

GRIP Meeting 2024 Project BED26 TWO 977-04:

Effect of Spacing on Axial Resistance of Auger Cast Pile Foundations Start Date: Jan. 2023

End Date: Dec. 2024

Project Manager: Rodrigo Herrera (PM) and Juan Castellanos (Co-PM)

PRESENTED BY Luis G. Arboleda-Monsalve and Kevin Mackie

Univ. of Central Florida, Orlando, FL

- Review of benefits and implementation
- Review of project objectives
- Tasks, deliverables and progress to date
 - Task 1: Technical background
 - Task 2: Physical model testing
 - Task 3: Numerical modeling
 - Task 4: Correlations and recommendations
- Summary of tasks/deliverables: schedule and progress

REVIEW OF PROJECT BENEFITS AND IMPLEMENTATION

QUALITATIVE

- Better estimation of the effect of spacing and load-deformation behaviors in ACP.
- Understanding the geotechnical mechanisms involved in the performance of ACP which can improve design practices in the State.
- •Analysis of the influence of proximity of pile foundations on overall superstructure performance.

QUANTITATIVE

- •Quantification of the effects of the foundation layout and rock strength on the axial resistance of ACPs.
- Site-specific analyses and calibration of bearing capacities using advanced rock models for Florida limestone to study the failure mechanisms and influence of pile spacing ratio, relative stiffness factor, and rock strength parameters on foundation deformation characteristics.

IMPLEMENTATION

- Development of reduction factors for applicable cases. Reduction factors could be implemented in Structures Design Guidelines.
- If the effort indicates the use of 2.5D spacing is not an issue, it could be adopted by designers more often making construction faster, using less concrete and steel, and generating time and cost savings due to reduced pile caps.

MAIN OBJECTIVE

Evaluate effect of spacing on load-settlement behavior of ACP through smallscale physical model testing and finite element analysis, and develop reduction factors for applicable cases.

SPECIFIC OBJECTIVES

- Provide guidance on effect of spacing of ACP on load-deformation response.
- Quantify the effect of overlapping stress bulbs among foundation elements.
- Investigate the effect of soil layering on load-settlement behavior of ACP.
- Investigate the effect of rock strength and design unit skin friction.
- Investigate effect of pile diameter on computed load deformation response.
- Develop demand/capacity ratio of unit skin friction vs. rock strength as a function of the proposed reduction factors.
- Investigate relationships among geotechnical variables that influence the effect of spacing on the capacity of ACP.
- Develop correlations or charts.

TECHNICAL BACKGROUND

Deliverable 1: Report on technical background <u>02/2023</u> (Delivered)

Non-displacement pile spacing specified by design codes and FDOT guidelines

- FDOT developmental specifications:
 - Dev346ACP (Structural Portland Cement Grout)
 - Dev455ACP (requirements for materials, installation and load testing of ACP)
- FDOT soils and foundations handbook:
 - 3D and 2.5D spacing for drilled shafts in sand and rock socketed for 1.0 efficiency
 - Side shear resistance (f_{su}) drilled shafts socketed in Florida Limestone (McVay's method)
- AASHTO, FHWA, major DOT, Guidelines Building codes and standards:
 - Drilled shafts group reduction factors at different spacings, configurations and cap contact.

Case histories on laboratory based physical model tests

 32 ACP and case histories on drilled shafts with instrumentation, loading system and installation.

Case histories on numerical modeling of drilled piles

 17 cases describing modeling stages, constitutive models and soil-pile interface elements used.

TECHNICAL BACKGROUND (Design Codes and Major DOTs) Reduction factors from AASHTO LRFD

Shaft Group Configuration	Shaft Center-to- Center Spacing	Special Conditions	Reduction Factor for Group Effects, η
Single Row	2D		0.90
	3D or more		1.0
Multiple Row	2.5D		0.67
	3D		0.80
	4D or more		1.0
Single and Multiple Rows	2 <i>D</i> or more	Shaft group cap in intimate contact with ground consisting of medium dense or denser soil, and no scour below the shaft cap is anticipated	1.0
Single and Multiple Rows	2D or more	Pressure grouting is used along the shaft sides to restore lateral stress losses caused by shaft installation, and the shaft tip is pressure grouted	1.0

Reduction factors from other DOTs (Caltrans for example).

