Technical Memorandum

Projections of Florida Population by County, 2020-2070

Prepared for
Forecasting and Trends Office
Florida Department of Transportation

Introduction

Long-term population projections are needed to support the statewide transportation planning studies such as the Florida Transportation Plan (FTP) and the Multi-use Corridors of Regional Economic Significance (M-CORES) program. This Technical Memorandum describes the methodology used to develop Florida's population projections for the next 50 years from 2020 to 2070 in five-year increments for all 67 counties and presents the results based on the methodology.

The Bureau of Economic and Business Research (BEBR) at the University of Florida has been making population projections for Florida and its counties since the 1970s. The latest report was published in January 2020 and it contains the most recent set of projections from 2020 to 2045. To account for uncertainty regarding future population growth, BEBR publishes three series of projections: low, medium, and high. The medium series is typically considered more accurate, while the low and high series indicate the uncertainty surrounding the medium series. It should be noted that these projections include only permanent residents. Tourists or seasonal residents are not included.

The methodology used by BEBR to develop 2020-2045 population projections has been used for many years and has proven to be both practical and reliable. The medium series of BEBR projections were adopted for years up to 2045. For years from 2050 to 2070, population projections were developed using the BEBR methodology. However, to ensure that the BEBR methodology was properly applied, a two-step process was followed. The first step was to replicate the BEBR 2020-2045 population projections with the same methodology and data sources. The second step was to extend the population projections an additional 20 years from 2050 to 2070 with necessary adjustments and reasonableness checks. The following sections describe in more detail the two-step process.

Step 1 - BEBR Methodology and Replicating 2020-2045 Population Projections

State Projections

The starting point for the state-level projections was the April 1, 2010 census population count by age, sex, race, and Hispanic origin, as adjusted by the National Center for Health Statistics (NCHS) in the Vintage 2017 bridged race population estimates. Projections were made in oneyear intervals using a cohort-component methodology in which births, deaths, and migration are projected separately for each age-sex cohort in Florida for non-Hispanic whites, non-Hispanic nonwhites, and Hispanics.

Three different sets of assumptions are made to provide low, medium, and high series of projections. Although the low and high series do not provide absolute bounds on future population change, they provide a reasonable range in which Florida's future population is likely to fall. The medium projections of total population for 2020-2024 were adjusted to be consistent with the state population forecasts for those years produced by the State of Florida's Demographic Estimating Conference (DEC) held on December 3, 2019. None of the projections after 2024 had any further adjustments.

BEBR indicates that medium series is the most likely to provide accurate forecasts in most circumstances. Therefore, the medium projections of state total population for 2020-2045 were directly used when replicating projections of county population for 2020-2045.

County Projections

The cohort-component method is appropriate to make population projections at the state level but is not sufficient to make projections at the county level. Many counties in Florida have a population so small that the number of persons in each age-sex category is inadequate for making reliable cohort-component projections, given the lack of detailed small-area data. In addition, county growth patterns are often volatile that a single technique based on data from a single time period may produce misleading results. As a result, BEBR recommends using several different techniques and historical base periods to project total populations at the county level.

BEBR started with the population estimates constructed for April 1, 2019, and made projections for each county using the following five (5) different techniques:

- Linear - the population will change by the same number of persons in each future year as the average annual change during the base period.
- Exponential - the population will change at the same percentage rate in each future year as the average annual rate during the base period.
- Share-of-growth - each county's share of state population growth in the future will be the same as its share during the base period.
- Shift-share - each county's share of the state population will change by the same annual amount in the future as the average annual change during the base period.
- Constant-share - each county's share of the state population will remain constant at its 2019 level.

For the linear and share-of-growth techniques, BEBR used base periods of two, ten, and twenty years (2017-2019, 2009-2019, and 1999-2019), yielding three sets of projections for each
technique. For the exponential and shift-share techniques, BEBR used base periods of five and fifteen years (2014-2019 and 2004-2019), yielding two sets of projections for each technique. The constant-share method was based on data for a single year (2019). Table 1 shows a summary of the techniques used, the corresponding base period(s), and the number of population projections created for each county for each projection year.

