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EXECUTIVE SUMMARY 
This report is the final deliverable of the project entitled Incorporation of Climatic and Hydrologic 

Nonstationarity into FDOT Planning and Design Guidelines and Processes. For this project, a 

nonstationary system is defined as a system that changes temporally; hence, patterns or trends 

of the past cannot be used directly to predict a future state. Nonstationarity in hydrologic 

drivers pertinent to transportation infrastructure incorporates potential future changes 

attributable to both climatic and non-climatic factors in planning and design. The primary 

objectives of this project are to (a) review the current FDOT and other manuals of practice to 

determine if nonstationarity approaches need to be considered, (b) develop appropriate 

nonstationary methods for applications in Florida, and (c) provide data sets and capacity building 

to support the new methods. In general, resilience against future hazards is an important aspect 

of Florida’s transportation infrastructure planning, and the statewide resiliency goals translate to 

local efforts through long-range transportation plans (LRTPs). Consideration of nonstationarity is 

an important aspect of resilience. Through recent legislation, the State of Florida has guided the 

resilience of transportation infrastructure against future flooding and other impacts. 

The research team reviewed 13 FDOT manuals and determined three categories of data currently 

recommended: rainfall, sea level, and discharge. All the datasets and the methods included in 

the current manuals are largely based on the stationarity assumption. Circulars and reports by 

the FHWA and the National Cooperative Highway Research Program (NCHRP), at the national 

level, provide recommendations for datasets and methods which may be used to incorporate 

nonstationarity into transportation infrastructure, but their implementation in Florida has not 

been developed fully.  

It is important to note that not all projects need to incorporate nonstationarity in their design 

process, and factors like design life, cost, risk, and vulnerability should be considered. For 

example, the FHWA circulars recommend the use of nonstationary data for projects with design 

lives over 75 years. Only a few FDOT projects are designed beyond 75 years. In addition, the risk 

and vulnerability of projects that can be quantified using existing assessment tools should be 

considered in the decision to incorporate nonstationarity. Frameworks that consider these 

different factors are presented in the NCHRP reports entitled ‘Applying Climate Change 

Information to Hydrologic and Coastal Design of Transportation Infrastructure Final Report’ 

(Kilgore et al., 2019a) and ‘Applying Climate Change Information to Hydrologic and Coastal Design 

of Transportation Infrastructure Design Practices’ (Kilgore et al., 2019b). Before embarking on 

applying nonstationary techniques for planning and design, a logical process needs to be followed 

to justify their use, and such a process should include the initial screening of data, nonstationary 

detection, review of literature and data, projected changes in hydrologic drivers, assessment of 

risk and the application of nonstationary methods only when justified. 

Trend detection can quantify if nonstationarity in historical data should be considered in the 

design process. There are statistical tests, both parametric and nonparametric, and tools (such 

as the USACE Time Series Analysis tools) that can detect the statistical significance of historical 
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trends. If nonstationarity is detected, efforts must be initiated to determine the source of the 

nonstationarity. Abrupt or continuous changes may be attributed to other factors such as 

changes in land use and water management that are characterized as non-climatic. When 

considerations of nonstationarity are warranted, this project provides guidance for revisiting the 

traditional concepts of return period and risk and the methods that may be used by enhancing 

the current statistical methods. Three relevant hydrologic drivers that were identified, namely, 

rising sea levels, peak discharges in streams and rivers, and extreme rainfall.   While sea levels at 

almost all tide gages around the state exhibit statistically significant nonstationarity, peak 

discharge at inland locations did not present similar spatially broad trends in data.  The datasets 

assembled for the project have been delivered for possible inclusion in the University of Florida’s 

GeoPortal.   

As the field of climate science is constantly evolving, any effort to incorporate nonstationarity 

should consider the latest climate datasets, projections, methods, tools, and frameworks 

available at the time of design. For the State of Florida, Flood Hub is expected to be the 

centralized resource for the latest science on new sea level and rainfall projections. When 

nonstationarity is observed and attributed to valid reasons, and or projected, the research in this 

project provides a new paradigm for treating varying levels of protection expressed as time 

varying return periods and/or risks. This new paradigm includes methods for revisiting the 

concept of a fixed return period, and a risk-based infrastructure design in the nonstationary 

setting. 

Finally, “regret” may occur through both underinvestment as well as overinvestment in 

transportation resiliency. New approaches like Dynamic Adaptive Policy Pathways (DAPP) should 

be considered to minimize this. Because of uncertainties in projection of climate drivers such as 

sea level rise, it is almost impossible to predict the evolution of the hazards. In such situations, it 

is prudent to phase in the implementation of adaptation options through time with proper 

attention to ensure availability of resources (e.g., land) when needed.  This DAPP approach of 

staging TI infrastructure building will likely save costs ensuring services only when they are 

needed. 
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1. INTRODUCTION 

1.1. Description of Problem 
Changes in climate and associated extreme weather events are already affecting Florida’s inland 

and coastal communities and infrastructure. Most notably, the frequency of high tide flooding 

events in some coastal regions of Florida has increased significantly because of sea level rise, 

higher tides, and storm surge. There are concerns that extreme rainfall is also increasing, which 

could lead to an increased frequency of flooding in both inland and coastal communities. Flooding 

is projected to increase further in the next few years to decades, becoming more severe with 

time (Vogel et al., 2011). Sea level rise has a direct effect on the groundwater table, especially 

along the coastal belt, and this effect may propagate inland (Befus et al., 2020). Furthermore, 

increasing storm surge and extreme waves could occur due to future changes in intensity, 

frequency, and/or tracks of tropical and extra-tropical storms (e.g., Knutson et al., 2021). In 

recent years, South Florida appears to have experienced unprecedented rainfall from tropical 

systems causing significant damage to transportation infrastructure (TI), buildings, and other 

infrastructure along the coast. For instance, the return period associated with rainfall amounts 

along the track of Hurricane Ian in 2022 was rare, and according to a recent analysis by FIU 

(unpublished), reaching upwards of 500 years at certain locations. 

There has been major research activity in the field of hydrology and water resources to detect 

and attribute changes in hydrological processes at a range of scales (e.g., Salas et al., 2018; Milly 

et el., 2008). Before this research, generally, the key statistics for hydrological processes such as 

the mean and the variance have been assumed to be constant over time, i.e., the concept known 

as stationarity. Many hydrologists have strongly questioned the assumption of stationarity and 

suggested that “Stationarity is Dead – Whither Water Management?” (Milly et al., 2008). Others 

have now developed methods for more realistic design, evaluation, and planning and 

management of infrastructure to account for potential future changes leading to nonstationarity. 

The paper by Milly et al. (2008) caught major attention worldwide. However, many others 

reacted immediately with opposite positions and opinions that are exemplified by the titles of 

some of the articles published in the literature (see Salas et al. 2018): “Stationarity: Wanted Dead 

or Alive? (Lins and Cohn, 2011), “Comment on the Announced Death of Stationarity” (Matalas, 

2012), “Negligent Killing of Scientific Concepts: The Stationary Case” (Koutsoyiannis and 

Montanari, 2014), “Modeling and Mitigating Natural Hazards: Stationarity is Immortal!” 

(Montanari and Koutsoyiannis, 2014), and “Stationarity is Undead: Uncertainty Dominates the 

Distribution of Extremes” (Serinaldi and Kilsby, 2015). Despite the tremendous increased 

attention given to this subject, there is no generally agreed-upon set of methods for performing 

key hydrologic analyses such as the Flood frequency analysis, under nonstationary conditions. 

Many agencies are updating flood protection design guidelines to account for nonstationarity 

(e.g., Stedinger and Griffis, 2011; Centre for Ecology and Hydrology 2013; Prosdocimi et al., 2014). 

It should be noted that hydrologic processes with short and/or long memory (e.g. Koutsoyiannis, 

2002) are capable of generating hydrologic sequences that exhibit trends and abrupt shifting 
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patterns, but they may not be characterized necessarily as nonstationary.  The lack of a consensus 

regarding the use of nonstationary approaches results in part from the uncertainty associated 

with the ability to detect, attribute, and model past trends. In situations where historical trends 

are obvious, statistically significant, and attributable to changes in historical land use, climate, 

and/or water infrastructure, the approaches for planning and design must be updated. However, 

in many situations, such trends are not statistically significant, and the current practices of 

planning and design may be adequate, particularly with short spans of design life. Even if the 

historical trends are not significant, the application of nonstationary methods may be needed if 

the future projections of the hydrologic driver of interest (e.g. sea level rise) suggest systematic 

trends. 

The impact of longer-term climate and anthropogenic changes in different flooding drivers has 

not been accounted for in the planning and design of coastal transportation systems except in 

some regions. The research in this report will provide specific methodologies and data sets for 

planning TI experiencing changing stresses and shocks from climate and associated impacts but 

customized for Florida.  The incorporation of a new paradigm for TI planning and design and 

associated datasets based on actionable science in a changing climate will lead to innovation in 

resiliency planning. This improvement to current standards and guidance will promote the 

sustainability of transportation infrastructure for many decades. 

1.2. Objectives 
The research is focused on potential modifications to current manuals of practice being used by 

the Florida Department of Transportation (FDOT) for transportation project design. When 

possible, guidance will also be provided on relevant planning practices that may be in use by 

FDOT. Concerning TI designs, the research will identify which standards may warrant 

modifications to account for implications of future climate change, especially sea level rise, and 

changes to extreme rainfall. The final report of this research project will recommend appropriate 

nonstationary methods and datasets for future use by FDOT engineers and consultants for future 

planning and design of TI. 

Objective 1: Identify potential changes to current FDOT manuals of practice and design 

standards that require modifications to account for nonstationarity.  

This objective will focus on recommended revisions required for addressing evolving conditions 

associated with climate change and variability such as sea level rise, tides, storm surge, increasing 

extreme rainfall and river discharge, and rising ground water tables. 

Objective 2: Develop new planning and design methods for dealing with nonstationarity. 

Based on the current state of actionable science, develop detailed guidelines for treating evolving 

conditions due to rising sea levels, changing rainfall, rising groundwater tables, and other drivers 

of consequence to the performance of transportation infrastructure. 

Objective 3: Develop datasets for applying new nonstationarity methods. 
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The research will assess and assemble information available for projections of sea level rise, 

rainfall, and groundwater levels for applications of the nonstationarity methods. The datasets 

will include both FDOT and other data that are necessary for applying the nonstationarity 

methods. Other data sets will include but are not limited to, those that are part of the Sea Level 

Impact Projection (SLIP) tool. The exact data to be included for FDOT use will be determined in 

consultation with the FDOT Data Governance Administrator. 

Objective 4: Building Capacity among FDOT engineering professionals. 

Develop a technology transfer and a training program to inform design professionals including 

engineers, environmental professionals, and right-of-way professionals on the application of the 

new methods. 

1.3. Background 

1.3.1. Climate Resilience in Florida’s Transportation Planning 

The FDOT serves the people of the state of Florida with a mission to “provide a safe 

transportation system that ensures the mobility of people and goods, enhances economic 

prosperity, and preserves the quality of our environment and communities” (FDOT 2021a). FDOT 

develops the Florida Transportation Plan (FTP) to guide the statewide efforts to achieve ‘Agile, 

Resilient, and Quality Transportation Infrastructure.’ Resilience is an important aspect of Florida’s 

transportation planning and these statewide resiliency goals translate to local efforts through 

Long Range Transportations Plans (LRTPs), which are developed by Metropolitan Planning 

Organizations (MPOs). The LRTPs are aligned with the FTPs and are required to consider resilience 

in their planning and objectives, performance measures, risk and vulnerability assessments, 

assets and mobility assessments, and projects and actions of the Cost Feasibility Plan. MPOs like 

the Broward County MPO have identified climate resilience actions that are outlined in the 

Broward County Climate Change Action Plan. There are also examples of statewide plans, other 

than the FTP, which address resilience in their infrastructure planning like the Strategic 

Intermodal System Policy Plan (2022 update), FDOTs Transportation Asset Management Plan 

(FDOT, 2019a), and the Florida Freight Mobility and Trade Plan (2022). These plans were 

developed to tackle the challenges posed by the effects of climate change like increased inland 

flooding, sea level rise, increased frequency of severe storms with higher winds, extreme rainfall, 

and increased duration of droughts. 

1.3.2.  Recent Legislation 

Some legislations are pertinent to FDOT’s effort to pursue nonstationary approaches for 

transportation infrastructure planning and design.  First, the Senate Bill 1954 (SB 1954 in 2021) 

creating 380.093 F.S. emphasizes the statewide flooding and sea-level rise resilience.  It is 

worthwhile noting that the State of Florida Legislature recognizes that Florida is particularly 

vulnerable to adverse impacts of flooding resulting from the increasing frequency and duration 

of rainfall events, storm surge from more frequent and sever weather systems, and sea-level rise 

(wording extracted from SB 1954).  This observation already acknowledges the changing 
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conditions and hence requires the exploration of a nonstationary framework.  Concerning the 

mission of the FDOT, SB 1954 includes transportation assets including bridges and major 

roadways among other types of infrastructure as “critical assets.”  Further, Section 380.0933, F.S. 

established the Florida Flood Hub for Applied Research and Innovation to provide research 

support in the form of data and modeling for vulnerability assessments, and presumably, this 

data will need to address future environmental conditions requiring consideration of 

nonstationarity.   Second, House Bill 7053 filed in 2022 also addresses flooding and sea level rise 

resilience and established the Statewide Office of Resilience and appointment of a Chief 

Resilience Officer.  This Bill requires the development of a “resilience action plan” for the State 

Highway System based on current conditions and forecasted future events. It also recommends 

design changes to retrofit existing state highway facilities and to construct new state highway 

facilities. The traditional stationary approaches need to be revisited to meet such requirements. 

1.3.3. Climate Nonstationarity 

Until recently, TI planning and design have assumed “stationarity” in climate (past climate 

represents what is expected to be in the future) in environmental drivers such as rainfall, sea 

levels, and other design variables.  The only exception may be to address sea level rise but even 

its treatment tends to be limited to projections using historical trends. Planning for agile, 

resilient, and quality TI for the future, depending on the current design criteria and the use of 

such approaches as safety factors, may require moving from this stationarity assumption to a 

nonstationary environment characterized by rising sea levels, changing rainfall patterns and 

floods, stronger and/or more frequent tropical storms, changing land use/land cover, and a rising 

groundwater table especially along the coast and extending to some inland locations.  While 

guidance documents such as FHWA (2016) (guidance for riverine systems) provide enhancements 

to consider, the application of nonstationarity to Florida’s situation requires the development of 

specific approaches, guidelines, and data sets for the state. Currently, the “Design Return Period” 

concept is the standard practice, but recent research on nonstationarity indicates that this 

concept needs to be revisited since the return period and future risks are dynamic (Salas et al. 

2019) as they vary with time.  A new paradigm, which incorporates changing exceedance 

probabilities (failure probabilities), risks, and innovative planning criteria based on future 

projections, is needed.  Florida is a state where rising sea levels, changing rainfall, and other 

impacts are being experienced already, and hence changes to the current planning and design 

guidelines are needed. 

Before embarking on applying nonstationary techniques for TI planning and design, a logical 

process needs to be followed to justify their use. Because there are many factors (land use change 

and climate) may contribute to any apparent nonstationarity in data, careful adherence to this 

process may be needed. Such a process should essentially include the following general steps: 

I. Initial screening to assess vulnerability using tools like Vulnerability Assessment Scoring 

Tool (VAST) 
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II. Detection of nonstationarity in relevant climatic and non-climatic drivers using data in 

the vicinity of the project site 

III. Literature review to determine the possible presence of climate change in the project 

area 

IV. Projected change in relevant climate drivers 

V. Assess risk to project features 

VI. Develop planning and design options to address potential nonstationarity 

An example of such a process, developed by the US Army of Corps of Engineers is shown in Figure 

1-1. 

It should be noted that the prediction of future climatic conditions, including sea level rise, is 

inherently associated with significant uncertainties, particularly for rare extremes. Such 

uncertainties are the result of inadequacies in science and the modeling of future predictions. 

While there are many methods to deal with “deep uncertainties,” one approach that is becoming 

increasingly popular is scenario testing.  When uncertainty estimates of projections are available, 

they should be used along with the best available trajectories for future conditions for the 

development of adaptation strategies with due consideration to risks of failure. When TI planning 

and design methods include significant factors of safety, these may already cover the future 

conditions reflecting nonstationarity. All the above factors need to be considered in the 

application of nonstationarity approaches developed in this report. 
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Figure 1-1. Flow chart and crosswalk table developed by USACE for incorporating climate 
change impacts to inland hydrology in civil works (USACE, 2018). 
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2. ASSESSMENT OF CURRENT METHODS USED IN PRACTICE 

2.1. Task Objective 
Review relevant literature, manuals, and standards to determine the changes that may be 

necessary to incorporate peer-reviewed research on nonstationarity into the manuals of practice. 

2.2. Review of Transportation Manuals 
To identify necessary changes to incorporate nonstationarity, this effort first reviewed the 

following manuals of practice and other relevant documents: 

• FDOT Drainage Manual (FDOT, 2021a) 

• FDOT Drainage Design Guide (FDOT, 2020a) 

• FDOT Drainage Handbook – Drainage Connection Permits (FDOT, 2020b) 

• FDOT Structures Manual (FDOT, 2022a) 

• FDOT Soils and Foundations Handbook (FDOT, 2021b) 

• FDOT Flexible Pavement Design Manual (FDOT, 2022b) 

• FDOT Rigid Pavement Design Manual (FDOT, 2022c) 

• FDOT Pavement Type Selection Manual (FDOT, 2019b) 

• FDOT Manual of Uniform Minimum Standards for Design, Construction, and Maintenance 

for Streets and Highways (FDOT, 2018) 

• FDOT Project Development & Environment Manual (FDOT, 2020c) 

• FDOT Local Agency Program Manual (FDOT, 2012) 

• FDOT Utility Accommodation Manual (FDOT, 2017) 

• FDOT Utility Procedures Manual (FDOT, 2021c) 

Appendix A presents a tabular, summarized review of the FDOT manuals with pertinent climate 

data. Based on the review, three categories of data were identified: 1) rainfall, 2) sea level, and 

3) peak discharge. The following sections provide the datasets and their applications identified 

in the manuals for each category. 

2.2.1. Rainfall Data 

Engineers and planners rely on design storms for rainfall estimates used in the planning and 

design of drainage projects. Design storms can be defined using Depth-Duration-Frequency (DDF) 

or Intensity-Duration-Frequency (IDF) curves, which are objective probabilistic assessments of 

rainfall occurrence (Panthou et al., 2014). DDF/IDF curves present the depth/intensity and 

duration of rainfall for storms with different frequencies (defined either in terms of exceedance 

probability or return period) and are developed by (1) fitting a probability distribution function 

(PDF) to rainfall data for different durations, (2) relating the maximum rainfall depth to the 

corresponding return period from the cumulative distribution function, and (3) determining the 

maximum rainfall depth from the known cumulative frequency and duration using a theoretical 

distribution function (Srivastav et al., 2015; FHWA, 2016). Typically, historical observations have 

been used to derive DDF/IDF curves; however, with the recent developments in climate 



8 
 

nonstationarity research, there is concern about their reliability for future climate scenarios 

(Irizarry-Ortiz and Stamm, 2021).  

The FDOT Drainage Manual (FDOT, 2021a), FDOT Drainage Design Guide (FDOT, 2020a), and the 

FDOT Drainage Handbook – Drainage Connection Permits (2020b) all require design storm 

frequencies for storm drain system design, cross drain hydraulics, temporary facility design, and 

calculating peak flow using the Rational method. The previous versions of the FDOT design 

manuals (FDOT Drainage Manual, 2021 and the FDOT Drainage Handbook, 2020b) recommended 

the use of the FDOT IDF curves, which were available for 11 zones in Florida. However, FDOT now 

recommends the use of NOAA Atlas 14 rainfall data. The dataset consists of statistical rainfall 

depth developed using Regional Frequency Analysis (RFA). Depth-Duration-Frequency (DDF) 

curves are available at 242 locations in Florida. The dataset provides precipitation frequency 

estimates for storm durations of 5 minutes through 60 days at average recurrence intervals of 1 

year through 1000 years. These estimates assume climate stationarity (Perica et al., 2013).   

2.2.2. Sea Level Data 

Increasing rates of sea level rise (SLR) pose risks to coastal and tidally influenced communities 

and their infrastructure. Globally, the sea level has risen about 8 inches in the last century; 

however, the rate of increase in the last two decades is twice that of the last century. From 1971 

to 2018, thermal expansion and ice melt from ocean warming contributed to about 50% and 42% 

of sea level rise, while 8% is attributed to changes in land storage (IPCC, 2021). Dealing with SLR 

has been especially challenging for a state like Florida with its 1100-mile-long coastline, low 

elevation, and porous geology. In addition, many of the state’s larger communities/economies, 

and their infrastructure, are in coastal areas vulnerable to the consequences of SLR like coastal 

inundation, impairment of infrastructure like roadways, drainage systems, sewers, and septic 

systems, saltwater intrusion of drinking water supply, displacement, and decrease in property 

values. Some communities in Florida have already begun planning for and/or implementing SLR 

adaptation strategies. 

It is important to measure the local sea levels with tide gauges as Global Mean Sea Level Rise 

(GMSLR) is not homogenous across the oceans. These measurements are referenced to a stable 

vertical point on land and include local factors of sea level change such as changes in ocean 

circulation, gravitational and other changes due to redistribution of ice melt, and vertical land 

movement (VLM) from subsidence, glacial rebound or tectonic motion. Coastal applications of 

sea level use the relative sea level rise (RSLR) trend, which is the change in local sea level over 

time. Typically, approaches used in planning for sea level change involve combining RSLR for an 

area with projections of global sea level change. 

The historical tidal records gathered by the National Water Level Observation Network (NWLON) 

and managed by NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) 

can be used to estimate the relative sea level trend data 

(https://tidesandcurrents.noaa.gov/nwlon.html). The NWLON data collection platforms measure 

water levels in lakes, estuaries, and oceans, as well as some oceanographic and meteorological 
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parameters. The long-term historical (some stations with data as far back as 1850) and current 

water levels are useful in computing local sea level trends and studying patterns of high tide 

events. Tidal datums are vertical elevations that describe tidal fluctuations. Some common tidal 

datums include 1) Mean high water (MHW) – base elevation for structure heights, bridge 

clearances, etc., and mean low water (MLW) – officially designated navigational chart datum for 

the United States. Tidal benchmarks are used to reference tidal datums. 

Sea level data are required in FDOT Drainage Manual (FDOT, 2021a) and FDOT Drainage Design 

Guide (FDOT, 2020a) for tailwater elevations in storm drains, cross drains, and coastal ponds. 

Typically, regression of historical tide gauge data is used for these applications; however, the 

FDOT now proposes the use of NOAA (2017) projections for estimating future sea levels (FDOT, 

2021a).  

2.2.3. Discharge Data 

Stream/canal discharge data is used for the design and analysis of open channels, cross drains, 

and bridges. Typically, observations from gauge data are used to perform frequency analysis for 

open channels and cross drains. Gauge data may be available through the United States 

Geological Survey (USGS), as well as regional water management districts like the South Florida 

Water Management District.  

For projects where gauge data may not be available, the FDOT Drainage Manual (FDOT, 2021a) 

recommends the use of local or regional regression equations that are available through USGS. 

If the project area is less than 600 acres, the Drainage Manual (FDOT, 2021a) recommends the 

use of the Rational Equation to calculate flow. It is worth noting that this method requires a 

rainfall intensity, and depending on the source of this data, it may be prone to stationarity.  In 

the case of bridge hydraulic analysis, the Drainage Manual (FDOT, 2021a) recommends that 

gauge data be used to determine the peak flow rates and provide the starting water surface 

elevations. Gauge data is also recommended to provide boundary conditions for bridge models. 

2.3. Other Sources of Climate Data and Projections 

2.3.1. Rainfall Data from Downscaled Climate Model Outputs 

A possible way of incorporating nonstationarity into rainfall estimates is using rainfall data from 

downscaled climate model estimates. Global Climate Models (GCMs) are one of the best 

available tools to predict atmospheric variables under future climate scenarios (GHG emissions, 

land-use, energy production, global and regional economy, and population growth) (Srivastav et 

al., 2015). The World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison 

Project (CMIP) has produced high-quality GCMs like the CMIP3 and CMIP5, which have been 

widely applied in climate studies. More recently, they have developed the CMIP6.  

The Intergovernmental Panel on Climate Change defined four scenarios called Representative 

Concentration Pathways (RCPs): RCP2.6, RCP4.5, RCP6.0, and RCP8.5. The number in the RCP is 

the end of the century radiative forcing (in watts per square meter, representing the GHG effect 

in the atmosphere). RCP2.6 is the pathway necessary to keep the global temperature increase 
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below 2oC, whereas RCP8.5, which represents the highest concentration scenario, assumes a 

strong dependence on fossil fuels. RCP4.5 and RCP6.0 are in-between moderate-low and 

moderate-high scenarios. 

GCM outputs need to be downscaled before application to represent local-scale processes. There 

are two types of commonly applied downscaling methods: 1) dynamical – a physically-based 

method using computational cells much smaller than the GCM, or 2) statistical – a statistically-

based method of developing relationships between observed data and hindcast GCM output. 

Statistically downscaled methods are more flexible, require less computational resources, and 

have been found to match observations better than dynamical downscaling methods; hence, 

they are more popular. However, they are highly dependent on observational records. More 

recently, there have been data products developed from hybrid techniques to overcome the 

limitations of each. 

There have been many applications of using statistically downscaled GCM data to predict 

extreme rainfall due to climate change. SLSC-FIU (2021), leveraging an ongoing USGS study by 

Irizarry-Ortiz and Stamm (2021), applied statistically downscaled rainfall products to update 

statewide extreme rainfall projections for the state of Florida. Rainfall durations of 1, 3, 7, and 

10 days were considered along with return periods of 5, 10, 25, 50, 100, and 200 years. Change 

factors to update the DDF curves were generated for two future periods of analysis, 2030-2069 

and 2060-2099 using a baseline period of 1966-2005.  The following list presents statistically 

downscaled products commonly applied in extreme rainfall studies: 

1. Coordinated Regional Climate Downscaling Experiment (CORDEX) 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) uses boundary 

conditions from the GCM simulations from the CMIP5 as boundary conditions to derive 

outputs from Regional Climate Models (RCMs). Results for most of North America are 

available at North American CORDEX (NA-CORDEX) at spatial resolutions of 0.22o (25 km) 

or 0.44o (50 km) from 1950-2100 under different Representative Concentration Pathways 

(RCPs) which are future greenhouse gas scenarios. 

2. Localized Constructed Analogues (LOCA) 

The Localized Constructed Analogues (LOCA) method constructs the downscaled field 

using a single analog day (from a pool of 30 days) that best matches weather in the local 

region around the point being considered. The best matching observed day is scaled to 

match the amplitude of the modeled day being downscaled (additively for precipitation) 

and produce the final downscaled value (Pierce et al., 2014). The LOCA dataset covers 

North America from central Mexico through southern Canada at a 1/16th degree spatial 

resolution. 

3. Multivariate Adaptive Constructed Analogs (MACA) 

The Multivariate Adaptive Constructed Analogs (MACA) method identifies the 30 best 

matching analog days in the historical occurrence and combines these analog days, using 
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a weighted average method, to reproduce the target pattern (Abatzoglu and Brown, 

2012; Pierce et al., 2014). The datasets cover the contiguous United States. 

The USDOT developed the CMIP Climate Data Processing Tool for downloading and processing 

downscaled climate projections from the Downscaled CMIP3 and CMIP5 

Climate and Hydrology Projections (DCHP) website (USDOT, 2015). This tool was produced to 

assist transportation agencies in assessing vulnerabilities and evaluating adaptation strategies. 