Shaft Group Configuration	Shaft Center- to-Center Spacing	Special Conditions	Reduction Factor for Group Effects, η
Single Pour	2.5D		0.95
Single Row	3D or more		1.0
	2.5D		0.67
Multiple Row	3D		0.80
	4D or more		1.0
Single and Multiple Rows	2.5 <i>D</i> or more	Shaft group cap in intimate contact with ground consisting of medium dense or denser soil, and no scour below the shaft cap is anticipated	1.0
Single and Multiple Rows	2.5 <i>D</i> or more	Pressure grouting is used along the shaft sides to restore lateral stress losses caused by shaft installation, and the shaft tip is pressure grouted.	1.0

- Spacing < 3D reduces the effective stresses against both the side and base of the existing shaft.
- It does not reduce the shaft group capacity if favorable construction activities.
- Based on limited load test results for small drilled shaft groups for sands above the groundwater table.
- Does not provide guidelines for design or spacing of ACP nor for IGMs.

Other DOTs and Agencies: spacings to avoid group effects for single row drilled shafts

- WSDOT = 3.0D AS 2159-2009 = 2.5D (side)
- WisDOT = 3.0D AS 2159-2009 = 2.0D (end)
- ASCE(1997) = 2.5D JTG 3363-2019 = 2.5D
- IBC = 3.0D JTG 3363-2019 = 2.0D (end)

TECHNICAL BACKGROUND (Laboratory-based Physical Model Tests)

Database of Testing Programs

		Pile	Pile Installation	Soil	Pile
Author(s)	Applied Load	Туре	Method	Layers	Material
Zhu et al. (2021)	Axial	ACP Drilled Shaft	Drilling Rig Soil Sampler	Clay, Sand	Grout, Cast-in-situ
Krasiński & Kusio (2015)	Axial	ACP SDP	Hand Auger	Sand	Concrete, Cast-in-situ
Norkus & Martinkus (2019)	Axial	DP	Jacking	Sand	Steel
Li et al. (2022)	Axial	WIP	Pre-installation	Silty Sand	Plexiglass
Khari et al. (2013)	Lateral	WIP	Pre-installation	Sand	Aluminum
Kim & Yoon (2011)	Lateral	WIP	Pre-installation	Sand	Steel
Vakili et al. (2021)	Lateral	WIP	Pre-installation	Sand	Steel
Sharafkhah & Shooshpasha (2018)	Axial	Drilled Shaft	Hand Auger	Sand	Concrete, Cast-in-situ
Al-Khazaali & Vanapalli (2019)	Axial	WIP	Pre-installation	Sand	Steel
Jeffrey et al. (2016)	Axial	CHD	Drilling Rig	Sand	Grout, Cast-in-situ
Elsamny et al. (2017)	Axial	WIP	Pre-installation	Sand	Concrete, Precast
Goit et al. (2021)	Vertical Load Inclined Pile	WIP	Pre-installation	Sand	Acrylic
Hokmabadi et al. (2015)	Lateral	DP	Driving	Synthetic	Polyethylene
Zhu et al. (2018)	Lateral	DP	Jacking	Sand	Aluminum
Shamsi Sosahab et al. (2019)	Axial	DP	Driving	Sand	Steel
Lande et al. (2021)	N/A	N/A	Drilling Rig	Sand	Steel
Momeni et al. (2017)	Axial	DP	Jacking	Sand	Steel
Ateş & Şadoglu (2021)	Axial	DP	Jacking	Sand	Composite
Su & Zhou (2015)	Lateral	DP	Jacking	Sand	Aluminum
Faresghoshooni et al. (2021)	Lateral	WIP	Pre-installation	Sand	Polyethylene
Hussain et al. (2019)	Lateral	Micropile	Pushed Manually	Sand	Grout, Cast-in-situ
Munaga & Gonavaram (2021)	Lateral	WIP	Pre-installation	Sand	Aluminum
Kayalvizhi & Muthukkumaran (2021)	Lateral	DP	Driving	Sand	Aluminum
Kong et al. (2019)	Lateral	WIP	Pre-installation	Sand	Concrete, Precast
Koteswara et al. (2019)	Axial	WIP	Pre-installation	Sand	Aluminum
Kumar & Kumar (2018)	Axial	DP	Jacking	Sand	Steel
Martines et al. (2017)	Axial	DP WIP	Driving Pre-installation	Sand	Steel
Majumder et al. (2022)	Axial	UR	Pre-installation	Sand	Steel
Mohammadi et al. (2020)	Axial	DP WIP	Driving Pre-installation	Sand	Steel
Choi et al. (2017)	Combined	DP	Driving	Sand	Steel
Subanantharaj & Kumar (2018)	Combined	WIP	Pre-installation	Sand	Steel
Omer & Haroglu (2021)	Axial	DP	Jacking	Sand	Aluminum