Table 1 Population Projection Techniques and Base Periods

Technique	Base Period	Number of Projections
Linear	2017-2019 (two-year period) 2009-2019 (ten-year period) 1999-2019 (twenty-year period)	3
Exponential	$2014-2019$ (five-year period) $2004-2019$ (fifteen-year period)	2
Share-of-growth	2017-2019 (two-year period) 2009-2019 (ten-year period) $1999-2019 ~(t w e n t y-y e a r ~ p e r i o d) ~$	3
Shift-share	$2014-2019$ (five-year period) $2004-2019$ (fifteen-year period)	2
Constant share	2019 (a single year)	1

BEBR's methodology produced eleven projections for each county for each projection year (2020, 2025, 2030, 2035, 2040 and 2045). From these, five averages were calculated: one using all eleven projections (AVE-11), one that excluded the highest and lowest projections (AVE-9), one that excluded the two highest and two lowest projections (AVE-7), one that excluded the three highest and three lowest projections (AVE-5), and one that excluded the four highest and four lowest projections (AVE-3).

BEBR selected AVE-5 for 66 counties, the average in which the three highest and three lowest projections were excluded. For Monroe County, BEBR selected an average of projections made with the exponential technique with a base period of five years and the linear technique with a base period of two years.

In addition, BEBR made manual adjustments to the projections in six counties in the Florida Panhandle to account for estimated population losses or slowdowns in growth due to the impacts of Hurricane Michael (Bay, Calhoun, Gadsden, Gulf, Jackson, and Liberty counties). Manual adjustments were also made in 31 counties to account for changes in institutional populations such as university students and prison inmates. Moreover, the sum of county projections equals the state projection for each year, which indicates additional adjustments.

Because no detailed information about the BEBR manual adjustments was available, no manual adjustments were made to the initial projections. Then the differences between initial projections and the BEBR projections were examined, which can reflect the manual adjustments made by BEBR. In general, the differences between initial and corresponding BEBR projections for a given county increase as the projection year increases and the maximum percentage differences for all counties fall in the year 2045. For counties that are in the adjustment list in BEBR report, if the maximum percentage difference is over 5%, a regression model was used to estimate manual adjustments made by BEBR (hereafter referred to as Type 1 adjustments). For instance, Bay County's 2019 population estimate is heavily impacted by Hurricane Michael. Therefore, the initial
projection based on the 2019 population estimate is much lower than BEBR's projection with a maximum percentage difference of 20%. Type 1 adjustments were made for 18 counties.

Table 2 presents population projections with Type 1 adjustments for 2020-2045. Table 3 shows the percent differences between BEBR's projections and the projections in Table 2. In most cases, the differences between the two sets are below 3.0%, which indicates that our method can replicate the original BEBR population projections reasonably well and can be extended to develop future projections from 2050 to 2070 that are consistent with the 2020-2045 projections.

Table 2 Projections of Florida Population by County, 2020-2045
Population Projections (After Type 1 Adjustments)