The tool is capable of processing raw GCM output to produce relevant projections for 

transportation planners. Climate projections from three downscaling techniques are made 

available on the DCHP website: 1) monthly bias-corrected spatial disaggregation (BCSD), 2) daily 

bias-corrected constructed analog (BCCA), and 3) daily LOCA.  

2.3.2. Sea Level Projections 

FDOT has proposed the use of NOAA (2017) sea level rise projections (same as Sweet et al., 2017) 

for planning. For the Fifth National Climate Assessment under development, NOAA, NASA, and 

other federal agencies are also updating the sea level projections, which have been released 

recently.  Based on NOAA (2017) report (same as Sweet et al., 2017), several regional institutions 

and agencies in Florida have developed regional sea level projections for local/regional 

applications. Some of them are summarized below. 

The Unified Sea Level Rise Projection for Southeast Florida was prepared by the Southeast Florida 

Regional Climate Change Compact’s Sea Level Rise Ad Hoc work group, which is a team of experts 

from the academic community and federal agencies. The objective of the Work Group was to 

develop a unified regional sea level rise projection, using existing projections at local, regional, 

and global scales, and scientific literature. After its first report was released in 2011, the work 

group reconvened in 2014 and again in 2019 to provide updated projections. In the 2019 report, 

which includes the NOAA (2017) report (same as Sweet et al., 2017) and the IPCC (2014) report, 

the work group recommends using the NOAA high curve, the NOAA intermediate high curve, and 

the median of the IPCC AR5 RCP8.5 scenario for the regional sea level rise projections for 2040, 

2070, and 2120, planning horizons (Figure 2-1). If the projects involve critical infrastructure with 

design lives exceeding 50 years, the NOAA high curve with 54 inches of mean SLR in 2070 and 

136 inches of mean SLR in 2120 is recommended. For most other infrastructure projects before 

2070, the IPCC lower, blue-shaded region is recommended. 
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Figure 2-1. The 2019 Unified Sea Level Rise Projections for Southeast Florida. Source: SEFRCC 
(2019). 

The Tampa Bay Climate Science Advisory Panel (CSAP), a network of scientists and resource 

managers working in the Tampa region, collaboratively produced science-based 

recommendations to aid local governments and agencies in adapting to climate change and sea 

level rise. For data collection, the CSAP recommends using the St. Petersburg tide gauge to adjust 

the first two parameters required to predict SLR, as it has the longest reliable record for the 

region. The final parameter may be derived from SLR projections from the IPCC or the U.S. 

National Climate Assessment. Despite the differences in models, both methods have similar 

estimates of SLR. The CSAP recommends using the NOAA Intermediate-Low as the lowest 

plausible bound and the NOAA High as the upper bound for sea level change until the science on 

new instability mechanisms in the ice sheet processes is settled (Figure 2-2). The CSAP strongly 

recommends against the use of the NOAA Low scenario for planning. All local governments and 

agencies are also advised to use RCP8.5 to assess the likelihood of SLR scenarios until meaningful 

efforts to reduce GHGs are implemented. 
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Figure 2-2. Sea level rise scenarios for St. Petersburg, Florida from NOAA (2017) recommended 
for the Tampa Bay Region. Source: CSAP (2019) 

2.4. Nonstationarity in Transportation Planning 
A nonstationary system is a system that changes temporally; hence, patterns or trends of the 

past cannot be used directly to predict a future state. Hydrology, specifically, is reliant on 

historical measurements of flow, rainfall, and watershed characteristics to define future systems 

and develop design criteria; however, nonstationarity adds additional sources of uncertainty 

(beyond measurement uncertainty) and its incorporation would limit the use of historical 

records. The main sources of nonstationarity in hydrology are changes in climate and land use. 

2.4.1. Review of FHWA Hydraulic Engineering Circulars (HECs) Incorporating Nonstationarity in 

Transportation Planning 

For this review, two other relevant documents were included, reviewed, and referenced when 

necessary: 

1. Hydraulic Engineering Circular No. 17 Highways in the River Environment – Floodplains, 

Extreme Events, Risk, and Resilience. Publication No. FHWA-HIF-16-018. (FHWA, 2016) 

2. Hydraulic Engineering Circular No. 25 Highways in the Coastal Environment. Publication No. 

FHWA-HIF-19-059 (FHWA, 2020) 

FHWA (2016) is a technical guidance manual for assessing riverine highways for floods, floodplain 

policies, extreme events, climate change, risks, and resilience. The manual was reviewed to 

identify relevant methods and data for quantifying exposure to extreme floods considering 

sources of nonstationarity, primarily focusing on climate change and land use/land cover change.  

FHWA (2016) defines nonstationarity as: 



14 
 

➢ A significant and lasting shift in the statistical distribution of weather patterns around the 

average conditions; 

➢ A significant shift in the measures of climate lasting an extended period of time, and 

➢ A non-random shift in climate that is measured over several decades or longer. The 

change may result from natural or human-induced causes. 

FHWA (2016) presents a review of literature that analyzed trends in precipitation and flood 

frequency along with the data and methods used for each. A more detailed explanation of some 

methods of detecting nonstationarity in flood data for gradual trends (like the Mann-Kendall test) 

and abrupt changes (like the Pettitt test) is also presented. The manual also provides several 

approaches for adjusting nonstationary data, if nonstationarity is detected. The adjustments 

include adjustment to urbanization, ensuring homogeneity by using subsets of data, and 

statistical adjustment to the mean (McCuen et al., 2002; Sauer et al., (1983); Salas and 

Obeysekera, 2014). Some strategies for projecting flood frequency using rainfall/runoff modeling 

and statistical methods are briefly introduced. 

Chapter 5 of the FHWA (2016) presents an excellent overview of climate modeling including 

descriptions of global climate models (GCMs), regional climate models (RCMs), emission 

scenarios, and downscaling techniques. Some sources of data include: 

➢ Downscaled CMIP3 and CMIP5 Climate and Hydrology Predictions (DCHP) (https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Welcome) 

➢ USGS Geo Data Portal (https://cida.usgs.gov/gdp/) 

➢ Coordinated Regional Climate Downscaling Experiment (CORDEX) – (https://na-

cordex.org/) Presented in Section 2.3.1 

➢ North American Regional Climate Change Assessment Program (NARCCAP) 

Due to the evolutionary nature of climate science, the FHWA recommends getting expertise from 

various organizations. A list of tools for climate change adaptation is also presented. Some of 

these tools like the Guide to Criticality in Transportation Adaptation Planning and the 

Vulnerability Assessment Scoring Tool will be discussed in the following sections of this report 

(Section 3.2.1) 

FHWA (2016) also presents a risk and vulnerability assessment framework for transportation 

infrastructure in the riverine environment in Chapter 7. This framework was created with the 

best available science and methods at the time, and it is meant to be an evolving with new data 

and tools. The purpose of this framework is to support state DOTs in their consideration of 

“extreme events and climate change in the planning, design, implementation, and management 

of their transportation assets.” 

The framework consists of multiple levels of analysis with the intention that ultimately designers 

will select the appropriate level based on risks evaluations (asset criticality, vulnerability, and 

cost) and the service life of the project. The five levels of analysis, as presented in the FHWA 

(2019), are as follows: 

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Welcome
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Welcome
https://cida.usgs.gov/gdp/
https://na-cordex.org/
https://na-cordex.org/
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➢ Level 1 – Historical discharges. At level 1, the design team applies standard hydrologic 

design techniques based on historical data to estimate the design discharge. In addition, 

the design team qualitatively considers changes in the estimated design discharge based 

on possible future changes in land use and climate. 

➢ Level 2 – Historical discharges/confidence limits. At level 2, the design team estimates 

the design discharge based on historical data and qualitatively considers future changes 

in land use and climate as in level 1. In addition, the design team quantitatively 

estimates a range of discharges (confidence limits) based on historical data to evaluate 

plan/project performance. 

➢ Level 3 – Historical discharges/confidence limits with precipitation projections. At level 

3, the design team performs all level 2 analyses and quantitatively estimates projected 

changes in precipitation for the project location. The design team evaluates the 

projected changes in precipitation to determine if a higher level of analysis is 

appropriate. 

➢ Level 4 – Projected discharges/confidence limits. At level 4, the design team completes 

all level 3 analyses and develops projected land use and climate data, where feasible. 

The design team performs hydrologic modeling using the projected land use and climate 

data to estimate projected design discharges and confidence limits. 

➢ Level 5 – Projected discharges/confidence limits with expanded evaluation. At level 5, 

the design team performs the equivalent of the level 4 analyses based on custom 

projections of land use and climate. The design team also expands to include 

appropriate expertise in climate science and/or land use planning to secure site-specific 

custom projections. 

Based on the levels of analysis, the types of tools (Table 2-1), data (Table 2-2), and service lives 

(Table 2-3) of the projects may differ. This framework is intended only as a guidance, it is 

ultimately the responsibility of the design team to select the required level of analysis, 

techniques, and data. The proposed framework is intended to be versatile and not limited to 

specific structures. The guidance presented here will be further explored in the subsequent tasks 

of this project. 
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Table 2-1. Tools required for each level of analysis. 

 

 

Table 2-2. Data required for each level of analysis. 
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Table 2-3. The service life of projects with levels of analysis. 

 

The 3rd edition of the Hydraulic Engineering Circular No. 25 (FHWA, 2020), entitled “Highways in 

the Coastal Environment,” is a technical guidance manual for highways in the coastal 

environment, to integrate coastal engineering principles and practices in the planning and design 

of highways to make them more resilient. The manual provides modeling and engineering tools 

for the planning, design, and operation of coastal highways. It also presents engineering 

approaches for integrating climate change and sea level rise into highway design. FHWA (2020) 

was reviewed to identify methods and data that are recommended for incorporating the 

implications of climate change. The focus of this review was on how water levels, storm surge, 

and waves need to incorporate implications of climate change, particularly sea levels, in 

engineering designs.  Another topic of interest is the potential interaction of coastal storm surge 

and rainfall-induced runoff from watersheds near the coast. This is one of the potential cases of 

compound flooding which is expected to be addressed in a future project. 

The manual presents the foundational concepts in sea level rise including an overview of the 

terminology (RSLR – relative sea level rise, GMSLR- global mean sea level rise), causes for sea 

level rise, and sources of historical data (NOAA tide gauges, satellite data, geologic record). Two 

broad types of sea level rise projections are presented: 

➢ Process-based, scientific estimates of the physical processes controlling sea level rise 

➢ Scenarios for planning that are based on the range of scientifically possible sea levels 

The first is developed for each of the IPCC’s Representative Concentration Pathways (RCPs) which 

are based on future population growth, technological advancement, and societal responses. 

Figure 2-3 presents an example of process-based sea level projections developed for three RCP 

scenarios: 1) RCP8.5 (high emissions scenario), 2) RCP4.5 (intermediate emissions scenario), and 

3) RCP2.6 (low emissions scenario). The shaded areas show 90% confidence while the dark blue 

line shows the median projection. The sixth assessment report of IPCC (AR6) uses a different 

definition of emission scenarios known as Shared Socioeconomic Pathways (SSPs). 

The second type of sea level rise projection is based on the scenario approach. This approach 

overcomes the challenge of uncertainty ranges of the process-based approaches and is 

commonly used in planning. Using the same process-based approach, RSLR projections are 

developed for six GMSLR scenarios (0.3, 0.5, 1.0, 1.5, 2.0, and 2.5 meters of GMSLR named Low, 

Intermediate Low, Intermediate, Intermediate-High, High, and Extreme) with arbitrary half-

meter increments. Figure 2-4 presents a comparison of GMSLR scenarios by Sweet et al. (2017) 

with process-based projections by Kopp et al., (2014). The HEC-25 manual (FHWA, 2020) 
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recommends using the site-specific RSLR estimates from the Sea Level Rise Interagency Task 

Force to evaluate scenario-based data for transportation projects. The three considerations for 

SLR values aligned with the National Cooperative Highway Research Program (NCHRP) 15-61 

report (Kilgore et al., 2019a) are also presented and discussed in this HEC-25 manual (FHWA, 

2020), they are: 

1. Include future RSLR projections in planning and design.  

2. Use minimum projections of RSLR throughout the remainder of this century, 

corresponding to design.  

3. Encourage engineers to be aware of the uncertainty in future RSLR projections and 

account for it appropriately in design. To illustrate, consider higher projections of RSLR 

when overall project performance is very sensitive (i.e. fragile) to design sea levels and/or 

when designing long-lived or expensive infrastructure.  

The HEC-25 manual (FHWA, 2020) also presents the concepts of the astronomical tides also called 

“semidiurnal” tides. A good overview of the characteristics of astronomical tides, tidal and survey 

datums, along with the common terminology (mean high water – MHW, mean higher high water 

– MHHW, mean low water – MLW, and mean lower low water – MLLW) are presented (Figure 

2-5). 

Chapter 4 of the HEC-25 manual (FHWA, 2020) also presents information on storm surges, their 

characteristics (magnitude, duration, hydrograph), and storm surge modeling (concepts, 

techniques, and models). In addition, Webb (2017) is recommended as a good introductory 

resource in coastal hydrodynamic modeling for transportation engineers. The Advanced 

CIRCulation (ADCIRC) model developed by the USACE is discussed in detail. In addition, the 

manual provides additional numerical coastal models (Table 2-4). 
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Figure 2-3. Projections of GMSLR in this century from Kopp et al. (2014) for (a) RCP8.5, (b) 
RCP4.5, and (c) RCP2.6. Source: FHWA (2020). 
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Figure 2-4. GMSLR scenarios (Sweet et al. 2017) and process-based scenarios (Kopp et al., 2014). 
Source: FHWA (2020). 
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Figure 2-5. The relationship between survey and tidal datums. Source: FHWA (2020). 

 

Table 2-4. Numerical coastal models cited in the HEC-25 manual. Source: FHWA (2020). 
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2.4.2. Review of NCHRP Reports Incorporating Nonstationarity 

This review included two other important draft publications that include important information 

and guidance for incorporating climate change into the planning and design of transportation 

Infrastructure (TI). They are: 

1. Applying Climate Change Information to Hydrologic and Coastal Design of 

Transportation Infrastructure (Final Report, NCHRP Project 15-61, 384 pages, Kilgore et 

al., 2019a), and 

2. Design Practices accompanying the above final report (145 pages, Kilgore et al., 2019b) 

Both reports were prepared for the National Cooperative Highway Research Program of the 

Transportation Research Board (TRB) by a group of consultants.  They cite methods and 

procedures of other guidance documents, FHWA (2016) and FHWA (2020), relevant to this 

literature review. The following sections provide a very brief summary of extensive guidance 

provided in the Design Practices (henceforth known as the “Guide”). 

2.4.2.1. Design Practices 

Both of the above reports recognize the current practice based on “stationarity”, in which the 

planners and engineers assume historical data to represent future conditions. Such an approach 

may not be prudent because of new and evolving risks such as sea level rise, temperature 

increase, and changes in precipitation patterns. The basis for suggested guidance to account for 

climate change is the potential “failure” of TI due to changing risks and compromises in 

operational characteristics associated with such evolving risks. The new paradigm proposed in 

the Guide may be characterized as “nonstationary.” The Guide provides a comprehensive 

framework for incorporating climate change into (a) inland hydrology, and (b) coastal analyses, 

when appropriate. 

The Guide recognizes that, depending on costs, risks, and vulnerability, not all projects may 

require the same attention and introduces the concept of “levels of analysis” and provides two 

frameworks for planning and design of TI which are based on (a) traditional (top-down) and (b) 

threshold approaches.  The traditional approach is deemed to be the dominant practice in the 

design of TI today whereas the threshold approach is becoming increasingly popular when 

uncertainties due to climate change are important. The Guide also recognizes another important 

concept, “regret.” One regret is underinvestment in TI to prepare for climate change whereas 

another regret is associated with the overinvestment of resources that may otherwise be used 

elsewhere. Because of large uncertainties in climate change outcomes, minimizing regrets may 

not be feasible, but it can be managed using the threshold approach which is also similar to the 

Dynamic Adaptive Policy Pathways (DAPP). 

The concept of the levels of analysis for both inland hydrology and coastal projects is illustrated 

in Figure 2-6 and Table 2-5 and Table 2-6.  The appropriate level of analysis depends on a variety 

of factors: (a) the criticality of the project; (b) expected service life; (c) the vulnerability to climate 
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change, (d) the functional classification (roadway, bridge, or tunnel), (e) regulatory requirements; 

and (e) resources available for the project. 

 

Figure 2-6. Levels of analysis (Kilgore et al., 2019b). 

 

 

Table 2-5. Level of analysis for inland hydrology. 

Level General Approach 

Level 1 Design based on historical data 

Level 2 Design based on historical data/confidence limits 

Level 3 Design based on projected information/confidence limits 

Level 4 Design based on projected information/confidence limits/custom 
evaluation 

 

Table 2-6. Level of analysis for coastal applications. 

Level General Approach 

Level 1 Use of existing data and resources 

Level 2 Original modeling of storm surge and waves 

Level 3 Modeling in a probabilistic risk framework 

 

Because of uncertainties associated with climate change in inland hydrology and coastal analyses, 

planners and designers are often challenged by the Traditional Approach.  Increasingly, they favor 

the use of the Threshold Approach (bottom-up) as the decision-making framework. In such an 

approach, the objective is to assess vulnerabilities and seek robust solutions in an attempt to 
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minimize the aforementioned regrets. In this paradigm, fundamental questions are “how does 

my system work?” and/or “under what circumstances it may fail?” 

The selection of a particular decision framework (Traditional vs Threshold) depends on the 

project context and adaptability. Factors that contribute to this selection, generally are on a 

continuum as shown in Figure 2-7. If a TI project is new with fixed design criteria, then the 

Traditional Approach is preferred. However, if the goal is to explore options for enhancing an 

existing or a new system by considering vulnerabilities due to climate change, then the Threshold 

Approach is valuable. 

2.4.2.2. Inland Hydrology 

In an environment of a changing climate, historical observations will become less representative 

of the future conditions that will be experienced during the lifetime of TI.  The nonstationary 

approach proposed in the Guide suggests the combination of historical data with the projected 

climate for the future.  The General Circulation Models (GCMs) typically used for projecting future 

climate scenarios are too coarse for most TI applications and their outputs are commonly 

downscaled to higher spatial and temporal resolutions using one of two approaches: (a) Regional 

Climate Models (RCM) which are similar to GCMs but designed particularly for regional/local 

climatological processes, and (b) Empirical-Statistical downscaling Models (ESDMs).  Both provide 

projections that quantify the future change of climate variability and extremes under multiple 

future scenarios for mimicking a range of possibilities over a future period. The GCM outputs are 

provided by the Coupled Model Intercomparison Project (CMIP) archives.  Currently, the 

commonly used generations of CMIPs are CMIP3 and CMIP5 (see Table 2-7). The CMIP6 class of 

datasets is just becoming available. As CMIP6 is new, the Guide does not provide any options for 

using them. Some downscaled products like LOCA are now available for CMIP6. The CMIP6 

climate scenarios are presented in Table 2-7.  

 

Figure 2-7. Considerations for choosing a decision-making framework (Kilgore et al., 2019b). 
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Table 2-7. Climate scenario classification from CMIP3, CMIP5 and CMIP6. 

CMIP Higher Mid-High Lower Even Lower 

CMIP3 SRES A1F1 SRES A2 SRES B1 N/A 

CMIP5 RCP8.5 RCP6.0 RCP4.5 RCP2.6 

CMIP6 SSP585 SSP370 SSP245 N/A 

 
The Guide recommends that, if the project service life is 30 years or less, then the selection of 
future climate scenarios is not critical because the spread of climate realizations during the next 
several decades is not large.  However, if it is greater than 30 years, the scenario selection may 
be critical but at a minimum, one lower and one higher scenario should be considered. For 
projects requiring site-specific precipitation and/or temperature, ESDM datasets are 
appropriate; however, if they require multiple climate variables, or if they are in a region with 
sparse historical data, then an RCM is preferred. After considering eight different high-resolution 
gridded climate model outputs, the Guide recommends the four datasets shown in Table 2-8. 

Table 2-8. Four recommended high-resolution datasets of temperature and projections (Kilgore 
et al. 2019b) 

 

For the TI design to be robust, the Guide recommends the use of multiple GCMs for analysis. 

Further recommendations include prioritization of what is known as “Group 1 GCMs” shown in 

Table 2-9. For LOCA data, the use of both lower (RCP4.5) and higher (RCP8.5) is recommended. 

For inland projects, future conditions design flows using hydrologic models should be based on 

the range of plausible values estimated using multiple scenarios separately. 
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2.4.2.2.1. Precipitation Extremes: Climate Change Indicator 

The HEC-17 guidance document (FHWA 2016) provides a simpler approach for incorporating the 

projected change in 24-hour precipitation that may be useful for all levels of analyses mentioned 

above.  A measure known as the Climate Change Indicator (CCI) is defined for modifying the 24-

hour, daily precipitation extreme for a given Annual Exceedance Probability (AEP), or equivalently 

the Return Period when the projected future change is large compared to the historical variability 

(Figure 2-8).   

Table 2-9. Climate sensitivity of Group 1 models (Kilgore et al. 2019b). 

 

The CCI is defined as 

𝐶𝐶𝐼 =  
𝑃24,𝑇,𝑃 − 𝑃24,𝑇,𝑂
𝑃24,𝑇,𝑂,𝑈 − 𝑃24,𝑇,𝑂

 

Where, 𝑃24,𝑇,𝑃 is the projected T-year, 24-hour precipitation, 𝑃24,𝑇,𝑂  is the Observed T-year, 24-

hour precipitation, and 𝑃24,𝑇,𝑂,𝑈 is the upper 90% confidence limit of T-year, 24-hour precipitation 

estimated from the observed data.  

As a broad guideline, CCI values less than 0.4 suggest that the evaluation of a project based on 

the historical confidence limits in Level 2 will provide a reasonable basis (i.e. change associated 

with climate change is within the bounds of sampling variability).  On the other hand, a CCI value 

greater than 0.8 suggests that further analysis of conditions due to climate change may be 
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warranted.  In between these two limits, the required assessment may depend on other factors 

associated with the project. 

 

 

Figure 2-8. Definition of the climate change indicator (CCI) (FHWA, 2016). 

2.4.2.2.2. Projections Based on Trends in Historical Discharges 

When gauged records in a watershed are available, design flows are typically determined by 

fitting an appropriate probability distribution to the annual maxima or peaks over threshold 

discharges.  However, in such applications, a fundamental assumption is that the data are 

homogeneous in time (i.e. stationary).  One approach to incorporate nonstationarity when trends 

are present is to assume that the parameters of the probability distribution vary with time or as 

a function of another variable (e.g. land use).  A simple form of nonstationarity is when only the 

mean of annual maximum discharges are varying with time. Such an approach requires several 

steps which may include: (a) estimate the time-varying mean and determine if the trend is 

statistically significant, (b) develop a hypothesis for the cause of the trend and if the extrapolation 

of such a trend is warranted, (c) fit a time-varying probabilistic model for the data; and (d) 

compute design flow quantiles. Depending on the trend, there may be a diminishing benefit to 

considering the variation of parameters other than the mean. 

2.4.2.2.3. Projections Based on Future Precipitation and Rainfall/Runoff Models 

Projecting future discharges, particularly in sparsely gauged watersheds, often requires the use 

of projected precipitation estimates and rainfall/runoff models, particularly when Levels 3 and 4 

analyses are necessary. When only the 24-hour precipitation is adequate for estimating the 

discharge, the Guide provides a 10-step procedure for estimating future, 24-hour precipitation 

quantiles (Figure 2-9). This procedure includes two loops based on the number of future 
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scenarios and the number of downscaled GCM outputs that are appropriate for a particular 

project.  As shown in Figure 2-9, steps 5 through 9 are repeated for each future scenario, and 

steps 5 and 6 are repeated for each GCM selected for the project. The computation of future 

precipitation is accomplished by using the following equations (in steps 8 and 9): 

𝑅𝐹𝐵𝑞,𝑛,𝑚 = 
𝑃𝐹𝑞,𝑛,𝑚
𝑃𝐵𝑞,𝑛,𝑚

 

where 𝑅𝐹𝐵𝑞,𝑛,𝑚 is the Ratio of the future to baseline 24-hour precipitation quantile (q) for the 

grid (n) and model (m); 𝑃𝐹𝑞,𝑛,𝑚 is the Future 24-hour precipitation quantile (q) for grid (n) and 

model (m); and 𝑃𝐵𝑞,𝑛,𝑚 and Baseline 24-hour precipitation quantile (q). 

 

Figure 2-9. The recommended procedure for projecting 24-hour precipitation quantiles (Kilgore 
et al. 2019b). 

The RFB values are then averaged to compute a mean ratio (𝑅𝐹𝐵𝑞) for each quantile which in 

turn is used to compute the projected 24-hour precipitation quantile (q),  𝑃𝑞,𝑝 as  
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𝑃𝑞,𝑝 = 𝑃𝑞,ℎ(𝑅𝐹𝐵𝑞) 

where 𝑃𝑞,ℎ is the Historical 24-hour precipitation quantile (q). 

The Guide also provides several methods to convert the 24-hour quantiles to Sub-Daily, 

Precipitation, and the Intensity-Duration-Frequency (IDF) curves.  They are (a) Linear scaling using 

historical IDF curves (Killgore et al., 2016), and (b) the Simonovic approach (Simonovic et al., 

2016).  When working with large watersheds, the point estimates of precipitation need to be 

adjusted by using appropriate Areal Reduction Factors (ARF). 

2.4.2.3. Coastal Applications 

In coastal environments, TI projects require consideration of two primary elements and they are 

(a) selection of appropriate sea level rise (SLR) estimates, and (b) estimation of potential hazards 

associated with SLR, combined with projected wave environment (Kilgore et al. 2019b, FHWA 

2020).  The general steps for project assessment are: 

1. Determine critical infrastructure elevations, performance/safety thresholds, or structure 

capacity; 

2. Estimate Relative Sea Level Rise (RSLR) at the project site; 

3. Estimate hazards associated with the water level and wave environment for the projected 

SLR; and 

4. Compare the engineering demand (loads, scour, etc.) in Step 3 to the structure capacity 

defined in Step 1. 

2.4.2.4. Selecting Sea Level Rise for Design 

Selection of an appropriate SLR projection requires consideration of the following decision 

criteria: 

1. Risk tolerance, system sensitivity, and redundancy 

2. Policy choices (e.g. projection versus retreat) 

3. Time Frame (e.g. short-term preparedness versus long-term planning). 

The Guide and HEC-25 (FHWA 2020) specify minimum Global Mean Sea Level Rise projections for 

use in planning and design unless regionalized projections are available for the project. They are 

shown in Table 2-10.  

Table 2-10. Recommended minimum GMSLR estimates for use in planning and design (Kilgore et 
al. 2019b, FHWA 2020).  
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The recommended minimum GMSLR projection is generally equal to or greater than the 
Intermediate-Low scenario of Sweet et al. (2017). The values in Table 13 were based on the 
assumption that projections that reach about 4 feet of GMSL this century are recommended as 
higher values to be considered for the planning and design of high-value assets which are 
sensitive to RSLR. They have been computed to match the 2000 to 2100 projected 95th percentile 
GMSLR value of 3.97 feet of Kopp et al., (2014) for RCP 8.5 (FHWA, 2020). There is a 95% chance 
that GMSLR will be less than the values in Table 6 even under the extreme scenario of RCP 8.5. 
 
The Guide also provides a framework for considering GMSLR scenarios (Figure 2-10). It is based 
on the simple premise that, as the risk tolerance decreases, a more conservative SLR estimate 
should be considered.  The types of TI may fall into three categories denoted as A through C. 
 

 
Figure 2-10. A suggested framework for considering GMSLR scenarios for design or planning. 
Arrows point in the direction of increasing sensitivity, redundancy, or consequence of failure 
(Kilgore et al. 2019b). 

