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Review of Benefits

Qualitative:

* Reduce conservative limits for vibration monitoring and protection of existing structures.

* Assist designers during preparation of project documents and plans. More accurate estimates of
required monitoring.

* Relationships between construction equipment and vibration effects on soils.

* Better definition of number of structures that require monitoring.

Quantitative:

* Provide a computational framework currently unavailable to designers.

* Develop a model to estimate zone of influence related to road compaction.

* Produce a ground deformation chart or correlation due to road compaction equipment relating PPV,
Dr, distance from source, and input energy (e.g., centrifugal force and vibration frequency).



Review of Project Objectives

Develop prediction method of dynamic ground deformations and vibrations caused by road
compaction using field data and numerical modeling.

Understand mechanisms of near-field and far-field deformations during road compaction.

Investigate relationships among: ground deformations and vibrations (1.e., PPV), mput
energy (e.g., vibration frequency and centrifugal force), and distance from the source of
road compaction. Affecting parameters: soil strength and stiffness, type of road compaction
equipment, relative density, and characteristics of the energy source.

Develop ground deformation charts (or correlations or equations) for road compaction as a
function of PPV, Dr, distance from the source, soil shear strain, and/or input energy.
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Triggering Mechanisms
Chassis ‘ mg
Xu et al. (2022)

* Soil compaction is induced by combination of static forces (weights of frame
and drum) and dynamic forces (rotation of the eccentric mass inside the drum)

Vibratory
\
compactor

. From Sergiu and Heriberto (2016)
Dowding (1996)

* Most studies focus on PPVs, ignoring energy transfer mechanisms
* Stiff soils lead to lower attenuation rate than soft soils due to material damping

* Energy transfer needs to consider relative masses of two components of the mechanism

and relative
stiffness of the reaction medium and machinery
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Standards and Specifications

tion 108 E t
FDOT Standard Specifications for Road and Bridge Construction (2021): Section 108 Excerp

108-2.1.3 Roadway Compaction Operations: When performing embankment and
asphalt compaction, inspect and document the condition of the following existing structures, and

: b I : : survey and monitor for settlement the following existing structures:
* Structures must be monitored within 75 ft of road compaction operations b ettt o

¢ Equipment must be Capable of deteCting vibrations of 0.01 in/s or less » 2. within 75 feet of vibratory compaction (in any vibratory mode)
* The vibration threshold (PPV) defined by FDOT is 0.5 in/s RN

» Settlement limited to 0.01 ft

Guideline Vibration Damage Potential Threshold Criteria

Caltrans Transp. and Constr. Vibration Guidance Manual (2013): Maximum PPV (in/sec)
Conti /F t
Structure and Condition Transient Sources Inct’:r;:i‘t‘tzl:\i S:quz::
. . . . . . Extremely fragile historic buildingf. ruins. ancient monuments 0.12 0.08
* PPV limit criteria based on studies by Whiffin and Leonard (1971) Fragile buildings 0.2 0.1
. . . . . Historic and some old buildings 0.5 0.25
* Road compaction is a continuous sources of vibration Oder ssidntal siructures o 03
New residential structures .0 5
* Several limits defined depending on the use of the structure. The Modem industrial commercial buildings 20 05 :
. .. . . Note: Transient sources create a single isolated vibration event. such as blasting or drop balls. Continuous/frequent
FDOT llmlt 1S Comparable tO ncw r681dent1al Structures intermittent sources include impact pile drivers. pogo-stick compactors. crack-and-seat equipment, vibratory

pile drivers. and vibratory compaction equipment.

Construction Vibration Damage Criteria

Building Category PPV (in/sec) |Approximate L,
FTA Transit Noise and Vibrations Impact Assessment (2006):
I. Reinforced-concrete, steel or timber (no plaster) 0.5 102
® Damage criteria depending on structure type (nOt ts use) II. Engineered concrete and masonry (no plaster) 0.3 08
* FDOT hmlt Compared to bulldlng Category I: relnforced concrete III. Non-engineered timber and masonry buildings 0.2 94
IV. Buildings extremely susceptible to vibration damage |0.12 90
" RMS velocity in decibels (VdB) re 1 micro-inch/second




Ground Vibrations: Prediction Methods

Hiller and Hope (1998):

* Several attenuation equations depending on construction equipment
*The equation depends on the energy input per cycle (/) and distance
from the roller

