BED Two 28 977-01 Using the PENCEL PMT to Evaluate Shallow Foundations at Florida's Fine Sand Sites

GRIP August 14, 2025

PM's: Dino Jameson P.E. & David Horhota PhD, P.E.

PI: Paul J Cosentino Ph.D., P.E.

Florida Institute of Technology

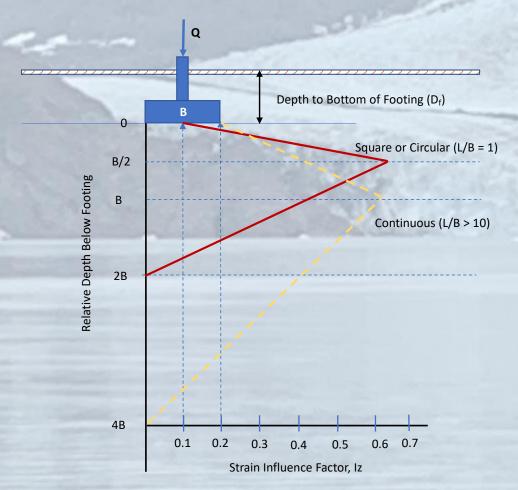
150 West University Boulevard

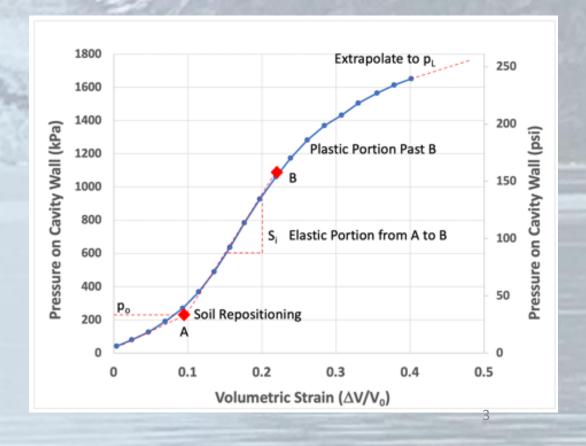
Civil Engineering and Construction

Olin Engineering Room 205

Melbourne FL 32901-6975

cosentin@fit.edu


321-674-7555


FDOT GRIP 2025 Outline

- 1. Introduction & Overview
- 2. Objective
- 3. Tasks
 - 1. Literature and Historical Review
 - 2. SMO Testing with PENCEL PMT, CPT, CPT, SSMini PMT, and Plate Bearing
 - 3. Site Selection, Site Visits, and Procurement of Site Data
 - 4. PPMT, TEXAM, SSMini, CPT, DMT, SPT, and Field Plate Load Testing
 - 5. Analyzing the Modulus Effects on Foundation Settlement and Bearing Capacity
 - 6. Extrapolation of Design Procedure Data with Design Flow Chart using Florida Site Conditions
 - 7. Conclusions
 - 8. Recommendations
- 4. Closing Slide

Introduction

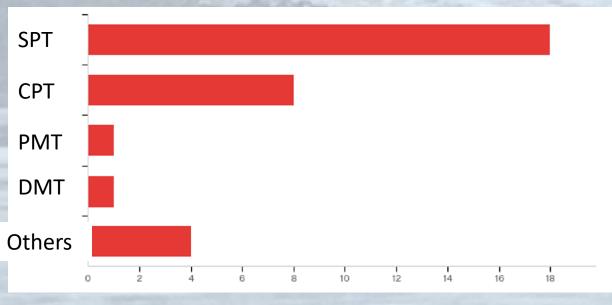
- When Shallow Foundations are used, the zone of soil affected is typically within the top 25 to 25 feet.
- PENCEL PMT stress-strain curve components are easy to interpret and use in footing designs

Why did we do this?

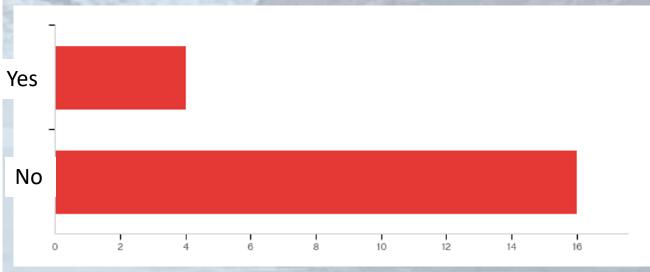
To make the Geotechnical community comfortable with the easier to use PENCEL PMT

- Data from this work complements the existing data used in Briaud's 2007 Settlement of Sands prediction method.
- The research report contains specific guidelines/ recommendations for consulting engineers to follow when using PMT data to design shallow footings.

Objective


To improve the geotechnical engineer's confidence in using PENCEL PMT data to safely design shallow footings placed on Florida fine sands.

Task 1 Literature and Historical Review


Survey of Florida Field Tests (BDV24-977-29 Chopra & Arboleda-Monsalve, 2020)

Do you use Specific correlations for the elastic modulus of the soil with field tests? Please select all that apply

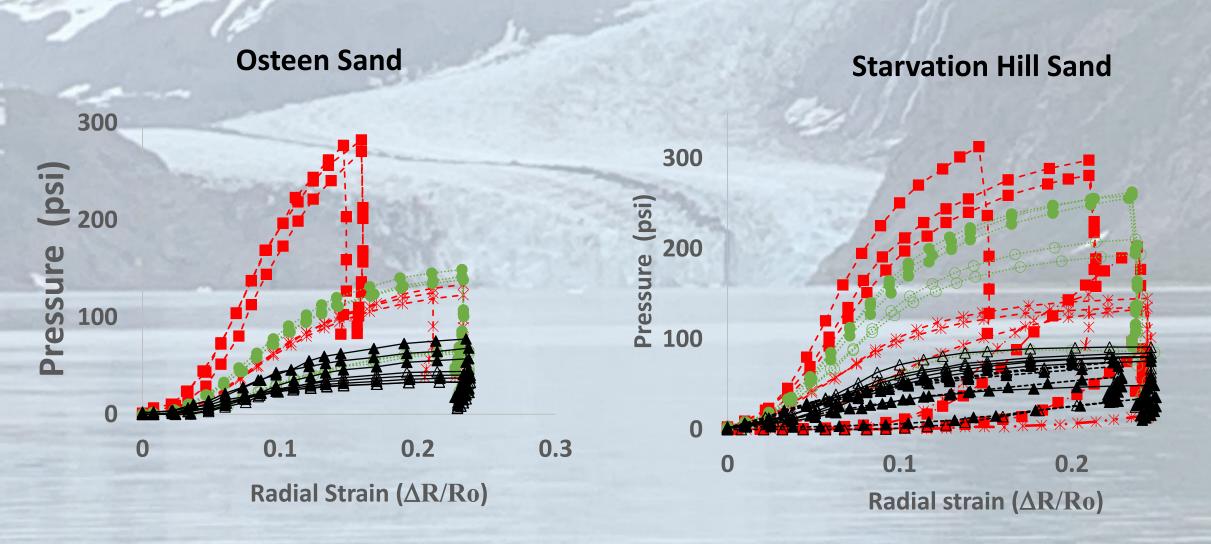
Do you perform any additional laboratory and/or field tests to check your selection of elastic modulus and immediate settlement values?

16 of 32 use SPT 50%

4 of 20 use Lab Tests to Supplement 20%

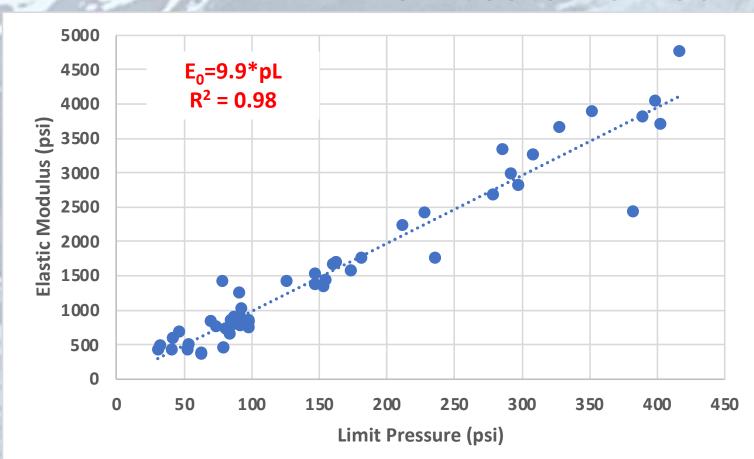
Task 2-SMO Testing- In situ tests to determine E

- Both Indoor SMO Pits used
 - Compacted to about 5 ½ feet
- Two SP sands
 - Starvation Hill Pit- Stronger SP
 - Osteen Pit- Weaker SP
- NDG-to ensure uniform compaction
 - 90, 95, 100 % Modified Proctor Densities
- PPMT-mostly pushed
- CPT
- DMT
- Plate Loading
- SSMini PMT added to help with Plate Evaluations