2.4.2.4.1. Combining Coastal Hazard and Climate Change 

The transportation infrastructure is impacted by elevated water levels such as those due to storm 
surge, wave, and velocities.  All of these are sensitive to the water depth at a location that 
increases with rising sea levels.  Particularly for Level 2 and Level 3 analyses, coastal numerical 
models should be used for numerical simulation of the effects of RSLR (relative sea level rise) and 
increased water depth. Projects that are small, non-critical, and unaffected significantly by rising 
sea levels may not require such elaborate analyses. 
 
The Guide provides a set of simplified equations for assessing the effect of sea level rise on coastal 
TI.  It is noted that the procedures summarized below do not account for potential non-linear 
hydrodynamic effects attributable to RSLR. 
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In this simplified procedure, an estimate of the future flood elevation or flood depth due to a 
specified RSLR increase may be computed as 

𝜂2 = 𝜂1 + (𝐴𝑅) (𝑆𝐿𝑅) 
 
where 𝜂2 is the flood elevation in the future, and 𝜂1 is today’s flood elevation, AR is the 
Application Ratio (0.7 ≤ AR ≤ 1.5), and SLR is the relative SLR increment of the selected scenario.  
The AR coefficient represents the effect of SLR on the increasing flood depth. Its range indicated 
above has been determined from hydrodynamic modeling results. For locations in coastal 
floodplains with a higher degree of non-linearity, a large value of AR is warranted, whereas for 
those in open locations where such effects are lower, the value of AR may be closer to 1.   
 
Modification to wave heights to account for SLR is estimated by 

𝐻2 = 𝐻1 (
𝑑 + 𝜂2
𝑑 + 𝜂1

) 

where 𝐻2 is the future “zero moment” wave height, and 𝐻1 is the same for the present, and d is 
the present water depth.  The change in wave period due to SLR may be estimated as  

𝑇2 = 𝑇1√
𝐻2
𝐻1

 

where 𝑇2 and 𝑇1 are the future and present peak wave periods respectively. Water velocity 
decreases with SLR, unlike water level, wave height, and wave period.  Modification to water 
velocity due to SLR may be estimated as  

𝑉2 = 𝑉1 (
𝑑 + 𝜂1
𝑑 + 𝜂2

) 

where 𝑉2 and 𝑉1 are water velocities under future and present conditions respectively.  The Guide 

provides a discussion of the assumptions and limitations of the above-simplified approach. It 

should be noted that the most comprehensive approach to simulate the potential effect of  

climate-change-related hazards is to use hydrodynamic models, particularly in Level 2 and Level 

3 analyses as they capture the potential non-linear effects more accurately. 

2.4.3. Detecting Nonstationarity 

Before applying nonstationary methods, it is necessary to ensure that any apparent trend in data 

is not due to natural variability in a stationary environment.  Changes resulting in nonstationarity 

may be abrupt like the construction or removal of dams on rivers, periodic variability like multi-

year cycles of wet or dry periods, or a trend like increased impervious area through watershed 

development. Detecting nonstationarity requires the examination of all available data including 

paleoflood, historical information, and the most current records. Examining the full record can 

help identify useful representative records while preventing erroneous conclusions. Statistical 

analysis is commonly applied to historical data to identify gradual or abrupt changes.  

Stationarity is assumed when statistical properties do not change over time.  A more formal 

definition of a stationary stochastic process is one where the joint probability distribution of Xt1, 

Xt2, …, Xtn is the same as the joint distribution of  Xt1+m, Xt2+m, …, Xtn+m for all values of m and n 
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(Nason 2006). A starting point of any time series modeling is to verify if the underlying time series 

is stationary (Douglas et al., 2000; Yue et al., 2012; Madsen et al., 2014).  A simple plot of the 

time series may reveal quite a lot about possible nonstationarity in the data, and often, the focus 

is on the temporal variation in the mean and variance. Another useful technique is to compute 

the autocorrelation function or spectrum on two different parts of the given time series to 

investigate some evidence of nonstationarity.  However, this generally requires that the sample 

data are of enough length.  Often, a realization from a known stationary process may appear as 

nonstationary particularly if the process has temporal dependence, and for this reason, more 

formal statistical tests are desirable to determine the choice between stationarity and 

nonstationarity (Cohn and Lins, 2005).   

In this section, commonly used tests for detecting statistically significant changes are described. 

For the situation of continuous changes, both parametric and nonparametric methods are 

described.   

2.4.3.1. Trend Detection by Parametric Methods 

Linear Model for Single Trends 

Smooth changes with time are referred to as trends. The simplest type of change is a linear trend, 

which may be a continuous increase or decrease over time.  In some cases, the continuous trend 

may depend on other variables besides time.  If the temporal variation of the variable of interest 

is deemed to be linear, the starting point for modeling such a process is linear regression, and 

many textbooks and tutorials describe its application. An excellent textbook that covers the topic 

of linear models is by Draper and Smith (2014). Chapter 10 of this book also includes an extensive 

description of linear models. A summary of the theoretical concepts of linear models in presented 

in Appendix B. 

2.4.3.2. Trend Detection by Nonparametric Methods 

The parametric methods require certain distributional assumptions. More specifically, the data 

should be normally distributed, although other exceptions such as the presence of 

autocorrelation may be dealt with by special methods.  However, many hydrologic time series 

are skewed, and they do not follow a normal distribution. Often, transforming the variables 

through such an approach as taking the log transformation may help to satisfy this requirement 

of normality. Thus, alternative methods are needed to detect nonstationarity, such as 

distribution-free nonparametric methods. 

Shapiro-Wilk normality Test 

The Shapiro-Wilk test is used to determine if a sample, Xi, i =1, 2…, n is drawn from a normal 

distribution with the population mean, 𝜇, and variance, 𝜎2, respectively. Hypothesis testing is 

used to determine if the sample was drawn from a normal population (null hypothesis) versus a 

non-normal population. More information on the Shapiro-Wilk statistic is presented in Appendix 

B. 
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Trend Detection Using the Mann-Kendall and the Sen-Theil Regression Tests  

One of the most common, nonparametric tests for detecting trends is the Mann-Kendall test 

(Mann, 1945; Kendall, 1938, 1976).  This method for detecting trends is an improvement to the 

Ordinary Least Squares (OLS) regression method because of its ability to handle outliers and 

influential data.  It is also a robust test that can detect non-linear monotonic trends in non-

normally distributed data which may contain missing or censored data.  

The Sen-Theil trend line (Theil, 1950; Sen, 1968) is the nonparametric alternative to linear 

regression that can be used in conjunction with the Mann-Kendall trend test. It assumes that 

residuals are statistically independent and that the relationship between the variables is linear.  

It can also handle missing and censored values.  

2.5. Conclusions 
The objective of Task 1 was to review FDOT manuals of practice to determine the changes that 

may be necessary to incorporate peer-reviewed research on nonstationarity into the manuals of 

practice. The following manuals were reviewed: 

• FDOT Drainage Manual (FDOT 2021a) 

• FDOT Drainage Design Guide (FDOT 2020a) 

• FDOT Drainage Handbook – Drainage Connection Permits (FDOT 2020b) 

• FDOT Structures Manual (FDOT 2022a) 

• FDOT Soils and Foundations Handbook (FDOT 2021b) 

• FDOT Flexible Pavement Design Manual (FDOT 2022b) 

• FDOT Rigid Pavement Design Manual (FDOT 2022c) 

• FDOT Pavement Type Selection Manual (FDOT 2019b) 

• FDOT Manual of Uniform Minimum Standards for Design, Construction, and Maintenance 

for Streets and Highways (FDOT 2018) 

• FDOT Project Development & Environment Manual (FDOT 2020c) 

• FDOT Local Agency Program Manual (FDOT 2012) 

• FDOT Utility Accommodation Manual (FDOT 2017) 

• FDOT Utility Procedures Manual (FDOT 2021c) 

The FDOT manuals were reviewed for the applications of climate data, their criteria, and the 

types of datasets typically used or recommended. Through the review, the research team 

identified three types of data: 1) rainfall, 2) sea level, and 3) peak discharge. 

• Rainfall data is used in FDOT manuals for drainage design and calculations. Design storm 

frequencies are required in design calculations of open channels, storm drain systems, 

cross-drains, etc. Typically, these are obtained from DDF or IDF curves. FDOT recommends 

the use of NOAA Atlas 14 data for estimating design. 

• Sea Level data is typically applied in FDOT designs for calculating tailwater elevation of 

tidally influenced storm drains, cross drains, coastal ponds, etc. FDOT manuals 
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recommend obtaining historical sea level data from NOAA’s NWLON and tidal 

benchmarks from NOAA CO-OPS and FDEP LABINS. For assessing the vulnerability of 

flooding during the design life of infrastructure, FDOT Drainage Manual (FDOT, 2021a) 

and the FDOT Design Guide (2020) recommend using straight-line extrapolation of 

historical sea level data based on the design life of the project. An obvious drawback of 

this method is that it will not account for accelerating rates of sea level rise that have 

been recorded in recent decades. 

• Stream/canal discharge data is used for the design and analysis of open channels, cross 

drains, and bridges. Typically, observations from gauge data are used to perform 

frequency analysis for open channels and cross drains. If gauge data is not available, 

either the USGS regional or local regressions equations may be used, or for drainage 

areas up to 600 acres, the rational equation may be used. In the case of bridge hydraulic 

analysis, gauge data can be used to determine the peak flow rates and provide starting 

water surface elevations or boundary conditions for bridge models. 

Additionally, the team also investigated some popular datasets for incorporating nonstationarity. 

They were: 

• Downscaled climate model data  

• Sea level projections  

The research team also conducted a review of FHWA and NCHRP manuals for methods of 

incorporating nonstationarity into the transportation planning process. Based on the review, the 

following were noted: 

• For most projects, the NOAA Atlas 14 data is recommended (FHWA, 2016). Since most 

FDOT projects have a design life of 75 years or less, this would influence the level of 

analysis that is required for considering nonstationarity. 

• FHWA (2016) recommends the use of downscaled climate data for projects with a level 

of analysis of 4 or higher, according to FHWA (2016). 

• For sea level, FHWA (2020) recommends a procedure for calculating RSLR from GMSLR 

estimates and tide gauge data.  

• The FHWA (2016) recommends deriving flood frequency curves directly from the gauge 

data. 

• The NCHRP Design Practices guide (Kilgore et al., 2019a) describes two methods for 

incorporating nonstationarity: (a) trend estimation using historical discharges, including 

the use of PeakFQ and the USACE tool for trend detection; and (b) using time-varying 

parameters for statistical distribution. 

The following task will look into how some of the data, methods, projections, and scenarios will 

be considered in the next task of this project. 
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3. NEW PARADIGM AND METHODS FOR TRANSPORTATION SYSTEM 

PLANNING AND DESIGN USING NONSTATIONARY PRINCIPLES 

3.1. Task Objective 
This task includes three subtasks: 

a. Development of datasets and methods for detecting nonstationarity (Sections 3.3 & 3.4);  
b. Defining a new paradigm for defining concepts of the return period, risk, and uncertainty 

under nonstationarity (Section 3.5); and  
c. Development of new methods for specific environmental drivers (Section 3.6). 

 

3.2. Review of Existing Tools 
As recommended by the project team, two US DOT tools were reviewed. A brief description of 

these tools is provided in the ensuing sections. 

3.2.1. Vulnerability Assessment Scoring Tool 

The U.S. DOT Vulnerability Assessment Scoring Tool (VAST) is an Excel-based application 

developed to help State DOTs, MPOs, and other organizations perform an indicator-based desk 

review type vulnerability assessment using a range of indicators. The purpose of the assessment 

as described in the tool is “to determine which assets are likely to be vulnerable and which assets 

are probably not particularly vulnerable to climate change.” The main limitation of the tool is that 

it does not incorporate risk, it is limited to vulnerability assessments only. 

The tool operates using two key premises: 

1. Vulnerability is a function of exposure, sensitivity, and adaptive capacity. 

2. Certain characteristics of assets can serve as indicators of their exposure, sensitivity, or 

adaptive capacity. 

The tool calculates a vulnerability score for each asset on a scale of 1 to 4 using a weighted 

average of its vulnerability to three vulnerability components: 

• Exposure – whether an asset will experience a given stressor 

• Sensitivity – whether an asset will be damaged or disrupted from exposure to a stressor 

• Adaptive Capacity – how well the transportation system can cope with damage or 

disruption to a specific asset 

The vulnerability score of each component is calculated as weighted averages from the asset 

scores for several indicators. One of the key shortcomings of VAST is that there is a lack of 

guidance on the setting of weights for exposure, sensitivity, or adaptive capacity.  

The tool defines indicators as “a characteristic of an asset that suggests if the asset is likely to be 

vulnerable to a given stressor, either through being exposed, being sensitive, or having low 

adaptive capacity”. The tool provides the following guidelines for choosing indicators: 
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• Whether you think it will serve as a reasonable descriptor of vulnerability for a particular 

asset in your experience and your region 

• Whether you believe data exists that will inform your rating of that indicator for a given 

asset or set of assets. 

Examples of indicators from the Gulf Coast Study are provided with the tool. VAST is an indicator 

library for threat-asset pairs for exposure, sensitivity, and adaptive capacity. In addition, the 

sensitivity of the asset is available in the Sensitivity Matrix. 

There are six steps to the process used by the VAST approach as shown in Figure 3-1 and their 

timeline is presented in Figure 3-2. Each step is described below: 

Step 1 – Select Climate Stressor and Asset Types 

VAST defines a climate stressor as “an external change in climate that may cause damage to the 

transportation system.” The tool provides a list of stressors used in the Gulf Coast Study, they are 

temperature changes, precipitation changes, sea level rise, or severe storms; however, there is 

an option to specify other stressors. After all the stressors are specified, the user is required to 

specify the number (up to six) and types of assets. Asset types may be roads, bridges, rail lines, 

ports, airports, transit assets, buildings, etc.  

Step 2 – Enter Specific Assets 

For each asset type, the asset ID, asset name, latitude, and longitude must be specified. 

Step 3 – Browse and Select Indicators 

The tool defines exposure as “the nature and degree to which an asset is exposed to significant 

climatic variations.” Exposure can be estimated using indicators that provide information about 

which assets are more likely to be vulnerable. For projects that lack time or resources, indicators 

may be a better option than traditional modeling of stressors (Example of Gulf Coast Study 

modeling options for stressors presented in Table 3-1). The tool provides an example of how the 

ADCRIC model results can provide information about storm surge inundation depths which can 

then be used to estimate storm surge exposure. Exposure can also be estimated from indicators 

like distance from the coastline and elevation. The VAST Excel breaks up step 3 into 4 tabs as 

presented below: 

3a_Exp Indicator Library – presents examples of exposure indicators that can be used in the 

vulnerability assessment (see Appendix C for a complete list of indicators presented in the 

tool). There is an option to select the indicators for the next step. 

3b_Exp Indicators – up to three indicators for each of the climate stressors (selected in Step 

1) can be entered here. Indicators selected in the Indicator Library will appear here. 
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3c_S&AC Indicator Library - presents examples of sensitivity and adaptive capacity indicators. 

Indicators may be selected for the next step. Examples of sensitivity and adaptive capacity 

indicators are presented here. 

3d_S&AC Indicator Library – this tab is used to enter the indicators to derive sensitivity and 

adaptive capacity scores. Up to 10 indicators per climate stressor and asset type may be 

entered here. 

Step 4 – Exposure Data 

This step is for collecting two types of data: Exposure data and asset data. The tool provides 

options to enter exposure data for multiple climate scenarios if required. The values for the 

exposure indicators selected are entered here. Based on these values, exposure scores will be 

assigned in the next step. VAST has a second tab in step 4 to provide the asset data. 

Step 5 – Adjust Scoring 

In this step, the raw exposure data as well as the scoring data for each asset are entered. A higher 

score means the asset is more exposed. The weights of the indicator can also be adjusted in this 

step. This process is performed for exposure, sensitivity, and adaptive capacity separately. 

Step 6 – Full Vulnerability Results 

The results from the vulnerability analysis are presented in this tab. The tool allows for the 

adjustment of weights of the vulnerability components in this step.  

The following tips are recommended in the VAST Intro tab: 

1. Start small with just one asset and one climate stressor 

2. For easier navigation, keep separate copies of the tool – one for each asset type 

3. Solicit input on vulnerability assessment assumptions, assets to include, asset data, and 

scoring approaches from people in departments like planning, engineering, and 

operations and maintenance. 

The exposure, sensitivity, and adaptive capacity indicators and their data sources will be 

considered in the development of new data sets for applying nonstationary methods. 
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Figure 3-1. Schematic of the process used by the Vulnerability Assessment Tool (VAST) (Source: 
USDOT, 2015). 
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Figure 3-2. Vulnerability assessment timeline (Source: USDOT, 2015). 
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Table 3-1. Modeling options for the climate stressors used in the Gulf Coast Study (Source: 
USDOT, 2015). 

Stressor Modeling Options and Resources 

Temperature 
changes 

• DOT CMIP Climate Data Processing tool – uses CMIP3 and CMIP5 results 
to provide projected changes in several temperature variables for a 
single location 

• USGS NEX DCP30 data viewer – provides projected changes in 
temperature variables at the county and state levels. Variables include 
monthly and annual means and changes in the 90th percentile 
temperatures based on downscaled CMIP5 climate models. 

• SimCLIM for ArcGIS – provides projected temperature information in an 
ArcGIS format 

• Template for Assessing Climate Change Impacts and Management 
Options (TACCIMO) 

• The Nature Conservancy's Climate Wizard 

Precipitation 
changes 

• DOT CMIP Climate Data Processing tool – uses CMIP3 and CMIP5 results 
to provide projected changes in several precipitation variables for a 
single location 

• USGS NEX DCP30 data viewer – provides projected changes in 
precipitation variables at the county and state levels. Variables include 
monthly and annual means and changes in the 90th percentile 24-hour 
rainfall based on downscaled CMIP5 climate models. 

• SimCLIM for ArcGIS – provides projected precipitation information in an 
ArcGIS format 

• Template for Assessing Climate Change Impacts and Management 
Options (TACCIMO) 

• The Nature Conservancy's Climate Wizard 

Sea Level Rise 
• Sea level rise bathtub model 

• NOAA Digital Coast Sea Level Rise and Coastal Flooding Impacts Viewer 

Storm Surge 
• ADvanced CIRCulation (ADCIRC) model  

• STWAVE - STeady State spectral WAVE model 

• USGS Coastal Change Hazards: Hurricanes and Extreme Storms web 
viewer 

• NOAA Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model 

Wind • ADvanced CIRCulation (ADCIRC) model 

• USGS Coastal Change Hazards: Hurricanes and Extreme Storms web 
viewer 

 



41 
 

3.2.2. Guide to Assessing Criticality in Transportation Adaptation Planning 

This section presents the review of the United States of America Department of Transportation’s 

(USDOT’s) Assessing Criticality in Transportation Adaptation Planning memorandum. The 

information from this review is useful in defining criticality and selecting values that define critical 

assets, understanding the process of a criticality study, and selecting the types of nonstationary 

data that might be useful to these assessments. 

The memorandum defines criticality, presents the challenges faced by criticality assessments, 

identifies methods to define the scope and apply criteria to perform these assessments, and 

presents examples of such assessments. 

Before defining criticality, the memorandum presents some of the common challenges 

associated with assessing criticality, which are: 

• Vague definitions of criticality 

• Identifying what constitutes an asset 

• Defining the boundaries and relationships in the system 

• Gathering relevant data for the studies 

• Integrating the data with different formats, spatial referencing, etc. 

The document then discusses how some of these challenges can be overcome by first identifying 

the goals and audience for the vulnerability information. Critical assets are assets of the greatest 

importance. Based on the purpose and audience of the study, the values that define importance 

may vary. These values may be economic, cultural, health and safety, emergency evacuation, 

social connectivity, or other values. Defining the purpose and audience can help select the values 

to include and the extent to which they should be included. Table 3-2 presents some examples 

of how the design process is influenced by the purpose of the study and the target audience. 
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Table 3-2. Examples of how the criticality assessment design process is influenced by the purpose of the study and the target 
audience (Source: USDOT, 2014). 
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Some key factors to consider when developing a criticality assessment include: 

• Depth of the study – A few key issues were studied deeply versus a broader study 

• Range of transportation modes included – one versus many 

• Drivers used to define criticality – economic, health and safety, replacement costs, or 

others 

• Stakeholders and when to involve them 

• The adaptability of the assessment for other purposes and the adaptability of existing 

assessments 

The general definition of a critical asset is “an asset that is so important to the study area that its 

removal would result in significant losses.” This definition does not specify what an asset is, 

where the study area would be, and or who defines significant losses. To address these specifics 

and narrow the definition, first, the target audience must be identified. For example, the Gulf 

Cost Study engaged local and regional stakeholders and determined the following major 

categories of “critical” assets: 

• Socioeconomic importance – contributing to not just the economic viability (major 

transportation facilities providing interstate travel) but also the social viability of 

communities (like access to households, schools, libraries, places of worship, government 

centers, etc.). 

• Operational importance – assessed by considering each link and how it contributes to the 

transportation network (by measuring average daily traffic, ridership to transit, annual 

gross tonnage for rail lines, and cargo volumes for ports). 

• Health and safety – contributing to evacuation plans, disaster relief, and recovery plans, 

moving hazardous materials, inclusion in the national defense system, and access to 

health care. 

When defining the scope of the criticality assessment, the following considerations should be 

made: 

• Geographic Scope – State and local agencies and their jurisdictional borders 

• Temporal Scope – Short term versus long term. Long-term plans should also include the 

design lives as well as the future assets planned 

• Modal Scope – Depending on the audience may include highways, public transport, 

aviation, maritime, pipelines, bicycle and pedestrian facilities, and railroads 

• Ownership – Limiting the assets to those owned and operated by the agency 

Once the scope, purpose, and intended audience are defined, the memorandum describes three 

approaches to developing the criticality assessment criteria: 
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Approach 1 Desk Review 

This method involves modal experts using available data and prioritization schemes to place and 

rank assets with little to no locally specific elements. 

The memorandum provides two examples of the desk review approach: 

VDOT/Hampton Roads Pilot Approach – To evaluate transportation priorities, the Virginia 

Department of Transportation (VDOT) partnered with the University of Virginia to identify 

30 high-risk assets from 1000 existing assets by using a multicriteria method consisting of 

traffic volume, elevation relative to mean sea level, location on a maintenance priority 

route, and location on a hurricane evacuation route. 

New Jersey Pilot Approach – To understand how to make strategic capital investments in 

light of climate change, the North Jersey Planning Authority led an interagency effort in 

two geographic areas of focus. Criticality criteria were developed using the extent to 

which each asset connects critical destinations. Factors were determined from 1) the 

importance of destinations, 2) the magnitude of connects, and 3) the emergency function 

of routes. The assets were grouped into: “low and medium,” “high,” and “extreme” 

criticality. 

Approach 2 Stakeholder Elicitation 

Feedback from regional stakeholders with expertise, selected by the project leaders, is used to 

identify critical assets. 

The memorandum provides two examples of the stakeholder elicitation approach: 

The Oahu MPO Pilot Approach – Iterative discussions, facilitated through a workshop, 

between climate scientists, local planners, engineers, and management professionals 

identified and prioritized transportation asset groups based on the social and economic 

consequences of asset failure due to climate change.  

The WSDOT Approach – To identify assets vulnerable to climate change and prioritize 

those assets for a proactive response, the Washington State Department of 

Transportation (WSDOT) engaged O&M and engineering stakeholders in facilitated 

workshops. A rating from a 1 to 10 criticality scale was used applied to each asset based 

on the asset’s character, its general function, and use (Figure 3-3).  

 



45 
 

 

Figure 3-3. 10 Criticality scale was applied to each asset based on the asset’s character by the 
WSDOT (Source: USDOT, 2014). 

Approach 3 Hybrid Approach 

This method combines aspects from both the desk review and the stakeholder elicitation 

approaches. 

Examples of the hybrid approach are listed below: 

San Francisco/MTC Pilot Approach – Climate vulnerability and risk for four types of 

transportation facilities (road network; transit network; storage, operations, 

maintenance, and control facilities; and bicycle and pedestrian networks) for Alameda 

County. The pilot first filtered the assets by those that are located within the end-of-

century sea level rise inundation area. A second filter, which analyzed the environmental, 

economic, and equity characteristics was applied to limit the list of representative assets 

to three or fewer per category except in the care of the road network. Since the road 

network has hundreds of discrete arterial, collector, and local streets, a workshop where 

participants could affix stickers of importance to inundation maps was organized. 

 

Gulf Cost Phase 2 Approach – To determine the criticality of transportation assets in 

Mobile, the study considered assets of socioeconomic, operational, and health and safety 

importance. The audience of the project was transportation agencies across the country 

as well as regional decision-makers. As the goals were overarching and the audience 

broad, a hybrid approach, which consisted of a desk review in conjunction with periodic 
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input from a working group was adopted for the Gulf Coast Phase 2 Criticality Assessment. 

The working group provided feedback on the initial approach, the categories of criteria, 

and the mode-specific criteria before the transportation experts evaluate data and scored 

assets from 1 to 5 (low to high) and then categorized them into high, medium, and low 

criticality. The results were presented to stakeholders and their feedback was 

incorporated. 

3.3. Data Assembly 
This project focuses on Florida-specific data for the following hydrologic variables: (a) Rainfall; 

(b) Peak Discharge; and (c) Sea Levels. This section presents the data that has been collected and 

analyzed. 

3.3.1. Rainfall 

The Change Factors (CF) derived from three statistically downscaled climate datasets (described 

in Section 2.3.1) available from a project conducted by SLSC-FIU (2021) for the Florida Building 

Commission were used. The datasets were: 

I. Localized Constructed Analogues (LOCA), statistically downscaled 

II. Multivariate Adaptive Constructed Analogs (MACA), statistically downscaled 

III. Coordinated Regional Downscaling Experiment (CORDEX), dynamically downscaled. 

Because of an error in the code used by the original providers of this dataset, updated 

data have been acquired and are now being incorporated. 

The CF values were developed for five climate divisions (see Figure 3-4) for rainfall durations of 

1, 3, 7, and 10 days at return periods of 5, 10, 25, 50, 100, and 200 years. SLSC-FIU (2021) 

developed changed factors for two future periods: NEAR (2030-2069) and FAR (2060-2099) from 

a baseline period of 1966-2005. For demonstration, the change factors from the NEAR period 

were applied in this work. 

At each of the ATLAS 14 stations shown in Figure 3-4, DDF plots showing the rainfall intensity 

versus return period for ATLAS 14 stations were produced. The plot also shows the 95th percentile 

upper and lower bounds for the ATLAS 14 stations. In addition, ATLAS 14 values were multiplied 

by the Change Factors from the NEAR scenario of the FIU-SLSC (2021) study and plotted, the 17th 

and 83rd percentile values of the Change Factors were also applied and plotted. Example output 

plots are presented in Section 3.6.1.1. All plots will be included in the data transfer as specified 

in Section 5.2 
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Figure 3-4. Map of the DDF rainfall stations and zones in Florida. 

3.3.2. Sea Level 

Sea Level scenarios available for locations covered in the NOAA 2017 report (Sweet et al., 2017) 

were downloaded from the spreadsheet accompanying this report. For this project, the focus 

was on the scenarios listed in the NOAA 2017 report (Sweet et al., 2017) although several new 

scenarios are available from a new federal, interagency report published by NOAA (2022). In this 

regard, it is noted that the scenarios in NOAA 2017 report (Sweet et al., 2017) were the only ones 

cited in State’s legislation on vulnerability assessment. However, the methods described in the 

current project can be extended easily to scenarios available from the NOAA 2022 report (Sweet 

et al., 2022). One exception to using the NOAA 2022 report (Sweet et al., 2022) was on sea level 

extremes as mentioned below. 