* Road compaction can damage infrastructure

Operation Prediction
VW
Piling impact bres = 15 r
W . [VIV
logvl, = —0-073 + 138 log[% — 0234 log? [¥]
Dy < 1 xi
vibro r
W, L [V
log v}, = —0-038 + 1.64 lc.g[‘ :r] — 0:334log? [‘ :]

Vibratory compaction Ures = o—ll)T
W]
. . oV
Dynamic compaction Uree = 0-037 [—
r
Bored tunnelling Bres = 180x 1%

Empirical predictors of ground-borne vibration
levels from construction works in mm/s

Jackson et al. (2007):

* FDOT funded project using Falling Weight Deflectometer
(FWD) data to develop a PPV prediction equation

*This equation depended on roller energy, force, and
distance to the structure
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Caltrans Transp. and Constr. Vibration Guidance Manual (2013):
*Suggested a PPV prediction equation for several vibratory equipment and soil conditions

*Based on a reference value at a reference distance of 25 ft

PPVuibi'atary roller — PPVref (25;!0)“ [i’n.fs]

Equipment Reference PPV at 25 ft. (in/sec)
Vibratory roller 0.210 |
Large bulldozer 0.089

Caisson drilling 0.089

Loaded trucks 0.076

Jackhammer 0.035

Small bulldozer 0.003

Crack-and-seat operations 24

Reference vibration source amplitude

Value of “n” Suggested
Soil measured by Value of
Class Description of Soil Material Woods and Jedele “n"
I Weak or soft soils: loose soils. dry or partially saturated peat ~ Data not available 1.4
and muck. mud. loose beach sand. and dune sand. recently
plowed ground. soft spongy forest or jungle floor. organic
soils, top soil. (shovel penetrates easily)
I Competent soils: most sands. sandy clays. silty clays. gravel, 1.5 13
silts. weathered rock. (can dig with shovel)
I Hard soils: dense compacted sand. dry consolidated clay. 1.1 1.1
consolidated glacial till, some exposed rock. (cannot dig with
shovel, need pick to break up)
v Hard, competent rock: bedrock. freshly exposed hard rock. Data not available 1.0
(difficult to break with hammer)

Suggested “n” values based on the soil class



Selected Case Histories

Bayraktar et al. (2013):

*FDOT-funded research project

*Florida’s Turnpike- vibratory compaction projects

40 different vibration monitoring- 170 data points

FDOT PPV Ilimit of 0.5 in/s was not often exceeded beyond
approximately 20 ft
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Wersill et al. (2017):

Pistrol et al. (2014):

*Vibratory and oscillatory drum on a gravel pit
*HAMM HD+90 VO tandem roller
*Amplitude of 0.013 in (=50 Hz)
*Amplitude of 0.024 in (=40 Hz)
*Oscillatory: Amplitude=0.06 in (=39 Hz)
*Measured accelerations and integrated for PPV
eLarger PPV measured with large amplitude

Vibratory

Vibratory drum-
deformations in compacted soil

PPV by vibratory and
oscillatory drums

*Full-scale tests: influence of operating frequency of a vibratory roller on well-graded gravel (GW)

*Dynapac CA3500D single drum soil compaction roller
* Tests: both fixed and variable frequencies (15-35 Hz)
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Numerical Modeling Approaches

Jackson et al. (2007):

*Plane strain FE model

*Validated with field data from St Augustine, FL
*Linear elastic material

*Matched the predominant frequency and PPV

Kenneally et al. (2015):

*Plane strain linear elastic FE model

*Use of infinite boundaries to avoid wave reflection
*Static load: weight of drum

*Vertical harmonic excitation

Herbut et al. (2019):

*FE model in FlexPDE 3D

*Compaction of STAVOSTROJ vibratory roller
Linear elastic (1% damping)

*Force applied in a rectangular region (1x10 ft)
*Analysis time: 10 x period of the excitation
*Computed changes in soil response after
compaction
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Numerical Modeling Approaches

Fathi et al. (2021): T
* Evaluation of depth of influence by a 3D FE model in LS-DYNA.
* Drum considered as a rigid body.

* Single contact interface between pavement and drum.

b) FE model of soil and drum

¢) Soil-drum interaction

D
v rum

Sliding permitted

Soil-Drum Contact
Interface

4=

Schematic of drum/soil system

* Results matched both displacements and vibrations at selected depths S il
Xu et al. (2022): l vemi::.::?li;:::(?x:‘;’“= ]

Rigid vibratory drum
Diameter: 1.5 m
Length2.1m

 Estimation of soil stiffness from drum response.