ACP: Auger Cast Piles, SDP: Screw displacement piles, UR = Under-Reamed DP: Displacement pile, CHD: Continuous Helical Displacement, WIP: Wished-In-Place- Jeffrey et al. (2016) Pre-installation: "Positioning of the pile before the soil sample is fully prepared, it is used to simulate the installation of ideal non-displacement piles" Martines et al. (2017)

Example: Sharafkhah and Shooshpasha (2018)

Example: Zhu et al. (2018)

TECHNICAL BACKGROUND (Numerical Modeling)

Axial capacity of pile groups Han et al. (2019):

- 3D modeling in ABAQUS
- Soil model: two-surface constitutive model.
- Rigid soil-pile interface.
- Euler stress integration method to deal with large deformations.

Numerical simulation of cast-in-place piles, Schmudderich et al. (2020):

- 2D modeling in PLAXIS.
- HS-Small used to model the soil.
- Linear elastic used for the pile.
- Interface elements around the pile to model soil-pile interaction).

Simulation of Unfavorable CFA Pile Drilling Conditions. Arab et al. (2020):

- 3D modeling in ABAQUS.
- Mohr-Coulomb used to represent loose sand behavior.
- Includes the effect of slower rate of penetration vs. rotation.
- Consider the extent of the disturbed zone and number of over-rotations.

Bearing capacity of pile groups in sand. Lee et al. (2015):

- 3D modeling in PLAXIS to study load-sharing ratios of piled rafts
- Spacings of 3D, 5D and 7D
- Linear elastic materials used to represent piles.

PHYSICAL MODEL TESTING

Deliverable 2a: Report on details of lab testing program 07/2023 (Delivered)

Deliverable 2b: Report with results of lab testing program 12/2023 (Delivered)

EXPERIMENTAL PROGRAM

- **Pile configuration:** Single, 2 x 2, 3 x 3.
- Ground condition
 - Sand: 50% and 75% of relative density (D_r) .
 - Limestone: Synthetic limestone (SL) created using cement, crushed limestone, and water.
- Pile spacing for group piles: 2, 2.5, 3, 4D (D = diameter of ACP).
- Main experimental condition: T1 T9 (50% of $D_r + SL$)
 - T10 T15 conditions subject to change based on main experiment results.