County	$\mathbf{2 0 2 0}$		$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$
Alachua* $^{\text {Baker* }}$	269,600	281,800	291,700	300,000	307,200	313,500
Bay* *	28,500	29,900	31,000	32,100	32,900	33,600
Bradford* $^{\text {Brevard }}$	175,400	185,500	193,600	200,400	206,200	210,800
Broward	28,800	29,200	29,500	29,800	30,100	30,300
Calhoun*	$1,942,000$	$2,039,000$	$2,122,200$	$2,198,600$	$2,273,200$	$2,347,800$
Charlotte	184,900	15,400	15,800	16,200	16,500	16,800
Citrus	149,400	156,700	209,000	219,600	230,400	241,000
Clay	218,900	236,700	253,600	169,600	175,200	180,600
Collier	384,900	421,500	454,800	485,900	513,300	540,500
Columbia*	70,500	73,500	76,000	78,000	79,700	81,200
DeSoto	36,300	37,300	38,200	38,900	39,700	40,500
Dixie*	16,700	16,900	17,000	17,100	17,100	17,100
Duval	986,100	$1,051,700$	$1,107,500$	$1,160,400$	$1,208,600$	$1,254,100$
Escambia	324,300	336,300	346,400	355,000	362,600	371,000
Flagler	113,300	126,500	139,400	151,200	162,800	174,000
Franklin*	12,200	12,500	12,800	13,000	13,300	13,400
Gadsden*	46,400	46,900	47,100	47,300	47,300	47,400
Gilchrist	18,000	18,900	19,800	20,500	21,200	21,900
Glades	13,200	13,500	13,800	14,000	14,200	14,400
Gulf*	14,900	15,200	15,600	15,900	16,300	16,800
Hamilton	14,600	14,700	14,600	14,600	14,600	14,600
Hardee	27,400	27,300	27,200	27,100	27,100	27,000
Hendry	40,500	42,000	43,200	44,100	45,000	45,800
Hernando	191,400	206,100	219,500	231,400	241,900	251,800
Highlands	104,200	107,700	110,800	113,400	115,700	118,200
Hillsborough	$1,475,300$	$1,614,100$	$1,739,300$	$1,843,000$	$1,945,200$	$2,048,100$
Holmes	20,100	20,100	20,100	20,000	19,900	19,900

Population Projections (After Type 1 Adjustments)

County	2020	2025	2030	2035	2040	2045
Indian River	157,700	169,800	180,800	190,400	199,100	207,300
Jackson*	47,100	47,600	47,800	48,000	48,100	48,300
Jefferson	14,800	15,100	15,300	15,500	15,600	15,800
Lafayette*	8,700	9,100	9,400	9,700	9,900	10,100
Lake	366,600	410,100	452,700	492,200	528,000	563,400
Lee	752,800	837,000	911,800	980,300	1,044,800	1,109,600
Leon	300,000	315,200	329,400	342,400	354,700	367,200
Levy	41,600	42,600	43,600	44,400	45,100	45,700
Liberty	8,800	9,200	9,500	9,700	10,000	10,200
Madison	19,600	19,800	20,000	20,200	20,400	20,600
Manatee	396,100	434,300	469,000	502,100	535,100	568,300
Marion	365,800	392,000	416,400	437,600	457,100	474,700
Martin	160,700	169,600	177,700	184,800	192,000	199,100
Miami-Dade	2,851,700	3,026,900	3,185,800	3,339,800	3,484,200	3,616,800
Monroe	76,300	76,600	77,000	77,400	77,800	78,300
Nassau	87,000	95,900	104,200	111,600	118,400	124,900
Okaloosa	204,000	214,200	223,900	232,700	241,200	249,500
Okeechobee	42,100	43,600	44,800	45,800	47,000	48,000
Orange	1,419,700	1,575,300	1,714,700	1,835,200	1,953,900	2,074,200
Osceola	385,200	453,200	517,300	574,400	631,100	689,500
Palm Beach	1,466,000	1,548,200	1,623,500	1,694,600	1,763,800	1,826,900
Pasco	537,200	586,100	630,000	668,700	704,500	738,500
Pinellas	985,500	1,013,500	1,036,700	1,055,300	1,074,200	1,093,800
Polk	704,300	766,900	823,100	873,000	919,200	963,200
Putnam	73,400	73,400	73,100	73,100	73,000	73,000
St. Johns	264,000	309,900	352,600	390,300	427,600	466,400
St. Lucie	315,100	343,000	369,800	394,300	416,600	437,900
Santa Rosa*	183,000	199,300	213,400	225,200	235,300	244,100
Sarasota	433,500	464,100	490,600	516,200	541,900	567,400
Seminole	478,800	510,200	536,500	561,600	585,500	607,300
Sumter*	132,700	152,000	169,800	186,500	199,800	211,000
Suwannee*	45,900	48,300	50,400	52,100	53,500	54,700
Taylor	22,500	23,100	23,500	23,800	24,100	24,400
Union	15,500	15,700	15,900	15,900	15,900	15,900
Volusia	545,300	572,300	595,400	617,500	638,400	658,500
Wakulla*	33,300	35,400	37,100	38,600	39,600	40,600
Walton*	72,100	81,500	89,600	96,200	102,300	107,700
Washington*	25,200	25,900	26,500	27,000	27,300	27,700

* Type 1 adjustments were made to this county's projections.