 Simulations in PLAXIS 3D using HS-Small.

-0.75 m x=0

* Excitation modeled as harmonic e
* Results showed increasing displacement as frequency increased
Adopted model

Paulmichl et al. (2020): o .
* 2D plane strain FE model in ABAQUS. % o T T d - =
* Hypoplasticity model for the soil to detect void ratio aum ) o}

changes i — ;—-gt;;;.;;%;Zi’-}ff»"-“fi‘-’f’”f“ ---------
* Contact between soil and drum using Coulomb’s law. | =
« HAMM HD* 90 VO roller ! i osm,,
* Frequency of 39 Hz %S'Sm e

Sketch of the 2D FE model
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Survey to Practitioners (Selected Responses)

Question 1. Have you experienced in any past designs or construction projects any problem

associated with ground surface settlement induced by vibratory roller compaction or road
compaction in general?

Yes

No
59%

Question 2. If your answer to Question 1 was “Yes”, did you observe or experience any type of
damage to adjacent infrastructure during the road compaction because of high vibration levels

(quantified in terms of high peak particle velocities) or large ground settlements or structural
distortions?

No
33%

Yes
67%

Question 13. From your experience, ranking from 1-5 please provide what type of material is the

most susceptible to develop the largest amount of settlement associated to vibratory roller
compaction: (1 means the soil with the largest settlement).

Percentage (%)
= N W h O N
oo S S oSS e

Il o b
1 2 3 4 5

Settlement suceptibility ranking

m Sands above the water table m Sands below the water table
Silts Clays
m Others

General information:

Web-based survey on the effects of road compaction-induced vibrations
Survey common practices and experiences
Database shared by FDOT

27 consultants participated, survey response rate of 18%

Main outcomes (1% part):
Regarding experience with damages/problems linked to this problem:

41% experienced problems regarding this phenomenon
67% of those issues were related to damages in adjacent infrastructure

50% who described issues did not report PPV and deformation values higher than
FDOT limits

Problematic soil conditions: mostly surficial sandy soils since those are susceptible
to vibration-induced densification

14



Main outcomes (2nd part):

* 70% considered important to monitor both vibrations and deformations
Approx. 65% estimated the influence zone to be larger than 30 ft
Three main sources of road compaction-induced deformations:

(i11) roller characteristics (roller mass and centrifugal force)
Subgrade and base compaction are the stages that trigger the largest deformations
40% 1s not familiar with any method to predict vibrations and deformations due to compaction

(1) relative density of soils,
(i1) soil grain re-arrangement,

Question 8. Do you consider monitoring ground vibrations and ground deformations due to road
compaction an important issue during the design phase of any road construction project?

=

Question 14. From your experience, what are the main sources of vibratory roller-induced

= Yes (Both)
= No
Only ground vibrations

Only ground deformations

settlements in the surrounding soils? (You can select more than one choice)

&

= Soil consolidation
= Groundwater conditions
Roller frequency
Soil grain re-arrangement
= Relative density of the soils
= Other
= Roller mass and centrifugal force

= Roller passes

Survey to Practitioners (Selected Responses)

Question 16. From your experience, what is the maximum distance from the road compaction area
at which infrastructure (e.g., buildings, public utilities, bridges, etc.) is not affected by the induced

vibrations?

35
30
25
20
15

Percentage (%)

10

[}

<101t 10-30 ft

30-50 ft > 50 ft Other*

Question 17. Which of the following methods and/or models do you use to estimate dynamic soil
displacement due to vibratory roller compaction and/or to determine the impact of construction

vibrations? (You can select more than one choice.)

y

= Spreadsheets you have in your

company

= Software available in your

company
Empirical methods*

Finite element models

= Discrete element models

= Soil strain and/or soil stiffness

approaches

= Not familiar

15






Instrumentation Plan

Procedure: Site selection Instrumentation

Analysis

Field testing EDPs:

Field monitoring schedule during the road compaction test

Measure Velocity Time Histories > Elghteen 5> Hz geophones Stage N, Roller movement Roller setting Duration (s) /#Passes

» Acquisition units I Fixed Low 20 seconds
Measure Ground Deformations » Three vibrating wire settlement transducers I Fixed High 20 seconds
I Passing by High 5 passes
IV Passing by Low 5 passes
Sy
[ | [ ]Compacted Zone
55 : A Geophone
- [l Settlement Plate
----Reference Line
Sy
_____ "
& G G G & G R T
A A A A A A : A A A
3ft 3ft 3ft 3ft 3ft 10fc] i [oft 3ft 3ft
Sidewalk County Road 46A
eophone array

' e 14 E le plan vi f the inst tation | t
Instrumentation deployed in the field xample plai view 01 the Instrimentation ‘ayou
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Site Locations

Site A:

» Lane widening at intersection between
CR46A and Rinehart Road (Lake Mary,
Seminole County, Florida).