Test #	Soil density	Pile group	Pile spa. (D)
1		Single	N/A
2			4
3		0 v 0	3
4		2 X Z	2.5
5	50% + Synthetic Limestone		2
6			4
7		2 × 2	3
8		3 X 3	2.5
9			2
10	75% + Synthetic Limestone	Single	N/A
11	Synthetic Limestone	Single	N/A
12	E0%/	Single	N/A
13	50%	2 x 2	2.5
14	750/	Single	N/A
15	13%	2 x 2	2.5

EXPERIMENTAL PROCEDURE

- 1) Placement of a 2 ft-high SL layer inside the soil container.
- 2) Deposition of a 3.5 ft-high sand layer on top of the SL layer.
- 3) Installation of the lower cap plate on the soil surface, followed by setting up the drilling guide.
- 4) Drilling operation using the auger and motor.
- 5) Extraction of the auger while applying enough grouting pressure with pump.
- 6) Insertion of the instrumented rebar into the grout.
- 7) Installation of the upper cap plate and setup of the strain gauge lines.
- 8) Placement of wood spacers and LVDT on the cap plate, followed by the connection of the loading plate.
- 9) Installation of the reaction frame to be used for the servo-hydraulic system to apply load on pile or group of piles.

- Design of SL to have similar properties to typical Florida limestone
 - Target compressive strength = 500 psi \pm 300 psi
 - Target unit weight = 120 pcf
- Effect of cement, crushed limestone, and water ratio on compressive strength of SL

		ratio 1 =	$\frac{W_c}{W_a}$ and	ratio 2 = $\frac{W_{c}}{W_{c+1}}$	-Wa	
Wh	here, W_c , W_a , V	W_w are the wei	ight of cemen	t, aggregate, a	and water, respe	ectively.
	Ratio 1	Ratio 2	W_a (lb)	<i>W_c</i> (lb)	W_w (lb)	q_u (psi)
Batch 1	0.10	0.20	18.19	1.83	4.01	319.2
Batch 2	0.10	0.15	19.93	1.98	3.28	498.0
Batch 3	0.15	0.15	19.16	2.87	3.31	1070.0

• Quantities of each component for physical model test

Volume of SL (V) = 5 yd³ = 135 ft³ W_a = 14457.45 lbTarget unit weight (γ_t) = 120 pcfCalculate the weight of each
component using ratio 1 of 0.1
and ratio 2 of 0.15. W_c = 1408.70 lb

Installation of plastic sheet and earth pressure cell

SL placement through access window

Process of leveling and vibrating to remove air bubbles

Surface cover to maintain moisture during the hydration

- Material properties of SL layer used for physical model test •
 - Average unit weight after 28 days curing = 117 pcf (close to target unit weight)
 - Compressive strength after 14 days = 490 674 psi (within the range of target strength)

14

• Sand layer installation method: moist compaction method considering volume and unit weight of sand layer

total height of 3.5 ft sandbags and crane scale

using Compacting the sand scale target level

Completion of sand ¹⁵ compaction process

-Engine 43cc -Max rpm = 250 -T(ft-lb) = 1.6

Quick hardening epoxy steel stik: -Strength 4000 psi -Set time 5 min -Cure time 1 hour

Preliminary tests for drilling method

• Drilling procedure of auger cast piles

Drilling guide for vertical installation

Installation of cap plate and auger

Installation of the motor head

Drilling to design ACP depth

Top Hollow Auger

Grout Pump

Auger Head

Bottom Hollow Auger

Auger opening for vinyl tube

Grout injection procedure

Removal of motorhead and drilling guide

Connection of crane to the auger

Injection of grout while extracting auger

Insertion of plastic cylinder and injection 18

Remove approximately 2 inches of sand below the cap plate after grout curing

Borehole Sand Vacuum

Inspection of barabala SL diameter

Inspection of borehole SL diameter

Synthetic limestone repair

19

- Strain gauges manufactured by Kyowa Americas Inc (120 ohms).
- 6 gauges per ACP, spaced at designed intervals.
- Installed at ACP center using #3 rebar and spacers.
- Slots in upper cap plate for strain gauge line extension from ACP head.

Schematic diagram and photographical record of the strain gauge attached to the rebar

- Linear Variable Differential Transformers (LVDTs)
 - LVDTs manufactured by Sensata-BEI Sensors (Max displacement: 1.5 in)
 - Installed at ACP head for accurate load-displacement evaluation
 - Installation method of LVDT:
 - 1) An adjustable-length bar was fixed to the soil container to serve as fixed reference bar.
 - 2) The LVDTs were fixed to an L-shaped steel plate clamped to the reference bar.
 - \rightarrow Allows easy position adjustment regardless of ACP location.

