 (five-year period period) 2003-2018 (fifteen-year period)	2
Share-of-growth	2016-2018 (two-year period) 2008-2018 (ten-year period) 1998-2018 (twenty-year)	3
Shift-share	2013-2018 (five-year period) 2003-2018 (fifteen-year period)	2
Constant share	2018 (one-year period)	1

BEBR's methodology produced eleven projections for each county for each projection year (2020, 2025, 2030, 2035, 2040 and 2045). From these, five averages were calculated: one using all eleven projections (AVE - 11), one that excluded the highest and lowest projections (AVE - 9), one that excluded the two highest and two lowest projections (AVE - 7), one that excluded the three highest and three lowest projections (AVE -5), and one that excluded the four highest and four lowest projections (AVE - 3).

BEBR selected AVE-5 for 65 counties, the average in which the three highest and three lowest projections were excluded. For Monroe County, an average of projections, made with the exponential technique with a base period of five years and the linear technique with a base period of ten years, was selected. And for Putnam County, AVE-3 was selected.

In addition, BEBR made manual adjustments to the projections in seven counties in the Florida Panhandle to account for estimated population losses or slowdowns in growth due to the impacts of Hurricane Michael (Bay, Calhoun, Franklin, Gulf, Jackson, Liberty, and Wakulla counties). Besides, some other manual adjustments were made in several counties to account for changes in institutional populations such as university students and prison inmates.

The county population projections for 2020-2045 were generated using the BEBR methods described above. However, since no information about the BEBR manual adjustments was available, no manual adjustments were made to the initial projections.

Table 2 presents population projections without manual adjustments for all counties for 2020-2045. Table 3 shows the percent differences between BEBR's projections and unadjusted projections based on the BEBR methodology. In most cases, the differences between the two sets are below 3.0\%, which indicates that direct application of the BEBR methodology were able to replicate the original BEBR population projections reasonably well, and the BEBR methodology can be extended to develop future projections from 2050 to 2070 that are consistent with the 2020-2045 projections.

Table 2 Projections of Florida Population by County, 2020-2045

	Population Projections (without Manual Adjustments)					
County	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 4 5}$
Alachua	269,500	283,500	295,000	305,700	316,200	326,300
Baker	28,300	29,700	30,900	32,000	32,900	33,900
Bay	185,800	196,200	204,700	212,000	219,400	226,400
Bradford	28,400	28,900	29,200	29,300	29,500	29,600
Brevard	597,600	629,300	654,600	677,200	697,100	718,500
Broward	$1,940,300$	$2,034,600$	$2,118,200$	$2,188,700$	$2,250,400$	$2,307,500$
Calhoun	15,400	16,000	16,500	17,000	17,500	18,000
Charlotte	183,100	195,700	205,900	214,400	222,200	229,700
Citrus	148,500	154,600	160,300	165,700	170,700	175,600
Clay	220,200	239,000	256,900	273,100	288,100	302,400
Collier	381,500	416,100	447,700	475,400	501,400	527,500
Columbia	71,100	74,100	76,800	79,400	81,800	83,900
DeSoto	36,000	36,800	37,600	38,300	39,000	39,700
Dixie	16,800	17,300	17,700	18,100	18,400	18,600
Duval	980,200	$1,043,100$	$1,094,900$	$1,138,100$	$1,182,300$	$1,226,300$
Escambia	323,900	335,900	347,200	356,200	363,900	370,600
Flagler	112,500	124,200	135,100	145,400	155,400	165,200
Franklin	12,200	12,700	13,000	13,400	13,700	14,000
Gadsden	48,400	49,000	49,400	49,700	49,800	49,800
Gilchrist	17,800	18,600	19,300	20,000	20,600	21,200
Glades	13,200	13,600	13,900	14,200	14,500	14,700
Gulf	16,700	17,000	17,200	17,400	17,600	17,700
Hamilton	14,700	14,800	14,800	14,700	14,800	14,800
Hardee	27,300	27,200	27,000	26,600	26,400	26,200
Hendry	40,200	41,500	42,600	43,400	44,100	45,000
Hernando	191,600	205,300	218,600	231,100	242,600	253,800
Highlands	104,200	107,400	110,200	112,800	115,200	117,500
Hillsborough	$1,462,300$	$1,588,700$	$1,705,700$	$1,812,100$	$1,906,900$	$1,999,800$
Holmes	20,300	20,500	20,700	20,900	21,100	21,300
Indian River	156,900	168,600	178,800	188,100	197,200	205,400
Jackson	50,700	51,400	51,700	52,000	52,200	52,500
Jefferson	14,900	15,200	15,500	15,700	15,800	16,000
Lafayette	8,600	8,700	8,800	8,900	8,900	9,000
Lake	359,300	398,800	434,700	469,600	503,600	535,100
Lee	747,000	825,200	897,100	963,100	$1,025,400$	$1,085,200$
Leon	298,000	311,200	323,100	334,500	344,300	353,600