Summary of SMO Testing

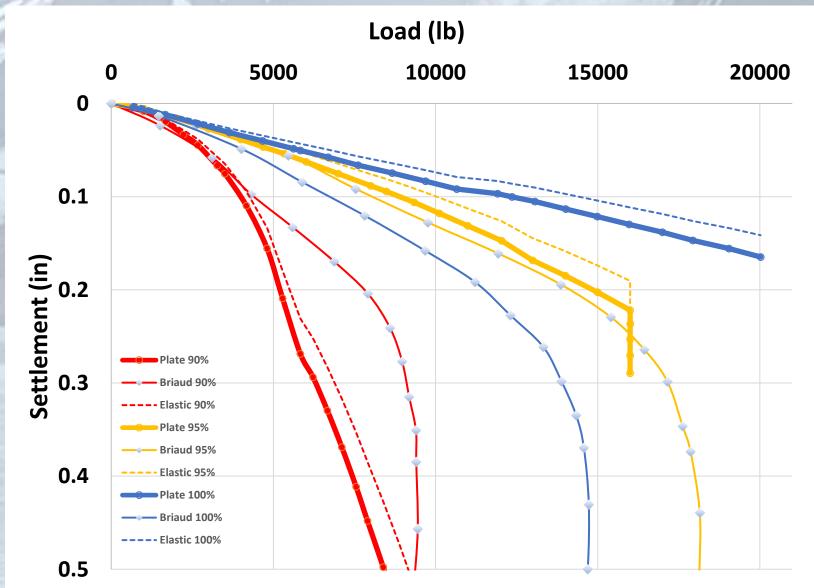
Site	PPMT Tests	SSMini Tests	CPT Soundings	DMT Tests	Plate Tests
SMO Starvation Hill 90 %	18	6	3	12	3
SMO Starvation Hill 95 %	6	8	3	12	3
SMO Starvation Hill 100 %	10	8	3	12	3
Subtotal	34	22	9	36	9
SMO Osteen 90 %	8	8	3	9	4
SMO Osteen 95 %	6	8	3	9	5
SMO Osteen 100 %	6	8	3	9	3
Subtotal	20	24	9	27	12
Total	54	46	18	63	21


Note, there are about the same number of PENCEL & SSMini Tests as DMT Tests

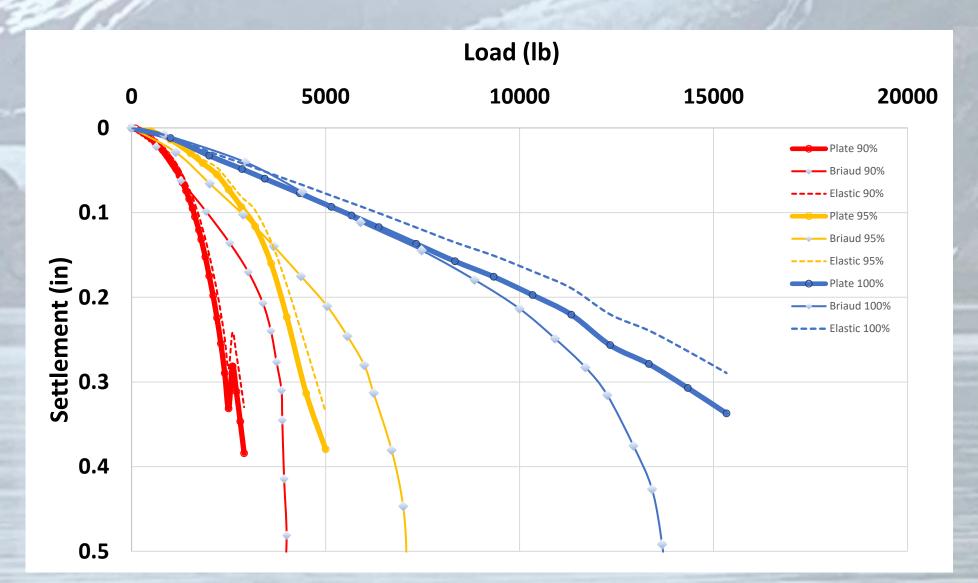
Task 2 PPMT Results @ 100, 95 & 90 % RC

0.3

Task 2 PPMT Data Quality SMO Pits 54 tests - SP Sands



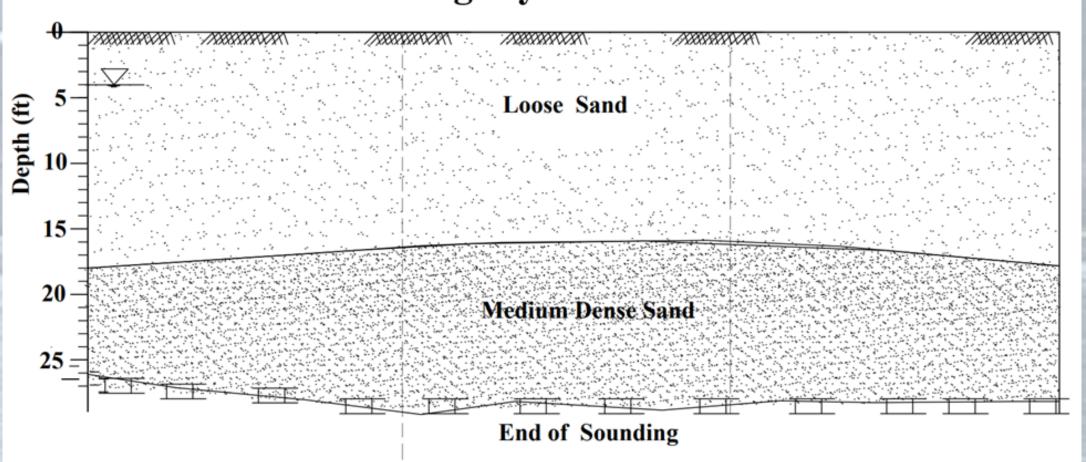
- PPMT produces reliable data
- E_{PPMT} is ~10 times p_L
- Relationship consistent with


literature: $E_{PMT} \sim 6$ to 16 times p_L

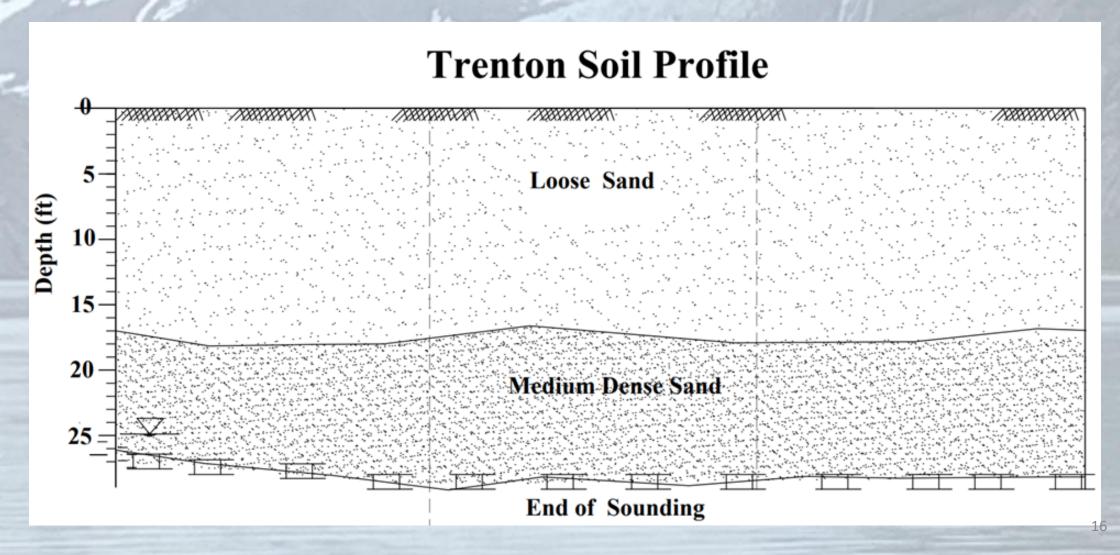
Useful for QC of PMT test results

Task 2 Starvation Hill Settlement Measured Plate vs. PPMT Predictions

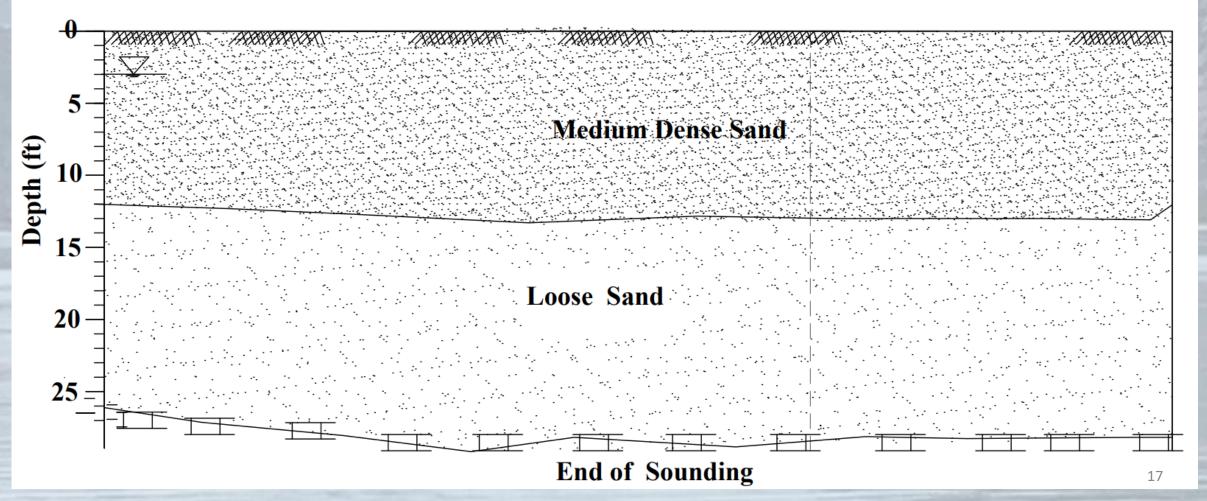
Task 2 Osteen Settlement Measured Plate vs. PPMT Predictions



Task 2 Conclusions


- ♠PPMT testing produced an excellent E₀/pL relationship
- Stiffness & strength parameters from PPMT, DMT, CPT, and Plate tests suggest strong correlations with each other
- Relationships are consistent for 90%, 95%, and 100% relative compaction in both Florida sands, with 95% and 100% being the most closely related