Installation method of the LVDTs with adjustable length bar

- Load cell manufactured by MTS (Max capacity: 110 kips).
- Installed between the actuator and the loading plate to measure total applied load.
- Connected to National Instruments data logger along with LVDT and strain gauges (0.1 second measurement intervals)

Load cell installed between the actuator and the loading plate

National instruments data logger (DAQ modules and chassis)

- Pressure cell
 - Pressure cell manufactured by Geokon.
 - Installed at bottom of soil container to investigate mostly boundary effects.

- Maintaining each load increment for 5 min or a constant rate of displacement
- Summary of experimental setup for physical model test

Installation of loading plate

Grouting

T1 (Single ACP)

- Load-displacement relationship
 - The stiffness of pile was obtained using initial 5 points of load-displacement curves.
 - Considering the scale of the physical model test, it was necessary to modify performancebased failure criteria (Soils and Foundations manual)
 - Interpreted failure load by modified criteria = 4.8 kips

25

T1 (Single ACP)

- Load transfer curve
 - Two strain gauges installed at the bottom of the ACP failed.
 - The line was installed too tightly, causing damage during the insertion of the strain gauges.
 - In T2, it was possible to measure strains at all depths by adding extra length to the strain gauge.
 - The load transfer curve was evaluated using the tangent stiffness method (Fellenius, 2023).
 - When the shaft resistance above a gauge location is mobilized, the incremental load at the gauge location is the same as the increment of applied load.

The tangent modulus at the gauge location can be calculated by $\Delta \sigma_{apply} / \Delta \varepsilon$.

T2 (2 x 2 group piles with 4D spacing)

Test #	Loading method	Loading rate	PID gains	Note	Results
1 st	Ramp / Load control Dwell / Displacement control	1000 lb/min	1,000 / 500,000	Same with T1	- Load: Oscillation at 4 kips - Displacement: decrease - increase
2 nd	Ramp / Load control Dwell / Displacement control	1000 lb/min	1,000 / 500,000	Same with T1	- Load: Oscillation at 4 kips - Displacement: increase
3 rd	Ramp / Load control	500 lb/min	1,000 / 500,000	Load control Small loading rate	- Load: No oscillation upto maximum load (4 kips) - Displacement: increase
4 th	Ramp / Load control	1000 lb/min	1,000 / 500,000	Load control with large loading rate	 Load: Oscillation after pausing the test (4 kips) Displacement: increase
5 th	Ramp / Load control Dwell / Displacement control	300 lb/min	1,000 / 500,000	Same with T1 Small loading rate	- Load: Oscillation at 4 kips - Displacement: increase
Tuning tests (15 sets)	Ramp and sinewave	-	Various P		
6 th	Ramp / Load control Dwell / Displacement control	1000 lb/min	500 / 250,000	Same with T1 Small P gain	- Load: No oscillation / large overshooting - Displacement: increase but slope was small at initial loading step
7 th	Ramp / Displacement control	0.03 in/min	500,000	Displacement control small loading rate	N/A
8 th	Ramp / Displacement control	0.05 in/min (0.002 in/min for pile)	500,000	Displacement control medium loading rate	- Load: No oscillation / No overshooting - Displacement: decrease - increase
9 th	Ramp / Displacement control	0.15 in/min (0.013 in/min for pile)	500,000	Displacement control large loading rate	- Load: No oscillation / No overshooting - Displacement: decrease - increase
10^{th}	Ramp / Load control Dwell / Displacement control	1,000 lb/min	10,000 / 500,000	Same with T1 Large P gain	- Load: Oscillation at 7 kips - Displacement: decrease - increase
11^{th}	Ramp / Load control Dwell / Load control	1,000 lb/min	1,000	Ramp-dwell load control original P gain	 Load: No oscillation / large overshooting Displacement: decrease - increase
12 th	Ramp / Load control Dwell / Load control	1,000 lb/min	10,000	Ramp-dwell load control large P gain	- Load: Oscillation at 7 kips - Displacement: decrease - increase
13 th	Ramp / Displacement control	0.15 in/min (0.013 in/min for pile)	500,000	Displacement control large loading rate Increase the thickness of plate	
$14^{\rm th}$	Ramp / Displacement control	0.15 in/min (0.013 in/min for pile)	500,000	Displacement control large loading rate Increased thickness + Aluminium pipe	