The scenarios corresponding to 14 NOAA tide gauges (Figure 3-5) were extracted. For illustration, 

the corresponding Relative Sea Level scenarios are shown in Figure 3-6. The corresponding 

extreme sea level curves obtained from the NOAA 2022 report (Sweet et al., 2022) are shown in 

Figure 3-7. As seen from Figure 3-6 regional mean sea level curves around the state are tightly 

packed together with little deviation among them. In other words, there is a trivial difference in 

regional sea level rise scenarios along the coastline of Florida. However, Figure 3-7 shows that 

the extreme sea level curves have significant differences among the tide gauge locations. 
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Figure 3-5. NOAA tide gauge locations were selected for the project. 

 

Figure 3-6. Relative sea level rise curves correspond to the intermediate-high scenario obtained 
from the NOAA 2017 report (Sweet et al., 2017). 
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Figure 3-7. Extreme sea-level curves (design return level versus frequency) correspond to the tide 
gauges shown in Figure 3-6. The curves are based on the data obtained from the NOAA 2022 
report (Sweet et al. 2022). 

3.3.3. USGS Peak Discharge Data across Florida 

HEC-DSSVue and an R code were used to extract, transform, and process the USGS data. The HEC-

DSSVue, developed by the U.S. Army Corps of Engineers’ Hydrologic Engineering Center, is a Java-

based program that can plot, tabulate, edit, manipulate, and visualize hydrologic data in an HEC-

DSS database file. HEC-DSSVue can directly import USGS flow data by state. In this work, the HEC-

DSSVue was used to import the USGS annual peak discharge data. HEC-DSSVue catalogs the data 

by region name, station name, data type, date range, frequency, and agency. Using the catalog, 

data were filtered to include only annual peak flow records. The records were then manually 

filtered to include stations with a minimum 30-year date range. The resulting 231 stations are 

exported as CSV files.  

Upon closer inspection of the CSV files, some stations with the minimum 30-year date range were 

found to have large gaps or missing data, resulting in a small number of observations. A second 

round of filtering was performed using an R-script which removed stations that had less than 40 

observations or a data gap exceeding five years. Through this process of elimination, 99 stations 

were selected from the 231 stations for performing statistical analysis (Figure 3-8). In addition, 

the R-script also created CSV files of each 231 stations in a format that can be read by the USACE 

Nonstationary Analysis tool (presented in Section 3.4.1). Statistical methods applied to further 

analyze this data are presented in Section 3.4.2. 
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Figure 3-8. Map of the 231 USGS stations that were selected from the HEC-DSSVue database. A 
second round of filtering resulted in 99 stations (blue dots) while 132 stations were excluded 
(red dots) for insufficient observations. 

 

3.4. Tools for Nonstationarity Detection  
One of the key steps in the proposed methodology is the detection of the possible existence of 

nonstationarity. Often, natural variability exhibits episodic nonstationary-like characteristics 

which may not represent persistent, systematic trends that are statistically significant. This 

research explored existing tools, particularly those from federal agencies such as the US Army 

Corps of Engineers (USACE), and the United States Geological Survey (USGS), and customize their 

applications to locations in Florida.  

3.4.1. USACE Time Series Toolbox 

The USACE Time Series Toolbox is an online tool where users without programming expertise can 

upload time series data, and perform trend analysis, nonstationarity detection, and time series 

modeling. This work reviews the data exploration, model-based analysis (trend analysis), and 

nonstationary detection methods presented in the Toolbox. In addition, a report by the UCF 

affiliates on the use of the Toolbox for nonstationary detection of sea-level, precipitation, and 

discharge (as shown in Table 3-3) is available in Appendix D. 
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Table 3-3. Applications of the USACE Time Series Toolbox which are presented in the UCF report 
in Appendix D. 

Data Type Monthly mean Annual Mean Annual Max 

Sea-level X X x (from hourly data) 

Precipitation  X x (from daily data) 

Discharge  X x (from daily data) 

Surge   x (from hourly data) 

 

Explore Data 

Only csv files may be uploaded to the time series toolbox. The csv files should be formatted to 

contain two columns the first is date in the mm/dd/yyyy, mm-dd-yyyy, or yyyy format, and the 

second is the value. Once the data is uploaded the user can specify the title, x-axis label, and y-

axis label. The Toolbox offers a few methods to deal with missing values in the time series. The 

options are: 

1. Leave them blank  

2. The last observation carried forward 

3. Linear interpolation. 

Once the data is uploaded, a time series plot of the data with title and axis labels specified by the 

user is generated (Figure 3-9). 
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Figure 3-9. Example of the time series plot of the annual peak flow at Bonnet Creek, Vineland, 
FL, created using the USACE Time Series Toolbox. 

The second tab of the Explore data section presents the data summary including tabulated raw 

data, start and end data of the data, the number of entries per year, the number of missing 

values, and the total entries. 

The third tab presents the Magnificent Seven Analysis, which are summary statistics in data 

characterization and classification as presented in Archfield et al. (2013). These are: 

• L-Mean – Average value of the data provides a measure of the location. Refer to Hosking 

(1996, p.14) for calculations. 

• Coefficient of L-Variance (LCV) – the ratio of standard deviation to the mean of the data. 

Refer to Hosking (1990) and Hosking (1996) for more information. 

• L-Skewness – a measure of the asymmetry of the probability distribution. Values greater 

than 0.3 indicate large skewness. Refer to Hosking (1990) and Hosking (1996) for more 

information. 

• L-Kurtosis – a measure of the tail density of the probability distribution. For example, a 

normal distribution would have a value of 1/6. Refer to Hosking (1990) and Hosking (1996) 

for more information. 

• AR1 – autoregressive lag coefficient, represents how predictive the previous value in the 

time series is of the next. Values can be positive or negative. 

• Amplitude – Measures the best-fitting annual sinusoidal curve height. 
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• Phase – the measure in radians of the angle of the best fitting, annual sinusoidal curve at 

time zero. 

Model-Based Analysis 

The model-based trend analysis section of the Toolbox measures the slope, directionality 

(positive or negative), and intercept for both the traditional linear slope method, as well as Sen’s 

slope method. Trend hypotheses are tested at a 0.05 significance level for the following tests: 

• T-test 

• Mann-Kendall 

• Spearman Rank-Order. 

Nonstationary Detection 

The algorithm uses statistical testing to examine the data for nonstationarity, that is, changes in 

the data mean, variance, or distribution. The following tests are applied to detect 

nonstationarity: 

• Lombard Wilcoxon 

• Pettitt 

• Kolmogorov-Sminov (CPM) 

• Bayesian 

• Mood (CPM) 

• LePage (CPM) 

• Energy Divisive Method 

• Segment Statistics – Mean, Variance, Standard Deviation. 

An example of nonstationarity detection using the Toolbox for annual peak flow data is presented 

in Figure 3-10. The Toolbox also presents a graphical view of the tests with significant results and 

the data type tested (Figure 3-11). The Toolbox can show segmented trend lines with slope, 

intercept, and directionality, and the significance of the trend is tested using t-Test (Figure 3-12).  

The algorithm can also perform a breakpoint analysis (Figure 3-13). Breakpoints represent sharp 

changes in behavior necessitating segment statistics to accurately reflect the data series. The 

following metrics are used to determine the breakpoints: 

• Residual Sum of Squares (RSS) 

• Bayesian Information Criteria (BIC) 

• Root Mean Square Error (RMS) 
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Figure 3-10. Nonstationarity detection using the Time Series Toolbox for annual peak flow at 
Bonnet Creek, Vineland, FL. 

 

 

Figure 3-11. Statistical heat map showing the significant tests for the nonstationary analysis of 
annual peak flow data at Bonnet Creek, Vineland, FL. 
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Figure 3-12. Segment statistics for the nonstationary analysis of annual peak flow data at 
Bonnet Creek, Vineland, FL. 

 

Figure 3-13. Breakpoints identified by the Time Series Toolbox and the breakpoint segment 
details for the annual peak flow data at Bonnet Creek, Vineland, FL. 
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When applying the findings of the nonstationary analysis, the following criteria, generally used 

by researchers are recommended: 

1. Consensus: Nonstationarity is considered strong if it is detected by two or more tests 

2. Robustness: A statistically significant nonstationarity is robust if at least two statistical 

properties (mean, variance, standard deviation, or distribution) 

3. Magnitude: Nonstationarities produced by greater changes in the statistical properties of 

the datasets should be taken into consideration. 

3.4.2. USGS Trend Assessment for Peak Flow 

Trend assessment was performed using R scripts on 99 USGS peak flow stations in Florida that 

met the conditions as described in Section 3.3.3. The R-script first performed a normality test at 

a significance of 0.05. Linear regression analysis was also performed. Because the normality tests 

showed that the Gaussian assumption inherent in the regression modeling was not valid at 

almost all gauge locations, the Mann-Kendall nonparametric trend assessment was performed. 

For this task, missing data were filled in using log-linear interpolation. The results from the 

nonparametric trend assessment tests are presented in Figure 3-14. At a large number of station 

locations, there was no statistically significant trend (see “white” dots in Figure 3-14).  The 

analysis also showed that the trend was negative (blue dots in Figure 3-14) at many stations. 

However, statistically significant trends were detected at 9 stations as shown by the “red” dots 

in Figure 3-14.  The exact reason for the nonstationarity at these locations was not explored. 

Table 3-4 presents the stations with significant positive trends. The time series plots with 

superimposed linear trendlines for the 9 stations are presented in Figure 3-15. 
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Figure 3-14. Map with stations showing the results from the nonparametric trend analysis. 

 

Table 3-4. USGS annual peak flow stations with significant positive trends from the trend 
assessment. 

STATION NAME STATION ID LATITUDE LONGITUDE 

BONNET CREEK VINELAND, FL 2264100 -81.52 28.33 

WHITTENHORSE CREEK VINELAND, FL 2266200 -81.62 28.39 

REEDY CREEK VINELAND, FL 2266300 -81.58 28.33 

DAVENPORT CREEK LOUGHMAN, FL 2266480 -81.59 28.27 

SWEETWATER CREEK SULPHUR SPRINGS FL 2306500 -82.51 28.04 

ECONFINA CREEK BENNETT, FLA 2359500 -85.56 30.38 

SHINGLE CREEK CAMPBELL, FL 2264495 -81.45 28.27 

SHINGLE CREEK AIRPORT NEAR KISSIMMEE, FL 2263800 -81.45 28.30 

BOGGY CREEK TAFT, FL 2262900 -81.31 28.37 
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Figure 3-15. The plot of the discharge with linear trendlines for stations with significant positive 
trends. 

3.5. Nonstationarity Paradigm for Return Period, Risk, and Uncertainty 
Transportation and other infrastructure built for serving communities from the impact of 
extreme hydrologic events have largely been designed based on concepts such as return period 
and risk assuming the concept of “stationarity”, which implies that the past climate represents 
what is to be expected in the future.  Traditionally, the features of Transportation Infrastructure 
(TI) are designed using a fixed return period which is the basis of stationarity. The current 
drainage design manual, for example, provides specifications for a fixed return period magnitude 
that should be used for various features such as canals, stormwater drainage, bridges, roadways, 
and major highways. However, in an environment of change, whether is it due to anthropogenic 
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or natural but systematic changes, (e.g., rising sea level, increasing rainfall intensity), the notion 
of a fixed return period is no longer appropriate. A roadway designed for say, a 50-year return 
period, will decrease its level of flood protection with time yielding, say, a 25-year level of 
protection at the end of the design life. In this section, a foundation for a new paradigm based 
on the assumption that the hydrologic variable of interest is nonstationary is presented.  It is 
important to determine that the hydrologic data indeed do demonstrate trends validated by 
statistically significant trends with further confirmation by assessing physical reasons for such 
behavior.   The nonstationary design methods discussed in this report are based on the concepts 
of (a) Expected Waiting Time (EWT), another interpretation of Return Period; (b) Risk; and (c) 
Expected Number of Events (ENE). First, a summary of the current concepts associated with the 
stationary approach is presented.  Next, a summary of extensions to the concepts of Expected 
Waiting Time (EWT), which is equivalent to Return Period, Risk (R), and Expected Number of 
Events (ENE) will be discussed with suggestions as to how they could be used for hydrologic 
design when the primary variable of interest is nonstationary. 

3.5.1. Modeling of Stationary and Nonstationary Extremes 

There are two common ways of modeling extremes of hydrologic variables such as floods, 
precipitation, temperature, and wind. They are based on (a) Block maxima (BM) data or in the 
case when the “block” is one year, the annual maxima series (AMS), and (b) peaks-over-threshold 
(POT) data, as shown graphically in Figure 3-16 and Figure 3-17 respectively.   

 

Figure 3-16. (a) Illustration of extracting block maxima (BM) data for modeling extremes and (b) 
example of a daily rainfall series (open circles) and the (annual) block maxima values (solid 
circles in red). 
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Figure 3-17. (a) Illustration of extracting peaks-over-threshold (POT) data for modeling extremes 
(in green) and (b) example of a daily precipitation series and the values above a threshold equal 
to 2 inches (in red color). 

Block maxima (BM) is defined as the maximum value of a given block of observations. The length 
of the block is typically one year, but it could also be an individual season (e.g., a wet or a dry 
period).  A common example of block maxima data is the annual floods which are the highest 
discharges in a calendar or a water year.  This approach has been generally used in actual practice.  
A limitation of such an approach is that the sample size available for modeling the time series is 
small due to the use of only one extreme event per year.  Often, there are other extreme events 
(second or third highest) that can be useful for the statistical analysis of the largest events in the 
records. There are cases where the second largest flood each year may outrank the annual 
maxima in other years, and yet in the block maxima approach, such events will not be used for 
extreme value modeling. 

The peaks-over-threshold (POT) method uses extreme events (e.g., floods) above a selected 
threshold (also known as a base flood in case of floods) within a given year or season.  The 
selection of the threshold and the POT values are important from both physical and statistical 
points of view, and they will be discussed subsequently in this section.   It is expected that using 
POT values will improve the estimation of design events because of the large sample of extremes 
that can be extracted from the historical dataset.  The POT methods require a higher frequency 
of data in a time series (e.g., hourly or daily) as opposed to block maxima (e.g., annual floods).  In 
some situations, some annual extremes may not even be selected as POT events.  The POT 
modeling approach provides additional flexibility in representing extreme events as compared to 
the block maxima approach but at a cost of added complexity (Lang et al. 1999).  Unlike the BM 
approach in which the data set is well defined, however, the POT approach can be subjective. 
Although some criteria have been developed (Coles 2001), standard guidelines for its application 
are lacking.  It is noted that, in hydrology, the POT method is also known as the partial duration 
series (PDS) method.  Both stationary and nonstationary approaches are available for modeling 
BM and POT data.   
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3.5.2. Statistical Modeling of Extremes 

3.5.2.1. AMS Series 

The probability distribution of annual extremes that is becoming increasingly popular is the 

Generalized Extreme Value distribution (GEV). A good reference for GEV is the classic book by 

Coles (2001). The Probability Density Function (PDF) for GEV is given by 

𝑓(𝑧; 𝜇, 𝜎, 𝜉) =
1

𝜎
[1 + 𝜉 (

𝑧 − 𝜇

𝜎
)]
−
1
𝜉
−1

𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑧 − 𝜇

𝜎
)]
−
1
𝜉
} 

(1) 
 
where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, respectively.  When 𝜉 = 0 GEV 
reduces to the well-known Gumbel Distribution that may be expressed as 
 
by inverting the above equation and it is given by 

𝑧𝑇 = 𝜇 −
𝜎

𝜉
[1 − 𝑦𝑝

−𝜉], (2)  

where 

𝑦𝑝 = −𝑙𝑜𝑔 (1 − 𝑝) , (3) 
 
And 𝑧𝑇  is the return level for the return period 𝑇 =  1/𝑝.  

 

3.5.2.2. POT Series 

The POT approach was first developed by hydrologists in the 1970s. This method fits a stochastic 

model to exceedances over a threshold (𝑢) and an independent exponential random variable to 

the model the amount of exceedance (Davison and Smith, 1990). The main advantage of 

employing the POT method is the increased sample size which results in more robust estimations 

of the shape parameter. The POT approach used in this project is based on the family of 

distributions called GPDs. The GPD, which implies the classical Pareto Distribution (Picklands, 

1975; Davison and Smith, 1990; Madsen et al., 1997), models the amount of exceedance and the 

probability density (PDF) function is given by (Coles, 2001): 

𝑓(𝑧; 𝑢, 𝜎, 𝜉) =
1

𝜎̃
[1 + 𝜉 (

𝑧 − 𝑢

𝜎̃
)]
−
1
𝜉
−1

                  (4) 
 

Where 𝑢 is the threshold used for determining the peaks. Besides 𝑢, there are two other 
parameters of this model (scale, 𝜎̃, and shape 𝜉 ).  
 
The N-year return level (or quantile) is given by (Coles, 2001): 
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𝑧𝑁 = 𝑢 +
𝜎̃

𝜉
[(𝑁𝑛𝑦𝜁𝑢)

−𝜉
− 1], 

(5) 
 

where 𝑛𝑦 is the number of periods in a year (for daily this is 365.25), and 𝜁𝑢 is the probability of 

individual observations exceeding the threshold.  This probability is typically estimated as the 

ratio of the number of exceedances and the length of the entire time series.   

The details of parameter estimation, model selection, and uncertainty estimation are beyond the 
scope of this report as it is covered well in classic textbooks such as the one by Coles (2001). 

3.5.2.3. Modeling Nonstationary 

The extremes of hydrologic variables exhibiting nonstationarity may be independent but not 
identically distributed. If the form of the distribution remains the same (e.g., GEV) but with 
varying parameters (related to time or as a function of some covariate), the extreme value 
distribution can be parameterized using those relationships. For GEV, the general form of such a 
nonstationary model for the block maxima is denoted as 𝑍𝑡 is, 

𝑍𝑡 ~ 𝐺𝐸𝑉[𝜇(𝑡, 𝑐), 𝜎(𝑡, 𝑐), 𝜉(𝑡, 𝑐)] 

(6) 
where t denotes time, and c is a covariate (an external variable) that may influence the 
parameters of the GEV distribution. Depending on the complexity of the data at hand, various 
functional forms for the three parameters of the GEV model may be used. Some examples are: 

a. The location parameter is a linear function of time, but other parameters are fixed 

𝜇(𝑡) = 𝛽0 + 𝛽1𝑡;  𝜎(𝑡) = 𝜎;   𝑎𝑛𝑑  𝜉(𝑡) = 𝜉 (7) 
b. The location parameter as a quadratic function of time, but other parameters are fixed 

𝜇(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2;  𝜎(𝑡) = 𝜎;   𝑎𝑛𝑑  𝜉(𝑡) = 𝜉 (8) 

c. Scale parameter as a log-linear function of time and other parameters are fixed. The 
exponential form is used to ensure that the scale parameter remains positive. 

𝜇(𝑡) = 𝜇;  𝜎(𝑡) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑡);   𝑎𝑛𝑑   𝜉(𝑡) = 𝜉 (9) 
d. Both location and scale parameters are functions of time, but the shape parameter is 

constant 

𝜇(𝑡) = 𝛽0 + 𝛽1𝑡; 𝜎(𝑡) = 𝑒𝑥𝑝(𝛽2 + 𝛽3𝑡);    𝑎𝑛𝑑   𝜉(𝑡) = 𝜉 (10) 
e.  The location parameter is a function of the covariate, NINO3 (an index representing the 

El Niño/La Niña phenomenon) but other parameters are fixed. 

𝜇(𝑡) = 𝛽0 + 𝛽1𝑁𝐼𝑁𝑂3(𝑡);  𝜎(𝑡) = 𝜎;   𝑎𝑛𝑑   𝜉(𝑡) = 𝜉 (11) 
The application of the above is illustrated in Section 3.6. 
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3.5.2.4. Change Factors of Rainfall Depth-Duration-Frequency (DDF) Estimates 

Another approach for modeling nonstationarity, particularly in the case of extreme rainfall 

expressed in the form of Depth-Duration-Frequency (DDF) curves, is to use the concept of a 

Change Factor (CF).  The values of CF are typically determined from downscaled, climate model 

data corresponding to the historical period and a future period of interest. They can be used to 

adjust available DDF curves such as those available from NOAA’s Atlas 14 dataset for planning 

and design of future stormwater projects associated with Transportation Infrastructure.  The 

theoretical basis of CF is illustrated in Figure 3-18. 

 

 

Figure 3-18. Illustration of the concept of the change factor. The dashed curve is the adjusted 
curve using, observed, modeled-current, and modeled-project probability distributions and the 
change factor defined in the text below.  In most cases, the m-c and o-c curves deviate from 
each other, even in cases when the current and observed periods are identical. 

As shown in Figure 3-18, a CF is associated with three cumulative probability distributions: (1) 

Observed ( 𝐹𝑜−𝑐); (2) Modeled-Current ( 𝐹𝑚−𝑐); and (3) Modeled-Projected ( 𝐹𝑚−𝑝). Modeled-

Current and Observed probability distributions correspond to the same historical period. The 

Modeled-Projected distribution represents the future precipitation for a specific future period.   

It is well known that the extreme rainfall predicted by climate models has a large negative bias.  

Typically, bias correction techniques are used to correct such biases. For defining CF, it is assumed 

that the Multiplicative Quantile Delta Mapping (MQDM) method is used for adjusting the future.  

The expression for adjusting future rainfall quantiles is (Irizarry et al. 2016, 2017): 

𝑥̂𝑚−𝑝𝑎𝑑𝑗. = 𝐹𝑚−𝑝𝑎𝑑𝑗.
−1 (𝐺) = 𝐹𝑚−𝑝

−1 (𝐺) ∗ {
𝐹𝑜−𝑐
−1 (𝐺)

𝐹𝑚−𝑐−1 (𝐺)
} 

(12) 
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The variables used in MQDM are defined as follows: 𝑥̂𝑚−𝑝𝑎𝑑𝑗. is the adjusted quantile for the 

model (m) projections (p) for the future period, 𝐹𝑜−𝑐 is the Cumulative Distribution Function, CDF, 

of the observations (o) in the current baseline period (c), 𝐹𝑚−𝑐 is the CDF of the model (m) in the 

current baseline period (c), and 𝐹𝑚−𝑝 is the CDF for the model (m) projections (p) for the future 

period. G is the annual non-exceedance probability (CDF value) and is equal to 1-P, and P is the 

annual exceedance probability (AEP) which is related to the return period T by 1/P = T (i.e., G=1-

1/T), F-1 is the quantile function.  

The adjusted rainfall for the future is given by Eq (13) below which allows the adjustment of the 

rainfall quantile corresponding to a given return period T = 1/p by combining estimates obtained 

from historical data (o-c), the model output for the current period (m-c) and the model output 

for the future period. 

𝑥̂𝑚−𝑝𝑎𝑑𝑗 = 𝐹𝑜−𝑐 
−1 (𝐺) [

𝐹𝑚−𝑝 
−1 (𝐺)

𝐹𝑚−𝑐 
−1 (𝐺)

] =  𝐹𝑜−𝑐 
−1 (𝐺) ∗ 𝐶𝐹 

(13) 
 

 The quantity inside the large square brackets is the Change Factor, CF, which may be used to 

adjust the historical DDF curves (as denoted by Fo-c ). 

3.5.3. Review of Stationary Methods for Return Period and Risk 

The stationary approach assumes that extreme values (e.g., floods, sea levels) are independent 
and identically distributed (i.i.d.) random variables with a specified probability distribution.  First, 
the case of annual maxima (each value represents the maximum value over a block length of one 
year) will be presented.  Denoting the random variable of extremes as Z, assume that it has a 
Cumulative Distribution Function (CDF) denoted by 𝐹𝑍(𝑧, 𝜽) where 𝜽 is its parameter set.  For a 
given cumulative probability, q, the corresponding value of the variable, Z, denoted as zq is called 
the q-th quantile.  In addition, sometimes the notation zp is utilized, where p denotes the 
exceedance probability, i.e., p=1-q.  Traditionally, the concept of Return Period, T, has been used 
in which T = 1/p (e.g., Gumbel, 1941) and in this case, the corresponding quantiles zq or zp as 
defined above are also written as zT.  In some recent literature, the quantiles are called “return 
level” (e.g., Coles 2001).  The design quantity in this notation, zT may refer to discharge or an 
elevation (stage) corresponding to the return period, T. 

Figure 3-19(a) shows schematically the hydrologic design problem using the annual maximum 
flood data which is assumed to be stationary over the historical period.  The design life of n years 
is assumed to start from time t0 when the project operation begins the following construction.  
When using the Return Period T as the design criteria, it is useful to represent T as the Expected 
Waiting Time (EWT) which is also the statistical expectation for the time until the first exceedance 
of the design value (also known as “waiting time”). This allows a convenient extension of this 
concept into the nonstationary paradigm. The waiting time, X, is the time it takes from time t0 
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for the first flood event exceeding the design quantile, say, zq0, which implies that all other prior 
annual maxima after t0 are less than zq0.  It can be shown that X is a random variable that follows 
the geometric distribution (e.g., Mood et al., 1974) in which its expected value is E[X]=1/p0 where 
p0 is the exceedance probability of the design level zq0 and it can be determined from p0 =  
1 − 𝐹𝑍(𝑧𝑞0, 𝜽). It follows that the design return period, T which is equal to 1/p0, is the Expected 

Waiting Time (EWT) for the extreme event to occur.  It is also noted that the Return Period (or 
EWT) is independent of the design life, n. The return period concept may be interpreted as “the 
expected waiting time for the T-year event is T years.”  In addition, the variance of X is Var(X) 
=(1 − 𝑝0)/𝑝0

2.   

Another measure that is important in evaluating and designing projects is the hydrologic 
risk which incorporates the design life, n.  It may be shown that the number of events exceeding 
zq0 in an n-year period is a random variable, Y, which has a Binomial Distribution (BD) (e.g., Bras, 
1990) 

𝑃[𝑌 = 𝑦] = (
𝑛
𝑦) (𝑝0)

𝑦(1 − 𝑝0)
𝑛−𝑦 y = 0, 1, …, n (14) 

 

where y is the number of such events over the design life, n. Risk, R, is defined as the occurrence 
of one or more extremes exceeding the design return level or equivalently P [Y ≥ 1].  It should be 
noted that the definition of Risk defined in the context of hydrologic designs here is different 
from the traditional use of risk as the product of probability and consequence.   

Following the above definition, R is given by 

𝑅 = 𝑃[𝑌 ≥ 1] = 1 − 𝑃[𝑌 = 0] = 1 − (1 − 𝑝0)
𝑛 (15) 

 

Note that Eq. (25) suggests that risk, R, is only a function of T = 1/p0 and n, and computing it does 
not require the knowledge of the underlying extreme value distribution.  In addition, a more 
general definition of hydrologic risk may consider the probability of the occurrence of y or more 
events exceeding the design level, i.e., P [Y ≥ y] during the n-year period.  This will require 
integrating Eq. (24) as 

𝑅 = 𝑃(𝑌 ≥ 𝑦) =∑(
𝑛
𝑗)𝑝0

𝑗
 (1 − 𝑝0)

𝑛−𝑗       ,       𝑦 = 1, . . . , 𝑛

𝑛

𝑗=𝑦

 
(16) 

 

 

Furthermore, another quantity of interest for project evaluation and design is the expected 
number of events (ENE) exceeding the design event over the n-year period, i.e. E[Y]= np0.   
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(a) Stationary Case (b) Nonstationary Case 

  
Figure 3-19. Examples of stationary and nonstationary annual maximum floods for (a) 
stationary, and (b) nonstationary. The dashed line in each figure is the fitted location parameter 
using a stationary and nonstationary GEV distribution respectively for each case. The variables 
t0 and tn denote the beginning and end of the project design life, n, respectively. In addition, zq0 
is the design quantile, and p0 and pn denote exceedance probabilities (area of PDF above the 
design quantile) (Adapted from Obeysekera and Salas, 2020). 