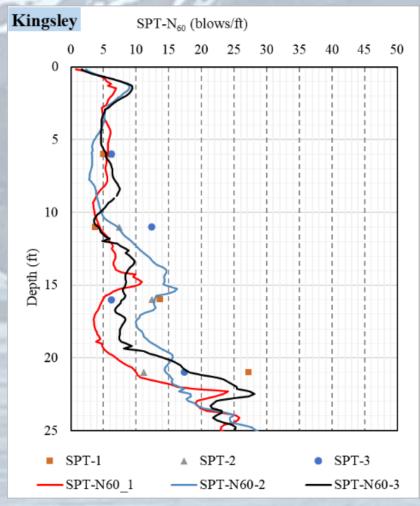
Task 3 Sandy Field Sites Soil Profiles

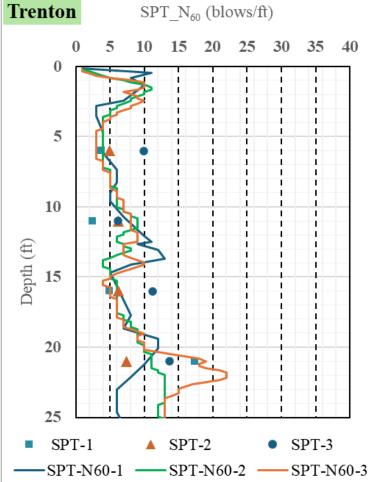

Kingsley Soil Profile

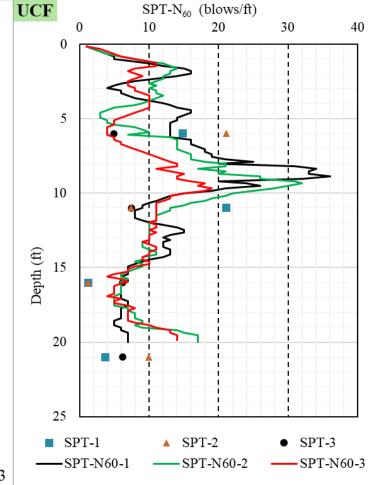
Task 3 Sandy Field Sites Soil Profiles

Task 3 Sandy Field Sites Soil Profiles UCF Soil Profile

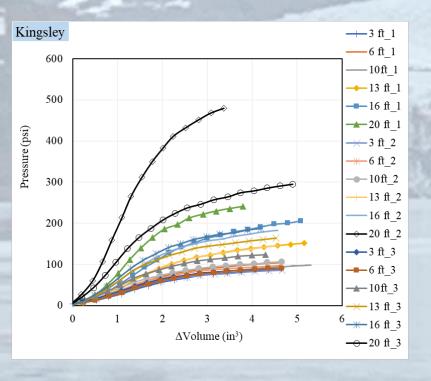
Task 4 Field Testing

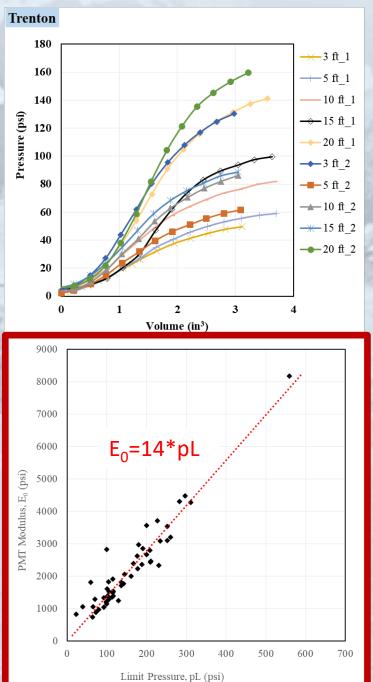

- **Equipment Used**
 - **PENCEL PMT**
 - **EXAM PMT**
 - **SSMini PMT**
 - **CPT**
 - **P**DMT
 - SPT
 - Plate

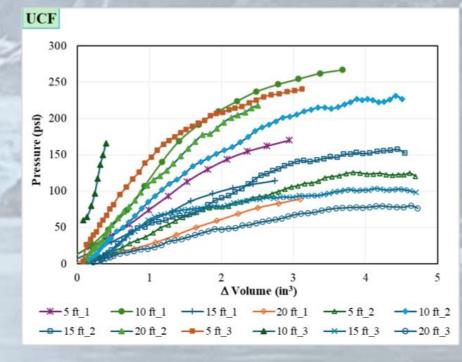

- Results
 - PENCEL PMT E₀, pL
 - TEXAM PMT E₀, pL
 - SSMini PMT E₀, pL
 - **OMT** Ed
 - CPT qc
 - SPT N_{FS} Blows/Foot
 - Plate k (pci)

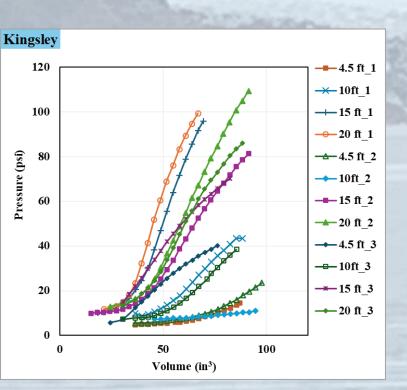

Overview of A Lot of Field Testing

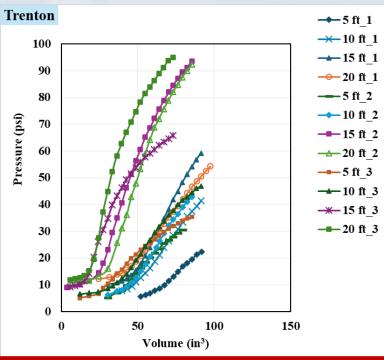
Site	PPMT Tests	SSMini Tests	TEXAMe Tests	SPT Borings	CPT Soundings	DMT Tests	Plate Tests
FDOT Kingsley Field Site	20	12	12	3	3	110	3
FDOT Trenton Field Site	20	12	12	3	3	93	3
UCF Field Site	11	12	12	3	3	93	3
Total	51	36	36	9	9	296	9

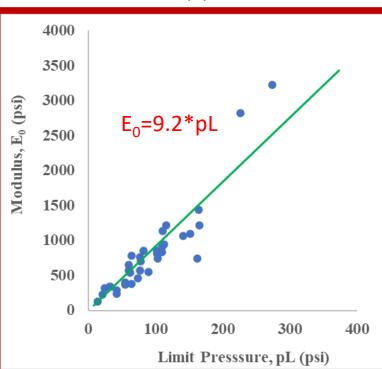

Task 4 CPT plus SPT N Profiles

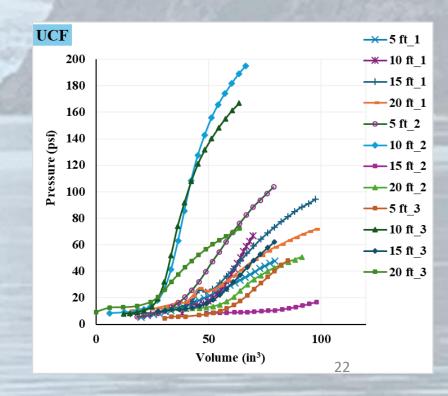




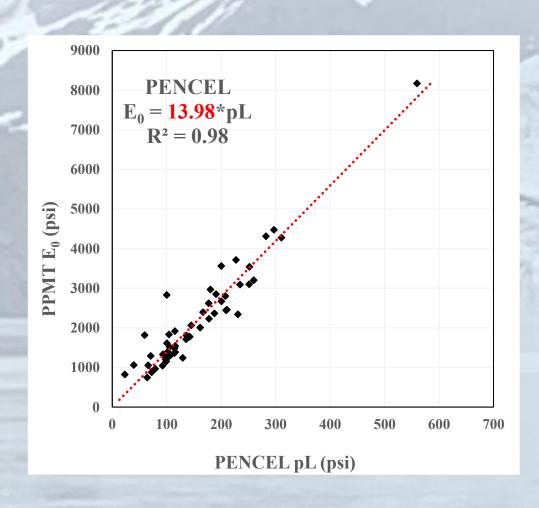

Task 4 PENCEL PMT Data

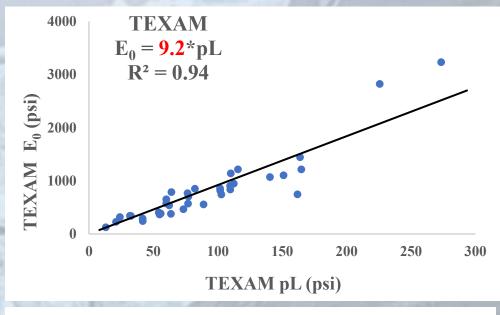


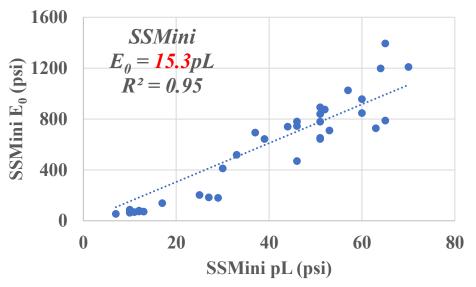




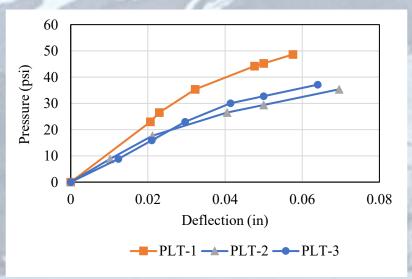
Task 4 TEXAMe PMT

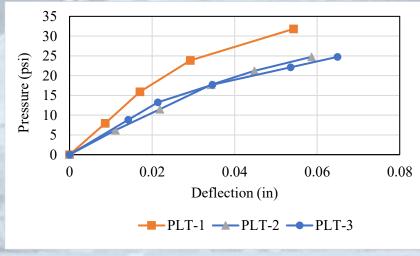




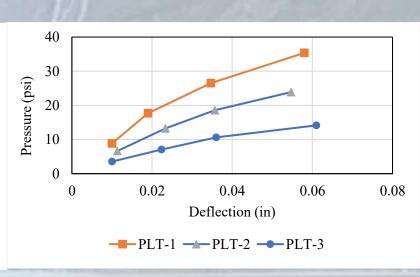


Task 4 Consistent E₀/pL Ratios from all PMT testing


Borehole Prep is Critical



Task 4 Plate Bearing Results



Trenton

UCF

	Site	Test #	E _{PLT} (psi)	k (pci)
	ey	1	6409	1260
	Kingsley	2	4163	819
	Kii	3	4106	808
	Trenton	1	4314	848
		2	3192	628
		3	3011	592
	fv.	1	4579	901
	UCF	2	3196	629
	1	3	1783	351