County	Population Projections (without Manual Adjustments)					
	2020	2025	2030	2035	2040	2045
Levy	41,700	42,900	44,000	44,900	45,800	46,600
Liberty	9,100	9,600	10,100	10,500	10,800	11,200
Madison	19,600	19,700	19,900	20,000	20,100	20,300
Manatee	393,900	431,100	463,700	494,400	523,000	551,400
Marion	363,600	385,800	407,000	426,900	445,000	462,500
Martin	159,200	166,900	173,900	180,200	186,800	193,000
Miami-Dade	2,857,700	3,036,500	3,189,400	3,327,400	3,464,400	3,588,700
Monroe	76,000	77,500	79,000	80,500	82,000	83,600
Nassau	86,000	94,100	101,600	108,500	115,200	121,800
Okaloosa	202,200	211,500	219,900	227,600	234,900	241,700
Okeechobee	41,700	42,800	43,600	44,300	45,000	45,700
Orange	1,408,000	1,555,800	1,691,000	1,814,600	1,925,100	2,033,400
Osceola	377,200	440,400	499,900	556,200	606,700	658,100
Palm Beach	1,472,400	1,559,600	1,637,800	1,703,100	1,766,500	1,828,600
Pasco	533,700	578,600	622,500	662,400	698,500	732,800
Pinellas	982,800	1,011,600	1,035,200	1,054,200	1,069,700	1,082,800
Polk	697,700	755,400	807,400	856,700	900,600	941,800
Putnam	73,100	73,000	72,900	72,900	72,800	72,800
St. Johns	254,400	294,600	330,900	363,600	395,600	427,100
St. Lucie	313,000	337,900	360,900	382,300	402,700	422,600
Santa Rosa	182,100	199,600	215,600	230,200	243,700	256,400
Sarasota	429,800	459,700	484,300	504,900	522,700	540,400
Seminole	476,700	507,700	532,900	555,000	575,100	594,500
Sumter	133,900	155,400	177,000	196,200	214,500	232,200
Suwannee	46,100	48,600	50,800	52,800	54,600	56,200
Taylor	22,400	22,700	22,800	22,800	22,800	22,800
Union	16,100	16,600	17,000	17,400	17,700	18,000
Volusia	543,100	570,000	591,800	610,500	627,200	642,300
Wakulla	32,800	34,700	36,500	38,000	39,500	40,800
Walton	71,200	80,300	88,700	96,500	104,000	111,600
Washington	25,500	26,300	27,000	27,500	28,000	28,400