* During pile loading test, actuator vibrations occurred, so multiple experiments were conducted with various loading methods. 27

NUMERICAL MODELING

Deliverable 3: Report summarizing numerical modeling results 05/2024 (Delivered)

GENERAL DESCRIPTION OF FE MODEL

Proposed FE analysis matrix

Soil profile	Pile diam. 24", qu = 250				Pile diam. 24", qu = 750				Pile diam. 36", qu = 250				Pile diam. 36", qu = 750				
		p	si			psi				psi				psi			
	Spa.	Spa.	Spa.	Spa.													
	(d/D)	(d/D)	(d/D)	(d/D)													
S	4			2									4			2	
LS	4			2									4			2	
S/LS/S/LS	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	
S/LS	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	
S/LS	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	4	3	2.5	2	

Abbreviations: "S" = soil "LS" = Limestone "qu" = unconf. compression "Spa" = spacing. Est. total cases: 40

FEM general description

- <u>Geometry</u>: Selected based on records from Bridge No. 101 on SR 836 in Miami, Florida.
- <u>Tested cases</u>: 2x2, 3x3, and 4x4 (additional) pile groups.
- Pile diameter: 2 ft and 3ft.
- <u>Distance to edge:</u> >12D.
- <u>Loading</u>: Prescribed displacement of 5" on top of each pile.
- No cap considered.
- Two sand densities considered of 30% and 75%.
- Two limestone cases considered: intact and weathered cases with GSI of 100 and 50.
- Selected limestone q_u of 500 psi as an average of proposed testing matrix.

Geometry of the 3D FE model

CONSTITUTIVE SOIL MODEL PARAMETER SELECTION

	Select soil parameters	Define modeling strategy	Validate model	P paran	erfor netric	m study	Creat	e charts
								-
				Parameter	Units	Loose Sand	Dense Sand	
			D_r	(%)	30	75		
S	andv soil paramet	ters		γ_{sat}	pcf	125	130	
-			ϕ'	0	31.8	37.4		
•	HS Small model	used to simulate the	ψ	о	1.8	7.4		
•	Tarant relative de	nsities of 30% and	75%	E_{50}^{ref}	ksi	2.61	6.53	
			7570.	E_{oed}^{ref}	ksi	2.61	6.53	
٠	Parameters sele	cted based on cor	relations with	E_{ur}^{ref}	ksi	7.83	19.58	
	D by Brinkareve	et al (2010) for san	dy soils	G_0^{ref}	ksi	11.67	16.11	
	D_r by Diffingieve	ct al. (2010) 101 3al	idy 3013.	m	-	0.61	0.47	
				v'_{ur}	-	0.2	0.2	
. :	mostono poromo	toro		$\gamma_{0.7}$	x10-4	1.7	1.3	
	mestone parame	lers		R_{f}	-	0.96	0.91	
•	Hoek and Brown	model was conside	red.	R _{inter}	-	0.8	0.8	
•	Both q. and E. ob	tained as average v	values of a database	provided	bv F	DOT.		

120

An intact rock with a GSI of 100 was considered to achieve an exact q_u of 500 psi.

Summary of laboratory testing database in terms of: (a) unconfined compression strength and (b) modulus of elasticity.

