www.centralbrowardtransit.com

Khalilah Ffrench, P.E. Project Manager FL Dept. of Transportation, D4 Office of Modal Development

CENTRAL BROWARD EAST-WEST TRANSIT STUDY

CENTRAL BROWARD

TRANSIT STUDY

Central Broward Transit Study Area

www.centralbrowardtransit.com

Locally Preferred Alternative

- At-grade within existing right-of-way
- Mixed traffic with some exclusive sections
- 25 miles = 13 miles of streetcar + 12 miles of premium bus
- 17 stations (excluding Wave): 14 streetcar + 3 bus

Central Broward Transit Phasing & Integration with Wave

WAVE Streetcar

- Currently in design phase
- Modern Streetcar Vehicles
- Mixed Traffic Operations
- 14 Stations

Central Broward Transit Phase 1

- Currently in Project Development with FTA
- At-grade within existing right-of-way
- Mixed traffic with some exclusive sections
- ~ 4.5 miles of streetcar
- 6 stations (excluding Wave)

www.centralbrowardtransit.com

FDOT - District IV

Streetcar/Urban Rail – Design & Construction

January 26, 2016

APPROACHING SIGNAL

Streetcar Electric vehicle - Less noise than a diesel bus

BOARDING

SPECIAL SIGNAL

Streetcar - Transition Streetcar with a special transit only phase to change lanes

MIXED TRAFFIC OPERATIONS

Operating In Mixed Traffic

Streetcar and cars sharing lane

TURNING

Streetcars Turning They stop just like a car and wait for the signal to turn green

ON-STREET PARKING

DUAL SIDE BOARDING

PROJECT LIFE CYCLE (Phases)

<u>Preferences/Líkes?</u> Equipment/Tools? Yard/Bldg. Layout? Operating Procedures? SSMP? Platform Interface? SSCP? Maintenance? TVA? Special Trackwork? PHA? SSRC?

PROJECT LIFE CYCLE (Phases)

DESIGN AND CONSTRUCTION OF STREETCAR ELEMENTS

DESIGN CRITERIA

- Purpose
 - Establish Design Standards and Policies for Streetcar Design
 - $_{\circ}~$ Provide a Uniform Design
 - Reference to Other Applicable Standards (Federal, State, County, Municipal, Utilities, etc.)
 - Standard Drawings

- Typical Design Criteria Table of Contents
 - $_{\circ}$ General
 - o Operations
 - Track Alignment and Vehicle Clearance
 - Urban Design
 - o Civil
 - Utilities
 - ∘ Traffic
 - Special Trackwork
 - Structural
 - Vehicles
 - Maintenance and Operations Facility
 - Traction Power
 - Stray Current and Corrosion Control
 - Signal and Route Control
 - Communications
 - $_{\circ}~$ Fare Collection

DESIGN CRITERIA

are only a guide and also may have differing interpretations of the same information

- o Stray Current and Corrosion Control
- Signal and Route Control
- Communications
- \circ Fare Collection

RIGHT-OF-WAY NEEDS – Maintenance Facility

RIGHT-OF-WAY NEEDS – Corner Clips

EXISTING CURB TRACK CENTERLINE RIGHT-OF-WAY TAKE

RIGHT-OF-WAY NEEDS – TPSS (Substation)

UTILITIES

UTILITIES – Start With the End in Mind

STREETCAR REGULATIONS MANUAL Department of Public Works City of Kansas City, Missouri October 2012

UTILITIES – Defines "Permit" Envelope & Access Rules

Permit Requirements

- Notice to Obtain Permit "example"
 - 12 Hour Non-Revenue Access
 - 48 Hour Revenue Service Access
 - Immediate Emergency Shutdown
- Working Around the Streetcar Requirements
 - Flaggers
 - Track Access Training

For a sample – "Google" "KC Streetcar Regulations Manual"

FIGURE ONE - VEHICLE and POWER ENVELOPE

UTILITIES – Composite Drawings & Engaging Utilities

Lessons Learned

- <u>Make PDF Layered</u> Utilities can turn on or off other utilities when reviewing their potential conflicts
- <u>Public First</u> Do NOT show until you have public utility relocations designs completed and proposed locations shown.
- <u>Show Track Alignment</u> Include dimensions to track from curb or similar object so Utility has a reference point.