Table 3 Percent Errors of Florida Population by County, 2020-2045

County	Percent Errors (between BEBR's Projections and Unadjusted Projections)					
	2020	2025	2030	2035	2040	2045
Alachua	0.4\%	1.5\%	2.2\%	3.1\%	4.2\%	5.3\%
Baker	0.0\%	0.7\%	1.0\%	1.9\%	2.2\%	3.4\%
Bay	1.0\%	3.5\%	3.3\%	3.1\%	3.6\%	4.4\%
Bradford	0.7\%	0.3\%	1.0\%	1.0\%	1.4\%	1.4\%
Brevard	0.2\%	0.2\%	0.3\%	0.2\%	0.2\%	0.2\%
Broward	0.1\%	0.3\%	0.1\%	0.3\%	0.5\%	0.7\%
Calhoun	1.9\%	3.2\%	3.8\%	4.3\%	4.8\%	5.9\%
Charlotte	0.3\%	0.2\%	0.1\%	0.1\%	0.0\%	0.3\%
Citrus	0.1\%	0.5\%	0.5\%	0.3\%	0.3\%	1.1\%
Clay	0.0\%	0.0\%	0.5\%	1.3\%	2.3\%	3.3\%
Collier	0.3\%	0.5\%	0.4\%	0.0\%	0.9\%	2.2\%
Columbia	0.1\%	0.3\%	0.4\%	1.0\%	1.9\%	2.6\%
DeSoto	0.0\%	0.3\%	0.3\%	0.3\%	0.0\%	0.5\%
Dixie	1.2\%	3.0\%	4.7\%	6.5\%	7.6\%	8.1\%
Duval	0.2\%	0.2\%	0.0\%	0.1\%	0.4\%	1.2\%
Escambia	0.2\%	0.4\%	0.1\%	0.2\%	0.5\%	0.8\%
Flagler	0.0\%	0.2\%	0.5\%	1.3\%	2.5\%	3.9\%
Franklin	0.8\%	0.0\%	0.8\%	0.7\%	0.7\%	0.0\%
Gadsden	0.6\%	1.2\%	1.9\%	2.3\%	2.3\%	2.0\%
Gilchrist	0.0\%	0.5\%	0.5\%	0.0\%	0.0\%	0.5\%
Glades	0.0\%	0.0\%	0.0\%	0.7\%	1.4\%	1.4\%
Gulf	1.8\%	0.6\%	0.6\%	1.7\%	2.8\%	3.8\%
Hamilton	1.3\%	2.6\%	3.3\%	4.5\%	4.5\%	5.1\%
Hardee	0.0\%	0.4\%	1.5\%	2.9\%	3.6\%	4.4\%
Hendry	0.2\%	1.0\%	1.4\%	2.3\%	3.1\%	3.2\%
Hernando	0.1\%	0.2\%	0.1\%	0.8\%	1.8\%	2.8\%
Highlands	0.1\%	0.1\%	0.1\%	0.1\%	0.5\%	1.0\%
Hillsborough	0.3\%	0.6\%	0.2\%	0.7\%	1.5\%	2.5\%
Holmes	0.0\%	0.5\%	1.0\%	0.5\%	0.5\%	0.5\%
Indian River	0.2\%	0.4\%	0.3\%	0.2\%	1.3\%	2.2\%
Jackson	1.0\%	1.4\%	1.0\%	1.0\%	0.8\%	0.8\%
Jefferson	0.0\%	0.0\%	0.6\%	1.3\%	1.3\%	1.3\%
Lafayette	1.1\%	2.2\%	4.3\%	5.3\%	6.3\%	6.3\%
Lake	0.4\%	0.8\%	0.6\%	0.5\%	2.0\%	3.5\%
Lee	0.1\%	0.1\%	0.6\%	1.4\%	2.6\%	3.8\%
Leon	0.1\%	0.2\%	0.1\%	0.9\%	1.5\%	2.2\%
Levy	0.2\%	0.0\%	0.0\%	0.0\%	0.4\%	0.6\%
Liberty	2.2\%	1.0\%	1.0\%	1.9\%	2.9\%	3.7\%
Madison	0.5\%	0.0\%	0.5\%	0.5\%	0.5\%	1.0\%
Manatee	0.3\%	0.8\%	0.9\%	0.5\%	0.0\%	1.0\%