FE MODELING STRATEGY

Two proposed modeling strategies

Modeling strategy

- Drilling disturbs the soil in the field, reducing confinement.
- Two strategies: Intact and reduced- K_o conditions.
- Boundary pressures applied at excavation stage.
- Degree of K_o reduction of 10% selected based on expected shear strains of 0.001%.
- Relative shear strain contours showed considerable disturbance vs intact conditions

Shear strain levels close to ACP excavation Relative shear stress contours for intact and reduced-K_o, respectively

31

NUMERICAL MODEL VALIDATION

NUMERICAL MODEL VALIDATION

2nd Numerical model validation (Full-scale test in Miami)

- Field measurements: Bi-directional load test at Bridge No. 101 on SR 836 in Miami, Florida.
- Test pile: 85 ft-long, 30 in-diameter.
- <u>Soil profile</u>: Defined based on SPTs. A 17 ft-thick weathered limestone over a more competent strata.
- <u>FE model</u>: Modeled with a top sand over a limestone in two scenarios (IR or WR).
- <u>Results</u>: Load vs deformation within measured range. Load transfer mechanism similar to measured as well.

RESULTS OF NUMERICAL MODEL

Example: LS/IR, 3x3 group efficiencies comparisons Range of computed efficiencies by FDOT criteria, plunging, and settlement increase, respectively

PROGRESS ON FEM ANALYSIS MATRIX

Soil profile	D=24", q _u =250 psi				D	D=24", q _u =750 psi D=36", q _u =250 psi					D=36", q _u =750 psi							
	Spacing/Diameter																	
S	4			2											4			2
LS	4			2											4			2
S/LS/S/LS	4	3	2.5	2	Z	1	3	2.5	2		4	3	2.5	2	4	3	2.5	2
S/LS	4	3	2.5	2	Z	1	3	2.5	2		4	3	2.5	2	4	3	2.5	2

FEM analysis matrix

Abbreviations: "S" = soil "LS" = Limestone " q_u " = unconf. compression D = Diameter. Est. total cases: 40

Up to date FEM analysis matrix

- The updated FEM matrix considers 2x2, 3x3, and 4x4 group configurations. 4x4 group added to the initial testing matrix.
- An average q_u of 500 psi was used. Value chosen based on FDOT records and McVay, et al. (2019).
- Research team is now in a "production" stage, thus remaining cases are expected to be finished soon.

Soli profile $D = 24$, $q_u = 500 psi$ $D = 36$, $q_u = 500 psi$	
Spacing/Diameter	
S 4 2	
R 4 2 50% comple	ted
S/R/S/R 4 3 2.5 2 4 3 2.5 2	
S/R 4 3 2.5 2 4 3 2.5 2 cases	and

SUMMARY OF TASKS/DELIVERABLES: SCHEDULE AND PROGRESS

SUMMARY OF TASKS/DELIVERABLES: SCHEDULE AND PROGRESS

TASK AND ASSOCIATED DELIVERABLE	DATE
Kickoff teleconference	01/2023
Deliverable 1: Technical report presenting the technical background	02/2023
Deliverable 2a: Report on details of the laboratory testing program: (i) pile installation, (ii) soil and rock properties, (iii) Gatorock strength, and (iv) detail plan on load transfer along pile length.	07/2023
Deliverable 2b: Report summarizing the results of the laboratory small-scale tests.	12/2023
Deliverable 3: Report summarizing the results of the finite element numerical models and parametric studies of the variables involved in the problem.	05/2024
Deliverable 4: Technical report summarizing proposed correlations and recommendations on the effect of spacing on the capacity of auger cast piles.	09/2024
Deliverable 5a Draft final report.	11/2024
Deliverable 5b: Closeout teleconference meeting and PowerPoint presentation	12/2024
Deliverable 6: Final report	12/2024

PRESENTED BY Luis G. Arboleda-Monsalve Univ. of Central Florida, Orlando, FL.

UNIVERSITY OF CENTRAL FLORIDA

SUPPLEMENTAL SLIDES

T2 (2 x 2 group piles with 4D spacing)

- Plate displacement increases with load.
- Pile head displacement shows instability under small loads.
- Likely caused by unstable behavior of the cap plate and loading plate at the ACP head.

T2 (2 x 2 group piles with 4D spacing)