3.5.4. Extension to a Nonstationary Paradigm 

In this section, the evaluation and design methods summarized in the previous section under 
stationarity will be extended to nonstationarity. Figure 3-19(b) illustrates a situation of 
nonstationarity where the annual flood maxima show an increasing pattern.  At this location, the 
annual maximum floods have been increasing over the years, likely due to increasing 
urbanization as indicated by a doubling of population from the 1930s to 1990s. Unlike the 
stationary case where the probability p0 is expected to remain constant in the future, the 
probability exceeding the design quantile zq0 will increase over time from p0 to pn at the end of 
the design life, n (Fig. 14b).  Since the exceedance probability, pt increases for t=1, 2, ...,n, the 
traditional geometric distribution with constant p is not applicable. The time-varying p can be 

obtained readily from a fitted time-varying model as 𝑝𝑡 = 1 − 𝐹𝑍(𝑧𝑞0, 𝜽𝑡) where the subscript t 

in 𝜽 indicates that the underlying Probability Distribution Function (PDF) of annual maxima 
changes with time, and hence nonstationary (note that we assume that the type of PDF is the 
same, but the parameters vary with covariates that evolve with time).  In this case, the waiting 
time, X, for the first occurrence of an event exceeding zq0 (i.e., waiting time) follows a 
nonhomogeneous geometric distribution (Mandelbaum et al., 2007; Salas and Obeysekera, 
2014).  As in the stationary case, the concept of Expected Waiting Time (EWT) will now be 
extended but for a situation with time-varying probabilities, pt.   

The derivation of EWT under nonstationarity may be found in Cooley (2013) and Salas and 
Obeysekera (2014). This leads to a convenient formula for EWT, which we denote as T given by 

𝑇 = 1 + ∑∏(1− 𝑝𝑡)

𝑥

𝑡=1

∞

𝑥=1

 
(17) 
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In practice, the increasing values of pt will converge the product to zero quickly and a finite, but 
the somewhat large value of x, say xmax  may be adequate instead of the infinite summation shown 
in Eq. (27).  Since pt = 1- FZ(zq0, 𝜽𝑡) and the initial design return period is T0 = 1/p0, a curve of T 

versus T0 can be constructed for a given sequence of pt values.  This is called the “Return Period 
Curve” (Salas and Obeysekera, 2014) and it is a convenient design tool for nonstationary 
situations (see Figure 3-20).  It can be used to answer questions such as “What should be the 
design T0 if the desired EWT, T, is say, 50 years?”  Clearly, for increasing extreme events, T < T0. 
We will illustrate this case with an example in the next section. 

 

Figure 3-20. Example return period curve. 

 

The risks under nonstationarity can be derived using an approach similar to the stationary case 
but it is somewhat more complex.  Assuming, once again that Y is the number of events exceeding 
the design quantile zq0 over the design life n with possible values y = 0,1,2…n, the Probability Mass 
Function (PMF), which is equivalent to the Binomial Distribution in the stationary case, is given 
by the Poisson Binomial Distribution (Obeysekera and Salas, 2016), 

P[𝑌 = 𝑦] = ∑ ∏𝑝j
jϵA

∏(1 − 𝑝𝑖)     ,        𝑦 = 0,1,… , 𝑛

iϵAcA∈ℱy

 

(18) 
 

where ℱ𝑦  is the set of all subsets of y integers that can be selected from {1,2, 3,…,n}, and Ac is 

the complement of A with respect to {1,2,...,n}.  While Eq. (28) can be used to determine the risk 
R=P(Y>y), as mentioned in Obeysekera and Salas (2016), the computation of the PMF given by 
Eq. (28) is cumbersome, particularly for large n. For the particular case where y=0, i.e. R = P(Y>0) 
= 1-P(Y=0), one may use the simple nonstationary risk formula (Salas and Obeysekera 2014),  
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𝑅 = 𝑃[𝑌 ≥ 1] =  1 − 𝑃[𝑌 = 0] = 1 −∏(1− 𝑝𝑡)

𝑛

𝑡=1

 
(19) 

 

Since the time-varying probabilities, pt can be determined for a given initial design quantile, zq0, 

the computation of the risk, R, using Eq. (29) is straightforward. An example demonstrating the 
effect of nonstationarity on Risk is illustrated in Figure 3-21.  

 

Figure 3-21. An example demonstrating changes in the magnitude of risk due to nonstationarity 
as a function of the project life, n. The dashed lines in this figure correspond to the stationary 
case, and as shown, risk naturally increases for projects with longer project life. In each case, the 
corresponding nonstationary curve is shown as a solid curve. Three cases corresponding to the 
initial return period, T0 = 25, 50, and 100 years are shown. 

Another quantity of interest is the frequency of extreme events, which varies with time for 
nonstationary conditions.  In case of increasing probabilities of exceedance, the frequency of 
extreme events exceeding the initial design level zq0 will increase with time.  The expected 
number of events, ENE, over the design life n is a measure that may be used for evaluating 
existing projects or as a design criterion for future projects (Obeysekera and Salas, 2016). 
Although the computation of the PMF given by Eq. (28) is cumbersome, the expected value and 
the variance of Y are simpler and can be determined from 

𝐸[𝑌] =∑𝑝𝑡

𝑛

𝑡=1

 
(20) 
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𝑉𝑎𝑟[𝑌] = ∑𝑝𝑡 (1 − 𝑝𝑡)

𝑛

𝑡=1

 
(21) 

 

It is straightforward to show that, under stationarity conditions, i.e., pt = p0 for all t, then 𝐸[𝑌] =
𝑛𝑝0 and 𝑉𝑎𝑟[𝑌] = 𝑛𝑝0(1 − 𝑝0) which correspond to the first two moments of the Binomial 
Distribution as stated above in the previous section. 

Further details of the above concepts can be found in Salas et al. (2018). The application of the 
methods will be further illustrated in Section 3.6. 

3.6. Development of Nonstationary Methods for Key Environmental Drivers 
Using the methods described in Section 3.5, it is now possible to demonstrate their application 

to Florida-specific data described in Section 3.3. In this section, the application focuses on (a) 

extreme rainfall including the mapping of Change Factors; (b) Peak discharge at USGS gauges, 

and (c) Sea Level extremes at the four tide gauges identified in the Data Assembly section.   

3.6.1. Rainfall 

3.6.1.1. Comparison of DDF 

DDF curves were generated at the 242 ATLAS 14 stations using the Change Factors from the 

statistically downscaled LOCA dataset as described in Section 3.3.1. An example of the DDF curves 

at Jacksonville International Airport is presented in Figure 3-22. The plot shows the ATLAS 14 

values, its 5th, and 95th percentile, the ATLAS14 values multiplied by Change Factors (ATLAS 14 x 

CF), and its 17th and 83rd percentile. The FDOT rainfall is presented in the 1-day plots. In most 

cases (except some South Florida stations), the 83rd percentile of ATLAS 14 x CF is higher than the 

upper bound (95th percentile) of the ATLAS14 rainfall depth as shown in Figure 3-22. The 

complete set of comparison plots will be included in the data transfer as specified in Section 5.2 
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Figure 3-22. DDF curves generated for 1-day, 3-day, 7-day, and 10-day storms using the ATLAS 
14 data and change factors from downscaled data at the Jacksonville International Airport 
station. 

3.6.1.2. Spatial Mapping of Change Factor 

For computing the spatial distribution of Change Factor, the following downscaled, climate data 

sets were used.   

1. Localized Constructed Analogues (LOCA), statistically downscaled, 1/16thdeg (~ 6 km) 

resolution 

2. Multivariate Adaptive Constructed Analogs (MACA), statistically downscaled, 1/16 deg  (4, 

6 km) resolution 
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3. Coordinated Regional Downscaling Experiment (CORDEX), dynamically downscaled, (25 

and 50 km) resolution 

Typically, each climate model data set is available for the period 1950 through 2099, covering 

both historical and future periods.  The goal was to compute the CF for each grid cell 

corresponding to the downscaled climate dataset (LOCA, MACA, and CORDEX).  A rigorous 

statistical modeling approach for computing DDF curves from the climate datasets (historical and 

future periods) was used. For the results shown below, the historical period was 1950:1999 

whereas the future period was 2050:2099, both equal 50 years in length.  Historical and future 

DDF curves were produced using the Peaks Over Threshold (POT) approach involving the 

Generalized Pareto Distribution (GPD).  The ratio of the DDF estimates corresponding to future 

and historical periods computed from climate model datasets yielded the CF for all grid cells. For 

illustration, the daily rainfall was used, and the CF values were computed for the Return Periods, 

5, 10, 25, 50, 100, and 200 years.  For determining spatial contours of equal CF, the values were 

first smoothed by using a two-dimensional LOESS algorithm. An example of resulting spatial maps 

is shown in Figure 3-23. The complete set of spatial maps is included as part of the data transfer 

described in Section 4.  
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Figure 3-23. Spatial maps of change factors derived from the LOCA dataset corresponding to the return period of five years. Sample 
values in selected grid points and the contours using a smoothing algorithm are also shown. 
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3.6.2. Sea Level  

This section illustrates the application of nonstationary methods described in Section 3.5 for tide 

gauge locations (Figure 3-5).  Here the same approach used in the NOAA 2022 report (Sweet et 

al., 2022, Section 3.5) was used with one exception, which is explained below. The SLR scenarios 

used for this illustration are from the NOAA 2017 report (Sweet et al., 2017) and are required to 

be used for vulnerability assessments in the State of Florida. The NOAA 2022 report (Sweet et al., 

2022) provides a new set of projections based on new science and the extrapolations of 

observations. It is noted that, if necessary, the applications documented below can be extended 

easily to the NOAA 2022 report (Sweet et al., 2022) projections. 

As stated in NOAA 2022 report (Sweet et al., 2022), one of the primary tasks in coastal 

infrastructure projects is to determine the design elevation (also known as return level) of a 

particular structure (e.g., seawall, road crown, or first-floor elevation of a building) for a desired 

level of risk or probability.  They typically require the knowledge of advanced statistical methods 

associated with extreme values such as those illustrated in the commonly referenced textbook 

by Coles (2001) (see Section 3.5). Results of the application of such methods (as in Sweet et al., 

2022) for all 14 tide gauges in Florida shown in Figure 3-5 are presented below. 

The regional frequency analysis (RFA)-based extreme water level (EWL) distribution parameters 

are provided in Error! Reference source not found.. These were available from the federal report p

ublished by NOAA (Sweet et al., 2022). The EWL probability parameters are necessary to replicate 

this use case, and they are specifically from a generalized Pareto distribution (GPD) peaks-over-

threshold approach (see Section 3.5.2, and Sweet et al., 2022): (a) the local Index, 𝑢; (b) rate of 

exceedances above the local index, 𝜆; (c) scale, 𝜎𝑅𝐹𝐴; and (d) shape, 𝜉, and the slope of the 

current sea level curve from 1992 to 2000. In the examples below, NOAA 2017 (Sweet et al., 

2017) intermediate-high curve is used.  Both the SLR (RSL) scenario and the return level curves 

are referenced to Year 2000. 

As in the NOAA 2022 report (Sweet et al., 2022), it is assumed that only the location parameter 

(i.e., local index, 𝑢 in GPD) changes as a function of the SLR scenario (i.e., RSL). This may be 

expressed as 

𝐹(𝑧)  =  𝐺𝑃𝐷(𝑢(𝑅𝑆𝐿), 𝜎, 𝜉) (22) 
 

where 𝑢 is the GPD local index that is a function of RSL, and σ and ξ are scale and shape 

parameters, respectively, which are assumed to be constant over time. Because of the above 

assumption, the local index 𝑢 is adjusted by a magnitude 𝛿 (i.e., the regional mean sea level 

change from the reference year) obtained from the selected scenario.  

For planning infrastructure using the scenario’s RSL projections and the EWL probabilities, two 

approaches are illustrated: (1) recurrent flood frequency and (2) time-varying average recurrence 

interval and risk. While the infrastructure designs are based on a variety of factors, one or both 
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approaches may be used to support that process (e.g., the height of a sea wall, road crown 

elevation, or base-flood elevation of a building). In this use case, the term “flood” could pertain 

to a particular NOAA High Tide Flood (HTF) level or an arbitrary probabilistic EWL level. 

Table 3-5. Regional frequency analysis (RFA)-based extreme water level (EWL) distribution 
parameters. 

Tide Gauge Location Details RFA-based GPD parameters  

NOAA ID Location Local Index 
u 

𝝀 𝝈𝑹𝑭𝑨 𝝃 Slope 
(m/year) 

8720030 Fernandina Beach, FL 0.473 3.01 0.179 0.227 0.0023 

8724580 Key West, FL 0.262 2.97 0.195 0.364 0.0025 

8729840 Pensacola, FL 0.345 2.85 0.212 0.456 0.0024 

8720218 Mayport, FL 0.378 3.01 0.179 0.227 0.0026 

8727520 Cedar Key, FL 0.415 2.96 0.270 0.375 0.0022 

8726520 St Petersburg, FL 0.337 2.99 0.266 0.354 0.0028 

8725520 Fort Myers, FL 0.325 2.98 0.199 0.375 0.0031 

8725110 Naples, FL 0.323 2.98 0.199 0.375 0.0029 

8728690 Apalachicola, FL 0.390 2.95 0.257 0.402 0.0030 

8726724 Clearwater Beach, FL 0.294 2.99 0.266 0.354 0.0071 

8729108 Panama City, FL 0.368 2.88 0.238 0.432 0.0025 

8723970 Vaca Key, FL 0.249 2.97 0.195 0.364 0.0042 

8723214 Virginia Key, FL 0.317 3.00 0.152 0.251 0.0051 

8721604 Trident Pier, FL 0.407 3.00 0.178 0.198 0.0051 

 

Designs based on Recurrent Flood Frequency. Using the extreme value distributions and the sea 

level scenarios, it is possible to predict the time-varying change in frequency.  In the case of GPD, 

the recurrent flood frequency (number of exceedances above a return level [z]) may be 

computed as (Buchanan et al., 2017)  

𝑁(𝑧, 𝛿) = 𝜆 (1 +  
𝜉(𝑧−[𝑢+𝛿])

𝜎̃
)

−1

𝜉
  for 𝜉 ≠ 0 (23) 

 

where 𝛿 is the change in RSL (relative to the project construction year). 

The planning problem may be stated as follows: What should the initial return level (used for the 

design) be to ensure that the recurrent flood frequency is limited to a specified number of events 

at the end of the design life? It is now possible to lay this out graphically, as shown in Error! R

eference source not found. for two tide gauges.  
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(a) (b) 

 
 

Figure 3-24. Recurrent flood frequency estimates for (a) Virginia Key, Florida, and (b) Pensacola, 
Florida. Note: to be useful for decision-making, a conversation of the return level to land-based 
heights (e.g., geodetic datum such as NAVD88) should be made. 

In Error! Reference source not found., the number to the right of each point along the curve s

hows the recurrent flood frequency, N, corresponding to the year indicated on the left. In this 

case, it was assumed that by 2060, the desired value of N = 1, and the design event frequency 

(#events/yr) necessary for this criterion, are indicated in Error! Reference source not found.. A s

ummary of results for all 14 tide gauges is shown in Error! Reference source not found.. The 

design return period required in 2000 to meet the flood frequency criteria shows significant 

variability across the sites. The design return level (and the design average recurrence interval) 

depends on the slope (a function of the scale and shape parameters) of the return level curve. 

Design Based on Time-Varying Exceedance Probabilities  

The application of time-varying recurrence interval and risk concepts is illustrated by converting 

the GPD model to an equivalent annual maxima model, which in this case is the GEV distribution 

(Coles, 2001).  The equivalent annual-maxima modeling approach, as used here, will also 

facilitate the direct application of emerging risk and recurrent interval concepts already 

developed for situations of time-varying extreme probabilities (Salas and Obeysekera, 2014; Salas 

et al., 2018; Obeysekera and Salas, 2020). 

The cumulative distribution function (CDF) of the GEV model of annual maxima is expressed as 

𝐹(𝑧)  = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑧 − 𝜇

𝜎
)]
−1/𝜉

} 
(24) 

 

where 𝜇, 𝜎, 𝜉, are the location, scale, and shape parameters of the GEV (Coles 2001).  
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Table 3-6. Summary of design parameters (with numbers rounded) to constrain the recurrent 
flood frequency, N, to one per year by 2060 (end-year of the design life. 

NOAA ID Location Relative sea 
level rise (in 
meters from 
2000 to 
2060) 

Return level 
(m above 
1983-2001 
MHHW) 
corresponding 
to AEF = 1-
year 

Return 
level (m 
above 
1983-2001 
MHHW) 
required in 
2005 to 
ensure N = 
1 by 2060 

Design 
Average 
Recurrence 
Interval (in 
years) 
required in 
2005 to 
ensure N = 1 
by 2060 

8720030 FERNANDINA 
BEACH 

0.79 0.597 1.39 73 

8720218 KEY WEST 0.78 0.351 1.13 72 
8720357 PENSACOLA 0.75 0.462 1.21 20 
8720587 MAYPORT 0.79 0.483 1.27 133 
8721604 CEDAR KEY II 0.75 0.583 1.33 14 
8723214 ST. PETERSBURG 0.8 0.48 1.28 25 
8723970 FORT MYERS 0.78 0.436 1.22 41 
8724580 NAPLES 0.78 0.433 1.21 41 
8725110 APALACHICOLA 0.74 0.55 1.29 14 
8725520 CLEARWATER 

BEACH 
0.81 0.456 1.27 34 

8726384 PANAMA CITY 0.73 0.505 1.24 16 
8726520 VACA KEY 0.79 0.348 1.14 82 
8726607 VIRGINIA KEY 0.78 0.419 1.20 255 
8726667 TRIDENT PIER 0.78 0.537 1.32 149 

 

For computing 𝜇, the local index is further adjusted to reflect the translation of the return level 

curve from 2000 to the reference year (i.e., 2005). The GEV scale parameter,  𝜎 = 𝜎̃𝜆𝜉 , where 

the at-site scale parameter 𝜎̃, is computed as 𝜎̃ =  𝜎𝑅𝐹𝐴* 𝑢.  Finally, the time-varying GEV model 

assumes that only the location parameter, 𝜇, changes with sea level change, 𝛿, and the time-

varying annual extreme value distribution is given by 

𝐹𝑡(𝑧, 𝛿)  = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑧 − (𝜇 + 𝛿)

𝜎
)]
−1/𝜉

} 
(25) 

 

With sea level rise, the exceedance probability, 𝑝𝑡, corresponding to an initial return level (𝑧𝑞0, 

initial design), changes with time because of the rising RSL, 𝛿. Consequently, the average 

recurrence interval is not a fixed measure but decreases with increasing sea levels.  
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The traditional concept of the average recurrence interval or ARI is the average waiting time 

between two successive exceedances of the return level. Using the same definition but in a time-

varying exceedance probability framework an equivalent measure of average recurrence 

interval, T, may be derived as (Cooley, 2013; Salas and Obeysekera, 2014).  

𝑇 = 1 +  ∑ 

∞

𝑥=1

∏ 

𝑥

𝑡=1

(1 − 𝑝𝑡) 
(26) 

 

where 𝑝𝑡 = 1− 𝐹𝑡(𝑧, 𝛿)  is the time-varying exceedance probability. If a project is designed for 

a return period, 𝑇0[𝑡 = 𝑡0], then T < 𝑇0  implies that the actual recurrence interval due to rising 

RSL will be less. 

The methods described in the preceding paragraphs are applied to the 14 tide-gauge locations 

shown in Figure 3-5. For illustration, it was assumed that the projection scenario for each tide 

gauge would continue beyond 2060. However, the methodology described above can be used 

with any other scenario. The derived GEV parameters for each gauge are shown in Error! R

eference source not found.. 

Table 3-7. The parameters of GEV computed using the peaks-over-threshold GPD model (Coles 
2001). 

NOAA ID Location GEV location 
parameter 

GEV scale 
parameter 

GEV shape 
parameter 

8720030 FERNANDINA BEACH 0.620 0.109 0.227 
8720218 KEY WEST 0.371 0.076 0.364 
8720357 PENSACOLA 0.484 0.118 0.456 
8720587 MAYPORT 0.503 0.087 0.227 
8721604 CEDAR KEY II 0.606 0.168 0.375 
8723214 ST. PETERSBURG 0.498 0.132 0.354 
8723970 FORT MYERS 0.452 0.097 0.375 
8724580 NAPLES 0.450 0.097 0.375 
8725110 APALACHICOLA 0.567 0.155 0.402 
8725520 CLEARWATER BEACH 0.440 0.115 0.354 
8726384 PANAMA CITY 0.526 0.138 0.432 
8726520 VACA KEY 0.355 0.072 0.364 
8726607 VIRGINIA KEY 0.419 0.063 0.251 
8726667 TRIDENT PIER 0.537 0.090 0.198 

 

The average recurrence interval curves, 𝑇, as a function of 𝑇0, for all 14 tide gauge locations are 

shown in Error! Reference source not found.(a). This figure demonstrates that, in all cases, the a

ctual average recurrence interval is less than the design recurrence interval. For instance, for a 

location near Pensacola, Florida, if a project is designed for 𝑇0 = 100 years, the actual average 

recurrence interval, due to accelerating RSL rise, is only about 50 years.   
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a) b) 

  

Figure 3-25. (a) Actual average recurrence interval (due to rising mean sea level) curves (𝑇 
versus 𝑇0) at each tide gauge. (b) Risk curves as a function of design life: Stationary (black 
curve), the actual risk resulting from rising relative sea level rise (red curve), and risk curve for a 
specific risk (blue curve). 

Risk-Based Design 

Under stationary conditions, the risk (defined as the probability of one or more exceedances 

above the design elevation) is a function of the life of the project, 𝑛. The risk formula under 

stationarity is given by 𝑅 = 1 − (1 −
1

𝑇0
)𝑛. As the length of the design life increases, risk also 

increases. Under conditions of time-varying exceedance probability, 𝑝𝑡, the risk (R) formula is 

(Salas and Obeysekera, 2014) 

𝑅 = 1 −∏(1− 𝑝𝑡)

𝑛

𝑡=1

 
(27) 

 

With rising relative sea levels, 𝑝𝑡  increases and the risk is higher than that under stationarity. This 

increase in risk is illustrated for the Pensacola, Florida, tide gauge in Error! Reference source not f

ound.(b) when the initial design, 𝑇0 = 50 years. The black curve in Error! Reference source not 

found.(b) shows the increasing risk as the design life becomes longer even under stationarity. For 

instance, if the Design Life, n = 50 yrs, this risk is about 0.6 (60%).  However, when sea level rise 

is incorporated, the risk over a given life of the project increases more rapidly, exceeding the 

corresponding risk under stationarity (see the red curve in Error! Reference source not found.(b). I

n the above example, when n=50 yrs, the risk will increase to about 75% due to rising sea levels.  

Moreover, the rising sea level causes the risk to approach 100% (R = 1) when the design life is 

about 75 years or more. In the risk-based design approach, one can specify the tolerable risk and 

determine the initial design period (or return level).  
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One option is to design a project in such a way that the resulting increased risk profile due to the 

nonlinear RSL trend is at or below that under stationarity. While the risk reduction approach 

described below is illustrated for a selected RSL scenario for the future, it can be implemented 

for multiple scenarios leading to a variety of risk-reduction options depending on the future RSL 

scenarios. In such a broader application, a risk-based framing founded on risk tolerance may be 

adopted. 

Considering uncertainty in the sea level rise projections, one may wish to approach the problem 

using concepts of dynamically adaptive planning. In the example shown in Figure 3-25(b) (blue 

curve), two parameters are specified to illustrate this concept. First, it is assumed that the project 

will be constructed in, for example, two or more phases. Considering such a planning assumption, 

phase I is 50 years long (i.e., n = 50 years), and the maximum tolerable risk during this phase is 

0.3 (30%) as opposed to the 75% risk mentioned above. The blue curve shows the risk profile for 

such a design. This curve was computed by constraining risk, R=0.3 when n=50, as shown by the 

green dot in Figure 3-25(b). One implication of this adaptive approach is that the initial return 

level will need to increase from 1.93-m MHHW to 3.15-m MHHW (Table 3-8), and the 

corresponding initial average recurrence interval or return period must increase from 50 years 

to 174 years.  Such an increase in the design period is not surprising given the risk tolerance of 

30% during the life of the project. If this risk tolerance is less (say 50%), then the required design 

is smaller. The purpose of this example is to demonstrate how the nonstationary approach may 

be used for developing a risk-based design. 

Finally, in this approach, one must also assume that the project will be expanded after that initial 

period, and measures must be adopted not to lock in the design and preempt the planners from 

expanding it into a bigger project after say, the initial 30-year period.  For example, the 

foundation design of the project may need to assume the eventual capacity expansion and allow 

for it in the initial design. This approach of dynamically adaptive planning is becoming increasingly 

popular to deal with deep uncertainties associated with sea level rise. 

Table 3-8 shows that with a relatively small increase in initial design elevation, the risk can be 

managed to a desirable level. In this example, however, the ultimate design (at the end of the 

full design life; e.g., 50 or 100 years) needs to be assessed to ensure that resources (e.g., land) 

may be needed for the build-out. 
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Table 3-8. Results of the Risk-Based Design for all tide gauges shown in Figure 3-5. Values in the 
last column have been rounded to the closest 5-year interval. 

NOAA 
ID 

Location Design return level 
for 𝑻𝟎 = 50 years (m 
MHHW) 

Design return 
level to constrain 
risk to 30% over a 
25-year period (m 
MHHW) 

Average 
Recurrence 
Interval (ARI) of 
the design to 
constraint 
probability (Risk) 
to 30% over a 25-
year period 

8720030 FERNANDINA BEACH 1.30 1.93 333 
8720218 KEY WEST 1.03 1.72 249 
8720357 PENSACOLA 1.76 2.94 174 
8720587 MAYPORT 1.05 1.62 419 
8721604 CEDAR KEY II 2.10 3.28 176 
8723214 ST. PETERSBURG 1.61 2.56 199 
8723970 FORT MYERS 1.31 2.12 212 
8724580 NAPLES 1.31 2.11 212 
8725110 APALACHICOLA 2.03 3.23 173 
8725520 CLEARWATER BEACH 1.41 2.27 210 
8726384 PANAMA CITY 1.93 3.15 171 
8726520 VACA KEY 0.98 1.65 257 
8726607 VIRGINIA KEY 0.84 1.37 508 
8726667 TRIDENT PIER 1.07 1.62 474 

 

3.6.3. Peak Discharge 

Only about 9 gauges in the USGS datasets (out of about 100) showed an increasing trend 

indicating possible nonstationarity. There was no effort to identify the causes of such 

nonstationarity at each of the discharge locations. When such an increasing trend is present, 

planning of infrastructure needs to incorporate nonstationarity concepts described in Sections 

2.4 and 3.5.  For a demonstration of the nonstationary approach, the data at Shingle Creek at 

Campbell are used below. As shown in Figure 3-26, the time series plot of annual peak discharge, 

Q, as a function of time (i.e., Year) shows a statistically significant trend with a p-value of about 

0.04.  

As a first step, various extreme value models were fitted to determine which type of model (e.g., 

Gumbel vs. GEV) and nonstationarity would be most appropriate for this discharge location (See 

Section 3.5.2). In this step, various combinations of nonstationarity in both location and scale 

parameters were assumed. As a generally accepted guideline, the shape parameter is assumed 

to be fixed unless there is a valid reason for modeling its nonstationarity. The results of various 

model combinations are shown in Table 3-9. 
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Table 3-9. Results summarized for the various combinations of the Gumbel - GEV models. 