County	Percent Errors (between BEBR's Projections and Unadjusted Projections)					
	2020	2025	2030	2035	2040	2045
Marion	0.0\%	0.1\%	0.2\%	0.8\%	1.6\%	2.5\%
Martin	0.1\%	0.1\%	0.0\%	0.0\%	0.5\%	1.2\%
Miami-Dade	0.1\%	0.1\%	0.0\%	0.3\%	1.1\%	1.9\%
Monroe	1.3\%	2.3\%	3.3\%	4.3\%	4.9\%	5.2\%
Nassau	0.5\%	0.7\%	0.5\%	0.1\%	1.1\%	2.7\%
Okaloosa	0.2\%	0.3\%	0.2\%	0.1\%	0.6\%	1.1\%
Okeechobee	0.5\%	0.9\%	1.2\%	1.6\%	1.8\%	2.2\%
Orange	0.5\%	0.8\%	0.2\%	0.9\%	1.8\%	2.9\%
Osceola	0.9\%	1.1\%	0.1\%	1.5\%	2.7\%	4.4\%
Palm Beach	0.1\%	0.2\%	0.2\%	0.3\%	0.2\%	1.0\%
Pasco	0.1\%	0.1\%	0.4\%	1.3\%	2.3\%	3.4\%
Pinellas	0.1\%	0.1\%	0.1\%	0.3\%	0.6\%	0.7\%
Polk	0.3\%	0.5\%	0.1\%	0.9\%	1.8\%	2.8\%
Putnam	0.0\%	0.3\%	0.5\%	0.7\%	1.0\%	1.1\%
St. Johns	0.7\%	0.4\%	0.4\%	1.4\%	2.9\%	4.6\%
St. Lucie	0.0\%	0.1\%	0.4\%	1.0\%	1.9\%	3.0\%
Santa Rosa	0.3\%	0.2\%	0.4\%	1.5\%	2.6\%	3.8\%
Sarasota	0.3\%	0.2\%	0.0\%	0.1\%	0.2\%	0.0\%
Seminole	0.2\%	0.2\%	0.1\%	0.1\%	0.2\%	0.9\%
Sumter	0.0\%	0.1\%	1.1\%	2.3\%	4.0\%	5.8\%
Suwannee	0.4\%	0.8\%	1.2\%	1.5\%	2.2\%	2.9\%
Taylor	2.2\%	3.0\%	4.6\%	6.2\%	7.3\%	8.4\%
Union	0.0\%	1.8\%	3.0\%	4.8\%	6.0\%	7.8\%
Volusia	0.2\%	0.3\%	0.4\%	0.5\%	0.4\%	0.4\%
Wakulla	0.0\%	1.4\%	1.9\%	2.3\%	2.0\%	1.7\%
Walton	0.8\%	1.2\%	0.9\%	0.1\%	1.2\%	3.0\%
Washington	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%	0.4\%

Projections of Florida 2050-2070 Population by County

State projections

Although the cohort-component method is a better way to make population projections at the state level, the information needed to apply the method such as birth rates, death rates, and migration rates for the distant future years from 2050 to 2070 is limited. A simplified method was used to develop state projections. Three different techniques were explored:

- Linear - the population will change by the same number of persons in each future year as the average annual change during the base period.
- Exponential - the population will change at the same percentage rate in each future year as the average annual rate during the base period.
- Logarithmic - the population will rapidly increase in size until it reaches a certain point, called the carrying capacity. At this point, the resources are not enough to support the population.

For all three techniques, the base periods of forty-seven years (1998-2045) were used to develop the state-level projections. The population data for 1998-2018 in one-year increment were obtained from the annual release of Florida Estimates of Population Report by BEBR, while the population data for 2020 - 2045 in five-year increment were obtained from the BEBR Projections of Florida Population by County published in April 2019. As mentioned earlier, the medium projections were used as recommended by BEBR.

This method produced three projections for each projection year (2050, 2055, 2060, 2065, 2070). After a careful review of the three projections, it was determined that the linear method produced the most reasonable state-level projections and, therefore, were used as the basis for county level population projections.