Task 4 SPT, CPT, DMT, PMT Correlations

Literature E & SPT-N 16 different correlations

Webb (1969) Young's modulus of the soil from the uncorrected SPT blow counts, N for saturated silty sands, clayey sands, and sands with intermediate fine contents, respectively.

$$E = 5(N + 15)$$

 $E = 3.33(N + 5)$
 $E = 4(N + 12)$

Papadopoulos (1992)

$$Es = 2.5 \ qc \text{ and } Es = 7.5 + 0.8N \ (MPa)$$

Trofimenkov (1974):

 $E_s = (350 \text{ to } 500) \log N, \text{ kg/cm}^2$

Webb (1969):

E=4(N + 12), ton/ft²

Chaplin (1963):

 $E_s^{4/3} = (44N)$, tsf

Denver (1982):

 $E_s = 7(N)^{0.5}$, MPa

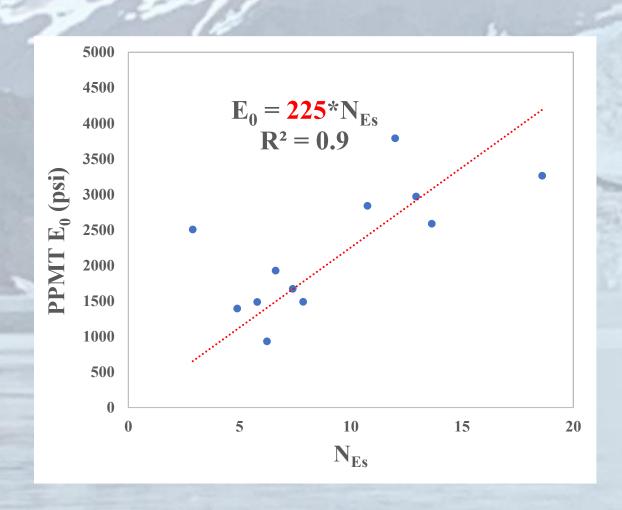
Clayton et al. (1985):

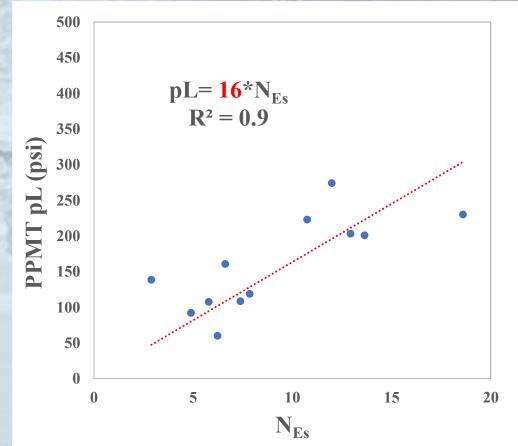
E_s= 3.5N to 40N, MPa

Papadopoulos and Anagnostopoulos (1987):

 $E_s = 7.5 + 0.8N$, MPa

Sand with fines	Kulhawy and Mayne (1990):
	E/Pa=5N ₆₀
	Webb (1969):
	E = 3.33 (N + 5), tons/ft ² (Clayey
	saturated sands)

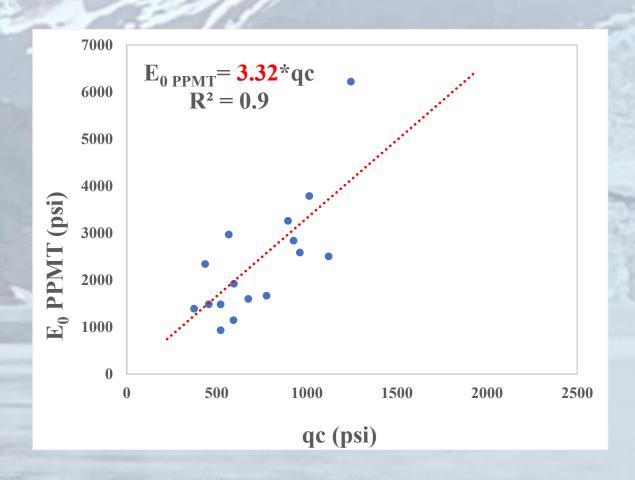

Submerged fine to	Webb (1969):
medium sand	E=5(N+15), tons/ft ²

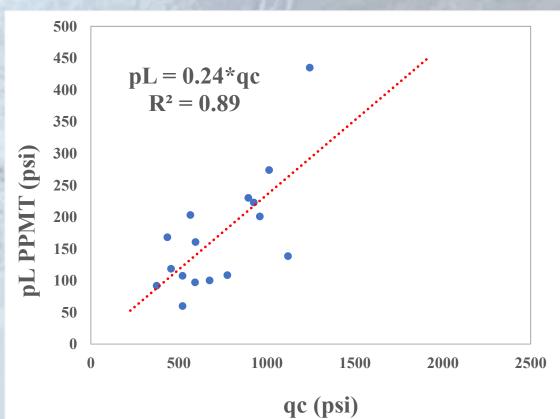

Sands, Sandy gravels	(FHWA-IF-02-034):		
	E=1,200 (N ₁) ₆₀ , kPa		

NC Sands	Bowles (1996):
	E _s =500(N ₅₅ +15), kPa
	$=7,000\sqrt{N_{55}}$
	=6,000N ₅₅

Clean fine to medium	(FHWA-IF-02-034):	
sands and slightly silty	E=700 (N ₁) ₆₀ , kPa	
sands		

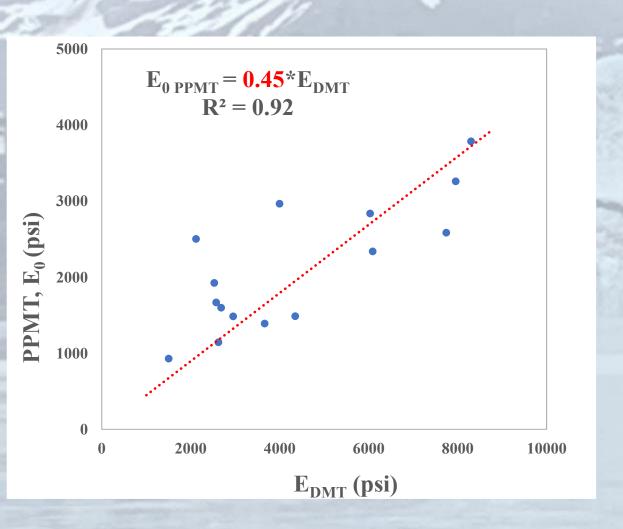
Task 4 PPMT SPT N_{ES} Correlations

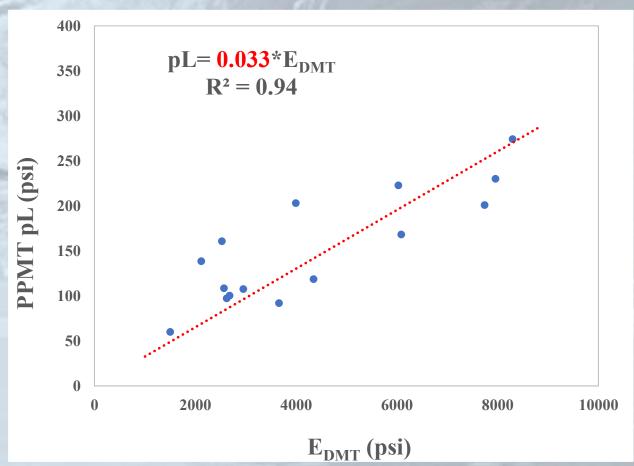

Site	Depth (ft)	SPT-N	E _{PPMT} /SPT-N (psi)
_	6	5	297.2
sle	10	6	248.2
Kingsley	16	9	315.4
	20	15	217.5
_	6	5	186.6
ntor	10	4	348.3
Trenton	16	6	278.3
	20	10	296.8
	6	11	235.2
UCF.	10	10	378.8
Ď	16	2	1252.5
	20	5	385.2
	Average	370	


= 290 w/o 16' UCF ratio

Site	Depth (ft)	Moduli	ıs (psi)	E _{PPMT} /E _{SPTN}	
Site	Deptii (it)	PPMT	SPT	□PPMT/□SPTN	
y	6	1486	928	1.6	
sle	10	1489	1090	1.4	
Kingsley	16	2839	1317	2.2	
500	20	3262	1963	1.7	
_	6	933	976	1	
ntor	10	1393	769	1.8	
Trenton	16	1670	982	1.7	
	20	2968	1435	2.1	
	6	2587	1867	1.4	
UCF	10	3788	1539	2.5	
Ď	16	2505	502	5	
	20	1926	852	2.3	
	Average				