Site B:

» MSE wall at connection ramp between
the I-4 interstate and SR 528 (Dr.
Phillips, Orange County, Florida).

Sites C1, C2, and C3:

» Interchange between the -4 interstate
and Daryl Carter Parkway (Dr. Phillips,
Orange County, Florida).

» Subdivided in three sites due to
multiple visits at multiple compaction
stages.

18



Sites Description

»»»

/28 ft-wide lane \ e Access road ah’eady [48 ft-wide two- Cl 5 ft-wide ramp ﬁ 5 ft-wide \
and sidewalk compacted lane exit ramp * Very dense acceleration lane
* Previously * Sakai SV400D * Very dense limerock * Subbase was already
compaf:ted limerock l* Bomag 211D , compacted
* Caterpillar CS- \* Bomag 211D ) =  Concrete barrier

\533E /

between sensors and
roller
* Bomag 211D

Soil Profile Fines Content [%] w (%]
o 100 0 50 100 0 50 100
5t ]
ol Y - °© ° i » Poorly graded sands (SP) and silty sands (SM).
15t ° © 1 » Water table was 6 ft below the ground surface.
° o ey (o]
Typlcal Soil S 20t : o © ® 1> SPTs from 10 to 30 blows on average.
Conditions g2 o ° ° > Fine content varies between 0% and 30%.
30 : ] fee 1t I - ]
a5 SM 1 1% 1t @ 1t 1 » Water content ranges from 20% to 40%.
O Water Content
40 F {1 F : 1 1 | D Liquid Limit |
° A Plastic Limit
45

o SiteA @ SiteB e SiteCl e SiteC2 e Site C3 19



Typical Results: PPV

Lessons Learned
» Highest velocities measured during high setting stages. Higher
centrifugal force causes higher PPVs.
» Quantification of energy from the roller is very important for
Velocity time history during entire road compaction test (Site A) charts.
» No significant difference in response from stationary roller or
G moving back and forth.

Ga
Gy

Lof |

PPV attenuation with distance (Site A)
10 :

O Stage IL

® Stage [IH
® Stage [ITH
o Stage IVL

100

Distance from the roller [ft]

— 1oL ITTH P VL

0 T2 1 6 3 10
Time [min]
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Typical Results: PPD

Field monitoring schedule during the road compaction tests (Site C3)
Lessons Learned

> PPD selected fI‘OI.Il maximuim deformatlon In time hlS'[OI'y Stage N, Roller movement Roller setting Duration (s) /#Passes
» Ground deformations were transient I Fixed High 20 seconds

» Largest deformations occurred during high setting stages. - Fixed Low 20 seconds
) e 111 Passing by High 2 passes
More energy transmitted to the soil in that early stage.
Ground deformation time history at each settlement plate (Site C3) PPD attenuation with distance (Site C3)
T 0.40 ——————————————————————
—03F b i ©@— | & 5
L i o S, 0.35¢
02 | | 1 o ) e
L i 0
_o1F b : o \
R i o &8 =

e
e

<
o

PD [in
[@n]
]
(e}

0.1

Deformation [in]

\

0.2} g 0.10
0.3} i ] 0.05
0 £ 6 8 10 12 1 o 5 10 1 2
Time [min] Distance from the roller [ft]
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Summary of Field Test Results

Lessons learned
» The FDOT PPV limit of 0.5 in/s was not exceeded beyond approximately 40ft from the roller

» PPV measurements behind concrete barrier were affected by wave reflection
» Sites C2 and C3 showed the highest displacements due to the roller's higher centrifugal force
» PPD values were negligible at most sites, likely attributed to the high level of compaction performed before the tests