Table 3 Percent Errors of Florida Population by County, 2020-2045
Percent Errors (Compared with BEBR Projections)

County	2020	2025	2030	2035	2040	2045
Alachua*	-0.1\%	0.1\%	0.0\%	-0.1\%	-0.1\%	0.1\%
Baker*	0.0\%	0.0\%	-0.3\%	0.3\%	0.0\%	0.0\%
Bay*	0.1\%	-0.1\%	-0.1\%	0.0\%	0.1\%	0.0\%
Bradford*	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.0\%
Brevard	0.0\%	-0.1\%	0.3\%	0.9\%	1.8\%	2.8\%
Broward	0.0\%	0.0\%	0.3\%	0.9\%	1.8\%	2.7\%
Calhoun*	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Charlotte	0.1\%	-0.4\%	0.1\%	1.0\%	2.3\%	3.7\%
Citrus	0.0\%	-0.3\%	0.0\%	0.4\%	1.0\%	1.9\%
Clay	0.0\%	0.0\%	0.4\%	1.2\%	2.3\%	3.6\%
Collier	0.1\%	0.1\%	0.7\%	1.8\%	3.0\%	4.5\%
Columbia*	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
DeSoto	0.0\%	-0.5\%	-0.3\%	0.0\%	0.5\%	1.5\%
Dixie*	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Duval	0.1\%	0.0\%	0.3\%	1.0\%	2.0\%	3.1\%
Escambia	0.1\%	0.0\%	0.2\%	0.6\%	0.9\%	1.6\%
Flagler	-0.1\%	0.0\%	0.8\%	1.9\%	3.5\%	5.3\%
Franklin*	0.0\%	0.0\%	0.0\%	-0.8\%	0.8\%	0.0\%
Gadsden*	0.2\%	-0.2\%	0.0\%	0.2\%	0.0\%	0.0\%
Gilchrist	0.0\%	0.0\%	0.5\%	0.5\%	1.4\%	2.3\%
Glades	0.0\%	0.0\%	0.7\%	0.7\%	0.7\%	1.4\%
Gulf*	1.4\%	-0.7\%	-0.6\%	-0.6\%	-0.6\%	1.2\%
Hamilton	0.0\%	-0.7\%	-2.0\%	-2.0\%	-2.0\%	-2.7\%
Hardee	-0.7\%	-1.1\%	-1.8\%	-2.5\%	-2.5\%	-3.2\%
Hendry	0.0\%	-0.5\%	-0.7\%	-0.9\%	-1.1\%	-1.3\%
Hernando	-0.1\%	0.0\%	0.3\%	1.1\%	2.0\%	3.0\%
Highlands	0.0\%	-0.1\%	0.0\%	0.2\%	0.4\%	0.9\%
Hillsborough	0.1\%	0.2\%	1.0\%	1.9\%	3.0\%	4.5\%
Holmes	-0.5\%	-1.0\%	-1.5\%	-2.0\%	-2.9\%	-2.9\%
Indian River	0.1\%	-0.1\%	0.3\%	1.2\%	2.1\%	3.2\%
Jackson*	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Jefferson	0.0\%	0.0\%	0.0\%	0.6\%	0.0\%	0.6\%
Lafayette*	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Lake	0.0\%	-0.2\%	0.5\%	2.0\%	3.5\%	5.3\%
Lee	0.0\%	0.2\%	0.8\%	2.0\%	3.4\%	5.0\%
Leon	0.1\%	0.1\%	0.6\%	1.4\%	2.5\%	3.8\%
Levy	0.0\%	-0.2\%	0.0\%	0.2\%	0.4\%	0.4\%
Liberty	0.0\%	1.1\%	1.1\%	1.0\%	1.0\%	1.0\%
Madison	2.1\%	1.5\%	1.5\%	2.0\%	2.0\%	2.5\%
Manatee	0.1\%	-0.1\%	0.5\%	1.7\%	3.1\%	4.8\%