You are Now Ready to Engage the Utility Companies

55

UTILITIES – Critical Path – ALWAYS!

TIME

Are there any concurrent tasks?

- Public Utility Relocations
- Procurement and Submittals
- Weld Raíl
- Pole Foundations

UTILITIES – Stray Current, a "FUZZY" Science

UTILITIES – Shallow Crossings

UTILITIES – Vaults, Manholes, etc.

UTILITIES – Vaults, Manholes, etc.

Lessons Learned

- <u>Loading</u> Usually if existing/adjusted utility structure is load rated for autos (HS-20+), it can remain below the track and support the streetcar track.
- <u>Proximity to Rail</u> If the access lid is less than approximately 9 inches from the nearest rail, suggest using elastomeric grout to avoid concrete cracking and "pop out"

There are typically several of these situations on every project. It's ok to leave in place, just evaluate each one as they are all a little different.

TRACK

TRACK – Rail Options, Types

TRACK – Rail Options, Applicability

Embedded

DF

TRACK – Rail Options, Existing Bridges

Shallow Slab Embedded on Structure

TRACK – Rail Options, Durability

TRACK – Rail Options, Narrow Tired Vehicles

TRACK – Storing Rail

TRACK – Welding Rail

TRACK INSTALLATION – Typical CIP Track Construction

Gauge Ties – Typically spaced every 7.5' to 10' (5' in tight curves) depending on the rail section used.

Light reinforcing mat to match local jurisdictional concrete pavement standards.

TRACK INSTALLATION – How Ties Work

TRACK INSTALLATION – The Pour

Wide tape placed over rail and top lip of boot to prevent concrete to get between boot and rail during concrete pour

TRACK INSTALLATION - Clips

TRACK INSTALLATION - Pre-Curved Rail

Support bar to hold line during concrete pour

TRACK INSTALLATION – Maintaining Access

TRACK INSTALLATION – Insulated Joints

Key Points

 <u>Use</u> – Sometimes used for signal system ("Track Circuits") or when trying to isolate segments electrically from one another

During Construction, resistivity tests are done prior to and after pouring the elastomeric grout verifying electrical separation at the IJ.

TRACK INSTALLATION – Insulated Joints

TRACK INSTALLATION – Transition Rails

Curved transitions are also possible – used in KCMO at the end of a turnout

TRACK INSTALLATION – Insulated Joints

TRACK - Special Trackwork

TRACK - Special Trackwork

- Special Trackwork
 - \circ Turnouts
 - Diamonds

Responsibilities

- <u>Designer</u> Provide Geometry, Style and Performance Measures/Specs.
- <u>Contractor</u> Solicit Bids from Suppliers, Handling, Storage and Installation.
- <u>Manufacturer</u> Detailed Design to submit to designer for approval. Also commonly responsible for encapsulation for stray current protection.

Use <u>STANDARD</u> Designs to reduce costs and Lead Times

TRACK – Special Trackwork

TRACK – Special Trackwork

Switch

Encapsulated

Material

Leveling Plates for

Leveling Screw

<u>Key Takeaways</u>

 <u>Drainage</u> – The Earth Box and switch housing areas usually have drains that need to be connected to your storm system

Earth Box with

Switch Machine

<u>Switch Machine</u> – Can be powered or manual with an automatic spring return.