» PPD of approximately 0.3 in measured up to a distance of 10 ft

Concrete barrier B Site A B SiteB © SiIeC'l ] SiIeC2 5] SifeC3

10 5 .
] . 3,
4 o E‘ EF‘
~ 13 01 L %,
E E - 2 ] B %
= 7] E ] = @ - ]
E i - . B 7 T w ey
- " . Ay o 5 =
0.1 5 Caltrans (2020) "\ 0.01 4 .
1 Bayraktaretal (2013 . ]
_ ‘\\ \ ]
- N\ |
[}.[}1 T T T T TTTT] T T T TTTTT] |\L| TTTTTT] D_GG]_ T T T T T TT] T T T T T TT]
1 10 100 1000 1 10 100
Distance from roller (ff) Distance from roller (ft)

PPV attenuation with distance (All sites) PPD attenuation with distance (All sites)
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A\

Modeling Framework

Testing site
selection

\

Summarize soil
profile

J

5 construction sites

Model characteristics

2D FE model in PLAXIS 2D.
Plane strain conditions.

Single layer of a sandy soil.
Constitutive model: Hypoplasticity
Sand.

Vibratory roller modeled as
uniformly distributed static +
dynamic loads.

Water table at the ground surface.
Viscous boundaries.

From soil borings and

FDOT soil boring viewer

.
Obtain
vibratory roller
specifications

\.

J

To compute forcing
function and
vibration cycles

Overall mesh dimensions

(a)

Vibratory Roller

s0ft||

Detailed view of the

325 ft
refined mesh under the roller

Vibratory
(b) Roller
O P A VAN AVAVAVAVAVAVAVAVAVAVAVAVATA Ao J It 7
6ft \ v X— Vi v-.‘ ...... 1 y ; J v,
y - ~
4 K—t 10 £t H )
Y

Finite element
modeling

\. J

Apply force time history
to analyze response in
soil continuum

Steps for numerical simulations

Definition of material properties
and drainage conditions.

Type of analysis: dynamic with
consolidation

Definition of model geometry
(drum width, soil clusters) and
mesh

Initialization of soil stress field
Application of initial
compression: static weight
Dynamic analysis: application
of wvibration cycles until
reaching e ;.
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» Static load —> Axle load
» Dynamic load —> Centrifugal force

» New non-contact modeling strategy proposed

Modeling Strategy for the Vibratory Roller

» Energy —— E = 2 - Amplitude - (2F, + F)

Idealization of the drum-soil interaction for one cycle of dynamic load

Fy

Unloading

A

o~

Loss of contact

Modeling strategy of the vibratory roller

Fs=m,g

2

F;(t) =myrw=cos(wt)

7

Load multiplier considering the non-contact approach

Harmonic Function
= = = Non-contact Approach

Load
Multiplier A

gln
e
8|
S

e

S
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Definition of Soil Parameters

Constitutive model: Hypoplasticity Sand.
Relative densities: 25%, 50%., and 75%.

Calibrated from numerical laboratory tests and published
stiffness degradation curves.

Initial cell pressure: 200 psf. (i.e., equivalent to depth 7.0 ft)

K 0 — 0 5
Soil properties obtained from the calibration

No. Parameter Description Value Unit
1 dc Critical state friction angle 31 ©
2 pt Shift of the mean stress due to cohesion 0 psf
3 hg Granular hardness 25062 ksf
4 n Exponent for pressure sensitive of a grain skeleton 0.37 -
5 €40 Minimum void ratio at zero pressure (ps = 0) 0.58 -
6 €0 Critical void ratio at zero pressure (ps = 0) 1.096 -
7 €0 Maximum void ratio at zero pressure (ps = 0) 1.315 -
8 o Exponent for transition between peak and critical stresses 0.05 -
9 B Exponent for stiffness dependency on pressure and density 1.4 -
10 mg Stiffness increase for 180° strain reversal 5 -
11 my Stiffness increase for 90° strain reversal 2 -
12 Riax Size of elastic range 5.00x10- -
13 B, Material constant representing stiffness degradation 0.1 -
14 x Material constant for evolution of intergranular strains 1.0 -

q [kPa]

Results CKoU — TXC tests

400——
— D, =25%
300 —— D, = 50%
— D, = 75%
200

100}

0 {0
0 1 2 3 4 5
€q [%]
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1 Database with 50 rollers

U Assuming N = 1 pass, Z = 1 drum and V = 3 mph

U Time per pass:

tpass —

D

V

U e.g.,: required time for compaction computed: heaviest roller
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Example of compaction process by the heaviest roller: Bomag BW 226 BVC-5 21
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Summary of the Parametric Analyses Performed

Combinations of centrifugal force and vibration frequency
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Hiller and Crabb (2000) > Study the effecjts of: )
Jackson et al. (2007) 1) soil relative density,
Rinehart et al. (2009) 1) centrifugal force,

Pistrol et al. (2013) iii) vibration frequency.
Beainy et al. (2014)

Li and She (2021)
Fathi et al. (2021)
Fang et al. (2022)
Present study
Parametric Analysis

» 75 numerical simulations, 1800 hours of
computational effort.