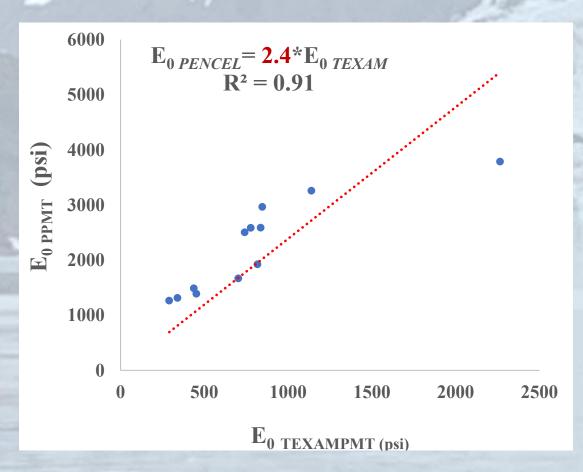
= 1.8 w/o 16' UCF ratio


Task 4 PPMT CPT Correlations



Recall Literature says E=2.5 to 3.5 qc

Task 4 PPMT DMT Correlations

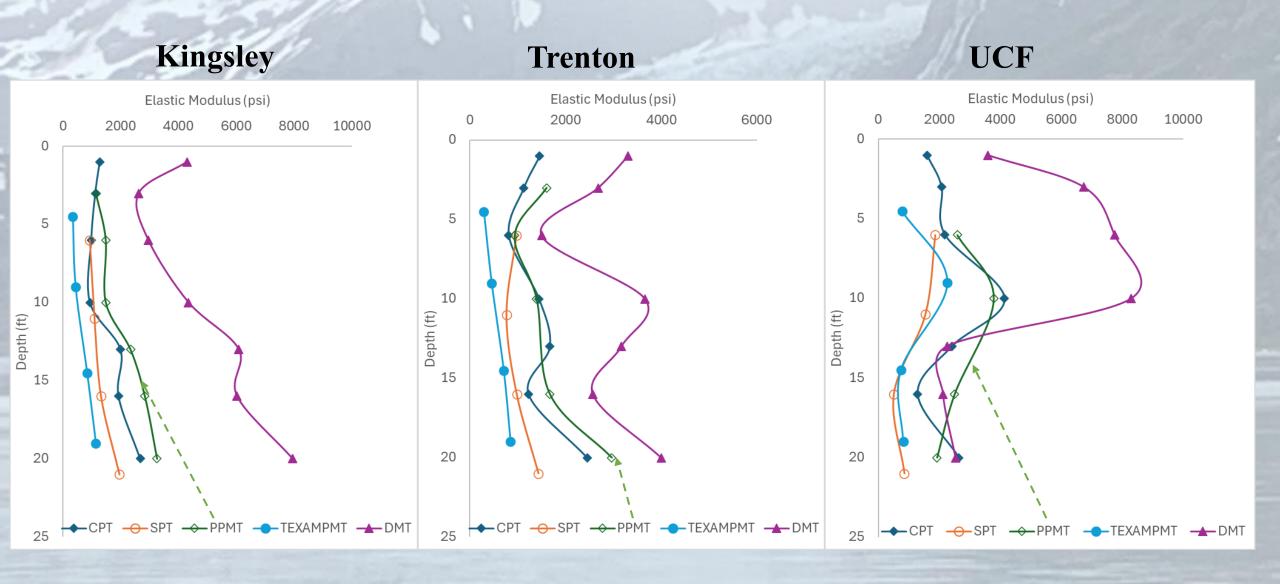


 $Eo_{PPMT} \simeq 1/2 E_{DMT}$

 $pL_{PPMT} \simeq 1/30 E_{DMT}$

Task 4 PENCEL - TEXAM Correlations Loose To Medium Dense Fine Sands

Task 4 Summary


PPMT	Factor	Test Modulus
	2.4	TEXAM
	0.45	DMT
E ₀	3.32	СРТ
	225	SPT
	2.74	Plate
	0.95	TEXAM
	0.033	DMT
pL	0.24	СРТ
	16	SPT
	19	Plate

Moduli Trends are Similar between PPMT, TEXAM, CPT, and DMT Data,

SPT correlation much higher

Plate difficult to visualize vs depth

Task 5 Comparison of Elastic Moduli versus depth: All sites

Task 5

Overall Summary of Elastic Moduli

Es (psi) Depth (ft) Site Borehole SPT CPT Kingsley PPMT TEXAM DMT SPT CPT Trenton **PPMT** TEXAM DMT SPT CPT UCF PPMT TEXAM DMIT

Overall Comparison of Elastic Moduli Compared to SPT Moduli

		COLUMN TO SERVICE STATE OF THE				
		Comparison to SPT Moduli				
Site		Depth (ft)				
	Borehole	5	10	15	20	
	SPT	0%	0%	0%	0%	
	CPT	19%	0%	142%	104%	
Kingsley	PPMT	34%	37%	119%	85%	
	TEXAM	-66%	-59%	-30%	-35%	
	DMT	176%	274%	415%	375%	
	SPT	0%	0%	0%	0%	
	CPT	-20%	121%	43%	133%	
Trenton	PPMT	-12%	85%	93%	120%	
	TEXAM	-73%	-44%	-25%	-34%	
	DMT	45%	154%	131%	212%	
-	SPT	0%	0%	0%	0%	
	CPT	22%	365%	159%	306%	
UCF	PPMT	50%	134%	209%	132%	
	TEXAM	-55%	46%	-9%	-1%	
	DMT	312%	509%	130%	212%	
				The state of the s	37-11-11-11	

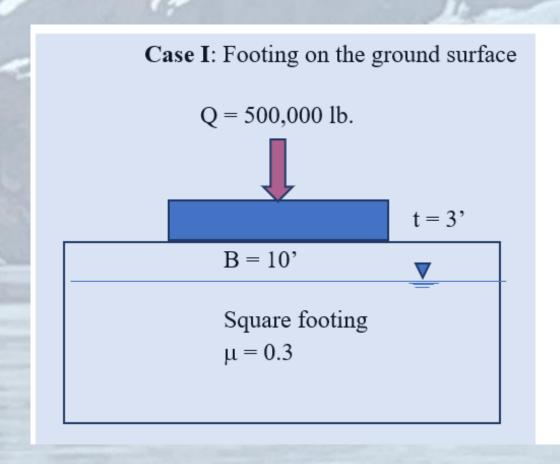
Task 5 Elastic Modulus from SSMini PMT

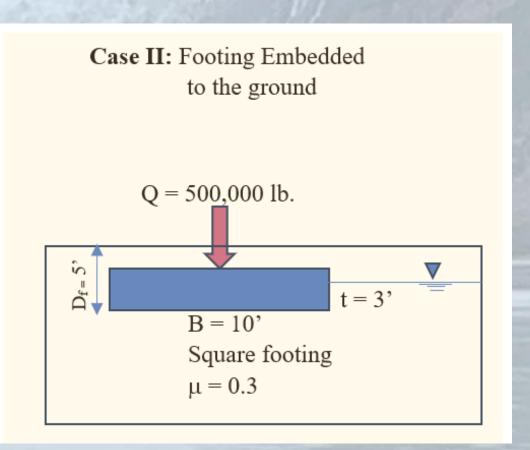
Summary of Plate, SSMini, CPT, and DMT moduli

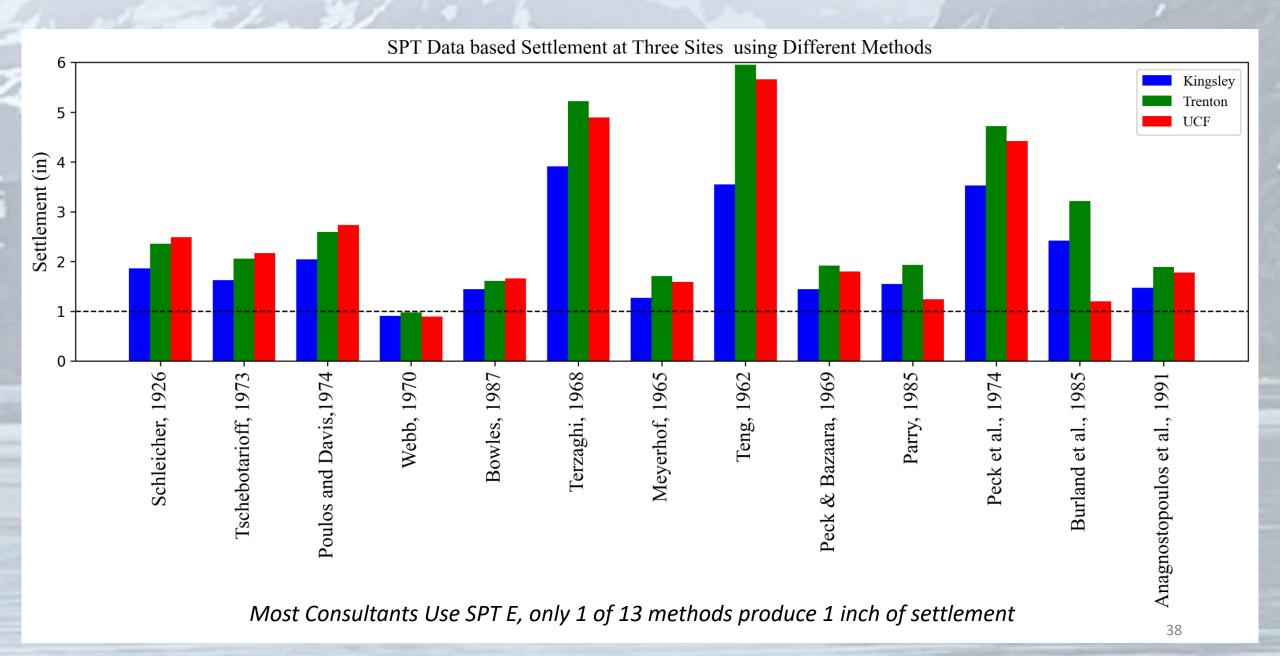
Overall Comparison of Plate, CPT, DMT to SSMini moduli