<u>Encapsulation</u> – Have typically made this a performance spec, i.e. the installed turnout must pass the track to earth testing putting the onus on the contractor/manufacturer. Suggest having a minimum thickness for durability (~3/8")

Consider ordering spare parts at the same time

TRACK – Important Vehicle Parameters, Wheel Profile

Figure 5: Wheels of truck in 65.56' radius curve, 56" rail gauge

Figure 4: Curve Check Situation

TRACK – Important Vehicle Parameters, Platform Offset

Attachment D - Streetcar Centerline to Platform Offset (in)

TRACK – Important Vehicle Parameters, Platform Offset

Attachment D – Streetcar Centerline to Platform Offset (in)

CIVIL

CIVIL ROADWAY - Xslope

Travel Lane

Sidewalk

	Desirable	Maximum	Minimum
Α	2%	5% or Match Existing	1% or Match Existing
В	0%	1%	0%
С	2-4%	7% or Match Existing	1% or Match Existing
D	6-8 inches	10 inches	4 inches

CIVIL ROADWAY - Xslope

Sidewalk

Key Takeaways

- <u>Minmize Cost</u> A primary reason why we look at stepening cross slopes and minimizing the construction limits is to save costs.
- <u>Civil is Civil</u> There is nothing "magical" about a streetcar's Civil work. It's the same as a roadway project just phased different and typically more "piece meal".

A good municipal Engineer/Inspector already knows 90% of what they need for this scope element, a little training to fill in the streetcar specific gaps is all that's needed.

	Desirable	Maximum	Minimum
Α	2%	5% or Match Existing	1% or Match Existing
В	0%	1%	0%
С	2-4%	7% or Match Existing	1% or Match Existing
D	6-8 inches	10 inches	4 inches

CIVIL – 90 degree turns

CIVIL – Drainage

Track Drains

- Located at Low Points Along the Track Slab (Only where adjacent pavement does not already drain away from the track)
- Located Upstream All Special Trackwork
- $_{\odot}~$ Connect into Existing Drainage System
- Typically No Change to Impervious Area Except for at Maintenance and Operations Facility
- Consider Water Recycling at Wash Bay in Maintenance and Operations Facility

CIVIL – Dynamic Envelope of Streetcar Vehicle

CIVIL - Pavement Markings and Signage

Parking Lane Markings

Bicycle Lane Markings

Crosswalk Markings

Warning Sign

CIVIL - Parking

CIVIL – Blank Out Signs

STATION STOPS

STATION STOPS – Types, Curb Extension

STATION STOPS – Types, Median

STATION STOPS – ADA Requirements

STATION STOPS – ADA Requirements

Key Takeaways

- <u>Mind the "Gap"</u> Per ADA, the max horizontal and veritcal gap for level boarding is no more than 3 inches horizontally and +/- 5/8" vertically.
- <u>Industry Trends</u> The Industry is trending towards Level boarding for new start systems.

If considering near level boarding, remember you will need to go through "equivalent facilitation" for your project or add edge protection.

Tactile Warning Strip

STATION STOPS – Amenities

Art in Transit

History in Transit

Ticket Vending Machine (TVM)

SYSTEMS

SYSTEMS - Overhead Contact System (OCS)

OCS Cantilever with Pole

OCS at Curved Track

SYSTEMS – OCS Pole Spacing

SYSTEMS – OCS Pole Spacing

9ŤH

867

86'

59

•

- <u>Joint Use</u> Common to "combine" poles such as traffic or lighting with the OCS. Goal is to reduce the TOTAL number of poles in the corridor along with clutter on the sidewalk.
- <u>They "Move"</u> The design should build in the ability to shift any pole approximately 5 feet up or down the alignment. This allows for field adjustments if utility conflicts are found.

SYSTEMS – OCS Pole Foundations

SYSTEMS OCS – Under Bridge/Skyway

SYSTEMS OCS – Under Bridge/Skyway

Key Points

- <u>Clearance</u> Determined by Engineer using applicable codes such as NEC. Typically, under the calculated highest tension, 6 Inches is the minimum clear between the wire and structure (when not attached).
- <u>Touch Potential</u> If overhead structure has pedestrians a fence, barrier or enclosure needs to be provided to prevent someone from leaning over and touching the overhead wire.