» Output values:
1) Compaction efficiency,
i1) ground vibrations (PPV),
i11) ground deformations (PPD).
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PPV [in/s]

Centrifugal Force

—— 112 kips = 68 kips

Effect of Soil Relative Density

Computed compaction performance

22 kips

— 90 kips = 45 kips 11 kips
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0.5 Cmin 0.5 €min g
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Computed PPV attenuation
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D, =25%

D, =50%

D.=75%

Lessons learned

>

>

Soil relative density is important to define how minimum
void ratio is reached

Time to reach target void ratio depends on relative density
PPV attenuation curves are similar across all relative
densities

Regardless of relative density, 0.5 in/s is exceeded up to
~35 ft from roller

The lower the relative density the larger the PPD. More
densification occurs for low relative densities.

Computed PPD attenuation

Centrifugal Foree

e 112kips @ G8kips @ 22 kips
e 90 kips e 45kips e 11 kips
4 . 4 : : : 4
s (a) (b) (c)
3r 3 3t
:
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1 o.l 1@ 1f
W o o ;
8 8 g A 8 g f .a g 8. 8 .a
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Distance from the roller [ft]

D, =75%

Distance from the roller [ft]

D, =50%

Distance from the roller |[ft]

D, =25%
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Effect of Centrifugal Force

Computed compaction performance Computed PPV attenuation Computed PPD attenuation
Number of Passes
0 5 10 15 10 e 4% |
o 3t )
~. 1 '. : £ B !
= © E Q 2t ]
E - o ] & [ _
3 O(b 3 F
SR 8% 5 G 7
[ ] 5] 1
oon 1 % 8 8 ﬁ A . ]
R § 1 10 100 1000 0 - 100 200
0 3 1(3. [9] 12 15 Distance from the roller [ft] Distance from the roller [ft]
1ne (S
Centrifugal Force Centrlfugal Force
— 112 kips = 68 kips 22 kips (6] 112 kips (6] 68 kips o} 22 kips
— 90 kips = 45 kips 11 kips

® 90 kips ® 45kips © 11 kips

Lessons learned

The higher the centrifugal force, the faster the rate of changes in void ratio

More energy transferred to the soil improves the compaction efficiency

PPV levels increase with the centrifugal force

PPV attenuation rate is soil dependent (damping), and not necessarily related to the centrifugal force

PPDs increase with centrifugal force

The magnitude and duration (i.e., number of vibration cycles) affect ground displacements; for example, a lower
centrifugal force (68 kips) applied over a longer time generated more displacement than a higher force (90 kips).

YVVVYVYVY
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Effect of Vibration Frequency

Computed compaction performance Computed PPV attenuation Computed PPD attenuation
Number of Passes
0 5 10 15 10 : : 4 b
- 3¢
OF S fg L ¢ qu = @
) — = A,
0.6 Smin o o o o — Q L o)
[ (]
0.5 L ) . P
. " n N 1 10) 100 1000 0 100 200
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Vibration Frequency
— () H: : - . ) ,
20 Hz 3F] Hz Vibration Frequency
= 4() Hz 50 Hz e 229Hz e 30Hz e 40Hz e 5H0Hz e G0OHz e 70 Hz

60 Hz 70 Hz

Lessons learned

» At high centrifugal forces, compaction mostly unaffected by frequency

» At low centrifugal forces, compaction affected by frequency

» PPVs controlled by energy and number of cycles, not much by vibration frequency

» PPDs mostly unaffected by frequency, but low vibration frequencies cause larger PPDs as frequency natural frequency
of surficial soils
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Summary Charts: Compaction Performance

Relative compaction efficiency chart after 12 roller passes
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Lessons learned

>

High centrifugal force and low frequency: most effective to
achieve target compaction

Low force and high frequency: unsuitable for compacting
soils, more energy and roller passes needed

Compaction time decreases with increasing centrifugal
force

Compaction efficiency i1s governed mainly by the energy
transmitted to the soil, not much by the vibration frequency
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Summary Charts: PPV Envelopes
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1000
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Vibratory Rollers
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Dynapac CC900G