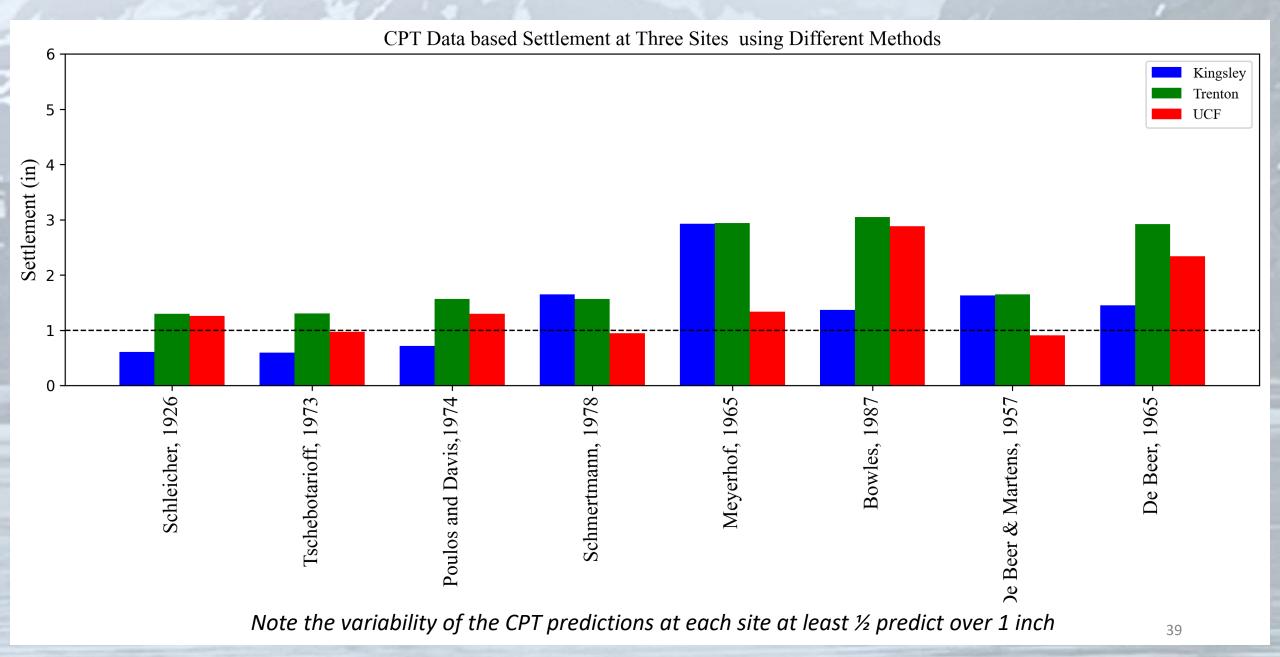
Site	Borehole	SSMini E (psi)	CPTE (psi)	DMTE (psi)	Plate E (psi)	modun					
Site	Vicinity	0 to 1 ft	0 to 1 ft	0 to 1 ft	0 to 1 ft	0.0000000000000000000000000000000000000	Borehole	SSMini E (psi)	CPT E (psi)	DMT E (psi)	Plate E (psi)
Kingsley	1	703	1066	3075	6409	Site	Vicinity	0 to 1 ft	0 to 1 ft	0 to 1 ft	0 to 1 ft
	2	716	1373	3216	4163	Kingsley	1	100%	52%	337%	812%
	3	794	1400	4323	4636		2	100%	92%	349%	481%
	Average	738	1280	3538	5069		3	100%	76%	444%	484%
Trenton	1	612	1589	2898	4314		Average	100%	73%	379%	587%
	2	1033	1494	3303	3192	Trenton	1	100%	160%	374%	605%
	3	1039	1292	3012	3011		2	100%	45%	220%	209%
							3	100%	24%	190%	190%
	Average	895	1458	3071	3506		Average	100%	63%	243%	292%
UCF	1	177	1671	5543	4579	UCF	1	100%	844%	3032%	2487%
	2	73	1697	5195	3196		2	100%	2225%	7016%	4278%
	3	64	1410	5149	1783		3	100%	2103%	7945%	2686%
	Average	105	1593	5296	3186		Average	100%	1417%	4944%	2934%

Lots of numbers! Main Point, SSMini Moduli compared to upper 1 foot data from DMT & CPT are lower unless there is a testing problem (UCF Water Table)


Summary of Settlement Prediction Approaches


Settlement Prediction Approaches							
Number	Reference	Comments					
1	AASHTO, 2017	1 / / /					
2	Berardi et al., 1991						
3	Bowles, 1987						
4	Hough, 1959						
5	Mayne & Poulos, 1999						
6	Oweis, 1979	Analytical					
7	Papadopoulos, 1992						
8	Poulos & Davis, 1974						
9	Schmertmann, 1970						
10	Schmertmann, et al., 1979						
11	Tschebotarioff, 1973	-					
12	Webb, 1970						
13	Menard & Rousseau, 1962	Empirical-PMT					
14	Briaud, 2007	Empirical-PW1					
15	Alpan, 1964						
16	Anagnostopoulos et al., 1991						
17	Burland et al., 1985	9994442A					
18	Meyerhof, 1965						
19	Meyerhof, 1974						
20	Parry, 1985	Empirical-SPT					
21	Peck et al., 1974						
22	Peck & Bazaara, 1969						
23	Schultze & Sharif, 1973						
24	Teng, 1962						
25	Terzaghi, 1968						
26	DeBeer, 1970						
27	DeBeer & Martens, 1957	Elastic-CPT					
28	Meyerhof, 1965						
29	Empirical -DMT						
30	Schmertmann, 1986	Empirical -DMT					


Summary of Bearing Capacity Prediction Approaches


Bearing Capacity Prediction Approaches							
Number	Reference	Comments					
1	DeBeer, 1970						
2	Hanna & Meyerhof, 1981	Empirical -DMT					
3	Hansen, 1970						
4	Meyerhof, 1963	Empirical -DWT					
5	Terzaghi, 1943						
6	Vesic, 1973						
7	Briaud, 1992	PMT Based					
8	Menard, 1963	rwii bascu					
9	Bowles, 1996						
10	10 Meyerhof, 1956						
11	Parry, 1977	SPT-Based					
12	Teng, 1962						
13							

Assumed Footing Arrangement (for comparison purposes only)

Settlement Predictions from Pushed-in PPMT: Briaud (2007)

1400

UCF

1400

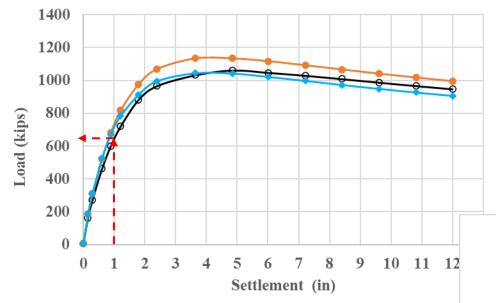
1200

1000

800

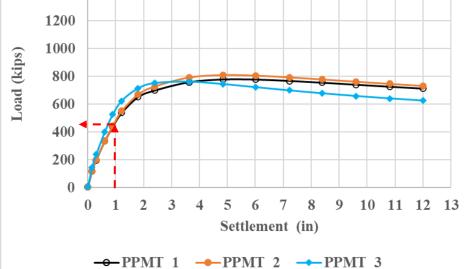
600

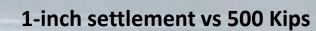
400


200

Load (kips)

Task 5


9 10 11 12 13



→ PPMT 1 → PPMT 2 → PPMT 3

Settlement (in)

→ PPMT 1

- @ Kingsley Footing OK
- @ Trenton Marginal Footing
- @ UCF Footing Ok

1-inch settlement

- @ Kingsley = 650 Kips
- @ Trenton = 450 to 575 Kips
- @ UCF = 800 Kips

Summary of Settlement Predictions from Pushed-in PMT

Settlement using pressuremeter modulus							
Approach	Site	Depth of influence	Borehole	Se (in) (Menard α=1)	Se (in) (Menard α=0.5)		
		Entire field-testing depth	K_PPMT_1	0.78	0.40		
	Kingsley		K_PPMT_2	0.84	0.43		
_			K_PPMT_3	0.79	0.41		
,961			T_PPMT_1	1.27	0.66		
đ, 1	Trenton		T_PPMT_2	0.90	0.46		
ıar			T_PPMT_3	1.04	0.54		
Ménard, 1967			T_PPMT_4	0.84	0.43		
	UCF		UCF_PPMT_1	0.49	0.25		
			UCF_PPMT_2	0.57	0.30		
			UCF_PPMT_3	0.37	0.19		
	Kingsley	2B square footing	K_PPMT_1	0.30			
			K_PPMT_2	0.24			
Briaud, 2007			K_PPMT_3	0.24			
	Trenton		T_PPMT_1	0.45			
			T_PPMT_2	0.45			
			T_PPMT_3	0.35			
	UCF		UCF_PPMT_1	0.20			
			UCF_PPMT_2	*			
			UCF_PPMT_3	*			

Task 5

Ménard, 1967
For 500 Kips on
10 by 10 footing,
only Trenton had
values near 1"