Percent Errors (Compared with BEBR Projections)

County	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 4 5}$
Marion	0.0%	0.0%	0.4%	1.1%	2.1%	3.0%
Martin	0.1%	0.1%	0.5%	1.0%	2.0%	3.2%
Miami-Dade	0.1%	0.1%	0.6%	1.4%	2.5%	3.6%
Monroe	0.0%	0.1%	0.3%	0.4%	0.5%	0.8%
Nassau	0.1%	0.1%	1.1%	2.3%	3.6%	5.0%
Okaloosa	0.1%	0.0%	0.3%	1.0%	1.9%	3.0%
Okeechobee	0.0%	0.5%	0.9%	1.1%	2.2%	2.8%
Orange	0.1%	0.1%	1.1%	2.1%	3.5%	5.2%
Osceola	0.1%	0.2%	1.4%	2.8%	4.8%	7.3%
Palm Beach	0.0%	0.1%	0.4%	1.1%	2.0%	2.9%
Pasco	0.0%	0.0%	0.5%	1.4%	2.6%	3.9%
Pinellas	0.1%	-0.1%	0.1%	0.4%	0.7%	1.2%
Polk	0.0%	0.1%	0.7%	1.7%	2.9%	4.2%
Putnam	0.1%	-0.3%	-0.8%	-1.1%	-1.5%	-1.7%
St. Johns	0.0%	0.2%	1.4%	2.9%	4.8%	7.2%
St. Lucie	0.0%	0.0%	0.6%	1.8%	3.0%	4.4%
Santa Rosa*	0.1%	-0.2%	0.0%	0.0%	0.1%	0.0%
Sarasota	0.0%	-0.2%	0.2%	1.1%	2.4%	3.8%
Seminole	0.0%	-0.1%	0.2%	0.8%	1.9%	2.9%
Sumter*	0.3%	-0.2%	-0.6%	0.4%	0.4%	-0.2%
Suwannee*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Taylor	-0.4%	-0.4%	-0.4%	-0.8%	-0.8%	-1.2%
Union	0.0%	0.6%	1.9%	1.3%	1.3%	1.3%
Volusia	0.0%	-0.3%	-0.1%	0.6%	1.4%	2.1%
Wakulla*	0.0%	0.0%	-0.3%	0.3%	0.0%	0.0%
Walton*	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%
Washington*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

* Type 1 adjustments were made to this county's projections.

Step 2 - Projections of Florida 2050-2070 Population by County

State Projections

Although the cohort-component method is a better way to make population projections at the state level, the information needed to apply the method such as birth rates, death rates, and migration rates for the distant future years from 2050 to 2070 is limited. A simplified method was used to develop state projections. Three different techniques were explored:

- Linear - the population will change by the same number of persons in each future year as the average annual change during the base period.
- Exponential - the population will change at the same percentage rate in each future year as the average annual rate during the base period.
- Logarithmic - the population will rapidly increase in size until it reaches a certain point, called the carrying capacity. At this point, the resources are not enough to support the population.

For all three techniques, the base periods of forty-seven years (1999-2045) were used to develop the state-level projections. The population data for 1999-2019 in one-year increments were obtained from the annual release of Florida Estimates of Population Report by BEBR, while the population data for 2020 - 2045 in five-year increments were obtained from the BEBR Projections of Florida Population by County published in January 2020. As mentioned earlier, the medium projections were used as recommended by BEBR.

This method produced three projections for each projection year (Table 4). All three projection methods produced high R -squared values. The linear technique produced the most reasonable state-level projections compared to historical trends, and, therefore, linear projection results were used as the basis for county-level population projections.