Remember to "LOOK UP" there are a lot of things competing for the same airspace as the OCS

SYSTEMS OCS – Under Bridge/Skyway

VERTICAL & HORIZONTAL CLEARANCES FROM O.C.S CONDUCTOR

SEE NOTE 4 (NESC TABLES 233.1 & 234.1)

NOTES:

- 1. ALL CLEARANCES SHALL COMPLY WITH THE NATIONAL ELECTRICAL SAFETY CODE.
- 2. ALL CLEARANCES ARE MINIMUM VALUES.

SYSTEMS - Traction Power

TPSS Integrated within Public Space

Typical TPSS

TPSS Beneath Bridge

SYSTEMS - Traction Power

TPSS Integrated within Public Space

Key Points

- <u>Space needed</u> Recall previous slide showing approximately 35' x 70' for substation, access and power supplier's switch gear. Can be less but access needs to be accommodated.
- <u>Spacing</u> Typically need one substation every ½ to 1 mile along the route. Determined by a TPSS Load Flow Model.
- Power Source Need to coordinate primary power supply with local utility. It can impact the size of the substation to accommodate gear to transform voltage.

There is a lot more than just the building unit, think of access, grounding grid, outside switch gear and security (fences) that may be needed

SYSTEMS - Vehicles

Modern Articulated Vehicle

Heritage Vehicle

SYSTEMS - Vehicles

TRAFFIC

TRAFFIC – Streetcar Turning Movements

- Left Turn from Right Lane (Visa versa)
- Lane Switching
- Shared Left-Turn Lane
- Streetcar Lane Width

TRAFFIC - Streetcar Turning Right from LT Turn Lane

TRAFFIC - Streetcar Turning Right from LT Turn Lane

Be Flexible and Creative allows you to still separate the streetcar while minimizing the impact to auto traffic.

TRAFFIC – Train Signal Equipment

TRAFFIC - Analysis VISSIM vs. Synchro

- What is the current stage of planning and design?
- Do you want to understand Intersection LOS, Issues with Queuing or Weave, or Travel Time?
- Does the model need to be for the entire project or at key locations?
- VISSIM can model Transit Signal Priority, but do you want to understand benefits or location restrictions?

TRAFFIC – Transit Signal Priority (TSP)

- Active TSP
- Technology
 - $_{\circ}$ Radio/GPS
 - $_{\circ}$ Infrared (IR)
 - $_{\circ}$ RFID Readers
- Integrated with Signals (Add-On Module)

Vehicle Systems

MAINTENANCE AND OPERATIONS FACILITY

MAINTENANCE AND OPERATIONS FACILITY

- Vehicle Storage in Yard During Non-Revenue Service
- Light Maintenance Bay
- Heavy Maintenance Bay with Pit and Overhead Walkway
- Wash Bay to Clean Vehicles
- Operations and Control Center

MAINTENANCE AND OPERATIONS FACILITY

MOF Entrance from Street

MOF Beneath Interstate

MOF Building Entrance

MAINTENANCE AND OPERATIONS FACILITY

Overhead Maintenance

Narrow Maintenance Pit

Wide Maintenance Pit

MAINTENANCE OF RAIL INFRASTRUCTURE

- Clear Delineation of Inventory and Responsible Persons in Charge Should be Set Prior to Passenger Service and Any MOU's Executed for Maintenance
 - Some Maintenance Performed by DOT;
 - Other Performed by Operation Maintenance Contractor (OMC).

Item	Maintained by	Notes
Streets	DOT	Same as typical roadway
Track Drains	DOT	Additional to keep gauge section from fouling
Flangeway	Both	In addition to standard maintenance
Switch Machine & Turnouts	OMC	Weekly
OCS Poles	OMC	In addition to standard maintenance
OCS Poles w/Streetlights or Signals	Both	Requires special training
Wayfinding Signs	Both	In addition to standard maintenance
Platforms	Both	In addition to standard maintenance

Thanks!

Khalilah Ffrench, P.E. Florida Department of Transportation, D4 Office of Modal Development – Rail Administration

FDOT - District IV

Streetcar/Urban Rail – Design & Construction

January 26, 2016

