

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Resiliency of MSE Wall to Surge and Wave Loading (BED30 977-15)

Principal Investigator: Scott Wasman, PhD Project Manager: Rodrigo Herrera, P.E.

> GRIP Meeting August 16th, 2024

Presentation Outline

- Introduction
- Background
- Project Tasks
- Project Timeline

Introduction

- Many barrier island communities are served by bridges.
- In most places, the causeway bridges are the only emergency access (evacuation and post event aid).
- In Florida, many of these bridges have MSE wall approaches and abutments.
- Coastal MSE walls are much more likely to experience the storm tide associated with extreme tropical hydrodynamics.
- Storm tide is the storm surge + short waves + tide.
- The west coast and panhandle of Florida is prone to large surge (shallow offshore slope)
- MSE wall stability is susceptible to hydrodynamic forcing

Project Background

- Hurricane Ian struck Florida's southwest coast 9/28/22:
 - Sustained winds of 150 mph.
 - Storm surge of 12 18 ft near the coast (NOAA) and approximately 8 ft (recorded) in downtown Fort Myers.
 - Maximum wave heights of 6 13 ft (USGS).
 - Struck shortly after high tide (+2.5 ft) and with 15 in. of rain.

Background

- AASHTO Guide Specifications for Bridge Vulnerable to Coastal Storms provide recommended deign equations for both wave loading and surge affects that result in both horizontal and vertical loading.
- The hydrodynamic loading is based on 100-year storm event (1/100 likelihood of occurrence in any given year), and it may not capture the current observed frequencies of extreme events impacting coastal communities.
- Predictions of the loading based on geomorphological factors, and atmospheric conditions, the forecasted loading should be modeled, in particular, for the abutments and MSE walls as well.

Background

- Previous MSE Wall Stability Modeling (BDK75 977-22).
 - Centrifuge tests able to model MSE wall stability at 1/40th scale
 - Internal miniature sensors for total stress demonstrated
- Wave loading on bed has been demonstrated in centrifuge tests at similar scales.
- Incorporation of miniature pore pressure sensors and fiber optic to capture backfill and bearing bed stresses and high resolution strains (mm).

Project Objectives

- Review of literature, reports, AASHTO and USACE design guidelines
- Collect hydrodynamic data and shoreline bathymetry
- Collect MSE wall information for those that failed during Hurricane Ian
- Identify the mode of failure of the MSE walls under hydrodynamic storm surge and wave loading
- Study effective remediation measures to increase their reliability (reduce probability of failure)

Project Objectives

- Conduct model tests of representative MSE wall cases subjected to storm surge and loading using numerical models and centrifuge model experiments
- In centrifuge experiments, measure: hydrodynamics (wave heights and currents), hydrodynamic loading on the model MSE walls, wall displacements and pore pressure in soil
- Test remediation measures that include larger mean particle size of the backfill and test external porous protection elements
- Based on experimental findings make recommendations for design revisions and remediation measures of existing MSE walls

Hurricane Ian – Predicted Tide

Note: The interval is High/Low, the solid blue line depicts a curve fit between the high and low values and approximates the segments between. Disclaimer: These data are based upon the latest information available as of the date of your request, and may differ from the published tide tables.

Hurricane Ian – Measured Storm Surge

By: Kisan Patel, P.E. and Andrew Newman, P.E. FDOT Districts 1 and 7 Materials Office

Hurricane Ian – Measured Storm Surge

By: Kisan Patel, P.E. and Andrew Newman, P.E. FDOT Districts 1 and 7 Materials Office

Task 1: Review of Prototype MSE Wall Design, Hydrodynamic Data, and Literature Impacted Area - Sanibel Causeway Bridges and Islands

Task 1: Review of Prototype MSE Wall Design, Hydrodynamic Data, and Literature Impacted Area - Sanibel Causeway Bridges and Islands

Product Type: Load Transfer Mechanism:

Integrally Formed Structural Geogrid **High Density Polyethylene** Positive Mechanical Interlock MESA System (Segmental Block Walls), ARES System (Panel Walls). Recommended Applications: SierraScape System (Welded Wire Walls)

Product Properties

ndex Properties	Units	MD Values ¹
 Tensile Strength @ 5% Strain² 	kN/m (lb/ft)	58 (3,980)
 Ultimate Tensile Strength² 	kN/m (lb/ft)	144 (9,870)
 Junction Strength³ 	kN/m (lb/ft)	135 (9,250)
 Flexural Stiffness⁴ 	mg-cm	6,000,000

- Review design guidelines and previous events
 - AASHTO specifications for bridges vulnerable to coastal storms includes recommendations for estimating horizontal and vertical wave forces associated with intact and breaking waves and direct currents
 - USACE Coastal Structures manual includes methods and approaches for estimating non-linear hydrodynamics and scour
 - Post storm observation data collected through NSF program – data exists for about a dozen storms
 - Hydrodynamic data varies and only recently has the coastal environment storm observations started

Task 2: Experimental Design and Numerical Model Predictions

- Numerical models will help to inform the centrifuge container and model designs
- Use models to study hydrodynamic loading (ADCIRC/WAVEWATCH and FUNWAVE and MSE wall system response (FLAC3D)

Task 3: Centrifuge Tests of Model MSE Walls

Exposed to Hydrodynamics

- Centrifuge Test Program
 - 2-3 MSE wall pre-storm configurations
 - 2-3 MSE walls with new internal and external higher permeability and dissipative features
- ERDC GSL Centrifuge
 - 8.8 tons capacity
 - 10 350 Gs
 - 4.25 ft X 4.25 ft payload platform

Centrifuge model flume container (67 inches (L) x 16 inches (W) x 16 inches (H)) with wave maker (red plunger and DC gear motor)

Three meter radius centrifuge at the US ERDC GSL

Task 4: Comparison Analysis Between Experiments and Predictions with Recommendations for Mitigation and Design

- Measurements and results of the Task 3 work will be summarized and used to calibrate numerical models if necessary
- In particular the hydrodynamic conditions that induce instability in the MSE wall models will be identified and defined in terms of ultimate and factored limit states
- Comparisons to existing design guidelines (AASHTO and USACE) will be made followed by recommendations for revisions
- Recommendations for remediation measures of existing MSE walls will be made based on the Task 2 and 3 findings

Project Timeline

Deliverable # / Description of Deliverable as provided in the scope (included associated task #)	Anticipated Date of Deliverable Submittal (month/year) Proposed start date:
Kickoff teleconference	June 2024
Task 1, Deliverable 1: Review of Prototype MSE Wall	Oct. 2024
Design, Hydrodynamic Data, and Literature	
Task 2, Deliverable 2: Experimental Design and	March 2025
Numerical Model Predictions	
Task 3, Deliverable 3: Centrifuge Tests of Model MSE	Nov. 2025
Walls Exposed to Hydrodynamics	
Task 4, Deliverable 4: Comparison Analysis between	March 2026
Experiments and Predictions with Recommendations for	
Mitigation and Design	
Task 5, Deliverable 5a: Draft Final Report	April 2026
Task 5, Deliverable 5b: Closeout Teleconference	May 2026
Task 6, Deliverable 6: Final Report	July 2026

Thank You!