Table 4 State Projections by Projection Technique, 2050-2070

Projection Technique	$\mathbf{2 0 5 0}$	$\mathbf{2 0 5 5}$	$\mathbf{2 0 6 0}$	$\mathbf{2 0 6 5}$	$\mathbf{2 0 7 0}$	$\mathbf{R}^{\mathbf{2}}$
Linear	$29,108,600$	$30,397,600$	$31,686,600$	$32,975,600$	$34,264,600$	0.99
Exponential	$26,782,800$	$28,481,700$	$30,288,300$	$32,209,500$	$34,252,600$	0.98
Logarithmic	$29,064,500$	$30,333,300$	$31,599,000$	$32,861,700$	$34,121,300$	0.99

County Projections

The county-level population projections for 2050-2070 followed the same methodology as described in the Step 1 section. Five (5) techniques (Linear, Exponential, Share-of-growth, and Constant Share) were used to produce eleven projections. Five (5) averages (AVE-11, AVE-9, AVE-7, AVE-5, and AVE-3) were calculated and different averages were used for different counties. Type 1 adjustments were applied for the same 18 counties as shown in Table 3. After applying Type 1 adjustments, the difference between the sum of all county projections and the state projection for each projection year was allocated to counties that did not receive Type 1 adjustments (hereafter referred to as Type 2 adjustments). Type 2 adjustments were allocated in proportion to the difference between the county's unadjusted projection and BEBR projection for projection year 2045. Finally, minor adjustments were made to eight (8) counties (Dixie, Gadsden, Hardee, Hamilton, Holmes, Jackson, Union, and Volusia)
whose projections were not consistent with their historical growth patterns prior to 2019 or BEBR's projected growth trends between 2020 and 2045. Like BEBR projections, the sum of FDOT county projections for each projection year equals the corresponding state projections (except for slight differences due to rounding). The final projected population by county for 2050-2070 is presented in Table 5 together with the BEBR projected populations for 2020-2045.

Table 5 Projections of Florida Population by County (2020-2070 with Estimates for 2019)