# Model  Comparison 
of Models 

Negative 
Log-
Likelihood 

Number of 
Parameters 

Deviance 
Statistic 

Tabulated 
Chi-
Squared 
value 

p-
Value 

Akaike 
Information 
Criterion, 
AIC 

1 GUM NA 327.98 2 NA NA NA 660.0 
2 GUMMU 2 vs. 1 325.47 3 5.02 3.841 0.025 656.9 
3 GUMSC 3 vs. 1 327.92 3 0.11 3.841 0.739 661.8 
4 GUMMUSC 4 vs. 2 325.51 4 -0.08 3.841 1.000 659.0 
5 GEV 5 vs. 1 327.94 3 0.08 3.841 0.783 661.9 
6 GEVMU 6 vs. 5 325.21 4 5.47 3.841 0.019 658.4 
7 GEVSC 7 vs. 5 327.52 4 0.84 3.841 0.360 663.0 
8 GEVMUSC 8  vs. 6 325.23 5 -0.04 3.841 1.000 660.5 

*Model naming follows the following convention: First three letters identify the fitted probability 

distribution (Gumbel or GEV) followed by the parameters, mu (location), and sc (scale) parameters that 

were assumed to be nonstationary (function of time) 

Details of model selection based on the results of various statistics given in Table 3-9 are well 

covered in textbooks such as Coles (2001) and they will not be repeated here.  Based on the p-

value (below -.05) and the lowest AIC statistic from the last two columns of the above table, the 

GUMMU model was chosen as the best model (highlighted in Table 3-9). This model name implies 

that the best model is Gumbel and the nonstationarity is incorporated as a trend in the location 

parameter (μ). A plot of the data and the temporal variation of the location parameter is shown 

in Figure 3-26. 
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Figure 3-26. Temporal variation of the location parameters with the flood magnitude data. 

 

The nonstationary return period curve and the risk curves are shown in Figure 3-27. 

(a) Return Period Curve (b) Risk Curve 

 
 

Figure 3-27. The nonstationary return period curve and the risk curves. 
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3.6.3.1. Example risk-based application of FDOT Projects 

Two primary characteristics of projects are important in the context of applying nonstationary 

methods. First, the type of project (Open Channel, Storm Drains, Cross Drains) and the associated 

Design Frequency are relevant. Under nonstationarity, the concept of design frequency needs to 

be revisited.  The FDOT Drainage Manual (FDOT, 2021a) provides guidance on this information.  

The second parameter of importance is the Design Service Life (DSL). For illustrative purposes, a 

Cross Drain project (e.g. bridge) with a DSL of 50 years and a Design Frequency of 100 years is 

used in the ensuing sections.  The demonstration of how a risk-based nonstationary approach for 

planning and design may be used is shown in Figure 3-28. The assumption on risk threshold is 

only for illustration of the approach.  Variations of the type of project, Design Frequency, DSL, 

and the risk threshold will not affect the use of this nonstationary approach based on risk. 

 

Figure 3-28. Risk-based nonstationary approach for planning and design. 

The two curves in this figure show the stationary (lower black curve) and the nonstationary 

(upper red curve) risk profiles as a function of the design return period for a project with a design 

life of 50 years. As expected, the risk of failure under nonstationary conditions is higher (the red 

curve is above the black curve). If a project is designed for T = 100-year return period, the risk of 

failure is 39.5% and 59.7% under stationary and nonstationary conditions respectively. If there is 

a desire to reduce the nonstationary risk to say, stationary risk (i.e., 39.5%), then, the figure 

shows that the project must be designed to T = 180.7 years.  This will result in a larger design 

discharge and, the cost will be larger.  This is the cost of reducing future risk to address 
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nonstationarity. It should be noted that increasing the project capacity to address nonstationarity 

depends on numerous other factors besides cost (e.g., risk tolerance). Ideally, the benefits of 

maintaining a desired risk profile by avoiding, say, service disruptions under nonstationarity, 

need to be compared with this additional cost of a design with a higher return period.  It was 

beyond the scope of this research project to carry out such an analysis. It is noted that, in some 

situations, the current infrastructure practice may already include a sufficiently large safety 

factor (e.g., larger diameter pipe in a culvert) that will provide the necessary risk drawdown. 

3.7. Conclusions 
The overall objective of this chapter was the development of datasets and methods for 

incorporating nonstationarity in transportation project design. The chapter focused on three 

hydrologic drivers that are typically used for planning and design: (a) extreme rainfall; (b) peak 

discharge in canals, rivers, and creeks; and (c) sea levels along the coastline.   

The first major task was to assemble the historical data for these drivers but only within the State 

of Florida.  As with any nonstationary approach, the first task is to detect statistically significant 

trends for both current and future periods. Only when such trends are significant, the 

nonstationary approaches should be considered in future planning. The theoretical basis for 

trend detection was described in detail. In addition, the recent research for revisiting the 

traditional concepts of return period and risk was summarized in detail. 

In the case of rainfall, the focus was on the best available Depth-Duration-Frequency (DDF) curves 

published by NOAA and known as Atlas 14.  There was no attempt to detect trends in historical 

rainfall. However, downscaled, climate-downscaled datasets were used to assess the potential 

changes to such DDF curves.  For this analysis, the downscaled LOCA dataset was used. First, 

Change Factors (CF, percent change in extreme rainfall from current to future) computed for a 

prior study conducted for the Florida Building Commission (FBC) were compared with the 

uncertainty bounds of the Atlas 14 estimates. At many locations, the 83rd percentile rainfall of 

the Change Factor values lay outside the 95th percentile values of the ATLAS 14 upper bounds. 

DDF curves comparison using Change Factors from MACA and CORDEX datasets will be generated 

as a next step. 

A new, gridded set of CF was created by conducting statistical analysis using the Peaks Over 

Threshold method for each grid cell. Smoothed contours of the CF were drawn for all three 

climate datasets and return periods of 5-, 10-,25-,50-, 100-, and 200- years. These will be useful 

for incorporating nonstationarity in rainfall by applying the CF to current DDF curves for any 

location within the State of Florida. 

Peak discharge data were collected and reviewed for over 200 stations across the State. Based 

on the length of records and the frequency of missing values, 99 stations were selected for 

further analysis. The application of linear regression for trend detection was not possible due to 

the non-Gaussian nature of the probability distribution of peak discharge data.  Instead, the 

nonparametric method based on the Mann-Kendall test was chosen for detecting trends.  This 
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analysis demonstrated that, at many stations, there was no positive trend in peak discharge data. 

However, nine stations showed statistically significant trends. Future infrastructure planning and 

design at these locations may need to consider the presence of systematic trends and hence use 

the nonstationary methods illustrated in this report. 

For sea level extremes, 14 tide gauge locations around the State were selected.  The tests for 

detecting trends at these locations were not needed as it is well known that sea levels are rising 

as their trends are significant. The application of nonstationary methods was demonstrated for 

one tide gauge location. For future mean sea level rise scenarios, the curves recommended in the 

NOAA 2017 report (Sweet et al., 2017) were used.  The curves for extreme sea levels were 

obtained from the Federal report published by NOAA in 2022 (Sweet et al., 2022). Results for all 

14 tide gauge locations are available and included as part of the dataset transfer. 
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4. DEVELOPMENT OF NEW DATASETS FOR APPLYING THE 

NONSTATIONARY METHODS 

4.1. Objective 

The research team will assess and assemble the information available for projections of sea level 

rise, rainfall, and groundwater levels for applications of the nonstationarity methods. The 

datasets will include both FDOT and other data that are necessary for applying the 

nonstationarity methods. 

As part of Task 3, the research team has put together a dataset. The datasets will be transferred 

to the Research Center. The following is a description of the datasets included.  

4.2. Description of Datasets Included 

4.2.1. Rainfall 

• NOAA ATLAS 14 Depth Duration Frequency (DDF) estimates 

The dataset consists of statistical rainfall depth developed using Regional Frequency Analysis 

(RFA). The curves are available at 242 locations in Florida. The dataset provides precipitation 

frequency estimates for storm durations of 5 minutes through 60 days at average recurrence 

intervals of 1 year through 1000-years. 

 

This data is stored in the FDOTdataTransfer_DFF folder. The folder consists of three Microsoft 

Excel Worksheet files (.xlsx) – one each for mean, 5th (lower bound), and 95th (upper bound) 

percentile rainfall depths. Each Excel file contains multiple sheets labeled using the 

recurrence interval (nine recurrence intervals from 2-years through 1000-years) and each 

sheet contains a table of estimated rainfall depths (in inches) for 242 stations for 19 storm 

durations of 5-minutes through 60-days. 

 

The FDOTdataTransfer_DFF folder also contains a .csv file named Atlas14_StationInfo which 

provides information about the 242 stations including the longitude, latitude, region (Region. 

Name), and climate division (Cd. New used in the processing of Change Factors presented 

below). The stationID values, included in the table, can be used as the unique identifier. 

The.RData file named FL_Atlas14_PDS_DDF contains the raw data. R file named 

DDF_DataTransfer contains the script used to process the data tables. 

 

• LOCA, MACA, and CORDEX Change Factors 

Change factors (CFs) are calculated from statistically downscaled global climate data 

products. The CFs can then be used to update the DDF estimates of the ATLAS14 data. Such 

applications can provide extreme rainfall estimates for future periods under different 

emission scenarios. 
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For each dataset, both “NEAR” (2030-2069) and "FAR” (2060-2099) periods are covered.  The 

Change Factor for Return Periods (RPs), 5-, 10-, 25-, 50-, 100-, and 200- years for durations 1, 

3, 7, and 10 days are provided. The statistics included are the 17th, 50th (median), and 83rd 

percentiles of model spread, the 90% confidence intervals (ci90MedL, ci90MedH) for the 

median, and the mean. The CFs for all 242 Atlas 14 stations are in the dataset. 

 

• Spatial Maps 

Spatial maps of Change Factors across Florida were created from daily MACA, LOCA, and 

COREX at return periods of 5, 10, 25, 50, 100, and 200 years. For determining spatial contours 

of equal CF, the values were first smoothed by using a two-dimensional LOESS algorithm. The 

maps are included in the folder FDOTdataTransfer_SpatialMaps. The files are named using 

the data (MACA, LOCA, and CORDEX) along with the return period (5yr, 10yr, 25yr, 50yr, 

100yr, and 200yr). 

 

• DDF Curves with Change Factors 

DDF curves were generated at the 242 ATLAS 14 stations using the Change Factors from the 

statistically downscaled LOCA dataset. The data is included in the folder 

FDOTdataTransfer_DDFwithDF. There are four folders by duration: 1-day, 3-day, 7-day, and 

10-day, each containing the .tif files of the plots at the ATLAS 14 stations. The files are named 

using the Atlas 14 station names. 

 

4.2.2. Peak Discharge 

• Annual Peak Flow Data from USGS stations 

Annual peak flow data from the 231 USGS stations across Florida were filtered using an R 

script to select stations with a minimum 40 years of observations and without data gaps that 

exceed five years. The data from the resulting 99 stations were transferred as csv files and 

can be found in the FDOTdataTransfer_PeakDischarge folder. The files are named 

‘AnnualPeakFlow_’ followed by station ID. Each .csv file has a table with Year and Value 

(annual peak flow in cfs). The .csv files are formatted so the user may directly upload these 

files to the United States Army Corps of Engineers (USACE) Time Series Toolbox to perform 

nonstationarity analysis. 

 

The subfolder also contains a .csv file named _FileInfo which provides information like the 

latitude (Lat), longitude (Lon), and file names (NewFileName), which may be identified using 

the unique StationID. 
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4.2.3. Sea Level 

• Hourly Sea Level Data from NOAA Tide Gauges 

Tide gauge data available through NOAA’s tides and currents were downloaded for 23 

stations in Florida. The downloaded data was in the form of NetCDF (.nc) files. Using a Python 

script, the observed water levels (in feet referenced to Mean Lower Low Water, MLLW) were 

extracted from each station and exported as a csv file. The csv files are named 

‘HourlyTidalValues_’ followed by the station ID. Each .csv file has a table with the following 

columns: time (date-time format dd/mm/yyy hh:ss), ObservedTide (in ft MLLW), Year, Month, 

Day, and Hour. 

 

The subfolder also contains a .csv file that provides the latitudes (Lat) and longitudes (Lon) 

for each gauge station identified using their unique station IDs (StatID). 

4.2.4. Groundwater 

The groundwater data is compiled in the FDOTdataTransfer_GW subfolder. 

• Broward County 2070 Future Conditions Average Wet Season Groundwater Elevation Map 

2017 

This map was created using Broward County’s hydrologic models with the USACE NRC Curve 

3 for anticipated sea level rise and future precipitation patterns from the Center for Ocean-

Atmospheric Prediction Studies (COAPS) Community Climate System model (CCSM).  

 

The shapefile for the raster layer is in the BrowardFutureConditions subfolder. 

 

• Broward County 2070 Future Conditions Average Wet Season Groundwater Elevation Map 

2023 Update 

The above map was updated with sea level rise (SLR) projections aligned with Southeast 

Florida’s Climate Compact (3.3 ft SLR by 2070). 

 

• Miami Dade 2040 Future Groundwater Level Maps 

For planning purposes, Miami Dade County provides two maps for anticipated groundwater 

elevations in NAVD 88: 1) dry season – month of May, and 2) wet season – month of October.  

The maps were created from the NRCII forecast, which uses 1.0 feet of sea level rise increase 

from 2009 (-0.9 ft mean sea level NAVD88 to 0.1 ft in 2040). 
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5. KNOWLEDGE TRANSFER 

5.1. Objective 
Develop a technology transfer and a training program to inform design professionals including 

engineers, environmental professionals, and right-of-way professionals on how to apply the new 

methods. 

5.2. Description of Task 
A one‐day, recorded, Technology Transfer webinar was organized on June 21, 2023. The topics 

covered in the webinar were: (a) concepts of nonstationarity, (b) methods and tools useful for 

detection nonstationarity in hydrologic drivers, (c) general guidelines when the treatment of 

nonstationarity may be necessary, and (d) a new paradigm for return period and risk under 

nonstationarity and the appropriate methods. 
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6. SUMMARY AND RECOMMENDATIONS 

6.1. Summary 
With the need to build resilient transportation infrastructure, there has been growing interest in 

incorporating data and tools that account for climate change in planning and design. The 

objective of this project was to review the current FDOT manuals of practice and propose 

potential modifications to incorporate nonstationary datasets and methods. To achieve this 

objective, the work done through this effort was divided into four tasks:  

1) Review current FDOT manuals for potential modifications and evaluate the current 

methods in nonstationarity, along with the frameworks to implement them. 

2) Recommend and/or develop planning and design tools for incorporating nonstationarity 

in the design process. 

3) Develop new nonstationary datasets of environmental variables for the State of Florida. 

4) Organize a one- or two- day technology transfer webinar for transportation design 

professionals. 

As a result of the review of FDOT manuals, the design team focused on three main environmental 

variables: 1) rainfall, 2) sea level, and peak discharge. Datasets and the methods included in the 

manuals are largely based on the stationarity assumption. Rainfall estimates are routinely used 

in FDOT planning and design processes like storm drain system design, cross drain hydraulics, 

temporary facility design, and calculating peak flow using the Rational method. The latest 

versions of FDOTs manuals of practice recommend the use of NOAA’s Atlas 14 datasets. Atlas 14 

estimates are based on historical data and do not consider the potentially changing extreme 

rainfall magnitudes. Calculations for sea level rise, which is necessary to estimate tailwater 

elevations for stormwater systems, ponds, etc., are performed in the FDOT manuals using 

regression of historical tide gauge data. Similarly, peak discharge, which is used in the design and 

analysis of open channels, cross drains, bridges, etc., is calculated from gauge data or regional 

USGS regression equations. 

The decision to include nonstationary data and methods should be based on the design life of 

the project, the cost, criticality, vulnerability, and risk of the project. According to FHWA (2016) 

designers should consider risk evaluations (asset criticality, vulnerability, and cost) and the 

service life of the project in their implementation of nonstationary data and methods. In line with 

this, FHWA (2016) provides a framework with multiple levels of analysis. Typically, a level 1 or a 

level 2 project, which has a design life of less than 75 years, may only require historical data; 

whereas higher levels of analysis, with design lives greater than 75 years require the use of 

projected data as well. Some examples of projected data as well as tools and methods of analysis 

for rainfall and peak discharge are presented in FHWA (2016). FHWA (2020) provides information 

on sea level rise projections. Projections may be process-based (such as Kopp et al. 2014) or 

scenarios-based (such as Sweet et al.  2017). FHWA (2020) recommends using site -specific RSLR 

estimates for designs, with minimum projections of RLSR throughout the remainder of this 
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century and higher projections of RSLR when the overall project performance is very sensitive to 

sea levels and/or the design life and cost are high. Both FHWA circulars emphasize that engineers 

need to be cognizant of the uncertainty in projected data, as well as the evolutionary nature of 

climate data and science. The NCHRP reports (Kilgore et al. 2019a and 2019b) also provide 

guidance on incorporating nonstationarity in the transportation design process. In these reports, 

a framework is provided based on the factors like criticality of the project, expected service life, 

vulnerability to climate change, the functional classification (roadway, bridge, or tunnel), 

regulatory requirements, and resources available for the project. The NCHRP reports (Kilgore et 

al. 2019a) recommend that for projects with service lives greater than 30 years, at least one lower 

and one higher climate scenario should be considered for inland hydrological design. For coastal 

applications, the NCHRP reports (Kilgore et al. 2019b) recommend, at a minimum, the equivalent 

local projection of Sweet et al. (2017). The engineering demand and structure capacity must be 

compared and checked for every design. It is noted that there have been some recent efforts to 

pilot-test the implementation of the methods described in NCHRP 15-61 titled “Applying Climate 

Change Information to Hydrologic and Coastal Design of Transportation Infrastructure.”  In 

particular, the document NHCRP 20-44(23) demonstrates the computation of design flood 

elevations and design waves employing NCHRP 15-61 Guidance Level 1 and Leve 2 procedures 

for a bridge that is supposed to be operational from 2021 and 2090.  

Before applying nonstationary methods, it is necessary to ensure that any apparent trend in the 

data is not due to natural variability in a stationary environment. An example of nonstationary 

trend detection was demonstrated in this report through the analysis of annual peak flow data 

from 99 USGS gauges. The gauges showed positive trends in 9 stations. In case of an increasing 

trend, efforts must be undertaken to identify the source of the nonstationarity. Nonstationarity 

detection may also be performed using the USACE Time Series Analysis Tool as described in 

Section 3.4.2 and Appendix D. 

Section 2.4.2 presents methods for incorporating nonstationarity into the planning process. 

Some of these methods are demonstrated in Section 3.6. An example of incorporating 

nonstationarity with peak discharge data from Shingle Creek, FL is presented in Section 3.6.1. 

Nonstationarity may be incorporated into rainfall estimates using global climate model data. 

Section 3.6.1 presents an example of how Atlas 14 data may be modified with change factors 

derived from downscaled climate models, in this case, LOCA data. The modified rainfall estimates 

vary by location. But for most cases, the 83rd percentile value is higher than the Atlas 14 95th 

percentile estimate. Projects which require the use of nonstationary rainfall data due to high 

service life, criticality, risk, cost, etc. should consider the use of the downscaled climate data.  

Another concept that is worth considering is the “stationarity” in the return period or fixed return 

periods. This happens when the level of protection of infrastructure is reduced due to climatic 

nonstationarity. For example, roadways designed for a 50-year return period may reduce to a 25-

year return period at the end of the design life. Section 3.5.3 of this report introduces the 

concepts of ‘Expected Waiting Time’, ‘Risk’, and ‘Expected Number of Events’ and how they may 
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be incorporated into the hydrologic design process. Examples of these are presented in Sections 

3.6.2 and 3.6.3. 

Datasets were compiled with the sources of the climatic data and nonstationary data created 

from them are presented in Chapter 4. The focus of this work was to use the existing data and 

tools, instead of creating these from scratch. The datasets compiled will be a part of the 

technology transfer to FDOT. In addition, a webinar will be scheduled to go over the concepts of 

nonstationarity, methods, and tools useful for detecting nonstationarity in environmental 

drivers, results of the reviews of the manuals of practice, areas of practice that are recommended 

to be revised, the new paradigm of nonstationarity, and the methods that were developed. The 

next section presents some specific recommendations for the use of these datasets and methods.  

6.2. Recommendations 
The Task 1 review has highlighted several opportunities to provide new datasets and methods to 

incorporate nonstationarity due to both climate change and land-use change into current 

planning and design practices of transportation infrastructure.  Many of these new opportunities 

are included in the latest versions of the FHWA guidance documents including FHWA (2016) and 

FHWA (2020).  Moving forward, it is recommended that this latest information on both datasets 

and methods be customized for Florida and explore options for updating FDOT planning and 

design manuals with the latest information. The focus of future tasks of this project will be to 

first focus on improving existing tools for incorporating nonstationarity into planning/design 

practices before new tools are developed. The project will also explore the transfer of the new 

datasets and methods to the GeoPlan portal being maintained by the University of Florida.  

Before embarking on applying nonstationary techniques for TI planning and design, it is 

recommended that a formal process be followed to justify their use for a particular project. This 

report focused on key hydrologic drivers that are relevant to TI projects in both coastal and inland 

areas of Florida.  They include, rising sea levels, potentially changing extreme rainfall magnitudes, 

and both inland and coastal peak flood discharges. It is recommended that any modeling or 

applications required for the planning and design of TI use future changes in applicable drivers 

during the design life or the planning horizon of a project.  Because there are many factors (land 

use change and climate) that may contribute to any apparent nonstationarity in data, careful 

adherence to this process may be needed. Table 6-1 shows multiple situations relevant to the 

decision regarding the considerations of nonstationarity. 
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Table 6-1. Decision matrix for considering nonstationarity. 

Historical* Future  Considerations 

Statistically significant trend 
absent 

Projections do not suggest a 
systematic trend, or there is 
insufficient information 

Current practice based on 
stationarity is adequate 

Statistically significant trends 
present 

Projections do not 
demonstrate a systematic 
trend 

Most likely due to when the 
system is built out or climate 
change is episodic. The 
decision to use an 
extrapolation of historical 
trends may depend on risks 
and economic aspects. A 
Dynamic Adaptive Policy 
Pathway (DAPP) strategy may 
be warranted  

Statistically significant trend 
absent 

Projections do suggest 
systematic trend 

Apply the new nonstationary 
techniques unless the current 
safety factors can account for 
future changes (e.g. 
freeboard). Consider DAPP 

Statistically significant trends 
present 

Projections do suggest a 
systematic trend 

Apply the new nonstationary 
techniques unless the current 
safety factors can account for 
future changes (e.g. 
freeboard). Consider DAPP 

*  A careful attribution exercise should be implemented if the trends are statistically significant. 

It is prudent to follow up this research project with additional actions that may lead to possible 

update of the current FDOT guidelines. First, while possible nonstationarity was detected in 

certain climate drivers (e.g. sea level rise, peak discharge at limited locations), further assessment 

will be needed to confirm such changes in the vicinity of where they were detected. This is a 

necessary component of attribution. This is particularly important for peak discharge time series 

as the projected sea level rise is a clear case of nonstationarity due to acceleration that has been 

confirmed already.  This assessment should include a thorough review of the literature to 

determine if there are other studies in the area to confirm the presence of systematic trends and 

possible causes (e.g., urbanization).  Second, the updates to some key data sets should be 

considered. In particular, the USGS peak flow equations may be dated, and they may need to be 

updated to incorporate recent discharge records. Third, it is prudent to wait for the upcoming 

statewide products from Florida’s Flood Hub for nonstationary data. These include statewide sea 

level rise projections and the Change Factors for estimating future rainfall for a range of average 

recurrence intervals. Flood Hub is not expected to put forth specific recommendations on the 

use of this data for infrastructure planning, but rather provide the science input necessary for 
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developing future conditions. Fourth, in situations where nonstationarity is detected and 

confirmed, the implementation of the Dynamic Adaptive Policy Pathway (DAPP) approach should 

be considered when the retrofitting of existing TI infrastructure or a new facility is needed in the 

region. Considering the research nature of this project, additional efforts will be needed to 

develop specific tools and data that would supplement existing FDOT guidelines. 
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

Design Parameter: Rainfall 

FDOT Drainage 
Manual (2021) 

➢ Use statistical rainfall depth data for Florida in the National Oceanic and 
Atmospheric Administration (NOAA) Atlas 14 Rainfall Data available at:  
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=fl 

 
➢ Open Channel - Design Storm Frequencies 

Type Channel Frequency 

Roadside, median, and interceptor ditches or swales 10-year 

Outfalls  25-year 

Canals 25-year 

Temporary roadside and median ditches or swales 2-year 

Temporary outfalls and canals 5-year 

 
 

➢ Storm Drain Systems – Design Storm Frequencies 

Type Storm Drain Frequency 

General design 3-year 

General design work that involves the replacement of 
a roadside ditch with a pipe system by extending side 
drainpipes 
General design on work to interstate facilities  

10-year 

Outfalls 25-year 

Interstate facilities for which roadway runoff would 
have no outlet other than a storm drain system such 
as in a sag inlet or cut section 
Outlets of systems requiring pumping stations 

50-year 

 
 

➢ Design storm frequencies 
are used for the design of 
open channels, storm 
drain systems, and cross-
drain hydraulics 

➢ Use of Return Period (RP) 
is already the current 
practice. 

➢ The FIU project will 
propose the use of RP 
and AEP under 
nonstationary conditions 

➢ Most FDOT projects have 
a design life of 75-years 
or less. This may 
influence the level of 
analysis that is required 
for considering 
nonstationarity 

➢ NOAA Atlas 14 rainfall 
depth data for Florida is 
recommended for use in 
the Drainage Manual 

 

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=fl
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

➢ Cross Drain Hydraulics -  Permanent Facilities – Design Storm 
Frequencies 

Facility Frequency 

Mainline Interstate 50 years 

High Use or Essential: Projected 20-year AADT1>1500 50 years 

Other: Projected 20-year AADT1<1500 25 years 

Road ditch culverts, pedestrian and trail bridges 10 years 
1AADT (Annual Average Daily Traffic) is preferred. If it is not available, use ADT 
 
➢ For temporary facilities, if there are no flooding or scour concerns, a 10-

year design storm event is the minimum design frequency for temporary 
culverts, bridge culverts, and bridges 
 

➢ Use the highest tailwater elevation coincident with the design storm event 
for the sizing of cross drains and determining headwater and backwater  
elevations 

 
Cross Drain Hydraulics: Tidal Flow – Creeks/rivers flowing into tidal water 
bodies 
➢ Hurricane rainfall is dependent on the peak surge stage; hence, the USACE 

tropical storm rainfall-runoff procedure from the 1986 Engineering and 
Design Storm Surge Analysis Manual should be used to estimate runoff 
from any design surge regardless of the surge return frequency 

➢ May also use a steady discharge equal to the peak flow from a 10-year 
storm instead of the above USACE procedure 

FDOT Drainage 
Design Guide 
(2020) 

The Intensity-Duration-Frequency (IDF) Curves for 11 zones in Florida were 
developed using HYDRO-35 and TP-40 developed by the Department. 
According to the Drainage Design Guide, the curves provide a reasonable basis 
for design. 