County projections

The country level population projections for 2050-2070 followed the same methodology as described in the previous section. Five (5) techniques (Linear, Exponential, Share-of-growth, shift-share, and ConstantShare) were used to produce eleven projections. Five (5) averages (AVE-11, AVE-9, AVE-7, AVE-5, and AVE3) were calculated and different averages were used for different counties. The resulting projections were evaluated by comparing them with historical population trends for each county. Adjustments were made when the initial projections were deemed to be inconsistent with historical growth pattern prior to 2018 or BEBR projected growth trends between 2020 and 2045. Figure 1 graphically illustrates the process to develop the county-level population projections for 2050-2070.

Figure 1 2050-2070 County-Level Projection Process

The initial projections provided best fit for most of the 67 counties based on historical data. However, adjustments were needed for 25 counties (Baker, Bradford, Charlotte, Collier, Dixie, Franklin, Gadsden, Glades, Hardee, Jackson, Jefferson, Lafayette, Lake, Manatee, Marion, Monroe, Okaloosa, Osceola, Palm Beach, Pinellas, Putnam, Seminole, Suwannee, Taylor and Union) as the initial projections showed inconsistent growth patterns. The adjustments were made by conducting regression analysis using the 2018 population estimate and population projections for 2020 to 2045 . Linear, Exponential, and Logarithmic techniques were used to produce additional three sets of population projections for each of the 25 counties. The average of the three projections was used for the 25 counties. A further review indicated that the resulting projections for Dixie and Union counties still showed illogical growth patterns. Therefore, further adjustment were made for the two counties based on their historical growth trends. The final projected populations by county for 2050-2070 are presented in Table 4 together with the BEBR projected populations for 2020-2045.

Table 4 Projections of Florida Population by County (2020-2070 with Estimates for 2018)