County	Census	Estimates (BEBR)	Projections (BEBR)						Projections (FDOT)				
	2010	2019	2020	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070
Alachua	247,336	267,306	269,800	281,500	291,600	300,200	307,400	313,300	322,000	330,000	337,700	345,000	351,900
Baker	27,115	28,249	28,500	29,900	31,100	32,000	32,900	33,600	34,600	35,600	36,500	37,400	38,200
Bay	168,852	167,283	175,300	185,700	193,700	200,300	206,000	210,900	215,000	218,300	220,600	222,000	223,400
Bradford	28,520	28,682	28,800	29,200	29,500	29,800	30,000	30,300	30,700	31,000	31,400	31,700	32,100
Brevard	543,376	594,469	602,400	637,600	665,000	687,900	707,400	726,000	766,500	794,000	821,300	848,700	875,900
Broward	1,748,066	1,919,644	1,941,200	2,039,000	2,115,200	2,179,100	2,233,900	2,285,100	2,402,300	2,480,600	2,559,200	2,638,200	2,717,000
Calhoun	14,625	14,067	14,900	15,400	15,800	16,200	16,500	16,800	17,200	17,500	17,800	18,100	18,400
Charlotte	159,978	181,770	184,700	198,100	208,700	217,400	225,200	232,500	246,700	257,400	268,300	279,500	290,900
Citrus	141,236	147,744	149,400	157,100	163,600	168,900	173,400	177,300	185,600	191,800	197,900	203,800	209,600
Clay	190,865	215,246	219,000	236,800	252,500	265,000	275,600	285,100	304,700	318,900	333,000	347,100	361,300
Collier	321,520	376,706	384,600	421,200	451,700	477,200	498,400	517,400	561,300	591,800	622,300	653,100	683,700
Columbia	67,531	70,492	70,500	73,500	76,000	78,000	79,700	81,200	83,200	85,100	87,000	88,600	90,200
DeSoto	34,862	36,065	36,300	37,500	38,300	38,900	39,500	39,900	41,100	41,900	42,700	43,500	44,300
Dixie	16,422	16,610	16,700	16,900	17,000	17,100	17,100	17,100	17,200	17,200	17,300	17,400	17,500
Duval	864,263	970,672	985,500	1,051,900	1,104,300	1,148,700	1,185,300	1,216,200	1,292,000	1,344,100	1,396,100	1,447,900	1,499,200
Escambia	297,619	321,134	324,000	336,400	345,800	353,000	359,300	365,200	378,200	387,400	396,700	406,000	415,300
Flagler	95,696	110,635	113,400	126,500	138,300	148,400	157,300	165,200	182,300	193,900	205,600	217,300	228,900
Franklin	11,549	12,273	12,200	12,500	12,800	13,100	13,200	13,400	13,600	13,800	14,100	14,400	14,600
Gadsden	46,389	46,277	46,300	47,000	47,100	47,200	47,300	47,400	47,400	47,500	47,600	47,600	47,600
Gilchrist	16,939	17,766	18,000	18,900	19,700	20,400	20,900	21,400	22,500	23,300	24,100	24,900	25,700
Glades	12,884	13,121	13,200	13,500	13,700	13,900	14,100	14,200	14,500	14,800	14,900	15,100	15,400
Gulf	15,863	13,082	14,700	15,300	15,700	16,000	16,400	16,600	17,100	17,600	17,900	18,300	18,600
Hamilton	14,799	14,600	14,600	14,800	14,900	14,900	14,900	15,000	15,000	15,100	15,100	15,200	15,200
Hardee	27,731	27,385	27,600	27,600	27,700	27,800	27,800	27,900	27,900	27,900	28,000	28,100	28,100
Hendry	39,140	40,120	40,500	42,200	43,500	44,500	45,500	46,400	47,200	48,400	49,600	50,700	51,900
Hernando	172,778	188,358	191,500	206,100	218,900	228,900	237,200	244,400	261,200	273,300	285,400	297,500	309,700
Highlands	98,786	103,434	104,200	107,800	110,800	113,200	115,200	117,100	120,600	123,600	126,500	129,400	132,400
Hillsborough	1,229,226	1,444,870	1,474,300	1,611,300	1,721,600	1,809,000	1,887,700	1,959,200	2,127,300	2,240,800	2,355,300	2,470,900	2,586,400
Holmes	19,927	20,049	20,200	20,300	20,400	20,400	20,500	20,500	20,600	20,600	20,600	20,700	20,700
Indian River	138,028	154,939	157,600	170,000	180,200	188,200	195,000	200,900	215,000	224,900	235,000	245,100	255,200
Jackson	49,746	46,969	47,100	47,600	47,800	48,000	48,100	48,300	48,400	48,500	48,600	48,700	48,800
Jefferson	14,761	14,776	14,800	15,100	15,300	15,400	15,600	15,700	15,900	16,100	16,400	16,600	16,800
Lafayette	8,870	8,482	8,700	9,100	9,400	9,700	9,900	10,100	10,400	10,600	10,800	10,900	11,100
Lake	297,052	357,247	366,600	410,900	450,300	482,700	510,300	534,800	592,500	633,000	674,300	716,700	759,500
Lee	618,754	735,148	752,800	835,500	904,700	961,400	1,010,900	1,056,600	1,161,200	1,233,700	1,305,600	1,375,900	1,446,000
Leon	275,487	296,499	299,800	314,900	327,500	337,800	346,200	353,700	374,100	386,700	399,300	412,100	424,700