➢ The Drainage Design 
Guide expands on some 
applications in the 
Drainage Manual with 
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

 
Open channel design 

• Roadside or median ditches or swales designed to convey a 10-year 
frequency storm without damage 

• Outfall ditches or canals should convey a 25-year frequency storm without 
damage 

• Unless flood rights are obtained or flow is contained in the ditch, pre-
development stages for all frequencies up to and including the 100-year 
event must not be exceeded 
 

Side drains 
➢ 10-year frequency like for open channel design   

 
USACE reference ‘Engineering and Design Storm Surge Analysis’  
➢ Methodology for estimating the rainfall associated with the landfalling 

hurricanes 
➢ Graphs of point rainfall depth for a given frequency and a given distance 

from the left or right of the storm track 
➢ Point rainfall graphs for selected frequency levels at either 6-hour or 12-

hour intervals before landfall and after landfall 
 
Storm Drain – Shoulder Gutter 
➢ Intercept all flow from a 10-year storm 
 
Precipitation Data (Appendix A.2.3) 
Intensity-duration-frequency curves or photographs for historic or design 
storm conditions from: 
➢ HYDRO-35  

o Depth-duration-frequency data useful for small drainage areas 

the Drainage Manual 
taking precedence 

➢ FDOT is moving into 
ATLAS 14 as the standard 
dataset for IDF (refer to 
the new latest version of 
the Drainage Manual) 

➢ FIU will explore more 
recent work on ATLAS 14 
changes due to 
nonstationarity 

➢ FIU will propose 
consideration of state-
wide Change Factors 
computed as a part of 
the Florida Building 
Commission (FBC) study. 
This may be included in 
the UF Sketch Tool 
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

o Rainfall depths for durations from 5 to 60 mins and return periods 
from 2 to 100 years 

➢ Technical Paper 40 (TP-40) 
o Rainfall depths for durations from 0.5 to 24 hours and return 

periods from one to 100 years 
➢ TP-49 

o Extends to 2, 4, 7, and 10 days and return periods of 2, 5, 10, 25, 
and 100 years 

➢ FDOT distributions derived from HYDRO-35, TP-40, and TP-49 
➢ NOAA Atlas 14 data 

Design Parameter: Sea Level 

FDOT Drainage 
Manual (2021) 

Design of Storm Drains 
➢ For tailwater elevation of storm drains discharging into tidal bays, use 

mean high tide 
➢ Sea Level Rise (SLR) Analysis 

o To assess the vulnerability of flooding over the design life of the facility 
o Recommends using the relative sea level trend data from historical 

records gathered by the National Water Level Observation Network 
(NWLON) and managed by NOAA 

o Straight-line extrapolation based on the design service life of the 
project with the nearest station 

o NOAA SLR trend supporting documentation must be included for the 
determination of design tailwater 
 

Design of Cross Drains 
➢ Tidally influenced culverts must adjust the Mean High Water (MHW) 

elevation for SLR using the straight-line extrapolation 
 
Stormwater Management: Coastal Ponds 

➢ Sea level data is required 
for the selection of 
tailwater elevations of 
storm drains, tidally 
influenced culverts, 
coastal ponds, etc. 

➢ To account for SLR a 
straight-line 
extrapolation method is 
recommended in the 
Drainage Manual 

➢ Source of SLR data 
recommended NOAA 
NWLON 
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

➢ Adjust tailwater elevation to account for SLR using the straight-line 
extrapolation 

FDOT Drainage 
Design Guide 
(2020) 

Cross Drain Sizing 
➢ Use the highest tailwater elevation that can reasonably be expected to 

occur coincident with the designed storm event 
➢ For tidal conditions, use the SLR analysis described in Section 3.4.1 of the 

Drainage Manual 
 
Sources of Tidal Bench Marks (Bridge hydraulics) 
➢ NOAA Center for the Operational Oceanographic Products and Services 

(CO-OPS) 
➢ Florida Department of Environmental Protection (FDEP) Land Boundary 

Information Systems (LABINS) 
 

➢ Recommends the 
straight-line 
extrapolation method in 
the Drainage Manual 

➢ Sources of tidal data 
recommended include 
NOAA CO-OPS and FDEP 
LABINS 

Design Parameter: Stream/Canal Discharge 

FDOT Drainage 
Manual (2021) 

Open Channel: Hydrologic Analysis 
➢ Frequency analysis of observed gauge data 
➢ If no gauge data is available:  

o use USGS regional or local regression equations 
o the rational equation for drainage areas up to 600 acres 
o for outfalls from stormwater management facilities, use the 

method for the design of the stormwater management facility 
➢ If a regulated/controlled canal, request data from the controlling agency 

and verify the data 
 
Cross Drain Hydraulics: Freshwater Flow 
➢ Frequency analysis of observed gauge data 
➢ If no gauge data is available:  

o use USGS regional or local regression equations 

➢ The current FDOT 
practice is to use peakFQ 

➢  
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APPLICATIONS/CRITERIA/RECOMMENDATIONS IN FDOT, FHWA & NCHRP DOCUMENTS 

Guidance/Report Applications/Criteria/Recommendation Comments 

o the rational equation for drainage areas up to 600 acres 
➢ If a regulated/controlled canal, request data from the controlling agency 

and verify the data 
 

FDOT Drainage 
Design Guide 
(2020) 

Same as FDOT Drainage Manual (2021) for open channel design 
 
Bridge Hydraulics Analysis 
Gauge data is used to: 
➢ Determine the peak flow rates (statistical analysis of streamflow data 

done by USGS) 
➢ Provide starting water surface elevations or boundary conditions for the 

bridge model 
➢ Calibrate the bridge model 

 

➢ The use of regression 
equations under future 
conditions needs to be 
explored 
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Linear Model for Single Trends 

The general form of the linear model is, 

𝑦𝑡 = 𝛽0 + 𝛽1𝑋𝑡1 + 𝛽2𝑋𝑡2 …+ 𝛽𝑝𝑋𝑡𝑝 + 𝜀𝑡  (B1) 

      

where y is the dependent variable with its subscript t denoting time (1 to n), X values denote the 
predictors, and 𝜀 is the error term.   

In matrix form, the linear model may be written as, 

𝒀 = 𝑿𝜷 +  𝜺 (B2) 

         

where Y is a vector of size (nx1) and X is a matrix of size (n, p+1) consisting of unity as the first 
column and the remaining columns correspond to each time series of the predictors, X. The size 
of the parameter vector 𝜷 is equal to p+1. The error term is a vector of size (nx1). 

Using the least squares methodology, the estimator of the parameter vector 𝜷 is given by 

𝜷̂ = (𝑿𝑻𝑿)−𝟏𝑿𝐓𝒀 (B3) 

A property of the least squares estimation approach is that the estimators given by Eq. (3) are 
unbiased.  Assuming the error term 𝜺𝒕 has a Gaussian distribution, the estimators of 𝜷 have a 
multivariate normal distribution: 

𝜷̂ ~ 𝑵𝒑+𝟏[𝜷, 𝝈
𝟐(𝑿𝐓𝑿)−𝟏] (B4) 

where 𝑵𝒑+𝟏 denotes a multivariate normal distribution of dimension p+1 and  𝝈𝟐 is the variance-

covariance matrix of the error term.  This in turn, can provide confidence intervals for each 
parameter. 

For diagnostic testing purposes, it is often convenient to decompose the variability of the 
dependent variable, Y, in the form of an Analysis of Variance (ANOVA) table (Error! Reference s
ource not found.). 

 

Table B1. ANOVA table for multiple linear regression. 

Source Sum of Squares Degrees of 
Freedom 

Mean Square F Ratio 

Regression SSR =  𝜷̂𝑿𝑻𝒀 − 𝒏𝒀̅𝟐 p 
MSR =

SSR

𝑝
 

 

F=
𝑀𝑆𝑅

𝑀𝑆𝐸
 

Error SSE = 𝜀T𝜀 n-p-1 MSE =
SSE

𝑛 − 𝑝 − 1
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Total 

 
SSTO = 𝒀𝑻𝒀 − 𝒏𝒀̅𝟐    

 

Given the sample data, the estimate of 𝝈𝟐 can be obtained as S2 = SSE/(n-p-1) and the standard 

error of each parameter is estimated as  𝑆𝛽̂𝑖 = 𝑆√𝐶𝑖𝑖  where 𝐶𝑖𝑖  is the corresponding diagonal 

element of (𝑿𝐓𝑿)−𝟏.  Assuming the standardized values of estimated parameters to follow a 
Student-t distribution with n-p-1 of degrees of freedom, the 100(1- 𝛼) Percent confidence 

interval for 𝛽̂𝑖  is given by 

[𝛽̂𝑖 − 𝑡1−𝛼
2
(𝑛 − 𝑝 − 1)𝑆𝛽̂𝑖 ,   𝛽̂𝑖 + 𝑡1−𝛼2

(𝑛 − 𝑝 − 1)𝑆𝛽̂𝑖] (B5) 

Diagnostic tests for individual parameters estimated from data can be conducted using the 

Student-t variate, 𝑡 = (𝛽̂ − 𝛽𝑖0)/ 𝑆√𝐶𝑖𝑖 . If the absolute value of t is greater than 𝑡1−𝛼
2

(𝑛 − 𝑝 −

1), then the null hypothesis 𝛽𝑖 = 𝛽𝑖0 is rejected.  For detecting the presence or absence of a 
trend, often 𝛽𝑖0 = 0 is used (i.e., zero slope). 

A simultaneous test for all coefficients, whether they are all equal to zero, may be conducted 
using the results of the ANOVA table.  Since the F ratio (last column in Error! Reference source n
ot found.) has an F-distribution with p and (n-p-1) degrees of freedom, the null hypothesis that 
all coefficients βi=0, i=1, . . ., p is rejected if the computed 𝐹 > 𝐹𝛼(𝑝, 𝑛 − 𝑝 − 1). Another 
common approach for rejecting the null hypothesis is to demonstrate that 𝛼𝑐 = 𝑃𝑟𝑜𝑏[𝐹𝛼(𝑝, 𝑛 −
𝑝 − 1) > 𝐹] is greater than 𝛼. 
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Shapiro Wilk Statistic 

The Shapiro-Wilk test statistic is given by 

𝑊 = 
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

 
(B6) 

where 𝑥(𝑖) is the ith order statistic (ith-smallest), and 𝑥̅ is the sample mean. Further details of this 

method can be found in Shapiro and Wilk (1965). The “shapiro.test” script available in the stats 
library of R was used to compute W and its p-value associated with the hypothesis testing to 
determine if data follows a Normal Distribution.  
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Trend Detection Using the Mann-Kendall  

The test consists of summing the signs of the difference between all pairs of sequential time 
series values 

𝑆 =  ∑ ∑ sgn(𝑋𝑗 − 𝑋𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 
(B7) 

where n is the length of the time series, 𝑋𝑗 and 𝑋𝑘  are sequential time series values for times 

t𝑗 and t𝑘 (𝑗 > 𝑘) and sgn is the sign function defined as 

sgn(𝑋𝑗 − 𝑋𝑘) = {

1   if  𝑋𝑗 − 𝑋𝑘 > 0

0   if  𝑋𝑗 − 𝑋𝑘 = 0

−1 if 𝑋𝑗 − 𝑋𝑘 < 0

} 

(B8) 

The null hypothesis, 𝐻0, for the test is that the data, X, are a sample of n independent and 
identically distributed random variables (i.e., there is no trend and S=0).  The alternative 
hypothesis, 𝐻𝑎 , states that the distribution of 𝑋𝑗  and 𝑋𝑘 are not identical for all k, j ≤ n, and k≠j 

(i.e., there is a trend, and S ≠ 0).  The null hypothesis is rejected when S is significantly different 
from zero, and there is a monotonic trend over time. The test requires the calculation of the 
standardized test statistic, Zs, which is assumed to come from a standard normal distribution, 
N(0,1).  The test statistic is given by 

𝑍𝑠 =

{
 
 

 
 
s − 1

σs
  if  𝑆 > 0

0     if  𝑆 = 0
s + 1

σs
  if  𝑆 < 0

}
 
 

 
 

 

(B9) 

 

 The standard deviation of S is given by Kendall (1976) as  

𝜎𝑠 = √
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

] 

(B10) 

 

where q is the number of tied groups, and 𝑡𝑝 is the size of the pth tied group.  
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Sen-Theil Regression Tests 

The method consists of computing the simple pairwise slope estimate: Skj  = (Xj – Xk)/(tj – tk) for 
all possible distinct pairs of measurements, (Xk, Xk) where tj > tk.  For a sample of size n, there will 
be N=n (n-1)/2 pairs of slopes.  The Sen-Theil trend slope can then be computed as the median 
of all pairwise slopes, b = median(Skj), and the intercept of the trend line is given by a = median(X- 
bt).  By taking the median pairwise slope instead of the mean, extreme pairwise slopes usually 
caused by outliers have little impact on the final slope estimate.  
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APPENDIX C. EXAMPLES OF INDICATORS AND THEIR POTENTIAL DATA 

SOURCES 
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Table C-1. Temperature indicators provided as examples in Vulnerability Assessment Tool 
(VAST). 

Temperature 
Indicator 

Description and Rationale Potential Data Source(s) 

Change in Total 
Number of Days per 
Year above/below a 
Threshold 
Temperature 

Above a certain temperature, workforce or 
operational restrictions may come into effect. 
Materials such as pavement binders may have 
design temperature ranges, and temperatures 
above or below that range may cause structural 
damage. For example, the Gulf Coast study 
vulnerability assessment for Mobile used the 
projected number of days above 95°F per year as 
the exposure indicator, based on stakeholder 
input that 95°F represented a key operational 
threshold. 

Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 

Change in Longest 
Number of 
Consecutive Days 
per Year 
above/below a 
Threshold 
Temperature  

For some assets, the duration of heat waves or 
cold snaps may be more influential than the 
number of times a certain temperature is reached.  

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 

Change in Number 
of Freeze-Thaw 
Cycles per Year 

In some areas, freeze-thaw cycles may be the 
biggest cause of temperature-related damage. 
More frequent temperature variations around 
freezing point may be the best way to capture 
potential temperature-induced damage to 
infrastructure. 

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Local university 

Change in Annual 
Maximum or 
Minimum 
Temperature 

The projected change in average annual 
temperatures (either daily highs or lows) is 
normally readily available and can provide a sense 
of the magnitude of projected warming in your 
area. 

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Regional climate projections -- 
National Climate Assessment or 
FHWA Climate Change Effects 
Typology 
• Local university 

Change in Annual 
Mean Temperature 

The projected change in average annual 
temperatures is normally readily available and can 
provide a sense of the magnitude of projected 
warming in your area. 

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Regional climate projections -- 
National Climate Assessment or 
FHWA Climate Change Effects 
Typology 
• Local university 
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Table C-2. Precipitation indicators provided as examples in Vulnerability Assessment Tool 
(VAST). 

Precipitation Indicator Rationale Potential Data Source(s) 

Change in Amount of 
Rain associated with 
100-year 24-hour 
Storm  

Some types of infrastructure are more 
sensitive to short-term, extreme precipitation 
events. Changes in the volume of rainfall from 
a 24-hour storm may influence the 
effectiveness of stormwater detention 
systems. 

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Local university 

Location in FEMA 100-
Year Flood Zone 

Assets located in floodplains are more likely to 
be exposed to flooding from changes in 
precipitation. The flood zone return period to 
focus on depends on the assessment. 

• FEMA Digital Flood Insurance 
Maps (DFIRMs) 

Location in FEMA 500-
Year Flood Zone 

Assets located in floodplains are more likely to 
be exposed to flooding from changes in 
precipitation. The flood zone return period to 
focus on depends on the assessment. 

• FEMA Digital Flood Insurance 
Maps (DFIRMs) 

Location in 10-Year 
Floodplain 

Assets located in floodplains are more likely to 
be exposed to flooding from changes in 
precipitation. The flood zone return period to 
focus on depends on the assessment. 

• Flood Insurance Studies 
• Maintenance and emergency 
management staff 

Location in 25-Year 
Floodplain 

Assets located in floodplains are more likely to 
be exposed to flooding from changes in 
precipitation. The flood zone return period to 
focus on depends on the assessment. 

• Flood Insurance Studies 
• Maintenance and emergency 
management staff 

Change in Number of 
Consecutive Days 
with Precipitation 

Soil moisture influences performance of 
drainage systems as well as slope stability for 
roads and bridges.  

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Local university 

Change in Total 
Seasonal Precipitation 

Total seasonal precipitation impacts 
landscapes and vegetation and is therefore an 
important consideration in wetland mitigation 
projects.  

• Climate model outputs (e.g., 
DOT CMIP Climate Data 
Processing Tool) 
• Local university 
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Table C-2. Continued.  

Precipitation Indicator Rationale Potential Data Source(s) 

Change in Total Annual 

Precipitation 

If total seasonal precipitation is unknown, 

annual precipitation can serve as an 

indicator for impacts landscapes and 

vegetation.  

• Climate model outputs (e.g., 

DOT CMIP Climate Data 

Processing Tool) 

• Local university 

Change in Peak 

Discharge 

Culvert design can be based on peak 

discharge associated with a flooding event 

of a given return period (e.g., 1 in 100-year 

flood).  

• Climate model outputs (e.g., 

DOT CMIP Climate Data 

Processing Tool) 

• Local university 

Change in Flow Velocity Flow velocity is often one factor considered 

in the design of stormwater management 

systems for transportation infrastructure.  

• Climate model outputs (e.g., 

DOT CMIP Climate Data 

Processing Tool) 

• Local university 

Change in Discharge 

Volume 

Discharge volume is often one factor 

considered in the design of stormwater 

management systems for transportation 

infrastructure. 

• Climate model outputs (e.g., 

DOT CMIP Climate Data 

Processing Tool) 

• Local university 
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Table C-3. Sea Level Rise indicators provided as examples in Vulnerability Assessment Tool 
(VAST). 

Sea Level Rise Indicator Rationale Potential Data Source(s) 

Modeled SLR 
Inundation Depth 

Assets projected to be inundated by sea level 
rise are, definitionally, the most exposed to sea 
level rise. 

GIS Sea Level Rise model 

Elevation Elevation can serve as natural protection from 
sea level rise. The higher an asset, the less 
exposed it may be to sea level rise. 

• National Elevation Dataset 
(NED) 
• LiDAR 
• Asset management system 

Proximity to Coastline Assets closer to the coast may be more likely to 
be exposed to sea level rise.  

• GIS analysis 
• Google Earth 

USGS Coastal 
Vulnerability Index 

The Coastal Vulnerability Index (CVI) calculates 
the relative risks to a coastal area due to future 
sea level rise, and includes factors such as tidal 
range, wave height, coastal slope, shoreline 
change, geomorphology, and historical rate of 
sea level rise. The Index is scored on a scale of 1 
to 4. 

http://pubs.usgs.gov/of/2004/
1020/html/cvi.htm 

 

  

http://pubs.usgs.gov/of/2004/1020/html/cvi.htm
http://pubs.usgs.gov/of/2004/1020/html/cvi.htm
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Table C-4. Storm surge indicators provided as examples in Vulnerability Assessment Tool (VAST). 

Storm Surge 
Indicator 

Rationale Potential Data Source(s) 

Modeled Surge 
Inundation 
Depth 

The assets inundated under the most water 
based on the ADCIRC storm scenarios are the 
most exposed to storm surge. 

• ADCIRC model 
• STWAVE - STeady State spectral 
WAVE model 
• USGS Coastal Change Hazards: 
Hurricanes and Extreme Storms web 
viewer 
• NOAA Sea, Lake and Overland Surge 
from Hurricanes (SLOSH) model 
(http://www.nhc.noaa.gov/surge/slosh
.php) 

Proximity to 
Coastline 

Assets closer to the coast may be more likely to 
be exposed to storm surge.  

• GIS analysis 
• Google Earth 

Elevation Elevation serves as natural protection from storm 
surge. The higher an asset, the less exposed it 
may be to storm surge. 

• National Elevation Dataset (NED) 
• LiDAR 
• Asset management system 

USGS Coastal 
Vulnerability 
Index 

The Coastal Vulnerability Index (CVI) calculates 
the relative risks to a coastal area due to future 
sea level rise, and includes factors such as tidal 
range, wave height, coastal slope, shoreline 
change, geomorphology, and historical rate of 
sea level rise. The Index is scored on a scale of 1 
to 4. 

http://pubs.usgs.gov/of/2004/1020
/html/cvi.htm 

Presence in 
FEMA Coastal 
Flood Zone 

Assets located in floodplains are more likely to be 
exposed to flooding from storm surge. The flood 
zone return period to focus on depends on the 
assessment. 

https://msc.fema.gov/webapp/wcs
/stores/servlet/FemaWelcomeView
?storeId=10001&catalogId=10001&
langId=-1 

Presence of 
Protective 
Structures 

Protective structures may divert storm surge 
from an asset, reducing its exposure. 

• Asset management system 
• Google Earth 

 

  

http://pubs.usgs.gov/of/2004/1020/html/cvi.htm
http://pubs.usgs.gov/of/2004/1020/html/cvi.htm
https://msc.fema.gov/webapp/wcs/stores/servlet/FemaWelcomeView?storeId=10001&catalogId=10001&langId=-1
https://msc.fema.gov/webapp/wcs/stores/servlet/FemaWelcomeView?storeId=10001&catalogId=10001&langId=-1
https://msc.fema.gov/webapp/wcs/stores/servlet/FemaWelcomeView?storeId=10001&catalogId=10001&langId=-1
https://msc.fema.gov/webapp/wcs/stores/servlet/FemaWelcomeView?storeId=10001&catalogId=10001&langId=-1


122 
 

Table C-5. Wind exposure indicators provided as examples in Vulnerability Assessment Tool 
(VAST). 

Wind Exposure Indicator Rationale Potential Data Source(s) 

Modeled Wind Speed The assets that experience the highest wind 
speeds in the ADCIRC storm scenarios are the 
most exposed to hurricane winds. 

• ADCIRC model 
• USGS Coastal Change Hazards: 
Hurricanes and Extreme Storms 
web viewer 

Observed Wind Speed 
Records 

Historical wind speeds at a location can 
provide a proxy for how likely a location is to 
be exposed to winds in future storms. 

• NOAA Weather Stations 
• State climatologist 
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APPENDIX D. REPORT ON NONSTATIONARY DETECTION USING USACE’S 

TIME SERIES TOOLBOX 
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1. Introduction 

This report includes demonstration results from using USACE’s Time Series Analysis toolbox to 

detect different types of nonstationarity in environmental time series. The webtool can be found 

here: https://climate.sec.usace.army.mil/tst_app/ along with a detailed user guide. Here the tool 

is used and applied to three different types of environmental variables and the associated time 

series (aggregated or pre-processed in different ways): sea level, streamflow, and precipitation. 

Sea level data is available at hourly resolution and as monthly and annual means. We first analyze 

the monthly and annual mean time series and then derive a time series of annual maxima water 

levels after removing the annual mean sea level from the raw data. Finally, we perform a tidal 

analysis and derive time series of annual maxima surge values and analyze those. Precipitation 

and discharge data is available at daily resolution, and we use that to derive annual maxima time 

series and also derive and analyze annual mean time series (see Table 1 for a summary of the 

different time series that were analyzed).  

 

Table 1 - Data types and their temporal resolution used in the analysis 

Data Type Monthly mean Annual Mean Annual Max 

Sea-level x x x (from hourly data) 

Precipitation  x x (from daily data) 

Discharge  x x (from daily data) 

Surge   x (from hourly data) 

 

In general, the analysis procedure consists of 7 different steps, as outlined in the following (for 

more details see User Guide): 

1. Uploading data in the correct format 

2. The tool provides summary information of the data, basic statistics, and visualization 

(including the seasonal cycle) 

3. Trend analysis: the toolbox uses regression techniques to fit linear trend lines to the data 

(traditional and Sen’s slope) and performs hypothesis tests to determine significance of 

trends 

4. Identifying seasonality: the toolbox uses a series of statistical methods to identify and 

define seasonal patterns in the data. [WE DO NOT SHOW RESULTS FOR THIS STEP] 

5. Nonstationarity detection: the toolbox uses statistical testing to detect changes in the 

time series mean, variance, or distribution 

6. Breakpoint analysis: the toolbox identifies sudden changes in the time series 

7. Time series modeling: the toolbox provides three models (time series linear model, auto 

regressive integrated moving average (ARIMA), and exponential smoothing (ETS)) to 

https://climate.sec.usace.army.mil/tst_app/
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determine the appropriate time series model that accounts for seasonality, trend and 

nonstationarities. [WE DO NOT SHOW RESULTS FOR THIS STEP] 

The following limitations exist and have to be taken into account when selecting data to analyze 

with the tool: 

• Time series toolbox has limits to upload size (failed to take 16 MB and above) 

• The toolbox requires that there are at least 30 points of continuous data in the dataset, 

otherwise it is unable to perform the analysis. 

The following sections include the results from steps 3, 5, and 6, as those are most relevant to 

the detection of nonstationarity and its consideration in extreme value analysis. Results are first 

shown for sea level data (Section 2), then for precipitation (Section 3), and streamflow (Section 

4).  

2. Sea Level Data 

Monthly mean sea level time series 

The annual and monthly mean sea-level time series for the St Petersburg tide gauge was obtained 

from the Permanent Service for Mean Sea Level (PSMSL) database and covers the period from 

1947 to 2021 (with 100% completeness) (see Figure 1 for the monthly time series).  

 

 

Figure 1 – Monthly mean sea-level time series 

 

Both the traditional and Sen’s slopes indicate a positive trend (Figure 2); 2.9996 (traditional slope) 

and 3.0112 (Sen’s slope). Results from the trend hypothesis tests shown in Fig. 3 indicate that 

the trend is significant at the 5% level. 
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Figure 2 - Fitting trends: traditional and Sen's slope 

Figure 3 - Trend hypothesis tests 

 

The results from the nonstationarity analysis are displayed in Figures 4 to 7. Figure 4 shows the 

areas of potential (abrupt) nonstationarity, while Figure 5 shows the results for the individual 

statistical tests highlighting only the ones which indicate that nonstationarity is significant at a 

pre-defined level. In the case of St Petersburg that leads to the conclusion that there is a 

significant change in the distribution in the mid-1970s, where two different tests agree. Figure 6 

shows key metrics (mean, variance, and standard deviation) for different segments of the time 

series, when segmentation is based on the results shown in Figure 4. Statistical test results for a 

breakpoint analysis are shown in Figure 7, which indicate here that three breakpoints exist where 

sharp changes in the time series behavior occur; this could warrant segmented analysis of the 

data based on these breakpoints. The User Guide included helpful information on consensus (i.e. 

multiple tests indicate same type of nonstationarity), robustness (i.e. changes in multiple 
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statistical properties), and magnitude (i.e. strengths of changes in statistical properties) to help 

interpreting results from using multiple tests for different statistical properties.  

 

Figure 4 – Nonstationarity detection, vertical lines indicate possible areas of nonstationarity 

Figure 5 - Statistical tests applied to detect nonstationarity 
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Figure 6 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time series 

 

 

Figure 7 - Breakpoint detection, 1971 and 1982, and 2009 identified as breakpoints 

Annual mean sea-level time series 
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Figures 8 to 14 show the same results as above but for the annual mean sea level time series in 

St Petersburg. Again, the trend analysis indicates the presence of significant trends and all tests 

agree on this result (this is to be expected given the clear sea level rise signal). In contrast to the 

monthly mean sea level analysis, where only abrupt nonstationarity was detected (vertical grey 

lines in Figure 4), Figure 11 indicates that smooth nonstationarity is detected for the entire 

period. This is a result of the same trend being present in the monthly and annual mean sea level 

time series, but much lower variance in the annual time series, which leads to statistically 

significant results in many cases. At the same time fewer points of potentially abrupt 

nonstationarity are identified due to the reduced variability. Four breakpoints are identified for 

the annual mean sea level time series.  

 

Figure 8 - Annual mean sea-level time series 
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Figure 9 - Fitting trends: traditional and Sen's slope 

 

Figure 10 - Trend hypothesis tests 
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Figure 11 – Nonstationarity detection 

 

Figure 12 - Statistical tests applied to detect nonstationarity 
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Figure 13 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 14 - Breakpoint detection, 1971, 1982, 1998, and 2010 detected as breakpoints 
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Annual maximum water level time series  

Extreme value analysis is often conducted based on annual maxima time series. This requires at 

least hourly resolution of the underlying data. Here we use hourly data from the GESLA-2 

database for the St Petersburg tide gauge from 1947 to 2012 to derive annual maxima values 

(Figure 15). Since we already established the important role of mean sea level rise from analyzing 

monthly and annual mean sea level time series, we removed the annual mean values from the 

hourly data before deriving annual maxima values.  The trend tests still indicate the existence of 

significant positive trends, despite the much larger variability as compared, for example, to the 

annual mean sea level time series (Figures 16 and 17). Isolated instances of significant 

nonstationarity in the distribution and mean are found (Figures 18 and 19) but only from one test 

in each case and for different time periods (see comments on “consensus” and “robustness” 

above and in the User Guide). No breakpoints are identified (Figure 21). 