* @ 8 >

Bomag BW 226 BVC-5
Ingersoll-Rand DD-112F

PPV Ranges
Dowding (1996)
= Present study

E Field Data
@ Parametric Study
== FDOT limit

-1
Upper bound —> PPV = 30 <E>

~1
D
Lower bound —> PPV =2 <—>

VE

VE

Lesson learned
» Scaled distance normalization reduces scatter

» Most PPVs fall within Dowding’s proposed range,
but new PPV range is proposed

» Same attenuation curves are proposed for all
relative densities

» FDOT PPV limit of 0.5in/s not exceeded beyond
60 ft/\/ kip — ft, corresponding to distances
between 20 ft and 110 ft, depending on roller
energy

» FDOT zone of 75 ft can both over or underpredict
influence zones. Energy must be considered in the
design specifications



PPD [in]
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Summary Charts: PPD Envelopes
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Vibratory Rollers
Bomag BW 226 BVC-5
Ingersoll-Rand DD-112F @
Ammann AV95N
Dynapac CC900G

E Field Data
Parametric Study
— 5% Prediction Interval

PPD =8 N

Parameters p and a

Relative .

Density p [in] @
25% 14.75 0.67
50% 10.94 0.63
75% 6.95 0.57

Lessons learned
» Loose sands show higher PPDs

» Three separate envelopes proposed as a function of
relative density

» Envelopes follow a power law equation with f§ and
a used as fitting parameters

» B and a values decrease as density increases

» Proposed envelopes are conservative compared to
field measurements
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Prediction Equations: PPV

PPV = kD1
k=1.6—0.03f +0.1F,

Proposed equation to estimate PPVs considering
distance, frequency, and centrifugal force

Strong match between predicted and computed results

High R? values confirm strong correlation among
variables involved

Validation with field data shows good fit for sites A,
Cl, C2, and C3, mismatch at site B was due to
uncertain roller settings

Predicted k [in/s
/

Parity and residual plots of &k

16 7
/ 15t ,
(a / ] b
al @) p (b)
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—15t
0 5 10 15 0 5 10 15
Computed £ [in/s] Predicted & [in/s]
Relative Density
— Porfect Prediction @ D, =25%
== FError Lines @ D, =5%
@ D, =7%

Coefficients of determination (R?) for &k

Relative Density R?
25% 0.95
50% 0.93
75% 0.90

37



Prediction Equations: PPD

PPD = —aD + b
a = a,;F? + a,F, + ag
b = blFCZ + bZFC + b3

Parameters a and b

Relative a [in/ft] b [in]

Density a; x 1077 a, x 1074 az; X 1074 b; x 10™* b, x 1072 by x 1071
5% —5.9 1.40 —6.0 —15 29 —1.30
50% —6.5 1.20 —4.0 —-1.6 2.5 —0.83
75% —6.6 0.97 —-1.2 —-1.5 2.0 —0.29

Parity plots of a and b
0.010 . , ,., ol : . /.
(a) y () y
0.008 / 4 12} S P
PRV ’ ’ ee 7/
£ / 7 —= 1.0 / 7’
2 0.006} Ry Ll = 4 R4
= JRe = 08 / 4
T " ° g < ,’ i
= rd ) =
= 0.004} v/ o7 £20% 206 o
é 70 o @ 7’ ﬁ:QO A
/, 0.4} 7
0.002 | A P oAl
0.2}
0.000 0,002 0.004 0006 0008 0010 0.00 025 050 075 100 125 150
Computed a [in/ft] Computed b [in]
Relative Density
m— Porfect Prediction ® D, =25%
= = FError Lines @ D,=50%
@ D =7%

Coefficients of determination (R?) for a and b

2
Relative R
Density a b
25% 0.97 0.98
50% 0.94 0.92
75% 0.84 0.76

PPDs decrease with distance from vibratory roller

Vibration frequency excluded from proposed
equation due to minimal influence

Parity plots confirm strong match between predicted
and computed results

Validation with field data shows
reasonably bounded measured PPDs

the model
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Conclusions and Recommendations

. Field data showed that quantification of transmitted
energy i1s very important. It largely influences particle
rearrangement.

. Field data showed transient ground deformations
peaking when the roller i1s directly in front but
reducing after excitation finishes, indicating small
residual deformation.

. Geostructures provide some protection barrier against
vibratory roller-induced vibrations and deformations.