Briaud, 2007
For 500 Kips on 10
by 10 footing, no
values near 1"

Summary of Settlement from TEXAM PMT

Task 5

Settlement using TEXAM pressuremeter modulus							
Approach	Site	Depth of influence	Borehole	Se (in)			
d,			K_TEXAM_1	1.47			
l ar	Kingsley	th	K_TEXAM_2	2.24			
Ménard,	Kiligsley	Thickness of Test depth	K_TEXAM_3	1.35			
1967		f Te	T_TEXAM_1	1.62			
19	Trenton	SS 0.	T_TEXAM_2	1.61	8		
		XII e.	T_TEXAM_3	1.97			
		hicl	UCF_TEXAM_1	1.07			
	UCF	I	UCF_TEXAM_2	0.68			
			UCF_TEXAM_3	0.65	1		
			K_TEXAM_1	3.4			
_	Kingsley		K_ TEXAM _2	The ultimate bearing			
JL. Briaud, 2007		2B square footing	K_ TEXAM _3	capacity is less than 500 kips			
ud,		of to	T_TEXAM_1	The ultimate bearing			
ria	Trenton	lare	T_TEXAM_2	capacity is less than 500			
_		ıbs	T_TEXAM_3	kips			
JI		2B	UCF_TEXAM_1	5			
	UCF		UCF_TEXAM_2	1.6			
			UCF_TEXAM_3	1.3			

Ménard, 1967 &
Briaud 2007
For 500 Kips on
10 by 10 footing,
most had values
greater 1"

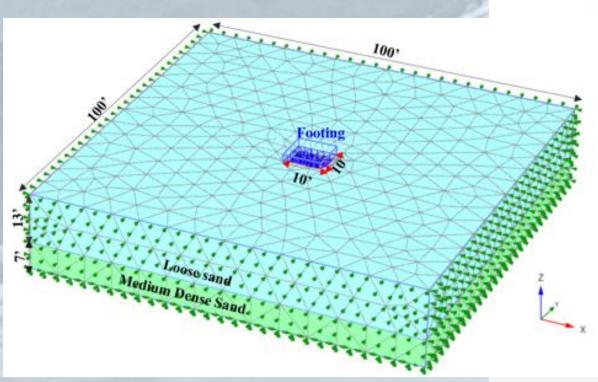
Summary of Settlement Predictions from DMT

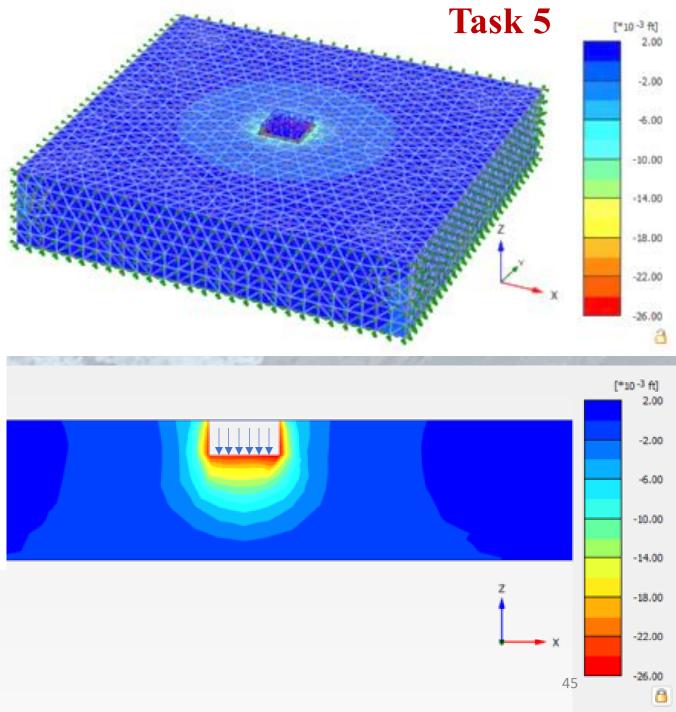
Settlement using DMT modulus							
Approach	Approach Site Depth of influence B		Borehole	Se (in)			
9	Vingelov	th	K_DMT_1	0.15			
Schmertmann, 1986	Kingsley	deb	K_DMT_2	0.15			
n, 1		Thickness of Test depth	K_DMT_3	0.09			
1811		ΙJ	T_DMT_1	0.21			
臣	Trenton	SS O	T_DMT_2	0.17			
me		zne:	T_DMT_3	0.26			
Sch	UCF	hick	UCF_DMT_1	0.16			
3 1		I	UCF_DMT_2	0.17			
			UCF_DMT_3	0.25			
~		e.	K_DMT_1	0.27			
886	Kingsley	sibl	K_DMT_2	0.06			
it, 1		res	K_DMT_3	0.02			
Leonards & Frost, 1988	Trenton	omp r	T_DMT_1	0.77			
		of coı layer	T_DMT_2	0.75			
		SS 0	T_DMT_3	0.74			
nar		Thickness of compressible layer	UCF_DMT_1	0.86			
	UCF	'hic	UCF_DMT_2	3.55			
Ι		L	UCF_DMT_3	1.21			

Task 5

Schmertmann, 1986 For 500 Kips on 10 by 10 footing, most predictions much less than 1"

Leonard & Frost,
1988
For 500 Kips on
10 by 10 footing,
only UCF had
values greater
than 1"

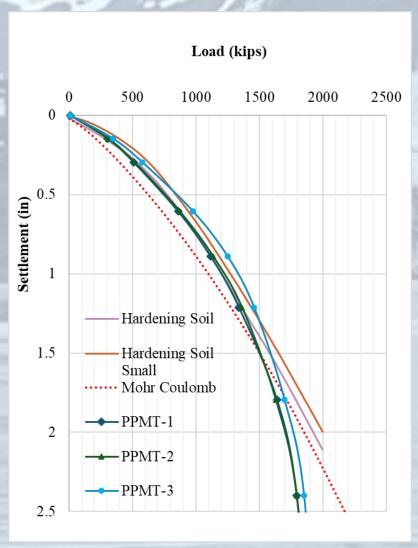

Summary of Predicted Settlements

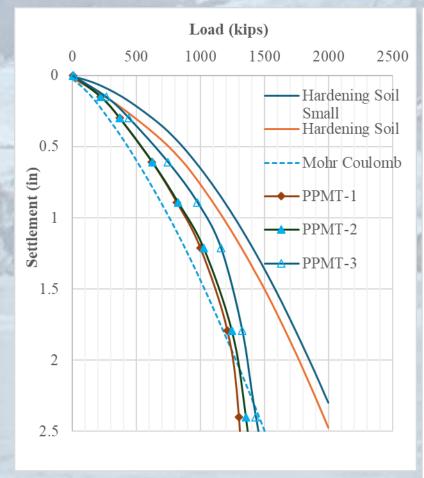

1-inch boundary

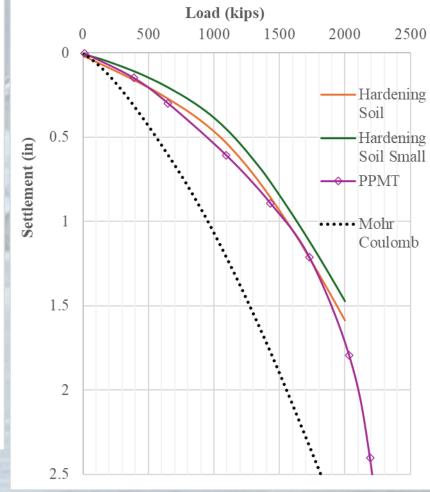
Test	Site	Mean Settlement (in)	Difference (in)	Difference (%)
2033	Kingsley	0.53	0	0 / /
PPMT	Trenton	0.76	0	0
	UCF	0.41	0	0
	Kingsley	0.12	-0,41	-77%
DMT	Trenton	0.48	-0.28	-37%
	UCF	1	0.59	144%
A COLL	Kingsley	0.94	0.41	77%
CPT	Trenton	1.69	0.93	122%
	UCF	1.36	0.95	232%
TEXAM	Kingsley	1.69	1.16	219%
PMT	Trenton	1.73	0.97	128%
PIVII	UCF	0.8	0.39	95%
	Kingsley	1.96	1.43	270%
SPT	Trenton	2.57	1.81	238%
	UCF	2.48	2.07	505%
Overall		1.23	0.84	160%

Pushed-in
PENCEL PMT
produces
excellent data
and moduli for
settlement
predictions

FEM Numerical Method


FEM Model versus Pushed-In PENCEL PMT Briaud Predictions


Task 5



Trenton

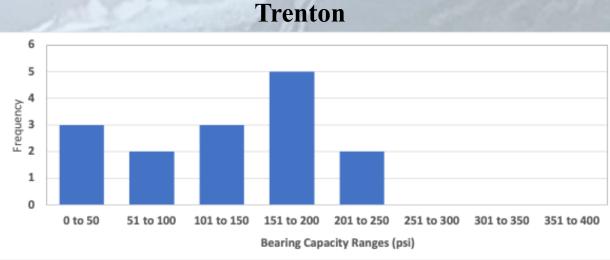
UCF

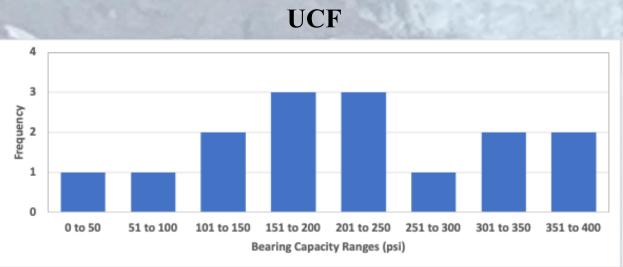
Bearing Capacity Predictions

	Bearing Capacity (q _{ub}) (psi)							
Site	(1) Terzaghi 1943	(2) Meyerhof 1963	(3) Vesic 1973	(4) Hansen 1970	(5) De Beer 1970	(6) Hanna & Meyerhof 1981	(7)-PPMT Menard 1962	(8)-PPMT Briaud 2007
Kingsley	141	225	185	159	171	171	270	144
Trenton	141	225	154	159	171	171	249	131
UCF	177	318	365	217	234	234	360	186
Site	(9)-TEXAM Menard 1962	(10)-TEXAM Briaud 2007	(11)-SPT Bowles 1996	(12)-SPT Parry 1977	(13)-SPT Meyerhof 1956	(14)-SPT Teng 1962	(15)-CPT Meyerhof 1956	(16)-CPT Schmertmann 1979
Kingsley	91	47	67	89	32	52	1591	158
Trenton	114	59	48	73	23	47	1536	153
UCF	200	104	55	167	26	101	3027	274
Average	Average Bearing Capacity (qult) (psi)							