 

Figure 15 - Annual maximum sea-level time series 
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Figure 16 - Fitting trends: traditional and Sen's slope 

 

 

Figure 17 - Trend hypothesis tests 
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Figure 18 – Nonstationarity detection, vertical lines indicate abrupt nonstationarities 

 

Figure 19 - Statistical tests applied to detect nonstationarity 
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Figure 20 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 21 - Breakpoint detection, no breakpoints detected 
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3. Precipitation Data 

In this section the same results as above are shown but for precipitation data. We use annual 

mean precipitation time series and annual maxima values (derived from daily cumulative rainfall). 

We use data for Fernandina Beach from 1898 to 2018. 

Annual mean precipitation time series  

The annual mean precipitation time series for Fernandina Beach is shown in Figure 22. Both the 

traditional and Sen’s slopes indicate a positive trend; 0.0033 (traditional slope) and 0.0034 (Sen’s 

lope) (Figure 23) and trend hypothesis tests indicate significance at the 5% level (Figure 24). Only 

abrupt nonstationarity is identified (Figure 25) and especially in the 2000s and 2010s multiple 

tests for various statistical time series attributes agree on the existence of nonstationarity in the 

mean, variance, and distribution (Figure 26). No break points are detected (Figure 28).  

 

Figure 22 - Annual mean precipitation time series 
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Figure 23 - Fitting trends: traditional and Sen's slope 

 

 

Figure 24 - Trend hypothesis tests 
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Figure 25 – Non-stationary detection, vertical lines indicate abrupt non-stationarities 

 

Figure 26 - Statistical tests applied to detect nonstationarity 
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Figure 27 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 28 - Breakpoint detection, no breakpoints detected 
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Annual Maximum Precipitation Time Series 

As outlined above, extreme value analysis often is performed using block maxima, where 1-year 

blocks are commonly used, leading to the use of annual maximum values. The annual maximum 

precipitation time series for Fernandina Beach is shown in Figure 29. In this case, both the 

traditional and Sen’s slopes indicate a negative trend; -0.103 (traditional slope) and -0.163 (Sen’s 

slope) (Figure 30) and trend hypothesis tests indicate significance at the 5% level (Figure 31). Only 

abrupt nonstationarity is found and only by individual tests for different years (Figures 32 and 

33). No breakpoints are detected (Figure 35).  

 

Figure 29 - Annual maximum precipitation time series 

 



142 
 

 

Figure 30 - Fitting trends: traditional and Sen's slope 

 

 

 

Figure 31 - Trend hypothesis tests 
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Figure 32 – Nonstationarity detection, vertical lines indicate abrupt nonstationarities 

 

 

Figure 33 - Statistical tests applied to detect nonstationarity 
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Figure 34 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 35 - Breakpoint detection, no breakpoints detected 
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4. Streamflow Data 

The following shows the same results as displayed above for streamflow data from the Lithia 

gauge, which covers the period from 1932 to 2019. The data was derived from the Global Runoff 

Data Center (GRCD). Similar to the precipitation analysis, we apply the nonstationarity tool to 

annual mean and annual maxima (derived from daily mean values) streamflow data.  

Annual mean streamflow time series 

The annual mean stream time series for the Lithia gauge is shown in Figure 36. Both the 

traditional and Sen’s slopes indicate a negative trend; -0.0315 (traditional slope) and -0.0293 

(Sen’s lope) (Figure 37) and trend hypothesis tests indicate significance at the 5% level (Figure 

38). Abrupt nonstationarity is identified for three instances, clustered in the late 1960s to early 

1970s (Figure 39), where two tests indicate a change in the mean and one test indicates a change 

in distribution (but all in different years) (Figure 40) No breakpoints are found (Figure 42).  

 

Figure 36 - Annual mean discharge time series 
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Figure 37 - Fitting trends: traditional and Sen's slope 

 

 

Figure 38 - Trend hypothesis tests 

 

 



147 
 

 

Figure 39 - Nonstationarity detection, vertical lines indicate abrupt nonstationarities 

 

 

Figure 40 - Statistical tests applied to detect nonstationarity 
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Figure 41 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 42 - Breakpoint detection, no breakpoints detected 

Annual maximum streamflow time series 
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The annual maximum streamflow time series for the Lithia gauge is shown in Figure 43, with an 

obvious outlier in the first year of the record in 1932 (which is possibly an artifact). The existence 

of this outlier leads to negative trends from both the traditional and Sen’s slopes; -1.721 

(traditional slope) and -0.531 (Sen’s lope) (Figure 44). Trend hypothesis tests indicate significance 

at the 5% level (Figure 45). Abrupt nonstationarity is found, particularly around 1960 (Figure), by 

different tests and for different statistical properties of the time series (mean and distribution) 

(Figure 47). This also leads to a breakpoint in 1960 (Figure 49).  

 

 

Figure 43 - Annual maximum discharge time series 



150 
 

 

Figure 44 - Fitting trends: traditional and Sen's slope 

 

Figure 45 - Trend hypothesis tests 
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Figure 46 - Nonstationary detection, vertical lines indicate abrupt nonstationarities 

 

Figure 47 - Statistical tests applied to detect nonstationarity 
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Figure 48 - Segment statistics, detecting changes in the mean, variance, and standard deviation of the time 
series 

 

Figure 49 - Breakpoint detection, 1960 identified as breakpoint 
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5. Downloading and preprocessing data 

 
Sea Level Data 
Sea levels recorded at gauges situated around the U.S. coast can be obtained from The National Oceanic 
and Atmospheric Administration (NOAA) Center for Operational Oceanographic Products and Services 
(CO-OPS). The CO-OPS homepage directs users to select a state as shown in Figure 50. 

 

Figure 50 - CO-OPS homepage. 

Clicking on Florida returns the following map showing the spatial distribution of the tide gauges around 
the Gulf and south-eastern U.S. coasts (Figure 51). 

 

Figure 51 - Spatial distribution of tide gauges. 

The tide gauges are visible by zooming in closer to south Florida as shown in Figure 52.  
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Tide gauges in south Florida 

 

Figure 52 - Tide gauges in south Florida 

To view the sea level data at a tide gauge simply click on the pin denoting its location. Figure 53 shows 
the homepage for the Virginia Key tide gauge. 

 

Figure 53 - Homepage of the Virginia Key gauge. 

To find the sea level data, select ‘Water Levels’ from the ‘Tide/Water Levels’ dropdown menu. Water 
levels are typically provided at 6min and hourly time scales relative to a range of datums. Water level 
over short time periods (<31 days) can be plotted and exported to a ‘.csv’ file (see bottom right corner of 
Figure 54). A MATLAB script to download water level data for longer time periods can be found at 
https://figshare.com/articles/code/Automatically_Download_sea_level_data_from_NOAA_tide_gauge/
10304807/3. 

https://figshare.com/articles/code/Automatically_Download_sea_level_data_from_NOAA_tide_gauge/10304807/3
https://figshare.com/articles/code/Automatically_Download_sea_level_data_from_NOAA_tide_gauge/10304807/3
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Figure 54 - Plotting water levels over the previous 30 days at Virginia Key.  
Notice the ’Export to CSV’ icon in the bottom right corner. 

 

Streamflow Data 

The United States Geological Society (USGS) National Water Information System provides access 

to water data from over 13,500 stations in the U.S. at https://waterdata.usgs.gov/nwis/rt (Figure 

55). 

 

Figure 55 - National Water Information System homepage. 

https://waterdata.usgs.gov/nwis/rt
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To view the streamflow gauges located along a river more clearly users are urged to select a state 

as shown in Figure 56  

 

Figure 56 - Location of streamflow gauges in the state of Florida. 

Clicking on a station takes users to the gauge’s homepage which contains information on the 

types of measurements taken and period of record. Figure 57 presents the homepage of the 

gauge near the town of Bell on the Suwannee River. 
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Figure 57 - Homepage for the Suwannee River Near Bell ((https://waterdata.usgs.gov/nwis/uv?02323000). 

The dataRetrieval R package provides an efficient way of downloading and processing USGS 

hydrological data. The instantaneous value data retrieval from USGS (NWIS) function 

‘readNWISuv’ downloads data from https://waterservices.usgs.gov/. The function requires the 

gauge’s site identification number (siteNumbers), measurement type (parameterCd) as well as 

start (StartDate) and end (endDate) dates. The following code downloads the daily mean 

discharge recorded at the Suwannee River Bell gauge between 04-08-2000 and 20-07-2022 and 

reformats it to form the input for the USACE’s Time Series Analysis toolbox:    

#Loading the dataRetrieval package 

library(dataRetrieval)  

#Defining 'readNWISuv' inputs 

siteNo <- "02323000" 

pCode <- "00060"  

start.date <- "2000-08-04" 

end.date <- "2022-07-20" 

#Downloading the data 

data <- readNWISuv(siteNumbers = siteNo, 

                   parameterCd = pCode, 

                   startDate = start.date, 

                   endDate = end.date) 

https://waterdata.usgs.gov/nwis/uv?02323000
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colnames(data) <- c("agency_cd","site_no","dateTime","Discharge","X_00060_00000_cd","tz_cd") 

#Writing the data to a '.csv' file 

write.csv(data,"C://Users//Documents//USGS_02323000_SUWANNEE_RIVER_NEAR_BELL_FLORIDA.csv") 

#Formatting for the USACE’s Time Series Analysis toolbox  

#Reading in the data 

Data <- read.csv("C://Users//Documents//USGS_02323000_SUWANNEE_RIVER_NEAR_BELL_FLORIDA.csv”) 

#Retaining only the date and discharge value columns 

data <- data[ ,c(4,5)] 

#Reformatting the date to that required by the Time Series Analysis toolbox  

data$dateTime <- format(as.Date(substr(data$dateTime,1,10)),'%m/%d/%Y') 
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APPENDIX E. USGS TREND ASSESSMENT TABULAR DATA 
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Table E-1. Tabular results from the normality test for the USGS annual peak flow data. 

STATION ID STATION NAME p-VALUE 

2270500 ARBUCKLE CREEK DE SOTO CITY, FL 0 

2231000 ST. MARYS RIVER MACCLENNY, FL 0 

2326900 ST. MARKS RIVER NEWPORT, FLA. 0 

2307000 ROCKY CREEK SULPHUR SPRINGS FL 0 

2313000 WITHLACOOCHEE RIVER SR 200 NEAR HOLDER, FL 0 

2358700 APALACHICOLA RIVER BLOUNTSTOWN,FLORIDA 0.001 

2264100 BONNET CREEK VINELAND, FL 0.001 

2324000 STEINHATCHEE RIVER CROSS CITY, FLA. 0 

2310947 WITHLACOOCHEE RIVER CUMPRESSCO, FL 0.003 

2312500 WITHLACOOCHEE RIVER CROOM, FL 0 

2232000 ST. JOHNS RIVER MELBOURNE, FL 0 

2365500 CHOCTAWHATCHEE RIVER CARYVILLE, FLA. 0 

2266200 WHITTENHORSE CREEK VINELAND, FL 0 

2243960 OCKLAWAHA R RODMAN DAM NEAR ORANGE SPRINGS, FL 0.005 

2312640 JUMPER CREEK CANAL BUSHNELL, FL 0.001 

2301500 ALAFIA RIVER LITHIA PINECREST RD AT LITHIA, FL 0 

2303330 HILLSBOROUGH R MORRIS BR NEAR THONOTOSASSA FL 0.001 

2301000 NORTH PRONG ALAFIA RIVER KEYSVILLE FL 0 

2252500 NORTH CANAL VERO BEACH, FL 0.015 

2236000 ST. JOHNS RIVER DE LAND, FL 0.049 

2298830 MYAKKA RIVER SR 72 NEAR SARASOTA, FL 0 

2320500 SUWANNEE RIVER BRANFORD, FLA. 0 

2309848 SOUTH BRANCH ANCLOTE RIVER ODESSA FL 0.004 

2301300 SOUTH PRONG ALAFIA RIVER LITHIA FL 0 

2307359 BROOKER CREEK TARPON SPRINGS FL 0 

2243000 ORANGE CREEK ORANGE SPRINGS, FL 0 

2235000 WEKIVA RIVER SANFORD, FL 0 

2299950 MANATEE RIVER SR 64 NEAR MYAKKA HEAD, FL 0 

2300200 SOUTH FORK LITTLE MANATEE RIVER DUETTE FL 0 

2370000 BLACKWATER RIVER BAKER, FLA. 0 

2310000 ANCLOTE RIVER LITTLE RD NEAR ELFERS, FL 0 

2300700 BULLFROG CREEK WIMAUMA FL 0 

2239501 SILVER RIVER OCALA, FL 0.253 

2266300 REEDY CREEK VINELAND, FL 0 

2266480 DAVENPORT CREEK LOUGHMAN, FL 0 

2303400 CYPRESS CREEK SAN ANTONIO FL 0 

2232200 WOLF CREEK DEER PARK, FL 0 

2271500 JOSEPHINE CREEK DE SOTO CITY FL 0 

2306500 SWEETWATER CREEK SULPHUR SPRINGS FL 0 
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Table E-1. Continued. 

STATION ID STATION NAME p-VALUE 

2232400 ST. JOHNS RIVER COCOA, FL 0.418 

2319500 SUWANNEE RIVER ELLAVILLE, FLA 0 

2234990 LITTLE WEKIVA RIVER ALTAMONTE SPRINGS, FL 0 

2244420 LITTLE HAW CREEK SEVILLE, FL 0 

2327100 SOPCHOPPY RIVER SOPCHOPPY, FLA. 0 

2369000 SHOAL RIVER CRESTVIEW, FLA. 0 

2300500 LITTLE MANATEE RIVER US 301 NEAR WIMAUMA, FL 0 

2322500 SANTA FE RIVER FORT WHITE, FLA. 0 

2233200 LITTLE ECONLOCKHATCHEE RIVER UNION PARK, FL 0 

2301900 FOX BRANCH SOCRUM, FL 0 

2295637 PEACE RIVER US 17 AT ZOLFO SPRINGS, FL 0 

2319000 WITHLACOOCHEE RIVER PINETTA, FLA. 0 

2237293 PALATLAKAHA R STRUCTURE M-1, NR OKAHUMPKA, FL 0 

2303800 CYPRESS CREEK SULPHUR SPRINGS FL 0.002 

2297310 HORSE CREEK SR 72 NEAR ARCADIA, FL 0 

2233500 ECONLOCKHATCHEE RIVER CHULUOTA, FL 0 

2359170 APALACHICOLA RIVER SUMATRA,FLA. 0 

2300100 LITTLE MANATEE RIVER FT. LONESOME FL 0 

2294650 PEACE RIVER SR 60 AT BARTOW, FL 0 

2324500 FENHOLLOWAY RIVER FOLEY, FLA. 0 

2310300 PITHLACHASCOTEE RIVER NEW PORT RICHEY FL 0 

2325000 FENHOLLOWAY RIVER PERRY, FLA 0.011 

2264000 CYPRESS CREEK VINELAND, FL 0 

2253500 SOUTH CANAL VERO BEACH, FL 0.18 

2247510 TOMOKA RIVER HOLLY HILL, FL 0 

2359500 ECONFINA CREEK BENNETT, FLA. 0 

2256500 FISHEATING CREEK PALMDALE, FL 0 

2303000 HILLSBOROUGH RV STATE PARK NR ZEPHYRHILLS, FL 0 

2235200 BLACKWATER CREEK CASSIA, FL 0 

2232500 ST. JOHNS RIVER CHRISTMAS, FL 0.029 

2264495 SHINGLE CREEK CAMPBELL, FL 0.019 

2303350 TROUT CREEK SULPHUR SPRINGS FL 0 

2329600 LITTLE RIVER MIDWAY, FLA. 0 

2248000 SPRUCE CREEK SAMSULA, FL 0.018 

2312200 LITTLE WITHLACOOCHEE RIVER RERDELL, FL 0 

2358000 APALACHICOLA RIVER CHATTAHOOCHEE FLA 0 

2366500 CHOCTAWHATCHEE RIVER BRUCE, FLA. 0 

2231600 JANE GREEN CREEK DEER PARK, FL 0 

2326000 ECONFINA RIVER PERRY, FLA. 0.001 
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Table E-1. Continued. 

STATION ID STATION NAME p-VALUE 

2263800 SHINGLE CREEK AIRPORT NEAR KISSIMMEE, FL 0 

2312700 OUTLET RIVER PANACOOCHEE RETREATS, FL 0.12 

2312000 WITHLACOOCHEE RIVER US 301 AT TRILBY, FL 0 

2312180 LITTLE WITHLACOOCHEE RIVER TARRYTOWN, FL 0 

2329000 OCHLOCKONEE RIVER HAVANA, FLA. 0 

2253000 MAIN CANAL VERO BEACH, FL 0.081 

2245500 SOUTH FORK BLACK CREEK PENNEY FARMS, FL 0 

2303420 CYPRESS CREEK SR 54 AT WORTHINGTON GARDENS, FL 0 

2297100 JOSHUA CREEK NOCATEE FL 0 

2236500 BIG CREEK CLERMONT, FL 0 

2302500 BLACKWATER CREEK KNIGHTS FL 0 

2296500 CHARLIE CREEK GARDNER FL 0 

2330000 OCHLOCKONEE RIVER BLOXHAM, FLA. 0 

2312720 WITHLACOOCHEE RIVER WYSONG DAM, AT CARLSON, FL 0.043 

2234324 HOWELL CREEK SLAVIA, FL 0.001 

2237700 APOPKA-BEAUCLAIR CANAL ASTATULA, FL 0 

2262900 BOGGY CREEK TAFT, FL 0 

2267000 CATFISH CREEK LAKE WALES, FL 0 

2321500 SANTA FE RIVER WORTHINGTON SPRINGS, FLA. 0 
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Table E-2. Tabular results from the Kendall Test for the USGS Annual Peak Flow Data 

STATION ID STATION NAME p-VALUE SEN-SLOPE 

2270500 ARBUCKLE CREEK DE SOTO CITY, FL 0.1231 -8.067 

2231000 ST. MARYS RIVER MACCLENNY, FL 0.7822 4.643 

2326900 ST. MARKS RIVER NEWPORT, FLA. 0.7728 -1.835 

2307000 ROCKY CREEK SULPHUR SPRINGS FL 0.6523 1.128 

2313000 WITHLACOOCHEE RIVER SR 200 NEAR HOLDER, FL 0.0065 -15.614 

2358700 APALACHICOLA RIVER BLOUNTSTOWN,FLORIDA 0.0634 -535.714 

2264100 BONNET CREEK VINELAND, FL 0.0015 8.586 

2324000 STEINHATCHEE RIVER CROSS CITY, FLA. 0.9422 1.16 

2310947 WITHLACOOCHEE RIVER CUMPRESSCO, FL 0.3262 -4.384 

2312500 WITHLACOOCHEE RIVER CROOM, FL 0.0558 -9.68 

2232000 ST. JOHNS RIVER MELBOURNE, FL 0.9675 -0.723 

2365500 CHOCTAWHATCHEE RIVER CARYVILLE, FLA. 0.7538 18.519 

2266200 WHITTENHORSE CREEK VINELAND, FL 0.0169 0.4 

2243960 OCKLAWAHA R RODMAN DAM NEAR ORANGE SPRINGS, FL 0.5115 -10.769 

2312640 JUMPER CREEK CANAL BUSHNELL, FL 4.00E-04 -1.188 

2301500 ALAFIA RIVER LITHIA PINECREST RD AT LITHIA, FL 0.0382 -18.359 

2303330 HILLSBOROUGH R MORRIS BR NEAR THONOTOSASSA FL 0.8026 2.251 

2301000 NORTH PRONG ALAFIA RIVER KEYSVILLE FL 0.457 5.783 

2252500 NORTH CANAL VERO BEACH, FL 0.0885 -3.167 

2236000 ST. JOHNS RIVER DE LAND, FL 0.9241 1.429 

2298830 MYAKKA RIVER SR 72 NEAR SARASOTA, FL 0.3103 -5.775 

2320500 SUWANNEE RIVER BRANFORD, FLA. 0.9557 2.174 

2309848 SOUTH BRANCH ANCLOTE RIVER ODESSA FL 0.2727 1.044 

2301300 SOUTH PRONG ALAFIA RIVER LITHIA FL 0.2742 -4.739 

2307359 BROOKER CREEK TARPON SPRINGS FL 0.741 0.501 

2243000 ORANGE CREEK ORANGE SPRINGS, FL 0.0014 -6.343 

2235000 WEKIVA RIVER SANFORD, FL 0.4467 0.731 

2299950 MANATEE RIVER SR 64 NEAR MYAKKA HEAD, FL 0.7439 4.455 

2300200 SOUTH FORK LITTLE MANATEE RIVER DUETTE FL 0.5275 0.95 

2370000 BLACKWATER RIVER BAKER, FLA. 0.4586 -15.954 

2310000 ANCLOTE RIVER LITTLE RD NEAR ELFERS, FL 0.7315 -1.486 

2300700 BULLFROG CREEK WIMAUMA FL 0.5571 -3.2 

2239501 SILVER RIVER OCALA, FL 0 -4.792 

2266300 REEDY CREEK VINELAND, FL 0.0266 5.462 

2266480 DAVENPORT CREEK LOUGHMAN, FL 0.0058 1.435 

2303400 CYPRESS CREEK SAN ANTONIO FL 0.7338 0.294 

2232200 WOLF CREEK DEER PARK, FL 0.3496 6.136 

2271500 JOSEPHINE CREEK DE SOTO CITY FL 0.0729 3.156 

2306500 SWEETWATER CREEK SULPHUR SPRINGS FL 0.0247 0.636 
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Table E-2. Continued. 

STATION ID STATION NAME p-VALUE SEN-SLOPE 

2232400 ST. JOHNS RIVER COCOA, FL 0.6604 6.688 

2319500 SUWANNEE RIVER ELLAVILLE, FLA 0.8065 11.765 

2234990 LITTLE WEKIVA RIVER ALTAMONTE SPRINGS, FL 0.3035 1 

2244420 LITTLE HAW CREEK SEVILLE, FL 0.7463 0.826 

2327100 SOPCHOPPY RIVER SOPCHOPPY, FLA. 0.8813 -2.093 

2369000 SHOAL RIVER CRESTVIEW, FLA. 0.1212 40.526 

2300500 LITTLE MANATEE RIVER US 301 NEAR WIMAUMA, FL 0.0159 -18.8 

2322500 SANTA FE RIVER FORT WHITE, FLA. 0.0314 -19.762 

2233200 LITTLE ECONLOCKHATCHEE RIVER UNION PARK, FL 0.1913 3.607 

2301900 FOX BRANCH SOCRUM, FL 0.4885 1.183 

2295637 PEACE RIVER US 17 AT ZOLFO SPRINGS, FL 3.00E-04 -33.629 

2319000 WITHLACOOCHEE RIVER PINETTA, FLA. 0.1461 49.6 

2237293 PALATLAKAHA R STRUCTURE M-1, NR OKAHUMPKA, FL 0.2487 0.825 

2303800 CYPRESS CREEK SULPHUR SPRINGS FL 0.0156 -9.571 

2297310 HORSE CREEK SR 72 NEAR ARCADIA, FL 0.0238 -19.385 

2233500 ECONLOCKHATCHEE RIVER CHULUOTA, FL 0.6926 3.2 

2359170 APALACHICOLA RIVER SUMATRA,FLA. 0.578 -334.502 

2300100 LITTLE MANATEE RIVER FT. LONESOME FL 0.0179 -6.391 

2294650 PEACE RIVER SR 60 AT BARTOW, FL 0.4456 -2.134 

2324500 FENHOLLOWAY RIVER FOLEY, FLA. 3.00E-04 -7.541 

2310300 PITHLACHASCOTEE RIVER NEW PORT RICHEY FL 1 0 

2325000 FENHOLLOWAY RIVER PERRY, FLA 0.0058 -7 

2264000 CYPRESS CREEK VINELAND, FL 0.8476 0.034 

2253500 SOUTH CANAL VERO BEACH, FL 0.4099 -2.186 

2247510 TOMOKA RIVER HOLLY HILL, FL 0.2419 4.906 

2359500 ECONFINA CREEK BENNETT, FLA. 0.0116 7.667 

2256500 FISHEATING CREEK PALMDALE, FL 0.0233 -24.821 

2303000 HILLSBOROUGH RV STATE PARK NR ZEPHYRHILLS, FL 0.1323 -9.108 

2235200 BLACKWATER CREEK CASSIA, FL 0.3298 -1.043 

2232500 ST. JOHNS RIVER CHRISTMAS, FL 0.8055 3.182 

2264495 SHINGLE CREEK CAMPBELL, FL 0.0226 7.353 

2303350 TROUT CREEK SULPHUR SPRINGS FL 0.3326 2.653 

2329600 LITTLE RIVER MIDWAY, FLA. 0.9068 -7.825 

2248000 SPRUCE CREEK SAMSULA, FL 0.375 1.291 

2312200 LITTLE WITHLACOOCHEE RIVER RERDELL, FL 0.6309 -1.297 

2358000 APALACHICOLA RIVER CHATTAHOOCHEE FLA 0.8487 -26 

2366500 CHOCTAWHATCHEE RIVER BRUCE, FLA. 0.897 -11.01 

2231600 JANE GREEN CREEK DEER PARK, FL 0.003 -37.607 

2326000 ECONFINA RIVER PERRY, FLA. 0.9921 0 
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Table E-2. Continued. 

STATION ID STATION NAME p-VALUE SEN-SLOPE 

2263800 SHINGLE CREEK AIRPORT NEAR KISSIMMEE, FL 0.0154 7.5 

2312700 OUTLET RIVER PANACOOCHEE RETREATS, FL 0.0784 -2.585 

2312000 WITHLACOOCHEE RIVER US 301 AT TRILBY, FL 0.044 -7.619 

2312180 LITTLE WITHLACOOCHEE RIVER TARRYTOWN, FL 0.7825 0.7 

2329000 OCHLOCKONEE RIVER HAVANA, FLA. 0.0543 41.877 

2253000 MAIN CANAL VERO BEACH, FL 0.2614 -2.5 

2245500 SOUTH FORK BLACK CREEK PENNEY FARMS, FL 0.0973 -17.826 

2303420 CYPRESS CREEK SR 54 AT WORTHINGTON GARDENS, FL 0.2598 -2.933 

2297100 JOSHUA CREEK NOCATEE FL 0.1034 -11.404 

2236500 BIG CREEK CLERMONT, FL 0.6751 -0.245 

2302500 BLACKWATER CREEK KNIGHTS FL 0.5919 -1.66 

2296500 CHARLIE CREEK GARDNER FL 0.8078 -1.778 

2330000 OCHLOCKONEE RIVER BLOXHAM, FLA. 0.0896 49.167 

2312720 WITHLACOOCHEE RIVER WYSONG DAM, AT CARLSON, FL 0.319 -9.529 

2234324 HOWELL CREEK SLAVIA, FL 0.0816 2.012 

2237700 APOPKA-BEAUCLAIR CANAL ASTATULA, FL 0.0463 -3.25 

2262900 BOGGY CREEK TAFT, FL 0.0026 8.414 

2267000 CATFISH CREEK LAKE WALES, FL 0.0962 -0.429 

2321500 SANTA FE RIVER WORTHINGTON SPRINGS, FLA. 0.093 -25.88 

 