. Significant vibrations occur at high roller settings due
to the high energy transmitted to the soil and
amplification occurs when excitation frequencies are
close to the natural frequency of the soil.

6. Parametric study: 1) large centrifugal forces increase
ground vibrations and deformations, 11) vibration
frequency has minor effect except for low forces near
natural frequency of soil, and 1i1) loose soils experience
large deformations due to long densification process.

7. Proposed envelope to estimate maximum expected
ground vibrations in terms of PPV by incorporating the
scaled distance in ft/Vkips-ft.

p\~1
PPV = 30 <\/_E> lin/s]

E=A-a-Q2F +F,) [kip— ft]

8. PPV influence zone defined as 60 ft/Vkips-ft. That is
equivalent to 20 ft for light rollers and 110 ft for heavy
rollers. FDOT standard requires monitoring within 75 ft.
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Conclusions and Recommendations

9. PPD versus scaled distance in ft/\kips-ft :

» Loose sands:

PPD = 14.75 (%)_0'67 [in]

» Medium-dense sands:

p\—0-63
PPD = 10.94 (ﬁ) [in]
» Dense sands:

PPD = 6.95 (%)_0'57 [in]

10. PPV prediction equation as a function of

vibration frequency (Hz), centrifugal force (kips) and
the distance from the roller (ft).

PPV = (1.6 — 0.03f + 0.1F.)D™! [in/s]

11. PPD prediction equations as a function of distance

from the roller (ft) and centrifugal force (kips)

PPD = —aD + b [in]
» Loose sands:
a=-59%x10"7F?+ 1.4 X 107*F. — 6.0 x 10~* [in/ft]
b =-1.5x10"*F? + 0.029F. — 0.13 [in]
» Medium-dense sands:
a=—-65x10""F2+1.2%x107*F, — 4.0 x 10~* [in/ft]
b=—-1.6X10"*F? + 0.025F, — 0.083 [in]

> Dense sands:

a=—-6.6x10"7F?+9.7x 107°F. — 1.2 x 10™* [in/ft]

b=—-15x%10"*F2 + 0.02F, — 0.029 [in]
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Suggested Revisions to Specifications
Changes and/or additions to FDOT Standard Specifications for Road and Bridge Construction

108-2.2 Vibration Monitoring: When shown in the Contract Documents, employ a
Specialty Engineer to provide a system which will continuously monitor and record ground
vibration levels near the structures shown in the Plans during the operation of any equipment
causing vibrations or during blasting operations. Provide vibration monitoring equipment

108-2.1.3 Roadway Compaction Operations: When performing embankment and
asphalt compaction, inspect and document the condition of the following existing structures, and
survey and monitor for settlement the following existing structures:

1 as shown in the Plans. capable of detecting velocities of 0.01 inches per second or less. Obtain the Engineer’s approval
2. within 75 feet of vibratory compaction (in any vibratory mode) of the number and locations of the monitoring points and install the system per the Specialty
operations. Engineer’s recommendations. Submit the vibration records to the Engineer within 24 hours of
performing the monitoring activity.
Upon either detecting vibration levels reaching 0.5 inches per second or damage

to the structure, immediately stop the source of vibrations, backfill any open excavations, notify
the Engineer and submit a corrective action plan for acceptance by the Engineer.

- PPVs below 0.5 in/s occurred beyond a scaled distance of 60 ft/\kips-ft.

- FDOT recommends a monitoring distance of 75 ft, which becomes too conservative
for light rollers (~20 ft) and underpredicts for heavy rollers (~110 ft).

- The authors encourage the adoption of the scaled distance in FDOT standards for
ground vibrations and deformations due to road compaction.

- Authors recommend adding the proposed equations and charts to predict maximum
ground vibrations and deformations.
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Selected Publications

- One conference paper was presented in Geofrontiers Conference 2025.

Ballesteros J, Orozco-Herrera JE, Shin GB, Arboleda-Monsalve LG (2025). “Numerical Study on Ground Vibrations and
Deformations Induced by Vibratory Rollers in Central Florida” Geotechnical Frontiers 2025, Louisville, KY, March 3-5,
2025.

- One journal paper to the Journal of Geotechnical and Geoenviromental Engineering, ASCE is under preparation.

Orozco-Herrera JE, Ballesteros J, Arboleda-Monsalve LG, Herrera R (2025). “Measured and Computed Ground
Vibrations and Deformations Induced by Vibratory Rollers in Central Florida” J. of Geotech. and Geoenv. Eng., ASCE,
Under Preparation.
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