	Census	Estimate (BEBR)	Projections (BEBR)						Projections (FDOT)				
County	2010	2018	2020	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070
Alachua	247,336	263,291	268,300	279,300	288,600	296,500	303,500	309,800	318,700	327,700	336,800	345,900	355,000
Baker	27,115	27,652	28,300	29,500	30,600	31,400	32,200	32,800	34,100	35,100	36,100	37,200	38,200
Bay	168,852	181,199	178,500	189,600	198,200	205,600	211,800	216,900	218,300	224,500	230,800	237,000	243,200
Bradford	28,520	28,057	28,600	28,800	28,900	29,000	29,100	29,200	29,400	29,600	29,800	30,000	30,100
Brevard	543,376	583,563	598,500	630,300	656,300	678,700	698,700	716,900	738,900	768,000	798,200	829,600	862,200
Broward	1,748,066	1,897,976	1,942,700	2,041,100	2,120,300	2,183,000	2,238,300	2,290,500	2,350,800	2,406,600	2,458,200	2,505,800	2,549,200
Calhoun	14,625	15,093	14,900	15,500	15,900	16,300	16,700	17,000	17,400	17,500	17,600	17,700	17,700
Charlotte	159,978	177,987	183,700	196,000	206,100	214,600	222,100	229,100	242,100	252,200	262,500	272,900	283,600
Citrus	141,236	145,721	148,600	155,300	161,100	166,200	170,200	173,700	177,400	182,400	187,400	192,400	197,300
Clay	190,865	212,034	220,200	239,100	255,700	269,700	281,700	292,600	302,100	316,300	330,400	344,500	358,600
Collier	321,520	367,347	382,800	418,400	449,500	475,200	496,800	516,100	556,100	586,700	618,200	650,400	683,500
Columbia	67,531	69,721	71,000	73,900	76,500	78,600	80,300	81,800	83,500	85,600	87,800	89,900	92,100
DeSoto	34,862	35,520	36,000	36,900	37,700	38,400	39,000	39,500	40,000	40,700	41,400	42,100	42,900
Dixie	16,422	16,489	16,600	16,800	16,900	17,000	17,100	17,200	17,300	17,400	17,500	17,600	17,700
Duval	864,263	952,861	981,900	1,044,700	1,095,200	1,139,100	1,177,600	1,212,100	1,241,100	1,286,300	1,331,400	1,376,500	1,421,700
Escambia	297,619	318,560	324,400	337,300	347,600	355,500	362,100	367,700	374,400	383,800	393,300	402,700	412,200
Flagler	95,696	107,511	112,500	123,900	134,400	143,600	151,600	159,000	164,600	174,300	184,100	194,200	204,500
Franklin	11,549	12,009	12,100	12,700	13,100	13,500	13,800	14,000	14,600	15,000	15,400	15,800	16,200
Gadsden	46,389	47,828	48,100	48,400	48,500	48,600	48,700	48,800	49,000	49,200	49,400	49,500	49,700
Gilchrist	16,939	17,424	17,800	18,700	19,400	20,000	20,600	21,100	21,600	22,300	23,100	23,900	24,700
Glades	12,884	13,002	13,200	13,600	13,900	14,100	14,300	14,500	14,900	15,200	15,400	15,700	16,000
Gulf	15,863	16,499	16,400	16,900	17,300	17,700	18,100	18,400	18,800	19,100	19,500	19,800	20,200
Hamilton	14,799	14,621	14,900	15,200	15,300	15,400	15,500	15,600	15,700	15,900	16,000	16,200	16,300
Hardee	27,731	27,296	27,300	27,300	27,400	27,400	27,400	27,400	27,400	27,500	27,500	27,500	27,500
Hendry	39,140	39,586	40,300	41,900	43,200	44,400	45,500	46,500	47,400	48,600	49,800	51,000	52,300
Hernando	172,778	185,604	191,700	205,800	218,300	229,200	238,400	246,900	258,200	269,500	280,900	292,300	303,600
Highlands	98,786	102,525	104,100	107,500	110,300	112,700	114,600	116,300	118,500	121,000	123,400	125,900	128,400
Hillsborough	1,229,226	1,408,864	1,466,800	1,598,400	1,708,600	1,800,200	1,878,700	1,950,500	2,050,200	2,152,900	2,255,700	2,358,400	2,461,100
Holmes	19,927	20,133	20,300	20,600	20,900	21,000	21,200	21,400	21,700	21,900	22,200	22,400	22,600
Indian River	138,028	151,825	157,200	169,300	179,400	187,700	194,700	200,900	205,100	213,400	221,800	230,100	238,400
Jackson	49,746	50,435	50,200	50,700	51,200	51,500	51,800	52,100	52,500	52,800	53,200	53,500	53,900
Jefferson	14,761	14,733	14,900	15,200	15,400	15,500	15,600	15,800	16,000	16,200	16,400	16,600	16,800
Lafayette	8,870	8,501	8,700	8,900	9,200	9,400	9,500	9,600	9,900	10,100	10,300	10,600	10,800
Lake	297,052	342,917	360,700	402,100	437,200	467,400	493,600	517,200	563,900	600,600	638,400	677,400	717,900
Lee	618,754	713,903	747,400	824,400	892,100	949,800	999,900	1,045,200	1,104,600	1,165,800	1,227,000	1,288,100	1,349,300
Leon	275,487	292,332	298,300	311,900	322,800	331,500	339,200	346,000	350,400	359,800	369,300	378,700	388,100