	Census	Estimates (BEBR)	Projections (BEBR)						Projections (FDOT)				
County	2010	2019	2020	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070
Levy	40,801	41,330	41,600	42,700	43,600	44,300	44,900	45,500	46,400	47,200	47,900	48,700	49,600
Liberty	8,365	8,772	8,800	9,100	9,400	9,600	9,900	10,100	10,400	10,700	10,900	11,200	11,500
Madison	19,224	19,570	19,200	19,500	19,700	19,800	20,000	20,100	20,400	20,600	20,700	20,800	20,900
Manatee	322,833	387,414	395,800	434,600	466,500	493,800	519,200	542,200	592,900	626,500	659,800	693,000	726,200
Marion	331,298	360,421	365,900	392,100	414,800	432,800	447,900	460,800	491,100	512,700	534,300	555,900	577,300
Martin	146,318	158,598	160,600	169,500	176,900	182,900	188,200	193,000	204,200	211,700	219,300	226,900	234,600
Miami-Dade	2,496,435	2,812,130	2,849,900	3,022,600	3,167,900	3,294,700	3,399,200	3,489,900	3,714,000	3,858,100	4,001,700	4,144,500	4,284,300
Monroe	73,090	76,212	76,300	76,500	76,800	77,100	77,400	77,700	78,600	79,000	79,500	80,100	80,700
Nassau	73,314	85,070	86,900	95,800	103,100	109,100	114,300	118,900	129,900	137,400	145,000	152,600	160,300
Okaloosa	180,822	201,514	203,800	214,300	223,300	230,400	236,600	242,300	254,900	263,600	272,300	281,000	289,700
Okeechobee	39,996	41,808	42,100	43,400	44,400	45,300	46,000	46,700	48,400	49,400	50,500	51,500	52,600
Orange	1,145,956	1,386,080	1,418,900	1,573,000	1,696,800	1,797,400	1,888,700	1,972,200	2,165,600	2,293,700	2,423,300	2,554,300	2,686,500
Osceola	268,685	370,552	384,800	452,100	510,200	558,900	602,200	642,600	709,400	768,000	827,900	888,800	950,600
Palm Beach	1,320,134	1,447,857	1,465,800	1,547,200	1,616,500	1,676,600	1,729,500	1,775,200	1,876,000	1,945,500	2,014,600	2,083,600	2,151,800
Pasco	464,697	527,122	537,300	586,100	626,800	659,200	686,700	711,000	767,800	808,800	848,700	888,700	928,500
Pinellas	916,542	978,045	984,900	1,014,400	1,035,600	1,051,300	1,066,600	1,080,600	1,109,600	1,131,500	1,153,500	1,175,400	1,197,300
Polk	602,095	690,606	704,100	766,400	817,000	858,000	893,100	924,700	997,100	1,048,100	1,099,400	1,151,000	1,202,400
Putnam	74,364	73,268	73,300	73,600	73,700	73,900	74,100	74,300	74,400	74,700	75,000	75,200	75,500
St. Johns	190,039	254,412	263,900	309,300	347,600	379,400	408,100	434,900	487,900	528,300	569,400	611,400	653,900
St. Lucie	277,789	309,359	315,200	342,900	367,500	387,400	404,400	419,400	454,300	477,600	500,800	524,000	546,800
Santa Rosa	151,372	179,054	182,800	199,600	213,400	225,100	235,100	244,200	256,300	268,200	279,900	291,100	302,100
Sarasota	379,448	426,275	433,300	464,900	489,600	510,500	529,400	546,500	585,700	611,700	637,600	663,600	689,500
Seminole	422,718	471,735	478,800	510,700	535,600	556,900	574,700	590,400	625,900	650,900	675,700	700,500	725,000
Sumter	93,420	128,633	132,300	152,300	170,800	185,700	199,100	211,500	223,200	235,000	245,800	255,500	264,300
Suwannee	41,551	45,423	45,900	48,300	50,400	52,100	53,500	54,700	56,000	57,300	58,200	59,000	59,800
Taylor	22,570	22,458	22,600	23,200	23,600	24,000	24,300	24,700	24,900	25,200	25,500	25,900	26,200
Union	15,535	15,505	15,500	15,600	15,600	15,700	15,700	15,700	15,800	15,900	15,900	16,000	16,000
Volusia	494,593	538,763	545,200	573,800	595,800	613,600	629,700	644,700	670,400	692,400	714,400	736,300	763,900
Wakulla	30,776	32,976	33,300	35,400	37,200	38,500	39,600	40,600	41,800	43,000	43,900	44,900	45,600
Walton	55,043	70,071	72,100	81,500	89,600	96,200	102,200	107,700	114,000	119,800	125,300	130,300	134,900
Washington	24,896	25,387	25,200	25,900	26,500	27,000	27,300	27,700	28,200	28,700	29,200	29,700	30,200
FLORIDA	18,801,310	21,208,589	21,556,000	23,130,900	24,426,200	25,498,000	26,428,700	27,266,900	29,108,600	30,397,600	31,686,600	32,975,600	34,264,600