Averages Exclude Outlier


Kingsley


T renton UCF 131 128


201

Bearing Capacity Predictions Frequency Diagrams

Task 5

Task 5: Summary and Discussion Elastic Settlement:

- For an assumed 10' by 10' foundation loaded with 500 kips:
 - ✓ Settlements ranging from 0.09" to 9.73"
 - ✓ SPT data produced the highest settlement
 - ✓ CPT and TEXAM PMT settlements were the second and third-highest
 - ✓ Pushed-in PPMT test data yielded very consistent settlement predictions.
 - > Average settlement 0.24" to 0.76" with the smallest standard deviations

Task 5: Summary and Discussion Elastic Settlement....

- 30 different settlement prediction methods were used:
 - > 12 were based on analytical methods (Es found based on CPT correlations)
 - > 28 methods based on direct input data from SPT, CPT, DMT, and PMT data
- 3 Numerical approaches (HS, HSS, and MC) were used
 - No single parameter was predicted from PPMT data and, therefore, has no bias towards PPMT data
 - ➤ Model input parameters were determined using CPT data
 - > PPMT testing produces consistent and very similar settlement results to the three numerical approaches
 - > CPT testing produced consistent & similar settlement predictions compared to the numerical method and the PPMT

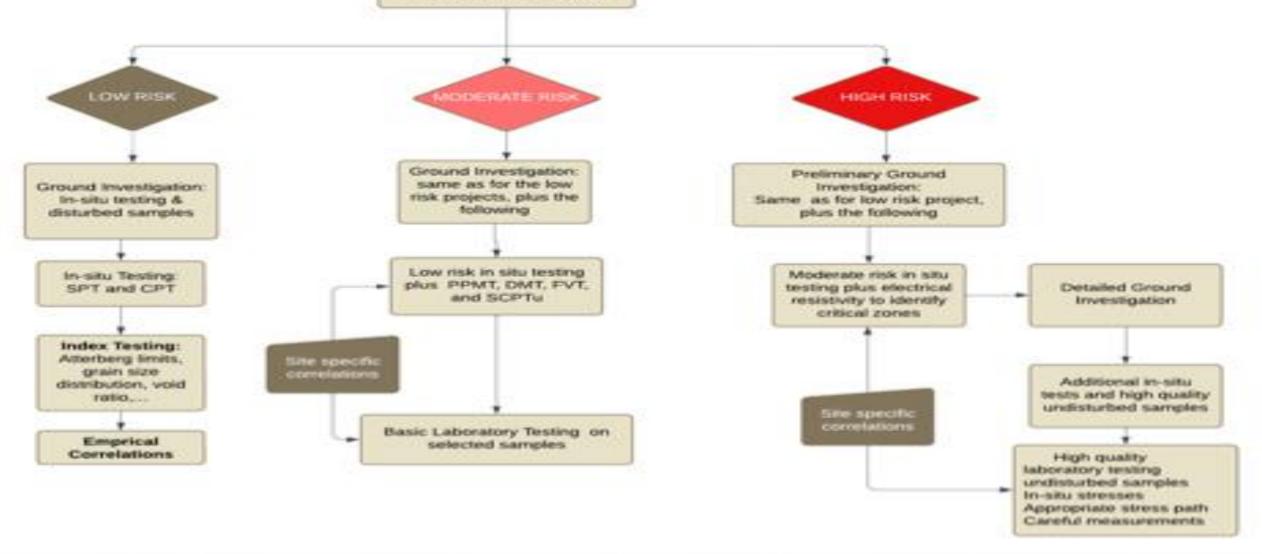
Task 5: Summary and Discussion Bearing Capacity

- 13 different Ultimate bearing capacity predictions were used:
 - The pushed in PPMT testing, based on Briaud's (2007) approach, produces very reasonable bearing capacity predictions
 - ➤ All SPT-based predictions produce much lower quality values than the average predicted values.
 - ➤ The PMT approaches showed variability in results, as the Ménard (1962) values were higher than the Briaud (2007) values

Task 6: Overview

- Predicted settlements in Florida's fine sands derived using the pushed-in PPMT data were consistent and closely aligned with the predictions computed using three numerical approaches
- Five case studies by ECS showed that PMT settlement predictions were close to measured (monitored) settlements

Task 6 Design Procedure Guidance Table


- Pushed-in PPMT testing can be conducted at any depth that Cone Penetrometers can be pushed in
- Industry suggests $N \le 20$ to 25 blows per foot (*Prevents Probe Damage*)
- Suitable in cohesionless soil
- Project Risk & Geological Complexity Controls Use

Duainet Importance	Geological Complexity				
Project Importance (or) Risk Level	High	Moderate	Low		
High	PPMT	PPMT	PPMT		
Moderate	PPMT	PPMT	Conventional in-situ tests		
Low	PPMT	PPMT	Conventional in-situ tests		

Task 6 Design
Procedure
Guidance Chart

Preliminary Site Evaluation
Desk study, Risk assessment
and importance of project

Risk-based flowchart for site characterization (modified from P.K. Robertson, K. Cabal, 2022)

Recommended Spacing and Depth of Soundings for the Pushed-in PPMT

- Depends on the uniformity of the soil horizontally and vertically (uniform, variable) and project type (multi-story buildings, dams, embankments, roadways, pipelines, ...)
- 15 to 60 feet is recommended for critical structures
- 3 feet vertical spacing with the following total depths are recommended:
 - > 2B for a square or circular footing (L=B)
 - ➤ 4B for strip footing (L/B>10)
 - ➤ Interpolate for footing shapes with 1<L/B<=10

Task 6 Conclusions For Florida Fine Sands

- Literature and Research supports the use of Pushed-In PENCEL Pressuremeter testing in Florida Fine Sands to predict settlement & BC
- FDOT SMO test pit testing showed that PENCEL PMT, DMT, CPT, and Plate bearing tests can be compared.
- *TEXAM, PENCEL, and SSMini PMT testing consistently produced E₀/pL ratios between 10 and 17
 - This indicates that this ratio is an excellent test quality control method.
- Field Testing showed that the moduli from Pushed-PPMT tests produced realistic settlement & BC predictions

Task 6 Conclusions For Florida Fine Sands (Cont.)

- Field Testing also showed that moduli from all field testing can be used for settlement and bearing capacity predictions.
- TEXAM and PENCEL PMT data correlated well but showed that TEXAM testing produced lower moduli than PENCEL testing

 Attributed to borehole preparation and disturbance.
- PENCEL and TEXAM limit pressures compared well
- DMT moduli are ≈ 2 ¼ times higher than Pushed-In PPMT moduli.
- Moduli predicted from CPT point bearing require multiplying factors near 3 to be compared to Pushed-in PPMT moduli
- Moduli predicted from SPT Equivalent Safety Hammer N-values require large multiplying factors to be compared to Pushed-in PPMT moduli

Task 6 Conclusions For Florida Fine Sands(Cont.)

- To allow plate bearing data to be useful, SSMini PMT tests were performed in 12-inch pin holes.
- Settlement predictions based on Pushed-in PPMT, TEXAM PMT, DMT, CPT qc moduli correlations and SPT N_{ES} moduli correlations showed Pushed-in PPMT data produced the most consistent and reliable results.
- Bearing capacity predictions based on Pushed-in PPMT, TEXAM PMT, DMT, CPT qc moduli correlations and SPT N_{ES} moduli correlations showed Pushed-in PPMT data produced the most consistent and reliable results.
- Briaud (2007) provided a reliable method to predict settlement of shallow footings in Florida fine SP sands.

Task 6 Conclusions For Florida Fine Sands (Cont.)

Both the Design Procedure Guidance Table & Design Procedure Guidance Chart can be used by geotechnical engineers as engineering decision guides for using Pushed-in PENCEL PMT testing.

Task 6 Recommendations For Florida Fine Sands

- It is acceptable to use pushed-in PENCEL PMT tests to determine the stress-strain behavior, E_{0_i} & pL in loose to medium dense Florida fine sands.
- Both the Design Procedure Guidance Table and Chart should be used by geotechnical engineers to guide them as to when to use Pushed-in PENCEL PMT testing.
- Use the E₀/pL ratio in each soil at a site to check the quality of the PENCEL PMT data.
- SSMini PMT testing is a fast and reliable way to produce compaction strengths and stiffnesses for comparisons to plate bearing moduli of subgrade reactions.

Special Note

- Update FM Pressuremeter FDOT 2024 Soils and Foundation Handbook pages 36 (text) and 47 (drawing).
- https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/materials/geotechnical/sfh2024.pdf

To the Best State Materials Gang in the Land: Thank you