County	Census	Estimate (BEBR)	Projections (BEBR)						Projections (FDOT)				
	2010	2018	2020	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070
Levy	40,801	41,054	41,600	42,900	44,000	44,900	45,600	46,300	47,000	47,900	48,900	49,800	50,700
Liberty	8,365	8,915	9,300	9,700	10,000	10,300	10,500	10,800	11,000	11,400	11,700	12,000	12,400
Madison	19,224	19,473	19,500	19,700	19,800	19,900	20,000	20,100	20,200	20,300	20,400	20,500	20,700
Manatee	322,833	377,826	395,200	434,500	467,700	496,700	523,000	545,700	584,600	615,500	646,200	676,900	707,600
Marion	331,298	353,898	363,700	386,200	406,200	423,600	438,200	451,400	476,200	495,600	515,400	535,600	556,100
Martin	146,318	155,556	159,100	167,000	173,900	180,200	185,800	190,800	194,900	201,100	207,200	213,400	219,600
Miami-Dade	2,496,435	2,779,322	2,861,600	3,040,300	3,190,200	3,315,900	3,427,200	3,523,500	3,611,000	3,727,700	3,840,600	3,949,900	4,055,500
Monroe	73,090	73,940	74,000	74,200	74,300	74,400	74,600	74,700	74,900	75,000	75,100	75,300	75,400
Nassau	73,314	82,748	86,400	94,800	102,100	108,600	113,900	118,600	125,500	132,300	139,000	145,800	152,600
Okaloosa	180,822	198,152	202,600	212,100	220,400	227,400	233,400	239,100	249,200	257,200	265,200	273,400	281,700
Okeechobee	39,996	41,120	41,500	42,400	43,100	43,600	44,200	44,700	45,200	45,900	46,500	47,100	47,800
Orange	1,145,956	1,349,597	1,415,500	1,568,100	1,694,000	1,799,300	1,891,800	1,975,300	2,051,300	2,164,300	2,277,300	2,390,300	2,503,300
Osceola	268,685	352,496	380,700	445,300	500,200	548,100	591,000	630,400	707,200	769,000	833,800	902,100	974,200
Palm Beach	1,320,134	1,433,417	1,473,700	1,563,100	1,641,000	1,707,500	1,763,200	1,811,000	1,909,500	1,984,700	2,061,100	2,138,700	2,217,700
Pasco	464,697	515,077	534,500	579,400	619,900	654,000	682,900	708,900	742,000	778,800	815,800	853,200	890,900
Pinellas	916,542	970,532	983,900	1,012,900	1,034,300	1,050,600	1,063,500	1,075,000	1,103,400	1,123,200	1,143,100	1,163,100	1,183,300
Polk	602,095	673,028	699,600	758,900	807,900	849,400	884,700	916,200	938,900	980,500	1,022,100	1,063,700	1,105,300
Putnam	74,364	72,981	73,100	73,200	73,300	73,400	73,500	73,600	73,700	73,800	73,900	74,000	74,200
St. Johns	190,039	238,742	256,100	295,900	329,500	358,600	384,600	408,500	433,100	463,900	494,700	525,500	556,200
St. Lucie	277,789	302,432	313,100	337,500	359,500	378,700	395,100	410,100	421,900	440,600	459,300	478,000	496,700
Santa Rosa	151,372	174,887	182,600	199,900	214,700	226,900	237,500	247,000	256,600	269,700	282,900	296,000	309,200
Sarasota	379,448	417,442	431,100	460,500	484,300	505,200	523,700	540,200	555,900	583,200	611,800	641,800	673,300
Seminole	422,718	463,560	477,800	508,500	533,500	555,500	573,700	589,200	622,300	647,300	672,700	698,500	724,700
Sumter	93,420	124,935	133,900	155,500	175,100	191,700	206,200	219,500	239,300	257,200	275,100	293,000	310,900
Suwannee	41,551	44,879	45,900	48,200	50,200	52,000	53,400	54,600	57,100	59,100	61,000	63,000	65,000
Taylor	22,570	22,283	22,900	23,400	23,900	24,300	24,600	24,900	25,600	26,000	26,500	27,000	27,400
Union	15,535	15,867	16,100	16,300	16,500	16,600	16,700	16,700	16,800	16,800	16,900	16,900	17,000
Volusia	494,593	531,062	544,100	571,700	594,300	613,600	629,900	644,600	661,600	678,000	693,200	707,400	720,500
Wakulla	30,776	31,943	32,800	35,200	37,200	38,900	40,300	41,500	43,000	44,800	46,500	48,200	50,000
Walton	55,043	67,656	71,800	81,300	89,500	96,600	102,800	108,400	112,900	120,000	127,100	134,200	141,300
Washington	24,896	25,129	25,500	26,300	27,000	27,500	27,900	28,300	29,000	29,600	30,200	30,800	31,400
FLORIDA	18,801,310	20,840,568	21,517,100	23,050,800	24,340,500	25,429,300	26,373,300	27,219,700	28,307,400	29,471,900	30,637,400	31,804,900	32,976,100

